Get: Optimal Cluster
Determines the optimal number of clusters using methods like Elbow, Silhouette, Calinski‑Harabasz, Davies‑Bouldin, and Dunn index.
Endpoint:
/eda/clustering/optimal_cluster
Input Parameters:
- usecaseVersion (integer, optional, default: 1)
- method_type (string, optional: elbow, silhouette, calinski_harabasz, davies_bouldin, dunn_index)
- lower_limit (integer, optional, default: 1)
- upper_limit (integer, optional, default: 10)
-
usecaseId (string, required)
Output:
JSON with optimal cluster count recommendations and evaluation scores for each method.