
ホストアクセスクラスライブラリ

本書について
本書は、HCL Z and I Emulator for Windows Version 3.0 版ホスト・アクセス・クラス・ライブラリー (HACL) を使

用する際に必要なプログラミング情報を記載しています。本書では、Windows® は、Windows® 7、Windows®

8、Windows® 8.1、Windows® 10、Windows® Server 2008、および Windows® Server 2012 を指します。また、本

書では、ワークステーションはサポートされているすべてのパーソナル・コンピューターを指します。パーソナル・

コンピューターの 1 つのモデルまたはアーキテクチャーのことしか指していない場合には、そのタイプだけを指定

します。

本書の対象読者
本書は、ホスト・アクセス・クラス・ライブラリー (HACL) 機能を使用するアプリケーション・プログラムを 作成す

るプログラマーおよび開発者を対象としています。

読者に Windows® の知識と経験があるものと想定して説明しています。Windows® に関する情報については、詳細

情報の参照先 (ページ 2) にある資料のリストを参照してください。

本書では、読者が、使用する言語およびコンパイラーに 精通していると想定して説明しています。どのようにプロ

グラムを作成し、 コンパイルし、リンクするかの情報については、詳細情報の参照先 (ページ 2)を参照して、

使用する特定の言語の適切な解説書を調べてください。

本書の使用方法
本書は、以下のように構成されています。

• 概要 (ページ 4)では、ホスト・アクセス・クラス・ライブラリーの概要を説明しています。

• ホスト・アクセス・クラス・ライブラリー C++ (ページ 14)では、ホスト・アクセス・クラス・ライブラ

リーの C++ メソッド および特性を説明しています。

• ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト (ページ 254)では、ホスト・アクセス・

クラス・ライブラリーの自動化オブジェクトの メソッドおよび特性を説明しています。

• Java 用ホスト・アクセス・クラス・ライブラリー (ページ 428) では、ホスト・アクセス・クラス・ライブ

ラリー (HACL) Java™ クラスについての詳細情報がどこに記述されているかを説明しています。

• Sendkeys 略号キーワード (ページ 430)では、Sendkeys メソッドの略号キーワードを記載しています。

• ECL プレーン — 形式および内容 (ページ 433)では、HACL 表示スペース・モデル内の 種々のデータ・プ

レーンの形式および内容を説明しています。

詳細情報の参照先
Z and I Emulator for Windows・ライブラリーには、以下の資料が含まれています。

• Installation Guide

• Quick Beginnings

• Emulator User's Reference

• Administrator's Guide and Reference

• Emulator Programming

• ホスト・アクセス・クラス・ライブラリー

印刷した資料のほかに、Z and I Emulator for Windows で提供される HTML 資料もあります。

Java 用ホスト・アクセス・クラス・ライブラリー

HACL Java HTML ファイルは、組み込みオブジェクトとしてZ and I Emulator for Windowsを使用する

ための ActiveX/OLE 2.0 準拠アプリケーションの作成方法を説明しています。これらのファイルは、以

下のパスにあるZ and I Emulator for Windowsの製品資料に付属している Docs_Admin_Aids zipped フォ

ルダーからアクセスできます: ZIEWin_3.0_Docs_Admin_Aids.zip\publications\ja\doc\hacl

4

第 1 章. 概要
ホスト・アクセス・クラス・ライブラリー (HACL) は、アプリケーション・プログラマーがホスト・アプリケーショ

ンに簡単かつ迅速にアクセスできるようにするオブジェクトのセットです。HCL Z and I Emulator for Windows で

は、複数の異なる HACL レイヤーをサポートすることにより、以下の多様なプログラミング言語と環境をサポート

します。C++ オブジェクト、Java™ オブジェクト、Microsoft® COM ベースの自動化テクノロジー (OLE)。どの層も

同様な機能性を提供しますが、個々の 環境別の構文および機能の相違に応じて、それぞれの層ごとに若干の相違が

あります。機能性および柔軟性の最も高い層は C++ 層であり、この層は他のすべての層の基盤を提供します。

このような階層化の概念によって、Java™、Microsoft® Visual Basic®、Visual Basic® for Applications、Lotus®

Notes™、Lotus® WordPro、および Visual C++® を含め、多種多様なプログラミング環境で基本的な HACL 関数を

使用することができます。次の図は、各 HACL 層を示しています。

図 1. HACL 層

C++ オブジェクト
この C++ クラス・ライブラリーは、ホスト接続をオブジェクト指向によって抽象化したものを完全な形で提供しま

す。それには、ホスト表示スペース (画面) での読み書き、画面上のフィールドのエミュレーション、状況情報につ

いてのオペレーター標識域 (OIA) の読み取り、ビジュアル・エミュレーター・ウィンドウに関する情報のアクセスと

更新、ファイルの転送、および重要イベントの非同期通知の実行が含まれます。

C++ オブジェクトの詳細については、ホスト・アクセス・クラス・ライブラリー C++ (ページ 14)を参照してくだ

さい。

Chapter 1. 概要

Java オブジェクト
Java™ オブジェクトは、Host-on-Demand バージョン 3 に類似する HACL 関数すべてに対して Java™ ラッピング

を提供します。HACL Java™ クラスの詳細については、Java 用ホスト・アクセス・クラス・ライブラリー (ペー

ジ 428) を参照してください。

自動化オブジェクト
ホスト・アクセス・クラス・ライブラリーの自動化オブジェクトを使用すると、Z and I Emulator for Windows

は、Microsoft® COM ベースのオートメーション技術 (以前は、OLE オートメーションと呼ばれていました) をサ

ポートできます。HACL 自動化オブジェクトは、一連の自動化サーバーであり、これを使用することによって、自動

化コントローラー (Microsoft® Visual Basic® など) が、プログラマチックに Z and I Emulator for Windows のデータ

および機能にアクセスすることができます。言い替えると、自動化プロトコルを制御できるアプリケーション (自動

化コントローラー) は、Z and I Emulator for Windows の操作の一部 (自動化サーバー) を制御することができます。

注: HCL Z and I Emulator for Windows で提供される自動化オブジェクトは本質的に 32 ビットです。これら

は 32 ビット Microsoft Office プログラムでのみ使用できます。

自動化オブジェクト層の詳細については、ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト (ペー

ジ 254)を参照してください。

ECL の概念
以下のセクションで、エミュレーター・クラス・ライブラリー (ECL) のいくつかの基本概念について説明します。こ

れらの概念を理解すれば、ライブラリーを有効に使用するのに役立ちます。

接続、ハンドルと名前の
ECL の概念接続、ハンドルと名前ECL に関する限り、接続とは Z and I Emulator for Windows の単一かつ固有のエミュレーター・ウィンドウのことで

す。エミュレーター・ウィンドウは、ホストに実際に接続されていることも接続されていないこともあり、また、画

面に表示されることも表示されないこともあります。例えば、Z and I Emulator for Windows のウィンドウが切断状

態にある場合もあります。各接続は、接続ハンドルまたは接続名によって区別されます。大半の HACL オブジェク

トは、特定の接続に関連があります。通常、オブジェクトは、オブジェクトのコンストラクター上のパラメーターと

して、接続ハンドルまたは接続名をとります。Visual Basic® などの、コンストラクター上のパラメーターをサポー

トしない言語では、関連づけを行うためにメンバー関数が提供されます。オブジェクトは、その作成後に他の接続に

関連付けることはできません。例えば、接続 'B' に関連付けられた ECLPS (表示スペース) オブジェクトを作成するに

は、次のようなコードを使用します。

C++

ECLPS *PSObject;
PSObject = new ECLPS('B');

Visual Basic®

5

ホストアクセスクラスライブラリ

6

Dim PSObject as Object
Set PSObject = CreateObject("ZIEWin.autECLPS")
PSObject.SetConnectionByName("B")

HACL 接続名は、A から Z、または a から z の単一の文字から成ります。接続名の最大数は 52 であり、現在、Z and

I Emulator for Windows での同時接続は 52 までに制限されています。接続名は、EHLLAPI 短縮セッション ID と、Z

and I Emulator for Windowsのウィンドウ・タイトルおよび OIA に示されるセッション ID と同じです。

HACL ハンドルは、単一の接続を表す固有の 32 ビット番号です。接続名とは異なり接続ハンドルは 52 までの値に

限定されておらず、値そのものには、アプリケーションに対する意味はありません。1 つの接続ハンドルを使用し

て、複数のスレッドおよびプロセスにおいて 同一の接続を参照することができます。

今後の拡張に備えて、アプリケーションでは可能な限り接続ハンドルを使用するようにしてください。たいていの

HACL オブジェクトは、接続の識別の必要があるときに ハンドルまたは名前を受け入れます。基本 HACL クラスに

は、ハンドルから名前へ、また名前からハンドルへ変換するのに使用できる関数があります。これらの関数は、どの

HACL オブジェクトからでも使用できます。

注: 接続のプロパティーは、動的なものです。例えば、別のホストに接続を構成し直すと、GetConnType か

ら 戻される接続タイプが変わることがあります。一般に、アプリケーションでは、接続のプロパティーは固

定のものと見なしてはなりません。

セッション
ECL の概念セッションECL に関して言えば、セッション・オブジェクト (ECLSession) とは、他のすべての接続固有オブジェクト用の単な

るコンテナーです。これは、特定の接続用の完全なセットの HACL オブジェクトを、アプリケーション で作成する

ためのショートカットを提供します。session という用語は、Z and I Emulator for Windows セッションの概念と混同

してはなりません。Z and I Emulator for Windows のセッションとは、画面上の物理エミュレーション・ウィンドウ

を指します。

ECLSession オブジェクトを作成または破棄しても、Z and I Emulator for Windows のセッション (ウィンドウ) は影

響を受けません。アプリケーションでは、1 つまたは複数の 接続を参照する ECLSession オブジェクトをいくつでも

作成することができます。

ECL コンテナー・オブジェクト
ECL の概念ECL コンテナー・オブジェクトHACL クラスによっては、他のオブジェクトのコンテナーとして働くものもあります。例えば、ECLSession オブ

ジェクトは、ECLPS、ECLOIA、ECLWinMetrics、および ECLXfer オブジェクトのインスタンスを収容します。コン

テナーは、含まれる オブジェクトを指すポインターを戻すメソッドを提供します。例えば、ECLSession オブジェク

トには GetOIA メソッドがありますが、 これは OIA オブジェクトを指すポインターを戻します。収容されたオブジェ

クトは、そのコンテナーのクラスの共用メンバーとして実装されるのではなく、メソッドを通してのみアクセスされ

ます。

パフォーマンス上の理由または他の理由から、コンテナー・オブジェクトの作成時に 収容オブジェクトは作成され

ることも作成されないこともあります。クラスの実装において、収容オブジェクトを指すポインターをアプリケー

ションが最初に 要求するまで、そのオブジェクトの作成を延期することもできます。アプリケーションでは、収容

されるオブジェクトはそのコンテナーと 同時に作成されると見なしてはなりません。例えば、ECLSession オブジェ

Chapter 1. 概要

クトの作成時に ECLPS オブジェクト のインスタンスは作成されないことがあります。そのような場合、GetPS メ

ソッドが最初に呼び出される まで、ECLSession クラスは ECLPS オブジェクトの作成を延期することができます。

コンテナー・クラスが破棄されると、そこに収容されているすべてのインスタンスも破棄されます。アプリケーショ

ンに戻されたすべてのポインターは無効になるので、使用してはなりません。

注: HACL 層によっては (自動化オブジェクトなど)、包含方式を隠したり、これを明示ポインターを使用しな

い命名方式に 再キャストしたりすることがあります。

ECL リスト・オブジェクト
ECL の概念ECL リスト・オブジェクトいくつかの HACL クラスにはリスト反復機能があります。例えば、ECLConnList クラスは接続のリストを管理しま

す。ECL リスト・クラスは、リスト内容の変更を反映するよう非同期で更新されることはありません。アプリケー

ションは、リストの内容を更新するために明示的に Refresh メソッドを呼び出さなければなりません。それによっ

て、反復中にリストが変更されたかどうかを心配せずに、アプリケーションでリストを反復することができます。

イベント
ECL の概念イベントHACL は、特定のイベントを非同期通知する機能を備えています。アプリケーションは、特定のイベントが起きたと

きに通知を受けるように選択することができます。例えば、アプリケーションは、Z and I Emulator for Windows の

新しい接続が開始したら通知を受けるようにすることができます。現在、HACL は次のようなイベントの通知をサ

ポートします。

• 接続のスタート・ストップ

• 通信の接続/切断

• オペレーターのキー・ストローク

• 表示スペースまたは OIA の更新

イベントの通知は、ECLNotify 抽象基本クラスによって実装されます。イベント・タイプごとに別々のクラスが存

在します。アプリケーションは、イベントの通知を受けられるようにする には、ECLNotify 抽象基本クラスのいず

れかから派生したオブジェクト を定義および作成しなければなりません。次に、適切な HACL 登録機能を呼び出し

て、 そのオブジェクトを登録しなければなりません。アプリケーション・オブジェクトを登録すると、その後該当

イベントが発生する度に、NotifyEvent メソッドが呼び出されます。

注:

7

ホストアクセスクラスライブラリ

8

1. アプリケーションの NotifyEvent メソッドは、別の実行スレッド上に非同期で呼び出されます。その

ため、NotifyEvent メソッドは、再入可能でなければならず、また、アプリケーション・リソースに

アクセスする場合は、適切なロックまたは同期化を使用する必要があります。

2. HACL 層 (自動化オブジェクトなど) によっては、HACL イベントを完全にはサポートしていなかった

り、実装していなかったりすることがあります。

エラー処理
ECL の概念エラー処理C++ 層では、HACL は C++ の構造化例外処理を使用します。一般に、ECLErr オブジェクトをもった C++ 例外を送り

出す ことによって、アプリケーションにエラーが示されます。アプリケーションがエラーを catch するには、次の

ように HACL オブジェクトの呼び出しを try/catch ブロック内に入れる必要があります。

try {
 PSObj = new ECLPS('A');
 x = PSObj->GetSize();

 //...more references to HACL objects...

} catch (ECLErr ErrObj) {
 ErrNumber = ErrObj.GetMsgNumber();
 MessageBox(NULL, ErrObj.GetMsgText(), "ECL Error");
}

HACL エラーが catch されたとき、アプリケーションから ECLErr オブジェクトの メソッドを呼び出せば、エラーの

正確な原因を判別することができます。また、ECLErr オブジェクトを呼び出して、完全な言語依存のエラー・メッ

セージを作成することもできます。

自動化オブジェクト層では、実行時エラーは、該当するスクリプト・エラーが作成される原因になります。アプリ

ケーションは、On Error ハンドラーを使用して、エラーを捕そくしてエラーについての 追加情報を照会し、適切な

アクションをとることができます。

アドレッシング (行、桁、位置)
ECL の概念アドレッシングHACL には、ホスト表示スペースにおいて点 (文字位置) をアドレッシングする方法が 2 つあります。アプリケー

ションは、行/列の 番号を使用するか、または単一の線形位置の値を使用して文字をアドレッシングすることができ

ます。表示スペースのアドレッシングの場合、使用するアドレッシング方式に関係なく、常に 1 をベースにします

(0 ベースではありません)。

行/列のアドレッシング方式が有用なのは、ホスト・データの物理画面表示に直接関係したアプリケーションの場合

です。長方形の座標システム (左上隅が行 1 桁 1) を使うのが、 画面で点をアドレッシングする本来の方法です。線

形位置アドレッシング法 (左上隅を位置 1 とし、左から右に向かって、上から下へ進む方法) が便利なのは、 表示ス

ペース全体を単一のデータ・エレメント配列として表示するアプリケーションの場合、 または、このアドレッシン

グ法を使用する EHLLAPI インターフェースから移植されたアプリケーションの場合です。

C++ 層では、同じメソッドでも、呼び出すシグニチャーが異なると、選択するアドレッシング方式も異なります。

例えば、ホスト・カーソルを特定の画面座標に移動したい場合、アプリケーションは次の 2 つのいずれかのシグニ

チャーで ECLPS::SetCursorPos メソッドを呼び出すことができます。

Chapter 1. 概要

PSObj->SetCusorPos(81);
PSObj->SetCursorPos(2, 1);

ホスト画面が行あたり 80 桁で構成されている場合、 上記のステートメントはどちらも同じ結果を生じさせます。ま

たこの例は、アドレッシング方式における若干の相違も示します。つまり、表示スペースの行あたりの文字数につ

いてアプリケーションに前提条件がある場合、線形位置メソッドでは予期しない結果を生じることがあります。例え

ば、この例のコードの 1 行目は、 132 桁に構成された表示スペースの行 1 の桁 81 にカーソルを置きます。コードの

2 行目は、表示スペースの構成に関係なく行 2 桁 1 にカーソルを置きます。

注: HACL 層によっては、1 つのアドレッシング方式しか公開していません。

移行、EHLLAPI からの
現在、エミュレーター高水準言語 API (EHLLAPI) 用に 書かれているアプリケーションは、ホスト・アクセス・クラ

ス・ライブラリー を使用できるよう修正することができます。一般に、EHLLAPI から HACL にマイグレーションす

るには、 大幅なソース・コードの変更やアプリケーションの再構築が必要です。HACL は、EHLLAPI とは異なるプ

ログラミング・モデルを提供するので、一般に、有効に働くには異なるアプリケーション構造を必要とします。

以下のセクションは、EHLLAPI に慣れたプログラマーが、HACL と EHLLAPI との 類似点および相違点を理解するの

に役立ちます。以下の情報を使用すれば、HACL を 使用できるよう個々のアプリケーションを修正する方法を理解

することができます。

注: EHLLAPI では、session という用語は、HACL の connection と同じ意味で使われます。このセクション

では、これらの用語を交換可能なものとして使っています。

実行/言語インターフェース
移行、EHLLAPI からの実行/言語インターフェースELLHAPI からの移行実行/言語インターフェース最も基本的なレベルでは、EHLLAPI と HACL には、アプリケーション・プログラムからの API の呼び出し方のメカ

ニズムにおける違いがあります。

EHLLAPI は、複数用途のパラメーターを使う単一の呼び出し点インターフェースとしてインプリメントされていま

す。DLL 内の 1 つのエントリー・ポイント (hllapi) が、 4 つのパラメーターの固定されたセットを基にしてすべての

関数を提供します。パラメーターのうちの 3 つは、4 つ目のパラメーターの値に応じて 異なる意味をとります。こ

の単純なインターフェースによって、さまざまなプログラミング環境や言語から 容易に API を呼び出すことが可能

になります。その欠点は、1 つの関数と 4 つのパラメーターの中に多くの複雑性が集約されているということです。

HACL は、 明示的なエントリー・ポイントまたは関数の代わりに一連のプログラミング・オブジェクトを提供する

オブジェクト指向インターフェースです。オブジェクトには、ホスト接続を操作するのに使えるプロパティーおよ

びメソッドがあります。構造の内容やパラメーター・コマンド・コードの詳細について配慮する必要はなく、アプリ

ケーション機能に注意を集中できます。HACL オブジェクトは、サポートされている HACL 層環境 (C++ または自動

化オブジェクト) のいずれからでも使用できます。この 3 つの層は、Microsoft® Visual C++®、Visual Basic®、およ

び Lotus® SmartSuite® アプリケーションといった最新鋭のプログラミング環境にアクセスすることができます。

9

ホストアクセスクラスライブラリ

10

特徴
移行、EHLLAPI からの機能EHLLAPI からの移行FeaturesEHLLAPI レベルでは使えない多数の機能を、HACL はハイレベルで提供します。また、現在どの HACL クラスでも

インプリメントされていない EHLLAPI 機能もいくつかあります。

HACL に固有の機能には次のものがあります。

• 接続 (セッション) スタート・ストップ機能

• ホスト通信リンクの接続/切断でのイベント通知

• 接続 (セッション) スタート・ストップでのイベント通知

• 包括的なエラー・トラッピング

• 言語特定のエラー・メッセージ・テキストの生成

• 接続 (セッション) 数を制限しない体系。 現在、Z and I Emulator for Windows は 52 に制限されています。

• 複数の並行接続 (セッション) およびマルチスレッド・アプリケーションのサポート

• ホスト表示スペース用の行/列アドレッシング

• 表示スペースの単純化されたモデル

• フィールドおよび属性のリストの自動生成

• キーワードをベースとするファンクション・キー・ストリング

HACL でまだ実装されていない EHLLAPI 機能には、次のものがあります。

• 構造化フィールドのサポート

• OIA 文字イメージ

• 表示スペースのロック/アンロック

セッション ID
移行、EHLLAPI からのセッション IDEHLLAPI からの移行セッション IDHACL 体系は、52 個のセッションに限定されていません。したがって、EHLLAPI で使われるような単一の文字セッ

ション ID は適していません。HACL では、アプリケーションに対して 特定の意味をもたない単純な 32 ビット値で

ある接続ハンドルの概念を使用しています。接続ハンドルは、個々の接続 (セッション) を固有に識別します。1 つの

接続ハンドルを使用して、複数のスレッドおよびプロセスにおいて 同一の接続を参照することができます。

特定の接続を参照する必要のあるすべての HACL オブジェクトおよび メソッドは、接続ハンドルを受け入れます。

さらに、後方互換性のためと、エミュレーター・ユーザー・インターフェース (ハンドルを表示しません) から 参照

できるようにするため、一部のオブジェクトとメソッドは 従来のセッション ID も受け入れます。アプリケーショ

ンは、ECLConnList オブジェクトとの接続を列挙することによって 接続ハンドルを取得できます。それぞれの接続

は、ECLConnection オブジェクトによって 表されます。ECLConnection::GetHandle メソッドを使用すると、個々

の接続に関連した ハンドルを取り出すことができます。

アプリケーションで、接続名 (EHLLAPI 短縮セッション ID) の代わりに 接続ハンドルを使用することを強くお勧めし

ます。HACL の将来の設定では、接続名を使用するアプリケーションは、52 個を超えるセッションにアクセスでき

なくなる場合があります。場合によっては、名前を使用する必要があるかもしれません。例えば、アプリケーショ

ンが利用する 特定のセッションの名前を入力する必要があるときなどです。以下の C++ の例では、セッション名を

Chapter 1. 概要

入力します。するとアプリケーションは、接続リスト内でその接続を検出してから、そのセッション用の PS および

OIA オブジェクトを作成します。

ECLConnList ConnList; // Connection list
ECLConnection *ConnFound; // Ptr to found connection
ECLPS *PS; // Ptr to PS object
ECLOIA *OIA; // Ptr to OIA object
char UserRequestedID;

//... user inputs a session name (A-Z or a-z) and it is put
//... into the UserRequesteID variable. Then...

ConnList.Refresh(); // Update list of connections
ConnFound = ConnList.FindConnection(UserRequestedID);
if (ConnFound == NULL) {
 // Session name given by user does not exist...
}
else {
 // Create PS and OIA objects using handle of the
 // connection just found:
 PS = new ECLPS(ConnFound.GetHandle());
 OIA= new ECLOIA(ConnFound.GetHandle());

 // The following would also work, but is not the
 // preferred method:
 PS = new ECLPS(UserRequestedID);
 OIA= new ECLOIA(UserRequestedID);
}

例に示された、PS および OIA オブジェクトを作成する第 2 の方法は 望ましくありません。ハンドルではなくセッ

ション名を使用するからです。この場合、このコード・セクションに暗黙の 52 個のセッション制限が設定されま

す。上記の第 1 の例を使用すると、そのコード・セクションを さまざまなセッションに使用することができます。

表示スペース・モデル
移行、EHLLAPI からの表示スペース・モデルEHLLAPI からの移行表示スペース・モデルHACL の表示スペース・モデルは、EHLLAPI のものより簡単に使うことができます。HACL 表示スペースは、 おの

おのが 1 つのデータ・タイプを持ついくつかのプレーンで構成されます。プレーンには、以下のものがあります。

• テキスト

• フィールド属性

• カラー

• 拡張属性

プレーンは、すべて同サイズであり、ホスト表示スペース内の 各文字位置につき 1 バイトずつを含んでいます。ア

プリケーションは、ECLPS::GetScreen メソッドを使用して、必要な任意のプレーンを取得できます。

このモデルは、バッファー内で表示スペースのテキストおよび 非テキストのデータがしばしばインターリーブされ

る EHLLAPI とは異なります。アプリケーションは、どのタイプのデータを取り出すかを指定する EHLLAPI セッショ

ン・パラメーターを設定してから、 次にそのデータをバッファーにコピーするために別の呼び出しを行わなければ

なりません。HACL モデルを使用すると、アプリケーションは、1 回の呼び出しで必要なデータを取得する ことがで

き、1 つのバッファー内で別々のデータ型が混ざり合うことはありません。

11

ホストアクセスクラスライブラリ

12

SendKey インターフェース
ホストにキー・ストロークを 送信する HACL メソッド (ECLPS::Sendkeys) は、EHLLAPI の SendKey 関数に似ていま

す。ただし、EHLLAPI では、Enter、PF1、および Backtab などの非テキスト・キーを表すのに 暗号エスケープ・

コードが使われます。ECLPS オブジェクトは、そのようなキー・ストロークを表すのに、ブラケットで囲んだキー

ワードを使用します。例えば、次に示す C++ サンプルでは、現行カーソル位置に ABC の文字を 入力し、その後に

Enter キーが続きます。

ECLPS *PS;

PS = new ECLPS('A'); // Get PS object for "A"
PS->SendKeys("ABC[enter]"); // Send keystrokes

イベント
移行、EHLLAPI からのイベントEHLLAPI からの移行イベントEHLLAPI には、特定のイベントについてアプリケーションが非同期通知を受け取るためのいくつかの手段が備わっ

ています。しかし、イベント・モデル相互に一貫性はない (セマフォーを使用する イベントもあれば、ウィンドウ・

システム・メッセージを使用する イベントもある) ため、アプリケーションは責任をもって イベント・スレッドを

セットアップして管理しなければなりません。HACL では、すべてのイベント処理が単純化され、すべてのイベン

ト・タイプを通して一貫性が保たれます。アプリケーションは、明示的に複数の実行スレッドを作成する 必要はな

く、HACL が内部でスレッド化を処理します。

ただし、別の実行スレッドでイベント・プロシージャーが呼び出されることに留意していなければなりません。イベ

ント・プロシージャーからのアクセス時には、 ダイナミック・アプリケーション・データへのアクセスを同期化し

なければなりません。イベント・スレッドは、アプリケーションがイベントを登録すると生成され、 イベントが登

録抹消されると終了します。

PS 接続/切断およびマルチスレッド化
移行、EHLLAPI からのPS 接続/切断、マルチスレッド化EHLLAPI からの移行PS 接続/切断、マルチスレッド化EHLLAPI アプリケーションは、別々のセッションへの接続を管理するには、ConnectPS および DisconnectPS

EHLLAPI 機能を呼び出さなければなりません。アプリケーションは、セッションに永続的に接続されたままになら

ないようにするため、 慎重にコーディングしなければなりません。 セッションは、すべての EHLLAPI アプリケー

ションで共有しなければならないからです。また、使用する他の EHLLAPI 機能によっては、 アプリケーションが

セッションに接続されていることも事前に確認しなければなりません。

HACL では、アプリケーションが明示的にセッションを接続または切断する必要は ありません。すべての HACL オ

ブジェクトは、その作成時に特定の接続 (セッション) に関連付けられています。アプリケーションが、別の接続に

アクセスするには、それぞれのためのオブジェクトを作成するだけでよいのです。例えば、次に示す例は、キー・

ストローク ABC をセッション A に送ってから、次に DEF をセッション B に、さらに次に Enter キーをセッション A

に送ります。 EHLLAPI プログラムでは、アプリケーションは、セッションを 1 つずつ接続/切断しなければなりませ

ん。 一度に 1 つのセッションとしか対話できないからです。HACL アプリケーションは、次のように必要な任意の

順序でオブジェクトを使用することができます。

ECLPS *PSA, *PSB;

PSA = new ECLPS('A');

Chapter 1. 概要

PSB = new ECLPS('B');

PSA->Sendkeys("ABC");
PSB->Sendkeys("DEF");
PSA->Sendkeys("[enter]");

複数の接続 (セッション) と対話するアプリケーションの場合、これによって、複数の接続を管理するのに必要な

コードを大幅に単純化することができます。

また EHLLAPI では、作業セッションが 1 つであることに加えて、 アプリケーションのマルチスレッド特性に対する

制約もあります。EHLLAPI インターフェースを 呼び出すスレッドが複数あるアプリケーションの場合、表示スペー

スへの接続と 切断は慎重に管理する必要があり、複数のスレッドがあってもアプリケーションは一度に 1 つの セッ

ションとしか対話できません。

ECLPS では、マルチスレッド化に関してアプリケーションは特に制約を受けません。アプリケーションは、任意の

数のスレッド上で任意の数のセッションと並列対話することができます。

13

14

第 2 章. ホスト・アクセス・クラス・ライブラリー C++
オブジェクト、C++説明この C++ クラス・ライブラリーは、ホスト接続をオブジェクト指向によって抽象化したものを完全な形で提供し

ます。それには、ホスト表示スペース (画面) での読み書き、画面上のフィールドのエミュレーション、状況情報

についてのオペレーター標識域 (OIA) の読み取り、ビジュアル・エミュレーター・ウィンドウに関する情報のアク

セスと更新、ファイルの転送、および重要イベントの非同期通知の実行が含まれます。クラス・ライブラリーは、

Microsoft® Visual C++® コンパイラーをサポートしています。

ホスト・アクセス・クラス・ライブラリーの C++ 層は、クラス階層に配置された多数の C++ クラスで構成されてい

ます。図 2 : ホスト・アクセス・クラス・オブジェクト (ページ 15) は、ホスト・アクセス・クラス・ライブラ

リーの C++ 層の C++ 継承階層を示しています。この図では、すべてのオブジェクトは、それぞれすぐ上のクラスか

ら継承します。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

図 2. ホスト・アクセス・クラス・オブジェクト

また、図 2 : ホスト・アクセス・クラス・オブジェクト (ページ 15) は、各クラスのすべてのメンバー関数も 示し

ています。各クラスについて示されている関数に加え、それぞれのクラスは 親クラスの関数をすべて継承している

ことに注意してください。例えば、 関数 IsReady() は、ECLSession、 ECLPS、ECLOIA、ECLWinMetrics、 および

ECLXfer クラスでも使用できます。

各クラスについて、以下のセクションで簡潔に説明します。詳細については、この章の各クラスの説明を参照してく

ださい。

15

ホストアクセスクラスライブラリ

16

この章の例はすべて、ECLSAMPS.CPP ファイルにあります。このファイルを使用して、 サポートされているコンパ

イラーでサンプルをコンパイルしたり、実行したりできます。

以下に、ホスト・アクセス・クラス・ライブラリー C++ クラスについて概説します。各クラス名は、 ホスト・アク

セス・クラス・ライブラリーの共通の接頭部である ECL で始まります。

• ECLBase (ECLBase クラス (ページ 18) ページ) は、 すべての ECL オブジェクトの基本クラスです。これ

は、接続名やハンドルの変換などの特定の基本ユーティリティー ・メソッドを提供します。すべての ECL オ

ブジェクトはこのクラスを継承するため、 これらのメソッドはどの ECL メソッドでも使用することができま

す。

• ECLConnection (ECLConnection クラス (ページ 24) ページ) は、単一の Z and I Emulator for Windows 接続

を表し、接続状況、接続タイプ (例えば、3270 や 5250)、および接続名と接続ハンドルなどの接続情報を含

んでいます。またこのクラスは、ECLPS や ECLOIA などの接続別の ECL オブジェクトすべての 基本クラスで

もあります。

• ECLConnList (ECLConnList クラス (ページ 39) ページ) には、 オブジェクトが作成されたときまたは最後

に Refresh メソッドが呼び出されたときに存在していた、すべての Z and I Emulator for Windows 接続のリス

トが入っています。それぞれの接続は、ECLConnection オブジェクトによって 表されます。

• ECLConnMgr (ECLConnMgr クラス (ページ 47) ページ) は、ECLConnList オブジェクトを使用する現在稼

働中のすべて Z and I Emulator for Windows 接続 (ウィンドウ) を列挙します。またこれは、新たに接続を開

始または停止するためのメソッドも提供します。

• ECLCommNotify (ECLCommNotify クラス (ページ 54) ページ) は、 ホストへの接続が切断されたり接続さ

れたりするたびに、通知を受け取るために アプリケーションで使用できる通知クラスです。これは、接続の

状況をモニターして、 接続が不意に切断されたときにアクションをとるのに使用することができます。

• ECLErr (ECLErr クラス (ページ 59) ページ) は、 ホスト・アクセス・クラス・ライブラリー・クラスから

実行時エラー情報を戻すためのメソッドを提供します。

• ECLField (ECLField クラス (ページ 63) ページ) には、 フィールド属性、フィールド・カラー、画面上の位

置、 または長さなどの、画面上の単一のフィールドについての情報が入っています。入力フィールドを更新

するためのメソッドも提供されます。

• ECLFieldList (ECLFieldList クラス (ページ 80) ページ) に は、ECLField オブジェクトの集合が入っていま

す。Refresh メソッドを呼び出すと、 現行ホスト画面が検査され、フィールド・リストが抽出され、 それを

使用して ECLField オブジェクトのリストが作成されます。アプリケーションは、この集合を使うことによ

り、 リストそのものを作成しなくてもフィールドを管理することができます。

• ECLKeyNotify (ECLKeyNotify クラス (ページ 87) ページ) は、 キー・ストローク・イベントについて通知

を受けるためにアプリケーション が使用できる通知クラスです。アプリケーションは、キー・ストロークを

フィルター処理 (除去) したり、 他のキー・ストロークに置換したり、廃棄したりできます。

• ECLListener (ECLListener クラス (ページ 93) ページ) は、 すべての新規 HACL イベント・リスナー・オブ

ジェクトの基本クラスです。これは、 すべてのリスナー・オブジェクトに共通の機能を提供します。

• ECLOIA (ECLOIA クラス (ページ 93) ページ) によって、シフト標識、 入力禁止状態、通信エラーなど、オ

ペレーター状況の情報へアクセスできます。

• ECLOIANotify (ECLOIANotify クラス (ページ 106) ページ) は、 抽象基本クラスです。アプリケーションは

このクラスから派生したオブジェクトを 作成して、OIA の変更の通知を受け取ります。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

• ECLPS (ECLPS クラス (ページ 109) ページ) は、 単一の接続の表示スペース (画面) を表します。これは、

データ・プレーンの形式で画面内容のコピーを取得するためのメソッドを含んでいます。各プレーンは、テ

キスト、フィールド属性、およびカラー属性など、表示スペース特定の側面を表します。表示スペース内の

ストリングを検索したり、 キー・ストロークをホストに送信したり、ホスト・カーソル位置を取得および設

定するため、 さらにその他の多くの機能のためのメソッドが提供されます。また、画面上のフィールド・リ

ストを列挙するのに使える ECLFieldList オブジェクトも提供されます。

• ECLPSEvent (ECLPSEvent クラス (ページ 154) ページ) は、 表示スペースが更新されたときに PS イベン

ト・リスナーに渡される イベント・オブジェクトです。これには、更新の理由および画面の更新個所を含ん

だ イベントについての情報が入っています。

• ECLPSListener (ECLPSListener クラス (ページ 159) ページ) は、 抽象基本クラスです。アプリケーション

はこのクラスから派生したオブジェクトを 作成して、ECLPSEvent オブジェクトにより提供されるすべての

情報を使用して 表示スペース更新イベントを受信します。

• ECLPSNotify (ECLPSNotify クラス (ページ 162) ページ) は、 抽象基本クラスです。アプリケーションはこ

のクラスから派生したオブジェクトを 作成して、最少の情報を使用して表示スペース更新の通知を受信しま

す。

• ECLRecoNotify (ECLRecoNotify クラス (ページ 165) ページ) は、 抽象基本クラスです。アプリケーション

はこのクラスから派生したオブジェクトを 作成して、画面認識の通知を受信します。

• ECLScreenDesc (ECLScreenDesc クラス (ページ 168) ページ) は、 単一のホスト画面を記述するのに使用

するクラスです。このとき、画面記述クラス・オブジェクト を使用して、この記述されたホスト画面が表示

されるときにイベントを起動したり、あるいは 特定のホスト画面を同期して待機します。

• ECLScreenReco (ECLScreenReco クラス (ページ 178) ページ) は、 画面説明オブジェクトのセットを収集

したり、収集された画面のいずれか が表示スペースに表示されるときに非同期イベントを生成するのに 使用

されるクラスです。

• ECLSession (ECLSession クラス (ページ 183) ページ) には、 すべての接続固有オブジェクトの集合が入っ

ています。ECLSession を使うと、特定の接続用の完全セットのオブジェクトを簡単に作成することができま

す。

• ECLStartNotify (ECLStartNotify クラス (ページ 191) ページ) は、 接続の開始時または停止時に必ず通知を

受けられるようにするために アプリケーションが使用できる通知クラスです。これは、システム状況をモニ

ターして、接続が不意にクローズされたときに アクションをとるために使用することができます。

• ECLUpdateNotify (ECLUpdateNotify クラス (ページ 196) ページ) は、 ホスト画面または OIA が更新される

たびに通知を受けられるようにする ためにアプリケーションが使用できる通知クラスです。

• ECLWinMetrics (ECLWinMetrics クラス (ページ 196) ページ) は、 エミュレーションが実行される物理ウィ

ンドウを表示します。ウィンドウの状態 (最小化、最大化、元のサイズに戻す)、ウィンドウ・サイズ、 およ

び可視属性を取得および設定するためのメソッドが提供されます。

• ECLXfer (ECLXfer クラス (ページ 219) ページ) は、 ホストとの間での接続を介したファイルのやりとりを

開始します。

• ECLPageSettings (ECLPageSettings クラス (ページ 226) ページ) は、エミュレーター・セッション

の「ファイル」>「ページ設定」ダイアログの設定を制御および検索します。

• ECLPrinterSettings (ECLPrinterSettings クラス (ページ 238) ページ) は、エミュレーター・セッション

の「ファイル」>「プリンター設定」ダイアログの設定を制御および検索します。

17

ホストアクセスクラスライブラリ

18

作成、C++ ECL プログラムの
C++ ECL プログラムの作成説明このセクションでは、ECL を使用する C++ プログラムの作成方法のメカニズムについて説明します。ソース・コー

ドの準備、コンパイル、およびリンクの各要件についても述べます。

Microsoft Visual C++
C++ ECL プログラムの作成Microsoft Visual C++以下のセクションでは、ECL を使用する Microsoft® Visual C++ アプリケーションの作成、コンパイル、およびリン

クの方法について説明します。現在、Z and I Emulator for Windows は、Microsoft® Visual C++ コンパイラー・バー

ジョン 4.2 以降をサポートします。

ソース・コードの準備
ECL クラスを使用するプログラムでは、クラス定義その他のコンパイル時情報を得る ために、ECL ヘッダー・ファ

イルを含めなければなりません。アプリケーションに必要なヘッダー・ファイルのサブセットのみを 含めても構い

ませんが、単純化のため、ECLALL.HPP ファイルを 使用するすべての ECL ヘッダー・ファイルを アプリケーション

に含めるようお勧めします。

ECL オブジェクトまたは定義に対する参照を含んだ すべての C++ ソース・ファイルでは、最初の参照の前に、 次に

示すステートメントを付けなければなりません。

 #include "eclall.hpp"

コンパイル
コンパイラーに対して、ECL ヘッダー・ファイルの入った ZIEWin サブディレクトリーを検索するよう指示しなけ

ればなりません。そのためには、/I コンパイラー・オプションを使用するか、 または「Developer Studio Project

Setting」ダイアログを使用します。

/MT (実行可能ファイルの場合) または /MD (DLL の場合) コンパイラー・ オプションを使用して、アプリケーション

をマルチスレッド実行用にコンパイル しなければなりません。

リンク
リンカーに対して、ECL リンク可能ライブラリー・ファイル (PCSECLVC.LIB) を 含めるよう指示しなければなり

ません。そのためには、リンカー・コマンド行でライブラリー・ファイルの完全修飾名を指定するか、 または

「Developer Studio Project Settings」ダイアログを使用します。

実行中
ECL を使用するアプリケーションを実行するとき、ZIEWin ライブラリーがシステム・パス内で見つからなければな

りません。デフォルトでは、ZIEWin ディレクトリーは ZIEWin のインストール時にシステム・パスに加えられます。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ECLBase クラス
オブジェクト、C++ECLBaseECLBase は、すべての ECL オブジェクトの基本クラスです。これは、接続名やハンドルの変換などの特定の基本

ユーティリティー ・メソッドを提供します。すべての ECL オブジェクトはこのクラスを継承するため、 これらのメ

ソッドはどの ECL メソッドでも使用することができます。

アプリケーションは、このクラスのオブジェクトを直接作成すべきではありません。

派生
なし

ECLBase メソッド
以下に、ECLBase クラスにおいて有効なメソッドを示します。

int GetVersion(void) char ConvertHandle2ShortName(long ConnHandle) long ConvertShortName2Handle(char

Name) void ConvertTypeToString(int ConnType,char *Buff) inline void ConvertPos(ULONG Pos, ULONG *Row,

ULONG *Col, ULONG PSCols)

GetVersion
このメソッドは、ホスト・アクセス・クラス・ライブラリーのバージョンを戻します。戻される値は、小数点を使用

したバージョン番号に 100 を乗算したものです。例えば、1.02 は 102 として戻されます。

プロトタイプ
int GetVersion(void)

パラメーター
なし

戻り値
整数

ECL バージョン番号に 100 を乗算したもの。

例
//---
// ECLBase::GetVersion
//
// Display major version number of ECL library.
//---

19

ホストアクセスクラスライブラリ

20

void Sample2() {

if (ECLBase::GetVersion() >= 200) {
 printf("Running version 2.0 or later.\n");
}
else {
 printf("Running version 1.XX\n");
}

} // end sample

ConvertHandle2ShortName
このメソッドは、指定された ECL 接続ハンドルの名前 (A から Z、または a から z) を戻します。指定された接続が存

在しない場合でも、この関数は名前を戻すことがある ことに注意してください。

プロトタイプ
char ConvertHandle2ShortName(long ConnHandle)

パラメーター
long ConnHandle

ECL 接続のハンドル。

戻り値
char

A から Z、または a から z の範囲の、ECL 接続の名前。

例
//---
// ECLBase::ConvertHandle2ShortName
//
// Display name of first connection in the connection list.
//---
void Sample3() {

ECLConnList ConnList;
long Handle;
char Name;

if (ConnList.GetCount() > 0) {
 // Print connection name of first connection in the
 // connection list.
 Handle = ConnList.GetFirstConnection()->GetHandle();
 Name = ConnList.ConvertHandle2ShortName(Handle);
 printf("Name of first connection is: %c \n", Name);
}
else printf("There are no connections.\n");

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

} // end sample

ConvertShortName2Handle
このメソッドは、指定された名前の付いた ECL 接続の接続ハンドルを戻します。名前は、A から Z、または a から z

の範囲でなければなりません。指定された接続が存在しない場合でも、この関数はハンドルを戻すことがある こと

に注意してください。

プロトタイプ
char ConvertShortName2Handle(char Name)

パラメーター
char Name

A から Z の、または a から z の範囲の、ECL 接続の名前。

戻り値
char

ECL 接続のハンドル。

例
//---
// ECLBase::ConvertShortName2Handle
//
// Display handle of connection 'A'.
//---
void Sample4() {

ECLConnList ConnList;
long Handle;
char Name;

Name = 'A';
Handle = ConnList.ConvertShortName2Handle(Name);
printf("Handle of connection A is: 0x%lx \n", Handle);

} // end sample

ConvertTypeToString
このメソッドは、ECLConnection::GetConnType() によって戻された接続タイプを ヌル終了ストリングに変換しま

す。戻されるストリングは、言語依存ではありません。

21

ホストアクセスクラスライブラリ

22

ConnType 戻されるストリング

HOSTTYPE_3270DISPLAY "3270 DISPLAY"

HOSTTYPE_3270PRINTER "3270 PRINTER"

HOSTTYPE_5250 DISPLAY "5250 PRINTER"

HOSTTYPE_5250PRINTER "5250 PRINTER"

HOSTTYPE_VT "ASCII TERMINAL"

HOSTTYPE_PC "PC SESSION"

他の任意の値 UNKNOWN

プロトタイプ
void ConvertTypeToString(int ConnType,char *Buff)

パラメーター
int ConnType

接続タイプ。ECLBASE.HPP に定義されている HOSTTYPE_* 定数のいずれか でなければなりません。

char *Buff

ストリングが戻される ECLBase.hpp に定義された サイズ TYPE_MAXSTRLEN のバッファー。

戻り値
なし

例
//---
// ECLBase::ConvertTypeToString
//
// Display type of connection 'A'.
//---
void Sample5() {

ECLConnection *pConn;
char TypeString[21];

pConn = new ECLConnection('A');

pConn->ConvertTypeToString(pConn->GetConnType(), TypeString);
// Could also use:
// ECLBase::ConvertTypeToString(pConn->GetConnType(), TypeString);

printf("Session A is a %s \n", TypeString);

delete pConn;

} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ConvertPos
このメソッドは、表示スペースの位置および幅が分かっている 場合に、ECL 位置座標を行/列座標に変換するため

のインライン関数 (マクロ) です。アプリケーションで表示スペースの幅が既に分かっている (または 推測できる) 場

合、この関数の方が ECLPS::ConvertPosToRowCol() よりも早いです。

プロトタイプ
inline void ConvertPos(ULONG Pos,ULONG *Row,ULONG *Col,ULONG PSCols).

パラメーター
ULONG Pos

変換 (入力) される線形定位置座標。

ULONG *Row

指定位置 (出力) について戻された行番号を指すポインター。

ULONG *Col

指定位置 (出力) について戻された桁番号を指すポインター。

ULONG *PSCols

ホストの表示スペース (入力) 内の桁数。

戻り値
なし

例
//---
// ECLBase::ConvertPos
//
// Display row/column coordinate of a given point.
//---
void Sample6() {

ECLPS *pPS;
ULONG NumRows, NumCols, Row, Col;

try {
 pPS = new ECLPS('A');

 pPS->GetSize(&NumRows, &NumCols); // Get height and width of PS

 // Get row/column coordinate of position 81
 ECLBase::ConvertPos(81, &Row, &Col, NumCols);
 printf("Position 81 is row %lu, column %lu \n", Row, Col);

 delete pPS;
}
catch (ECLErr Err) {

23

ホストアクセスクラスライブラリ

24

 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLConnection クラス
オブジェクト、C++ECLConnectionECLConnection には、特定の接続についての接続関連情報が入っています。このオブジェクトは、アプリケーショ

ンが直接作成することが できますが、ECLConnList オブジェクトによって間接的に作成 したり、ECLConnection

から継承する任意のオブジェクト (例えば、ECLSession) の作成時に作成したりすることもできます。

このオブジェクトのメソッドから戻される情報は、 そのメソッドが呼び出された時点のものです。

ECLConnection は、ECLSession、ECLPS、ECLOIA、ECLWinMetrics、 および ECLXfer によって継承されます。

派生
ECLBase > ECLConnection

ECLConnection メソッド
以下に、ECLConnection クラスにおいて有効なメソッドを示します。

ECLConnection(char ConnName) ECLConnection(long ConnHandle) ~ECLConnection() long GetHandle()

int GetConnType() int GetEncryptionLevel() char GetName() BOOL IsStarted() BOOL IsCommStarted()

BOOL IsAPIEnabled() BOOL IsReady() unsigned int GetCodePage() void StartCommunication() void

StopCommunication() void RegisterCommEvent(ECLCommNotify *NotifyObject, BOOL InitEvent = TRUE) void

UnregisterCommEvent(ECLCommNotify *NotifyObject)

ECLConnection コンストラクター
このメソッドは、接続名または接続ハンドルから ECLConnection オブジェクトを作成します。

プロトタイプ
ECLConnection(long ConnHandle)

ECLConnection(char ConnName)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

パラメーター
long ConnHandle

接続オブジェクトを作成するための接続ハンドル。

char ConnName

接続オブジェクトを作成するための接続名 (A から Z、または a から z)。

戻り値
なし

例
//---
// ECLConnection::ECLConnection (Constructor)
//
// Create two connection objects for connection 'A', one created
// by name, the other by handle.
//---
void Sample7() {

ECLConnection *pConn1, *pConn2;
long Hand;

try {
 pConn1 = new ECLConnection('A');
 Hand = pConn1->GetHandle();
 pConn2 = new ECLConnection(Hand); // Another ECLConnection for 'A'

 printf("Conn1 is for connection %c, Conn2 is for connection %c.\n",
 pConn1->GetName(), pConn2->GetName());

 delete pConn1; // Call destructors
 delete pConn2;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLConnection デストラクター
このメソッドは、ECLConnection オブジェクトを破棄します。

プロトタイプ
~ECLConnection()

25

ホストアクセスクラスライブラリ

26

パラメーター
なし

戻り値
なし

例
//---
// ECLConnection::~ECLConnection (Destructor)
//
// Create two connection objects, then delete both of them.
//---
void Sample8() {

ECLConnection *pConn1, *pConn2;
long Hand;

try {
 pConn1 = new ECLConnection('A');
 Hand = pConn1->GetHandle();
 pConn2 = new ECLConnection(Hand); // Another ECLConnection for 'A'

 printf("Conn1 is for connection %c, Conn2 is for connection %c.\n",
 pConn1->GetName(), pConn2->GetName());

 delete pConn1; // Call destructors
 delete pConn2;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetCodePage
このメソッドは、 接続の構成の対象となっているホスト・コード・ページを戻します。

プロトタイプ
unsigned int GetCodePage()

パラメーター
なし

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
unsigned int

接続のホスト・コード・ページ。

例
//---
// ECLConnection::GetCodePage
//
// Display host code page for each ready connection.
//---
void Sample16() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsReady())
 printf("Connection %c is configured for host code page %u.\n",
 Info->GetName(), Info->GetCodePage());
}

} // end sample

GetHandle
このメソッドは、接続ハンドルを戻します。このハンドルは、接続を固有識別し、 また接続ハンドルを必要とする

他の ECL 関数内で使用することもできます。

プロトタイプ
long GetHandle()

パラメーター
なし

戻り値
long

ECLConnection オブジェクトの接続ハンドル。

27

ホストアクセスクラスライブラリ

28

例
以下の例は、接続リスト内の最初の接続のハンドルがどのように戻されるかを示します。

//---
// ECLConnection::GetHandle
//
// Get the handle of connection 'A' and use it to create another
// connection object.
//---
void Sample9() {

ECLConnection *pConn1, *pConn2;
long Hand;

try {
 pConn1 = new ECLConnection('A');
 Hand = pConn1->GetHandle();
 pConn2 = new ECLConnection(Hand); // Another ECLConnection for 'A'

 printf("Conn1 is for connection %c, Conn2 is for connection %c.\n",
 pConn1->GetName(), pConn2->GetName());

 delete pConn1; // Call destructors
 delete pConn2;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetConnType
このメソッドは、接続タイプを戻します。この接続タイプは、時間の経過とともに変わることがあります (例えば、

別のホスト用に接続が再構成されることがあります)。アプリケーションでは、接続タイプは固定のものと見なして

はなりません。戻される接続タイプについては、以下の項を参照してください。

注: ECLBase::ConvertTypeToString 関数は、 接続タイプをヌル終了ストリングに変換します。

プロトタイプ
int GetConn Type()

パラメーター
なし

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
整数

接続タイプ定数 (HOSTBASE.HPP からの HOSTTYPE_*) です。下の表は、戻される値とその意味を示し

ます。

戻される値 意味

HOSTTYPE_3270DISPLAY 3270 表示装置

HOSTTYPE_3270PRINTER 3270 印刷装置

HOSTTYPE_5250DISPLAY 5250 ディスプレイ

HOSTTYPE_5250PRINTER 5250 プリンター

HOSTTYPE_VT ASCII VT ディスプレイ

HOSTTYPE_UNKNOWN 未知の接続タイプ

例
以下の例は、GetConnType メソッドを使用してどのように接続タイプを戻すかを示します。

//---
// ECLConnection::GetConnType
//
// Find the first 3270 display connection in the current list of
// all connections.
//---
void Sample10() {

ULONG i; // Connection counter
ECLConnList ConnList; // Connection list object
ECLConnection *Info=NULL; // Pointer to connection object

for (i=0; i<ConnList.GetCount(); i++) {

 Info = ConnList.GetNextConnection(Info);
 if (Info->GetConnType() == HOSTTYPE_3270DISPLAY) {
 // Found the first 3270 display connection
 printf("First 3270 display connection is '%c'.\n",
 Info->GetName());
 return;
 }

} // for
printf("Found no 3270 display connections.\n");

} // end sample

29

ホストアクセスクラスライブラリ

30

GetName
このメソッドは、接続の接続名 (単一の A から Z、または a から z の英字) を戻します。またこの名前は、EHLLAPI

セッション ID に対応します。

プロトタイプ
char GetName()

パラメーター
なし

戻り値
char

接続の短縮名。

例
以下の例は、GetName メソッドを使用してどのように接続名を戻すかを示します。

//---
// ECLConnection::GetName
//
// Find the first 3270 display connection in the current list of
// all connections and display its name (session ID).
//---
void Sample11() {

ULONG i; // Connection counter
ECLConnList ConnList; // Connection list object
ECLConnection *Info=NULL; // Pointer to connection object

for (i=0; i<ConnList.GetCount(); i++) {

 Info = ConnList.GetNextConnection(Info);
 if (Info->GetConnType() == HOSTTYPE_3270DISPLAY) {
 // Found the first 3270 display connection, display the name
 printf("First 3270 display connection is '%c'.\n",
 Info->GetName());
 return;
 }

} // for
printf("Found no 3270 display connections.\n");

} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

GetEncryptionLevel
このメソッドは、現行接続の暗号化レベルを戻します。

プロトタイプ
int GetEncryptionLevel()

パラメーター
なし

戻り値
整数

暗号化レベルの定数。下の表は、戻される値とその意味を示します。

戻される値 意味

ENCRYPTION_NONE 暗号化なし

ENCRYPTION_40BIT 40 ビット暗号化

ENCRYPTION_56BIT 56 ビット暗号化

ENCRYPTION_128BIT 128 ビット暗号化

ENCRYPTION_168BIT 168 ビット暗号化

ENCRYPTION_NOKEY 鍵なしの暗号化

例
以下の例は、GetEncryptionLevel メソッドを使用してどのように暗号化レベルを戻すかを示します。

//---
// ECLConnection::GetEncryptionLevel
//
// Display the encryption level of session A
//
//---
void SampleEL()
{
int EncryptionLevel = 0; //Encryption Level
ECLConnection * Info = NULL; //Pointer to connection object

Info = new ECLConnection('A');
If (Info != NULL)
{
 EncryptionLevel = Info->GetEncryptionLevel();
 switch (EncryptionLevel)
 {
 case ENCRYPTION_NONE:
 printf("Encryption Level = None");
 break;
 case ENCRYPTION_40BIT:
 printf("Encryption Level = 40 BIT");

31

ホストアクセスクラスライブラリ

32

 break;
 case ENCRYPTION_56BIT:
 printf("Encryption Level = 56 BIT");
 break;
 case ENCRYPTION_128BIT:
 printf("Encryption Level = 128 BIT");
 break;
 case ENCRYPTION_168BIT:
 printf("Encryption Level = 168 BIT");
 break;

 default:
 }
}
}

IsStarted
このメソッドは、接続が開始済みかどうかを示します。接続は、開始済みであっても、 ホストに接続されていない

ことがあります。接続が現在ホストに接続されているかどうかを 判別するには、IsCommStarted 関数を使用しま

す。

プロトタイプ
BOOL IsStarted()

パラメーター
なし

戻り値
BOOL

接続が開始済みの場合は True 値、未開始の場合は False 値になります。

例
//---
// ECLConnection::IsStarted
//
// Display list of all started connections. Note they may or may
// not be communications-connected to a host, and may or may not
// be visible on the screen.
//---
void Sample12() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

// Print list of started connections

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsStarted())
 printf("Connection %c is started.\n", Info->GetName());
}

} // end sample

IsCommStarted
このメソッドは、 接続が現在ホストに接続されているかどうかを示します (例えば、 接続においてホスト通信が活

動化されているかどうかを示します)。この関数は、接続が開始されていない場合は False 値を 戻します (IsStarted

(ページ 32)を参照してください)。

プロトタイプ
BOOL IsCommStarted()

パラメーター
なし

戻り値
BOOL

接続がホストに接続されている場合は True 値、 接続がホストに接続されていない場合は False 値にな

ります。

例
//---
// ECLConnection::IsCommStarted
//
// Display list of all started connections which are currently
// in communications with a host.
//---
void Sample13() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsCommStarted())
 printf("Connection %c is connected to a host.\n", Info->GetName());
}

33

ホストアクセスクラスライブラリ

34

} // end sample

IsAPIEnabled
このメソッドは、接続に API を使用できるかどうかを示します。API が 使用可能になっていない接続は、ホスト・

アクセス・クラス・ライブラリーでは 使用できません。この関数は、接続が開始済みでない場合は False 値を戻し

ます。

プロトタイプ
BOOL IsAPIEnabled()

パラメーター
なし

戻り値
BOOL

API が使用可能になっている場合は True 値、API が使用可能になっていない場合は False 値になりま

す。

例
//---
// ECLConnection::IsAPIEnabled
//
// Display list of all started connections which have APIs enabled.
//---
void Sample14() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsAPIEnabled())
 printf("Connection %c has APIs enabled.\n", Info->GetName());
}

} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

IsReady
このメソッドは、接続が作動可能であることを示します。 つまり、接続は開始済みで接続状態にあり、API が使用

可能なことを意味します。この関数の方が、IsStarted、IsCommStarted、および IsAPIEnabled を呼び出すよりも

早くて簡単です。

プロトタイプ
BOOL IsReady()

パラメーター
なし

戻り値
BOOL

接続が開始済み、CommStarted、および API が使用可能の場合は True、 そうでない場合は False。

例
//---
// ECLConnection::IsReady
//
// Display list of all connections which are started, comm-connected
// to a host, and have APIs enabled.
//---
void Sample15() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsReady())
 printf("Connection %c is ready (started, comm-connected, API
 enabled).\n", Info->GetName());
}

} // end sample

StartCommunication
このメソッドは、ZIEWin エミュレーターをホスト・データ・ストリームに接続します。これは、ZIEWin エミュレー

ター「通信」メニューを表示して「接続」を選択した場合と同じ結果になります。

35

ホストアクセスクラスライブラリ

36

プロトタイプ
void StartCommunication()

パラメーター
なし

戻り値
なし

例
//---
// ECLConnection::StartCommunication
//
// Start communications link for any connection which is currently
// not comm-connected to a host.
//---
void Sample17() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (!(Info->IsCommStarted())) {
 printf("Starting comm-link for connection %c...\n", Info->GetName());
 Info->StartCommunication();
 }
}

} // end sample

StopCommunication
このメソッドは、ZIEWin エミュレーターをホスト・データ・ストリームから切断します。これは、ZIEWin エミュ

レーター「通信」メニューを表示して「切断」を選択した場合と同じ結果になります。

プロトタイプ
void StopCommunication()

パラメーター
なし

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
なし

例
//---
// ECLConnection::StopCommunication
//
// Stop comm-link for any connection which is currently connected
// to a host.
//---
void Sample18() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object

for (Info = ConnList.GetFirstConnection();
 Info != NULL;
 Info = ConnList.GetNextConnection(Info)) {

 if (Info->IsCommStarted()) {
 printf("Stopping comm-link for connection %c...\n", Info->GetName());
 Info->StopCommunication();
 }
}

} // end sample

RegisterCommEvent
このメンバー関数は、通信リンクのすべての接続/切断イベントの通知を受け取るための アプリケーション・オブ

ジェクトを登録します。アプリケーションでこの関数を使用するには、ECLCommNotify クラスから派生した オブ

ジェクトを作成しなければなりません。作成すると、そのオブジェクトを指すポインターは この登録関数に渡され

ます。実装上の制約事項: アプリケーションは、通信イベント通知について 1 つのオブジェクトしか登録できませ

ん。

この関数を使用して通知オブジェクトが登録されると、 その後、ホストとの接続通信リンクの接続または切断のた

びに このオブジェクトが呼び出されます。通信イベントが、StartCommunication() 関数または ユーザーからの明

示的な指示のどちらに起因するものであっても、 このオブジェクトは、すべての通信イベントについて通知を受け

取ります。このイベントを、新しい ZIEWin 接続の開始または停止のときに起動される接続スタート・ストップ・イ

ベントと混同してはなりません。

オプションの InitEvent パラメーターを使用すると、 オブジェクトが登録されたときに初期イベントが生成さ

れることになります。これは、イベント・オブジェクトと、通信リンクの現在の状態を 同期化するのに便利で

す。InitEvent を False と指定すると、 オブジェクトが登録されても初期イベントは生成されません。このパラメー

ターのデフォルト値は True です。

37

ホストアクセスクラスライブラリ

38

アプリケーションは、通知オブジェクトを破棄するとき、 まず UnregisterCommEvent() を呼び出さなければなりま

せん。オブジェクトの登録先の ECLConnection オブジェクトが破棄されると、 そのオブジェクトは自動的に登録抹

消されます。

詳細については、ECLCommNotify クラス (ページ 54)の説明を参照してください。

プロトタイプ
void RegisterCommEvent(ECLCommNotify *NotifyObject, BOOL InitEvent = TRUE)

パラメーター
ECLCommNotify *NotifyObject

ECLCommNotify クラスから派生されたオブジェクトを指すポインター。

BOOL InitEvent

現在の状態を使用して初期イベントを生成します。

戻り値
なし

例
ECLConnection::RegisterCommEvent の例の 詳細については、ECLCommNotify クラス (ページ 54)を参照してく

ださい。

UnregisterCommEvent
このメンバー関数は、RegisterCommEvent() 関数を使用して通信イベント用に 事前に登録されているアプリケー

ション・オブジェクトの登録を抹消します。登録済みのアプリケーション通知オブジェクトの場合、 先にこの関数

を呼び出してその登録を抹消しないかぎり、オブジェクトを破棄してはなりません。現在登録されている通知オブ

ジェクトがない場合や、 登録済みオブジェクトが渡された NotifyObject でない場合、 この関数は何も実行しません

(エラーになりません)。

通知オブジェクトの登録が抹消されるときは、 その NotifyStop() メンバー関数が呼び出されます。

詳細については、ECLCommNotify クラス (ページ 54)の説明を参照してください。

プロトタイプ
void UnregisterCommEvent(ECLCommNotify *NotifyObject)

パラメーター
ECLCommNotify *NotifyObject

これは、現在登録されているアプリケーション通知オブジェクトです。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
なし

例
ECLConnection::UnregisterCommEvent の例については、『ECLCommNotify クラス (ページ 54)』を参照してくだ

さい。

ECLConnList クラス
オブジェクト、C++ECLConnListECLConnList は、特定のマシン上のすべてのホスト接続についての情報を取得します。ECLConnList オブジェクト

には、 現在システムに認知されているすべての接続の集合が含まれます。

ECLConnList オブジェクトには、ECLConnection オブジェクトの集合が含まれます。この集合の各要素には、それ

ぞれ 1 つの接続についての情報が含まれています。このリスト内の接続は、どのような状態 (例えば、停止または切

断) にあるものでも構いません。すべての開始済みの接続が、このリストに示されます。ECLConnection オブジェ

クトには、接続の状態が入っています。

このリストは、このオブジェクトが作成されたとき、または 最後に Refresh メソッドが呼び出されたときの、一連

の接続のスナップショットです。このリストは、接続の開始および停止に連動して更新されるわけではありません。

アプリケーションは、ECLConnMgr オブジェクトの RegisterStartEvent メンバー を使用して、接続の開始および停

止イベントの通知を受けることができます。

ELCConnList オブジェクトは、アプリケーションで直接作成できますが、 ECLConnMgr オブジェクトの作成によっ

て間接的に作成することもできます。

派生
ECLBase > ECLConnList

使用上の注意
ECLConnList オブジェクトは、 現行接続の静的スナップショットを提供します。ECLConnList オブジェクトの作

成時に、Refresh メソッドが自動的に呼び出されます。作成のすぐ後に ECLConnList オブジェクトを使用すると、

その時点における接続リストの正確な表示を含めることができます。しかし、作成してから時間が経過した後で

ECLConnList オブジェクトに 初めてアクセスするときは、事前にこのオブジェクトで Refresh メソッドを 呼び出さ

なければなりません。

アプリケーションで集合を反復するには、GetFirstConnection メソッド と GetNextConnection メソッドを使用

します。GetFirstConnection および GetNextConnection から 戻されるオブジェクト・ポインターは、Refresh

メンバーが呼び出されるまで、 または ECLConnList オブジェクトが破棄されるまでしか有効でありません。ア

プリケーションは、FindConnection 関数を使用して、 リスト内の必要な特定の接続を見つけ出すことができ ま

39

ホストアクセスクラスライブラリ

40

す。GetNextConnection と同様、戻されるポインターは、 次の Refresh または ECLConnList オブジェクトの破棄ま

でしか有効でありません。

接続リスト内の接続の順序は、定義されていません。アプリケーションで、リストの順序を想定してはなりません。

リスト内の接続の順序は、Refresh 関数が呼び出されるまでは変わりません。

ECLConnList オブジェクトは、ECLConnMgr オブジェクトが作成されると 自動的に作成されます。ただ

し、ECLConnMgr オブジェクトがなくても ECLConnList オブジェクトを作成できます。

ECLConnList メソッド
以下のセクションで、ECLConnList クラスにおいて 有効なメソッドについて説明します。

ECLConnection * GetFirstConnection() ECLConnection * GetNextConnection(ECLConnection *Prev) ECLConnection

* FindConnection(Long ConnHandle) ECLConnection * FindConnection(char ConnName) ULONG GetCount() void

Refresh()

ECLConnList コンストラクター
このメソッドは、ECLConnList オブジェクトを作成し、 接続の現行リストを使用してそのオブジェクトを初期設定

します。

プロトタイプ
ECLConnList();

パラメーター
なし

戻り値
なし

例
//---
// ECLConnList::ECLConnList (Constructor)
//
// Dynamically construct a connection list object, display number
// of connections in the list, then delete the list.
//---
void Sample19() {

ECLConnList *pConnList; // Pointer to connection list object

try {
 pConnList = new ECLConnList();

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 printf("There are %lu connections in the connection list.\n",
 pConnList->GetCount());

 delete pConnList; // Call destructor
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLConnList デストラクター
このメソッドは、ECLConnList オブジェクトを破棄します。

プロトタイプ
~ECLConnList()

パラメーター
なし

戻り値
なし

例
//---
// ECLConnList::~ECLConnList (Destructor)
//
// Dynamically construct a connection list object, display number
// of connections in the list, then delete the list.
//---
void Sample20() {

ECLConnList *pConnList; // Pointer to connection list object

try {
 pConnList = new ECLConnList();
 printf("There are %lu connections in the connection list.\n",
 pConnList->GetCount());

 delete pConnList; // Call destructor
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

41

ホストアクセスクラスライブラリ

42

GetFirstConnection
GetFirstConnection メソッドは、 ECLConnList 集合内の最初の接続情報オブジェクトを指すポインターを戻します。

この内容の詳細については、ECLConnection クラス (ページ 24)を参照してください。ECLConnList 最新表示メ

ンバーが呼び出されるか、 または ECLConnList オブジェクトが破棄されると、 戻されたポインターは無効になりま

す。アプリケーションは、戻されたオブジェクトを削除してはなりません。リスト内に接続がない場合は、NULL が

戻されます。

プロトタイプ
ECLConnection *GetFirstConnection()

パラメーター
なし

戻り値
ECLConnection *

リスト内の最初のオブジェクトを指すポインター。リスト内に接続がない場合は、ヌルが戻されます。

例
//---
// ECLConnection::GetFirstConnection
//
// Iterate over list of connections and display information about
// each one.
//---
void Sample21() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object
char TypeString[21]; // Type of connection

for (Info = ConnList.GetFirstConnection(); // Get first one
 Info != NULL; // While there is one
 Info = ConnList.GetNextConnection(Info)) { // Get next one

 ECLBase::ConvertTypeToString(Info->GetConnType(), TypeString);
 printf("Connection %c is a %s type connection.\n",
 Info->GetName(), TypeString);
}

} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

GetNextConnection
このメソッドは、 リスト内に接続があれば ECLConnList 集合内の 次の接続情報オブジェクトを指すポインター

を戻します。アプリケーションは、この関数または GetFirstConnection によって前に戻された 接続を指すポイン

ターを提供します。この内容の詳細については、ECLConnection クラス (ページ 24)を参照してください。次の

ECLConnList Refresh() 呼び出し後、または ECLConnList オブジェクトの破棄後に、 戻されたポインターは無効にな

ります。リストの終わりを超えて読み込みを行おうとした場合、NULL ポインターが戻されます。このメソッドを連

続して呼び出す (呼び出すたびに前のポインターを提供する) と、 接続のリストが反復されます。最後の接続が戻さ

れると、その後の呼び出しでは NULL ポインターが戻されます。リスト内の最初の接続を取得するには、直前の接続

に NULL を指定します。

プロトタイプ
ECLConnection *GetNext Connection (ECLConnection *Prev)

パラメーター
ECLConnection *Prev

この関数 GetFirstConnection() に対する前の呼び出しから戻されるポインター、 または NULL。

戻り値
ECLConnection *

これは、次の ECLConnection オブジェクトを指すポインターですが、 リストの終わりの場合は NULL

になります。

例
//---
// ECLConnection::GetNextConnection
//
// Iterate over list of connections and display information about
// each one.
//---
void Sample22() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object
char TypeString[21]; // Type of connection

for (Info = ConnList.GetFirstConnection(); // Get first one
 Info != NULL; // While there is one
 Info = ConnList.GetNextConnection(Info)) { // Get next one

 ECLBase::ConvertTypeToString(Info->GetConnType(), TypeString);

43

ホストアクセスクラスライブラリ

44

 printf("Connection %c is a %s type connection.\n",
 Info->GetName(), TypeString);
}

} // end sample

FindConnection
このメソッドは、 指定された接続を見つけるために現行接続リストを検索します。見つけたい接続は、ハンド

ルまたは名前を使用して指定でき ます。FindConnection メソッドには 2 種類のシグニチャーがあります。該当

する接続が見つかった場合、 ECLConnection オブジェクトを指すポインターが戻されます。指定した接続がリ

スト内にない場合、NULL が戻されます。リストは、この関数によって自動的に更新されることはありません。

そのリストが作成または最新表示された後で新しい接続が開始された場合、接続は見つかりません。戻される

ポインターは、ECLConnList オブジェクトによって維持される接続リスト内のオブジェクトを指します。次の

ECLConnList::Refresh の呼び出し後、または ECLConnList オブジェクトの 破棄後に、戻されたポインターは無効に

なります。

プロトタイプ
ECLConnection *FindConnection(Long ConnHandle),

ECLConnection *FindConnection(char ConnName)

パラメーター
Long ConnHandle

リスト内で検索される接続のハンドル。

char ConnName

リスト内で検索される接続の名前。

戻り値
ECLConnection *

要求された ECLConnection オブジェクトを指すポインター。指定した接続がリスト内にない場

合、NULL が戻されます。

例
//---
// ECLConnection::FindConnection
//
// Find connection 'B' in the list of connections. If found, display
// its type.
//---
void Sample23() {

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object
char TypeString[21]; // Type of connection

Info = ConnList.FindConnection('B'); // Find connection by name
if (Info != NULL) {

 ECLBase::ConvertTypeToString(Info->GetConnType(), TypeString);
 printf("Connection 'B' is a %s type connection.\n",
 TypeString);
}
else printf("Connection 'B' not found.\n");

} // end sample

GetCount
このメソッドは、現在 ECLConnList 集合内にある接続の数を戻します。

プロトタイプ
ULONG GetCount()

パラメーター
なし

戻り値
ULONG

集合内の接続の数。

例
//---
// ECLConnList::GetCount
//
// Dynamically construct a connection list object, display number
// of connections in the list, then delete the list.
//---
void Sample24() {

ECLConnList *pConnList; // Pointer to connection list object

try {
 pConnList = new ECLConnList();
 printf("There are %lu connections in the connection list.\n",
 pConnList->GetCount());

45

ホストアクセスクラスライブラリ

46

 delete pConnList; // Call destructor
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

最新表示
このメソッドは、 システムで現在認知されているすべての接続のリストを 使用して ECLConnList 集合を更新しま

す。それ以前に GetNextConnection、 GetFirstConnection、 および FindConnection によって戻されたポインター

はすべて無効になります。

プロトタイプ
void Refresh()

パラメーター
なし

戻り値
なし

例
//---
// ECLConnection::Refresh
//
// Loop-and-wait until connection 'B' is started.
//---
void Sample25() {

ECLConnection *Info; // Pointer to connection object
ECLConnList ConnList; // Connection list object
int i;

printf("Waiting up to 60 seconds for connection B to start...\n");
for (i=0; i<60; i++) { // Limit wait to 60 seconds
 ConnList.Refresh(); // Refresh the connection list
 Info = ConnList.FindConnection('B');
 if ((Info != NULL) && (Info->IsStarted())) {
 printf("Connection B is now started.\n");
 return;
 }
 Sleep(1000L); // Wait 1 second and try again
}

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

printf("Connection 'B' not started after 60 seconds.\n");

} // end sample

ECLConnMgr クラス
オブジェクト、C++ECLConnMgrECLConnMgr は、マシン上のすべての Z and I Emulator for Windows 接続を管理します。これは、接続の開始および

停止など、接続の管理に関連したメソッドを提供します。また、システムに認知されているすべての接続のリストを

列挙する ECLConnList オブジェクトも作成します (ECLConnList クラス (ページ 39)を参照)。

派生
ECLBase > ECLConnMgr

ECLConnMgr メソッド
以下に、ECLConnMgr クラスで有効なメソッドを示します。

ECLConnMgr() ~ECLConnMgr() ECLConnList * GetConnList() void StartConnection(char *ConfigParms) void

StopConnection(Long ConnHandle, char *StopParms) void RegisterStartEvent(ECLStartNotify *NotifyObject) void

UnregisterStartEvent(ECLStartNotify *NotifyObject)

ECLConnMgr コンストラクター
このメソッドは、ECLConnMgr オブジェクトを作成します。

プロトタイプ
ECLConnMgr()

パラメーター
なし

戻り値
なし

例
//---
// ECLConnMgr::ECLConnMgr (Constructor)

47

ホストアクセスクラスライブラリ

48

//
// Create a connection mangager object, start a new connection,
// then delete the manager.
//---
void Sample26() {

ECLConnMgr *pCM; // Pointer to connection manager object

try {
 pCM = new ECLConnMgr(); // Create connection manager
 pCM->StartConnection("profile=coax connname=e");
 printf("Connection 'E' started with COAX profile.\n");
 delete pCM; // Delete connection manager
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLConnMgr デコンストラクター
このメソッドは、ECLConnMgr オブジェクトを破棄します。

プロトタイプ
~ECLConnMgr()

パラメーター
なし

戻り値
なし

例
//---
// ECLConnMgr::~ECLConnMgr (Destructor)
//
// Create a connection mangager object, start a new connection,
// then delete the manager.
//---
void Sample27() {

ECLConnMgr *pCM; // Pointer to connection manager object

try {
 pCM = new ECLConnMgr(); // Create connection manager
 pCM->StartConnection("profile=coax connname=e");
 printf("Connection 'E' started with COAX profile.\n");
 delete pCM; // Delete connection manager

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetConnList
このメソッドは、ECLConnList オブジェクト を指すポインターを戻します。詳しくは、ECLConnList クラス (ペー

ジ 39)を参照してください。ECLConnList オブジェクトは、ECLConnMgr オブジェクトが破棄されると破棄され

ます。

プロトタイプ
ECLConnList * GetConnList()

パラメーター
なし

戻り値
ECLConnList *

ECLConnList オブジェクトを指すポインター。

例
//---
// ECLConnMgr::GetConnList
//
// Use connection manager's connection list object to display
// number of connections (see also ECLConnList::GetCount).
//---
void Sample28() {

ECLConnMgr CM; // Connection manager object

printf("There are %lu connections in the connection list.\n",
 CM.GetConnList()->GetCount());

} // end sample

StartConnection
このメソッドは、新規の Z and I Emulator for Windows のエミュレーター接続を開始します。ConfigParms ストリン

グには、使用上の注意 (ページ 50)で 説明されているとおりの接続構成情報が入っています。

49

ホストアクセスクラスライブラリ

50

プロトタイプ
void StartConnection(char *ConfigParms)

パラメーター
char *ConfigParms

NULL 文字で終了する接続構成ストリング。

戻り値
なし

使用上の注意
接続構成ストリングは、インストール・システムによって異なります。異なるインストール・システム上のホスト・

アクセス・クラス・ライブラリーには、 構成ストリングに異なる形式または情報が必要とされる場合があります。

この呼び出しは、当然非同期になります。 この呼び出しが戻されたとき、新しい接続はまだ開始されていないこと

があります。アプリケーションは、RegisterStartEvent 関数を使用すると、 接続の開始時に通知を受けることがで

きます。

Z and I Emulator for Windows の場合、構成ストリングの形式は次のとおりです。

PROFILE=[\"]<filename>[\"] [CONNNAME=<c>] [WINSTATE=<MAX|MIN|RESTORE|HIDE>]

オプションのパラメーターは、大括弧 [] で囲みます。パラメーターは、少なくとも 1 つのブランクで区切ります。

パラメーターは、大文字、小文字、または混合のいずれでも指定可能で、 順序も任意です。各パラメーターの意味

は、次のとおりです。

PROFILE=<filename>

接続構成情報の入った Z and I Emulator for Windows のワークステーション・プロファイル (.WS ファ

イル) の名前を指定します。このパラメーターは、オプションではありません。 プロファイル名を入力

しなければなりません。ファイル名にブランクを含める場合、 その名前を二重引用符で囲まなければ

なりません。<filename> の値は、拡張子のないプロファイル名、.WS 拡張子の付いたプロファイル

名、または完全修飾プロファイル名パスのどれでも構いません。

CONNNAME=<c>

新しい接続の接続名 (EHLLAPI 短縮セッション ID) を指定します。この値は、単一の英字 (A から

Z、または a から z) でなければなりません。この値を指定しない場合、次の使用可能な接続名が自

動的に割り当てられます。指定した名前の付いた接続が既に存在する場合、 エラーが出されます

(ERRMAJ_INVALID_SESSION)。

WINSTATE=<MAX|MIN|RESTORE|HIDE>

エミュレーター・ウィンドウの初期状態を指定します。このパラメーターを指定しない場合のデフォル

ト値は、RESTORE です。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

注: この呼び出しは本質的に非同期であるため、 この関数でエラーが戻されなくても接続の開始が失敗する

ことがあります。例えば、同一名を使用して 2 つの接続を短時間のうちに開始すると、1 番目の 接続はまだ

開始されていないため、2 番目の StartConnection は エラーになりません。しかし、最終的に 2 番目の接続

が接続名を登録しようとしても、1 番目の 接続によってその名前は既に使われているため、開始することは

できません。このような可能性を最小化するため、可能なかぎり CONNNAME パラメーターを 指定しないで

接続を開始しなければなりません。

例
以下に、StartConnection メソッドの例を示します。

ECLConnMgr Manager; // Connection manager object

// Start a host connection "E" and check for errors

try {
 Manager.StartConnection("profile=coax connname=e");
}
catch (ECLErr Error) {
 MessageBox(NULL, Error.GetMsgText(), "Session start error!", MB_OK);
}

StopConnection
このメソッドは、接続ハンドルによって識別された エミュレーター接続を停止 (終了) します。StopParms ストリン

グの内容の詳細については、使用上の注意 (ページ 52)を 参照してください。

プロトタイプ
void StopConnection(Long ConnHandle, char *StopParms)

パラメーター
Long ConnHandle

停止される接続のハンドル。

char * StopParms

Null 文字で終了する接続停止パラメーター・ストリング。

戻り値
なし

51

ホストアクセスクラスライブラリ

52

使用上の注意
接続停止パラメーター・ストリングは、インストール・システムによって異なります。異なるインストール・システ

ム上のホスト・アクセス・クラス・ライブラリーには、 異なる形式または内容のパラメーター・ストリングが必要

とされる場合があります。Z and I Emulator for Windows の場合、ストリングの形式は次のとおりです。

 [SAVEPROFILE=<YES|NO|DEFAULT>]

オプションのパラメーターは、大括弧 [] で囲みます。パラメーターは、少なくとも 1 つのブランクで区切ります。

パラメーターは、大文字、小文字、または混合のいずれでも指定可能で、 順序も任意です。SAVEPROFILE パラメー

ターの意味は、次のとおりです。

SAVEPROFILE=<YES|NO|DEFAULT> は、現行接続構成を元のワークステーション・プロファイル (.WS ファイル) に

戻して保管するかどうかを制御します。その場合、接続の間に加えたすべての構成変更を使用してプロファイルが

更新されることになります。NO を指定した場合、接続が停止されるときプロファイルは 更新されません。YES を

指定した場合、接続が停止されるとき現行構成 (変更されている ことがある) を使用してプロファイルは更新されま

す。DEFAULT を指定した場合には、更新オプションは「ファイル」->「終了時に変更を保管」エミュレーター・メ

ニュー・オプションによって制御されます。このパラメーターを指定しない場合には、DEFAULT が使用されます。

例
//---
// ECLConnMgr::StopConnection
//
// Stop the first connection in the connection list.
//---
void Sample29() {

ECLConnMgr CM; // Connection manager object

if (CM.GetConnList()->GetCount() > 0) {

 printf("Stopping connection %c.\n",
 CM.GetConnList()->GetFirstConnection()->GetName());

 CM.StopConnection(
 CM.GetConnList()->GetFirstConnection()->GetHandle(),
 "saveprofile=no");
}
else printf("No connections to stop.\n");

} // end sample

RegisterStartEvent
このメソッドは、 すべての接続の開始および停止のイベントの通知を受け取るための アプリケーション・オブジェ

クトを登録します。アプリケーションでこの関数を使用するには、 ECLStartNotify クラスから派生したオブジェ

クトを作成しなければなりません。作成すると、そのオブジェクトを指すポインターは この登録関数に渡されま

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

す。実装上の制約事項: アプリケーションは、通信の開始または停止の通知につき 1 つのオブジェクトしか登録でき

ません。

この関数を使用して通知オブジェクトが登録されると、その後、Z and I Emulator for Windows の接続が開始また

は停止されるたびにこのオブジェクトが呼び出されます。このオブジェクトは、すべての接続に関して、 それが

StartConnection 関数で開始されるか、 または明示的に開始されるたびに通知を受け取ります。このイベントを、ホ

スト・システムとの接続の接続時または切断時に 起動される通信のスタート・ストップ・イベントと混同してはな

りません。

詳しくは、ECLStartNotify クラス (ページ 191)を参照してください。

プロトタイプ
void RegisterStartEvent(ECLStartNotify *NotifyObject)

パラメーター
ECLStartNotify *NotifyObject

ECLStartNotify クラスから派生したオブジェクトを指すポインター。

戻り値
なし

例
//---
// ECLConnMgr::RegisterStartEvent
//
// See ECLStartNotify クラス (ページ 191) for example of this method.
//---

UnregisterStartEvent
このメソッドは、 以前に RegisterStartEvent 関数を使用して接続開始または停止イベント用に 登録されているアプ

リケーション・オブジェクトの登録を抹消します。登録済みのアプリケーション通知オブジェクトの場合、 先にこ

の関数を呼び出してその登録を抹消しないかぎり、オブジェクトを破棄してはなりません。現在登録されている通知

オブジェクトがない場合や、 登録済みオブジェクトが渡された NotifyObject でない場合、 この関数は何も実行しま

せん (エラーになりません)。

通知オブジェクトの登録を抹消するときは、 その NotifyStop メソッドが呼び出されます。

詳しくは、ECLStartNotify クラス (ページ 191)を参照してください。

プロトタイプ
void UnregisterStartEvent(ECLStartNotify *NotifyObject)

53

ホストアクセスクラスライブラリ

54

パラメーター
なし

戻り値
なし

例
//---
// ECLConnMgr::UnregisterStartEvent
//
// See ECLStartNotify クラス (ページ 191) for example of this method.
//---

ECLCommNotify クラス
オブジェクト、C++ECLCommNotifyECLCommNotify は、抽象基本クラスです。アプリケーションは、このクラスの インスタンスを直接作成することは

できません。アプリケーションでこのクラスを使用するには、ECLCommNotify から派生した 独自のクラスを定義

しなければなりません。アプリケーションは、 その派生クラス内に NotifyEvent() メンバー関数を実装しなければな

りません。また、 オプションで NotifyError() および NotifyStop() メンバー関数を実装することも できます。

アプリケーションが ZIEWin 接続上の通信の接続/切断イベントの通知を受けられるようにするに

は、ECLCommNotify クラスを使用します。接続/切断イベントは、ホスト・システムに対して ZIEWin 接続 (ウィン

ドウ) が接続または切断されるたびに生成されます。

アプリケーションが通信の接続/切断イベントの通知を受けるには、 次に示すステップを実行しなければなりませ

ん。

1. ECLCommNotify から派生したクラスを定義します。

2. その派生クラスを採用し、NotifyEvent() メンバー関数を実装します。

3. オプションで、NotifyError() または NotifyStop() 関数 (あるいはその両方) を実装します。

4. 派生クラスのインスタンスを作成します。

5. そのインスタンスを ECLConnection::RegisterCommEvent() 関数で登録します。

ここに示された例は、それがどのように行われるかを例示しています。上記のステップを完了すると、その後、ホス

トへの接続の通信リンクが 接続されるかまたは切断されると、そのたびに アプリケーション NotifyEvent() メンバー

関数が呼び出されます。

イベントの生成時にエラーが検出された場合、ECLErr オブジェクトを 使用して NotifyError() メンバー関数が呼び

出されます。エラーの特性に応じて、 エラー後にイベントが続けて生成されるかどうかが決まります。イベント生

成が終了したとき (エラーか、ECLConnection::UnregisterCommEvent の呼び出しか、 または ECLConnection オ

ブジェクトの破棄のいずれかが原因で) には、 NotifyStop() メンバー関数が呼び出されます。イベント通知が終了す

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

るときには、NotifyStop() メンバー関数が常に呼び出され、 アプリケーション・オブジェクトの登録が抹消されま

す。

アプリケーションが NotifyError() メンバー関数の実装を行わない場合、 デフォルトの実装が使われます (単純なメッ

セージ・ボックスがユーザーに対して表示されます)。アプリケーションがデフォルトの振る舞いをオーバーライド

するには、 アプリケーションの派生クラス内に NotifyError() 関数を実装します。同様に、アプリケーションがこの

関数を提供しない場合、 デフォルトの NotifyStop() 関数が使われます (デフォルトの振る舞いでは何も行われませ

ん)。

またアプリケーションは、派生したクラス用に自身のコンストラクターおよび デストラクターを任意で提供できる

ことに注意してください。これが便利なのは、 アプリケーションが特定のインスタンス別データをそのクラス内に

保管してから、 その情報をコンストラクター上のパラメーターとして渡したい場合です。例えば、アプリケーショ

ンにおいて、通信イベントが発生したら アプリケーション・ウィンドウにメッセージをポストしたい場合がありま

す。アプリケーションは、ウィンドウ・ハンドルをグローバル変数として定義する (このハンドルを、NotifyEvent()

関数に見えるようにするため) 代わりに、 ウィンドウ・ハンドルを受け取ってクラス・メンバーのデータ域に保管す

る クラス用のコンストラクターとして定義することができます。

アプリケーションは、イベントを受け取るために通知オブジェクトを 登録しているかぎり、そのオブジェクトを破

棄してはなりません。

実装上の制約事項: 現在、ECLConnection オブジェクトでは、通信イベントの通知用に 1 つしか通知オブジェ

クトを登録できません。その ECLConnection オブジェクト用に通知オブジェクトが既に登録されて いる場

合、ECLConnection::RegisterCommEvent からエラーがスローされます。

派生
ECLBase > ECLNotify > ECLCommNotify

例
//---
// ECLCommNotify class
//
// This sample demonstrates the use of:
//
// ECLCommNotify::NotifyEvent
// ECLCommNotify::NotifyError
// ECLCommNotify::NotifyStop
// ECLConnection::RegisterCommEvent
// ECLConnection::UnregisterCommEvent
//---

 //...
// Define a class derived from ECLCommNotify
//...
class MyCommNotify: public ECLCommNotify
{
public:
 // Define my own constructor to store instance data

55

ホストアクセスクラスライブラリ

56

 MyCommNotify(HANDLE DataHandle);

 // We have to implement this function
 void NotifyEvent(ECLConnection *ConnObj, BOOL Connected);

 // We choose to implement this function
 void NotifyStop (ECLConnection *ConnObj, int Reason);

 // We will take the default behaviour for this so we
 // don't implement it in our class:
 // void NotifyError (ECLConnection *ConnObj, ECLErr ErrObject);

private:
 // We will store our application data handle here
 HANDLE MyDataH;
};

//...
void MyCommNotify::NotifyEvent(ECLConnection *ConnObj,
 BOOL Connected)
//
// This function is called whenever the communications link
// with the host connects or disconnects.
//
// For this example, we will just write a message. Note that we
// have access the the MyDataH handle which could have application
// instance data if we needed it here.
//
// The ConnObj pointer is to the ECLConnection object upon which
// this event was registered.
//...
{
 if (Connected)
 printf("Connection %c is now connected.\n", ConnObj->GetName());
 else
 printf("Connection %c is now disconnected.\n", ConnObj->GetName());

 return;
}

 //...
MyCommNotify::MyCommNotify(HANDLE DataHandle) // Constructor
//...
{
 MyDataH = DataHandle; // Save data handle for later use
}

//...
void MyCommNotify::NotifyStop(ECLConnection *ConnObj,
 int Reason)
//...
{
 // When notification ends, display message
 printf("Comm link monitoring for %c stopped.\n", ConnObj->GetName());
}

 //...

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

// Create the class and start notification on connection 'A'.
//...
void Sample30() {

ECLConnection *Conn; // Ptr to connection object
MyCommNotify *Event; // Ptr to my event handling object
HANDLE InstData; // Handle to application data block (for example)

try {
 Conn = new ECLConnection('A'); // Create connection obj
 Event = new MyCommNotify(InstData); // Create event handler

 Conn->RegisterCommEvent(Event); // Register for comm events

 // At this point, any comm link event will cause the
 // MyCommEvent::NotifyEvent() function to execute. For
 // this sample, we put this thread to sleep during this
 // time.

 printf("Monitoring comm link on 'A' for 60 seconds...\n");
 Sleep(60000);

 // Now stop event generation. This will cause the NotifyStop
 // member to be called.
 Conn->UnregisterCommEvent(Event);

 delete Event; // Don't delete until after unregister!
 delete Conn;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLCommNotify メソッド
以下のセクションでは、ECLCommNotify クラスにおいて有効なメソッドについて説明します。

ECLCommNotify() ~ECLCommNotify() virtual void NotifyEvent (ECLConnection *ConnObj, BOOL Connected) =

0 virtual void NotifyError (ECLConnection *ConnObj, ECLErr ErrObject) virtual void NotifyStop (ECLConnection

*ConnObj, int Reason)

NotifyEvent
このメソッドは、純粋仮想メンバー関数です (アプリケーションは ECLCommNotify から派生したクラス内にこの関

数を実装しなければなりません)。must 接続の開始または停止のときと、スタート・ストップ・イベントのためにオ

ブジェクトが登録されたときは、 常にこの関数が呼び出されます。通信リンクが接続されている場合は Connected

BOOL は True、 ホストに接続されていない場合は False になります。

57

ホストアクセスクラスライブラリ

58

プロトタイプ
virtual void NotifyEvent (ECLConnection *ConnObj, BOOL Connected)

パラメーター
ECLConnection *ConnObj

これは、イベントが発生した ECLConnection オブジェクトを指すポインターです。

BOOL Connected

通信リンクが接続されている場合は True、切断されている場合は False です。

戻り値
なし

NotifyError
ECLConnection オブジェクトがイベントの生成時にエラーを検出する たびにこのメソッドが呼び出されます。

エラー・オブジェクトには、そのエラーについての情報が 含まれます (ECLErr クラス (ページ 59)を参照)。エ

ラーの特性に応じて、エラー後にイベントが続けて生成されることがあります。エラーが原因で イベント生成

が停止した場合、NotifyStop() 関数が呼び出されます。アプリケーションは、この関数を採用するか、 または

ECLCommNotify 基本クラスにエラーを処理させるかを選ぶことができます。基本クラスは、ECLErr::GetMsgText()

関数から提供される テキストを使用して、メッセージ・ボックスにエラーを表示します。アプリケーションが、 そ

の派生クラス内にこの関数を実装すると、それによって 基本クラス関数がオーバーライドされます。

プロトタイプ
virtual void NotifyError (ECLConnection *ConnObj, ECLErr ErrObject)

パラメーター
ECLConnection *ConnObj

これは、エラーが発生した ECLConnection オブジェクトを指すポインターです。

ECLErr ErrObject

これは、エラーを記述した ECLErr オブジェクトです。

戻り値
なし

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

NotifyStop
イベント生成が何らかの理由 (例えば、エラー条件が原因か、または ECLConnection::UnregisterCommEvent の呼び

出しなどが原因) で停止すると、このメソッドが呼び出されます。

実装上の注意: 現在、理由コードは未使用であるため、ゼロになります。

プロトタイプ
virtual void NotifyStop (ECLConnection *ConnObj, int Reason)

パラメーター
ECLConnection *ConnObj

これは、通知を停止する ECLConnection オブジェクトを指すポインターです。

int Reason

これは未使用 (ゼロ) です。

戻り値
なし

ECLErr クラス
オブジェクト、C++ECLErrECLErr クラスは、ホスト・アクセス・クラス・ライブラリー・クラスから実行時エラー情報を戻すメソッドを提供

します。エラー状態になると、ECLErr オブジェクトが作成され、 エラー情報と診断情報がその中に入れられます。

そうすると、ECLErr オブジェクトが C++ 例外として送出されます。次に、 その catch された ECLErr オブジェクト

からエラー情報と診断情報を照会できます。

アプリケーションは、ECLErr オブジェクトを作成したり、直接 throw したりしてはなりません。

派生
ECLBase > ECLErr

ECLErr メソッド
以下のセクションでは、ECLErr クラスにおいて有効な メソッドについて説明します。

const int GetMsgNumber() const int GetReasonCode() const char *GetMsgText()

59

ホストアクセスクラスライブラリ

60

GetMsgNumber
このメソッドは、この ECLErr オブジェクトが 作成されたときに設定されたメッセージ番号を戻します。エラー・

メッセージ番号については、ERRORIDS.HPP に説明があります。

プロトタイプ
const int GetMsgNumber()

パラメーター
なし

戻り値
const int

エラー・メッセージ番号。

例
//---
// ECLErr::GetMsgNumber
//
// Cause an 'invalid parameters' error and tryp the ECL exception.
// The extract the error number and language-sensative text.
//---
void Sample31() {

ECLPS *PS = NULL;

try {
 PS = new ECLPS('A');
 PS->SetCursorPos(999,999); // Invalid parameters
}
catch (ECLErr ErrObj) {
 printf("The following ECL error was trapped:\n");
 printf("%s \nError number: %lu\nReason code: %lu\n",
 ErrObj.GetMsgText(),
 ErrObj.GetMsgNumber(),
 ErrObj.GetReasonCode());
}

if (PS != NULL)
 delete PS;

} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

GetReasonCode
このメソッドは、ECLErr オブジェクトから 理由コード (場合によっては、2 次またはマイナー戻りコードと呼ばれま

す) を取得します。一般に、このコードは、デバッグおよび診断を目的として使われます。これは、ホスト・アクセ

ス・クラス・ライブラリーの今後のバージョンでは 変わることがあるので、 プログラマチックに使用しないでくだ

さい。理由コードの説明は、ERRORIDS.HPP にあります。

プロトタイプ
const int GetReasonCode()

パラメーター
なし

戻り値
const int

ECLErr 理由コード。

例
//---
// ECLErr::GetReasonCode
//
// Cause an 'invalid parameters' error and tryp the ECL exception.
// The extract the error number and language-sensative text.
//---
void Sample32() {

ECLPS *PS = NULL;

try {
 PS = new ECLPS('A');
 PS->SetCursorPos(999,999); // Invalid parameters
}
catch (ECLErr ErrObj) {
 printf("The following ECL error was trapped:\n");
 printf("%s \nError number: %lu\nReason code: %lu\n",
 ErrObj.GetMsgText(),
 ErrObj.GetMsgNumber(),
 ErrObj.GetReasonCode());
}

if (PS != NULL)
 delete PS;

} // end sample

61

ホストアクセスクラスライブラリ

62

GetMsgText
このメソッドは、この ECLErr オブジェクトを 作成するのに使われたエラー・コードに関連したメッセージ・テキス

トを戻します。このメッセージ・テキストは、現在インストールされている Z and I Emulator for Windows の言語で

戻されます。

注: ECLErr オブジェクトを削除すると、戻されたポインターは無効になります。

プロトタイプ
const char *GetMsgText()

パラメーター
なし

戻り値
char *

この ECLErr オブジェクトの一部を成すエラー・コードと 関連したメッセージ・テキスト。

例
//---
// ECLErr::GetMsgText
//
// Cause an 'invalid parameters' error and tryp the ECL exception.
// The extract the error number and language-sensative text.
//---
void Sample33() {

ECLPS *PS = NULL;

try {
 PS = new ECLPS('A');
 PS->SetCursorPos(999,999); // Invalid parameters
}
catch (ECLErr ErrObj) {
 printf("The following ECL error was trapped:\n");
 printf("%s \nError number: %lu\nReason code: %lu\n",
 ErrObj.GetMsgText(),
 ErrObj.GetMsgNumber(),
 ErrObj.GetReasonCode());
}

if (PS != NULL)
 delete PS;

} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

使用上の注意
メッセージ・テキストは、Z and I Emulator for Windows のメッセージ機能から取り出されます。

ECLField クラス
オブジェクト、C++ECLFieldECLField には、ECLPS オブジェクトに収容される ECLFieldList オブジェクト内の特定のフィールドの情報が入って

います。アプリケーションで、 直接このタイプのオブジェクトを作成しないようにしてください。ECLField オブ

ジェクト は、ECLFieldList オブジェクトによって間接的に作成されます。

ECLField オブジェクトは、ホストの表示スペースの 単一のフィールドを記述します。これには、フィールドのさま

ざまな属性を照会したり、フィールドのテキストを更新したり する (例えば、フィールド・テキストを修正する) た

めのメソッドが備わっています。フィールド属性は、変更できません。

派生
ECLBase > ECLField

コピー・コンストラクターおよび代入演算子
このオブジェクトは、コピー構築および割り当てをサポートします。このことは、 後で処理するためにホスト画

面でフィールドを簡単に確保したいアプリケーションには 役に立ちます。テキスト・バッファーを割り振ったり

フィールドのストリングの内容を コピーするよりも、アプリケーションは専用 ECLField オブジェクトにフィールド

を 単純に保管することができます。保管されたコピーには、フィールドのテキスト値、属性、開始位置、長さなど

を含む ECLField オブジェクトのすべての機能が保存されます。例えば、画面の最初の入力フィールドを確保するの

に必要なアプリケーションを考えてみてください。表 1 : コピー構築および割り当ての例 (ページ 63) は、これが

達成できる 2 つの方法を示しています。

表 1. コピー構築および割り当ての例

ストリングとしてフィールドを保管 ECLField オブジェクトとしてフィールドを保管
#include "eclall.hpp"

{
 char *SavePtr; // Ptr to saved string
 ECLPS Ps('A'); // PS object
 ECLFieldList *List;
 ECLField *Fld;

 // Get fld list and rebuild it
 List = Ps->GetFieldList();
 List->Refresh();

 // See if there is an input field
 Fld = List->GetFirstField(GetUnmodified);
 if (Fld !=NULL) {
 // Copy the field's text value

#include "eclall.hpp"

{
 ECLField SaveFld; // Saved field
 ECLPS Ps('A'); // PS object
 ECLFieldList *List;
 ECLField *Fld;

 // Get fld list and rebuild it
 List = Ps->GetFieldList();
 List->Refresh();

 // See if there is an input field
 Fld = List->GetFirstField(GetUnmodified);
 if (Fld !=NULL) {
 // Copy the field object

63

ホストアクセスクラスライブラリ

64

表 1. コピー構築および割り当ての例 (続く)

ストリングとしてフィールドを保管 ECLField オブジェクトとしてフィールドを保管
 SavePtr=malloc(Fld->Length() + 1);
 Fld->GetScreen(SavePtr, Fld->Length()+1);
 }

 // We now have captured the field text

 SaveFld = *Fld;
 }

 // We now have captured the field text
 // including text, position, attrib

フィールドを保管するのに、ストリングの代わりに ECLField オブジェクトを使用すると 次のようないくつかの利点

があります。

• ECLField オブジェクトは、フィールドのテキスト・バッファーのストレージ管理を すべて行います。アプリ

ケーションは、テキスト・バッファーを割り振ったり、解放したり、 または、必要なバッファー・サイズの

計算をする必要はありません。

• 保管されたフィールドには、属性および開始位置を含むオリジナル・フィールドの特性の すべてが保存され

ています。通常の ECLField メンバーの機能のすべては、SetText() 以外の 保管されたフィールドで使用する

ことができます。保管されたフィールドはオリジナルのコピーであり、その値はホスト画面の変更、あるい

は ECLFieldList::Refresh() 関数が呼び出された場合にも更新されないことに注意してください。結果として、

このフィールドは 保管することが可能であり、後でアプリケーションで使用することができます。

代入演算子のオーバーライドは、 文字ストリングおよび Long integer 値型にも提供されます。このオーバーライド

によって、 新しいストリングまたは数値を無保護フィールドに割り当てやすくなります。例えば、 次の例は、画面

の最初の 2 つの入力フィールドを設定します。

ECLField *Fld1; //Ptr to 1st unprotected field in field list
ECLField *Fld2; // PTR to 2nd unprotected field in field list

Fld1 = FieldList->GetFirstField(GetUnprotected);
Fld2 = FieldList->GetNextField(Fld1, GetUnprotected);
if ((Fld1 == NULL) || (Fld2 == NULL)) return;

*Fld1 = "Easy string assignment";
*Fld2 = 1087;

Notes:

1. コピー構築または割り当てにより初期化された ECLField オブジェクトは、 オリジナル・フィール

ド・オブジェクトの読み取り専用コピーです。SetText() メソッドは、 このようなオブジェクトには

無効であり、ECLErr 例外が発生する原因となります。これらのオブジェクトはコピーであるため、

オリジナル・フィールド・オブジェクトが 更新あるいは削除されたときに、更新あるいは削除され

ることはありません。アプリケーションは、フィールド・オブジェクトが不必要になった場合に、

これらのオブジェクトのコピーを削除しなければなりません。

2. 初期設定されていない ECLField オブジェクトでメソッドを呼び出すと、 未定義の結果が戻されま

す。

3. アプリケーションにより作成された ECLField オブジェクトは、何度でも 再割り当てすることができ

ます。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

4. 別の ECLField オブジェクト、文字ストリング、 または Long integer 値からのみ、割り当てを行うこ

とが できます。ECLField オブジェクトに対して、他のデータ型を割り当てるのは無効です。

5. 現在 ECLFieldList の一部である ECLField オブジェクトに割り当てを行っても、 フィールドのテキス

ト値を更新するだけです。これは、フィールド・オブジェクトが 無保護フィールドである場合にの

み許可されます。例えば、次の例では、最初の 入力フィールドから値をコピーすることにより、画

面の 2 番目の入力フィールドを変更します。

ECLField *Fld1; // Ptr to 1st unprotected field in field list
ECLField *Fld2; // Ptr to 2nd unprotected field in field list

Fld1 = FieldList->GetFirstField(GetUnprotected);
Fld2 = FieldList->GetNextField(Fld1, GetUnprotected);
if ((Fld1 == NULL) || (Fld2 == NULL)) return;

// Update the 2nd input field using text from the first
FLD2 = * Fld1;

Fld2 は ECLFieldList の一部であるため、上記の割り当ては以下の例と同じです。

{ char temp[Fld1->GetLength()+1];
 Fld1->GetText(temp, Fld1->GetLength()+1);
 Fld2->SetText(temp);
 delete []temp;
}

Fld2 が保護されている場合は、ECLErr 例外がスローされることに注意してください。また、Fld2

のテキストだけが更新され、その属性、位置、または長さは更新されない ことにも注意してくださ

い。

6. ストリングをフィールド・オブジェクトに割り当てることは、 SetText() メソッドを呼び出すことと

同じです。数値は、ストリングへの最初の変換なしに、割り当てることができます。

*Field = 1087;

これは、数をストリングに変換した後で SetText() メソッドを呼び出すことと同じです。

ECLField メソッド
以下のセクションでは、ECLField クラスにおいて有効な メソッドについて説明します。

ULONG GetStart() void GetStart(ULONG *RowULONG *Col) ULONG GetStartRow() ULONG GetStartCol() ULONG

GetEnd() void GetEnd(ULONG *RowULONG *Col) ULONG GetEndRow() ULONG GetEndCol() ULONG GetLength()

ULONG GetScreen(char *Buff, ULONG BuffLen, PS_PLANE Plane = TextPlane) void SetText(char *text) BOOL

IsModified() BOOL IsProtected() BOOL IsNumeric() BOOL IsHighIntensity() BOOL IsPenDetectable() BOOL

IsDisplay() unsigned charGetAttribute()

次のメソッドは、ECLField クラスで有効です。

65

ホストアクセスクラスライブラリ

66

ULONG GetScreen(WCHAR *Buff, ULONG BuffLen, PS_PLANE Plane = TextPlane) void SetText(WCHAR *text)

GetStart
このメソッドは、 フィールドの最初の文字の表示スペース内の位置を 戻します。GetStart メソッドには、2 種類

のシグニチャーがあります。ULONG GetStart は、表示スペースの左上隅を「1」として、線形値で位置を戻しま

す。void GetStart(ULONG *Row, ULONG *Col) は、行および桁の座標で位置を戻します。

プロトタイプ
ULONG GetStart(),

void GetStart(ULONG *Row, ULONG *Col)

パラメーター
ULONG *Row

この出力パラメーターは、更新される行値を指すポインターです。

ULONG *Col

この出力パラメーターは、更新される桁値を指すポインターです。

戻り値
ULONG

線形配列として示される表示スペース内の位置。

例
以下の例は、フィールドの最初の文字の表示スペース内の位置を どのように戻すかを示します。

/---
// ECLField::GetStart
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu)
 Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(),
 pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetStartRow
このメソッドは、ECLPS オブジェクトに関連した 接続での、ECLFieldList 集合内の指定フィールドの開始行位置を

戻します。

プロトタイプ
ULONG GetStartRow()

パラメーター
なし

戻り値
ULONG

これは、所定のフィールドの開始行です。

例
/---
// ECLField::GetStartRow
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

67

ホストアクセスクラスライブラリ

68

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu) Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(), pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetStartCol
このメソッドは、ECLPS オブジェクトに関連した 接続での、ECLFieldList 集合内の指定フィールドの開始桁位置を

戻します。

プロトタイプ
ULONG GetStartCol()

パラメーター
なし

戻り値
ULONG

これは、所定のフィールドの開始桁です。

例
/---
// ECLField::GetStartCol
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu)
 Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(),
 pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetEnd
このメソッドは、 フィールドの最後の文字の表示スペース内の位置を戻します。GetEnd メソッドには、2 種類のシ

グニチャーがあります。ULONG GetEnd は、表示スペースの左上隅を「1」として、線形値で位置を戻します。void

GetEnd(ULONG *Row, ULONG *Col) は、行および桁の座標で位置を戻します。

プロトタイプ
ULONG GetEnd()

void GetEnd(ULONG *Row, ULONG *Col)

パラメーター
ULONG *Row

この出力パラメーターは、更新される行値を指すポインターです。

ULONG *Col

この出力パラメーターは、更新される桁値を指すポインターです。

69

ホストアクセスクラスライブラリ

70

戻り値
ULONG

線形配列として示される表示スペース内の位置。

例
以下の例は、フィールドの最後の文字の表示スペース内の位置を どのように戻すかを示します。

/---
// ECLField::GetEnd
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu)
 Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(),
 pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetEndRow
このメソッドは、フィールドの終了行位置を戻します。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

プロトタイプ
ULONG GetEndRow()

パラメーター
なし

戻り値
ULONG

これは、指定されたフィールドの終了行です。

例
/---
// ECLField::GetEndRow
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu)
 Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(),
 pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

71

ホストアクセスクラスライブラリ

72

GetEndCol
このメソッドは、フィールドの終了桁位置を戻します。

プロトタイプ
ULONG GetEndCol()

パラメーター
なし

戻り値
ULONG

これは、指定されたフィールドの終了行です。

例
/---
// ECLField::GetEndCol
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu)
 Length(%04lu)\n",
 pField->GetStart(), pField->GetStartRow(),
 pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetLength
このメソッドは、フィールドの長さを戻します。長さは、表示スペースの複数行にまたがっていても、 フィールド

全体を含みます。それには、フィールドの先頭にあるフィールド属性文字は含まれません。

プロトタイプ
ULONG GetLength()

パラメーター
なし

戻り値
ULONG

フィールドの長さ。

例
以下の例は、フィールドの長さをどのように戻すかを示します。

/---
// ECLField::GetLength
//
// Iterate over list of fields and print each field
// starting pos, row, col, and ending pos, row, col.
//---
void Sample34() {

ECLPS *pPS; // Pointer to PS object
ECLFieldList *pFieldList; // Pointer to field list object
ECLField *pField; // Pointer to field object

try {
 pPS = new ECLPS('A'); // Create PS object for 'A'

 pFieldList = pPS->GetFieldList(); // Get pointer to field list
 pFieldList->Refresh(); // Build the field list

 printf("Start(Pos,Row,Col) End(Pos,Row,Col) Length(Len)\n");
 for (pField = pFieldList->GetFirstField(); // First field
 pField != NULL; // While more
 pField = pFieldList->GetNextField(pField)) { // Next field

 printf("Start(%04lu,%04lu,%04lu) End(%04lu,%03lu,%04lu) Length(%04lu)\n",

73

ホストアクセスクラスライブラリ

74

 pField->GetStart(), pField->GetStartRow(), pField->GetStartCol(),
 pField->GetEnd(), pField->GetEndRow(),
 pField->GetEndCol(), pField->GetLength());
 }
 delete pPS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetScreen
GetScreen メソッドは、 アプリケーション提供のバッファーにフィールドからのデータを入れます。バッファーに

コピーされるデータの型は、 オプションの Plane パラメーターを使用して選択します。デフォルトでは、テキス

ト・プレーン・データが戻されます。戻されるデータは、このフィールド・オブジェクトの作成時に存在していたま

まの フィールドです。これは、ECLFieldList::Refresh 関数の呼び出し以降に更新されている場合は 、フィールドの

現在の内容を反映していません。

戻されたデータの長さが、フィールドの長さになります (GetLength (ページ 73)を参照してください)。TextPlane

を コピーすると、最後のデータ型の後にヌル終了バイトが付加されます。したがって、アプリケーションは、テキ

スト・プレーンを取得するとき、 フィールド長より最低限 1 バイト大きいバッファーを用意しなければなりませ

ん。アプリケーション・バッファーが小さすぎると、戻されたデータは切り捨てられます。アプリケーション・バッ

ファーにコピーされたバイト数が、関数の結果として 戻されます (テキスト・プレーンのヌル終了文字は含まれませ

ん)。

FieldPlane は、この関数で取得できません。ECLField::GetAttribute を使用して、 フィールド属性値を取得できま

す。

プロトタイプ

ULONG GetScreen(char *Buff, ULONG BuffLen, PS_PLANE Plane=TextPlane)

パラメーター
char * Buff

フィールド・データが入るアプリケーション・バッファーを指すポインター。

ULONG BuffLen

アプリケーション・バッファーの長さ。

PS_PLANE Plane

オプション・パラメーター。フィールド・データのどのプレーンを検索するかについての指示の 列

挙。TextPlane、ColorPlane、または ExtendedFieldPlane のいずれかでなければなりません。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
ULONG

アプリケーション・バッファーにコピーされる バイト数。TextPlane データの後続ヌル文字は含みま

せん。

例
以下の例は、Plane パラメーターによって指示されたフィールド・データを指す ポインターをどのように戻すかを

示します。

/---
// ECLField::GetScreen
//
// Iterate over list of fields and print each fields text contents.
//---
void Sample35() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object
char *Buff; // Screen data buffer
ULONG BuffLen;

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 BuffLen = PS->GetSize() + 1; // Make big enough for entire screen
 Buff = new char[BuffLen]; // Allocate screen buffer

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 for (Field = FieldList->GetFirstField(); // First field
 Field != NULL; // While more
 Field = FieldList->GetNextField(Field)) { // Next field

 Field->GetScreen(Buff, BuffLen); // Get this fields text
 printf("%02lu,%02lu: %s\n", // Print "row,col: text"
 Field->GetStartRow(),
 Field->GetStartCol(),
 Buff);
 }
 delete []Buff;
 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

75

ホストアクセスクラスライブラリ

76

SetText
このメソッドは、表示スペース内の 特定のフィールドに、テキストとして渡された文字ストリングを移植します。

このテキストがフィールドの長さを超える場合、テキストは 切り捨てられます。テキストがフィールドより短い場

合、フィールドの残りはヌルで埋められます。

プロトタイプ
void SetText(char *text)

パラメーター
char *text

フィールドに設定するヌル終了ストリング。

戻り値
なし

例
以下の例は、表示スペース内の特定のフィールドに、 テキストとして渡された文字ストリングを移植する方法を示

します。

//---
// ECLField::SetText
//
// Set the field that contains row 2, column 10 to a value.
//---
void Sample36() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'
 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 // If the field at row 2 col 10 is an input field, set
 // it to a new value.
 Field = FieldList->FindField(2, 10); // Find field at this location
 if (Field != NULL) {
 if (!Field->IsProtected()) // Make sure its an input field
 Field->SetText("Way cool!"); // Assign new field text
 else
 printf("Position 2,10 is protected.\n");
 }
 else printf("Cannot find field at position 2,10.\n");

 delete PS;
}

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

IsModified, IsProtected, IsNumeric, IsHighIntensity, IsPenDetectable, IsDisplay
これらの メソッドは、表示スペース内の指定のフィールドに特定の属性があるか どうかを判別します。これらのメ

ソッドは、フィールドが該当する属性を もっている場合は True 値を、その属性をもっていない場合は False 値を戻

します。

プロトタイプ
BOOL IsModified()

BOOL IsProtected()

BOOL IsNumeric()

BOOL IsHighIntensity()

BOOL IsPenDetectable()

BOOL IsDisplay()

パラメーター
なし

戻り値
BOOL

該当する属性がある場合は True 値を、属性がない場合は False 値を戻します。

例
以下の例は、指定されたフィールドが属性をもっているかどうかを判別する方法を示します。

//---
// ECLField::IsModified
// ECLField::IsProtected
// ECLField::IsNumeric
// ECLField::IsHighIntensity
// ECLField::IsPenDetectable
// ECLField::IsDisplay
//
// Iterate over list of fields and print each fields attributes.
//---
void Sample37() {

ECLPS *PS; // Pointer to PS object

77

ホストアクセスクラスライブラリ

78

ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 for (Field = FieldList->GetFirstField(); // First field
 Field != NULL; // While more
 Field = FieldList->GetNextField(Field)) { // Next field

 printf("Field at %02lu,%02lu is: ",
 Field->GetStartRow(), Field->GetStartCol());

 if (Field->IsProtected())
 printf("Protect ");
 else
 printf("Input ");

 if (Field->IsModified())
 printf("Modified ");
 else
 printf("Unmodified ");

 if (Field->IsNumeric())
 printf("Numeric ");
 else
 printf("Alphanum ");

 if (Field->IsHighIntensity())
 printf("HiIntensity ");
 else
 printf("Normal ");

 if (Field->IsPenDetectable())
 printf("Penable ");
 else
 printf("NoPen ");

 if (Field->IsDisplay())
 printf("Display \n");
 else
 printf("Hidden \n");
 }
 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

//---

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

GetAttribute
このメソッドは、フィールドの属性を戻します。戻される値には、指定可能な各フィールド属性

(modified、protected、numeric、high intensity、pen、および display) について、 ビット・フラグが入っていま

す。これらのビットの詳細については、ECL プレーン — 形式および内容 (ページ 433)を参照してください。各属

性タイプごとに、1 つずつメソッドが提供されます (例えば、IsModified、 IsHighIntensity など)。このメソッドを使

用すると、1 回の呼び出しで完全な属性情報を取得することができます。

プロトタイプ
unsigned char GetAttribute()

パラメーター
なし

戻り値
符号なし char

フィールドの属性ビット。

例
以下の例は、フィールドの属性をどのように戻すかを示します。

/ ECLField::GetAttribute
//
// Iterate over list of fields and print each fields attribute
// value.
//---
void Sample38() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 for (Field = FieldList->GetFirstField(); // First field
 Field != NULL; // While more
 Field = FieldList->GetNextField(Field)) { // Next field

 printf("Attribute value for field at %02lu,%02lu is: 0x%02x\n",
 Field->GetStartRow(), Field->GetStartCol(),
 Field->GetAttribute());
 }
 delete PS;
}
catch (ECLErr Err) {

79

ホストアクセスクラスライブラリ

80

 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLFieldList クラス
オブジェクト、C++ECLFieldListECLFieldList クラスは、 ホストの表示スペース内のフィールド・リストの処理を行います。アプリケーション

は、ECLFieldList オブジェクトを直接作成しては なりません。ECLPS オブジェクトの作成を介して、間接的にしか

作成できません。

ECLFieldList には、 表示スペース内のすべてのフィールドの集合が入っています。この集合の各要素が ECLField オ

ブジェクトです。そのプロパティーおよびメソッドの詳細については、 ECLField クラス (ページ 63)を参照して

ください。

ECLFieldList オブジェクトは、Refresh メソッドを呼び出したときに 表示スペースに入っている内容の静的スナップ

ショットを 提供します。Refresh() の呼び出し後に表示スペースを更新した場合、 その変更内容はフィールド・リス

トに反映されません。アプリケーションは、フィールド・リストを最新表示にするには、 明示的に Refresh を呼び

出さなければなりません。

アプリケーションは、一度 Refresh を呼び出すと、GetFirstField および GetNextField を 使用して、フィールドの集

合の中を次々に移動することができます。フィールドの位置が分からない場合、FindField を使用すれば、 リスト内

で直接それを見つけられます。

注: GetFirstField、GetNextField、および FindField で戻された すべての ECLField オブジェクト・ポイン

ターは、Refresh を呼び出すか、 または ECLFieldList オブジェクトが破棄されると無効になります。

派生
ECLBase > ECLFieldList

プロパティー
ECLFieldListプロパティーNone

ECLFieldList メソッド
以下のセクションでは、ECLFieldList クラスにおいて 有効なメソッドについて説明します。

void Refresh(PS_PLANE Planes) ULONG GetFieldCount() ECLField * GetFirstField() ECLField

*GetNextField(ECLField *Prev) ECLField * FindField(ULONG Pos) ECLField * FindField(ULONG Row, ULONG Col)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ECLField *FindField(char* text, PS_DIR DIR=SrchForward); ECLField *FindField(char* text, ULONG Pos, PS_DIR

DIR=SrchForward); ECLField *FindField(char* text, ULONG Row, ULONG Col, PS_DIR DIR=SrchForward);

最新表示
このメソッドは、現在表示スペースにある すべてのフィールドのスナップショットを取得します。このオブジェク

トによってそれ以前に戻された、 すべての ECLField オブジェクトは無効になります。パフォーマンスを向上するに

は、必要なプレーンにフィールド・データを 限定します。TextPlane および FieldPlane は、常に取得されることに

注意してください。

プロトタイプ
void Refresh(PS_PLANE Planes=TextPlane)

パラメーター
PS_PLANE Planes

フィールドが作成されるプレーン。有効な値は、TextPlane、ColorPlane、FieldPlane、ExfieldPlane、

および AllPlanes (全部について作成する) です。これは、ECLPS.HPP で定義される列挙型です。この

オプショナル・パラメーターのデフォルト値は、TextPlane です。

戻り値
なし

例
以下の例は、Refresh メソッドを使用して現在表示スペースにある すべてのフィールドのスナップショットを取得

する方法を示します。

///---
// ECLFieldList::Refresh
//
// Display number of fields on the screen.
//---
void Sample39() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 printf("There are %lu fields on the screen of connection %c.\n",
 FieldList->GetFieldCount(), PS->GetName());

81

ホストアクセスクラスライブラリ

82

 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

--

GetFieldCount
このメソッドは、ECLFieldList の集合の中にある フィールドの数を戻します (Refresh メソッドの最新の呼び出しを

ベースにします)。

プロトタイプ
ULONG GetFieldCount()

パラメーター
なし

戻り値
ULONG

ECLFieldList の集合の中にあるフィールドの数。

例
以下の例は、GetFieldCount メソッドを使用して ECLFieldList の集合の中にある フィールド数を戻す方法を示しま

す。

//---
// ECLFieldList::GetFieldCount
//
// Display number of fields on the screen.
//---
void Sample40() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 printf("There are %lu fields on the screen of connection %c.\n",
 FieldList->GetFieldCount(), PS->GetName());

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetFirstField
このメソッドは、集合の中の 最初の ECLField オブジェクトを指すポインターを 戻します。ECLFieldList

は、ECLField オブジェクトの集合を含んでいます。詳しくは、ECLField クラス (ページ 63)を参照してくださ

い。集合の中にフィールドがない場合、メソッドは NULL ポインターを戻します。

プロトタイプ
ECLField * GetFirstField();

パラメーター
なし

戻り値
ECLField *

ECLField オブジェクトを指すポインター。接続内にフィールドがない場合は、ヌルが戻されます。

例
以下の例は、GetFirstField メソッドを使用して集合の中の 最初の ECLField オブジェクトを指すポインターを戻す方

法を示します。

/---
// ECLFieldList::GetFirstField
//
// Display starting position of every input (unprotected) field.
//---
void Sample41() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 // Interate over (only) unprotected fields

83

ホストアクセスクラスライブラリ

84

 printf("List of input fields:\n");
 for (Field = FieldList->GetFirstField(GetUnprotected);
 Field != NULL;
 Field = FieldList->GetNextField(Field, GetUnprotected)) {

 printf("Input field starts at %02lu,%02lu\n",
 Field->GetStartRow(), Field->GetStartCol());
 }
 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetNextField
このメソッドは、集合の中の 指定されたオブジェクトの次の ECLField オブジェクトを戻します。集合の中で、指定

したオブジェクトの後にもうオブジェクトがない場合は、NULL ポインターが戻されます。アプリケーションは、こ

のメソッドを繰り返して呼び出すことで、 集合の中の ECLField オブジェクトを反復することができます。

プロトタイプ
ECLField *GetNextField(ECLField *Prev)

パラメーター
ECLField *Prev

集合の中の任意の ECLField オブジェクトを指すポインター。戻されるポインターは、このオブジェク

トの次のオブジェクトです。この値が NULL の場合、集合の中の最初のオブジェクトを指すポインター

が戻されます。このポインターは、GetFirstField、GetNextField、または FindField メンバー関数に

よって 戻されるポインターです。

戻り値
ECLField *

集合の中の次のオブジェクトを指すポインター。集合の中で、Prev オブジェクトの後にもうオブジェ

クトがない場合、 NULL が戻されます。

例
以下の例は、GetNextFieldInfo メソッドを使用して、集合の中の 次の ECLField オブジェクトを指すポインターを戻

す方法を示します。

///---
// ECLFieldList::GetNextField
//

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

// Display starting position of every input (unprotected) field.
//---
void Sample42() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 // Interate over (only) unprotected fields
 printf("List of input fields:\n");
 for (Field = FieldList->GetFirstField(GetUnprotected);
 Field != NULL;
 Field = FieldList->GetNextField(Field, GetUnprotected)) {

 printf("Input field starts at %02lu,%02lu\n",
 Field->GetStartRow(), Field->GetStartCol());
 }
 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

FindField
このメソッドは、テキストまたは位置を 使用して ECLFieldList の集合の中のフィールドを検出します。位置は、線

形位置または行/列の位置のどちらでも構いません。フィールドにテキストまたは位置を含めると、 そのフィールド

用の ECLField オブジェクトを指すポインターが戻されます。戻されるポインターは、フィールド・リストの集合の

中のオブジェクトを指す ポインターです。フィールドが見つからない場合、NULL が戻されます。テキストの検索

の場合、開始位置を指定しないかぎり、検索は 行 1 桁 1 から開始されます。またテキストの場合も、デフォルトで

はこのメソッドは順方向に検索します。 ただし、検索方向を明示的に指定することもできます。

注: テキストの検索は、テキストが 複数のフィールドにまたがっていても正常に行われます。戻される

フィールド・オブジェクトは、見つかったテキストが始まるフィールドです。

プロトタイプ

ECLField *FindField(ULONG Pos);

ECLField *FindField(ULONG Row, ULONG Col);

ECLField *FindField(char* text, PS_DIR DIR=SrchForward);

85

ホストアクセスクラスライブラリ

86

ECLField *FindField(char* text, ULONG Pos, PS_DIR DIR=SrchForward);

ECLField *FindField(char* text, ULONG Row, ULONG Col, PS_DIR DIR=SrchForward);

パラメーター
ULONG Pos

検索する線形位置またはテキスト検索を開始する線形位置。

ULONG Row

検索する行位置またはテキスト検索を開始する行。

ULONG Col

検索する桁位置またはテキスト検索を開始する桁。

char *text

検索するストリング。

PS_DIR Dir

検索する方向。

戻り値
ECLField *

フィールドが見つかった場合は、ECLField オブジェクトを指すポインター。フィールドが見つからな

かった場合は NULL。次の Refresh の呼び出し後、戻されたポインターは無効になります。

例
以下に、FindField メソッドの例を示します。

//---
// ECLFieldList::FindField
//
// Display the field which contains row 2 column 10. Also find
// the first field containing a particular string.
//---
void Sample43() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object
ECLField *Field; // Pointer to field object
char Buff[4000];

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 // Find by row,column coordinate

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 Field = FieldList->FindField(2, 10);
 if (Field != NULL) {
 Field->GetText(Buff, sizeof(Buff));
 printf("Field at 2,10: %s\n", Buff);
 }
 else printf("No field found at 2,10.\n");

 // Find by text. Note that text may span fields, this
 // will find the field in which the text starts.

 Field = FieldList->FindField("HCL");
 if (Field != NULL) {
 printf("String 'HCL' found in field that starts at %lu,%lu.\n",
 Field->GetStartRow(), Field->GetStartCol());
 }
 else printf("String 'HCL' not found.\n");

 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

//---------------------------

ECLKeyNotify クラス
オブジェクト、C++ECLKeyNotifyECLKeyNotify は、抽象基本クラスです。アプリケーションは、このクラスの インスタンスを直接作成することはで

きません。アプリケーションでこのクラスを使用するには、ECLKeyNotify から派生した 独自のクラスを定義しなけ

ればなりません。アプリケーションは、 その派生クラス内に NotifyEvent() メンバー関数を実装しなければなりませ

ん。また、 オプションで NotifyError() および NotifyStop() メンバー関数を実装することも できます。

アプリケーションがキー・ストローク・イベントの通知を受けられるように するには、ECLKeyNotify クラスを使

用します。またアプリケーションは、キー・ストロークをフィルターに掛ける (除去する) ことにより、キー・スト

ロークがホスト画面に送られないようにしたり、 キー・ストロークを他のキー・ストロークに置換したりすること

ができます。アプリケーションがすべてのキー・ストロークについて常に通知を受けられるようにするため、キー・

ストローク通知がキューに入れられます。実際の物理キーボードで行われたキー・ストロークだけが、このオブジェ

クトで 検出されます。他の ECL オブジェクト (ECLPS::SendKeys など) からホストに送られた キー・ストロークの場

合、キー・ストローク通知イベントは生じません。

アプリケーションがキー・ストローク・イベントの通知を受けるには、 次に示すステップを実行しなければなりま

せん。

1. ECLKeyNotify から派生したクラスを定義します。

2. その派生クラスを採用し、NotifyEvent() メンバー関数を実装します。

3. オプションで、NotifyError() または NotifyStop() 関数 (あるいはその両方) を 実装します。

87

ホストアクセスクラスライブラリ

88

4. 派生クラスのインスタンスを作成します。

5. そのインスタンスを ECLPS::RegisterKeyEvent() 関数で登録します。

ここに示された例は、それがどのように行われるかを例示しています。上記のステップを完了すると、エミュレー

ター・ウィンドウでの各キー・ストロークのたびに、 アプリケーションの NotifyEvent() メンバー関数が呼び出され

ます。この関数には、キー・ストロークのタイプ (プレーンな ASCII キーまたは 特殊ファンクション・キー) および

キーの値 (単一の ASCII 文字、または ファンクション・キーを表すキーワード) を示すパラメーターが渡されます。

アプリケーションは、ECLPS::SendKeys() などの他の ECL 関数の呼び出しを含め、 NotifyEvent() プロシージャーで

必要な任意の関数を実行できます。アプリケーションは、キー・ストロークをフィルターに掛けるかどうか (フィル

ターに掛ける (廃棄) する場合は 1 を戻し、通常に処理する場合は 0 を戻します) を 示すため NotifyEvent() から値を

戻します。

キー・ストローク・イベントの生成時にエラーが検出された場合、 ECLErr オブジェクトを使用して NotifyError() メ

ンバー関数が呼び出されます。エラーの特性に応じて、エラー後にキー・ストローク・イベントが続けて生成される

かどうかが決まります。イベント生成が終了したとき (エラーか、ECLPS::UnregisterKeyEvent の呼び出しか、 また

は ECLPS オブジェクトの破棄のいずれかが原因で)、NotifyStop() メンバー関数が呼び出されます。イベント通知が

終了するときには、NotifyStop() メンバー関数が常に呼び出され、 アプリケーション・オブジェクトの登録が抹消

されます。

アプリケーションが NotifyError() メンバー関数の実装を行わない場合、 デフォルトの実装が使われます (単純なメッ

セージ・ボックスがユーザーに対して表示されます)。アプリケーションがデフォルトの振る舞いをオーバーライド

するには、 アプリケーションの派生クラス内に NotifyError() 関数を実装します。同様に、アプリケーションがこの

関数を提供しない場合、 デフォルトの NotifyStop() 関数が使われます (デフォルトの振る舞いでは何も行われませ

ん)。

またアプリケーションは、派生したクラス用に自身のコンストラクターおよび デストラクターを任意で提供で

きることに注意してください。これが便利なのは、 アプリケーションが特定のインスタンス別データをそのクラ

ス内に保管してから、 その情報をコンストラクター上のパラメーターとして渡したい場合です。例えば、アプリ

ケーションにおいて、キー・ストロークが発生したら アプリケーション・ウィンドウにメッセージをポストした

い場合があります。アプリケーションは、ウィンドウ・ハンドルをグローバル変数として定義する (このハンドル

を、NotifyEvent() 関数に見えるようにするため) 代わりに、 ウィンドウ・ハンドルを受け取ってクラス・メンバー

のデータ域に保管する クラス用のコンストラクターとして定義することができます。

アプリケーションは、イベントを受け取るために通知オブジェクトを 登録しているかぎり、そのオブジェクトを破

棄してはなりません。

複数の接続でのキー・ストロークを受け取れるように、 キー・ストローク通知オブジェクトの同一のインスタンス

を、 複数の ECLPS オブジェクトに登録することができます。つまり、アプリケーションは、このオブジェクトの 1

つのインスタンスを使用して、 さまざまなセッションにおいてキー・ストロークを処理できるということです。ア

プリケーションが別々の接続でのイベントをそれぞれ区別できるように、 イベントの発生対象の ECLPS オブジェク

トを指すポインターがメンバー関数に渡されます。ここに示した例は、2 つの接続においてキー・ストロークを処理

するために 同一のオブジェクトを使用しています。

実装上の制約事項: 現在、ECLPS オブジェクトでは、1 つの指定された接続に対して 1 つしか通知オブ

ジェクトを登録できません。その ECLPS オブジェクト用に通知オブジェクトが既に登録されて いる場

合、ECLPS::RegisterKeyEvent からエラーがスローされます。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

派生
ECLBase > ECLNotify > ECLKeyNotify

例
以下に、ECLKeyNotify オブジェクトの作成方法と使用方法の例を示します。

// ECLKeyNotify class
//
// This sample demonstrates the use of:
//
// ECLKeyNotify::NotifyEvent
// ECLKeyNotify::NotifyError
// ECLKeyNotify::NotifyStop
// ECLPS::RegisterKeyEvent
// ECLPS::UnregisterKeyEvent
//---

//...
// Define a class derived from ECLKeyNotify
//...
class MyKeyNotify: public ECLKeyNotify
{
public:
 // Define my own constructor to store instance data
 MyKeyNotify(HANDLE DataHandle);

 // We have to implement this function
 virtual int NotifyEvent(ECLPS *PSObj, char const KeyType[2],
 const char * const KeyString);

 // We choose to implement this function
 void NotifyStop (ECLPS *PSObj, int Reason);

 // We will take the default behaviour for this so we
 // don't implement it in our class:
 // void NotifyError (ECLPS *PSObj, ECLErr ErrObject);

private:
 // We will store our application data handle here
 HANDLE MyDataH;
};

 //..
MyKeyNotify::MyKeyNotify(HANDLE DataHandle) // Constructor
//...
{
 MyDataH = DataHandle; // Save data handle for later use
}

//...
int MyKeyNotify::NotifyEvent(ECLPS *PSObj,
 char const KeyType[2],
 const char * const KeyString)

89

ホストアクセスクラスライブラリ

90

//...

{
 // This function is called whenever a keystroke occurs. We will
 // just do something simple: when the user presses PF1 we will
 // send a PF2 to the host instead. All other keys will be unchanged.

 if (KeyType[0] == 'M') { // Is this a mnemonic keyword?
 if (!strcmp(KeyString, "[pf1]")) { // Is it a PF1 key?
 PSObj->SendKeys("[pf2]"); // Send PF2 instead
 printf("Changed PF1 to PF2 on connection %c.\n",
 PSObj->GetName());
 return 1; // Discard this PF1 key
 }
 }

 return 0; // Process key normally
}

//..
void MyKeyNotify::NotifyStop (ECLPS *PSObj, int Reason)
//...
{
 // When notification ends, display message
 printf("Keystroke intercept for connection %c stopped.\n", PSObj->GetName());
}

//...
// Create the class and start keystroke processing on A and B.
//...
void Sample44() {

ECLPS *PSA, *PSB; // PS objects
MyKeyNotify *Event; // Ptr to my event handling object
HANDLE InstData; // Handle to application data block (for example)

try {

 PSA = new ECLPS('A'); // Create PS objects
 PSB = new ECLPS('B');
 Event = new MyKeyNotify(InstData); // Create event handler

 PSA->RegisterKeyEvent(Event); // Register for keystroke events
 PSB->RegisterKeyEvent(Event); // Register for keystroke events

 // At this point, any keystrokes on A or B will cause the
 // MyKeyEvent::NotifyEvent() function to execute. For
 // this sample, we put this thread to sleep during this
 // time.

 printf("Processing keystrokes for 60 seconds on A and B...\n");
 Sleep(60000);

 // Now stop event generation. This will cause the NotifyStop
 // member to be called.
 PSA->UnregisterKeyEvent(Event);

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 PSB->UnregisterKeyEvent(Event);

 delete Event; // Don't delete until after unregister!
 delete PSA;
 delete PSB;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

//---

ECLKeyNotify メソッド
以下のセクションでは、ECLKeyNotify クラスにおいて有効なメソッドについて説明します。

virtual int NotifyEvent (ECLPS *PSObj, char const KeyType [2], const char * const KeyString) =0 virtual void NotifyError

(ELLPS *PSobj, ECLErr ErrObject) virtual void NotifyStop (ELLPS *PSObj, int Reason)

NotifyEvent
このメソッドは、純粋仮想メンバー関数です (アプリケーションは ECLKeyNotify から派生したクラス内にこの関数

を実装しなければなりません)。must キー・ストローク・イベントが発生したときと、キー・ストローク・イベント

のために オブジェクトが登録されたときは、常にこの関数が呼び出されます。戻り値は、キー・ストロークの処置

を示します (廃棄する場合は 1、処理する場合は 0)。

プロトタイプ
virtual int NotifyEvent (ECLPS *PSObj, char const KeyType [2], const char * const KeyString) =0

パラメーター
ECLPS *PSObj

これは、イベントが発生した ECLPS オブジェクトを指すポインターです。

char const KeyType[2]

これは、次のとおりの、キー・タイプを示す 1 文字のヌル終了ストリングです。

A = プレーンな ASCII キー・ストローク M = ニーモニック・キーワード

const char * const KeyString

これは、キー・ストロークまたは略号キーワードを含んだヌル終了ストリングです。キーワードは、

常に小文字になります (例えば、"[enter]")。略号キーワードのリストは、Sendkeys 略号キーワード

(ページ 430)を参照してください。

91

ホストアクセスクラスライブラリ

92

戻り値
整数

これは、フィルター標識です。

1 = フィルター (廃棄) キー・ストローク 0 = 処理キー・ストローク (ホストへ送信)

NotifyError
このメソッドは、ECLPS オブジェクトがキー・ストローク・イベント生成時に、 エラーを検出するたびに呼び出さ

れます。エラー・オブジェクトには、そのエラーについての情報が 含まれます (ECLErr クラス (ページ 59)を参

照)。エラーの特性に応じて、エラー後に キー・ストローク・イベントが続けて生成されることがあります。エラー

が原因でキー・ストローク・イベント生成が停止した場合、 NotifyStop() 関数が呼び出されます。

プロトタイプ
virtual void NotifyError (ELLPS *PSobj, ECLErr ErrObject)

パラメーター
ECLPS *PSObj

これは、エラーが発生した ECLPS オブジェクトを指すポインターです。

ECLErr ErrObject

これは、エラーを記述した ECLErr オブジェクトです。

戻り値
なし

NotifyStop
キー・ストローク・イベント生成が何らかの理由で (例えば、 エラー条件、ECLPS::UnregisterKeyEvent の呼び出

し、または ECLPS オブジェクトの破棄などが原因で) 停止すると、このメソッドが呼び出されます。

プロトタイプ
virtual void NotifyStop (ELLPS *PSObj, int Reason)

パラメーター
ECLPS *PSObj

これは、イベントが停止している ECLPS オブジェクトを指すポインターです。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

int Reason

これは未使用 (ゼロ) です。

戻り値
なし

ECLListener クラス
ECLListener は、すべての HACL "リスナー" オブジェクトの基本クラスです。リスナーは、非同期イベントの特定の

タイプに登録されたオブジェクトです。リスナー・オブジェクトのメソッドは、イベントが起こるかエラーが検出さ

れたときに 呼び出されます。

ECLListener クラスには、共用メソッドはありません。

派生
ECLBase > ECLListener

使用上の注意
アプリケーションはこのクラスを直接使用しませんが、これから派生したクラスの インスタンスを作成します (例え

ば、ECLPSListener)。

ECLOIA クラス
オブジェクト、C++ECLOIAECLOIA は、オペレーター情報域 (OIA) サービスを提供します。

ECLOIA は ECLConnection から派生するため、ECLConnection オブジェクトに 含まれるすべての情報を取得できま

す。詳しくは、ECLConnection クラス (ページ 24)を参照してください。

ECLOIA オブジェクトは、作成時に識別された接続用に作成されます。ECLOIA オブジェクトを作成するには、 通常

は ECLConnList オブジェクトから取得される接続名 (単一の A から Z、または a から z の英字) または接続ハンドル

を 渡します。1 つの名前またはハンドルに対して、一度に 1 つの Z and I Emulator for Windows 接続しかオープンで

きません。

派生
ECLBase > ECLConnection > ECLOIA

93

ホストアクセスクラスライブラリ

94

使用上の注意
ECLSession クラスは、このオブジェクトのインスタンスを作成します。アプリケーションで他のサービスを必要と

しない場合、 このオブジェクトを直接作成しても構いません。そうでない場合は、ECLSession オブジェクトを使用

して、 必要なすべてのオブジェクトを作成することを検討してください。

ECLOIA メソッド
以下のセクションでは、ECLOIA クラスにおいて 有効なメソッドについて説明します。

ECLOIA(char ConnName) ECLOIA(long ConnHandle) ~ECLOIA() BOOL IsAlphanumeric() BOOL IsAPL() BOOL

IsUpperShift() BOOL IsNumeric() BOOL IsCapsLock() BOOL IsInsertMode() BOOL IsCommErrorReminder() BOOL

IsMessageWaiting() BOOL WaitForInputReady(long nTimeOut = INFINITE) BOOL WaitForAppAvailable(long

nTimeOut = INFINITE) BOOL WaitForSystemAvailable(long nTimeOut = INFINITE) BOOL WaitForTransition(BYTE

nIndex = 0xFF, long nTimeOut = INFINITE) INHIBIT_REASON InputInhibited() ULONG GetStatusFlags()

ECLOIA コンストラクター
このメソッドは、接続名 (単一の A から Z、または a から z の英字) または接続ハンドル から ECLOIA オブジェクト

を作成します。Z and I Emulator for Windows は、1 つの名前につき 1 つだけ接続を開始できます。

プロトタイプ
ECLOIA(char ConnName)

ECLOIA(long ConnHandle)

パラメーター
char ConnName

1 文字の接続の短縮名 (A から Z、または a から z)。

long ConnHandle

ECL 接続のハンドル。

戻り値
なし

例
以下の例は、接続名を使用して ECLOIA オブジェクトを作成する方法を示します。

// ECLOIA::ECLOIA (Constructor)
//

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

// Build an OIA object from a name, and another from a handle.
//---
void Sample45() {

ECLOIA *OIA1, *OIA2; // Pointer to OIA objects
ECLConnList ConnList; // Connection list object

try {
 // Create OIA object for connection 'A'
 OIA1 = new ECLOIA('A');

 // Create OIA object for first connection in conn list
 OIA2 = new ECLOIA(ConnList.GetFirstConnection()->GetHandle());

 printf("OIA #1 is for connection %c, OIA #2 is for connection %c.\n",
 OIA1->GetName(), OIA2->GetName());
 delete OIA1;
 delete OIA2;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

IsAlphanumeric
このメソッドは、カーソルが英数字ロケーションに あると OIA が示すかどうかを判別します。

プロトタイプ
BOOL IsAlphanumeric()

パラメーター
なし

戻り値
BOOL

キーボードが英数字モードの場合は True、 キーボードが英数字モードでない場合は False。

例
以下の例は、キーボードが英数字モードであると OIA が示すかどうかを 判別する方法を示します。

//---
// ECLOIA::IsAlphanumeric
//
// Determine status of connection 'A' OIA indicator
//---

95

ホストアクセスクラスライブラリ

96

void Sample46() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsAlphanumeric())
 printf("Alphanumeric.\n");
else
 printf("Not Alphanumeric.\n");

} // end sample

IsAPL
このメソッドは、キーボードが APL モードである と OIA が示すかどうかを判別します。

プロトタイプ
BOOL IsAPL()

パラメーター
なし

戻り値
BOOL

キーボードが APL モードの場合は True、 キーボードが APL モードでない場合は False。

例
以下の例は、キーボードが APL モードであると OIA が示すかどうかを 判別する方法を示します。

//---
// ECLOIA::IsAPL
//
// Determine status of connection 'A' OIA indicator
//---
void Sample47() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsAPL())
 printf("APL.\n");
else
 printf("Not APL.\n");

} // end sample

//------------------------

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

IsUpperShift
このメソッドは、キーボードが上段シフト・モードである と OIA が示すかどうかを判別します。

プロトタイプ
BOOL IsUpperShift()

パラメーター
なし

戻り値
BOOL

キーボードが上段シフト・モードの場合は True、 キーボードが上段シフト・モードでない場合は

False。

例
以下の例は、キーボードが上段シフト・モードであると OIA が示すか どうかを判別する方法を示します。

//---
// ECLOIA::IsUpperShift
//
// Determine status of connection 'A' OIA indicator
//---
void Sample51() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsUpperShift())
 printf("UpperShift.\n");
else
 printf("Not UpperShift.\n");

} // end sample

IsNumeric
このメソッドは、カーソルが数字のみのロケーションに あると OIA が示すかどうかを判別します。

プロトタイプ
BOOL IsNumLock()

パラメーター
なし

97

ホストアクセスクラスライブラリ

98

戻り値
BOOL

Numeric がオンのときは True で、Numeric がオフのときは False。

例
以下の例は、カーソルが数字ロケーションにある と OIA が示すかどうかを判別する方法を示します。

//---
// ECLOIA::IsNumeric
//
// Determine status of connection 'A' OIA indicator
//---
void Sample52() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsNumeric())
 printf("Numeric.\n");
else
 printf("Not Numeric.\n");

} // end sample

IsCapsLock
このメソッドは、キーボードの Caps Lock がオンに なっていると OIA が示すかどうかを判別します。

プロトタイプ
BOOL IsCapsLock()

パラメーター
なし

戻り値
BOOL

Caps Lock がオンの場合は True、Caps Lock がオンでない場合は False。

例
以下の例は、キーボードの Caps Lock がオンになっている と OIA が示すかどうかを判別する方法を示します。

//---
// ECLOIA::IsCapsLock
//

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

// Determine status of connection 'A' OIA indicator
//---
void Sample53() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsCapsLock())
 printf("CapsLock.\n");
else
 printf("Not CapsLock.\n");

} // end sample

IsInsertMode
このメソッドは、キーボードが挿入モードである と OIA が示すかどうかを判別します。

プロトタイプ
BOOL IsInsertMode()

パラメーター
なし

戻り値
BOOL

キーボードが挿入モードの場合は True、 キーボードが挿入モードでない場合は False。

例
以下の例は、キーボードが挿入モードであると OIA が示すかどうかを 判別する方法を示します。

//---
// ECLOIA::IsInsertMode
//
// Determine status of connection 'A' OIA indicator
//---
void Sample54() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsInsertMode())
 printf("InsertMode.\n");
else
 printf("Not InsertMode.\n");

} // end sample

99

ホストアクセスクラスライブラリ

100

IsCommErrorReminder
このメソッドは、通信エラー状況メッセージが 存在すると OIA が示すかどうかを判別します。

プロトタイプ
BOOL IsCommErrorReminder()

パラメーター
なし

戻り値
BOOL

条件が存在する場合は True、条件が存在しない場合は False。

例
以下の例は、通信エラー状況メッセージが存在する と OIA が示すかどうかを判別する方法を示します。

//---
// ECLOIA::IsCommErrorReminder
//
// Determine status of connection 'A' OIA indicator
//---
void Sample55() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsCommErrorReminder())
 printf("CommErrorReminder.\n");
else
 printf("Not CommErrorReminder.\n");

} // end sample

//

IsMessageWaiting
このメソッドは、メッセージ待機標識がオンである と OIA が示すかどうかを判別します。これは、5250 接続にのみ

起こります。

プロトタイプ
BOOL IsMessageWaiting()

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

パラメーター
なし

戻り値
BOOL

メッセージ待機標識がオンの場合は True、 メッセージ待機標識がオンでない場合は False。

例
以下の例は、メッセージ待機標識がオンである と OIA が示すかどうかを判別する方法を示します。

// ECLOIA::IsMessageWaiting
//
// Determine status of connection 'A' OIA indicator
//---
void Sample56() {

ECLOIA OIA('A'); // OIA object for connection A

if (OIA.IsMessageWaiting())
 printf("MessageWaiting.\n");
else
 printf("Not MessageWaiting.\n");

} // end sample

WaitForInputReady
WaitForInputReady メソッドは、autECLOIA オブジェクトに関連した接続の OIA が、 この接続にキーボード入力の

受け入れが可能であることを示すまで待機します。

プロトタイプ
BOOL WaitForInputReady(long nTimeOut = INFINITE)

パラメーター
long nTimeOut

待機時間の最大長をミリ秒で指定します。 このパラメーターはオプションです。デフォルト

は、Infinite (無期限) です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

101

ホストアクセスクラスライブラリ

102

WaitForSystemAvailable
WaitForSystemAvailable メソッドは、ECLOIA オブジェクトに接続されたセッション の OIA が、そのセッションが

ホスト・システムに接続されていると知らせるまで待機します。

プロトタイプ
BOOL WaitForSystemAvailable(long nTimeOut = INFINITE)

パラメーター
long nTimeOut

待機時間の最大長をミリ秒で指定します。 このパラメーターはオプションです。デフォルト

は、Infinite (無期限) です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

WaitForAppAvailable
WaitForAppAvailable メソッドは、接続されたセッションの OIA が、 アプリケーションが初期設定され、使用可能で

あることを示すまで待機します。

プロトタイプ
BOOL WaitForAppAvailable(long nTimeOut = INFINITE)

パラメーター
long nTimeOut

待機時間の最大長をミリ秒で指定します。 このパラメーターはオプションです。デフォルト

は、Infinite (無期限) です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

WaitForTransition
WaitForTransition メソッドは、接続されたセッションの OIA の指定された位置の値が 変わるのを待ちます。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

プロトタイプ
BOOL WaitForTransition(BYTE nIndex = 0xFF, long nTimeOut = INFINITE)

パラメーター
BYTE nIndex

モニターする OIA の 1 バイトの 16 進数位置。このパラメーターはオプションです。デフォルトは、3

です。

long nTimeOut

待機時間の最大長をミリ秒で指定します。 このパラメーターはオプションです。デフォルト

は、Infinite (無期限) です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

InputInhibited
このメソッドは、入力が使用禁止かどうかを示す列挙値を戻します。入力が使用禁止の場合、使用禁止の理由を判別

できます。複数の理由で入力が使用禁止になっている場合、最大の列挙値が戻されます (例えば、通信エラーとプロ

トコル・プログラム・エラーがあると、ProgCheck 値が戻されます)。

プロトタイプ
INHIBIT_REASON InputInhibited ()

パラメーター
なし

戻り値
INHIBIT_REASON

ECLOIA.HPP に定義されているとおりの、INHIBIT_REASON 値のいずれかを戻します。現在入力が使

用禁止になっていない場合、NotInhibited 値が戻されます。

例
以下の例は、入力が使用禁止になっているかどうかを判別する方法を示します。

//---
// ECLOIA::InputInhibited
//
// Determine status of connection 'A' OIA indicator

103

ホストアクセスクラスライブラリ

104

//---
void Sample57() {

ECLOIA OIA('A'); // OIA object for connection A

switch (OIA.InputInhibited()) {
case NotInhibited:
 printf("Input not inhibited.\n");
 break;
case SystemWait:
 printf("Input inhibited for SystemWait.\n");
 break;
case CommCheck:
 printf("Input inhibited for CommCheck.\n");
 break;
case ProgCheck:
 printf("Input inhibited for ProgCheck.\n");
 break;
case MachCheck:
 printf("Input inhibited for MachCheck.\n");
 break;
case OtherInhibit:
 printf("Input inhibited for OtherInhibit.\n");
 break;
default:
 printf("Input inhibited for unknown reason.\n");
 break;
}
} // end sample

GetStatusFlags
このメソッドは、各種 OIA 標識を表す状況ビットのセットを戻します。このメソッドを使用すれば、いくつもの異

なる IsXXX メソッドを呼び出す代わりに、 単一の呼び出しで OIA 標識のセットを収集することができます。戻され

る各ビットは、 単一の OIA 標識を表しており、この値が 1 の場合は標識はオン (True)、0 の場合は オフ (False) を意

味します。ビット・マスク定数のセットは ECLOIA.HPP ヘッダー・ファイルで定義されており、戻された 32 ビット

値の個々の標識を分離します。

プロトタイプ
ULONG GetStatusFlags()

パラメーター
なし

戻り値
ULONG

ビット・フラグのセットは、次のように定義されます。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ビット位置 マスク定数 説明

31 (msb) OIAFLAG_ALPHANUM IsAlphanumeric

30 OIAFLAG_APL IsAPL

26 OIAFLAG_UPSHIFT IsUpperShift

25 OIAFLAG_NUMERIC IsNumeric

24 OIAFLAG_CAPSLOCK IsCapsLock

23 OIAFLAG_INSERT IsInsertMode

22 OIAFLAG_COMMERR IsCommErrorReminder

21 OIAFLAG_MSGWAIT IsMessageWaiting

20 OIAFLAG_ENCRYPTED IsConnectionEncrypted

19-4 予約済み

3-0 OIAFLAG_INHIBMASK InputInhibited:

0=NotInhibited

1=SystemWait

2=CommCheck

3=ProgCheck

4=MachCheck

5=OtherInhibit

RegisterOIAEvent
このメンバー関数は、OIA 更新イベントの通知を受け取るためのアプリケーション・オブジェクト を登録します。

アプリケーションでこの関数を使用するには、 ECLOIANotify から派生したオブジェクトを作成しなければなりませ

ん。作成すると、そのオブジェクトを指すポインターは この登録関数に渡されます。通知オブジェクトの数が、同

時に登録されることがあります。複数のリスナーがイベントを受信する順序は、定義されず想定することはできませ

ん。

この関数を使用して ECLOIANotify オブジェクトが登録されれば、OIA に更新が行われるたびに、 この NotifyEvent()

メソッドが呼び出されます。短時間内での OIA に対する複数の更新は、 単一のイベントに集約されることがありま

す。

アプリケーションは、これを破棄するのに先立って通知オブジェクトを登録抹消する必要があります。ECLOIA オブ

ジェクトが破棄されると、このオブジェクトは自動的に抹消されます。

プロトタイプ
void RegisterOIAEvent(ECLOIANotify * notify)

パラメーター
ECLOIANotify *

登録すべき ECLOIANotify オブジェクトに対するポインター。

105

ホストアクセスクラスライブラリ

106

戻り値
なし

UnregisterOIAEvent
このメンバー関数は、RegisterOIAEvent 関数を使用して通信イベント用に事前に 登録されているアプリケーショ

ン・オブジェクトの登録を抹消します。イベントを受信するための登録済みオブジェクトの場合、先にこの関数を呼

び出して その登録を抹消しないかぎり、オブジェクトを破棄してはなりません。特定のオブジェクトが現在登録さ

れていない場合は、アクションは取られず エラーは発生しません。

ECLOIANotify オブジェクトが登録されていない場合は、この NotifyStop() メソッドが 呼び出されます。

プロトタイプ
void UnregisterOIAEvent(ECLOIANotify * notify)

パラメーター
ECLPSNotify *

抹消すべき ECLOIANotify オブジェクトに対するポインター。

戻り値
なし

ECLOIANotify クラス
ECLOIANotify は、抽象基本クラスです。アプリケーションは、このクラスの インスタンスを直接作成することはで

きません。アプリケーションでこのクラスを使用するには、ECLOIANotify から派生した 独自のクラスを定義しなけ

ればなりません。アプリケーションは、 その派生クラス内に NotifyEvent() メンバー関数を実装しなければなりませ

ん。また、 オプションで NotifyError() および NotifyStop() メンバー関数を実装することも できます。

アプリケーションがオペレーター情報域に対する更新についての通知を 受けられるようにするには、ECLOIANotify

クラスを使用します。OIA の標識が更新されるたびにイベントが生成されます。

派生
ECLBase > ECLNotify > ECLOIANotify

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

使用上の注意
アプリケーションがこのクラスを使用する OIA 更新の通知を受けるには、 次に示すステップを実行しなければなり

ません。

1. ECLOIANotify から派生したクラスを定義します。

2. ECLOIANotify から派生したクラスの NotifyEvent メソッドを実装します。

3. オプションで、ECLOIANotify の他のメンバー関数を実装します。

4. 派生クラスのインスタンスを作成します。

5. そのインスタンスを ECLOIA::RegisterOIAEvent() メソッドで登録します。

登録が完了した後では、OIA 標識の更新は ECLOIANotify から派生したクラス の NotifyEvent() メソッドが呼び出さ

れる原因となります。

短時間に発生する複数の OIA の更新は、単一のイベント通知に集約される ことがあるので注意してください。

アプリケーションは、派生したクラス用に自身のコンストラクター およびデストラクターを任意で提供すること

ができます。これが便利なのは、 アプリケーションが特定のインスタンス固有データをそのクラス内に保管してか

ら、 その情報をコンストラクター上のパラメーターとして渡す必要がある場合です。

イベントの登録時にエラーが検出された場合、ECLErr オブジェクトを 使用して NotifyError() メンバー関数が呼

び出されます。エラーの後で、続いて イベントが生成されることも、生成されないこともあります。イベント

生成が終了した とき (エラーか、あるいはその他の理由から) には、NotifyStop() メンバー関数が 呼び出されま

す。NotifyError() のデフォルトの実装によって、 ユーザーにメッセージ・ボックスが用意され、ECLErr オブジェク

トから取り出された エラー・メッセージのテキストが示されます。

何らかの理由 (エラー、または ECLOIA::UnregisterOIAEvent 呼び出し) で、 イベント通知が停止する

と、NotifyStop() メンバー関数が呼び出されます。デフォルトの NotifyStop() の 実装は、何も実行しません。

ECLOIANotify メソッド
以下のセクションでは、ECLOIANotify クラスおよびそれから派生した、 すべてのクラスにおいて有効なメソッドに

ついて説明します。

ECLOIANotify() ~ECLOIANotify() virtual void NotifyEvent(ECLOIA * OIAObj) = 0 virtual void NotifyError(ECLOIA *

OIAObj, ECLErr ErrObj) virtual void NotifyStop(ECLOIA * OIAObj, int Reason)

NotifyEvent
このメソッドは、純粋仮想 メンバー関数です (必ずアプリケーションで、ECLOIANotify から派生したクラス内にこ

の関数を実装してください)。このメソッドは、OIA が更新され、 更新イベントを受信するためにこのオブジェクト

が登録されるたびに、呼び出されます。

複数の OIA 更新は、単一のイベントに集約されることがあり、結果として、 このメソッドに対してはただ 1 つの呼

び出しとなります。

107

ホストアクセスクラスライブラリ

108

プロトタイプ
virtual void NotifyEvent(ECLOIA * OIAObj) = 0

パラメーター
ECLOIA *

このイベントを生成した ECLOIA オブジェクトに対するポインター。

戻り値
なし

NotifyError
このメソッドは、イベントの生成時に ECLOIA オブジェクトがエラーを検出する たびに呼び出されます。エラー・

オブジェクトには、そのエラーについての情報が含まれます (ECLErr クラスの説明を参照)。エラーの特性に応

じて 、エラーの後で続いてイベントが生成されることがあります。エラーが原因でイベント生成が停止した 場

合、NotifyStop() メソッドが呼び出されます。

アプリケーションは、この関数を実装するか、または ECLOIANotify の 基本クラスにこれを処理させるかを選ぶこ

とができます。デフォルトの実装 は、ECLErr::GetMsgText() メソッドから提供される テキストを使用して、メッ

セージ・ボックスにエラーを表示します。アプリケーションが、 その派生クラス内にこの関数を実装すると、それ

によって この振る舞いがオーバーライドされます。

プロトタイプ

virtual void NotifyError(ECLOIA * OIAObj, ECLErr ErrObj)

パラメーター
ECLOIA *

このイベントを生成した ECLOIA オブジェクトに対するポインター。

ECLErr

エラーを記述する ECLErr オブジェクト。

戻り値
なし

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

NotifyStop
イベント生成が何らかの理由 (例えば、エラー条件、 または ECLOIA::UnregisterOIAEvent 呼び出し) で停止すると、

このメソッドが呼び出されます。

現在、理由コード・パラメーターは未使用であり、ゼロになります。

この関数のデフォルトの実装では、何も実行しません。

プロトタイプ

virtual void NotifyStop(ECLOIA * OIAObj, int Reason)

パラメーター
ECLOIA *

このイベントを生成した ECLOIA オブジェクトに対するポインター。

整数

理由イベントの生成が停止しました (現在は未使用でゼロです)。

戻り値
なし

ECLPS クラス
オブジェクト、C++ECLPSECLPS クラスは、ホストの表示スペースで処理を行います。

ECLPS オブジェクトは、作成時に識別された接続用に作成されます。ECLPS オブジェクトを 作成するには、通常は

ECLConnection オブジェクトから取得される 接続名 (単一の A から Z の英字) または接続ハンドルを渡します。1 つ

の名前またはハンドルに対して、一度に 1 つの Z and I Emulator for Windows 接続しかオープンできません。

派生
ECLBase > ECLConnection > ECLPS

プロパティー
ECLPSプロパティーNone

使用上の注意
ECLSession クラスは、このオブジェクトのインスタンスを作成します。アプリケーションで他のサービスを必要と

しない場合、 このオブジェクトを直接作成しても構いません。そうでない場合は、ECLSession オブジェクトを使用

して、 必要なすべてのオブジェクトを作成することができます。

109

ホストアクセスクラスライブラリ

110

ECLPS メソッド
以下のセクションでは、ECLPS で使用可能なメソッドについて説明します。

ECLPS(char ConnName)

ECLPS(char ConnName)

ECLPS(long ConnHandle)

~ECLPS()

int GetPCCodePage()

int GetHostCodePage()

int GetOSCodePage()

void GetSize(ULONG *Rows, ULONG *Cols) ULONG GetSize()

ULONG GetSizeCols() ULONG GetSizeRows()

void GetCursorPos(ULONG *Row, ULONG *Col) ULONG GetCursorPos()

ULONG GetCursorPosRow()

ULONG GetCursorPosCol()

void SetCursorPos(ULONG pos),

void SetCursorPos(ULONG Row, ULONG Col)

void SendKeys(Char *text, ULONG AtPos),

void SendKeys(Char * text),

void SendKeys(Char *text, ULONG AtRow, ULONG AtCol)

ULONG SearchText(const char * const text, PS_DIR Dir=SrchForward,

BOOL FoldCase=FALSE)

ULONG SearchText(const char * const text,

ULONG StartPos, PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE)

ULONG SearchText(const char char * const text, ULONG StartRow,

ULONG StartCol, PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE)

ULONG GetScreen(char * Buff, ULONG BuffLen, PS_PLANE Plane=TextPlane)

ULONG GetScreen(char * Buff, ULONG BuffLen, ULONG StartPos,

ULONG Length, PS_PLANE Plane=TextPlane)

ULONG GetScreen(char * Buff, ULONG BuffLen, ULONG StartRow,

ULONG StartCol, ULONG Length, PS_PLANE Plane=TextPlane)

ULONG GetScreenRect(char * Buff, ULONG BuffLen, ULONG StartPos,

ULONG EndPos, PS_PLANE Plane=TextPlane)

ULONG StartCol, ULONG EndRow, ULONG EndCol,

ULONG GetScreenRect(char * Buff, ULONG BuffLen, ULONG StartRow,

ULONG StartCol, ULONG EndRow, ULONG EndCol,

PS_PLANE Plane=TextPlane)

void SetText(char *text);

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

void SetText(char *text, ULONG AtPos);

void SetText(char *text, ULONG AtRow, ULONG AtCol);

void CopyText ();

void CopyText (ULONG Long Len);

void CopyText (ULONG AtPos, ULONG Long Len);

void CopyText (ULONG AtRow, ULONG AtCol, ULONG Long Len);

void PasteText ();

void PasteText (ULONG Long Len);

void PasteText (ULONG AtPos, ULONG Long Len);

void PasteText (ULONG AtRow, ULONG AtCol, ULONG Long Len);

void ConvertPosToRowCol(ULONG pos, ULONG *row, ULONG *col)

ULONG ConvertRowColToPos(ULONG row, ULONG col)

ULONG ConvertPosToRow(ULONG Pos)

ULONG ConvertPosToCol(ULONG Pos)

void RegisterKeyEvent(ECLKeyNotify *NotifyObject)

virtual UnregisterKeyEvent(ECLKeyNotify *NotifyObject)

ECLFieldList *GetFieldList()

BOOL WaitForCursor(int Row, int Col, long nTimeOut=INFINITE,

BOOL bWaitForIR=TRUE)

BOOL WaitWhileCursor(int Row, int Col, long nTimeOut=INFINITE,

BOOL bWaitForIR=TRUE)

BOOL WaitForString(char* WaitString, int Row=0, int Col=0,

long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

BOOL WaitWhileString(char* WaitString, int Row=0, int Col=0,

long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

BOOL WaitForStringInRect(char* WaitString, int sRow, int sCol,

int eRow,int eCol, long nTimeOut=INFINITE,

BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

BOOL WaitWhileStringInRect(char* WaitString, int sRow, int sCol,

int eRow,int eCol, long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE,

BOOL bCaseSens=TRUE)

BOOL WaitForAttrib(int Row, int Col, unsigned char AttribDatum,

unsigned char MskDatum = 0xFF, PS_PLANE plane = FieldPlane,

long TimeOut = INFINITE, BOOL bWaitForIR = TRUE)

BOOL WaitWhileAttrib(int Row, int Col, unsigned char AttribDatum,

unsigned char MskDatum = 0xFF, PS_PLANE plane = FieldPlane,

long TimeOut = INFINITE, BOOL bWaitForIR = TRUE)

BOOL WaitForScreen(ECLScreenDesc* screenDesc, long TimeOut = INFINITE)

BOOL WaitWhileScreen(ECLScreenDesc* screenDesc, long TimeOut = INFINITE)

void RegisterPSEvent(ECLPSNotify * notify)

111

ホストアクセスクラスライブラリ

112

void RegisterPSEvent(ECLPSListener * listener)

void RegisterPSEvent(ECLPSListener * listener, int type)

void StartMacro(String MacroName)

void UnregisterPSEvent(ECLPSNotify * notify)

void UnregisterPSEvent(ECLPSListener * listener)

void UnregisterPSEvent(ECLPSListener * listener, int type)

次のメソッドは、ECLPS で有効です。

void SendKeys(WCHAR * text), void SendKeys(WCHAR *text, ULONG AtPos), void SendKeys(WCHAR *text,

ULONG AtRow, ULONG AtCol) ULONG SearchText(const WCHAR * const text, PS_DIR Dir=SrchForward, BOOL

FoldCase=FALSE) ULONG SearchText(const WCHAR * const text, ULONG StartPos, PS_DIR Dir=SrchForward,

BOOL FoldCase=FALSE) ULONG SearchText(const WCHAR * const text, ULONG StartRow, ULONG StartCol,

PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE) ULONG GetScreen(WCHAR * Buff, ULONG BuffLen, PS_PLANE

Plane=TextPlane) ULONG GetScreen(WCHAR * Buff, ULONG BuffLen, ULONG StartPos, ULONG Length,

PS_PLANE Plane=TextPlane) ULONG GetScreen(WCHAR * Buff, ULONG BuffLen, ULONG StartRow, ULONG

StartCol, ULONG Length, PS_PLANE Plane=TextPlane)

ECLPS コンストラクター
このメソッドは、接続名またはハンドルを 使用して ECLPS オブジェクトを作成します。

プロトタイプ
ECLPS(char ConnName) ECLPS(long ConnHandle)

パラメーター
char ConnName

1 文字の接続の短縮名 (A から Z、または a から z)。

long ConnHandle

ECL 接続のハンドル。

戻り値
なし

例
以下の例は、接続名を使用して ECLPS オブジェクトを作成する方法を示します。

//---
// ECLPS::ECLPS (Constructor)
//

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

// Build a PS object from a name, and another from a handle.
//---
void Sample58() {

ECLPS *PS1, *PS2; // Pointer to PS objects
ECLConnList ConnList; // Connection list object

try {
 // Create PS object for connection 'A'
 PS1 = new ECLPS('A');

 // Create PS object for first connection in conn list
 PS2 = new ECLPS(ConnList.GetFirstConnection()->GetHandle());

 printf("PS #1 is for connection %c, PS #2 is for connection %c.\n",
 PS1->GetName(), PS2->GetName());
 delete PS1;
 delete PS2;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

ECLPS デストラクター
このメソッドは、ECLPS オブジェクトを破棄します。

プロトタイプ
~ECLPS()

パラメーター
なし

戻り値
なし

例
以下の例は、ECLPS オブジェクトを破棄する方法を示します。

ULONG RowPos, ColPos;
ECLPS *pPS;

try {
 pPS = new ECLPS('A');
 RowPos = pPS->ConvertPosToRow(544);
 ColPos = pPS->ConvertPosToCol(544);
 printf("PS position is at row %lu column %lu.",

113

ホストアクセスクラスライブラリ

114

 RowPos, ColPos);
 // Done with PS object so kill it
 delete pPS;
}
catch (ECLErr HE) {
 // Just report the error text in a message box
 MessageBox(NULL, HE.GetMsgText(), "Error!", MB_OK);
}

GetPCCodePage
GetPCCodePage メソッドは、パーソナル・コンピューターの コード・ページを指定する番号の検索を実施します。

プロトタイプ
int GetPCCodePage()

パラメーター
なし

戻り値
整数

コード・ページ番号

GetHostCodePage
GetHostCodePage メソッドは、ホスト・コンピューターの コード・ページを指定する番号の検索を実施します。

プロトタイプ
int GetHostCodePage()

パラメーター
なし

戻り値
整数

コード・ページ番号

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

GetOSCodePage
GetOSCodePage メソッドは、パーソナル・コンピューターのオペレーティング・システムの コード・ページを指定

する番号の検索を実施します。

プロトタイプ
int GetOSCodePage()

パラメーター
なし

戻り値
整数

コード・ページ番号

GetSize
このメソッドは、ECLPS オブジェクトに関連した 接続用の表示スペースのサイズを 戻します。GetSize メソッドの

シグニチャーは 2 つあります。ULONG GetSize() を使用すると、サイズは、線形値で戻され、表示スペース内の 文

字の合計数を表します。void GetSize(ULONG *Rows, ULONG *Cols) を使用すると、 表示スペースの行および桁の数

が戻されます。

プロトタイプ
ULONG GetSize()

void GetSize(ULONG *Rows, ULONG *Cols)

パラメーター
ULONG *Rows

この出力パラメーターは、表示スペース内の行数です。

ULONG *Cols

この出力パラメーターは、表示スペース内の桁数です。

戻り値
ULONG

線形値による表示スペースのサイズ。

115

ホストアクセスクラスライブラリ

116

例
以下に、GetSize メソッドの使用例を示します。

//---
// ECLPS::GetSize
//
// Display dimensions of connection 'A'
//---
void Sample59() {

ECLPS PS('A'); // PS object for connection A
ULONG Rows, Cols, Len;

PS.GetSize(&Rows, &Cols); // Get num of rows and cols
// Could also write as:
Rows = PS.GetSizeRows(); // Redundant
Cols = PS.GetSizeCols(); // Redundant

Len = PS.GetSize(); // Get total size

printf("Connection A has %lu rows and %lu columns (%lu total length)\n",
 Rows, Cols, Len);

} // end sample

GetSizeRows
このメソッドは、ECLPS オブジェクトに関連した接続用の 表示スペース内の行数を戻します。

プロトタイプ
ULONG GetSizeRows()

パラメーター
なし

戻り値
ULONG

これは、表示スペース内の行数です。

例
以下に、GetSizeRows メソッドの使用例を示します。

//---
// ECLPS::GetSizeRows
//
// Display dimensions of connection 'A'

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

//---
void Sample59() {

ECLPS PS('A'); // PS object for connection A
ULONG Rows, Cols, Len;

PS.GetSize(&Rows, &Cols); // Get num of rows and cols
// Could also write as:
Rows = PS.GetSizeRows(); // Redundant
Cols = PS.GetSizeCols(); // Redundant

Len = PS.GetSize(); // Get total size

printf("Connection A has %lu rows and %lu columns (%lu total length)\n",
 Rows, Cols, Len);

} // end sample

GetSizeCols
このメソッドは、ECLPS オブジェクトに関連した接続用の 表示スペース内の桁数を戻します。

プロトタイプ
ULONG GetSizeCols()

パラメーター
なし

戻り値
ULONG

これは、表示スペース内の桁数です。

例
以下に、GetSizeCols メソッドの使用例を示します。

//---
// ECLPS::GetSizeCols
//
// Display dimensions of connection 'A'
//---
void Sample59() {

ECLPS PS('A'); // PS object for connection A
ULONG Rows, Cols, Len;

PS.GetSize(&Rows, &Cols); // Get num of rows and cols
// Could also write as:
Rows = PS.GetSizeRows(); // Redundant

117

ホストアクセスクラスライブラリ

118

Cols = PS.GetSizeCols(); // Redundant

Len = PS.GetSize(); // Get total size

printf("Connection A has %lu rows and %lu columns (%lu total length)\n",
 Rows, Cols, Len);

} // end sample

GetCursorPos
このメソッドは、ECLPS オブジェクトに 関連した接続用の表示スペース内のカーソル位置を 戻しま

す。GetCursorPos メソッドには 2 種類のシグニチャーが あります。ULONG GetCursorPos() を使用すると、位置

は線形位置 (1 がベース) で 戻されます。void GetCursorPos(ULONG *Row, ULONG * Col) を使用すると、 位置は行お

よび桁の座標で戻されます。

プロトタイプ
ULONG GetCursorPos() void GetCursorPos(ULONG *Row, ULONG *Col)

パラメーター
ULONG *Row

この出力パラメーターは、ホスト・カーソルの行座標です。

ULONG *Col

この出力パラメーターは、ホスト・カーソルの桁座標です。

戻り値
ULONG

線形値で表されたカーソル位置。

例
以下に、GetCursorPos メソッドの使用例を示します。

//---
// ECLPS::GetCursorPos
//
// Display position of host cursor in connection 'A'
//---
void Sample60() {

ECLPS PS('A'); // PS object for connection A
ULONG Row, Col, Pos;

PS.GetCursorPos(&Row, &Col); // Get row/col position
// Could also write as:

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

Row = PS.GetCursorPosRow(); // Redundant
Col = PS.GetCursorPosCol(); // Redundant

Pos = PS.GetCursorPos(); // Get linear position

printf("Host cursor of connection A is at row %lu column %lu
 (linear position %lu)\n", Row, Col, Pos);

} // end sample

/

GetCursorPosRow
このメソッドは、ECLPS オブジェクトに関連した接続用の 表示スペース内のカーソルの行位置を戻します。

プロトタイプ
ULONG GetCursorPosRow()

パラメーター
なし

戻り値
ULONG

これは、表示スペース内のカーソルの行位置です。

例
以下に、GetCursorPosRow メソッドの使用例を示します。

//---
// ECLPS::GetCursorPosRow
//
// Display position of host cursor in connection 'A'
//---
void Sample60() {

ECLPS PS('A'); // PS object for connection A
ULONG Row, Col, Pos;

PS.GetCursorPos(&Row, &Col); // Get row/col position
// Could also write as:
Row = PS.GetCursorPosRow(); // Redundant
Col = PS.GetCursorPosCol(); // Redundant

Pos = PS.GetCursorPos(); // Get linear position

printf("Host cursor of connection A is at row %lu column %lu
 (linear position %lu)\n", Row, Col, Pos);

119

ホストアクセスクラスライブラリ

120

} // end sample

GetCursorPosCol
このメソッドは、ECLPS オブジェクトに関連した接続用の 表示スペース内のカーソルの桁位置を戻します。

プロトタイプ
ULONG GetCursorPosCol()

パラメーター
なし

戻り値
ULONG

これは、表示スペース内のカーソルの桁位置です。

例
以下に GetCursorPosCol メソッドの使用例を示します。

//---
// ECLPS::GetCursorPosCol
//
// Display position of host cursor in connection 'A'
//---
void Sample60() {

ECLPS PS('A'); // PS object for connection A
ULONG Row, Col, Pos;

PS.GetCursorPos(&Row, &Col); // Get row/col position
// Could also write as:
Row = PS.GetCursorPosRow(); // Redundant
Col = PS.GetCursorPosCol(); // Redundant

Pos = PS.GetCursorPos(); // Get linear position

printf("Host cursor of connection A is at row %lu column %lu
 (linear position %lu)\n", Row, Col, Pos);

} // end sample

//---

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

SetCursorPos
SetCursorPos メソッドは、 ECLPS オブジェクトに関連した接続用の表示スペース内のカーソルの 位置を設定しま

す。SetCursorPos メソッドには 2 種類のシグニチャーがあります。位置は、void SetCursorPos(ULONG pos) を使

用して線形位置 (1 がベース) で 指定することも、void SetCursorPos(ULONG Row, ULONG Col) を使用して行と桁の

座標で指定することもできます。

プロトタイプ
void SetCursorPos(ULONG pos),

void SetCursorPos(ULONG Row, ULONG Col)

パラメーター
ULONG pos

線形位置によるカーソル位置。

ULONG Row

カーソルの行座標。

ULONG Col

カーソルの桁座標。

戻り値
なし

例
以下に SetCursorPos メソッドの使用例を示します。

--
// ECLPS::SetCursorPos
//
// Set host cursor to row 2 column 1.
//---
void Sample61() {

ECLPS PS('A'); // PS object for connection A

PS.SetCursorPos(2, 1); // Put cursor at row 2, column 1
printf("Cursor of connection A set to row 2 column 1.\n");

} // end sample

/

121

ホストアクセスクラスライブラリ

122

SendKeys
SendKeys メソッドは、ECLPS オブジェクトに関連した接続用の表示スペース内に、 キーのヌル終了ストリングを

送ります。SendKeys メソッドには 3 種類のシグニチャーがあります。位置を指定しないと、現行ホスト・カーソル

位置を先頭として キー・ストロークが入力されます。位置を指定することができ (線形または行/列座標で)、 その場

合、ホスト・カーソルはまず指定位置に移動されます。

テキスト・ストリングにはプレーンなテキスト文字を含めることができ、 それは、そのまま表示スペースに書き

込まれます。さらに、このストリングには、3270 Enter キーや 5250 PageUp キーなどの さまざまな制御キー・ス

トロークを表す組み込みキーワード (略号) を 含めることができます。キーワードは、大括弧で囲みます (例えば、

[enter])。ストリング内でこのようなキーワードが検出されると、 適切なエミュレーター・コマンドに変換されて

から送られます。テキスト・ストリングには、さまざまな平文の文字および組み込みキーワード を含めることが

できます。キーワードは左から右に向かって、最後にストリングの終わりに達するまで 処理されます。例えば、次

に示すストリングの場合、文字 ABC は 現行カーソル位置に入力され、その後に 3270 EOF 消去 (Erase-end-of-field)

キー・ストローク が続き、その後に 3270 Tab キー・ストローク、XYZ および PF1 キーと続きます。

ABC[eraseeof][tab]XYZ[pf1]

注: ストリング内のブランク文字は、他のすべてのプレーン・テキスト文字と同様、 ホストの表示スペース

に書き込まれます。したがって、キーワードやテキストを区切るのにブランクを使用してはなりません。

左または右の大括弧文字をホストに送るには、 テキスト・ストリング内でそれを 2 度繰り返します (例えば、1 つの

ブラケットが 書き込まれるようにするには、ブラケットは 2 回出現する必要があります)。次に示す例の場合、スト

リング「A [:]」が表示スペースに書き込まれます。

A[[:]]

画面上の保護位置にキー・ストロークを書き込もうとした場合、 キーボードはロックされ、残りのキー・ストロー

クは破棄されます。

キーワードのリストは、Sendkeys 略号キーワード (ページ 430)を参照してください。

プロトタイプ
void SendKeys(char * text), void SendKeys(char * text, ULONG AtPos), void SendKeys(char * text, ULONG AtRow,

ULONG AtCol)

パラメーター
Char *text

表示スペースに送るキー・ストリング。

ULONG AtPos

キー・ストロークの書き込みの開始位置。

ULONG AtRow

キー・ストロークの書き込みの開始行。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ULONG AtCol

キー・ストロークの書き込みの開始桁。

戻り値
なし

例
以下に SendKeys メソッドの使用例を示します。

//---
// ECLPS::SendKeys
//
// Sends a series of keystrokes, including 3270 function keys, to
// the host on connection A.
//---
void Sample62() {

ECLPS PS('A'); // PS object for connection A

// The following key string will erase from the current cursor
// position to the end of the field, and then type the given
// characters into the field.
char SendStr[] = "[eraseeof]ZIEWin is really cool";

// Note that an ECL error is thrown if we try to send keys to
// a protected field.

try {
 PS.SendKeys(SendStr); // Do it at the current cursor position
 PS.SendKeys(SendStr, 3, 10); // Again at row 3 column 10
}
catch (ECLErr Err) {
 printf("Failed to send keys: %s\n", Err.GetMsgText());
}

} // end sample

SearchText
SearchText メソッドは、ECLPS オブジェクトに関連した接続の 表示スペースでテキストを検索します。このメソッ

ドは、テキストが見つかった線形位置を戻しますが、 テキストが見つからない場合にはゼロを戻します。検索は、

オプションの Dir パラメーターを使用して、 正方向 (左から右へ、上から下へ) または逆方向 (右から左へ、下から上

へ) に行うことができます。検索には、オプションの FoldCase パラメーターを使用して、 大/小文字の区別を設定し

たり、 大文字変換 (大/小文字の区別なし) を指定したりできます。

開始位置を指定しないと、検索は画面の先頭から正方向に開始 されるか、または画面の終わりから逆方向に開始さ

れます。開始位置は、線形位置または行と桁の座標を使用して指定できます。開始位置を指定した場合、それは、検

123

ホストアクセスクラスライブラリ

124

索を開始する位置を示します。正方向の検索では、開始位置 (その位置を含む) から画面の最後の文字までが検索さ

れます。逆方向の検索では、開始位置 (その位置を含む) から画面の最初の文字までが検索されます。

検索を正常に完了するには、検索ストリングが検索域内に完全に 収まっていなければなりません (例えば、指定した

開始位置をまたがって 検索ストリングが続く場合、そのストリングは見つかりません)。

基本クラス ConvertPosToRowCol メソッドを使用すると、 戻された線形位置を行と桁の座標に変換できます。

プロトタイプ

ULONG SearchText(const char * const text, PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE) ULONG

SearchText(const char * const text, ULONG StartPos, PS_DIR Dir=SrchForward, BOOL FoldCase=FALSE) ULONG

SearchText(const char char * const text, ULONG StartRow, ULONG StartCol, PS_DIR Dir=SrchForward, BOOL

FoldCase=FALSE)

パラメーター
char *text

検索するヌル終了ストリング。

PS_DIR Dir

検索方向を指示するオプションのパラメーター。指定する場合、SrchForward または SrchBackward の

いずれかでなければなりません。デフォルト値は SrchForward です。

BOOL FoldCase

大/小文字を同一視して検索することを示すオプションのパラメーター。これを False と指定した場

合、大文字と小文字の区別を含め、 テキスト・ストリングは表示スペースに完全に一致しなければな

りません。True と指定した場合、大文字小文字に関係なくテキスト・ストリングが検索されます。デ

フォルトは FALSE です。

ULONG StartPos

検索を開始する線形位置を示します。この位置は、検索内に含まれます。

ULONG StartRow

検索を開始する行を指示します。

ULONG StartCol

検索を開始する桁を指示します。

戻り値
ULONG

見つかったストリングの線形位置。見つからなかった場合はゼロ。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

例
以下に、SearchText メソッドの使用例を示します。

/---
// ECLPS::SearchText
//
// Search for a string in various parts of the screen.
//---
void Sample63() {

ECLPS PS('A'); // PS object
char FindStr[] = "HCL"; // String to search for
ULONG LastOne; // Position of search result

// Case insensative search of entire screen

printf("Searching for '%s'...\n", FindStr);
printf(" Anywhere, any case: ");
if (PS.SearchText(FindStr, TRUE) != 0)
 printf("Yes\n");
else
 printf("No\n");

// Backward, case sensative search on line 1

printf(" Line 1, exact match: ");
if (PS.SearchText(FindStr, 1, 80, SrchBackward) != 0)
 printf("Yes\n");
else
 printf("No\n");

// Backward, full screen search

LastOne = PS.SearchText(FindStr, SrchBackward, TRUE);
if (LastOne != 0)
 printf(" Last occurance on the screen is at row %lu, column %lu.\n",
 PS.ConvertPosToRow(LastOne), PS.ConvertPosToCol(LastOne));

} // end sample

GetScreen
このメソッドは、ECLPS オブジェクトに関連した接続の 表示スペースからデータを取り出します。データは、表示

スペースの文字位置あたり 1 バイトずつの、 バイト値の線形配列で戻されます。データが TextPlane から取り出さ

れる (その場合、単一のヌル終了バイトが 付加されます) 場合を除き、配列はヌル終了しません。

アプリケーションは、戻されるデータ用のバッファーとそのバッファーの長さ を指定しなければなりません。要求

データは、バッファーに収容しきれない場合、切り捨てられ ます。TextPlane データの場合、バッファーには、終

了ヌル用に 少なくとも 1 バイトが余分に含まれていなければなりません。このメソッドは、アプリケーション・

バッファーにコピーされたバイト数 を戻します (TextPlane コピーでの終了ヌルは含まれません)。

125

ホストアクセスクラスライブラリ

126

アプリケーションは、表示スペースから取り出すデータのバイト数を 指定しなければなりません。開始位置にその

長さを加えたものが表示スペースのサイズを超える場合、 エラーになります。データは、指定された開始位置を先

頭にして戻されますが、 開始位置を指定しないと、行 1 桁 1 に戻されます。戻されたデータは、左から右および上

から下へと複数行にわたって指定された長さまで、線形方式で表示スペースからコピーされます。アプリケーション

が画面の長方形領域の画面データを取得 したい場合、GetScreenRect メソッドを使用してください。

アプリケーションは、データの取り出しの対象に任意のプレーンを指定することができます。プレーンを指定しない

場合は、TextPlane が取り出されます。その他の ECL プレーンの詳細については、ECL プレーン — 形式および内容

(ページ 433)を参照してください。

プロトタイプ

ULONG GetScreen(char * Buff, ULONG BuffLen, PS_PLANE Plane=TextPlane) ULONG GetScreen(char * Buff,

ULONG BuffLen, ULONG StartPos, ULONG Length, PS_PLANE Plane=TextPlane) ULONG GetScreen(char * Buff,

ULONG BuffLen, ULONG StartRow, ULONG StartCol, ULONG Length, PS_PLANE Plane=TextPlane)

パラメーター
char *Buff

BuffLen サイズ以上のアプリケーション提供のバッファーを指すポインター。

ULONG BuffLen

提供されるバッファーのバイト数。

ULONG StartPos

コピーを開始する表示スペース内の線形位置。

ULONG StartRow

コピーを開始する表示スペース内の行。

ULONG StartCol

コピーを開始する表示スペース内の桁。

ULONG Length

表示スペースからコピーする線形バイト数。

PS_PLANE plane

どの表示スペースのプレーンをコピーするかを指定する オプショナル・パラメーター。指定する場

合、TextPlane、ColorPlane、FieldPlane、ExfieldPlane のいずれかでなければなりません。デフォル

ト値は TextPlane です。その他の ECL プレーンの内容および形式に ついては、ECL プレーン — 形式お

よび内容 (ページ 433)を参照してください。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
ULONG

表示スペースからコピーするデータ・バイト数。この値には、TextPlane コピー用の後続ヌル・バイト

は含まれません。

例
以下に、GetScreen メソッドの使用例を示します。

//---
// ECLPS::GetScreen
//
// Get text and other planes of data from the presentation space.
//---
void Sample64() {

ECLPS PS('A'); // PS object
char *Text; // Text plane data
char *Field; // Field plane data
ULONG Len; // Size of PS

Len = PS.GetSize();

// Note text buffer needs extra byte for null terminator

Text = new char[Len + 1];
Field = new char[Len];

PS.GetScreen(Text, Len+1); // Get entire screen (text)
PS.GetScreen(Field, Len, FieldPlane); // Get entire field plane
PS.GetScreen(Text, Len+1, 1, 1, 80); // Get line 1 of text

printf("Line 1 of the screen is:\n%s\n", Text);

delete []Text;
delete []Field;

} // end sample

GetScreenRect
このメソッドは、ECLPS オブジェクトに関連した接続の 表示スペースからデータを取り出します。データは、表示

スペースの文字位置あたり 1 バイトずつの、 バイト値の線形配列で戻されます。この配列はヌル終了ではありませ

ん。

アプリケーションは、表示スペース内の開始および終了座標を提供します。これらの座標は、長方形内の互いに反対

側の角の位置を示します。長方形内の表示スペースは、単一の線形配列として アプリケーション・バッファーにコ

ピーされます。開始点と終了点は、 空間内で任意の相関関係にすることができます。コピーは、上端の点を含んだ

行から 下端の点を含んだ行へ向かって、また、左端の桁から右端の桁に向かって開始するよう 定義されます。2 つ

127

ホストアクセスクラスライブラリ

128

の座標はともに、表示スペースのサイズ境界内に なければなりません。そうでないと、エラーになります。この座

標は、 線形位置で指定しても、行番号と桁番号で指定しても構いません。

提供するアプリケーション・バッファーは、最低限、長方形内のバイト数 を含めるのに十分な大きさでなければな

りません。バッファーが小さすぎると、 データはコピーされず、メソッドの結果としてゼロが戻されます。小さす

ぎなければ、メソッドから、コピーされたバイト数が戻されます。

アプリケーションは、データの取り出しの対象に任意のプレーンを指定することができます。プレーンを指定しない

場合は、TextPlane が取り出されます。その他の ECL プレーンの詳細については、ECL プレーン — 形式および内容

(ページ 433)を参照してください。

プロトタイプ
ULONG GetScreenRect(char * Buff, ULONG BuffLen, ULONG StartPos, ULONG EndPos, PS_PLANE Plane=TextPlane)

ULONG GetScreenRect(char * Buff, ULONG BuffLen, ULONG StartRow, ULONG StartCol, ULONG EndRow, ULONG

EndCol, PS_PLANE Plane=TextPlane)

パラメーター
char *Buff

BuffLen サイズ以上のアプリケーション提供のバッファーを指すポインター。

ULONG BuffLen

提供されるバッファーのバイト数。

ULONG StartPos

コピー長方形の対角線上の他方の角の表示スペース内の線形位置。

ULONG EndPos

コピー長方形の対角線上の他方の角の表示スペース内の線形位置。

ULONG StartRow

コピー長方形の対角線上の他方の角の表示スペース内の行。

ULONG StartCol

コピー長方形の対角線上の他方の角の表示スペース内の桁。

ULONG EndRow

コピー長方形の対角線上の他方の角の表示スペース内の行。

ULONG EndCol

コピー長方形の対角線上の他方の角の表示スペース内の桁。

PS_PLANE plane

どの表示スペースのプレーンをコピーするかを指定する オプショナル・パラメーター。指定する場

合、TextPlane、ColorPlane、FieldPlane、ExfieldPlane のいずれかでなければなりません。デフォル

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ト値は TextPlane です。その他の ECL プレーンの内容および形式に ついては、ECL プレーン — 形式お

よび内容 (ページ 433)を参照してください。

戻り値
ULONG

表示スペースからコピーするデータ・バイト数。

例
以下に GetScreenRect メソッドの使用例を示します。

// ECLPS::GetScreenRect
//
// Get rectangular parts of the host screen.
//---
void Sample66() {

ECLPS PS('A'); // PS object for connection A
char Buff[4000]; // Big buffer

// Get first 2 lines of the screen text
PS.GetScreenRect(Buff, sizeof(Buff), 1, 1, 2, 80);

// Get last 2 lines of the screen
PS.GetScreenRect(Buff, sizeof(Buff),
 PS.GetSizeRows()-1,
 1,
 PS.GetSizeRows(),
 PS.GetSizeCols());

// Get just a part of the screen (VM main menu calendar)
PS.GetScreenRect(Buff, sizeof(Buff),
 5, 51,
 13, 76);

// Same as previous (specify any 2 oposite corners of the rectangle)
PS.GetScreenRect(Buff, sizeof(Buff),
 13, 51,
 5, 76);

// Note results are placed in buffer end-to-end with no line delimiters
printf("Contents of rectangular screen area:\n%s\n", Buff);

} // end sample

SetText
SetText メソッドは、ECLPS オブジェクトに関連した接続用の 表示スペース内に文字配列を送ります。これは

SendKeys メソッドと似ていますが、 略号キー・ストローク (例えば、[enter] または [pf1]) は送らない点で異なりま

す。

129

ホストアクセスクラスライブラリ

130

位置の指定がない場合、テキストは現在のカーソル位置から書き込まれます。

プロトタイプ
void SetText(char *text);

void SetText(char *text, ULONG AtPos);

void SetText(char *text, ULONG AtRow, ULONG AtCol);

パラメーター
char *text

表示スペースにコピーする文字のヌル終了ストリング。

ULONG AtPos

コピーを開始する表示スペース内の線形位置。

ULONG AtRow

コピーを開始する表示スペース内の行。

ULONG AtCol

コピーを開始する表示スペース内の桁。

戻り値
なし

例
以下に SetText メソッドの使用例を示します。

//---
// ECLPS::SetText
//
// Update various input fields of the screen.
//---
void Sample65() {

ECLPS PS('A'); // PS object for connection A

// Note that an ECL error is thrown if we try to write to
// a protected field.

try {
 // Update first 2 input fields of the screen. Note
 // fields are not erased before update.
 PS.SendKeys("[home]");
 PS.SetText("Field 1");
 PS.SendKeys("[tab]");
 PS.SetText("Field 2");
 // Note: Above 4 lines could also be written as:
 // PS.SendKeys("[home]Field 1[tab]Field 2");

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 // But SetText() is faster, esp for long strings
}
catch (ECLErr Err) {
 printf("Failed to send keys: %s\n", Err.GetMsgText());
}

} // end sample

//-------------------------------------

CopyText
このメソッドは、指定された長さの表示スペース内の所定の場所からクリップボードにテキストをコピーします。コ

ピーされるテキストの長さは指定された長さになります。 長さを指定しない場合、表示スペースの終わりまでのテ

キストがコピーされます。場所を指定しない場合、テキストは表示スペース内の現行カーソル位置からコピーされま

す。パラメーターを指定しないと、表示スペース全体がクリップボードにコピーされます。

プロトタイプ
void CopyText ();

void CopyText (ULONG Long Len);

void CopyText (ULONG AtPos, ULONG Long Len);

void CopyText (ULONG AtRow, ULONG AtCol, ULONG Long Len);

パラメーター
ULONG Long Len

表示スペースからコピーする線形バイト数。

ULONG AtPos

コピーを開始する表示スペース内の線形位置。

ULONG AtRow

コピーを開始する表示スペース内の行。

ULONG AtCol

コピーを開始する表示スペース内の桁。

戻り値
なし

例
以下に CopyText メソッドの使用例を示します。

131

ホストアクセスクラスライブラリ

132

//---
// ECLPS::CopyText
//
// Copy text from Presentation Space to clipboard.
//---
void Sample126() {

ECLPS PS('A'); // PS object for connection A
long row, col, length2copy;

// Note that an ECL error is thrown if we try to write to
// a protected field.
try {
 printf("Please enter the position and length to copy from PS [row col length2copy] \n");

 scanf("%ld %ld %ld", &row, &col, &length2copy);
 PS.CopyText(row, col, length2copy);
 }
catch (ECLErr Err) {
 printf("Failed to copy text: %s\n", Err.GetMsgText());
}
} // end sample
//-------------------------------------

PasteText
このメソッドは、指定された長さのテキストをクリップボードから表示スペースの指定の場所に貼り付けます。貼り

付けられるテキストの長さは、指定された長さになります。長さを指定しない場合、クリップボードのテキスト全体

が、表示スペースの最後に達するまで貼り付けられます。ロケーションが指定されていない場合、テキストは、表示

スペースの現在のカーソル位置に貼り付けられます。表示スペースがフィールド形式であり、クリップボードの内容

の貼り付け中にタブ文字 '\t' が指定されている場合、残りの貼り付け内容は次の書き込み可能フィールドに移動しま

す。

プロトタイプ
void PasteText ();

void PasteText (ULONG Long Len);

void PasteText (ULONG AtPos, ULONG Long Len);

void PasteText (ULONG AtRow, ULONG AtCol, ULONG Long Len);

パラメーター
ULONG Long Len

表示スペースから貼り付ける線形バイト数。

ULONG AtPos

貼り付けを開始する表示スペース内の線形位置。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ULONG AtRow

貼り付けを開始する表示スペース内の行。

ULONG AtCol

貼り付けを開始する表示スペース内の桁。

戻り値
なし

例
以下に PasteText メソッドの使用例を示します。

//---
// ECLPS::PasteText
//
// Paste text to Presentation Space from clipboard.
//---
void Sample127() {

ECLPS PS('A'); // PS object for connection A
long row, col, length2paste;

// Note that an ECL error is thrown if we try to write to
// a protected field.
try {
 printf("Please enter the position and length to paste from clipboard [row col length2paste] \n");
 scanf("%ld %ld %ld", &row, &col, &length2paste);
 PS.PasteText(row, col, length2paste);
}
catch (ECLErr Err) {
 printf("Failed to paste text: %s\n", Err.GetMsgText());
}
} // end sample
//--

ConvertPosToRowCol
ConvertPosToRowCol メソッドは、 線形配列として表された表示スペース内の位置を、 行と桁の座標で示される表

示スペース内の位置に変換します。変換後の位置は、ECLPS オブジェクトに関連した 接続用の表示スペース内にあ

ります。

プロトタイプ
void ConvertPosToRowCol(ULONG pos, ULONG *row, ULONG *col)

133

ホストアクセスクラスライブラリ

134

パラメーター
ULONG pos

線形配列として示された、表示スペース内の変換する位置。

ULONG *row

表示スペース内の変換後の行座標。

ULONG *col

表示スペース内の変換後の桁座標。

戻り値
なし

例
以下の例は、線形配列として表された表示スペース内の位置を、 行と桁の座標で示される表示スペース内の位置に

変換する方法を示します。

///---
// ECLPS::ConvertPosToRowCol
//
// Find a string in the presentation space and display the row/column
// coordinate of its location.
//---
void Sample67() {

ECLPS PS('A'); // PS Object
ULONG FoundPos; // Linear position
ULONG FoundRow,FoundCol;

FoundPos = PS.SearchText("HCL", TRUE);
if (FoundPos != 0) {
 PS.ConvertPosToRowCol(FoundPos, &FoundRow, &FoundCol);
 // Another way to do the same thing:
 FoundRow = PS.ConvertPosToRow(FoundPos);
 FoundCol = PS.ConvertPosToCol(FoundPos);

 printf("String found at row %lu column %lu (position %lu)\n",
 FoundRow, FoundCol, FoundPos);
}
else printf("String not found.\n");

} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ConvertRowColToPos
ConvertRowColToPos メソッドは、 行と桁の座標で示された表示スペース内の位置を、 線形配列として表される表

示スペース内の位置に変換します。変換後の位置は、ECLPS オブジェクトに関連した 接続用の表示スペース内にあ

ります。

プロトタイプ
ULONG ConvertRowColToPos(ULONG row, ULONG col)

パラメーター
ULONG row

表示スペース内の変換する行の座標。

ULONG col

表示スペース内の変換する桁の座標。

戻り値
ULONG

線形配列として示される表示スペース内の変換後の位置。

例
以下の例は、行と桁の座標で示された表示スペース内の位置を、 線形配桁位置に変換する方法を示します。

///---
// ECLPS::ConvertRowColToPos
//
// Find a string in the presentation space and display the row/column
// coordinate of its location.
//---
void Sample67() {

ECLPS PS('A'); // PS Object
ULONG FoundPos; // Linear position
ULONG FoundRow,FoundCol;

FoundPos = PS.SearchText("HCL", TRUE);
if (FoundPos != 0) {
 PS.ConvertPosToRowCol(FoundPos, &FoundRow, &FoundCol);
 // Another way to do the same thing:
 FoundRow = PS.ConvertPosToRow(FoundPos);
 FoundCol = PS.ConvertPosToCol(FoundPos);

 printf("String found at row %lu column %lu (position %lu)\n",
 FoundRow, FoundCol, FoundPos);
}
else printf("String not found.\n");

135

ホストアクセスクラスライブラリ

136

} // end sample

ConvertPosToRow
このメソッドは表示スペース内の線形位置値を 取り出し、ECLPS オブジェクトに関連した接続について、その値が

存在している行を戻します。

プロトタイプ
ULONG ConvertPosToRow(ULONG Pos)

パラメーター
ULONG Pos

これは、表示スペース内の変換する線形位置です。

戻り値
ULONG

これは、線形位置に対する行位置です。

例
以下に、ConvertPosToRow メソッドの使用例を示します。

///---
// ECLPS::ConvertPosToRow
//
// Find a string in the presentation space and display the row/column
// coordinate of its location.
//---
void Sample67() {

ECLPS PS('A'); // PS Object
ULONG FoundPos; // Linear position
ULONG FoundRow,FoundCol;

FoundPos = PS.SearchText("HCL", TRUE);
if (FoundPos != 0) {
 PS.ConvertPosToRowCol(FoundPos, &FoundRow, &FoundCol);
 // Another way to do the same thing:
 FoundRow = PS.ConvertPosToRow(FoundPos);
 FoundCol = PS.ConvertPosToCol(FoundPos);

 printf("String found at row %lu column %lu (position %lu)\n",
 FoundRow, FoundCol, FoundPos);
}
else printf("String not found.\n");

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

} // end sample

ConvertPosToCol
このメソッドは表示スペース内の線形位置値を取り出し、ECLPS オブジェクトに 関連した接続について、その値が

存在している桁を戻します。

プロトタイプ
ULONG ConvertPosToCol(ULONG Pos)

パラメーター
ULONG Pos

これは、表示スペース内の変換する線形位置です。

戻り値
ULONG

これは、線形位置に対する桁位置です。

例
以下に、ConvertPosToCol メソッドの使用例を示します。

///---
/// ECLPS::ConvertPosToCol
//
// Find a string in the presentation space and display the row/column
// coordinate of its location.
//---
void Sample67() {

ECLPS PS('A'); // PS Object
ULONG FoundPos; // Linear position
ULONG FoundRow,FoundCol;

FoundPos = PS.SearchText("HCL", TRUE);
if (FoundPos != 0) {
 PS.ConvertPosToRowCol(FoundPos, &FoundRow, &FoundCol);
 // Another way to do the same thing:
 FoundRow = PS.ConvertPosToRow(FoundPos);
 FoundCol = PS.ConvertPosToCol(FoundPos);

 printf("String found at row %lu column %lu (position %lu)\n",
 FoundRow, FoundCol, FoundPos);
}
else printf("String not found.\n");

137

ホストアクセスクラスライブラリ

138

} // end sample

RegisterKeyEvent
RegisterKeyEvent 関数は、 オペレーター・キー・ストローク・イベントの通知を受け取るため、 アプリケーション

提供のオブジェクトを登録します。アプリケーションは、ECLKeyNotify 抽象基本クラスから派生した オブジェク

トを作成しなければなりません。オペレーター・キー・ストロークが発生すると、アプリケーション提供 オブジェ

クトの NotifyEvent() メソッドが呼び出されます。アプリケーションは、選択によってキー・ストロークをフィル

ターに掛けることも、 または通常の方法で渡して処理することもできます。詳しくは、ECLKeyNotify クラス (ペー

ジ 87)を参照してください。

実装上の制約事項: キー・ストローク・イベントを受け取るためのオブジェクトは一度に 1 つしか登録できません。

プロトタイプ
void RegisterKeyEvent(ECLKeyNotify *NotifyObject)

パラメーター
ECLKeyNotify *NotifyObject

ECLKeyNotify クラスから派生したアプリケーション・オブジェクト。

戻り値
なし

例
以下の例は、オペレーター・キー・ストローク・イベントの通知を受け取るために アプリケーション提供のオブ

ジェクトを登録する方法を示します。RegisterKeyEvent の例については、『ECLKeyNotify クラス (ページ 87)』

を参照してください。

// This is the declaration of your class derived from ECLKeyNotify....
class MyKeyNotify: public ECLKeyNotify
{
public:
 // App can put parms on constructors if needed
 MyKeyNotify(); // Constructor
 MyKeyNotify(); // Destructor

 // App must define the NotifyEvent method
 int NotifyEvent(char KeyType[2], char KeyString[7]); // Keystroke callback

private:
 // Whatever you like...
};
// this is the implementation of app methods...

int MyKeyNotify::NotifyEvent(ECLPS *, char *KeyType, char *Keystring)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

{
 if (...) {
 ...
 return 0; // Remove keystroke (filter)
 }
 else
 ...
 return 1; // Pass keystroke to emulator as usual
 }
}

// this would be the code in say, WinMain...

ECLPS *pPS; // Pointer to ECLPS object
MyKeyNotify *MyKeyNotifyObject; // My key notification object,derived
 // from ECLKeyNotify

try {
 pPS = new ECLPS('A'); // Create PS object for 'A' session

 // Register for keystroke events
 MyKeyNotifyObject = new MyKeyNotify();
 pPS->RegisterKeyEvent(MyKeyNotifyObject);

 // After this, MyKeyNotifyObject->NotifyEvent() will be called
 // for each operator keystroke...
}
catch (ECLErr HE) {
 // Just report the error text in a message box
 MessageBox(NULL, HE.GetMsgText(), "Error!", MB_OK);
}

UnregisterKeyEvent
UnregisterKeyEvent メソッドは、 以前に RegisterKeyEvent 関数を使用してキー・ストローク・イベント用に登録さ

れている アプリケーション・オブジェクトの登録を抹消します。登録済みのアプリケーション通知オブジェクトの

場合、 先にこの関数を呼び出してその登録を抹消しないかぎり、オブジェクトを破棄してはなりません。現在登録

されている通知オブジェクトがない場合や、 登録済みオブジェクトが渡された NotifyObject でない場合、 この関数

は何も実行しません (エラーになりません)。

プロトタイプ
virtual UnregisterKeyEvent(ECLKeyNotify *NotifyObject)

パラメーター
ECLKeyNotify *NotifyObject

現在キー・ストローク・イベント用に登録されているオブジェクト。

139

ホストアクセスクラスライブラリ

140

戻り値
なし

例
UnregisterKeyEvent の例については、『ECLKeyNotify クラス (ページ 87)』を参照してください。

GetFieldList
このメソッドは、ECLFieldList オブジェクト を指すポインターを戻します。フィールド・リスト・オブジェク

トを使用すると、 ホストの表示スペース内のフィールド・リストを反復できます。この関数によって戻された

ECLFieldList オブジェクト は、ECLPS オブジェクトが破棄されると自動的に破棄されます。このオブジェクトの詳

細については、『ECLFieldList クラス (ページ 80)』を参照してください。

プロトタイプ
ECLFieldList *GetFieldList()

パラメーター
なし

戻り値
ECLFieldList *

ECLFieldList オブジェクトを指すポインター。

例
以下の例は、ECLFieldList オブジェクトを指すポインター がどのように戻されるかを示します。

// ECLPS::GetFieldList
//
// Display number of fields on the screen.
//---
void Sample68() {

ECLPS *PS; // Pointer to PS object
ECLFieldList *FieldList; // Pointer to field list object

try {
 PS = new ECLPS('A'); // Create PS object for 'A'

 FieldList = PS->GetFieldList(); // Get pointer to field list
 FieldList->Refresh(); // Build the field list

 printf("There are %lu fields on the screen of connection %c.\n",
 FieldList->GetFieldCount(), PS->GetName());

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 delete PS;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

WaitForCursor
WaitForCursor メソッドは、指定された位置に配置する ECLPS オブジェクトに関連した 接続の表示スペースでカー

ソルを待ちます。

プロトタイプ
BOOL WaitForCursor(int Row, int Col, long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE)

パラメーター
int Row

カーソルの行の位置。負数の場合は、この値は PS の下部からの行位置を示します。

int Col

カーソルの列の位置。負数の場合は、この値は PS の端からの桁位置を示します。

long nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは、Infinite (無期

限) です。

BOOL bWaitForIR

この値が True である場合、待ち条件の基準を満たすと、関数は OIA が PS の入力受け入れ準備完了 を

示すまで待機します。このパラメーターはオプションで、デフォルト値は TRUE です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

注: テスト条件が FALSE を戻すときに、nTimeOut がデフォルト値 (INFINITE) である場合は、 このメソッド

はブロックされます。

例
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
int TimeOut = 5000;

141

ホストアクセスクラスライブラリ

142

BOOL waitOK = ps.WaitForCursor(23,1,TimeOut, TRUE);

// do the processing for the screen

WaitWhileCursor
WaitWhileCursor メソッドは、ECLPS オブジェクトに関連した接続の 表示スペースでカーソルが指定された位置に

配置されている間待機します。

プロトタイプ
BOOL WaitWhileCursor(int Row, int Col, long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE)

パラメーター
int Row

カーソルの行の位置。負数の場合は、この値は PS の下部からの行位置を示します。

int Col

カーソルの列の位置。負数の場合は、この値は PS の端からの桁位置を示します。

long nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは、Infinite (無期

限) です。

BOOL bWaitForIR

この値が True である場合、待ち条件の基準を満たすと、関数は OIA が PS の入力受け入れ準備完了 を

示すまで待機します。このパラメーターはオプションで、デフォルト値は TRUE です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

注: テスト条件が FALSE を戻すときに、nTimeOut がデフォルト値 (INFINITE) である場合は、 このメソッド

はブロックされます。

例
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
int TimeOut = 5000;
BOOL waitOK = ps.WaitWhileCursor(23,1,TimeOut, TRUE);

// do the processing for when the screen goes away

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

WaitForString
WaitForString メソッドは、ECLPS オブジェクトに関連した接続の表示スペース で、指定されたストリングが現れる

のを待ちます。オプションの行パラメーターおよび桁パラメーターが 使用される場合は、ストリングは指定された

位置から開始しなければなりません。行と桁に、それぞれ 0 が渡された場合は、メソッドは PS 全体を探索します。

プロトタイプ

BOOL WaitForString(char* WaitString, int Row=0, int Col=0, long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE,

BOOL bCaseSens=TRUE)

パラメーター
char* WaitString

待機の対象となるストリング。

int Row

カーソルの行の位置。負数の場合は、この値は PS の下部からの行位置を示します。デフォルトはゼロ

です。

int Col

カーソルの列の位置。負数の場合は、この値は PS の端からの桁位置を示します。デフォルトはゼロで

す。

long nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは、Infinite (無期

限) です。

BOOL bWaitForIR

この値が True である場合、待ち条件の基準を満たすと、関数は OIA が PS の入力受け入れ準備完了 を

示すまで待機します。このパラメーターはオプションで、デフォルト値は TRUE です。

BOOL bCaseSens

この値が True の場合は、待ち条件は大/小文字の区別があるものとして検査されます。このパラメー

ターはオプションです。デフォルトは TRUE です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

143

ホストアクセスクラスライブラリ

144

注: テスト条件が FALSE を戻すときに、nTimeOut がデフォルト値 (INFINITE) である場合は、 このメソッド

はブロックされます。

例
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitForString("LOGON");

// do the processing for the screen

WaitWhileString
WaitWhileString メソッドは、指定されたストリングが ECLPS オブジェクトに関連した接続の 表示スペースにある

間待機します。オプションの行パラメーターおよび桁パラメーターが 使用される場合は、ストリングは指定された

位置から開始しなければなりません。行と桁に、それぞれ 0 が渡された場合は、メソッドは PS 全体を探索します。

プロトタイプ

BOOL WaitWhileString(char* WaitString, int Row=0, int Col=0, long nTimeOut=INFINITE, BOOL bWaitForIR=TRUE,

BOOL bCaseSens=TRUE)

パラメーター
char* WaitString

待機の対象となるストリング。

int Row

ストリングを開始する行位置。負数の場合は、この値は PS の下部からの行位置を示します。デフォル

トはゼロです。

int Col

ストリングを開始する桁位置。負数の場合は、この値は PS の端からの桁位置を示します。デフォルト

はゼロです。

long nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは、Infinite (無期

限) です。

BOOL bWaitForIR

この値が True である場合、待ち条件の基準を満たすと、関数は OIA が PS の入力受け入れ準備完了 を

示すまで待機します。このパラメーターはオプションで、デフォルト値は TRUE です。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

BOOL bCaseSens

この値が True の場合は、待ち条件は大/小文字の区別があるものとして検査されます。このパラメー

ターはオプションです。デフォルトは TRUE です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

注: テスト条件が FALSE を戻すときに、nTimeOut がデフォルト値 (INFINITE) である場合は、 このメソッド

はブロックされます。

例
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitWhileString("LOGON");

// do the processing for when the screen goes away

WaitForStringInRect
WaitForStringInRect メソッドは、指定された長方形における ECLPS オブジェクトに関連した 接続の表示スペース

で、指定されたストリングが現れるのを待ちます。

プロトタイプ

BOOL WaitForStringInRect(char* WaitString, int sRow, int sCol, int eRow,int eCol, long nTimeOut=INFINITE, BOOL

bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

パラメーター
char* WaitString

待機の対象となるストリング。

int Row

長方形を開始する行位置。

int Col

長方形を開始する桁位置。

int eRow

長方形探索を終了する行位置。

145

ホストアクセスクラスライブラリ

146

int eCol

長方形探索を終了する桁位置。

long nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは、Infinite (無期

限) です。

BOOL bWaitForIR

この値が True である場合、待ち条件の基準を満たすと、関数は OIA が PS の入力受け入れ準備完了 を

示すまで待機します。このパラメーターはオプションで、デフォルト値は TRUE です。

BOOL bCaseSens

この値が True の場合は、待ち条件は大/小文字の区別があるものとして検査されます。このパラメー

ターはオプションです。デフォルトは TRUE です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

注: テスト条件が FALSE を戻すときに、nTimeOut がデフォルト値 (INFINITE) である場合は、 このメソッド

はブロックされます。

例
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitForStringInRect("LOGON",1,1,23,80);

// do the processing for the screen

WaitWhileStringInRect
WaitWhileStringInRect メソッドは、指定されたストリングが指定長方形内の ECLPS オブジェクト に関連した接続の

表示スペースにある間待機します。

プロトタイプ

BOOL WaitWhileStringInRect(char* WaitString, int sRow, int sCol, int eRow,int eCol, long nTimeOut=INFINITE,

BOOL bWaitForIR=TRUE, BOOL bCaseSens=TRUE)

パラメーター
char* WaitString

待機の対象となるストリング。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

int Row

長方形を開始する行位置。

int Col

長方形を開始する桁位置。

int eRow

長方形探索を終了する行位置。

int eCol

長方形探索を終了する桁位置。

long nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは、Infinite (無期

限) です。

BOOL bWaitForIR

この値が True である場合、待ち条件の基準を満たすと、関数は OIA が PS の入力受け入れ準備完了 を

示すまで待機します。このパラメーターはオプションで、デフォルト値は TRUE です。

BOOL bCaseSens

この値が True の場合は、待ち条件は大/小文字の区別があるものとして検査されます。このパラメー

ターはオプションです。デフォルトは TRUE です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

注: テスト条件が FALSE を戻すときに、nTimeOut がデフォルト値 (INFINITE) である場合は、 このメソッド

はブロックされます。

例
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitWhileStringInRect("LOGON",1,1,23,80);

// do the processing for when the screen goes away

WaitForAttrib
WaitForAttrib メソッドは、指定行/列位置にある ECLPS オブジェクトに関連した接続 の表示スペースで、指定され

た属性値が現れるまで待ちます。オプションの MaskData パラメーターを使用して、どの属性値を探索するのか を

制御することができます。オプションのプレーン・パラメーターに より、4 つの PS プレーンの内から任意のプレー

ンを選択することが可能となります。

147

ホストアクセスクラスライブラリ

148

プロトタイプ

BOOL WaitForAttrib(int Row, int Col, unsigned char AttribDatum, unsigned char MskDatum= 0xFF, PS_PLANE

plane = FieldPlane, long TimeOut = INFINITE, BOOL bWaitForIR = TRUE)

パラメーター
int Row

属性の行の位置。

int Col

属性の列の位置。

unsigned char AttribDatum

待機する属性値。この値は 1 バイトの 16 進数値です。

unsigned char MskDatum

属性をマスクするのに使用する 1 バイトの 16 進数の値。このパラメーターはオプションです。デフォ

ルト値は 0xFF です。

PS_PLANE plane

取得する属性のプレーン。プレーンは、以下のような値が可能で

す。TextPlane、ColorPlane、FieldPlane、ExfieldPlane。その他の ECL プレーンの内容および形式に

ついては、ECL プレーン — 形式および内容 (ページ 433)を参照してください。

このパラメーターはオプションです。デフォルト値は、FieldPlane です。

long nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは、Infinite (無期

限) です。

BOOL bWaitForIR

この値が True である場合、待ち条件の基準を満たすと、関数は OIA が PS の入力受け入れ準備完了 を

示すまで待機します。このパラメーターはオプションで、デフォルト値は TRUE です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

注: テスト条件が FALSE を戻すときに、nTimeOut がデフォルト値 (INFINITE) である場合は、 このメソッド

はブロックされます。

例
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitForAttrib(10, 16, 0xE0, 0xFF, FieldPlane, INFINITE, FALSE);

// do the processing for when the screen goes away

WaitWhileAttrib
WaitWhileAttrib メソッドは、指定行/列位置にある ECLPS オブジェクトに関連した接続 の表示スペースに、指定さ

れた属性値が表示されている間待ちます。オプションの MaskData パラメーターを使用して、どの属性値を探索する

のか を制御することができます。オプションのプレーン・パラメーターに より、4 つの PS プレーンの内から任意

のプレーンを選択することが可能となります。

プロトタイプ

BOOL WaitWhileAttrib(int Row, int Col, unsigned char AttribDatum, unsigned char MskDatum= 0xFF, PS_PLANE

plane = FieldPlane, long TimeOut = INFINITE, BOOL bWaitForIR = TRUE)

パラメーター
int Row

属性の行の位置。

int Col

属性の桁位置 (符号なし)。

char AttribDatum

待機する属性値。この値は 1 バイトの 16 進数値です。

unsigned char MskDatum

属性をマスクするのに使用する 1 バイトの 16 進数の値。このパラメーターはオプションです。デフォ

ルト値は 0xFF です。

PS_PLANE plane

取得する属性のプレーン。プレーンは、以下のような値が可能で

す。TextPlane、ColorPlane、FieldPlane、ExfieldPlane。その他の ECL プレーンの内容および形式に

ついては、ECL プレーン — 形式および内容 (ページ 433)を参照してください。

このパラメーターはオプションです。デフォルト値は、FieldPlane です。

149

ホストアクセスクラスライブラリ

150

long nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは、Infinite (無期

限) です。

BOOL bWaitForIR

この値が True である場合、待ち条件の基準を満たすと、関数は OIA が PS の入力受け入れ準備完了 を

示すまで待機します。このパラメーターはオプションで、デフォルト値は TRUE です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

注: テスト条件が FALSE を戻すときに、nTimeOut がデフォルト値 (INFINITE) である場合は、 このメソッド

はブロックされます。

例
// set up PS
ECLPS ps = new ECLPS('A');

// do the wait
BOOL waitOK = ps.WaitWhileAttrib(10, 16, 0xE0, 0xFF, FieldPlane, INFINITE, FALSE);

// do the processing for when the screen goes away

WaitForScreen
ECLScreenDesc パラメーターにより記述された画面が表示スペースに 現れるのを同期して待ちます。

プロトタイプ
BOOL WaitForScreen(ECLScreenDesc* screenDesc, long TimeOut = INFINITE)

パラメーター
ECLScreenDesc

画面を記述する screenDesc オブジェクト (ECLScreenDesc クラス (ページ 168)を参照)。

long nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは、Infinite (無期

限) です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

注: テスト条件が FALSE を戻すときに、nTimeOut がデフォルト値 (INFINITE) である場合は、 このメソッド

はブロックされます。

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddCursorPos(23,1);
eclSD.AddString("LOGON");

// do the wait
int TimeOut = 5000;
BOOL waitOK = ps.WaitForScreen(eclSD, timeInt.intValue());

// do processing for the screen

WaitWhileScreen
ECLScreenDesc パラメーターにより記述された画面が表示スペースから 無くなるまで同期して待ちます。

プロトタイプ
BOOL WaitWhileScreen(ECLScreenDesc* screenDesc, long TimeOut = INFINITE)

パラメーター
ECLScreenDesc

画面を記述する screenDesc オブジェクト (ECLScreenDesc メソッド (ページ 169)を参照)。

long nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは、Infinite (無期

限) です。

戻り値
メソッドは、条件が合致していれば True を 戻し、nTimeOut (ミリ秒) が経過した場合は False を戻します。

注: テスト条件が FALSE を戻すときに、nTimeOut がデフォルト値 (INFINITE) である場合は、 このメソッド

はブロックされます。

例
// set up PS
ECLPS ps = new ECLPS('A');

151

ホストアクセスクラスライブラリ

152

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddCursorPos(23,1);
eclSD.AddString("LOGON");

// do the wait
int TimeOut = 5000;
BOOL waitOK = ps.WaitWhileScreen(eclSD, timeInt.intValue());

// do processing for when the screen goes away

RegisterPSEvent
このメンバー関数は、PS 更新イベントの通知を受け取るためのアプリケーション・オブジェクト を登録します。

アプリケーションでこの関数を使用するには、ECLPSNotify また は ECLPSListener のいずれかから派生したオブ

ジェクトを作成しなければなりません。作成すると、そのオブジェクトを指すポインターは この登録関数に渡され

ます。通知あるいはリスナー・オブジェクトの数が、同時に登録されることがあります。複数のリスナーがイベント

を受信する順序は、定義されず想定することはできません。

この関数の異なるプロトタイプを使用すれば、異なるタイプの更新イベント、また、 その更新について異なる詳細

レベルの生成が可能になります。最も単純な更新イベント は、ECLPSNotify オブジェクトを使用して登録されま

す。このタイプの登録では、 各 PS 更新ごとにイベントを作成します。この更新についての情報は生成されません。

詳細については、ECLPSNotify オブジェクトの説明を参照してください。

更新についてより多くの情報を必要とするアプリケーションでは、ECLPSListener オブジェクト を登録することが

できます。このオブジェクトの登録により、アプリケーションは あるタイプの更新 (例えば、キー・ストロークの

ようなローカル端末の機能) を無視したり、 更新された画面の領域を判別したりすることができます。詳細について

は、ECLPSListener オブジェクトの 説明を参照してください。ECLPSListener オブジェクトを 登録する場合は、ア

プリケーションはイベントの原因となる更新のタイプをオプションで 指定することができます。

この関数を使用して ECLPSNotify または ECLPSListener オブジェクトが登録されれば、 表示スペースに更新が行わ

れるたびに、この NotifyEvent() メソッドが 呼び出されます。短時間内での PS に対する複数の更新は、単一のイベ

ントに集約されることがあります。

アプリケーションは、これを破棄するのに先立って通知/リスナー・オブジェクトを登録抹消する 必要がありま

す。ECLPS オブジェクトが破棄されると、このオブジェクトは自動的に 抹消されます。

プロトタイプ
void RegisterPSEvent(ECLPSNotify * notify) void RegisterPSEvent(ECLPSListener * listener) void

RegisterPSEvent(ECLPSListener * listener, int type)

パラメーター
ECLPSNotify *

登録する ECLPSNotify オブジェクトに対するポインター。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ECLPSListener *

登録する ECLPSListener オブジェクトに対するポインター。

整数

以下のイベントの原因となる更新のタイプ。

• USER_EVENTS (ローカル端末の機能)

• HOST_EVENTS (ホスト更新)

• ALL_EVENTS (すべての更新)

戻り値
なし

StartMacro
StartMacro メソッドは、MacroName パラメーターにより指示された Z and I Emulator for Windows のマクロ・ファ

イルを実行します。

プロトタイプ
void StartMacro(String MacroName)

パラメーター
String MacroName

Z and I Emulator for Windows のユーザー・クラス・アプリケーション・データ・ディレクトリー (イ

ンストール時に指定) に入っているマクロ・ファイルの名前でファイル拡張子を持っていない。このメ

ソッドは、 長いファイル名をサポートしません。

戻り値
なし

使用上の注意
マクロ名には、短いファイル名を使用する必要があります。このメソッドは、 長いファイル名をサポートしませ

ん。

例
以下の例は、マクロを開始する方法を示しています。

Dim PS as Object

Set PS = CreateObject("ZIEWin.autECLPS")

153

ホストアクセスクラスライブラリ

154

PS.StartMacro "mymacro"

UnregisterPSEvent
このメンバー関数は、RegisterPSEvent 関数を使用して通信イベント用に事前に 登録されているアプリケーショ

ン・オブジェクトの登録を抹消します。イベントを受信するための登録済みオブジェクトの場合、先にこの関数を呼

び出して その登録を抹消しないかぎり、オブジェクトを破棄してはなりません。特定のオブジェクトが現在登録さ

れていない場合は、アクションは取られず エラーは発生しません。

ECLPSNotify または ECLPSListener オブジェクトが登録されていない場合は、 この NotifyStop() メソッドが呼び出

されます。

プロトタイプ
void UnregisterPSEvent(ECLPSNotify * notify) void UnregisterPSEvent(ECLPSListener * listener) void

UnregisterPSEvent(ECLPSListener * listener, int type)

パラメーター
ECLPSNotify *

抹消する ECLPSNotify オブジェクトに対するポインター。

ECLPSListener *

抹消する ECLPSListener オブジェクトに対するポインター。

整数

登録済み更新のタイプ。

• USER_EVENTS (ローカル端末の機能)

• HOST_EVENTS (ホスト更新)

• ALL_EVENTS (すべての更新)

戻り値
なし

ECLPSEvent クラス
ECLPSEvent オブジェクトは、表示スペースが更新された ときに ECLListener オブジェクトに渡されます。このイベ

ント・オブジェクトは、 表示スペースの更新イベントを表し、更新についての情報が入っています。

更新された表示スペースの領域を判別するのに、アプリケーションで 使用できる関数に 2 つのセットがありま

す。GetStart() と GetEnd() の両メソッドは、 線形位置を戻すことにより、表示スペース内の更新領域の開始位置と

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

終了位置を示します。リニア・アドレッシングは、左上端の文字が 1 で開始され、 左から右へ進み、折り返して行

を進めます。対応する関数の セット (GetStartRow、GetStartCol、GetEndRow、 GetEndCol) は、行/列の座標で

同じ情報を戻します。

更新領域には、開始文字から終了文字までのすべての PS 文字が 含まれます (両端の文字を含む)。開始位置と終了位

置が同じ行にない場合は、更新領域はある行の終了から次行の最初の桁へ 折り返します。更新領域は (一般的に) 長

方形でないことに注意してください。開始位置が終了位置より大きい場合は、更新領域は開始位置で開始され、画面

の最後の文字から 最初の文字へ折り返し、終了位置へ続きます。

更新領域は、実際に変更になった表示スペース部分より多くの部分を 含むことがありますが、少なくとも変更され

た部分をカバーしていることが保証されている ことに注意してください。短時間に複数の PS 更新が起こると、これ

らの変更は単一のイベント に集約されることがあり、ここでは更新領域にはすべての更新の合計が含まれます。

派生
ECLBase > ECLEvent > ECLPSEvent

使用上の注意
アプリケーションは、このクラスを直接使用しません。アプリケーションは、 ECLListener から派生するオブジェク

トを作成し、これが ECLPSEvent オブジェクト を ECLListener::NotifyEvent メソッド上で受け取ります。

ECLPSEvent メソッド
以下のセクションでは、ECLPSEvent クラスおよびそれから派生したすべてのクラスにおいて 有効なメソッドにつ

いて説明します。

ECLPS * GetPS() int GetType() ULONG GetStart() ULONG GetEnd() ULONG GetStartRow() ULONG GetStartCol()

ULONG GetEndRow() ULONG GetEndCol()

GetPS
このメソッドは、このイベントを生成した ECLPS オブジェクトを戻します。

プロトタイプ
ECLPS * GetPS()

パラメーター
なし

155

ホストアクセスクラスライブラリ

156

戻り値
ECLPS *

このイベントを生成した ECLPS オブジェクトに対するポインター。

GetType
このメソッドは、このイベントを生成した表示スペース更新のタイプを 戻します。戻り値は、USER_EVENTS また

は HOST_EVENTS のいずれかです。ユーザー・イベントは、 ローカル端末の機能 (例えば、ユーザーまたはプログ

ラミング API によって入力される キー・ストローク) として発生する PS 更新として定義されます。ホスト・イベン

トは、 ホスト・アウトバウンド・データ・ストリームから発生する PS 更新です。

プロトタイプ
int GetType()

パラメーター
なし

戻り値
整数

USER_EVENTS または HOST_EVENTS 定数を戻します。

GetStart
このメソッドは、更新領域の先頭の表示スペース内の 線形位置を戻します。この位置の行/列の座標は、 表示スペー

スに現在定義されている桁の数によって決まることに 注意してください。この値が GetEnd() によって戻された値

よりも大きい場合には、 更新領域はこの位置から開始され、画面の最後から最初へ折り返して、 終了位置へ続きま

す。

プロトタイプ
ULONG GetStart()

パラメーター
なし

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
ULONG

更新領域の先頭の線形位置。

GetEnd
このメソッドは、更新領域の最後の表示スペース内の 線形位置を戻します。この位置の行/列の座標は、 表示スペー

スに現在定義されている桁の数によって決まることに 注意してください。この値が GetStart() によって戻された値

よりも小さい場合には、 更新領域は GetStart() 位置から開始され、画面の最後から最初へ折り返して、 この位置へ

続きます。

プロトタイプ
ULONG GetEnd()

パラメーター
なし

戻り値
ULONG

更新領域の最後の線形位置。

GetStartRow
このメソッドは、更新領域の先頭の表示スペース内の 行番号を戻します。開始する行/列位置が終了する行/列位置

よりも大きい場合には、 更新領域はこの位置から開始され、画面の最後から最初へ折り返して、 終了する位置へ続

きます。

プロトタイプ
ULONG GetStartRow()

パラメーター
なし

戻り値
ULONG

更新領域の先頭の行番号。

157

ホストアクセスクラスライブラリ

158

GetStartCol
このメソッドは、更新領域の先頭の表示スペース内の 桁番号を戻します。開始する行/列位置が終了する行/列位置

よりも 大きい場合には、更新領域は開始する行 /桁から開始され、 画面の最後から最初へ折り返して、 終了する位

置へ続きます。

プロトタイプ
ULONG GetStartCol()

パラメーター
なし

戻り値
ULONG

更新領域の先頭の桁番号。

GetEndRow
このメソッドは、更新領域の最後の表示スペース内の 行番号を戻します。開始する行/列位置が終了する行/列位置

よりも 大きい場合には、更新領域は開始する行/列から開始され、 画面の最後から最初へ折り返して、終了する行/

列へ続きます。

プロトタイプ
ULONG GetEndRow()

パラメーター
なし

戻り値
ULONG

更新領域の最後の行番号。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

GetEndCol
このメソッドは、更新領域の最後の表示スペース内の 桁番号を戻します。開始する行/列位置が終了する行/列位置

よりも 大きい場合には、更新領域は開始する行/列から開始され、 画面の最後から最初へ折り返して、終了する行/

列へ続きます。

プロトタイプ
ULONG GetEndCol()

パラメーター
なし

戻り値
ULONG

更新領域の最後の桁番号。

ECLPSListener クラス
ECLPSListener は、抽象基本クラスです。アプリケーションは、このクラスの インスタンスを直接作成することは

できません。アプリケーションでこのクラスを 使用するには、ECLPSListener から派生した独自のクラスを定義し

なければなりません。アプリケーションは、すべてのメソッドをこのクラス内で 実装する必要があります。

アプリケーションが表示スペースの更新の通知を受けられるように するには、ECLPSListener クラスを使用しま

す。イベントは、ホスト画面が更新 される (例えば、表示スペースのデータがプレーンで変更される) たびに 生成さ

れます。

このクラスは、ECLPSNotify クラスと同様に、PS 更新の通知を受信するために 使用されます。ただし、これは

ECLPSNotify クラスよりも多くの更新の原因と 有効範囲についての情報を受け取る点で異なります。一般的に、こ

のクラスの使用は、 各イベントごとにより多くの情報が生成されるため、処理時間とメモリーの点から より不経済

であるといえます。ホスト画面のビジュアル表示を効率よく更新する 必要のあるアプリケーションの場合、このク

ラスは更新が起こるたびに 表示を再ドローするよりはより効率的である可能性があります。このクラスを使用する

と、 アプリケーションは変更されたビジュアル表示の部分だけを更新することができます。

また、このクラスは ECLPSNotify とも異なり、すべてのメソッドは純粋に仮想であり、 そのためこれらのメソッド

はアプリケーションによって実装される必要が あります (デフォルトの実装はありません)。

派生
ECLBase > ECLListener > ECLPSListener

159

ホストアクセスクラスライブラリ

160

使用上の注意
アプリケーションがこのクラスを使用する PS 更新の通知を受けるには、 次に示すステップを実行しなければなりま

せん。

1. ECLPSListener から派生したクラスを定義します。

2. ECLPSListener から派生したクラスのすべてのメソッドを実装します。

3. 派生クラスのインスタンスを作成します。

4. そのインスタンスを ECLPS::RegisterPSEvent() メソッドで登録します。

登録が完了した後で、表示スペースの更新によって ECLPSListener から 派生したクラスの NotifyEvent() メソッドが

呼び出されます。その結果アプリケーションは、メソッド呼び出しでシステムに提供された ECLPSEvent オブジェク

ト を使用して、PS 更新の原因および影響された画面の領域を判別することができます。

短時間に発生する複数の PS の更新は、単一のイベント通知に集約される ことがあるので注意してください。

アプリケーションは、派生したクラス用に自身のコンストラクター およびデストラクターを任意で提供すること

ができます。これが便利なのは、 アプリケーションが特定のインスタンス固有データをそのクラス内に保管してか

ら、 その情報をコンストラクター上のパラメーターとして渡す必要がある場合です。

イベントの登録時にエラーが検出された場合、ECLErr オブジェクトを 使用して NotifyError() メンバー関数が呼び出

されます。エラーの後で、続いて イベントが生成されることも、生成されないこともあります。イベント生成が終

了した とき (エラーか、あるいはその他の理由から) には、NotifyStop() メンバー関数が 呼び出されます。

ECLPSListener メソッド
以下のセクションでは、ECLPSListener クラスおよびそれから派生したすべてのクラス において有効なメソッドに

ついて説明します。コンストラクターおよびデストラクター 以外のすべてのメソッドは、仮想メソッドであること

に注意してください。

ECLPSListener() ECLPSListener() virtual void NotifyEvent(ECLPSEvent * event) = 0 virtual void NotifyError(ECLPS *

PSObj, ECLErr ErrObj) = 0 virtual void NotifyStop(ECLPS * PSObj, int Reason) = 0

NotifyEvent
このメソッドは、純粋仮想 メンバー関数です (アプリケーションは ECLPSListener から派生したクラス内にこの関

数を実装しなければなりません)。このメソッドは、 表示スペースが更新され、更新イベントを受け取るために こ

のオブジェクトが登録されるたびに、呼び出されます。パラメーターとして渡される ECLPSEvent オブジェクトに

は、変更された画面の領域を 含むイベントについての情報が入っています。詳しくは、ECLPSEvent クラス (ペー

ジ 154)を参照してください。

複数の PS 更新は単一のイベントに集約されることがあり、結果として、 このメソッドに対してはただ 1 つの呼び

出しとなります。ECLPSEvent オブジェクトに含まれる 変更された領域には、すべての変更の合計が入っていま

す。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

適切なパラメーターを ECLPS::RegisterPSEvent() メソッドに提供することにより、 イベントが PS 更新の特定タイ

プだけに制限されることがあります。例えば、 アプリケーションは、ホストからの更新のためだけに通知を受け、

ローカル・キー・ストローク のためには通知を受けないよう選択することができます。

プロトタイプ
virtual void NotifyEvent(ECLPSEvent * event) = 0

パラメーター
ECLPSEvent *

PS 更新を表す ECLPSEvent オブジェクトを指すポインター。

戻り値
なし

NotifyError
このメソッドは、イベントの生成時に ECLPS オブジェクトがエラーを検出するたびに 呼び出されます。エラー・

オブジェクトには、そのエラーについての情報が 含まれます (ECLErr クラス (ページ 59)を参照)。エラーの特性

に応じて 、エラーの後で続いてイベントが生成されることがあります。エラーが原因でイベント生成が停止した 場

合、NotifyStop() メソッドが呼び出されます。

これは、アプリケーションが実装しなければならない純粋仮想 メソッドです。

プロトタイプ
virtual void NotifyError(ECLPS * PSObj, ECLErr ErrObj) = 0

パラメーター
ECLPS *

このイベントを生成した ECLPS オブジェクトに対するポインター。

ECLErr

エラーを記述する ECLErr オブジェクト。

戻り値
なし

161

ホストアクセスクラスライブラリ

162

NotifyStop
イベント生成が何らかの理由 (例えば、エラー条件が原因か、 または ECLPS::UnregisterPSEvent の呼び出しなどが

原因) で停止すると、 このメソッドが呼び出されます。

これは、アプリケーションが実装しなければならない純粋仮想 メソッドです。

現在、理由コード・パラメーターは未使用であり、ゼロになります。

プロトタイプ
virtual void NotifyStop(ECLPS * PSObj, int Reason) = 0

パラメーター
ECLPS *

このイベントを生成した ECLPS オブジェクトに対するポインター。

整数

理由イベントの生成が停止しました (現在は未使用でゼロです)。

戻り値
なし

ECLPSNotify クラス
ECLPSNotify は、抽象基本クラスです。アプリケーションは、このクラスの インスタンスを直接作成することはで

きません。アプリケーションでこのクラスを使用するには、ECLPSNotify から 派生した独自のクラスを定義しなけ

ればなりません。アプリケーションは、 その派生クラス内に NotifyEvent() メンバー関数を実装しなければなりませ

ん。また、 オプションで NotifyError() および NotifyStop() メンバー関数を実装することも できます。

アプリケーションが表示スペースに対する更新についての通知を 受けられるようにするには、ECLPSNotify クラス

を使用します。イベントは、ホスト画面が更新 される (例えば、表示スペースのデータがプレーンで変更される) た

びに 生成されます。

このクラスは、ECLPSListener クラスと同様に、PS 更新の通知を受け取るために 使用されます。ただし、これは更

新の原因と有効範囲についての情報を受け取らない点で、 ECLPSNotify クラスとは異なります。一般的にこのクラ

スの使用は、各イベントごとに 情報を生成する必要がないため、処理時間とメモリー使用の観点からより効率的で

あるといえます。このクラスは、更新の通知だけを必要とし、イベントの原因が何か、あるいは 画面のどの部分が

更新されたかの詳細については必要としないアプリケーションに、 使用することができます。

また、このクラスは ECLPSListener とも異なり、ここではデフォルトの実装 が NotifyError() および NotifyStop() メ

ソッド用に用意されています。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

派生
ECLBase > ECLNotify > ECLPSNotify

使用上の注意
アプリケーションがこのクラスを使用する PS 更新の通知を受けるには、 次に示すステップを実行しなければなりま

せん。

1. ECLPSNotify から派生したクラスを定義します。

2. ECLPSNotify から派生したクラスの NotifyEvent メソッドを実装します。

3. オプションで、ECLPSNotify の他のメンバー関数を実装します。

4. 派生クラスのインスタンスを作成します。

5. そのインスタンスを ECLPS::RegisterPSEvent() メソッドで登録します。

登録が完了した後で、表示スペースの更新によって ECLPSNotify から 派生したクラスの NotifyEvent() メソッドが呼

び出されます。

短時間に発生する複数の PS の更新は、単一のイベント通知に集約される ことがあるので注意してください。

アプリケーションは、派生したクラス用に自身のコンストラクター およびデストラクターを任意で提供すること

ができます。これが便利なのは、 アプリケーションが特定のインスタンス固有データをそのクラス内に保管してか

ら、 その情報をコンストラクター上のパラメーターとして渡す必要がある場合です。

イベントの登録時にエラーが検出された場合、ECLErr オブジェクトを 使用して NotifyError() メンバー関数が呼

び出されます。エラーの後で、続いて イベントが生成されることも、生成されないこともあります。イベント

生成が終了した とき (エラーか、あるいはその他の理由から) には、NotifyStop() メンバー関数が 呼び出されま

す。NotifyError() のデフォルトの実装によって、 ユーザーにメッセージ・ボックスが用意され、ECLErr オブジェク

トから取り出された エラー・メッセージのテキストが示されます。

何らかの理由でイベント通知が停止したとき (エラーまたは ECLPS::UnregisterPSEvent 呼び出し) に

は、NotifyStop() メンバー関数が呼び出されます。デフォルトの NotifyStop() の 実装は、何も実行しません。

ECLPSNotify メソッド
以下のセクションでは、ECLPSNotify クラスおよびそれから派生したすべてのクラスにおいて 有効なメソッドにつ

いて説明します。

ECLPSNotify()=0 ~ECLPSNotify() virtual void NotifyEvent(ECLPS * PSObj) virtual void NotifyError(ECLPS * PSObj,

ECLErr ErrObj) virtual void NotifyStop(ECLPS * PSObj, int Reason)

163

ホストアクセスクラスライブラリ

164

NotifyEvent
このメソッドは、純粋仮想 メンバー関数です (アプリケーションは ECLPSNotify から派生したクラス内にこの関数を

実装しなければなりません)。このメソッドは、 表示スペースが更新され、更新イベントを受け取るために このオブ

ジェクトが登録されるたびに、呼び出されます。

複数の PS 更新は単一のイベントに集約されることがあり、結果として、 このメソッドに対してはただ 1 つの呼び

出しとなります。

プロトタイプ

virtual void NotifyEvent(ECLPS * PSObj)

パラメーター
ECLPS *

このイベントを生成した ECLPS オブジェクトに対するポインター。

戻り値
なし

NotifyError
このメソッドは、イベントの生成時に ECLPS オブジェクトがエラーを検出するたびに 呼び出されます。エラー・

オブジェクトには、そのエラーについての情報が 含まれます (ECLErr クラス (ページ 59)を参照)。エラーの特性

に応じて 、エラーの後で続いてイベントが生成されることがあります。エラーが原因でイベント生成が停止した 場

合、NotifyStop() メソッドが呼び出されます。

アプリケーションは、この関数を実装するか、 または ECLPSNotify 基本クラスにそれを処理させるかを選ぶことが

できます。デフォルトの実装 は、ECLErr::GetMsgText() メソッドから提供される テキストを使用して、メッセー

ジ・ボックスにエラーを表示します。アプリケーションが、 その派生クラス内にこの関数を実装すると、それに

よって この振る舞いがオーバーライドされます。

プロトタイプ
virtual void NotifyError(ECLPS * PSObj, ECLErr ErrObj) = 0

パラメーター
ECLPS *

このイベントを生成した ECLPS オブジェクトに対するポインター。

ECLErr

エラーを記述する ECLErr オブジェクト。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
なし

NotifyStop
イベント生成が何らかの理由 (例えば、エラー条件が原因か、 または ECLPS::UnregisterPSEvent の呼び出しなどが

原因) で停止すると、 このメソッドが呼び出されます。

現在、理由コード・パラメーターは未使用であり、ゼロになります。

この関数のデフォルトの実装では、何も実行しません。

プロトタイプ
virtual void NotifyStop(ECLPS * PSObj, int Reason) = 0

パラメーター
ECLPS *

このイベントを生成した ECLPS オブジェクトに対するポインター。

整数

理由イベントの生成が停止しました (現在は未使用でゼロです)。

戻り値
なし

ECLRecoNotify クラス
ECLRecoNotify を使用して、 ECLScreenReco イベントを受け取り、処理するオブジェクトをインプリメントするこ

とができます。イベントは、PS の中の画面で、 ECLScreenReco 内の ECLScreenDesc オブジェクトと一致するもの

があるたびに生成されます。イベント生成が停止したり、イベント生成中にエラーが生じたりすると、 特殊イベン

トが生成されます。

アプリケーションが ECLScreenReco イベントの通知を受けるには、 次に示すステップを実行しなければなりませ

ん。

1. ECLRecoNotify クラスから派生するクラスを定義します。

2. NotifyEvent()、NotifyStop()、および NotifyError() メソッドをインプリメントする。

3. 新しいクラスのインスタンスを作成する。

4. そのインスタンスを ECLScreenReco::RegisterScreen() メソッドで登録します。

例については、ECLScreenReco クラス (ページ 178)を参照してください。

165

ホストアクセスクラスライブラリ

166

派生
ECLBase > ECLNotify > ECLRecoNotify

ECLRecoNotify メソッド
ECLRecoNotify に有効なメソッドを以下にリストします。

ECLRecoNotify() ~ECLRecoNotify() void NotifyEvent(ECLPS *ps, ECLScreenDesc *sd) void NotifyStop(ECLPS *ps,

ECLScreenDesc *sd) void NotifyError(ECLPS *ps, ECLScreenDesc *sd, ECLErr e)

ECLRecoNotify コンストラクター
ECLRecoNotify の空インスタンスを作成します。

プロトタイプ
ECLRecoNotify()

パラメーター
なし

戻り値
なし

例
例については、ECLScreenReco クラス (ページ 178)を参照してください。

ECLRecoNotify デストラクター
ECLRecoNotify のインスタンスを破棄します。

プロトタイプ
~ECLRecoNotify()

パラメーター
なし

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
なし

例
例については、ECLScreenReco クラス (ページ 178)を参照してください。

NotifyEvent
ECLRecoNotify オブジェクトで ECLScreenReco 上に登録された ECLScreenDesc が 表示スペースに現れるときに、

呼び出されます。

プロトタイプ
void NotifyEvent(ECLPS *ps, ECLScreenDesc *sd)

パラメーター
ECLPS ps

ユーザーが登録した ECLPS オブジェクト。

ECLScreenDesc sd

ユーザーが登録した ECLScreenDesc。

戻り値
なし

例
例については、ECLScreenReco クラス (ページ 178)を参照してください。

NotifyStop
ECLScreenReco オブジェクトが、登録済み ECLScreenDesc オブジェクト用の ECLPS オブジェクト のモニターを停

止したときに呼び出されます。

プロトタイプ
void NotifyStop(ECLPS *ps, ECLScreenDesc *sd)

167

ホストアクセスクラスライブラリ

168

パラメーター
ECLPS ps

ユーザーが登録した ECLPS オブジェクト。

ECLScreenDesc sd

ユーザーが登録した ECLScreenDesc。

戻り値
なし

例
例については、ECLScreenReco クラス (ページ 178)を参照してください。

NotifyError
ECLScreenReco オブジェクトでエラーが発生したときに呼び出されます。

プロトタイプ
void NotifyError(ECLPS *ps, ECLScreenDesc *sd, ECLErr e)

パラメーター
ECLPS ps

ユーザーが登録した ECLPS オブジェクト。

ECLScreenDesc sd

ユーザーが登録した ECLScreenDesc。

ECLErr e

エラー情報を含む ECLErr オブジェクト。

戻り値
なし

例
例については、ECLScreenReco クラス (ページ 178)を参照してください。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ECLScreenDesc クラス
ECLScreenDesc は、ホスト・アクセス・クラス・ライブラリーの画面認識テクノロジーの画面を記述するために使

用されるクラスです。これは、カーソル位置はもちろんのこと、 これを説明する表示スペースの 4 つの主な プレー

ン (TEXT、 FIELD、EXFIELD、COLOR) すべてを使用します。

このオブジェクトで用意されているメソッドを使用して、プログラマーは指定された画面が ホスト・サイド・アプ

リケーションでどのように表示されるかを詳細に記述することが できます。ECLScreenDesc オブジェクトが作成さ

れて設定されると、 それが ECLPS 上にある同期 WaitFor... メソッドに渡されるか、 または ECLScreenReco に渡さ

れます。 これは、ECLScreenDesc オブジェクトと一致する画面が PS に表示される場合に、 非同期イベントを起動

します。

派生
ECLBase > ECLScreenDesc

ECLScreenDesc メソッド
ECLScreenDesc に有効なメソッドを以下にリストします。

ECLScreenDesc() ~ECLScreenDesc() void AddAttrib(BYTE attrib, UINT pos, PS_PLANE plane=FieldPlane); void

AddAttrib(BYTE attrib, UINT row, UINT col, PS_PLANE plane=FieldPlane); void AddCursorPos(uint row, uint

col) void AddNumFields(uint num) void AddNumInputFields(uint num) void AddOIAInhibitStatus(OIAStatus

type=NOTINHIBITED) void AddString(LPCSTR s, UINT row, UINT col, BOOL caseSensitive=TRUE) void

AddStringInRect(char * str, int Top, int Left, int Bottom, int Right, BOOL caseSense=TRUE) void Clear()

ECLScreenDesc コンストラクター
ECLScreenDesc の空インスタンスを作成します。

プロトタイプ
ECLScreenDesc()

パラメーター
なし

戻り値
なし

169

ホストアクセスクラスライブラリ

170

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddCursorPos(23,1);
eclSD.AddString("LOGON");

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

ECLScreenDesc デストラクター
ECLScreenDesc のインスタンスを破棄します。

プロトタイプ
~ ECLScreenDesc()

パラメーター
なし

戻り値
なし

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddCursorPos(23,1);
eclSD.AddString("LOGON");

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());
// destroy the descriptor
delete eclSD;

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

AddAttrib
画面記述の指定位置に属性値を追加します。

プロトタイプ

void AddAttrib(BYTE attrib, UINT pos, PS_PLANE plane=FieldPlane); void AddAttrib(BYTE attrib, UINT row, UINT

col, PS_PLANE plane=FieldPlane);

パラメーター
BYTE attrib

追加する属性値。

int row

行位置。

int col

桁位置。

PS_PLANE plane

属性が常駐するプレーン。有効な値は、以下のとおりで

す。TextPlane、ColorPlane、FieldPlane、Exfield

Plane、GridPlane。TextPlane、ColorPlane、FieldPlane、ExfieldPlane。その他の ECL プレーンの内

容および形式に ついては、ECL プレーン — 形式および内容 (ページ 433)を参照してください。

戻り値
なし

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

171

ホストアクセスクラスライブラリ

172

AddCursorPos
指定位置に画面記述のためのカーソル位置をセットします。

プロトタイプ
void AddCursorPos(uint row, uint col)

パラメーター
uint row

行位置。

uint col

桁位置。

戻り値
なし

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

AddNumFields
画面記述に入力フィールド数を追加します。

プロトタイプ
void AddNumFields(uint num)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

パラメーター
uint num

フィールドの数。

戻り値
なし

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

AddNumInputFields
画面記述に入力フィールド数を追加します。

プロトタイプ
void AddNumInputFields(uint num)

パラメーター
uint num

入力フィールドの数。

戻り値
なし

173

ホストアクセスクラスライブラリ

174

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

AddOIAInhibitStatus
画面記述のための OIA モニターのタイプをセットします。

プロトタイプ
void AddOIAInhibitStatus(OIAStatus type=NOTINHIBITED)

パラメーター
OIAStatus type

OIA 状況のタイプ。現行の有効値は、DONTCARE および NOTINHIBITED。

戻り値
なし

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

AddString
画面記述の指定された位置にストリングを追加します。行と桁が指定されない場合は、ストリングは PS のどこに現

れるか分かり ません。

注: 負の値は、PS の下部からの絶対位置です。例えば、row=-2 は、 全体が 24 行の内の行 23 を示していま

す。

プロトタイプ
void AddString(LPCSTR s, UINT row, UINT col, BOOL caseSensitive=TRUE)

パラメーター
LPCSTR s

追加するストリング。

uint row

行位置。

uint col

桁位置。

BOOL caseSense

この値が True である場合は、ストリングは大/小文字の区別付きで 追加されます。このパラメーター

はオプションです。デフォルトは TRUE です。

戻り値
なし

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;

175

ホストアクセスクラスライブラリ

176

eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

AddStringInRect
画面記述の指定長方形内にストリングを追加します。

プロトタイプ
void AddStringInRect(char * str, int Top, int Left, int Bottom, int Right, BOOL caseSense=TURE)

パラメーター
char * str

追加するストリング。

int Top

左上行位置。このパラメーターはオプションです。デフォルトは最初の行です。

int Left

左上桁位置。このパラメーターはオプションです。デフォルトは最初の桁です。

int Bottom

右下行位置。このパラメーターはオプションです。デフォルトは最後の行です。

int Right

右下桁位置。このパラメーターはオプションです。デフォルトは最後の桁です。

BOOL caseSense

この値が True である場合は、ストリングは大/小文字の区別付きで 追加されます。このパラメーター

はオプションです。デフォルトは TRUE です。

戻り値
なし

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

クリア
画面記述からすべての記述要素を取り除きます。

プロトタイプ
void Clear()

パラメーター
なし

戻り値
なし

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45) ;
eclSD.AddNumInputFields(17) ;
AddOIAInhibitStatus(NOTINHIBITED) ;
eclSD.AddString("LOGON"., 23, 11, TRUE) ;
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE) ;

// do the wait
int TimeOut = 5000;
BOOL waitOK = eclPS.WaitForScreen(eclSD, timeInt.intValue());

// do processing for the screen

eclSD.Clear() // start over for a new screen

177

ホストアクセスクラスライブラリ

178

ECLScreenReco クラス
ECLScreenReco クラスは、ホスト・アクセス・クラス・ライブラリーの画面認識システム にとってはエンジンに相

当するものです。これには、画面の記述を追加したり除去したりするためのメソッドが含まれています。また、それ

らの画面を認識したり、 画面用のハンドラー・コードに非同期にコールバックしたりするための論理も含まれてい

ます。

ECLScreenReco クラスのオブジェクトは、固有の「認識セット」として考えてください。オブジェクトは、画面を

監視する複数の ECLPS オブジェクト、 検索する複数の画面、 および任意の ECLPS オブジェクトの中に画面を表示

するときに呼び出す複数のコールバック・ポイントを持つことができます。

ユーザーはアプリケーションの開始時に ECLScreenReco オブジェクトを設定するだけでよく、 モニターしたい画面

が ECLPS に現れるときに、 使用するコードが ECLScreenReco によって呼び出されます。ユーザーは、画面をモニ

ターする 際に何も実行する必要はありません。

以下は、共通の実装の例です。

class MyApp {
ECLPS myECLPS('A'); // My main HACL PS object
ECLScreenReco myScreenReco(); // My screen reco object
ECLScreenDesc myScreenDesc(); // My screen descriptor
MyRecoCallback myCallback(); // My GUI handler

MyApp() {
// Save the number of fields for below
ECLFieldList *fl = myECLPS.GetFieldList()
Fl->Refresh();
int numFields = fl->GetFieldCount();

// Set up my HACL screen description object. Say the screen
// is identified by a cursor position, a key word, and the
// number of fields
myScreenDesc.AddCursorPos(23,1);
myScreenDesc.AddString("LOGON");
myScreenDesc.AddNumFields(numFields);

// Set up HACL screen reco object, it will begin monitoring here
myScreenReco.AddPS(myECLPS);
myScreenReco.RegisterScreen(&myScreenDesc, &myCallback);
}

 MyApp() {
myScreenReco.UnregisterScreen(&myScreenDesc, &myCallback);
myScreenReco.RemovePS(&eclPS);
}

public void showMainGUI() {
// Show the main application GUI, this is just a simple example
}

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

// ECLRecoNotify-derived inner class (the "callback" code)
class MyRecoCallback public: ECLRecoNotify {
public: void NotifyEvent(ECLScreenDesc *sd, ECLPS *ps) {
// GUI code here for the specific screen
// Maybe fire a dialog that front ends the screen
}

public void NotifyError(ECLScreenDesc *sd, ECLPS *ps, ECLErr e) {
// Error handling
}

public void NotifyStop(ECLScreenDesc *sd, ECLPS *ps, int Reason) {
// Possible stop monitoring, not essential
}
}

}

int main() {
MyApp app = new MyApp();
app.showMainGUI();
}

派生
ECLBase > ECLScreenReco

ECLScreenReco メソッド
以下のメソッドは、ECLScreenReco に有効です。

ECLScreenReco() ~ECLScreenReco() AddPS(ECLPS*) IsMatch(ECLPS*, ECLScreenDesc*)

RegisterScreen(ECLScreenDesc*, ECLRecoNotify*) RemovePS(ECLPS*) UnregisterScreen(ECLScreenDesc*)

ECLScreenReco コンストラクター
ECLScreenReco の空インスタンスを作成します。

プロトタイプ
ECLScreenReco()

パラメーター
なし

戻り値
なし

179

ホストアクセスクラスライブラリ

180

例
ECLScreenReco クラス (ページ 178)の共通実装の例を参照してください。

ECLScreenReco デストラクター
ECLScreenReco のインスタンスを破棄します。

プロトタイプ
~ECLScreenReco()

パラメーター
なし

戻り値
なし

例
ECLScreenReco クラス (ページ 178)の共通実装の例を参照してください。

AddPS
モニターすべき表示スペース・オブジェクトを追加します。

プロトタイプ
AddPS(ECLPS*)

パラメーター
ECLPS*

モニター対象の PS オブジェクト。

戻り値
なし

例
ECLScreenReco クラス (ページ 178)の共通実装の例を参照してください。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

IsMatch
ECLPS オブジェクトおよび ECLScreenDesc オブジェクトを渡すことができるようにし、 画面記述が PS と一致して

いるかどうかを判別できるようにする、静的メンバー・メソッド。これは静的メソッドとして提供されるため、どの

ルーチンも ECLScreenReco オブジェクトを 作成せずに、これを呼び出すことができます。

プロトタイプ
IsMatch(ECLPS*, ECLScreenDesc*)

パラメーター
ECLPS*

比較対象の ECLPS オブジェクト。

ECLScreenDesc*

比較対象の ECLScreenDesc オブジェクト。

戻り値
PS 内の画面が一致する場合は True で、それ以外の場合は False。

例
// set up PS
ECLPS ps = new ECLPS('A');

// set up screen description
ECLScreenDesc eclSD = new ECLScreenDesc();
eclSD.AddAttrib(0xe8, 1, 1, ColorPlane);
eclSD.AddCursorPos(23,1);
eclSD.AddNumFields(45);
eclSD.AddNumInputFields(17);
AddOIAInhibitStatus(NOTINHIBITED);
eclSD.AddString("LOGON"., 23, 11, TRUE);
eclSD.AddStringInRect("PASSWORD", 23, 1, 24, 80, FALSE);
if(ECLScreenReco::IsMatch(ps,eclSD)) {
 // Handle Screen Match here . . .
}

RegisterScreen
指定された画面の記述のために画面認識オブジェクトに追加された、 すべての ECLPS オブジェクトのモニターを開

始します。その画面が PS に現れる と、ECLRecoNotify オブジェクト上の NotifyEvent メソッドが呼び出されます。

プロトタイプ
RegisterScreen(ECLScreenDesc*, ECLRecoNotify*)

181

ホストアクセスクラスライブラリ

182

パラメーター
ECLScreenDesc*

登録対象の画面記述オブジェクト。

ECLRecoNotify*

画面記述のためのコールバック・コードを含むオブジェクト。

戻り値
なし

例
ECLScreenReco クラス (ページ 178)の共通実装の例を参照してください。

RemovePS
画面認識モニターから ECLPS オブジェクトを取り除きます。

プロトタイプ
RemovePS(ECLPS*)

パラメーター
ECLPS*

除去する ECLPS オブジェクト。

戻り値
なし

例
ECLScreenReco クラス (ページ 178)の共通実装の例を参照してください。

UnregisterScreen
画面認識モニターから、画面記述およびそのコールバック・コードを取り除きます。

プロトタイプ
UnregisterScreen(ECLScreenDesc*)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

パラメーター
ECLScreenDesc*

除去する画面記述オブジェクト。

戻り値
なし

例
ECLScreenReco クラス (ページ 178)の共通実装の例を参照してください。

ECLSession クラス
オブジェクト、C++ECLSessionECLSession は、 汎用エミュレーター接続関連サービスを提供し、ホスト・アクセス・クラス・ライブラリー内のそ

の他のオブジェクトのインスタンスを指すポインターを含んでいます。

派生
ECLBase > ECLConnection > ECLSession

プロパティー
なし

使用上の注意
ECLSession は ECLConnection から派生するため、ECLConnection オブジェクトに 含まれるすべての情報を取得で

きます。詳しくは、ECLConnection クラス (ページ 24)を参照してください。

ECLSession に含まれるオブジェクトは単独で機能しますが、 このオブジェクトを指すポインターは ECLSession ク

ラスに存在し ます。ECLSession オブジェクトを作成すると、ECLPS、ECLOIA、ECLXfer、 および ECLWinMetrics

オブジェクトも作成されます。

ECLSession メソッド
以下のセクションでは、ECLSession クラスにおいて有効なメソッド について説明します。

ECLSession(char Name) ECLSession(Long Handle) ~ECLSession() ECLPS *GetPS() ECLOIA *GetOIA() ECLXfer

*GetXfer() ECLWinMetrics *GetWinMetrics() void RegisterUpdateEvent(UPDATETYPE Type, ECLUpdateNotify

*UpdateNotifyClass, BOOL InitEvent) void UnregisterUpdateEvent(ECLUpdateNotify *UpdateNotifyClass,)

183

ホストアクセスクラスライブラリ

184

ECLSession コンストラクター
このメソッドは、接続名 (単一の A から Z、または a から z の英字) または接続ハンドル から ECLSession オブジェ

クトを作成します。Z and I Emulator for Windows 接続でオープンできるのは、1 つの名前につき 1 つしかありませ

ん。例えば、一度に 1 つの接続 A のみがオープンできます。

プロトタイプ
ECLSession(char Name)

ECLSession(long Handle)

パラメーター
char Name

1 文字の接続の短縮名 (A から Z、または a から z)。

long Handle

ECL 接続のハンドル。

戻り値
なし

例
//---
// ECLSession::ECLSession (Constructor)
//
// Build PS object from name.
//---
void Sample73() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLPS *PS; // PS object pointer

try {
 Sess = new ECLSession('A');

 PS = Sess->GetPS();
 printf("Size of presentation space is %lu.\n", PS->GetSize());

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ECLSession デストラクター
このメソッドは、ECLSession オブジェクトを破棄します。

プロトタイプ
~ECLSession();

パラメーター
なし

戻り値
なし

例
//---
// ECLSession::~ECLSession (Destructor)
//
// Build PS object from name and then delete it.
//---
void Sample74() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLPS *PS; // PS object pointer

try {
 Sess = new ECLSession('A');

 PS = Sess->GetPS();
 printf("Size of presentation space is %lu.\n", PS->GetSize());

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

GetPS
このメソッドは、ECLSession オブジェクト に含まれている ECLPS オブジェクトを指すポインターを戻します。こ

のメソッドは、ECLPS オブジェクト・メソッドにアクセスするのに使用します。詳しくは、『ECLPS クラス (ペー

ジ 109)』を参照してください。

185

ホストアクセスクラスライブラリ

186

プロトタイプ
ECLPS *GetPS()

パラメーター
なし

戻り値
ECLPS *

ECLPS オブジェクト・ポインター。

例
//---
// ECLSession::GetPS
//
// Get PS object from session object and use it.
//---
void Sample69() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLPS *PS; // PS object pointer

try {
 Sess = new ECLSession('A');

 PS = Sess->GetPS();
 printf("Size of presentation space is %lu.\n", PS->GetSize());

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

GetOIA
このメソッドは、ECLSession オブジェクトに 含まれている ECLOIA オブジェクトを指すポインターを戻します。こ

のメソッドは、ECLOIA メソッドにアクセスするのに使用します。詳しくは、『ECLOIA クラス (ページ 93)』を

参照してください。

プロトタイプ
ECLOIA *GetOIA()

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

パラメーター
なし

戻り値
ECLOIA *

ECLOIA オブジェクト・ポインター。

例
//---
// ECLSession::GetOIA
//
// Get OIA object from session object and use it.
//---
void Sample70() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLOIA *OIA; // OIA object pointer

try {
 Sess = new ECLSession('A');

 OIA = Sess->GetOIA();
 if (OIA->InputInhibited() == NotInhibited)
 printf("Input is not inhibited.\n");
 else
 printf("Input is inhibited.\n");

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

GetXfer
このメソッドは、ECLSession オブジェクト に含まれている ECLXfer オブジェクトを指すポインターを戻します。こ

のメソッドは、ECLXfer メソッドにアクセスするのに使用します。詳しくは、ECLXfer クラス (ページ 219)を参照

してください。

プロトタイプ
ECLXfer *GetXfer()

187

ホストアクセスクラスライブラリ

188

パラメーター
なし

戻り値
ECLXfer *

ECLXfer オブジェクト・ポインター。

例
//---
// ECLSession::GetXfer
//
// Get OIA object from session object and use it.
//---
void Sample71() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLXfer *Xfer; // Xfer object pointer

try {
 Sess = new ECLSession('A');

 Xfer = Sess->GetXfer();
 Xfer->SendFile("c:\\autoexec.bat", "AUTOEXEC BAT A", "(ASCII CRLF");

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

GetWinMetrics
このメソッドは、ECLSession オブジェクトに 含まれている ECLWinMetrics オブジェクトを指すポインターを戻し

ます。このメソッドは、ECLWinMetrics メソッドにアクセスするのに使用します。詳しくは、ECLWinMetrics クラ

ス (ページ 196)を参照してください。

プロトタイプ
ECLWinMetrics *GetWinMetrics()

パラメーター
なし

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
ECLWinMetrics *

ECLWinMetrics オブジェクト・ポインター。

例
//---
// ECLSession::GetWinMetrics
//
// Get WinMetrics object from session object and use it.
//---
void Sample72() {

ECLSession *Sess; // Pointer to Session object for connection A
ECLWinMetrics *Metrics; // WinMetrics object pointer

try {
 Sess = new ECLSession('A');

 Metrics = Sess->GetWinMetrics();
 printf("Window height is %lu pixels.\n", Metrics->GetHeight());

 delete Sess;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}
} // end sample

GetPageSettings
このメソッドは、ECLSession オブジェクトに 含まれている ECLPageSettings オブジェクトを指すポインターを戻

します。このメソッドは、ECLPageSettings メソッドにアクセスするのに使用します。詳しくは、ECLPageSettings

クラス (ページ 226)を参照してください。

プロトタイプ
ECLPageSettings *GetPageSettings() const;

パラメーター
なし

189

ホストアクセスクラスライブラリ

190

戻り値
ECLPageSettings *

ECLPageSettings オブジェクト・ポインター。

例
//--
// ECLSession::GetPageSettings
//
// Get PageSettings object from session object and use it.
//--
void Sample124() {
 ECLSession *Sess; // Pointer to Session object for connection A
 ECLPageSettings *PgSet; // PageSettings object pointer

 try {
 Sess = new ECLSession('A');
 PgSet = Sess->GetPageSettings();
 printf("FaceName = %s\n", PgSet->GetFontFaceName());
 delete Sess;
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

GetPrinterSettings
このメソッドは、ECLSession オブジェクト に含まれている ECLPrinterSettings オブジェクトを指すポイン

ターを戻します。このメソッドは、ECLPrinterSettings メソッドにアクセスするのに使用します。詳しく

は、ECLPageSettings クラス (ページ 226)を参照してください。

プロトタイプ
ECLPrinterSettings *GetPrinterSettings() const;

パラメーター
なし

戻り値
ECLPrinterSettings *

ECLPrinterSettings オブジェクト・ポインター。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

例
//--
// ECLSession::GetPrinterSettings
//
// Get PrinterSettings object from session object and use it.
//--
void Sample125() {
 ECLSession *Sess; // Pointer to Session object for connection A
 ECLPrinterSettings *PrSet; // PrinterSettings object pointer

 try {
 Sess = new ECLSession('A');
 PrSet = Sess->GetPrinterSettings();
 if (PrSet->IsPDTMode())
 printf("PDTMode\n");
 else
 printf("Not PDTMode\n");
 delete Sess;
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

RegisterUpdateEvent
推奨されていません。RegisterPSEvent (ページ 152)の ECLPS::RegisterPSEvent を 参照してください。

UnregisterUpdateEvent
推奨されていません。UnregisterPSEvent (ページ 154)の ECLPS::UnregisterPSEvent を 参照してください。

ECLStartNotify クラス
ECLStartNotify は、抽象基本クラスです。アプリケーションは、このクラスの インスタンスを直接作成することは

できません。アプリケーションでこのクラスを使用するには、ECLStartNotify から派生した 独自のクラスを定義し

なければなりません。アプリケーションは、 その派生クラス内に NotifyEvent() メンバー関数を実装しなければなり

ません。また、 オプションで NotifyError() および NotifyStop() メンバー関数を実装することも できます。

アプリケーションが ZIEWin 接続の開始および停止の通知を受けられるようにするには、ECLStartNotify クラスを使

用します。スタート・ストップ・イベントは、任意の方法 (ECLConnMgr スタート・ストップ・メソッドを含む) で

ZIEWin 接続 (ウィンドウ) が開始または停止されるたびに生成されます。

アプリケーションがスタート・ストップ・イベントの通知を受けるには、 次に示すステップを実行しなければなり

ません。

191

ホストアクセスクラスライブラリ

192

1. ECLStartNotify から派生したクラスを定義します。

2. その派生クラスを採用し、NotifyEvent() メンバー関数を実装します。

3. オプションで、NotifyError() または NotifyStop() 関数 (あるいはその両方) を 実装します。

4. 派生クラスのインスタンスを作成します。

5. そのインスタンスを ECLConnMgr::RegisterStartEvent() 関数で登録します。

ここに示された例は、それがどのように行われるかを例示しています。上記のステップを完了すると、その後、接続

が開始または停止されるたびに アプリケーション NotifyEvent() メンバー関数が呼び出されます。この関数には、接

続ハンドルを提供する 2 つのパラメーターと BOOL スタート・ストップ標識が 渡されます。アプリケーションは、

他の ECL 関数の呼び出しを 含め、NotifyEvent() プロシージャーで必要な任意の関数を実行できます。アプリケー

ションは、接続の停止を阻止することはできないことに注意してください。通知は、セッションが停止された後に行

われます。

イベントの生成時にエラーが検出された場合、ECLErr オブジェクトを 使用して NotifyError() メンバー関数が呼び出

されます。エラーの特性に応じて、 エラー後にイベントが続けて生成されるかどうかが決まります。イベント生成

が終了するとき (エラーか、ECLConnMgr::UnregisterStartEvent の呼び出しか、 または ECLConnMgr オブジェク

トの破棄のいずれかが原因で) には、NotifyStop() メンバー関数が呼び出されます。イベント通知が終了するときに

は、NotifyStop() メンバー関数が常に呼び出され、 アプリケーション・オブジェクトの登録が抹消されます。

アプリケーションが NotifyError() メンバー関数の実装を行わない場合、 デフォルトの実装が使われます (単純なメッ

セージ・ボックスがユーザーに対して表示されます)。アプリケーションがデフォルトの振る舞いをオーバーライド

するには、 アプリケーションの派生クラス内に NotifyError() 関数を実装します。同様に、アプリケーションがこの

関数を提供しない場合、 デフォルトの NotifyStop() 関数が使われます (デフォルトの振る舞いでは何も行われませ

ん)。

またアプリケーションは、派生したクラス用に自身のコンストラクターおよび デストラクターを任意で提供できる

ことに注意してください。これが便利なのは、 アプリケーションが特定のインスタンス別データをそのクラス内に

保管してから、 その情報をコンストラクター上のパラメーターとして渡したい場合です。例えば、アプリケーショ

ンにおいて、スタート・ストップ・イベントが発生したら アプリケーション・ウィンドウにメッセージをポストし

たい場合があります。アプリケーションは、ウィンドウ・ハンドルをグローバル変数として定義する (このハンドル

を、NotifyEvent() 関数に見えるようにするため) 代わりに、 ウィンドウ・ハンドルを受け取ってクラス・メンバー

のデータ域に保管する クラス用のコンストラクターとして定義することができます。

アプリケーションは、イベントを受け取るために通知オブジェクトを 登録しているかぎり、そのオブジェクトを破

棄してはなりません。

実装上の制約事項: 現在、 ECLConnMgr オブジェクトでは、1 つのスタート・ストップ・イベント通知に対して 1 つ

しか通知オブジェクトを登録できません。その ECLConnMgr オブジェクト用に、既に 通知オブジェクトが登録され

ている場合、ECLConnMgr::RegisterStartEvent から エラーがスローされます。

派生
ECLBase > ECLNotify > ECLStartNotify

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

例
//---
// ECLStartNotify class
//
// This sample demonstrates the use of:
//
// ECLStartNotify::NotifyEvent
// ECLStartNotify::NotifyError
// ECLStartNotify::NotifyStop
// ECLConnMgr::RegisterStartEvent
// ECLConnMgr::UnregisterStartEvent
//---

//...
// Define a class derived from ECLStartNotify
//...
class MyStartNotify: public ECLStartNotify
{
public:
 // Define my own constructor to store instance data
 MyStartNotify(HANDLE DataHandle);

 // We have to implement this function
 void NotifyEvent(ECLConnMgr *CMObj, long ConnHandle,
 BOOL Started);

 // We will take the default behaviour for these so we
 // don't implement them in our class:
 // void NotifyError (ECLConnMgr *CMObj, long ConnHandle, ECLErr ErrObject);
 // void NotifyStop (ECLConnMgr *CMObj, int Reason);

private:
 // We will store our application data handle here
 HANDLE MyDataH;
};

 //...
MyStartNotify::MyStartNotify(HANDLE DataHandle) // Constructor
//...
{
 MyDataH = DataHandle; // Save data handle for later use
}

//...
void MyStartNotify::NotifyEvent(ECLConnMgr *CMObj, long ConnHandle,
 BOOL Started)
//...
{
 // This function is called whenever a connection start or stops.

 if (Started)
 printf("Connection %c started.\n", CMObj->ConvertHandle2ShortName(ConnHandle));
 else
 printf("Connection %c stopped.\n", CMObj->ConvertHandle2ShortName(ConnHandle));

 return;

193

ホストアクセスクラスライブラリ

194

}

 //...
// Create the class and begin start/stop monitoring.
//...
void Sample75() {

ECLConnMgr CMgr; // Connection manager object
MyStartNotify *Event; // Ptr to my event handling object
HANDLE InstData; // Handle to application data block (for example)

try {
 Event = new MyStartNotify(InstData); // Create event handler

 CMgr.RegisterStartEvent(Event); // Register to get events

 // At this point, any connection start/stops will cause the
 // MyStartEvent::NotifyEvent() function to execute. For
 // this sample, we put this thread to sleep during this
 // time.

 printf("Monitoring connection start/stops for 60 seconds...\n");
 Sleep(60000);

 // Now stop event generation.
 CMgr.UnregisterStartEvent(Event);
 printf("Start/stop monitoring ended.\n");

 delete Event; // Don't delete until after unregister!
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLStartNotify メソッド
以下のセクションでは、ECLStartNotify クラスにおいて有効なメソッドについて説明します。

ECLStartNotfiy() ECLStartNotify() virtual int NotifyEvent (ECLConnMgr *CMObj, long ConnHandle, BOOL Started)

= 0 virtual void NotifyError (ECLConnMgr *CMObj, long ConnHandle, ECLErr ErrObject) virtual void NotifyStop

(ECLConnMgr *CMObj int Reason)

NotifyEvent
このメソッドは、純粋仮想メンバー関数です (アプリケーションは ECLStartNotify から派生したクラス内にこの関数

を実装しなければなりません)。must 接続の開始または停止のときと、スタート・ストップ・イベントのためにオブ

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

ジェクトが登録されたときは、 常にこの関数が呼び出されます。接続が開始される場合は Started BOOL が True、

停止されている場合は False になります。

プロトタイプ
virtual int NotifyEvent (ECLConnMgr *CMObj, long ConnHandle, BOOL Started) = 0

パラメーター
ECLConnMgr *CMObj

これは、イベントが発生した ECLConnMgr オブジェクトを指すポインターです。

long ConnHandle

これは、開始または停止した接続のハンドルです。

BOOL Started

接続が開始される場合は True、接続が停止される場合は False になります。

戻り値
なし

NotifyError
このメソッドは、ECLConnMgr オブジェクトがエラー・イベント生成を 検出するたびに呼び出されます。エ

ラー・オブジェクトには、そのエラーについての情報が含まれます (ECLErr クラスの説明を参照)。エラーの特性

に応じて、エラー後にイベントが続けて生成されることがあります。エラーが原因でイベント生成が停止した場

合、NotifyStop() 関数が 呼び出されます。

ConnHandle には、エラーに関連した接続のハンドルが含まれます。エラーが特定の接続に関連していない場合、こ

の値はゼロになります。

アプリケーションは、この関数を実装するか、 または ECLStartNotify 基本クラスにエラーを処理させるかを選ぶこ

とができます。基本クラスは、ECLErr::GetMsgText() 関数から提供される テキストを使用して、メッセージ・ボッ

クスにエラーを表示します。アプリケーションが、その派生クラス内にこの関数を実装すると、 それによって、基

本クラス関数がオーバーライドされます。

プロトタイプ
virtual void NotifyError (ECLConnMgr *CMObj, long ConnHandle, ECLErr ErrObject)

パラメーター
ECLConnMgr *CMObj

これは、エラーが発生した ECLConnMgr オブジェクトを指すポインターです。

195

ホストアクセスクラスライブラリ

196

long ConnHandle

これは、エラーに関連した接続のハンドルまたはゼロです。

ECLErr ErrObject

これは、エラーを記述した ECLErr オブジェクトです。

戻り値
なし

NotifyStop
イベント生成が何らかの理由 (例えば、エラー条件が原因か、 または ECLConnMgr::UnregisterStartEvent の呼び出し

などが原因) で停止すると、 このメソッドが呼び出されます。

プロトタイプ
virtual void NotifyStop (ECLConnMgr *CMObj int Reason)

パラメーター
ECLConnMgr *CMObj

これは、通知を停止した ECLConnMgr オブジェクトを指すポインターです。

int Reason

これは、未使用のゼロです。

戻り値
なし

ECLUpdateNotify クラス
推奨されていません。ECLPSListener クラス (ページ 159)および ECLOIA クラス (ページ 93)の クラスの説明を

参照してください。

ECLWinMetrics クラス
ECLWinMetrics クラスは、Z and I Emulator for Windows の接続ウィンドウの処理を行います。このクラスは、ウィ

ンドウ長方形および位置の操作 (例えば、 SetWindowRect、GetXpos、または SetWidth) を、ウィンドウの状態の

操作と 同じように実行できます。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

派生
ECLBase > ECLConnection > ECLWinMetrics

プロパティー
なし

使用上の注意
ECLWinMetrics は ECLConnection から派生するため、ECLConnection オブジェクトに 含まれるすべての情報を取得

できます。詳しくは、ECLConnection クラス (ページ 24)を参照してください。

ECLWinMetrics オブジェクトは、作成時に識別された接続用に作成されます。ECLWinMetrics オブジェクトを作成

するには、通常は ECLConnection オブジェクトから 取得される接続 ID (単一の A から Z、または a から z の英字) ま

たは接続ハンドルを渡します。1 つの名前またはハンドルに対して、一度に 1 つの Z and I Emulator for Windows 接

続しかオープンできません。

注: ECLSession クラス内に、ECLWinMetrics オブジェクトを指す ポインターがあります。接続ウィン

ドウだけを操作したい場合 は、ECLWinMetrics を単独で作成します。他にも処理したいものがある場合

は、ECLSession オブジェクトを作成することができます。

ECLWinMetrics メソッド
次に示すメソッドは、ECLWinMetrics クラスに適用されます。

ECLWinMetrics(char Name) ECLWinMetrics(long Handle) ~ECLWinMetrics() const char *GetWindowTitle() void

SetWindowTitle(char *NewTitle) long GetXpos() void SetXpos(long NewXpos) long GetYpos() void SetYpos(long

NewYpos) long GetWidth() void SetWidth(long NewWidth) long GetHeight() void SetHeight(long NewHeight) void

GetWindowRect(Long *left, Long *top, Long *right, Long *bottom) void SetWindowRect(Long left, Long top, Long right,

Long bottom) BOOL IsVisible() void SetVisible(BOOL SetFlag) BOOL Active() void SetActive(BOOL SetFlag) BOOL

IsMinimized() void SetMinimized() BOOL IsMaximized() void SetMaximized() BOOL IsRestored() void SetRestored()

ECLWinMetrics コンストラクター
このメソッドは、接続名または接続ハンドル から ECLWinMetrics オブジェクトを作成します。Z and I Emulator for

Windows 接続でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみを

オープンできます。

197

ホストアクセスクラスライブラリ

198

プロトタイプ
ECLWinMetrics(char Name)

ECLWinMetrics(long Handle)

パラメーター
char Name

1 文字の接続の短縮名 (A から Z、または a から z)。

long Handle

ECL 接続のハンドル。

戻り値
なし

例
//---
// ECLWinMetrics::ECLWinMetrics (Constructor)
//
// Build WinMetrics object from name.
//---
void Sample77() {

ECLWinMetrics *Metrics; // Ptr to object

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 printf("Window of connection A is %lu pixels wide.\n",
 Metrics->GetWidth());

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLWinMetrics デストラクター
このメソッドは、ECLWinMetrics オブジェクトを破棄します。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

プロトタイプ
~ECLWinMetrics()

パラメーター
なし

戻り値
なし

例
//---
// ECLWinMetrics::ECLWinMetrics (Destructor)
//
// Build WinMetrics object from name.
//---
void Sample78() {

ECLWinMetrics *Metrics; // Ptr to object

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 printf("Window of connection A is %lu pixels wide.\n",
 Metrics->GetWidth());

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetWindowTitle
GetWindowTitle メソッドは、ECLWinMetrics オブジェクト に関連した接続用のタイトル・バーに現在あるタイトル

の入ったヌル終了ストリングを 指すポインターを戻します。戻されたストリングは、時間が経過しても持続すると

想定してはなりません。そのストリングのコピーを作成するか、または必要があるたびに このメソッドを呼び出さ

なければなりません。

プロトタイプ
const char *GetWindowTitle()

199

ホストアクセスクラスライブラリ

200

パラメーター
なし

戻り値
タイトルの入ったヌル終了ストリングを指すポインター。

例
//---
// ECLWinMetrics::GetWindowTitle
//
// Display current window title of connection A.
//---
void Sample79() {

ECLWinMetrics *Metrics; // Ptr to object

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 printf("Title of connection A is: %s\n",
 Metrics->GetWindowTitle());

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetWindowTitle
SetWindowTitle メソッドは、ECLWinMetrics オブジェクト に関連した接続用のタイトル・バーに現在あるタイトル

を、 入力パラメーターに入れて渡されたタイトルに変更します。タイトルをデフォルトのタイトルにリセットする

ために、null ストリングを 使用することができます。

プロトタイプ
void SetWindowTitle(char *NewTitle)

パラメーター
char *NewTitle

ヌル終了のタイトル・ストリング。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
なし

例
//---
// ECLWinMetrics::SetWindowTitle
//
// Change current window title of connection A.
//---
void Sample80() {

ECLWinMetrics *Metrics; // Ptr to object

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 // Get current title
 printf("Title of connection A is: %s\n", Metrics->GetWindowTitle());

 // Set new title
 Metrics->SetWindowTitle("New Title");
 printf("New title is: %s\n", Metrics->GetWindowTitle());

 // Reset back to original title
 Metrics->SetWindowTitle("");
 printf("Returned title to: %s\n", Metrics->GetWindowTitle());

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

使用上の注意
NewTitle がヌル・ストリングの場合、SetWindowTitle は ウィンドウ・タイトルを元の設定値に復元します。

GetXpos
GetXpos メソッドは、接続ウィンドウ長方形の左上の角の x 位置を戻します。

プロトタイプ
long GetXpos()

201

ホストアクセスクラスライブラリ

202

パラメーター
なし

戻り値
long

接続ウィンドウの x 位置。

例
//---
// ECLWinMetrics::GetXpos
//
// Move window 10 pixels.
//---
void Sample81() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot move minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetXpos();
 Y = Metrics->GetYpos();
 Metrics->SetXpos(X+10);
 Metrics->SetYpos(Y+10);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetXpos
SetXpos メソッドは、接続ウィンドウ長方形の左上の角の x 位置を設定します。

プロトタイプ
void SetXpos(long NewXpos)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

パラメーター
long NewXpos

ウィンドウ長方形の新しい x 座標。

戻り値
なし

例
//---
// ECLWinMetrics::SetXpos
//
// Move window 10 pixels.
//---
void Sample83() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot move minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetXpos();
 Y = Metrics->GetYpos();
 Metrics->SetXpos(X+10);
 Metrics->SetYpos(Y+10);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetYpos
GetYpos メソッドは、接続ウィンドウ長方形の左上の角の y 位置を戻します。

プロトタイプ
long GetYpos()

203

ホストアクセスクラスライブラリ

204

パラメーター
なし

戻り値
long

接続ウィンドウの y 座標。

例
a//---
// ECLWinMetrics::GetYpos
//
// Move window 10 pixels.
//---
void Sample82() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot move minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetXpos();
 Y = Metrics->GetYpos();
 Metrics->SetXpos(X+10);
 Metrics->SetYpos(Y+10);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetYpos
SetYpos メソッドは、接続ウィンドウ長方形の左上の角の y 位置を設定します。

プロトタイプ
void SetYpos(long NewYpos)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

パラメーター
long NewYpos

ウィンドウ長方形の新しい y 座標。

戻り値
なし

例
//---
// ECLWinMetrics::SetYpos
//
// Move window 10 pixels.
//---
void Sample84() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot move minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetXpos();
 Y = Metrics->GetYpos();
 Metrics->SetXpos(X+10);
 Metrics->SetYpos(Y+10);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetWidth
このメソッドは、接続ウィンドウ長方形の幅を戻します。

プロトタイプ
long GetWidth()

205

ホストアクセスクラスライブラリ

206

パラメーター
なし

戻り値
long

接続ウィンドウの幅。

例
//---
// ECLWinMetrics::GetWidth
//
// Make window 1/2 its current size. Depending on display settings
// (Appearance->Display Setup menu) it may snap to a font that is
// not exactly the 1/2 size we specify.
//---
void Sample85() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot size minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetWidth();
 Y = Metrics->GetHeight();
 Metrics->SetWidth(X/2);
 Metrics->SetHeight(Y/2);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetWidth
SetWidth メソッドは、接続ウィンドウ長方形の幅を設定します。

プロトタイプ
void SetWidth(long NewWidth)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

パラメーター
long NewWidth

ウィンドウ長方形の新しい幅。

戻り値
なし

例
//---
// ECLWinMetrics::SetWidth
//
// Make window 1/2 its current size. Depending on display settings
// (Appearance->Display Setup menu) it may snap to a font that is
// not exactly the 1/2 size we specify.
//---
void Sample87() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot size minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetWidth();
 Y = Metrics->GetHeight();
 Metrics->SetWidth(X/2);
 Metrics->SetHeight(Y/2);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

GetHeight
GetHeight メソッドは、接続ウィンドウ長方形の高さを戻します。

プロトタイプ
long GetHeight()

207

ホストアクセスクラスライブラリ

208

パラメーター
なし

戻り値
long

接続ウィンドウの高さ。

例
//---
// ECLWinMetrics::GetHeight
//
// Make window 1/2 its current size. Depending on display settings
// (Appearance->Display Setup menu) it may snap to a font that is
// not exactly the 1/2 size we specify.
//---
void Sample86() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot size minimized or maximized window.\n");
 }
 else {
 X = Metrics->GetWidth();
 Y = Metrics->GetHeight();
 Metrics->SetWidth(X/2);
 Metrics->SetHeight(Y/2);
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetHeight
このメソッドは、接続ウィンドウ長方形の高さを設定します。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

プロトタイプ
void SetHeight(Long NewHeight)

パラメーター
long NewHeight

ウィンドウ長方形の新しい高さ。

戻り値
なし

例
以下の例は、SetHeight メソッドを使用して接続ウィンドウ長方形の 高さを設定する方法を示します。

ECLWinMetrics *pWM;
ECLConnList ConnList();

// Create using connection handle of first connection in the list of
// active connections
try {
 if (ConnList.Count() != 0) {
 pWM = new ECLWinMetrics(ConnList.GetFirstSession()->GetHandle());

 // Set the height
 pWM->SetHeight(6081);
 }
}
catch (ECLErr ErrObj) {
 // Just report the error text in a message box
 MessageBox(NULL, ErrObj.GetMsgText(), "Error!", MB_OK);
}

GetWindowRect
このメソッドは、接続ウィンドウ長方形の境界点を戻します。

プロトタイプ
void GetWindowRect(Long *left, Long *top, Long *right, Long *bottom)

パラメーター
long *left

この出力パラメーターは、ウィンドウ長方形の左の座標に設定されます。

209

ホストアクセスクラスライブラリ

210

long *top

この出力パラメーターは、ウィンドウ長方形の上端の座標に設定されます。

long *right

この出力パラメーターは、ウィンドウ長方形の右の座標に設定されます。

long *bottom

この出力パラメーターは、ウィンドウ長方形の下端の座標に設定されます。

戻り値
なし

例
//---
// ECLWinMetrics::GetWindowRect
//
// Make window 1/2 its current size. Depending on display settings
// (Appearance->Display Setup menu) it may snap to a font that is
// not exactly the 1/2 size we specify. Also move the window.
//---
void Sample88() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y, Width, Height;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot size/move minimized or maximized window.\n");
 }
 else {
 Metrics->GetWindowRect(&X, &Y, &Width, &Height);
 Metrics->SetWindowRect(X+10, Y+10, // Move window
 Width/2, Height/2); // Size window
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SetWindowRect
このメソッドは、接続ウィンドウ長方形の境界点を設定します。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

プロトタイプ
void SetWindowRect(long left, long top, long right, long bottom)

パラメーター
long left

ウィンドウ長方形の左の座標。

long top

ウィンドウ長方形の上端の座標。

long right

ウィンドウ長方形の右の座標。

long bottom

ウィンドウ長方形の下端の座標。

戻り値
なし

例
//---
// ECLWinMetrics::SetWindowRect
//
// Make window 1/2 its current size. Depending on display settings
// (Appearance->Display Setup menu) it may snap to a font that is
// not exactly the 1/2 size we specify. Also move the window.
//---
void Sample89() {

ECLWinMetrics *Metrics; // Ptr to object
long X, Y, Width, Height;

try {
 Metrics = new ECLWinMetrics('A'); // Create for connection A

 if (Metrics->IsMinimized() || Metrics->IsMaximized()) {
 printf("Cannot size/move minimized or maximized window.\n");
 }
 else {
 Metrics->GetWindowRect(&X, &Y, &Width, &Height);
 Metrics->SetWindowRect(X+10, Y+10, // Move window
 Width/2, Height/2); // Size window
 }

 delete Metrics;
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());

211

ホストアクセスクラスライブラリ

212

}

} // end sample

IsVisible
このメソッドは、接続ウィンドウの可視状態を戻します。

プロトタイプ
BOOL IsVisible()

パラメーター
なし

戻り値
可視状態。ウィンドウが可視の場合は True 値、ウィンドウが不可視の場合は False 値になります。

例
//---
// ECLWinMetrics::IsVisible
//
// Get current state of window, and then toggle it.
//---
void Sample90() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsVisible(); // Get state
Metrics.SetVisible(!CurrState); // Set state

} // end sample

SetVisible
このメソッドは、接続ウィンドウの可視状態を設定します。

プロトタイプ
void SetVisible(BOOL SetFlag)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

パラメーター
BOOL SetFlag

可視の場合は True、不可視の場合は False。

戻り値
なし

例
//---
// ECLWinMetrics::SetVisible
//
// Get current state of window, and then toggle it.
//---
void Sample91() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsVisible(); // Get state
Metrics.SetVisible(!CurrState); // Set state

} // end sample

//---

IsActive
このメソッドは、接続ウィンドウのフォーカス状態を戻します。

プロトタイプ
BOOL Active()

パラメーター
なし

戻り値
BOOL

フォーカス状態。アクティブの場合は True、非アクティブの場合は False。

例

// ECLWinMetrics::IsActive

213

ホストアクセスクラスライブラリ

214

//
// Get current state of window, and then toggle it.
//---
void Sample92() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsActive(); // Get state
Metrics.SetActive(!CurrState); // Set state

} // end sample

SetActive
このメソッドは、接続ウィンドウのフォーカス状態を設定します。

プロトタイプ
void SetActive(BOOL SetFlag)

パラメーター
Bool SetFlag

新しい状態。アクティブの場合は True、非アクティブの場合は False。

戻り値
なし

例
以下に、SetActive メソッドの例を示します。

ECLWinMetrics *pWM;
ECLConnList ConnList();

// Create using connection handle of first connection in the list of
// active connections
try {
 if (ConnList.Count() != 0) {
 pWM = new ECLWinMetrics(ConnList.GetFirstSession()->GetHandle());

 // Set to inactive if active
 if (pWM->Active())
 pWM->SetActive(FALSE);
 }
}
catch (ECLErr ErrObj) {
 // Just report the error text in a message box

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 MessageBox(NULL, ErrObj.GetMsgText(), "Error!", MB_OK);
}

IsMinimized
このメソッドは、接続ウィンドウの最小化状態を戻します。

プロトタイプ
BOOL IsMinimized()

パラメーター
なし

戻り値
BOOL

最小化状態。ウィンドウが最小化の場合は True 値、 ウィンドウが最小化でない場合は False 値になり

ます。

例
//---
// ECLWinMetrics::IsMinimized
//
// Get current state of window, and then toggle it.
//---
void Sample93() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsMinimized(); // Get state
if (!CurrState)
 Metrics.SetMinimized(); // Set state
else
 Metrics.SetRestored();

} // end sample

SetMinimized
このメソッドは、接続ウィンドウを最小化に設定します。

215

ホストアクセスクラスライブラリ

216

プロトタイプ
void SetMinimized()

パラメーター
なし

戻り値
なし

例
//---
// ECLWinMetrics::SetMinimized
//
// Get current state of window, and then toggle it.
//---
void Sample94() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsMinimized(); // Get state
if (!CurrState)
 Metrics.SetMinimized(); // Set state
else
 Metrics.SetRestored();

} // end sample

IsMaximized
このメソッドは、接続ウィンドウの最大化状態を戻します。

プロトタイプ
BOOL IsMaximized()

パラメーター
なし

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
BOOL

最大化状態。ウィンドウが最大化の場合は True 値、 ウィンドウが最大化でない場合は False 値になり

ます。

例
// ECLWinMetrics::IsMaximized
//
// Get current state of window, and then toggle it.
//---
void Sample97() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsMaximized(); // Get state
if (!CurrState)
 Metrics.SetMaximized(); // Set state
else
 Metrics.SetMinimized();

} // end sample

SetMaximized
このメソッドは、接続ウィンドウを最大化に設定します。

プロトタイプ
void SetMaximized()

パラメーター
なし

戻り値
なし

例
//---
// ECLWinMetrics::SetMaximized
//
// Get current state of window, and then toggle it.
//---

217

ホストアクセスクラスライブラリ

218

void Sample98() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsMaximized(); // Get state
if (!CurrState)
 Metrics.SetMaximized(); // Set state
else
 Metrics.SetMinimized();

} // end sample

IsRestored
このメソッドは、接続ウィンドウの復元状態を戻します。

プロトタイプ
BOOL IsRestored()

パラメーター
なし

戻り値
BOOL

復元状態。ウィンドウが復元されている場合は True 値、 ウィンドウが復元されていない場合は False

値になります。

例
//---
// ECLWinMetrics::IsRestored
//
// Get current state of window, and then toggle it.
//---
void Sample95() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsRestored(); // Get state
if (!CurrState)
 Metrics.SetRestored(); // Set state
else
 Metrics.SetMinimized();

} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

SetRestored
SetRestored メソッドは、接続ウィンドウを 復元済みに設定します。

プロトタイプ
void SetRestored()

パラメーター
なし

戻り値
なし

例
//---
// ECLWinMetrics::SetRestored
//
// Get current state of window, and then toggle it.
//---
void Sample96() {

ECLWinMetrics Metrics('A'); // Window metrics class
BOOL CurrState;

CurrState = Metrics.IsRestored(); // Get state
if (!CurrState)
 Metrics.SetRestored(); // Set state
else
 Metrics.SetMinimized();

} // end sample

//---

ECLXfer クラス
オブジェクト、C++ECLXferECLXfer は、ファイル転送サービスを提供します。

219

ホストアクセスクラスライブラリ

220

派生
ECLBase > ECLConnection > ECLXfer

プロパティー
なし

使用上の注意
ECLXfer は ECLConnection から派生するため、ECLConnection オブジェクトに 含まれるすべての情報を取得できま

す。詳しくは、ECLConnection クラス (ページ 24)を参照してください。

ECLXfer オブジェクトは、作成時に識別された接続用に作成されます。ECLXfer オブジェクトを作成するには、 通常

は ECLConnList オブジェクトから取得される接続 ID (単一の A から Z、または a から z の英字) または接続ハンドル

を 渡します。1 つの名前またはハンドルに対して、一度に 1 つの Z and I Emulator for Windows 接続しかオープンで

きません。

注: ECLSession クラス内に、ECLXfer オブジェクトを指すポインターがあります。接続ウィンドウだ

けを操作したい場合は、ECLXfer オブジェクトを単独で作成します。他にも処理したいものがある場合

は、ECLSession オブジェクトを作成することができます。

ECLXfer メソッド
以下のセクションでは、ECLXfer クラスで有効なメソッドを説明します。

ECLXfer(char Name) ECLXfer(long Handle) ~ECLXfer() int SendFile(char *PCFile, char *HostFile, char *Options) int

ReceiveFile(char *PCFile, char *HostFile, char *Options)

ECLXfer コンストラクター
このメソッドは、接続名 (単一の A から Z、または a から z の英字) または接続ハンドル から ECLXfer オブジェクト

を作成します。Z and I Emulator for Windows 接続は、1 つの ID につき 1 つしかありません。例えば、一度に 1 つの

接続 A のみをオープンできます。

プロトタイプ
ECLXfer(char Name)

ECLXfer(long Handle)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

パラメーター
char Name

1 文字の接続の短縮名 (A から Z、または a から z)。

long Handle

ECL 接続のハンドル。

戻り値
なし

例
//---
// ECLXfer::ECLXfer (Constructor)
//
// Build ECLXfer object from a connection name.
//---
void Sample99() {

ECLXfer *Xfer; // Pointer to Xfer object

try {
 Xfer = new ECLXfer('A'); // Create object for connection A
 printf("Created ECLXfer for connection %c.\n", Xfer->GetName());

 delete Xfer; // Delete Xfer object
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

ECLXfer デストラクター
このメソッドは、ECLXfer オブジェクトを破棄します。

プロトタイプ
~ECLXfer();

パラメーター
なし

221

ホストアクセスクラスライブラリ

222

戻り値
なし

例
//---
// ECLXfer::~ECLXfer (Destructor)
//
// Build ECLXfer object from a connection name.
//---
void Sample100() {

ECLXfer *Xfer; // Pointer to Xfer object

try {
 Xfer = new ECLXfer('A'); // Create object for connection A
 printf("Created ECLXfer for connection %c.\n", Xfer->GetName());

 delete Xfer; // Delete Xfer object
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

SendFile
このメソッドは、 ファイルをワークステーションからホストに送信します。

プロトタイプ
int SendFile(char *PCFile, char *HostFile, char *Options)

パラメーター
char *PCFile

ホストに送るワークステーション・ファイル名を含んだストリングを指すポインター。

char *HostFile

ホストで作成または更新するホスト・ファイル名を含んだストリングを指すポインター。

char *Options

転送時に使用するオプションを含んだストリングを指すポインター。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
整数

SendFile EHLLAPI 関数に関して「Emulator Programming」に記載されている、 EHLLAPI 戻りコード。

例
//---
// ECLXfer::SendFile
//
// Send a file to a VM/CMS host with ASCII translation.
//---
void Sample101() {

ECLXfer *Xfer; // Pointer to Xfer object
int Rc;

try {
 Xfer = new ECLXfer('A'); // Create object for connection A

 printf("Sending file...\n");
 Rc = Xfer->SendFile("c:\\autoexec.bat", "autoexec bat a", "(ASCII CRLF QUIET");
 switch (Rc) {
 case 2:
 printf("File transfer failed, error in parameters.\n", Rc);
 break;
 case 3:
 printf("File transfer sucessfull.\n");
 break;
 case 4:
 printf("File transfer sucessfull, some records were segmented.\n");
 break;
 case 5:
 printf("File transfer failed, workstation file not found.\n");
 break;
 case 27:
 printf("File transfer cancelled or timed out.\n");
 break;
 default:
 printf("File transfer failed, code %u.\n", Rc);
 break;
 } // case

 delete Xfer; // Delete Xfer object
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

223

ホストアクセスクラスライブラリ

224

使用上の注意
ファイル転送オプションは、ホストに応じて異なります。以下に示すのは、VM/CMS ホストの有効なホスト・オプ

ションの一部です。

ASCII

CRLF

APPEND

LRECL

RECFM

CLEAR/NOCLEAR

PROGRESS

QUIET

サポートされるホストおよび関連ファイル転送オプションのリストについては、「Emulator Programming」を 参照

してください。

ReceiveFile
このメソッドは、ホストからファイルを受け取って、 ファイルをワークステーションに送ります。

プロトタイプ
int ReceiveFile(char *PCFile, char *HostFile, char *Options)

パラメーター
char *PCFile

ホストに送るワークステーション・ファイル名を含んだストリングを指すポインター。

char *HostFile

ホストで作成または更新するホスト・ファイル名を含んだストリングを指すポインター。

char *Options

転送時に使用するオプションを含んだストリングを指すポインター。

戻り値
整数

ReceiveFile EHLLAPI 関数に関して「Emulator Programming」に記載されている、 EHLLAPI 戻りコー

ド。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

例
//---
// ECLXfer::ReceiveFile
//
// Receive file from a VM/CMS host with ASCII translation.
//---
void Sample102() {

ECLXfer *Xfer; // Pointer to Xfer object
int Rc;

try {
 Xfer = new ECLXfer('A'); // Create object for connection A

 printf("Receiving file...\n");
 Rc = Xfer->ReceiveFile("c:\\temp.txt", "temp text a", "(ASCII CRLF QUIET");
 switch (Rc) {
 case 2:
 printf("File transfer failed, error in parameters.\n", Rc);
 break;
 case 3:
 printf("File transfer sucessfull.\n");
 break;
 case 4:
 printf("File transfer sucessfull, some records were segmented.\n");
 break;
 case 27:
 printf("File transfer cancelled or timed out.\n");
 break;
 default:
 printf("File transfer failed, code %u.\n", Rc);
 break;
 } // case

 delete Xfer; // Delete Xfer object
}
catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
}

} // end sample

使用上の注意
ファイル転送オプションは、ホストに応じて異なります。以下に示すのは、VM/CMS ホストの有効なホスト・オプ

ションの一部です。

ASCII

CRLF

APPEND

LRECL

RECFM

225

ホストアクセスクラスライブラリ

226

CLEAR/NOCLEAR

PROGRESS

QUIET

サポートされるホストおよび関連ファイル転送オプションのリストについては、「Emulator Programming」を 参照

してください。

ECLPageSettings クラス
ECLPageSettings クラスは、セッションのページ設定での操作を実行します。ここでは、「CPI」、「LPI」、および

「書体名」などの「ファイル」→「ページ設定」ダイアログ設定を検索および構成できます。ダイアログの「テキス

ト」タブ内の設定のみサポートされます。

派生
ECLBase > ECLConnection > ECLPageSettings

プロパティー
なし

制約事項
各メソッドに関連する接続は、メソッドを成功させるために 特定の状態になければなりません。制約事項を満たし

ていないと、 該当する例外が引き起こされます。

ECLPageSettings クラスのメソッドが呼び出されるときには、 以下の制約事項が適用されます。制約事項を満たし

ていないと、 例外がスローされます。

• 接続の「ページ設定」および「プリンター設定」ダイアログが使用中ではない。

• 接続が印刷中ではない。

• 関連する接続が PDT モードではない。

特定のメソッドに対して追加の制約事項が適用される場合があります。

使用上の注意
ECLPageSettings は ECLConnection から派生するため、ECLConnection オブジェクトに含まれるすべての情報を取

得できます。詳しくは、ECLConnection クラス (ページ 24)を参照してください。

ECLPageSettings オブジェクトは、作成時に識別された接続用に作成されます。ECLPageSettings オブジェクトを

作成するには、接続 ID (A から Z の単一の英字) または接続ハンドル (通常は ECLConnection オブジェクトから取得)

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

を渡します。1 つの名前またはハンドルに対して、一度に 1 つの Z and I Emulator for Windows 接続しかオープンで

きません。

ECLSession クラスは、このオブジェクトのインスタンスを作成します。ECLSession が提供する他のサービス

をアプリケーションで必要としない場合、 このオブジェクトを単独で作成しても構いません。それ以外の場

合、ECLSession オブジェクトを作成することを検討し、ECLSession によって作成されたオブジェクトを使用して

ください。詳しくは、ECLSession クラス (ページ 183)を参照してください。

各メソッドは、ECLPageSettings オブジェクトに関連する接続の特定の接続タイプのみをサポートします。サポー

トされる接続タイプについては、各メソッドのセクションで説明します。メソッドが、サポートされない接続上で呼

び出されると、 例外がスローされます。メソッド GetConnType を使用して接続タイプを判別してください。

CPI、LPI、および FontSize はプロパティー FaceName によって決定されます。そのため、FaceName を設定する前

に CPI、LPI、および FontSize を設定し、 それらの値が FaceName プロパティーに対して有効ではない場合、異な

る CPI、LPI、または FontSize 値が接続で再構成される場合があります。CPI、LPI、または FontSize を設定する前に

FaceName 値を設定する必要があります。あるいは、FaceName を設定するたびに CPI、LPI、および FontSize を照

会して、希望する値を使用していることを確認できます。

ECLPageSettings メソッド
以下のセクションで、ECLPageSettings クラスに有効なメソッドについて説明します。

ECLPageSettings(char Name) ECLPageSettings(long Handle) ~ECLPageSettings() void SetCPI(ULONG

CPI=FONT_CPI) ULONG GetCPI() const BOOL IsFontCPI() void SetLPI(ULONG LPI=FONT_LPI) ULONG GetLPI()

const BOOL IsFontLPI() void SetFontFaceName(const char *const FaceName) const char *GetFontFaceName()

const void SetFontSize(ULONG FontSize) ULONG GetFontSize() void SetMaxLinesPerPage(ULONG MPL) ULONG

GetMaxLinesPerPage() const void SetMaxCharsPerLine(ULONG MPP) ULONG GetMaxCharsPerLine() const void

RestoreDefaults(ULONG Tabs=PAGE_TEXT) const

接続タイプ
ECLPageSettings メソッドに有効な接続タイプは、以下のとおりです。

接続タイプ ストリング値

3270 表示装置 HOSTTYPE_3270DISPLAY

5250 ディスプレイ HOSTTYPE_5250DISPLAY

3270 印刷装置 HOSTTYPE_3270PRINTER

VT (ASCII) エミュレーション HOSTTYPE_VT

ECLPageSettings コンストラクター
このメソッドは、接続名またはハンドルを 使用して ECLPageSettings オブジェクトを作成します。

227

ホストアクセスクラスライブラリ

228

プロトタイプ
ECLPageSettings(char Name)

ECLPageSettings(long Handle)

パラメーター
char Name

1 文字の接続の短縮名。有効値は A から Z です。

long Handle

ECL 接続のハンドル。

戻り値
なし

例
以下の例は、接続名および接続ハンドルを使用して ECLPageSettings オブジェクトを作成する方法を示します。

void Sample108() {

 ECLPageSettings *PgSet1, *PgSet2; // Pointer to ECLPageSettings objects
 ECLConnList ConnList; // Connection list object

 try {
 // Create ECLPageSettings object for connection 'A'
 PgSet1 = new ECLPageSettings('A');
 // Create ECLPageSettings object for first connection in conn list
 ECLConnection *Connection = ConnList.GetFirstConnection();
 if (Connection != NULL) {
 PgSet2 = new ECLPageSettings(Connection->GetHandle());
 printf("PgSet#1 is for connection %c, PgSet #2 is for connection %c.\n",
 PgSet1->GetName(), PgSet2->GetName());
 delete PgSet1;
 delete PgSet2;
 }
 else
 printf("No connections to create PageSettings object.\n");
 } catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetCPI
このメソッドは、接続の CPI (字/インチ) 値を設定します。このメソッドを引数なしで呼び出すと、 接続には「フォ

ント CPI」が設定されます。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

プロトタイプ
void SetCPI(ULONG CPI=FONT_CPI);

パラメーター
ULONG CPI

1 インチ当たりの文字数。このパラメーターはオプションです。デフォルト値は FONT_CPI です。

戻り値
なし

例
void Sample109() {

 ECLPageSettings PgSet('A');

 PgSet.SetCPI(10);
 ULONG cpi = PgSet.GetCPI();
 printf("CPI = %ld\n", cpi);
 if (PgSet.IsFontCPI())
 printf("FontCPI\n");
 else
 printf("Not FontCPI\n");
} // end sample

GetCPI
このメソッドは、接続の CPI (字/インチ) 値を戻します。関連する接続で「フォント CPI」が選択されていても、こ

のメソッドは関連する接続のフォントに選択されている CPI の値を戻します。

接続に「フォント CPI」が構成されている場合、このメソッドは定数 FONT_CPI を戻しません。IsFontCPI メソッド

を使用して、接続に「フォント CPI」が設定されているかどうかを判別します。

プロトタイプ
ULONG GetCPI() const;

パラメーター
なし

戻り値
ULONG CPI

1 インチ当たりの文字数。

229

ホストアクセスクラスライブラリ

230

例
void Sample109() {

 ECLPageSettings PgSet('A');

 PgSet.SetCPI(10);
 ULONG cpi = PgSet.GetCPI();
 printf("CPI = %ld\n", cpi);
 if (PgSet.IsFontCPI())
 printf("FontCPI\n");
 else
 printf("Not FontCPI\n");
} // end sample

IsFontCPI
このメソッドは、接続に「フォント CPI」が設定されているかどうかの標識を戻します。

プロトタイプ
BOOL IsFontCPI();

パラメーター
なし

戻り値
BOOL

以下の値を指定できます。

• 接続に「フォント CPI」が設定されている場合、TRUE。

• 接続に「フォント CPI」が設定されていない場合、FALSE。

例
void Sample109() {

 ECLPageSettings PgSet('A');

 PgSet.SetCPI(10);
 ULONG cpi = PgSet.GetCPI();
 printf("CPI = %ld\n", cpi);
 if (PgSet.IsFontCPI())
 printf("FontCPI\n");
 else
 printf("Not FontCPI\n");
} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

SetLPI
このメソッドは、接続の LPI (行/インチ) 値を設定します。このメソッドを引数なしで呼び出すと、 接続には「フォ

ント LPI」が設定されます。

プロトタイプ
void SetLPI(ULONG LPI=FONT_LPI);

パラメーター
ULONG LPI

1 インチ当たりの行数。このパラメーターはオプションです。デフォルト値は FONT_LPI です。

戻り値
なし

例
void Sample110() {

 ECLPageSettings PgSet('A');

 PgSet.SetLPI(10);
 ULONG lpi = PgSet.GetLPI();
 printf("LPI = %ld\n", lpi);
 if (PgSet.IsFontLPI())
 printf("FontLPI\n");
 else
 printf("Not FontLPI\n");
} // end sample

GetLPI
このメソッドは、接続の LPI (行/インチ) 値を戻します。関連する接続で「フォント LPI」が選択されていても、こ

のメソッドは関連する接続のフォントに選択されている LPI の値を戻します。

接続に「フォント LPI」が構成されている場合、このメソッドは定数 FONT_LPI を戻しません。IsFontLPI メソッド

を使用して、接続に「フォント LPI」が設定されているかどうかを判別します。

プロトタイプ
ULONG GetLPI() const;

231

ホストアクセスクラスライブラリ

232

パラメーター
なし

戻り値
ULONG LPI

1 インチ当たりの行数。

例
void Sample110() {

 ECLPageSettings PgSet('A');

 PgSet.SetLPI(10);
 ULONG lpi = PgSet.GetLPI();
 printf("LPI = %ld\n", lpi);
 if (PgSet.IsFontLPI())
 printf("FontLPI\n");
 else
 printf("Not FontLPI\n");
} // end sample

IsFontLPI
このメソッドは、関連する接続に「フォント LPI」が設定されているかどうかの標識を戻します。

プロトタイプ
BOOL IsFontLPI();

パラメーター
なし

戻り値
BOOL

以下の値を指定できます。

• 接続に「フォント LPI」が設定されている場合、TRUE。

• 接続に「フォント LPI」が設定されていない場合、FALSE。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

例
void Sample110() {

 ECLPageSettings PgSet('A');

 PgSet.SetLPI(10);
 ULONG lpi = PgSet.GetLPI();
 printf("LPI = %ld\n", lpi);
 if (PgSet.IsFontLPI())
 printf("FontLPI\n");
 else
 printf("Not FontLPI\n");
} // end sample

SetFontFaceName
このメソッドは、接続のフォント書体を設定します。

プロトタイプ
void SetFontFaceName(const char *const FaceName);

パラメーター
char *FaceName

フォント書体名を含むヌル終了ストリング。

戻り値
なし

例
void Sample111() {

 ECLPageSettings PgSet('A');
 const char *Face;

 PgSet.SetFontFaceName("Courier New");
 Face = PgSet.GetFontFaceName();
 printf("FaceName = %s\n", Face);
} // end sample

233

ホストアクセスクラスライブラリ

234

GetFontFaceName
このメソッドは、ヌル終了ストリングを指すポインターを戻します。ストリングには、ECLPageSettings オブジェ

クトに関連する接続のページ設定で現在選択されているフォントの書体名が含まれます。このメソッドは、毎回同じ

ストリングを戻さない場合があります。

ストリングは、オブジェクトの存続期間内のみ有効です。そのストリングのコピーを作成するか、または必要がある

たびに このメソッドを呼び出さなければなりません。

プロトタイプ
const char *GetFontFaceName() const;

パラメーター
なし

戻り値
char *

フォントの書体名を含むヌル終了ストリングを指すポインター。

例
void Sample111() {

 ECLPageSettings PgSet('A');
 const char *Face;

 PgSet.SetFontFaceName("Courier New");
 Face = PgSet.GetFontFaceName();
 printf("FaceName = %s\n", Face);
} // end sample

SetFontSize
このメソッドは、フォントのサイズを設定します。

プロトタイプ
void SetFontSize(ULONG FontSize);

パラメーター
ULONG FontSize

接続に設定するフォントのサイズ。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

戻り値
なし

SetMaxLinesPerPage
このメソッドは、1 ページに印刷可能な最大行数を設定します。

プロトタイプ
void SetMaxLinesPerPage(ULONG MPL);

パラメーター
ULONG MPL

ページ当たり最大行数 (最大印刷行数)。有効な値は 1 から 255 の範囲内です。

戻り値
なし

例
void Sample113() {

 ECLPageSettings PgSet('A');

 PgSet.SetMaxLinesPerPage(40);
 ULONG MPL = PgSet.GetMaxLinesPerPage();
 printf("MaxLinesPerPage = %ld\n", MPL);
} // end sample

GetMaxLinesPerPage
このメソッドは、1 ページに印刷可能な最大行数を戻します。

プロトタイプ
ULONG GetMaxLinesPerPage() const;

パラメーター
なし

235

ホストアクセスクラスライブラリ

236

戻り値
ULONG

ページ当たり最大行数 (最大印刷行数)。

例
void Sample113() {

 ECLPageSettings PgSet('A');

 PgSet.SetMaxLinesPerPage(40);
 ULONG MPL = PgSet.GetMaxLinesPerPage();
 printf("MaxLinesPerPage = %ld\n", MPL);
} // end sample

SetMaxCharsPerLine
このメソッドは、1 行に印刷可能な最大文字数を設定します。

プロトタイプ
void SetMaxCharsPerLine(ULONG MPP);

パラメーター
ULONG MPP

1 行に印刷可能な最大文字数 (最大印刷位置)。有効な値は 1 から 255 の範囲内です。

戻り値
なし

例
void Sample114() {

 ECLPageSettings PgSet('A');

 PgSet.SetMaxCharsPerLine(50);
 ULONG MPP = PgSet.GetMaxCharsPerLine();
 printf("MaxCharsPerLine=%ld\n", MPP);
} // end sample

GetMaxCharsPerLine
このメソッドは、1 行に印刷可能な最大文字数を戻します。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

プロトタイプ
ULONG GetMaxCharsPerLine() const;

パラメーター
なし

戻り値
ULONG

1 行に印刷可能な最大文字数 (最大印刷位置)。

例
void Sample114() {

 ECLPageSettings PgSet('A');

 PgSet.SetMaxCharsPerLine(50);
 ULONG MPP = PgSet.GetMaxCharsPerLine();
 printf("MaxCharsPerLine=%ld\n", MPP);
} // end sample

RestoreDefaults
このメソッドは、「ページ設定」パネルの「nFlags」フィールドに指定されたプロパティー・ページのシステム・

デフォルト値を復元します。これは、接続の「ページ設定」ダイアログのプロパティー・ページの「デフォルト」ボ

タンをクリックすることと同じです。

プロトタイプ
void RestoreDefaults(ULONG Flags=PAGE_TEXT) const;

パラメーター
ULONG Flags

このパラメーターはオプションです。次のフラグは、指定されている「ページ設定」ダイアログ・プロ

パティー・ページの名前を記述します。このフラグをビット単位で論理和演算して 、プロパティー・

ページ (PCSAPI32.H で定義されています) を復元できます。

PAGE_TEXT

このフラグは「テキスト」プロパティー・ページを記述します。これは、現在サポートさ

れる唯一のプロパティー・ページです。

237

ホストアクセスクラスライブラリ

238

戻り値
なし

例
void Sample115() {

 ECLPageSettings PgSet('A');

 PgSet.RestoreDefaults(PAGE_TEXT);
} // end sample

ECLPrinterSettings クラス
ECLPrinterSettings クラスは、Z and I Emulator for Windows 接続のプリンター設定での操作を実行します。ここで

は、プリンターおよび PDT モードなどの「ファイル」→「プリンター設定」ダイアログの設定を検索および構成で

きます。

派生
ECLBase > ECLConnection > ECLPrinterSettings

プロパティー
なし

制約事項
各メソッドに関連する接続は、メソッドを成功させるために 特定の状態になければなりません。制約事項を満たし

ていないと、 該当する例外が引き起こされます。

ECLPrinterSettings クラスのメソッドが呼び出されるときには、 以下の制約事項が適用されます。制約事項を満たし

ていないと、 例外がスローされます。

• 接続の「ページ設定」および「プリンター設定」ダイアログが使用中ではない。

• 接続が印刷中ではない。

特定のメソッドに対して追加の制約事項が適用される場合があります。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

使用上の注意
ECLPrinterSettings は ECLConnection から派生するため、ECLConnection オブジェクトに含まれるすべての情報を

取得できます。詳しくは、ECLConnection クラス (ページ 24)を参照してください。

ECLPrinterSettings オブジェクトは、作成時に識別された接続用に作成されます。ECLPrinterSettings オブジェクト

を作成するには、接続 ID (A から Z の単一の英字) または接続ハンドル (通常は ECLConnection オブジェクトから取

得) のいずれかを渡します。1 つの名前またはハンドルに対して、一度に 1 つの Z and I Emulator for Windows 接続

しかオープンできません。

ECLSession クラスは、このオブジェクトのインスタンスを作成します。ECLSession が提供する他のサービス

をアプリケーションで必要としない場合、 このオブジェクトを単独で作成しても構いません。それ以外の場

合、ECLSession オブジェクトを作成することを検討し、ECLSession によって作成されたオブジェクトを使用して

ください。詳しくは、ECLSession クラス (ページ 183)を参照してください。

ECLPrinterSettings メソッド
以下のセクションで、ECLPrinterSettings クラスに有効なメソッドを説明します。

ECLPrinterSettings(char Name) ECLPrinterSettings(long Handle) ~ECLPrinterSettings() void SetPDTMode(BOOL

PDTMode=TRUE, const char*const PDTFile = NULL) const char *GetPDTFile() const BOOL IsPDTMode() const

ECLPrinterSettings::PrintMode GetPrintMode() const void SetPrtToDskAppend(const char *const FileName

= NULL) const char *GetPrtToDskAppendFile() void SetPrtToDskSeparate(const char *const FileName =

NULL) const char *GetPrtToDskSeparateFile() void SetSpecificPrinter(const char *const PrinterName) void

SetWinDefaultPrinter() const char*GetPrinterName() void SetPromptDialog(BOOL Prompt=TRUE) BOOL

IsPromptDialogEnabled()

ECLPrinterSettings コンストラクター
このメソッドは、接続名またはハンドル使用して ECLPrinterSettings オブジェクトを作成します。

プロトタイプ
ECLPrinterSettings(char Name)

ECLPrinterSettings(long Handle)

パラメーター
char Name

1 文字の接続の短縮名。有効値は A から Z です。

long Handle

ECL 接続のハンドル。

239

ホストアクセスクラスライブラリ

240

戻り値
なし

例
以下の例は、接続名および接続ハンドルを使用して ECLPrinterSettings オブジェクトを作成する方法を示します。

void Sample116() {
 ECLPrinterSettings *PrSet1, *PrSet2; // Pointer to ECLPrinterSettings objects
 ECLConnList ConnList; // Connection list object

 try {
 // Create ECLPrinterSettings object for connection 'A'
 PrSet1 = new ECLPrinterSettings('A');
 // Create ECLPrinterSettings object for first connection in conn list
 ECLConnection *Connection = ConnList.GetFirstConnection();
 if (Connection != NULL) {
 PrSet2 = new ECLPrinterSettings(Connection->GetHandle());
 printf("PrSet#1 is for connection %c, PrSet #2 is for connection %c.\n",
 PrSet1->GetName(), PrSet2->GetName());
 delete PrSet1;
 delete PrSet2;
 } else
 printf("No connections to create PageSettings object.\n");
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetPDTMode
このメソッドは、所定の PDT ファイルによって PDT モードに接続を設定するか、非 PDT モード (GDI モード) に接

続を設定します。

注: このメソッドが PDTMode を False に設定して呼び出される場合には、 関連する接続の PrintMode が既

に SpecificPrinter または WinDefaultPrinter である必要があります。

プロトタイプ
void SetPDTMode(BOOL PDTMode=TRUE, const char *const PDTFile = NULL);

パラメーター
BOOL PDTMode

このパラメーターはオプションです。以下の値を指定できます。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

• PDT モードに接続を設定するには TRUE。これはデフォルト値です。

• 非 PDT モードに接続を設定するには FALSE。

char *PDTFile

PDT ファイルの名前を含むヌル終了ストリング。

このパラメーターはオプションです。これは、PDTMode が TRUE の場合にのみ使用されま

す。PDTMode が FALSE の場合、このパラメーターは無視されます。

以下の値を指定できます。

• NULL

接続に構成されている PDT ファイルが使用されます。接続にまだ PDT ファイルが構成されて

いない場合、このメソッドは例外をスローして失敗します。これはデフォルト値です。

• パスなしのファイル名

Z and I Emulator for Windows のインストール・パスの PDFPDT サブフォルダー内の PDTFile が

使用されます。

• ファイルの完全修飾パス名

PDTFile が存在しない場合、このメソッドは例外をスローして失敗します。

戻り値
なし

例
void Sample117() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPDTMode(TRUE, "epson.pdt");
 const char *PDTFile = PrSet.GetPDTFile();
 printf("PDT File = %s\n", PDTFile);
 if (PrSet.IsPDTMode())
 printf("PDTMode\n");
 else
 printf("Not PDTMode\n");
 PrSet.SetPDTMode(FALSE);
 PrSet.SetPDTMode(TRUE);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

241

ホストアクセスクラスライブラリ

242

GetPDTFile
このメソッドは、接続に構成されている PDT ファイルを戻します。このメソッドは、毎回同じストリングを戻さな

い場合があります。

ストリングは、オブジェクトの存続期間内のみ有効です。そのストリングのコピーを作成するか、または必要がある

たびに このメソッドを呼び出さなければなりません。

プロトタイプ
const char *GetPDTFile() const;

パラメーター
なし

戻り値
char *

以下の値を指定できます。

• 接続の PDT ファイルの完全修飾パス名を含むヌル終了ストリング。

• 接続に PDT ファイルが構成されていない場合は NULL。

例
void Sample117() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPDTMode(TRUE, "epson.pdt");
 const char *PDTFile = PrSet.GetPDTFile();
 printf("PDT File = %s\n", PDTFile);
 if (PrSet.IsPDTMode())
 printf("PDTMode\n");
 else
 printf("Not PDTMode\n");
 PrSet.SetPDTMode(FALSE);
 PrSet.SetPDTMode(TRUE);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

IsPDTMode
このメソッドは、接続の PDT モードの状態を戻します。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

プロトタイプ
BOOL IsPDTMode() const;

パラメーター
なし

戻り値
BOOL

以下の値を指定できます。

• 接続が PDT モードの場合、TRUE。

• 接続が PDT モードでない場合、FALSE。

例
void Sample117() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPDTMode(TRUE, "epson.pdt");
 const char *PDTFile = PrSet.GetPDTFile();
 printf("PDT File = %s\n", PDTFile);
 if (PrSet.IsPDTMode())
 printf("PDTMode\n");
 else
 printf("Not PDTMode\n");
 PrSet.SetPDTMode(FALSE);
 PrSet.SetPDTMode(TRUE);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

GetPrintMode
このメソッドは、接続の PrintMode を示す列挙値を戻します。列挙データ型 ECLPrinterSettings::PrintMode は

ECLPRSET.HPP に定義されます。

PrintMode は、以下のいずれかになります。

• PrtToDskAppend (ディスクへの印刷 - 付加モード)

これは、ホスト・セッションの「プリンター設定」→「プリンター」→「ディスクへの印刷」ダイアログ

で「付加」オプションを選択することと同じです。

243

ホストアクセスクラスライブラリ

244

• PrtToDskSeparate (ディスクへの印刷 - 別個モード)

これは、ホスト・セッションの「プリンター設定」→ 「プリンター」→ 「ディスクへの印刷」ダイアログ

で「別個」オプションを選択することと同じです。

• WinDefaultPrinter (Windows デフォルト・プリンター・モード)

これは、ホスト・セッションの「プリンター設定」ダイアログで「Windows デフォルト・プリンターを使

用」オプションを選択することと同じです。

• SpecificPrinter (特定プリンター・モード)

これは、ホスト・セッションの「プリンター設定」ダイアログで、「Windows デフォルト・プリンターを

使用」オプションのチェックを外した状態でプリンターを選択するのと同じです。

プロトタイプ
ECLPrinterSettings::PrintMode GetPrintMode() const;

パラメーター
なし

戻り値
ECLPrinterSettings::PrintMode

ECLPRSET.HPP に定義されている PrintMode 値の 1 つ。

例
void Sample118() {

 ECLPrinterSettings PrSet('A');

 ECLPrinterSettings::PrintMode PrtMode;
 PrtMode = PrSet.GetPrintMode();
 switch (PrtMode) {
 case ECLPrinterSettings::PrtToDskAppend:
 printf("PrtToDskAppend mode\n");
 break;
 case ECLPrinterSettings::PrtToDskSeparate:
 printf("PrtToDskSeparate mode\n");
 break;
 case ECLPrinterSettings::SpecificPrinter:
 printf("SpecificPrinter mode\n");
 break;
 case ECLPrinterSettings::WinDefaultPrinter:
 printf("WinDefaultPrinter mode\n");
 break;
 }
} // end sample

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

SetPrtToDskAppend
このメソッドは、PrintMode をディスクへの印刷 - コピー追加モードに設定し、このモードに該当するファイルを

設定します。

注:

1. 関連する接続は PDT モードにする必要があります。

2. このファイルを設定するフォルダーには書き込みアクセス権限が必要です。権限がない場合、 この

メソッドは例外をスローして失敗します。

3. ファイルが存在する場合には、それが使用されます。それ以外の場合、 印刷の完了時に作成されま

す。

プロトタイプ
void SetPrtToDskAppend(const char *const FileName = NULL);

パラメーター
char *FileName

ディスクへの印刷 - コピー追加ファイルの名前を含むヌル終了ストリング。このパラメーターはオプ

ションです。

以下の値を指定できます。

• NULL

接続でこの PrintMode に現在構成されているファイルが使用されます。接続にまだファイル

が構成されていないと、このメソッドは例外をスローして失敗します。これはデフォルト値で

す。

• ファイル名 (パスなし)

ユーザー・クラスのアプリケーション・データ・ディレクトリー・パスを使用してファイルを

見つけます。

• ファイルの完全修飾パス名

パス内にディレクトリーが存在している必要があります。 ない場合、メソッドは例外をスロー

して失敗します。ファイルがパス内に存在する必要はありません。

戻り値
なし

245

ホストアクセスクラスライブラリ

246

例
void Sample119() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPrtToDskAppend("dskapp.txt");
 const char *DskAppFile = PrSet.GetPrtToDskAppendFile();
 printf("Print to Disk-Append File = %s\n", DskAppFile);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

GetPrtToDskAppendFile
このメソッドは、ディスクへの印刷 - コピー追加モードに構成されたファイルを戻します。このファイルは、ディス

クへの印刷 - コピー追加ファイルと呼ばれます。このメソッドは、毎回同じストリングを戻さない場合があります。

ストリングは、オブジェクトの存続期間内のみ有効です。そのストリングのコピーを作成するか、または必要がある

たびに このメソッドを呼び出さなければなりません。

プロトタイプ
const char *GetPrtToDskAppendFile();

パラメーター
なし

戻り値
char *

以下の値を指定できます。

• 接続のディスクへの印刷 - コピー追加ファイルの完全修飾パス名を含むヌル終了ストリング。

• 接続にディスクへの印刷 - コピー追加ファイルが構成されていない場合、NULL。

例
void Sample119() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPrtToDskAppend("dskapp.txt");
 const char *DskAppFile = PrSet.GetPrtToDskAppendFile();

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 printf("Print to Disk-Append File = %s\n", DskAppFile);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetPrtToDskSeparate
このメソッドは、接続をディスクへの印刷 - 別個モードに設定し、このモードに該当するファイルを設定します。

注:

1. 関連する接続は PDT モードにする必要があります。

2. このファイルを設定するフォルダーには書き込みアクセス権限が必要です。権限がない場合、 この

メソッドは例外をスローして失敗します。

3. ファイル名には拡張子を入れないでください。拡張子が入っていると、このメソッドは例外をスロー

して失敗します。

プロトタイプ
void SetPrtToDskSeparate(const char *const FileName = NULL);

パラメーター
char *FileName

ディスクへの印刷 - 別個ファイルの名前を含むヌル終了ストリング。このパラメーターはオプションで

す。

以下の値を指定できます。

• NULL

接続でこの PrintMode に現在構成されているファイルが使用されます。接続にまだファイル

が構成されていないと、このメソッドは例外をスローして失敗します。これはデフォルト値で

す。

• ファイル名 (パスなし)

ユーザー・クラスのアプリケーション・データ・ディレクトリー・パスを使用してファイルを

見つけます。

• ファイルの完全修飾パス名

パス内にディレクトリーが存在している必要があります。 ない場合、メソッドは例外をスロー

して失敗します。ファイルがパス内に存在する必要はありません。

247

ホストアクセスクラスライブラリ

248

戻り値
なし

例
void Sample120() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPrtToDskSeparate("dsksep");
 const char *DskSepFile = PrSet.GetPrtToDskSeparateFile();
 printf("Print to Disk-Separate File = %s\n", DskSepFile);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

GetPrtToDskSeparateFile
このメソッドは、ディスクへの印刷 - 別個モードに構成されたファイルを戻します。このファイルは、ディスクへの

印刷 - 別個ファイルと呼ばれます。このメソッドは、毎回同じストリングを戻さない場合があります。

ストリングは、オブジェクトの存続期間内のみ有効です。そのストリングのコピーを作成するか、または必要がある

たびに このメソッドを呼び出さなければなりません。

プロトタイプ
const char *GetPrtToDskSeparateFile();

パラメーター
なし

戻り値
char *

以下の値を指定できます。

• ディスクへの印刷 - 別個ファイルの完全修飾パス名を含むヌル終了ストリング。

• 接続にディスクへの印刷 - 別個ファイルが構成されていない場合、NULL。

例
void Sample120() {

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPrtToDskSeparate("dsksep");
 const char *DskSepFile = PrSet.GetPrtToDskSeparateFile();
 printf("Print to Disk-Separate File = %s\n", DskSepFile);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetSpecificPrinter
このメソッドは、Printer パラメーターに指定されたプリンターによって 接続を SpecificPrinter モードに設定しま

す。

プロトタイプ
void SetSpecificPrinter(const char *const Printer);

パラメーター
char *Printer

プリンター名およびポート名を含むヌル終了ストリング。プリンターが存在しない場合、このメソッド

は例外をスローして失敗します。

値の形式は次のようにする必要があります。

<Printer name> on <Port Name>

例:

• HP LaserJet 4050 Series PCL 6 on LPT1

戻り値
なし

例
void Sample121() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetSpecificPrinter("HCL InfoPrint 40 PS on Network Port");
 const char *Printer = PrSet.GetPrinterName();
 printf("Printer = %s\n", Printer);
 }
 catch (ECLErr Err) {

249

ホストアクセスクラスライブラリ

250

 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetWinDefaultPrinter
このメソッドは、接続を WinDefaultPrinter モードに設定します。これにより、接続は Windows® のデフォルト・プ

リンターを使用するようになります。マシンに Windows のデフォルト・プリンターが構成されていない場合、この

メソッドは例外をスローして失敗します。

プロトタイプ
void SetWinDefaultPrinter();

パラメーター
なし

戻り値
なし

例
void Sample122() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetWinDefaultPrinter();
 const char *Printer = PrSet.GetPrinterName();
 printf("Windows Default Printer = %s\n", Printer);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

GetPrinterName
このメソッドは、NULL または接続に構成されているプリンターの名前を戻します。このメソッドは、毎回同じスト

リングを戻さない場合があります。

ストリングは、オブジェクトの存続期間内のみ有効です。そのストリングのコピーを作成するか、または必要がある

たびに このメソッドを呼び出さなければなりません。

プリンター名の形式は次のとおりです。

<Printer name> on <Port Name>

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

例:

• HP LaserJet 4050 Series PCL 6 on LPT1

プロトタイプ
const char *GetPrinterName();

パラメーター
なし

戻り値
char *

以下の値を指定できます。

• 接続の PrintMode が SpecificPrinter の場合、特定のプリンターの名前を含むヌル終了ストリン

グ。

• 接続の PrintMode が WinDefaultPrinter の場合、Windows のデフォルト・プリンターの名前を

含むヌル終了ストリング。

• 接続にプリンターが構成されていない場合、あるいは接続の PrintMode が PrtToDskAppend ま

たは PrtToDskSeparate の場合、NULL。

例
void Sample122() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetWinDefaultPrinter();
 const char *Printer = PrSet.GetPrinterName();
 printf("Windows Default Printer = %s\n", Printer);
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

SetPromptDialog
このメソッドは、印刷前に「プリンター設定」ダイアログを表示するオプションを設定またはリセットします。

プロトタイプ
void SetPromptDialog(BOOL bPrompt=TRUE);

251

ホストアクセスクラスライブラリ

252

パラメーター
BOOL bPrompt

このパラメーターはオプションです。以下の値を指定できます。

• 印刷前に「プリンター設定」ダイアログを表示するには TRUE。これはデフォルト値です。

• 印刷前に「プリンター設定」ダイアログを表示しないようにするには FALSE。

戻り値
なし

例
void Sample123() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPromptDialog();
 if (PrSet.IsPromptDialogEnabled())
 printf("Prompt Dialog before Printing - Enabled\n");
 else
 printf("Prompt Dialog before Printing - Disabled\n");
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

IsPromptDialogEnabled
このメソッドは、印刷前に「プリンター設定」ダイアログを表示するかどうかを検査します。

プロトタイプ
BOOL IsPromptDialogEnabled();

パラメーター
なし

戻り値
BOOL

以下の値を指定できます。

Chapter 2. ホスト・アクセス・クラス・ライブラリー C++

• 印刷前に「プリンター設定」ダイアログを表示する場合、TRUE。

• 印刷前に「プリンター設定」ダイアログを表示しない場合、FALSE。

例
void Sample123() {

 ECLPrinterSettings PrSet('A');

 try {
 PrSet.SetPromptDialog();
 if (PrSet.IsPromptDialogEnabled())
 printf("Prompt Dialog before Printing - Enabled\n");
 else
 printf("Prompt Dialog before Printing - Disabled\n");
 }
 catch (ECLErr Err) {
 printf("ECL Error: %s\n", Err.GetMsgText());
 }
} // end sample

253

254

第 3 章. ホスト・アクセス・クラス・ライブラリーの自動
化オブジェクト
オブジェクト、自動化説明ホスト・アクセス・クラス・ライブラリーの自動化オブジェクトを使用すると、Z and I Emulator for Windows 製品

が Microsoft® の COM ベースのオートメーション技術 (以前は OLE オートメーションと呼ばれていた) をサポートで

きるようになります。ECL 自動化オブジェクトは、一連の自動化サーバーであり、これを使用することによって、自

動化コントローラー (Microsoft® Visual Basic® など) が、プログラマチックに Z and I Emulator for Windows のデー

タおよび機能にアクセスすることができます。

この例として、キーを Z and I Emulator for Windows の表示スペースに送信することを考慮します。これは、「Z

and I Emulator for Windows」ウィンドウでキーを入力することにより実行できますが、適切な Z and I Emulator for

Windows の自動化サーバー (この場合、autECLPS) を使用して自動処理することもできます。Visual Basic® を使用

して、autECLPS オブジェクトを作成し、表示スペースに配置されるストリングを使用して、そのオブジェクトの

SendKeys メソッドを呼び出します。

言い替えると、自動化プロトコルを制御できるアプリケーション (自動化コントローラー) は、Z and I Emulator for

Windows の操作の一部 (自動化サーバー) を制御することができます。Z and I Emulator for Windows は、ECL 自

動化オブジェクトを使用する Visual Basic® スクリプトをサポートします。詳細については、Z and I Emulator for

Windows のマクロやスクリプトのサポートについて参照してください。

Z and I Emulator for Windows は、これを実行するためにいくつかの自動化サーバーを提供しています。これらの

サーバーは、直感的に理解できる身近なオブジェクトとして、そして Z and I Emulator for Windows の操作容易性を

制御するメソッドとプロパティーを持つものとして実装されています。各オブジェクトは、自動化ホスト・アクセ

ス・クラス・ライブラリーで あることを表す autECL で始まります。オブジェクトは、以下のとおりです。

• autECLConnList クラス (ページ 256) ページの autECLConnList (接続リスト) は、 所定のシステム

の Z and I Emulator for Windows 接続を列挙します。これは、autECLConnMgr に含まれています

が、autECLConnMgr から独立して 作成することもできます。

• autECLConnMgr クラス (ページ 264) ページの autECLConnMgr (接続マネージャー) は、所定のシステムで

Z and I Emulator for Windows 接続を管理するメソッドおよびプロパティーを提供します。この場合の接続と

は、Z and I Emulator for Windows のウィンドウのことです。

• autECLFieldList クラス (ページ 270) ページの autECLFieldList (フィールド・リスト) は、 エミュレーター

表示スペースでのフィールドの操作を実行します。

• autECLOIA クラス (ページ 281) ページの autECLOIA (オペレーター情報域) は、 オペレーター情報域を照

会および操作するメソッドおよびプロパティーを提供します。これは、autECLSession に含まれています

が、autECLSession から独立して 作成することもできます。

• autECLPS クラス (ページ 299) ページの autECLPS (表示スペース) は、 関連する Z and I Emulator for

Windows 接続について表示スペースを照会および操作するメソッドとプロパティーを提供します。ここに

は、表示スペース内のすべてのフィールドのリストが含まれています。これは、autECLSession に含まれて

いますが、autECLSession から独立して 作成することもできます。

• autECLScreenDesc クラス (ページ 339) ページの autECLScreenDesc (画面記述) は、画面を記述するための

メソッドおよびプロパティーを提供します。これは、autECLPS オブジェクトまたは autECLScreenReco オブ

ジェクトで画面を待機する ために使用することができます。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

• autECLScreenReco クラス (ページ 347) ページの autECLScreenReco (画面認識) は、HACL 画面認識システ

ムのエンジンを提供します。

• autECLSession クラス (ページ 353) ページの autECLSession (セッショ

ン) は、一般セッション関連の機能および情報を提供します。便利なよう

に、autECLPS、autECLOIA、autECLXfer、autECLWinMetrics、autECLPageSettings、 および

autECLPrinterSettings オブジェクトも含まれています。

• autECLWinMetrics クラス (ページ 366) ページの autECLWinMetrics (ウィンドウ・メトリック) は、こ

のオブジェクトに関連する Z and I Emulator for Windows セッションのウィンドウ・メトリックを照会

するメソッドを提供します。例えば、このオブジェクトを使用すると、Z and I Emulator for Windowsの

ウィンドウを最小化したり最大化したりすることができます。これは、autECLSession に含まれています

が、autECLSession から独立して 作成することもできます。

• autECLXfer クラス (ページ 383) ページの autECLXfer (ファイル転送) は、このファイル転送オブジェクト

に関連するZ and I Emulator for Windows接続でのホストおよびワークステーション間のファイルを転送する

メソッドおよびプロパティーを提供します。これは、autECLSession に含まれていますが、autECLsession

から独立して 作成することもできます。

• autECLPageSettings クラス (ページ 397) ページの autECLPageSettings (ページ設定) は、セッションの

「ページ設定」ダイアログの「CPI」、「LPI」、 および「書体名」などの一般に使用される設定を照会

および操作するメソッドおよびプロパティーを提供します。これは、autECLSession に含まれています

が、autECLSession から独立して 作成することもできます。

• autECLPrinterSettings クラス (ページ 408) ページの autECLPrinterSettings (プリンター設定) は、 セッショ

ンの「プリンター設定」ダイアログの「プリンター」や「PDT モード」などの設定を照会および操作するメ

ソッドおよびプロパティーを提供します。これは、autECLSession に含まれていますが、autECLSession か

ら独立して 作成することもできます。

図 3 : ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト (ページ 256) に、autECL オブジェクトを

図形的に表現します。

255

ホストアクセスクラスライブラリ

256

図 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

この章は、それぞれのオブジェクトのメソッドおよびプロパティーを詳細に説明しており、 自動化オブジェクトを

使用する潜在的可能性のあるすべてのユーザーを対象にしています。オブジェクトは、Visual Basic® などのスクリ

プト・アプリケーションを介して使用する場合が一般的であるため、例ではすべて Visual Basic® 形式を使用してい

ます。

autSystem クラス
autSystem クラスは、一部のプログラム言語で使用する場合に役立つ 2 つのユーティリティー関数を提供します。

詳しくは、autSystem クラス (ページ 395)を参照してください。

autECLConnList クラス
autECLConnList には、 すべての開始された接続についての情報が含まれています。レジストリーでのその名前は

ZIEWin.autECLConnList です。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

autECLConnList オブジェクトには、ホストへの接続についての情報の集合が 含まれています。集合の各要素は、単

一の接続 (エミュレーター・ウィンドウ) を 示しています。このリスト内の接続は、どのような状態 (例えば、停止ま

たは切断) にあるものでも構いません。すべての開始済みの接続が、このリストに示されます。リスト要素には、接

続の状態が入っています。

autECLConnList オブジェクトは、現在の接続の 静的スナップショットを提供します。このリストは、接続の開始お

よび停止に連動して更新されるわけではありません。Refresh メソッドは、autECLConnList オブジェクトの作成時

に自動的に呼び出されます。autECLConnList オブジェクトをその作成後すぐ後に使用すると、 接続のリストは最新

になります。しかし、作成後しばらくたった場合は、確実に現在のデータを取得するためには、 他のメソッドにア

クセスする前に autECLConnList オブジェクトで Refresh メソッドを 呼び出さなければなりません。一度 Refresh を

呼び出せば、集合の内容をすべて調べることができます。

プロパティー
このセクションでは、autECLConnList オブジェクトの プロパティーについて説明します。

タイプ 名前 属性

Long (長形式) カウント 読み取り専用

以下の表は、集合要素プロパティーを示しています。 これは、リスト内の各項目に有効です。

タイプ 名前 属性

ストリング 名前 読み取り専用

長形式 ハンドル 読み取り専用

ストリング ConnType 読み取り専用

長形式 CodePage 読み取り専用

ブール値 開始済み 読み取り専用

ブール値 CommStarted 読み取り専用

ブール値 APIEnabled 読み取り専用

ブール値 作動可能 読み取り専用

カウント
これは、Refresh メソッドへの最後の呼び出しに 関する autECLConnList 集合にある接続の数です。Count プロパ

ティーは、Long データ型で読み取り専用 です。以下の例では、Count プロパティーを使用しています。

Dim autECLConnList as Object
Dim Num as Long

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

autECLConnList.Refresh
Num = autECLConnList.Count

257

ホストアクセスクラスライブラリ

258

名前
この集合要素プロパティーは、接続の接続名ストリングです。Z and I Emulator for Windows は、短い文字 ID (A か

ら Z、または a から z) のみをストリングで戻します。Z and I Emulator for Windows 接続でオープンできるのは、1

つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみをオープンできます。Name は、String

データ型で読み取り専用です。以下の例では、Name 集合要素プロパティーを使用しています。

Dim Str as String
Dim autECLConnList as Object
Dim Num as Long

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

autECLConnList.Refresh
Str = autECLConnList(1).Name

ハンドル
この集合要素プロパティーは、接続のハンドルです。特定の 1 つのハンドルに対して 1 つしか、Z and I Emulator for

Windows 接続をオープンできません。Handle は、Long データ型で読み取り専用です。以下の例では、Handle 集

合要素プロパティーを使用しています。

Dim autECLConnList as Object
Dim Hand as Long

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

autECLConnList.Refresh
Hand = autECLConnList(1).Handle

ConnType
この集合要素プロパティーは、接続タイプです。このタイプは、時間の経過とともに変更する場合が ありま

す。ConnType は、String データ型で読み取り専用です。以下の例で、ConnType プロパティーを示します。

Dim Type as String
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

autECLConnList.Refresh
Type = autECLConnList(1).ConnType

ConnType プロパティーの接続タイプは、以下のとおりです。

戻されるストリング 意味

DISP3270 3270 表示装置

DISP5250 5250 ディスプレイ

PRNT3270 3270 印刷装置

PRNT5250 5250 プリンター

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

ASCII VT エミュレーション

CodePage
この集合要素プロパティーは、接続のコード・ページです。このコード・ページは、時間の経過とともに変更される

場合があります。CodePage は、Long データ型で読み取り専用です。以下の例で、CodePage プロパティーを示し

ます。

Dim CodePage as Long
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

autECLConnList.Refresh
CodePage = autECLConnList(1).CodePage

開始済み
この集合要素プロパティーで、 エミュレーター・ウィンドウが開始されたかどうかを示します。ウィンドウがオー

プンしている場合、値は True です。 その他の場合は False です。Started は、Boolean データ型で読み取り専用で

す。以下の例で、Started プロパティーを示します。

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
autECLConnList.Refresh

' This code segment checks to see if is started.
' The results are sent to a text box called Result.
If Not autECLConnList(1).Started Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
この集合要素プロパティーは、ホストへの接続の状況を示しています。ホストが接続されている場合、値は

True です。 その他の場合は False です。CommStarted は、Boolean データ型で読み取り専用です。以下の例

で、CommStarted プロパティーを示します。

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
autECLConnList.Refresh

' This code segment checks to see if communications are connected
' The results are sent to a text box called CommConn.
If Not autECLConnList(1).CommStarted Then
 CommConn.Text = "No"

259

ホストアクセスクラスライブラリ

260

Else
 CommConn.Text = "Yes"
End If

APIEnabled
この集合プロパティーで、エミュレーターが API 使用可能か どうかを示します。API 設定 (Z and I Emulator for

Windows のウィンドウでは、「ファイル」->「API の設定」を選択) の状態に応じて、接続が可能な場合と、

接続できない場合があります。エミュレーターが使用可能の場合には、True です。その他の場合には、False で

す。APIEnabled は、Boolean データ型で読み取り専用です。以下の例で、APIEnabled プロパティーを示します。

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
autECLConnList.Refresh

' This code segment checks to see if API is enabled.
' The results are sent to a text box called Result.
If Not autECLConnList(1).APIEnabled Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

作動可能
この集合要素プロパティーで、エミュレーター・ウィンドウが 開始されていて、API 使用可能で、そして接続され

ているかどうかを示します。このプロパティーは、3 つのすべてのプロパティーを確認します。エミュレーターが準

備できている場合には、値は True です。 その他の場合には、False です。Ready は、Boolean データ型で読み取り

専用です。以下の例で、Ready プロパティーを示します。

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
autECLConnList.Refresh

' This code segment checks to see if X is ready.
' The results are sent to a text box called Result.
If Not autECLConnList(1).Ready Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLConnList メソッド
以下のセクションで、autECLConnList オブジェクトに 有効なメソッドを説明します。

void Refresh() Object FindConnectionByHandle(Long Hand) Object FindConnectionByName(String Name)

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

集合要素メソッド
以下の集合要素メソッドは、リスト内の各項目に有効です。

void StartCommunication() void StopCommunication()

最新表示
Refresh メソッドは、 開始されたすべての接続のスナップショットを取得します。

注: 確実に現在のデータを取得するには、autECLConnList 集合に アクセスする前にこのメソッドを呼び出さ

なければなりません。

プロトタイプ
void Refresh()

パラメーター
なし

戻り値
なし

例
以下の例は、開始されたすべての接続のスナップショットを取得するため に Refresh メソッドを使用する方法を示

しています。

Dim autECLPSObj as Object
Dim autECLConnList as Object

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

FindConnectionByHandle
このメソッドは、Hand パラメーターで渡されるハンドルの autECLConnList オブジェクトでの要素を見つけます。

このメソッドは通常、与えられた接続がシステムで活動状態であるか を確認するために使用されます。

261

ホストアクセスクラスライブラリ

262

プロトタイプ
Object FindConnectionByHandle(Long Hand)

パラメーター
Long Hand

リストで検索するハンドル。

戻り値
オブジェクト

集合要素ディスパッチ・オブジェクト。

例
以下の例は、接続ハンドルにより要素を見つける方法を示しています。

Dim Hand as Long
Dim autECLConnList as Object
Dim ConnObj as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the collection
autECLConnList.Refresh
' Assume Hand obtained earlier
Set ConnObj = autECLConnList.FindConnectionByHandle(Hand)
Hand = ConnObj.Handle

FindConnectionByName
このメソッドは、Name パラメーターで渡される名前の autECLConnList オブジェクトでの要素を見つけます。この

メソッドは通常、与えられた接続がシステムで活動状態であるか を確認するために使用されます。

プロトタイプ
Object FindConnectionByName(String Name)

パラメーター
String 型、Name 型

リストで検索する名前。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

戻り値
オブジェクト

集合要素ディスパッチ・オブジェクト。

例
以下の例は、接続名により autECLConnList オブジェクト内の要素を 見つける方法を示しています。

Dim Hand as Long
Dim autECLConnList as Object
Dim ConnObj as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the collection
autECLConnList.Refresh
' Assume Hand obtained earlier
Set ConnObj = autECLConnList.FindConnectionByName("A")
Hand = ConnObj.Handle

StartCommunication
autECLConnListメソッドStartCommunicationStartCommunication 集合要素メソッドは、ホスト・データ・ストリームに ZIEWin エミュレーターを接続します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「接続」を選択した場合と同じ結果になります。

プロトタイプ
void StartCommunication()

パラメーター
なし

戻り値
なし

例
以下の例は、ZIEWin エミュレーター・セッションをホストへ接続する方法を示しています。

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

'Start the first session
autECLConnList.Refresh
autECLConnList(1).StartCommunication()

263

ホストアクセスクラスライブラリ

264

StopCommunication
StopCommunication 集合要素メソッドは、ホスト・データ・ストリームから ZIEWin エミュレーターを切断します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「切断」を選択した場合と同じ結果になります。

プロトタイプ
void StopCommunication()

パラメーター
なし

戻り値
なし

例
以下の例は、ホストから ZIEWin エミュレーター・セッションを切断する方法を示したものです。

Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

'Start the first session
autECLConnList.Refresh
autECLConnList(1).StartCommunication()
'
'Interact programmatically with host
'
autECLConnList.Refresh
'Stop the first session
autECLConnList(1).StartCommunication()

autECLConnMgr クラス
autECLConnMgr は、マシン上のすべての Z and I Emulator for Windows 接続を管理します。これには、接続の開始

および停止など、接続の管理に関連するメソッドが含まれています。また、autECLConnList オブジェクトを作成

して、システムで認知されている すべての接続のリストを列挙します (autECLConnList クラス (ページ 256)を参

照)。レジストリーでのその名前は ZIEWin.autECLConnMgr です。

プロパティー
このセクションでは、autECLConnMgr オブジェクトの プロパティーについて説明します。

タイプ 名前 属性

autECLConnList オブジェクト autECLConnList 読み取り専用

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

autECLConnList
autECLConnMgr オブジェクトには、autECLConnList オブジェクトが 含まれています。このメソッドおよびプ

ロパティーの詳細については、『autECLConnList クラス (ページ 256)』を参照してください。プロパティーに

は、autECLConnList の値があります。 これは、autECLConnList ディスパッチ・オブジェクトです。以下の例は、

このプロパティーを示しています。

Dim Mgr as Object
Dim Num as Long

Set Mgr = CreateObject("ZIEWin.autECLConnMgr ")

Mgr.autECLConnList.Refresh
Num = Mgr.autECLConnList.Count

autECLConnMgr メソッド
以下のセクションで、autECLConnMgr オブジェクトに有効な メソッドを説明します。

void RegisterStartEvent() void UnregisterStartEvent() void StartConnection(String ConfigParms) void

StopConnection(Variant Connection, [optional] String StopParms)

RegisterStartEvent
このメソッドは、セッションで開始イベントの通知を受け取るため の autECLConnMgr オブジェクトを登録します。

プロトタイプ
void RegisterStartEvent()

パラメーター
なし

戻り値
なし

例
例については、イベント処理の例 (ページ 270)を参照してください。

UnregisterStartEvent
開始イベントの処理を終了します。

265

ホストアクセスクラスライブラリ

266

プロトタイプ
void UnregisterStartEvent()

パラメーター
なし

戻り値
なし

例
例については、イベント処理の例 (ページ 270)を参照してください。

StartConnection
このメンバー関数は、新しい Z and I Emulator for Windows のエミュレーター・ウィンドウを開始しま

す。ConfigParms ストリングには、使用上の注意 (ページ 266)で 説明されているとおりの接続構成情報が入って

います。

プロトタイプ
void StartConnection(String ConfigParms)

パラメーター
String ConfigParms

構成ストリング。

戻り値
なし

使用上の注意
構成ストリングは、インストール・システムによって異なります。異なるインストール・システム上の autECL オブ

ジェクトには、 構成ストリングに異なる形式または情報が必要とされる場合があります。新しいエミュレーターは

この呼び出しの応答として開始されますが、 ホストに接続される場合もあれば、接続されない場合もあります。

Z and I Emulator for Windows の場合、構成ストリングの形式は次のとおりです。

PROFILE=[']<filename>['] [CONNNAME=<c>] [WINSTATE=<MAX|MIN|RESTORE|HIDE>]

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

オプションのパラメーターは、大括弧 [] で囲みます。パラメーターは、少なくとも 1 つのブランクで区切ります。

パラメーターは、大文字、小文字、または混合のいずれでも指定可能で、 順序も任意です。各パラメーターの意味

は、次のとおりです。

• PROFILE=<filename>: 構成情報が含まれている Z and I Emulator for Windows ワークステーション・プロファ

イル (.WS ファイル) の名前を指定します。このパラメーターは、オプションではありません。 プロファイル

名を入力しなければなりません。ファイル名にブランクが含まれる場合、名前を単一引用符で囲まなければ

なりません。<ファイル名> の値は、拡張子のないプロファイル名、.WS 拡張子の付いたプロファイル名、ま

たは完全修飾プロファイル名パスのどれでも構いません。

• CONNNAME=<c> は、新しい接続の簡易 ID を指定します。この値は、単一の英字 (A から Z、または a から

z) でなければなりません。この値を指定しないと、使用可能な次の接続 ID が自動的に割り当てられます。

• WINSTATE=<MAX|MIN|RESTORE|HIDE> は、エミュレーター・ウィンドウの初期状態を指定します。このパ

ラメーターを指定しない場合のデフォルト値は、RESTORE です。

例
以下の例は、新しい Z and I Emulator for Windows のエミュレーター・ウィンドウを開始する方法を示します。

Dim Mgr as Object
Dim Obj as Object
Dim Hand as Long

Set Mgr = CreateObject("ZIEWin.autECLConnMgr ")
Mgr.StartConnection("profile=coax connname=e")

StopConnection
StopConnection メソッドは、 接続ハンドルにより識別されるエミュレーター・ウィンドウを停止 (終了) しま

す。StopParms ストリングの内容の詳細については、使用上の注意 (ページ 268)を 参照してください。

プロトタイプ
void StopConnection(Variant Connection, [optional] String StopParms)

パラメーター
Variant Connection

接続名またはハンドル。このバリアントに対して有効な型は short、long、BSTR、short by

reference、 long by reference、および BSTR by reference です。

String StopParms

停止パラメーター・ストリング。ストリングの形式については、使用上の注意を参照。このパラメー

ターはオプションです。

267

ホストアクセスクラスライブラリ

268

戻り値
なし

使用上の注意
停止パラメーター・ストリングは、インストール・システムに応じて異なります。異なるインストール・システム

上の autECL オブジェクトには、異なる形式または内容の パラメーター・ストリングが必要とされる場合がありま

す。Z and I Emulator for Windows の場合、ストリングの形式は次のとおりです。

[SAVEPROFILE=<YES|NO|DEFAULT>]

オプションのパラメーターは、大括弧 [] で囲みます。パラメーターは、少なくとも 1 つのブランクで区切ります。

パラメーターは、大文字、小文字、または混合のいずれでも指定可能で、 順序も任意です。各パラメーターの意味

は、次のとおりです。

• SAVEPROFILE=<YES|NO|DEFAULT> は、現在の構成のワークステーション・プロファイル (.WS ファイル) へ

の保管を制御します。これによって、これまでに加えた構成変更によってプロファイルを更新することが

できます。NO を指定した場合、接続が停止されるときプロファイルは 更新されません。YES を指定した

場合、接続が停止されるとき現行構成 (変更されている ことがある) を使用してプロファイルは更新されま

す。DEFAULT を指定した場合には、更新オプションは「ファイル」->「終了時に変更を保管」エミュレー

ター・メニュー・オプションによって制御されます。このパラメーターを指定しない場合には、DEFAULT が

使用されます。

例
以下の例は、接続ハンドルにより識別されるエミュレーター・ウィンドウを 停止する方法を示します。

Dim Mgr as Object
Dim Hand as Long

Set Mgr = CreateObject("ZIEWin.autECLConnMgr ")

' Assume we've got connections open and the Hand parm was obtained earlier
Mgr.StopConnection Hand, "saveprofile=no"
'or
Mgr.StopConnection "B", "saveprofile=no"

autECLConnMgr イベント
以下のイベントは autECLConnMgr に有効です。

void NotifyStartEvent(By Val Handle As Variant, By Val Started As Boolean) NotifyStartError(By Val ConnHandle As

Variant) void NotifyStartStop(Long Reason)

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

NotifyStartEvent
autECLConnMgrイベントNotifyStartEventセッションが開始あるいは停止しました。

プロトタイプ
void NotifyStartEvent(By Val Handle As Variant、By Val Started As Boolean)

注: Visual Basic では、このサブルーチンが正しく作成されます。

パラメーター
By Val Handle As Variant

開始または停止したセッションのハンドルです。

By Val Started As Boolean

セッションが開始済みの場合は True で、それ以外の場合は False です。

例
例については、イベント処理の例 (ページ 270)を参照してください。

NotifyStartError
このイベントは、イベント処理でエラーが発生したときに起こります。

プロトタイプ
NotifyStartError(By Val ConnHandle As Variant)

注: Visual Basic では、このサブルーチンが正しく作成されます。

パラメーター
なし

例
例については、イベント処理の例 (ページ 270)を参照してください。

NotifyStartStop
このイベントは、イベント処理が停止したときに起こります。

269

ホストアクセスクラスライブラリ

270

プロトタイプ
void NotifyStartStop(Long Reason)

パラメーター
Long Reason

停止の理由コード。現在は、これは常に 0 です。

イベント処理の例
以下は、開始イベントの実装方法についての簡単な例です。

Option Explicit
Private WithEvents mCmgr As autECLConnMgr 'AutConnMgr added as reference
dim mSess as object

sub main()
'Create Objects
Set mCmgr = New autECLConnMgr
Set mSess = CreateObject("ZIEWin.autECLSession")
mCmgr.RegisterStartEvent 'register for PS Updates

' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
call DisplayGUI()
mCmgr.UnregisterStartEvent
set mCmgr = Nothing
set mSess = Nothing
End Sub

'This sub will get called when a session is started or stopped
Private Sub mCmgr_NotifyStartEvent(Handle as long, bStarted as Boolean)
' do your processing here
if (bStarted) then
mSess.SetConnectionByHandle Handle
end if
End Sub

'This event occurs if an error happens
Private Sub mCmgr_NotifyStartError()
'Do any error processing here
End Sub

Private Sub mCmgr_NotifyStartStop(Reason As Long)
'Do any stop processing here
End Sub

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

autECLFieldList クラス
autECLFieldList は、 エミュレーター表示スペースでのフィールドの操作を実行します。このオブジェクトは、単

体として独立してはいません。これは autECLPS に含まれ、autECLPS オブジェクトを介してのみアクセスされま

す。autECLPS は、独立している場合も、autECLSession に含まれる場合もあります。

autECLFieldList には、表示スペースの すべてのフィールドの集合が含まれます。集合の各要素には、集合要素プロ

パティー (ページ 271)に示されている要素が含まれます。

autECLFieldList オブジェクトは、Refresh メソッドが 呼び出されたときに表示スペースにあった 静的スナップ

ショットを提供します。

注: 確実に現在のフィールド・データを取得するには、 要素にアクセスする前に autECLFieldList オブジェク

トで Refresh メソッド を呼び出さなければなりません。一度 Refresh を呼び出せば、集合の内容をすべて調

べることができます。

プロパティー
このセクションでは、autECLFieldList オブジェクトの プロパティーおよび集合要素プロパティーについて説明しま

す。

タイプ 名前 属性

Long (長形式) カウント 読み取り専用

以下のプロパティーは集合要素プロパティーであり、 リストの各項目に有効です。

タイプ 名前 属性

長形式 StartRow 読み取り専用

長形式 StartCol 読み取り専用

長形式 EndRow 読み取り専用

長形式 EndCol 読み取り専用

長形式 長さ 読み取り専用

ブール値 変更日 読み取り専用

ブール値 保護されています 読み取り専用

ブール値 数字 読み取り専用

ブール値 HighIntensity 読み取り専用

ブール値 PenDetectable 読み取り専用

ブール値 表示 読み取り専用

271

ホストアクセスクラスライブラリ

272

カウント
このプロパティーは、Refresh メソッドへの最後の 呼び出しでの autECLFieldList 集合にあるフィールドの 数で

す。Count は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

Dim NumFields as long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
NumFields = autECLPSObj.autECLFieldList.Count

StartRow
この集合要素プロパティーは、autECLFieldList 集合で 与えられたフィールドの最初の文字の行位置です。StartRow

は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

Dim StartRow as Long
Dim StartCol as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 StartRow = autECLPSObj.autECLFieldList(1).StartRow
 StartCol = autECLPSObj.autECLFieldList(1).StartCol
Endif

StartCol
この集合要素プロパティーは、autECLFieldList 集合で 与えられたフィールドの最初の文字の桁位置です。StartCol

は Long データ型 で読み取り専用です。以下の例は、このプロパティーを示しています。

Dim StartRow as Long
Dim StartCol as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 StartRow = autECLPSObj.autECLFieldList(1).StartRow
 StartCol = autECLPSObj.autECLFieldList(1).StartCol
Endif

EndRow
この集合要素プロパティーは、autECLFieldList 集合で 与えられたフィールドの最後の文字の行位置です。EndRow

は Long データ型で 読み取り専用です。以下の例は、このプロパティーを示しています。

Dim EndRow as Long
Dim EndCol as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 EndRow = autECLPSObj.autECLFieldList(1).EndRow
 EndCol = autECLPSObj.autECLFieldList(1).EndCol
Endif

EndCol
この集合要素プロパティーは、autECLFieldList 集合で 与えられたフィールドの最後の文字の桁位置です。EndCol

は、Long データ型で 読み取り専用です。以下の例は、このプロパティーを示しています。

Dim EndRow as Long
Dim EndCol as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 EndRow = autECLPSObj.autECLFieldList(1).EndRow

273

ホストアクセスクラスライブラリ

274

 EndCol = autECLPSObj.autECLFieldList(1).EndCol
Endif

長さ
この集合要素プロパティーは、autECLFieldList 集合で 与えられたフィールドの長さです。Length は、Long データ

型で読み取り専用です。以下の例は、このプロパティーを示しています。

Dim Len as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 Len = autECLPSObj.autECLFieldList(1).Length
Endif

変更日
この集合要素プロパティーは、autECLFieldList 集合内の与えられたフィールドに 修正された属性があるかどうかを

示しています。Modified は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示していま

す。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).Modified) Then
 ' do whatever
 Endif
Endif

保護されています
この集合要素プロパティーは、autECLFieldList 集合内の与えられたフィールドに 保護属性があるかどうかを示して

います。Protected は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).Protected) Then
 ' do whatever
 Endif
Endif

数字
この集合要素プロパティーは、autECLFieldList 集合内の与えられたフィールドに 数字入力専用の属性があるかどう

かを示します。Numeric は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示していま

す。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).Numeric) Then
 ' do whatever
 Endif
Endif

HighIntensity
この集合要素プロパティーは、autECLFieldList 集合内の与えられたフィールドに 高輝度属性があるかどうかを示し

ています。HighIntensity は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示していま

す。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh

275

ホストアクセスクラスライブラリ

276

autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).HighIntensity) Then
 ' do whatever
 Endif
Endif

PenDetectable
この集合要素プロパティーは、autECLFieldList 集合内の 与えられたフィールドにペン検出可能属性があるかどうか

を 示しています。PenDetectable は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示

しています。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).PenDetectable) Then
 ' do whatever
 Endif
Endif

表示
この集合要素プロパティーは、autECLFieldList 集合内の与えられたフィールドに 表示属性があるかどうかを示しま

す。Display は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh(1)
If (Not autECLPSObj.autECLFieldList.Count = 0) Then
 If (autECLPSObj.autECLFieldList(1).Display) Then
 ' do whatever

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

 Endif
Endif

autECLFieldList メソッド
以下のセクションで、autECLFieldList オブジェクトに 有効なメソッドを説明します。

void Refresh() Object FindFieldByRowCol(Long Row, Long Col) Object FindFieldByText(String text, [optional] Long

Direction, [optional] Long StartRow, [optional] Long StartCol)

集合要素メソッド
以下の集合要素メソッドは、リスト内の各項目に有効です。

String GetText() void SetText(String Text)

最新表示
Refresh メソッドは、 すべてのフィールドのスナップショットを取得します。

注: 確実に最新のフィールド・データを取得するには、 フィールド集合にアクセスする前に Refresh メソッ

ドを呼び出さなければなりません。

プロトタイプ
void Refresh()

パラメーター
なし

戻り値
なし

例
以下の例は、所定の表示スペースについて、 すべてのフィールドのスナップショットを取得する方法を示していま

す。

Dim NumFields as long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

277

ホストアクセスクラスライブラリ

278

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and get the number of fields
autECLPSObj.autECLFieldList.Refresh()
NumFields = autECLPSObj.autECLFieldList.Count

FindFieldByRowCol
このメソッドは、所定の行および桁の 座標を含むフィールドを autECLFieldList オブジェクトで検索します。戻され

る値は、autECLFieldList 集合の集合要素オブジェクトです。

プロトタイプ
Object FindFieldByRowCol(Long Row, Long Col)

パラメーター
Long Row

検索するフィールド行。

Long Col

検索するフィールド桁。

戻り値
オブジェクト

autECLFieldList 集合項目のディスパッチ・オブジェクト。

例
以下の例は、所定の行および桁の座標を含む フィールドを autECLFieldList オブジェクトで検索する方法を示してい

ます。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim FieldElement as Object

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList)

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and search for field at row 2 col 1
autECLPSObj.autECLFieldList.Refresh(1)

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Set FieldElement = autECLPSObj.autECLFieldList.FindFieldByRowCol(2, 1)
FieldElement.SetText("HCL")

FindFieldByText
このメソッドは、テキストとして渡されたストリングを含むフィールドを autECLFieldList オブジェクトで検索しま

す。戻される値は、autECLFieldList 集合の集合要素オブジェクトです。

プロトタイプ
Object FindFieldByText(String Text, [optional] Long Direction, [optional] Long StartRow, [optional] Long StartCol)

パラメーター
String Text

検索するテキスト・ストリング。

Long StartRow

検索を開始する表示スペース内の行位置。

Long StartCol

検索を開始する表示スペース内の桁位置。

Long Direction

検索の方向。前方検索は 1、後方検索は 2 を指定します。

戻り値
オブジェクト

autECLFieldList 集合項目のディスパッチ・オブジェクト。

例
以下の例は、テキストとして渡されたストリングを含むフィールド を autECLFieldList オブジェクトで検索する方法

を示しています。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim FieldElement as Object

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and search for field with text
autECLPSObj.autECLFieldList.Refresh(1)

279

ホストアクセスクラスライブラリ

280

set FieldElement = autECLPSObj.autECLFieldList.FindFieldByText "HCL"

' Or... search starting at row 2 col 1
set FieldElement = autECLPSObj.autECLFieldList.FindFieldByText "HCL", 2, 1
' Or... search starting at row 2 col 1 going backwards
set FieldElement = autECLPSObj.autECLFieldList.FindFieldByText "HCL", 2, 2, 1

FieldElement.SetText("Hello.")

GetText
集合要素メソッド GetText は、autECLFieldList 項目内の 所定のフィールドの文字を検索します。

プロトタイプ
String GetText()

パラメーター
なし

戻り値
ストリング

フィールド・テキスト

例
以下の例は、GetText メソッドを使用する方法を示しています。

Dim autECLPSObj as Object
Dim TextStr as String

' Initialize the connection
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

autECLPSObj.autECLFieldList.Refresh()
TextStr = autECLPSObj.autECLFieldList(1).GetText()

SetText
このメソッドは、autECLFieldList 項目内の所定のフィールドに、 テキストとして渡された文字ストリングを入れま

す。このテキストがフィールドの長さを超える場合、テキストは 切り捨てられます。

プロトタイプ
void SetText(String Text)

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

パラメーター
String text

フィールドに設定するストリング。

戻り値
なし

例
以下の例は、autECLFieldList 項目内のフィールドに、 テキストとして渡された文字ストリングを入れる方法を示し

ています。

Dim NumFields as Long
Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the list and set the first field with some text
autECLPSObj.autECLFieldList.Refresh(1)
autECLPSObj.autECLFieldList(1).SetText("HCL is a cool company")

autECLOIA クラス
autECLOIA オブジェクトは、 ホスト・オペレーター情報域から状況を検索します。レジストリーでのその名前は

ZIEWin.autECLOIA です。

最初に、作成したオブジェクトの接続を設定しなければなりません。SetConnectionByName または

SetConnectionByHandle を使用して、オブジェクトを初期化します。接続は一度しか設定できません。接続が設定さ

れた後は、接続設定メソッドをさらに呼び出すと例外を引き起こします。また、接続を設定せずにプロパティーまた

はメソッドにアクセスしようとしても、 例外が引き起こされます。

注: autECLSession オブジェクト内の autECLOIA オブジェクト は、autECLSession オブジェクトにより設定

されます。

以下の例は、Visual Basic で autECLOIA オブジェクトを作成し 設定する方法を示します。

DIM autECLOIA as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
autECLOIA.SetConnectionByName("A")

281

ホストアクセスクラスライブラリ

282

プロパティー
このセクションでは、autECLOIA オブジェクトの プロパティーを説明します。

タイプ 名前 属性

ブール値 英数字 読み取り専用

ブール値 APL 読み取り専用

ブール値 UpperShift 読み取り専用

ブール値 数字 読み取り専用

ブール値 CapsLock 読み取り専用

ブール値 InsertMode 読み取り専用

ブール値 CommErrorReminder 読み取り専用

ブール値 MessageWaiting 読み取り専用

長形式 InputInhibited 読み取り専用

ストリング 名前 読み取り専用

長形式 ハンドル 読み取り専用

ストリング ConnType 読み取り専用

長形式 CodePage 読み取り専用

ブール値 開始済み 読み取り専用

ブール値 CommStarted 読み取り専用

ブール値 APIEnabled 読み取り専用

ブール値 作動可能 読み取り専用

ブール値 NumLock 読み取り専用

英数字
このプロパティーは、オペレーター情報域を照会してカーソル位置のフィールドが 英数字かどうかを判別しま

す。Alphanumeric は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

If autECLOIA.Alphanumeric Then...

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

APL
このプロパティーは、オペレーター情報域を照会して、キーボードが APL モードかどうかを 判別します。APL

は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if the keyboard is in APL mode
if autECLOIA.APL Then...

カタカナ
このプロパティーは、オペレーター情報域を照会してカタカナ文字が使用可能かどうかを 判別します。Katakana

は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if Katakana characters are available
if autECLOIA.Katakana Then...

Hiragana
このプロパティーは、オペレーター情報域を照会して、ひらがな文字が使用可能かどうかを 判別します。Hiragana

は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if Hiragana characters are available
if autECLOIA.Hiragana Then...

283

ホストアクセスクラスライブラリ

284

UpperShift
このプロパティーは、オペレーター情報域を照会して、キーボードが上段シフト・モードかどうかを 判別しま

す。Uppershift は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if the keyboard is in uppershift mode
If autECLOIA.UpperShift then...

数字
このプロパティーは、オペレーター情報域を照会して、カーソル位置のフィールドが数字かどうかを 判別しま

す。Numeric は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if the cursor location is a numeric field
If autECLOIA.Numeric Then...

CapsLock
このプロパティーは、オペレーター情報域を照会して、キーボード CapsLock キーがオンかどうかを 判別しま

す。CapsLock は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

' Check if the caps lock
If autECLOIA.CapsLock Then...

InsertMode
このプロパティーは、オペレーター情報域を照会して、キーボードが挿入モードかどうかを 判別しま

す。InsertMode は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if in insert mode
If autECLOIA.InsertMode Then...

CommErrorReminder
このプロパティーは、オペレーター情報域を照会して、通信エラー状況メッセージ条件が存在するかどうかを 判別

します。CommErrorReminder は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示し

ています。

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if comm error
If autECLOIA.CommErrorReminder Then...

MessageWaiting
このプロパティーは、オペレーター情報域を照会して、 メッセージ待ち標識がオンかどうかを判別します。これ

は、5250 接続にのみ起こります。MessageWaiting は、Boolean データ型で読み取り専用です。以下の例は、この

プロパティーを示しています。

DIM autECLOIA as Object
DIM autECLConnList as Object
Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

285

ホストアクセスクラスライブラリ

286

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if message waiting
If autECLOIA.MessageWaiting Then...

InputInhibited
このプロパティーは、オペレーター情報域を照会して、キーボード入力が使用禁止かどうかを 判別しま

す。InputInhibited は、Long データ型で読み取り専用です。以下の表は、InputInhibited に有効な値を示していま

す。

名前 値

使用可能 0

システム待機 1

通信チェック 2

プログラム・チェック 3

マシン・チェック 4

その他の禁止 5

以下の例は、このプロパティーを示しています。

DIM autECLOIA as Object
DIM autECLConnList as Object
Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)

' Check if input inhibited
If not autECLOIA.InputInhibited = 0 Then...

名前
このプロパティーは、autECLOIA が設定された接続の接続名ストリングです。Z and I Emulator for Windows は、短

い文字 ID (A から Z、または a から z) のみをストリングで戻します。Z and I Emulator for Windows 接続でオープン

できるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみをオープンできます。Name

は、String データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Name as String
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

' Save the name
Name = Obj.Name

ハンドル
これは、autECLOIA オブジェクトが設定された接続のハンドルです。特定の 1 つのハンドルに対して 1 つしか、Z

and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A のみをオープンできま

す。Handle は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the handle
Hand = Obj.Handle

ConnType
これは、autECLOIA が設定された接続タイプです。このタイプは、時間の経過とともに変更する場合が ありま

す。ConnType は、String データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Type as String
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the type
Type = Obj.ConnType

ConnType プロパティーの接続タイプは、以下のとおりです。

戻されるストリング 意味

DISP3270 3270 表示装置

DISP5250 5250 ディスプレイ

PRNT3270 3270 印刷装置

PRNT5250 5250 プリンター

ASCII VT エミュレーション

CodePage
これは、autECLOIA が設定された接続のコード・ページです。このコード・ページは、時間の経過とともに変更さ

れる場合があります。CodePage は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示して

います。

287

ホストアクセスクラスライブラリ

288

DIM CodePage as Long
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the code page
CodePage = Obj.CodePage

開始済み
これは、エミュレーター・ウィンドウが開始されたかどうかを示します。ウィンドウがオープンしている場合、値は

True です。 その他の場合は False です。Started は、Boolean データ型で読み取り専用です。以下の例は、このプ

ロパティーを示しています。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If Obj.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
これは、ホストへの接続の状況を示しています。ホストが接続されている場合、値は True です。 その他の場合は

False です。CommStarted は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示してい

ます。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If Obj.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

APIEnabled
これは、エミュレーターが API 使用可能かどうかを示します。API 設定 (Z and I Emulator for Windows のウィンド

ウでは、「ファイル」->「API の設定」を選択) の状態に応じて、接続が可能な場合と、接続できない場合がありま

す。エミュレーターが使用可能の場合には、True です。その他の場合には、False です。APIEnabled は、Boolean

データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is API enabled.
' The results are sent to a text box called Result.
If Obj.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

作動可能
これは、エミュレーター・ウィンドウが 開始されていて、API 使用可能で、そして接続されているかどうかを示し

ます。このプロパティーは、3 つのすべてのプロパティーを確認します。エミュレーターが準備できている場合に

は、値は True です。 その他の場合には、False です。Ready は、Boolean データ型で読み取り専用です。以下の例

は、このプロパティーを示しています。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If Obj.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

289

ホストアクセスクラスライブラリ

290

NumLock
このプロパティーは、オペレーター情報域を照会して、 キーボード NumLock キーがオンかどうかを判別しま

す。NumLock は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM autECLOIA as Object
 DIM autECLConnList as Object

 Set autECLOIA = CreateObject ("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject ("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByFHandle (autECLConnList (1) .Handle)

' Check if the num lock is on
If autECLOIA.NumLock Then . . .

autECLOIA メソッド
autECLOIAメソッド概要以下のセクションで、autECLOIA オブジェクトに有効なメソッドを説明します。

void RegisterOIAEvent() void UnregisterOIAEvent() void SetConnectionByName (String Name) void

SetConnectionByHandle (Long Handle) void StartCommunication() void StopCommunication() Boolean

WaitForInputReady([optional] Variant TimeOut) Boolean WaitForSystemAvailable([optional] Variant TimeOut) Boolean

WaitForAppAvailable([optional] Variant TimeOut) Boolean WaitForTransition([optional] Variant Index, [optional] Variant

timeout) void CancelWaits()

RegisterOIAEvent
このメソッドは、すべての OIA イベントの通知を受け取るためにオブジェクトを登録します。

プロトタイプ
void RegisterOIAEvent()

パラメーター
なし

戻り値
なし

例
例については、イベント処理の例 (ページ 298)を参照してください。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

UnregisterOIAEvent
OIA イベント処理を終了します。

プロトタイプ
void UnregisterOIAEvent()

パラメーター
なし

戻り値
なし

例
例については、イベント処理の例 (ページ 298)を参照してください。

SetConnectionByName
この SetConnectionByName メソッドは、接続名を使用して、 新しく作成された autECLOIA オブジェクトの接続を

設定します。Z and I Emulator for Windows では、この接続名は、短い接続 ID (文字 A から Z、または a から z) で

す。Z and I Emulator for Windows 接続でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一

度に 1 つの接続 A のみをオープンできます。

注: autECLSession 内で autECLOIA オブジェクトを使用している場合には、 これを呼び出さないでくださ

い。

プロトタイプ
void SetConnectionByName (String Name)

パラメーター
String 型、Name 型

1 文字の接続のストリング短縮名 (A から Z、または a から z)。

戻り値
なし

291

ホストアクセスクラスライブラリ

292

例
以下の例は、新しく作成された autECLOIA オブジェクトの接続を設定するために、 接続ハンドルを使用する方法を

示します。

DIM autECLOIA as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")

' Initialize the connection
autECLOIA.SetConnectionByName("A")
' For example, see if its num lock is on
If (autECLOIA.NumLock = True) Then
 'your logic here...
Endif

SetConnectionByHandle
autECLOIAメソッドSetConnectionByHandleこの SetConnectionByHandle メソッドは、 接続ハンドルを使用して、新しく作成された autECLOIA オブジェクトの

接続を設定します。Z and I Emulator for Windows では、この接続ハンドルは Long integer です。特定の 1 つのハン

ドルに対して 1 つしか、Z and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A の

みをオープンできます。

注: autECLSession 内で autECLOIA オブジェクトを使用している場合には、 これを呼び出さないでくださ

い。

DIM autECLOIA as Object
DIM autECLConnList as Object

Set autECLOIA = CreateObject("ZIEWin.autECLOIA")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLOIA.SetConnectionByHandle(autECLConnList(1).Handle)
' For example, see if its num lock is on
If (autECLOIA.NumLock = True) Then
 'your logic here...
Endif

プロトタイプ
void SetConnectionByHandle(Long Handle)

パラメーター
Long Handle

オブジェクトに設定される接続の Long integer 値。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

戻り値
なし

例
以下の例は、接続ハンドルを使用して、新しく作成された autELCOIA オブジェクトの接続を 設定する方法を示しま

す。

StartCommunication
StartCommunication 集合要素メソッドは、ホスト・データ・ストリームに ZIEWin エミュレーターを接続します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「接続」を選択した場合と同じ結果になります。

プロトタイプ
void StartCommunication()

パラメーター
なし

戻り値
なし

例
なし

Dim OIAObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set OIAObj = CreateObject("ZIEWin.autECLOIA")

' Initialize the session
autECLConnList.Refresh
OIAObj.SetConnectionByHandle(autECLConnList(1).Handle)

OIAObj.StartCommunication()

StopCommunication
StopCommunication 集合要素メソッドは、ホスト・データ・ストリームから ZIEWin エミュレーターを切断します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「切断」を選択した場合と同じ結果になります。

293

ホストアクセスクラスライブラリ

294

プロトタイプ
void StopCommunication()

パラメーター
なし

戻り値
なし

例
以下の例は、ZIEWin エミュレーター・セッションをホストへ接続する方法を示しています。

Dim OIAObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set OIAObj = CreateObject("ZIEWin.autECLOIA")

' Initialize the session
autECLConnList.Refresh
OIAObj.SetConnectionByHandle(autECLConnList(1).Handle)

OIAObj.StopCommunication()

WaitForInputReady
WaitForInputReady メソッドは、autECLOIA オブジェクトに関連した接続の OIA が、 この接続にキーボード入力の

受け入れが可能であることを示すまで待機します。

プロトタイプ
Boolean WaitForInputReady([optional] Variant TimeOut)

パラメーター
Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

例
Dim autECLOIAObj as Object

Set autECLOIAObj = CreateObject("ZIEWin.autECLOIA")
autECLOIAObj.SetConnectionByName("A")

if (autECLOIAObj.WaitForInputReady(10000)) then
msgbox "Ready for input"
else
msgbox "Timeout Occurred"
end if

WaitForSystemAvailable
WaitForSystemAvailable メソッドは、autECLOIA オブジェクトに関連した接続の OIA が、 その接続がホスト・シス

テムに接続されていると指示するまで待機します。

プロトタイプ
Boolean WaitForSystemAvailable([optional] Variant TimeOut)

パラメーター
Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLOIAObj as Object

Set autECLOIAObj = CreateObject("ZIEWin.autECLOIA")
autECLOIAObj.SetConnectionByName("A")

if (autECLOIAObj.WaitForSystemAvailable(10000)) then
msgbox "System Available"
else
msgbox "Timeout Occurred"
end if

295

ホストアクセスクラスライブラリ

296

WaitForAppAvailable
WaitForAppAvailable メソッドは、autECLOIA オブジェクトに関連した接続の OIA が そのアプリケーションが処理

中であることを示しているまで待機します。

プロトタイプ
Boolean WaitForAppAvailable([optional] Variant TimeOut)

パラメーター
Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLOIAObj as Object

Set autECLOIAObj = CreateObject("ZIEWin.autECLOIA")
autECLOIAObj.SetConnectionByName("A")

if (autECLOIAObj.WaitForAppAvailable (10000)) then
msgbox "Application is available"
else
msgbox "Timeout Occurred"
end if

WaitForTransition
WaitForTransition メソッドは、autECLOIA オブジェクトに関連した接続の 指定された OIA 位置が変更されるのを待

ちます。

プロトタイプ
Boolean WaitForTransition([optional] Variant Index, [optional] Variant timeout)

パラメーター
Variant Index

モニターする OIA の 1 バイトの 16 進数位置。このパラメーターはオプションです。デフォルトは、3

です。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLOIAObj as Object
Dim Index

Index = 03h

Set autECLOIAObj = CreateObject("ZIEWin.autECLOIA")
autECLOIAObj.SetConnectionByName("A")

if (autECLOIAObj.WaitForTransition(Index,10000)) then
 msgbox "Position " " Index " " of the OIA Changed"
else
 msgbox "Timeout Occurred"
end if

CancelWaits
現在活動待ちのメソッドを取り消します。

プロトタイプ
void CancelWaits()

パラメーター
なし

戻り値
なし

autECLOIA イベント
以下のイベントは autECLOIA に有効です。

void NotifyOIAEvent() void NotifyOIAError() void NotifyOIAStop(Long Reason)

297

ホストアクセスクラスライブラリ

298

NotifyOIAEvent
所定の OIA が発生しました。

プロトタイプ
void NotifyOIAEvent()

パラメーター
なし

例
例については、イベント処理の例 (ページ 298)を参照してください。

NotifyOIAError
このイベントは、OIA にエラーの発生したときに発生します。

プロトタイプ
void NotifyOIAError()

パラメーター
なし

例
例については、イベント処理の例 (ページ 298)を参照してください。

NotifyOIAStop
このイベントは、イベント処理が停止したときに起こります。

プロトタイプ
void NotifyOIAStop(Long Reason)

パラメーター
Long Reason

停止を表す Long Reason コード。現在は、これは常に 0 です。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

イベント処理の例
以下は、OIA イベントの実装方法についての簡単な例です。

Option Explicit
Private WithEvents myOIA As autECLOIA 'AutOIA added as reference

sub main()
'Create Objects
Set myOIA = New AutOIA

Set myConnMgr = New AutConnMgr

myOIA.SetConnectionByName ("B") 'Monitor Session B for OIA Updates

myOIA.RegisterOIAEvent 'register for OIA Notifications

' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
call DisplayGUI()

'Clean up
myOIA.UnregisterOIAEvent

Private Sub myOIA_NotifyOIAEvent()
' do your processing here
End Sub
Private Sub myOIA_NotifyOIAError()
' do your processing here
End Sub
 'This event occurs when Communications Status Notification ends
Private Sub myOIA_NotifyOIAStop(Reason As Long)
'Do any stop processing here
End Sub

autECLPS クラス
autECLPS は、表示スペースでの操作を実行します。レジストリーでのその名前は ZIEWin.autECLPS です。

最初に、作成したオブジェクトの接続を設定しなければなりません。SetConnectionByName または

SetConnectionByHandle を使用して、オブジェクトを初期化します。接続は一度しか設定できません。接続が設定

された後は、SetConnection メソッドをさらに呼び出すと例外を引き起こします。また、接続を設定せずにプロパ

ティーまたはメソッドにアクセスしようとしても、 例外が引き起こされます。

注:

299

ホストアクセスクラスライブラリ

300

1. 表示スペース内で、最初の行座標は行 1 で、 最初の桁座標は桁 1 です。したがって、最上行の左端

の位置は、行 1 桁 1 になります。

2. autECLSession オブジェクト内の autECLPS オブジェクトは、 autECLSession オブジェクトにより設

定されます。

以下に示すのは、Visual Basic で autECLPS オブジェクトを作成し設定する方法の例です。

DIM autECLPSObj as Object
DIM NumRows as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
' Initialize the connection
autECLPSObj .SetConnectionByName("A")
' For example, get the number of rows in the PS
NumRows = autECLPSObj.NumRows

プロパティー
このセクションでは、autECLPS オブジェクトのプロパティーを説明します。

タイプ 名前 属性

オブジェクト autECLFieldList 読み取り専用

長形式 NumRows 読み取り専用

長形式 NumCols 読み取り専用

長形式 CursorPosRow 読み取り専用

長形式 CursorPosCol 読み取り専用

ストリング 名前 読み取り専用

長形式 ハンドル 読み取り専用

ストリング ConnType 読み取り専用

長形式 CodePage 読み取り専用

ブール値 開始済み 読み取り専用

ブール値 CommStarted 読み取り専用

ブール値 APIEnabled 読み取り専用

ブール値 作動可能 読み取り専用

autECLFieldList
これは、autECLPS オブジェクトに関連する 接続のフィールド集合オブジェクトです。詳しくは、autECLFieldList

クラス (ページ 270)を参照してください。以下の例は、このオブジェクトを示しています。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

' Build the field list
CurPosCol = autECLPSObj.autECLFieldList.Refresh(1)

NumRows
これは、autECLPS オブジェクトに関連する接続の表示スペースでの 行の数です。NumRows は、Long データ型で

読み取り専用です。以下の例は、このプロパティーを示しています。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim Rows as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
Rows = autECLPSObj.NumRows

NumCols
これは、autECLPS オブジェクトに関連する接続の表示スペースでの 桁の数です。NumCols は、Long データ型で

読み取り専用です。以下の例は、このプロパティーを示しています。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim Cols as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
Cols = autECLPSObj.NumCols

CursorPosRow
これは、autECLPS オブジェクトに関連する接続の表示スペースでの カーソルの現在行位置です。CursorPosRow

は Long データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim CurPosRow as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh

301

ホストアクセスクラスライブラリ

302

autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
CurPosRow = autECLPSObj.CursorPosRow

CursorPosCol
これは、autECLPS オブジェクトに関連する接続の表示スペースでの カーソルの現在桁位置です。CursorPosCol

は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim CurPosCol as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
CurPosCol = autECLPSObj.CursorPosCol

名前
これは、autECLPS が設定された接続の接続名ストリングです。Z and I Emulator for Windows は、短い文字 ID (A か

ら Z、または a から z) のみをストリングで戻します。Z and I Emulator for Windows 接続でオープンできるのは、1

つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみをオープンできます。Name は、String

データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Name as String
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the name
Name = Obj.Name

ハンドル
これは、autECLPS オブジェクトが設定された接続のハンドルです。特定の 1 つのハンドルに対して 1 つしか、Z

and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A のみをオープンできま

す。Handle は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the connection handle
Hand = Obj.Handle

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

ConnType
これは、autECLPS が設定された接続タイプです。この接続タイプは、時間の経過とともに変更する場合がありま

す。ConnType は、String データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Type as String
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the type
Type = Obj.ConnType

ConnType プロパティーの接続タイプは、以下のとおりです。

戻されるストリング 意味

DISP3270 3270 表示装置

DISP5250 5250 ディスプレイ

PRNT3270 3270 印刷装置

PRNT5250 5250 プリンター

ASCII VT エミュレーション

CodePage
これは、autECLPS が設定された接続のコード・ページです。このコード・ページは、時間の経過とともに変更され

る場合があります。CodePage は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示してい

ます。

DIM CodePage as Long
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the code page
CodePage = Obj.CodePage

開始済み
これは、接続エミュレーター・ウィンドウが開始されたか どうかを示します。ウィンドウがオープンしている場

合、値は True です。 その他の場合は False です。Started は、Boolean データ型で読み取り専用です。以下の例

は、このプロパティーを示しています。

DIM Hand as Long
DIM Obj as Object

303

ホストアクセスクラスライブラリ

304

Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If Obj.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
これは、ホストへの接続の状況を示しています。ホストが接続されている場合、値は True です。 その他の場合は

False です。CommStarted は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示してい

ます。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If Obj.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
これは、エミュレーターが API 使用可能かどうかを示します。API 設定 (Z and I Emulator for Windows のウィンド

ウでは、「ファイル」->「API の設定」を選択) の状態に応じて、接続が可能な場合と、接続できない場合がありま

す。API が使用可能の場合、値は True です。 その他の場合は False です。APIEnabled は、Boolean データ型で読

み取り専用です。以下の例は、このプロパティーを示しています。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is API enabled.

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

' The results are sent to a text box called Result.
If Obj.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

作動可能
これは、エミュレーター・ウィンドウが 開始されていて、API 使用可能で、そして接続されているかどうかを示し

ます。これは、3 つのすべてのプロパティーを確認します。エミュレーターが準備できている場合には、値は True

です。 その他の場合には、False です。Ready は、Boolean データ型で読み取り専用です。以下の例は、このプロ

パティーを示しています。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If Obj.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLPS メソッド
以下のセクションで、autECLPS オブジェクトに有効なメソッドを 説明します。

void RegisterPSEvent() void RegisterKeyEvent() void RegisterCommEvent() void UnregisterPSEvent()

void UnregisterKeyEvent() void UnregisterCommEvent() void SetConnectionByName (String Name) void

SetConnectionByHandle (Long Handle) void SetCursorPos(Long Row, Long Col) void SendKeys(String text,

[optional] Long row, [optional] Long col) Boolean SearchText(String text, [optional] Long Dir, [optional] Long

row, [optional] Long col) String GetText([optional] Long row, [optional] Long col, [optional] Long lenToGet) void

SetText(String Text, [optional] Long Row, [optional] Long Col) void CopyText([optional] Long Row, [optional] Long

Col, [optional] Long LenToGet) void PasteText([optional] Long Row, [optional] Long Col, [optional] Long LenToGet)

String GetTextRect(Long StartRow, Long StartCol, Long EndRow, Long EndCol) void StartCommunication()

void StopCommunication() void StartMacro(String MacroName) void Wait(milliseconds as Long) Boolean

WaitForCursor(Variant Row, Variant Col, [optional]Variant TimeOut, [optional] Boolean bWaitForIr) Boolean

WaitWhileCursor(Variant Row, Variant Col, [optional]Variant TimeOut, [optional] Boolean bWaitForIr) Boolean

WaitForString(Variant WaitString, [optional] Variant Row, [optional] Variant Col, [optional] Variant TimeOut,

[optional] Boolean bWaitForIr, [optional] Boolean bCaseSens) Boolean WaitWhileString(Variant WaitString,

305

ホストアクセスクラスライブラリ

306

[optional] Variant Row, [optional] Variant Col, [optional] Variant TimeOut, [optional] Boolean bWaitForIr, [optional]

Boolean bCaseSens) Boolean WaitForStringInRect(Variant WaitString, Variant sRow, Variant sCol, Variant eRow,

Variant eCol, [optional] Variant nTimeOut, [optional] Boolean bWaitForIr, [optional] Boolean bCaseSens) Boolean

WaitWhileStringInRect(Variant WaitString, Variant sRow, Variant sCol, Variant eRow, Variant eCol, [optional]

Variant nTimeOut, [optional] Boolean bWaitForIr, [optional] Boolean bCaseSens) Boolean WaitForAttrib(Variant

Row, Variant Col, Variant WaitData, [optional] Variant MaskData, [optional] Variant plane, [optional] Variant

TimeOut, [optional] Boolean bWaitForIr) Boolean WaitWhileAttrib(Variant Row, Variant Col, Variant WaitData,

[optional] Variant MaskData, [optional] Variant plane, [optional] Variant TimeOut, [optional] Boolean bWaitForIr)

Boolean WaitForScreen(Object screenDesc, [optional] Variant TimeOut) Boolean WaitWhileScreen(Object

screenDesc, [optional] Variant TimeOut) void CancelWaits()

RegisterPSEvent
このメソッドは、接続されたセッションの PS に対するすべての変更の通知を 受け取るための autECLPS オブジェク

トを登録します。

プロトタイプ
void RegisterPSEvent()

パラメーター
なし

戻り値
なし

例
例については、イベント処理の例 (ページ 337)を参照してください。

RegisterKeyEvent
キー・ストローク・イベント処理を開始します。

プロトタイプ
void RegisterKeyEvent()

パラメーター
なし

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

戻り値
なし

例
例については、イベント処理の例 (ページ 337)を参照してください。

RegisterCommEvent
このメソッドは、すべての通信リンク接続/接続解除のイベントの通知を受け取るための オブジェクトを登録しま

す。

プロトタイプ
void RegisterCommEvent()

パラメーター
なし

戻り値
なし

例
例については、イベント処理の例 (ページ 337)を参照してください。

UnregisterPSEvent
PS イベント処理を終了します。

プロトタイプ
void UnregisterPSEvent()

パラメーター
なし

戻り値
なし

307

ホストアクセスクラスライブラリ

308

例
例については、イベント処理の例 (ページ 337)を参照してください。

UnregisterKeyEvent
キー・ストローク・イベント処理を終了します。

プロトタイプ
void UnregisterKeyEvent()

パラメーター
なし

戻り値
なし

例
例については、イベント処理の例 (ページ 337)を参照してください。

UnregisterCommEvent
通信リンク・イベント処理を終了します。

プロトタイプ
void UnregisterCommEvent()

パラメーター
なし

戻り値
なし

SetConnectionByName
このメソッドは、接続名を使用して、 新しく作成された autECLPS オブジェクトの接続を設定します。Z and I

Emulator for Windows では、この接続名は、短い ID (文字 A から Z、または a から z) です。Z and I Emulator for

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Windows 接続でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみを

オープンできます。

注: autECLSession 内で autECLPS オブジェクトを使用している場合は、 これを呼び出さないでください。

プロトタイプ
void SetConnectionByName (String Name)

パラメーター
String 型、Name 型

1 文字の接続のストリング短縮名 (A から Z、または a から z)。

戻り値
なし

例
以下の例は、接続名を使用して、新しく作成された autECLPS オブジェクトの接続を 設定する方法を示します。

DIM autECLPSObj as Object
DIM NumRows as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")

' Initialize the connection
autECLPSObj.SetConnectionByName("A")
' For example, get the number of rows in the PS
NumRows = autECLPSObj.NumRows

SetConnectionByHandle
このメソッドは、接続ハンドルを使用して、 新しく作成された autECLPS オブジェクトの接続を設定します。Z and

I Emulator for Windows では、この接続ハンドルは Long integer です。特定の 1 つのハンドルに対して 1 つしか、Z

and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A のみをオープンできます。

注: autECLSession 内で autECLPS オブジェクトを使用している場合は、 これを呼び出さないでください。

プロトタイプ
void SetConnectionByHandle(Long Handle)

309

ホストアクセスクラスライブラリ

310

パラメーター
Long Handle

オブジェクトに設定される接続の Long integer 値。

戻り値
なし

例
以下の例は、新しく作成された autECLPS オブジェクトの接続を、 接続ハンドルを使用して設定する方法を示しま

す。

DIM autECLPSObj as Object
DIM autECLConnList as Object
DIM NumRows as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection with the first in the list
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
' For example, get the number of rows in the PS
NumRows = autECLPSObj.NumRows

SetCursorPos
SetCursorPos メソッドは、autECLPS オブジェクト に関連する接続の表示スペースでのカーソルの位置を設定しま

す。位置設定は、行および桁単位です。

プロトタイプ
void SetCursorPos(Long Row, Long Col)

パラメーター
Long Row

表示スペースでのカーソルの行位置。

Long Col

表示スペースでのカーソルの桁位置。

戻り値
なし

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

例
以下の例は、autECLPS オブジェクトに関連する接続の表示スペースでの カーソルの位置を設定する方法を示してい

ます。

DIM autECLPSObj as Object
DIM autECLConnList as Object
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection with the first in the list
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)
autECLPSObj.SetCursorPos 2, 1

SendKeys
SendKeys メソッドは、キーのストリング を autECLPS オブジェクトに関連する接続の表示スペースに送信します。

このメソッドによって、略号キー・ストロークを表示スペースに送信できます。これらのキー・ストロークのリスト

は、Sendkeys 略号キーワード (ページ 430)を参照してください。

プロトタイプ
無効SendKeys(ストリングtext, [オプション] 長い行, [オプション] 長い列)

パラメーター
String text

表示スペースに送るキー・ストリング。

Long Row

表示スペースにキーを送信する行位置。このパラメーターはオプションです。デフォルト値は、現在の

カーソルの行位置です。row を指定した場合は、col も指定しなければなりません。

Long Col

表示スペースにキーを送信する桁位置。このパラメーターはオプションです。デフォルト値は、現在の

カーソルの桁位置です。col を指定した場合は、row も指定しなければなりません。

戻り値
なし

例
次の例は、SendKeys メソッドを使用して、autECLPS オブジェクトに関連付けられた接続の表示スペースにキーの

ストリングを送信する方法を示します。

311

ホストアクセスクラスライブラリ

312

オブジェクトとしての Dim autECLPSObj Dim autECLConnList オブジェクトセット autECLPSObj =
 CreateObject("ZIEWin .autECLPS") Set autECLConnList = CreateObject("ZIEWin .autECLConnList") '
 接続を初期化します autECLConnList.Refresh autECLPSObj.SetConnectionByHandle(autECLConnList(1).ハンドル)
 autECLPSObj.SendKeys "HCLはとても良い会社です", 3, 1

SearchText
SearchText メソッドは、autECLPS オブジェクトに関連する 接続の表示スペースでのテキストの最初の出現を検索

します。検索は大文字小文字を区別して行われます。テキストが見つかった場合、メソッドは True 値を戻します。

テキストが見つからなかった場合は、False 値を戻します。オプションの行および桁パラメーターが使用された場合

には、row および col も戻され、見つかった場合はテキストの位置を示します。

プロトタイプ
boolean SearchText(String text, [optional] Long Dir, [optional] Long Row, [optional] Long Col)

パラメーター
String text

検索するストリング。

Long Dir

検索の方向。前方検索の 1 か、 後方検索の 2 のどちらかを指定しなければなりません。このパラメー

ターはオプションです。デフォルト値は、前方検索の 1 です。

Long Row

表示スペース内で検索を開始する行位置。検索が成功した場合、見つかったテキストの行が戻されま

す。このパラメーターはオプションです。row を指定した場合は、col も指定しなければなりません。

Long Col

表示スペース内で検索を開始する桁位置。検索が成功した場合 、見つかったテキストの桁が戻されま

す。このパラメーターはオプションです。col を指定した場合は、row も指定しなければなりません。

戻り値
テキストが見つかった場合には True、 見つからなかった場合には False が戻されます。

例
以下の例は、autECLPS オブジェクトに関連する接続について、 表示スペース内のテキストを検索する方法を示して

います。

Dim autECLPSObj as Object
Dim autECLConnList as Object
Dim Row as Long
Dim Col as Long
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

' Initialize the connection
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

// Search forward in the PS from the start of the PS. If found
// then call a hypothetical found routine, if not found, call a hypothetical

// not found routine.
row = 3
col = 1
If (autECLPSObj.SearchText "HCL", 1, row, col) Then
 Call FoundFunc (row, col)
Else
 Call NotFoundFunc
Endif

GetText
GetText メソッドは、autECLPS オブジェクトに関連する 接続の表示スペースから文字を検索します。

プロトタイプ
String GetText([optional] Long Row, [optional] Long Col, [optional] Long LenToGet)

パラメーター
Long Row

表示スペースで検索を開始する行位置。このパラメーターはオプションです。

Long Col

表示スペースで検索を開始する桁位置。このパラメーターはオプションです。

Long LenToGet

表示スペースから検索する文字数。このパラメーターはオプションです。デフォルト値は、BuffLen と

して渡される配列の長さです。

戻り値
ストリング

PS からのテキスト。

例
以下の例は、autECLPS オブジェクトに関連する接続について、 表示スペースからストリングを検索する方法を示し

ています。

Dim autECLPSObj as Object
Dim PSText as String

313

ホストアクセスクラスライブラリ

314

' Initialize the connection
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

PSText = autECLPSObj.GetText(2,1,50)

SetText
SetText メソッドは、autECLPS オブジェクトに関連した 接続用の表示スペースにストリングを送信します。このメ

ソッドは SendKeys メソッドに類似しているものの、 このメソッドでは略号キー・ストローク (例えば、[enter] また

は [pf1]) は送信しません。

プロトタイプ
void SetText(String Text, [optional] Long Row, [optional] Long Col)

パラメーター
String Text

送信する文字配列。

Long Row

表示スペースで検索を開始する行。このパラメーターはオプションです。デフォルト値は、現在のカー

ソルの行位置です。

Long Col

表示スペースで検索を開始する桁位置。このパラメーターはオプションです。デフォルト値は、現在の

カーソルの桁位置です。

戻り値
なし

例
以下の例は、autECLPS オブジェクトに関連する接続について、 表示スペース内のテキストを検索する方法を示して

います。

Dim autECLPSObj as Object

'Initialize the connection
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")
autECLPSObj.SetText"HCL is great", 2, 1

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

CopyText
このメソッドは、指定された長さの表示スペース内の所定の場所からクリップボードにテキストをコピーします。コ

ピーされるテキストの長さは指定された長さになります。 長さを指定しない場合、表示スペースの終わりまでのテ

キストがコピーされます。場所を指定しない場合、テキストは表示スペース内の現行カーソル位置からコピーされま

す。パラメーターを指定しないと、表示スペース全体がクリップボードにコピーされます。

プロトタイプ
void CopyText([optional] Long Row, [optional] Long Col, [optional] Long LenToGet)

パラメーター
Long LenToGet

表示スペースからコピーする文字数。このパラメーターはオプションです。デフォルト値は、BuffLen

として渡される配列の長さです。

Long Row

表示スペースでコピーを開始する行。このパラメーターはオプションです。デフォルト値は、現在の

カーソルの行位置です。

Long Col

表示スペースでコピーを開始する桁位置。このパラメーターはオプションです。デフォルト値は、現在

のカーソルの桁です。

戻り値
なし

例
以下の例は、autECLPS オブジェクトに関連する接続について、 表示スペース内のテキストをクリップボードにコ

ピーする方法を示しています。

Dim autECLPSObj as Object
’Initialize the connection

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")

autECLPSObj.SetConnectionByName("A")
autECLPSObj.CopyText 6, 53, 10

PasteText
このメソッドは、指定された長さのテキストをクリップボードから表示スペースの指定の場所に貼り付けます。貼り

付けられるテキストの長さは、指定された長さになります。長さを指定しない場合、クリップボードのテキスト全体

が、表示スペースの最後に達するまで貼り付けられます。ロケーションが指定されていない場合、テキストは、表示

315

ホストアクセスクラスライブラリ

316

スペースの現在のカーソル位置に貼り付けられます。表示スペースがフィールド形式であり、クリップボードの内容

の貼り付け中にタブ文字 '\t' が指定されている場合、残りの貼り付け内容は次の書き込み可能フィールドに移動しま

す。

プロトタイプ
void PasteText([optional] Long Row, [optional] Long Col, [optional] Long LenToGet)

パラメーター
Long LenToGet

クリップボードから表示スペースに貼り付ける文字数。このパラメーターはオプションです。デフォル

トはクリップボード内のテキストの長さです。

Long Row

クリップボードから表示スペースへの貼り付けを開始する行。このパラメーターはオプションです。デ

フォルト値は、現在のカーソルの行位置です。

Long Col

クリップボードから表示スペースへの貼り付けを開始する桁位置。このパラメーターはオプションで

す。デフォルト値は、現在のカーソルの桁位置です。

戻り値
なし

例
以下の例は、autECLPS オブジェクトに関連する接続について、クリップボードから表示スペースにテキストを貼り

付ける方法を示しています。

Dim autECLPSObj as Object
’Initialize the connection

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")

autECLPSObj.SetConnectionByName("A")
autECLPSObj.PasteText 8, 53, 10

GetTextRect
GetTextRect メソッドは、autECLPS オブジェクトに関連する 接続の表示スペースの長方形域から文字を検索しま

す。テキスト検索では折り返しは実行されません。長方形域のみ検索されます。

プロトタイプ
String GetTextRect(Long StartRow, Long StartCol, Long EndRow, Long EndCol)

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

パラメーター
Long StartRow

表示スペースで検索を開始する行。

Long StartCol

表示スペースで検索を開始する桁。

Long EndRow

表示スペースで検索を終了する行。

Long EndCol

表示スペースで検索を終了する桁。

戻り値
ストリング

PS テキスト

例
以下の例は、autECLPS オブジェクトに関連する接続について、 表示スペース内の長方形域から文字を検索する方法

を示しています。

Dim autECLPSObj as Object
Dim PSText String

' Initialize the connection
Set autECLPSObj = CreateObject ("ZIEWin.autELCPS")
autECLPSObj.SetConnectionByName("A")

PSText = GetTextRect(1,1,2,80)

SetTextRect
SetTextRect メソッドにより、表示スペース内の長方形の領域に文字を設定し、autECLPS オブジェクトに関連させ

て 接続します。テキストを設定する際、折り返しは行われません。つまり、長方形の領域だけが設定されます。

プロトタイプ
SetTextRect(String Text, Long StartRow, Long StartCol, Long EndRow, Long EndCol)

パラメーター
String Text

表示スペースに設定する文字配列。

317

ホストアクセスクラスライブラリ

318

Long StartRow

表示スペースで設定を開始する行。

Long StartCol

表示スペースで設定を開始する桁。

Long EndRow

表示スペースで設定を終了する行。

Long EndCol

表示スペースで設定を終了する桁。

戻り値
なし

例
次の例は、表示スペース内の長方形の領域に文字を設定し、autECLPS オブジェクトに関連させて 接続する方法を示

しています。

Dim autECLPSObj as Object
Dim PSText String

’ Initialize the connection
Set autECLPSObj = CreateObject ("ZIEWin.autELCPS")
autECLPSObj.SetConnectionByName("A")

SetTextRect "HCL is great company to collaborate with", 1, 1, 4, 8

括弧を使用する場合は、以下のように SetTextRect を使用します。

call SetTextRect("HCL is great company to collaborate with", 1, 1, 4, 8)

StartCommunication
StartCommunication 集合要素メソッドは、ホスト・データ・ストリームに ZIEWin エミュレーターを接続します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「接続」を選択した場合と同じ結果になります。

プロトタイプ
void StartCommunication()

パラメーター
なし

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

戻り値
なし

例
以下の例は、ZIEWin エミュレーター・セッションをホストへ接続する方法を示しています。

Dim PSObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set PSObj = CreateObject("ZIEWin.autECLPS")

' Initialize the session
autECLConnList.Refresh
PSObj.SetConnectionByHandle(autECLConnList(1).Handle)

PSObj.StartCommunication()

StopCommunication
StopCommunication 集合要素メソッドは、ホスト・データ・ストリームから ZIEWin エミュレーターを切断します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「切断」を選択した場合と同じ結果になります。

プロトタイプ
void StopCommunication()

パラメーター
なし

戻り値
なし

例
以下の例は、ZIEWin エミュレーター・セッションをホストへ接続する方法を示しています。

Dim PSObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set PSObj = CreateObject("ZIEWin.autECLPS")

' Initialize the session
autECLConnList.Refresh
PSObj.SetConnectionByHandle(autECLConnList(1).Handle)

319

ホストアクセスクラスライブラリ

320

PSObj.StopCommunication()

StartMacro
StartMacro メソッドは、MacroName パラメーターにより指示された Z and I Emulator for Windows のマクロ・ファ

イルを実行します。

プロトタイプ
void StartMacro(String MacroName)

パラメーター
String MacroName

Z and I Emulator for Windows のユーザー・クラス・アプリケーション・データ・ディレクトリー (イ

ンストール時に指定) に入っているマクロ・ファイルの名前でファイル拡張子を持っていない。このメ

ソッドは、 長いファイル名をサポートしません。

戻り値
なし

使用上の注意
マクロ名には、短いファイル名を使用する必要があります。このメソッドは、 長いファイル名をサポートしませ

ん。

例
以下の例は、マクロを開始する方法を示しています。

Dim PS as Object

Set PS = CreateObject("ZIEWin.autECLPS")
PS.StartMacro "mymacro"

待機
Wait メソッドは、milliseconds パラメーターで指定されたミリ秒間 待機します。

プロトタイプ
void Wait(milliseconds as Long)

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

パラメーター
Long milliseconds

待機するミリ秒数。

戻り値
なし

例
Dim autECLPSObj as Object

Set autECLPSObj = CreateObject ("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName ("A")

' Wait for 10 seconds
autECLPSObj.Wait(10000)

WaitForCursor
WaitForCursor メソッドは、autECLPS オブジェクトに関連した 接続の表示スペースでカーソルが指定された位置に

配置されるのを待ちます。

プロトタイプ
Boolean WaitForCursor(Variant Row, Variant Col, [optional]Variant TimeOut, [optional] Boolean bWaitForIr)

パラメーター
Variant Row

カーソルの行の位置。

Variant Col

カーソルの列の位置。

Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

Boolean bWaitForIr

この値が True である場合、待ち条件の基準を満たすと、関数は OIA の入力受け入れ準備 ができるまで

待機します。このパラメーターはオプションです。デフォルトは False です。

321

ホストアクセスクラスライブラリ

322

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLPSObj as Object
Dim Row, Col

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

Row = 20
Col = 16

if (autECLPSObj.WaitForCursor(Row,Col,10000)) then
 msgbox "Cursor is at " " Row " "," " Col
else
 msgbox "Timeout Occurred"
end if

WaitWhileCursor
WaitWhileCursor メソッドは、autECLPS オブジェクトに関連した接続の 表示スペースでカーソルが指定された位置

に配置されている間待機します。

プロトタイプ
Boolean WaitWhileCursor(Variant Row, Variant Col, [optional]Variant TimeOut, [optional] Boolean bWaitForIr)

パラメーター
Variant Row

カーソルの行の位置。

Variant Col

カーソルの列の位置。

Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

Boolean bWaitForIr

この値が True である場合、待ち条件の基準を満たすと、関数は OIA の入力受け入れ準備 ができるまで

待機します。このパラメーターはオプションです。デフォルトは False です。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLPSObj as Object
Dim Row, Col

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

Row = 20
Col = 16

if (autECLPSObj.WaitWhileCursor(Row,Col,10000)) then
 msgbox "Cursor is no longer at " " Row " "," " Col
else
 msgbox "Timeout Occurred"
end if

WaitForString
WaitForString メソッドは、autECLPS オブジェクトに関連した接続の 表示スペースで、指定されたストリングが現

れるのを待ちます。オプションの行パラメーターおよび桁パラメーターが 使用される場合は、ストリングは指定さ

れた位置から開始しなければなりません。行と桁に、それぞれ 0 が渡された場合は、メソッドは PS 全体を探索しま

す。

プロトタイプ

Boolean WaitForString(Variant WaitString, [optional] Variant Row, [optional] Variant Col, [optional] Variant

TimeOut, [optional] Boolean bWaitForIr, [optional] Boolean bCaseSens)

パラメーター
Variant WaitString

待機の対象となるストリング。

Variant Row

ストリングが開始する行位置。このパラメーターはオプションです。デフォルトは 0 です。

Variant Col

ストリングが開始する桁位置。このパラメーターはオプションです。デフォルトは 0 です。

Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

323

ホストアクセスクラスライブラリ

324

Boolean bWaitForIr

この値が True である場合、待ち条件の基準を満たすと、関数は OIA の入力受け入れ準備 ができるまで

待機します。このパラメーターはオプションです。デフォルトは False です。

Boolean bCaseSens

この値が True の場合は、待ち条件は大/小文字の区別があるものとして検査されます。このパラメー

ターはオプションです。デフォルトは False です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLPSObj as Object
Dim Row, Col, WaitString

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

WaitString = "Enter USERID"
Row = 20
Col = 16

if (autECLPSObj.WaitForString(WaitString,Row,Col,10000)) then
 msgbox WaitString " " found at " " Row " "," " Col
else
 msgbox "Timeout Occurred"
end if

WaitWhileString
WaitWhileString メソッドは、指定されたストリングが autECLPS オブジェクトに関連した接続の 表示スペースに現

れている間待機します。オプションの行パラメーターおよび桁パラメーターが 使用される場合は、ストリングは指

定された位置から開始しなければなりません。行と桁に、それぞれ 0 が渡された場合は、メソッドは PS 全体を探索

します。

プロトタイプ

Boolean WaitWhileString(Variant WaitString, [optional] Variant Row, [optional] Variant Col, [optional] Variant

TimeOut, [optional] Boolean bWaitForIr, [optional] Boolean bCaseSens)

パラメーター
Variant WaitString

このストリング値が存在している間、メソッドは待機します。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Variant Row

ストリングが開始する行位置。このパラメーターはオプションです。デフォルトは 0 です。

Variant Col

ストリングが開始する桁位置。このパラメーターはオプションです。デフォルトは 0 です。

Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

Boolean bWaitForIr

この値が True である場合、待ち条件の基準を満たすと、関数は OIA の入力受け入れ準備 ができるまで

待機します。このパラメーターはオプションです。デフォルトは False です。

Boolean bCaseSens

この値が True の場合は、待ち条件は大/小文字の区別があるものとして検査されます。このパラメー

ターはオプションです。デフォルトは False です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLPSObj as Object
Dim Row, Col, WaitString

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

WaitString = "Enter USERID"
Row = 20
Col = 16

if (autECLPSObj.WaitWhileString(WaitString,Row,Col,10000)) then
 msgbox WaitString " " was found at " " Row " "," " Col
else
 msgbox "Timeout Occurred"
end if

WaitForStringInRect
WaitForStringInRect メソッドは、指定された長方形内の autECLPS オブジェクトに関連した 接続の表示スペース

で、指定されたストリングが現れるのを待ちます。

325

ホストアクセスクラスライブラリ

326

プロトタイプ
Boolean WaitForStringInRect(Variant WaitString, Variant sRow, Variant sCol, Variant eRow, Variant eCol, [optional]

Variant nTimeOut, [optional] Boolean bWaitForIr, [optional] Boolean bCaseSens)

パラメーター
Variant WaitString

待機の対象となるストリング。

Variant sRow

長方形探索を開始する行位置。

Variant sCol

長方形探索を開始する桁位置。

Variant eRow

長方形探索を終了する行位置。

Variant eCol

長方形探索を終了する桁位置。

Variant nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

Boolean bWaitForIr

この値が True である場合、待ち条件の基準を満たすと、関数は OIA の入力受け入れ準備 ができるまで

待機します。このパラメーターはオプションです。デフォルトは False です。

Boolean bCaseSens

この値が True の場合は、待ち条件は大/小文字の区別があるものとして検査されます。このパラメー

ターはオプションです。デフォルトは False です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLPSObj as Object
Dim sRow, sCol, eRow, eCol, WaitString

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

WaitString = "Enter USERID"
sRow = 20

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

sCol = 16
eRow = 21
eCol = 31

if (autECLPSObj.WaitForStringInRect(WaitString,sRow,sCol,eRow,eCol,10000)) then
 msgbox WaitString " " found in rectangle"
else
 msgbox "Timeout Occurred"
end if

WaitWhileStringInRect
WaitWhileStringInRect メソッドは、指定されたストリングが指定長方形内の autECLPS オブジェクト に関連した接

続の表示スペースに現れている間待機します。

プロトタイプ
Boolean WaitWhileStringInRect(Variant WaitString, Variant sRow, Variant sCol, Variant eRow, Variant eCol, [optional]

Variant nTimeOut, [optional] Boolean bWaitForIr, [optional] Boolean bCaseSens)

パラメーター
Variant WaitString

このストリング値が存在している間、メソッドは待機します。

Variant sRow

長方形探索を開始する行位置。

Variant sCol

長方形探索を開始する桁位置。

Variant eRow

長方形探索を終了する行位置。

Variant eCol

長方形探索を終了する桁位置。

Variant nTimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

Boolean bWaitForIr

この値が True である場合、待ち条件の基準を満たすと、関数は OIA の入力受け入れ準備 ができるまで

待機します。このパラメーターはオプションです。デフォルトは False です。

327

ホストアクセスクラスライブラリ

328

Boolean bCaseSens

この値が True の場合は、待ち条件は大/小文字の区別があるものとして検査されます。このパラメー

ターはオプションです。デフォルトは False です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLPSObj as Object
Dim sRow, sCol, eRow, eCol, WaitString

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

WaitString = "Enter USERID"
sRow = 20
sCol = 16
eRow = 21
eCol = 31

if (autECLPSObj.WaitWhileStringInRect(WaitString,sRow,sCol,eRow,eCol,10000)) then
 msgbox WaitString " " no longer in rectangle"
else
 msgbox "Timeout Occurred"
end if

WaitForAttrib
WaitForAttrib メソッドは、指定行/列位置にある autECLPS オブジェクトに関連した接続 の表示スペースで、指定さ

れた属性値が現れるまで待ちます。オプションの MaskData パラメーターを使用して、どの属性値を探索するのか

を制御することができます。オプションのプレーン・パラメーターに より、4 つの PS プレーンの内から任意のプ

レーンを選択することが可能となります。

プロトタイプ

Boolean WaitForAttrib(Variant Row, Variant Col, Variant WaitData, [optional] Variant MaskData, [optional] Variant

plane, [optional] Variant TimeOut, [optional] Boolean bWaitForIr)

パラメーター
Variant Row

属性の行の位置。

Variant Col

属性の列の位置。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Variant WaitData

待機する属性値。この値は 1 バイトの 16 進数値です。

Variant MaskData

属性をマスクするのに使用する 1 バイトの 16 進数の値。このパラメーターはオプションです。デフォ

ルト値は 0xFF です。

Variant plane

取得する属性のプレーン。プレーンは、以下のような値が可能です。

1

テキスト・プレーン

2

カラー・プレーン

3

フィールド・プレーン (デフォルト)

4

拡張フィールド・プレーン

Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

Boolean bWaitForIr

この値が True である場合、待ち条件の基準を満たすと、関数は OIA の入力受け入れ準備 ができるまで

待機します。このパラメーターはオプションです。デフォルトは False です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLPSObj as Object
Dim Row, Col, WaitData, MaskData, plane

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

Row = 20
Col = 16
WaitData = E8h
MaskData = FFh
plane = 3

if (autECLPSObj.WaitForAttrib(Row, Col, WaitData, MaskData, plane, 10000)) then
 msgbox "Attribute " " WaitData " " found"

329

ホストアクセスクラスライブラリ

330

else
 msgbox "Timeout Occurred"
end if

WaitWhileAttrib
WaitWhileAttrib メソッドは、指定行/列位置にある autECLPS オブジェクトに関連した接続 の表示スペースに、指定

された属性値が表示されている間待ちます。オプションの MaskData パラメーターを使用して、どの属性値を探索す

るのか を制御することができます。オプションのプレーン・パラメーターに より、4 つの PS プレーンの内から任

意のプレーンを選択することが可能となります。

プロトタイプ

Boolean WaitWhileAttrib(Variant Row, Variant Col, Variant WaitData, [optional] Variant MaskData, [optional]

Variant plane, [optional] Variant TimeOut, [optional] Boolean bWaitForIr)

パラメーター
Variant Row

属性の行の位置。

Variant Col

属性の列の位置。

Variant WaitData

待機する属性値。この値は 1 バイトの 16 進数値です。

Variant MaskData

属性をマスクするのに使用する 1 バイトの 16 進数の値。このパラメーターはオプションです。デフォ

ルト値は 0xFF です。

Variant plane

取得する属性のプレーン。プレーンは、以下のような値が可能です。

1

テキスト・プレーン

2

カラー・プレーン

3

フィールド・プレーン (デフォルト)

4

拡張フィールド・プレーン

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

Boolean bWaitForIr

この値が True である場合、待ち条件の基準を満たすと、関数は OIA の入力受け入れ準備 ができるまで

待機します。このパラメーターはオプションです。デフォルトは False です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLPSObj as Object
Dim Row, Col, WaitData, MaskData, plane

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

Row = 20
Col = 16
WaitData = E8h
MaskData = FFh
plane = 3

if (autECLPSObj.WaitWhileAttrib(Row, Col, WaitData, MaskData, plane, 10000)) then
 msgbox "Attribute " " WaitData " " No longer exists"
else
 msgbox "Timeout Occurred"
end if

WaitForScreen
autECLScreenDesc パラメーターにより記述された画面が表示スペースに 現れるのを同期して待ちます。

注: OIA 入力フラグの待機は autECLScreenDesc オブジェクト 上に設定され、パラメーターとして待機メ

ソッドに渡されません。

プロトタイプ
Boolean WaitForScreen(Object screenDesc, [optional] Variant TimeOut)

パラメーター
Object screenDesc

画面を記述する autECLScreenDesc オブジェクト (autECLScreenDesc クラス (ページ 339)を参照)。

331

ホストアクセスクラスライブラリ

332

Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

autECLScreenDesObj.AddCursorPos 23, 1

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen found"
else
 msgbox "Timeout Occurred"
end if

WaitWhileScreen
autECLScreenDesc パラメーターにより記述された画面が表示スペースから なくなるまで同期して待ちます。

注: OIA 入力フラグの待機は autECLScreenDesc オブジェクト 上に設定され、パラメーターとして待機メ

ソッドに渡されません。

プロトタイプ
Boolean WaitWhileScreen(Object screenDesc, [optional] Variant TimeOut)

パラメーター
Object ScreenDesc

画面を記述する autECLScreenDesc オブジェクト (autECLScreenDesc クラス (ページ 339)を参照)。

Variant TimeOut

待機する時間の最大長 (ミリ秒)。このパラメーターはオプションです。デフォルトは Infinite (無期限)

です。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

戻り値
メソッドは、条件が合致していれば True を戻し、 タイムアウト値が超えていれば False を戻します。

例
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName("A")

autECLScreenDesObj.AddCursorPos 23, 1

if (autECLPSObj.WaitWhileScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen exited"
else
 msgbox "Timeout Occurred"
end if

CancelWaits
現在活動待ちのメソッドを取り消します。

プロトタイプ
void CancelWaits()

パラメーター
なし

戻り値
なし

autECLPS イベント
以下のイベントは autECLPS に有効です。

void NotifyPSEvent() void NotifyKeyEvent(string KeyType, string KeyString, PassItOn as Boolean) void

NotifyCommEvent(boolean bConnected) void NotifyPSError() void NotifyKeyError() void NotifyCommError() void

NotifyPSStop(Long Reason) void NotifyKeyStop(Long Reason) void NotifyCommStop(Long Reason)

333

ホストアクセスクラスライブラリ

334

NotifyPSEvent
指定された PS は更新されました。

プロトタイプ
void NotifyPSEvent()

パラメーター
なし

例
例については、イベント処理の例 (ページ 337)を参照してください。

NotifyKeyEvent
キー・ストローク・イベントが起こり、キー情報が提供されました。この関数は、指定された PS に対するキー・ス

トロークをインターセプトするために 使用することができます。キー情報はイベント・ハンドラーに渡され、 続い

て次へ渡すことも、別のアクションを実行することも可能です。

注: 1 つのオブジェクトだけが、同時点で指定された PS に登録済みの キー・ストローク・イベント処理を持

つことができます。

プロトタイプ
void NotifyKeyEvent(string KeyType, string KeyString, PassItOn as Boolean)

パラメーター
String KeyType

インターセプトされたキーのタイプ。

月

略号キー・ストローク

A

ASCII

String KeyString

インターセプトされたキー・ストローク。

Boolean PassItOn

キー・ストロークのエコーを PS に返すかどうかを示すためにフラグを付けます。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

TRUE

キー・ストロークを PS に渡すようにします。

FALSE

キー・ストロークを PS に渡さないようにします。

例
例については、イベント処理の例 (ページ 337)を参照してください。

NotifyCommEvent
指定された通信リンクは、接続あるいは接続解除されています。

プロトタイプ
void NotifyCommEvent(boolean bConnected)

パラメーター
boolean bConnected

通信リンクが現在接続されている場合は True で、これ以外の場合は False。

例
例については、イベント処理の例 (ページ 337)を参照してください。

NotifyPSError
このイベントは、イベント処理でエラーが発生したときに起こります。

プロトタイプ
void NotifyPSError()

パラメーター
なし

例
例については、イベント処理の例 (ページ 337)を参照してください。

335

ホストアクセスクラスライブラリ

336

NotifyKeyError
このイベントは、イベント処理でエラーが発生したときに起こります。

プロトタイプ
void NotifyKeyError()

パラメーター
なし

例
例については、イベント処理の例 (ページ 337)を参照してください。

NotifyCommError
このイベントは、イベント処理でエラーが発生したときに起こります。

プロトタイプ
void NotifyCommError()

パラメーター
なし

例
例については、イベント処理の例 (ページ 337)を参照してください。

NotifyPSStop
このイベントは、イベント処理が停止したときに起こります。

プロトタイプ
void NotifyPSStop(Long Reason)

パラメーター
Long Reason

停止の理由コード。現在は、これは常に 0 です。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

例
例については、イベント処理の例 (ページ 337)を参照してください。

NotifyKeyStop
このイベントは、イベント処理が停止したときに起こります。

プロトタイプ
void NotifyKeyStop(Long Reason)

パラメーター
Long Reason

停止の理由コード。現在は、これは常に 0 です。

例
例については、イベント処理の例 (ページ 337)を参照してください。

NotifyCommStop
このイベントは、イベント処理が停止したときに起こります。

プロトタイプ
void NotifyCommStop(Long Reason)

パラメーター
Long Reason

停止の理由コード。現在は、これは常に 0 です。

イベント処理の例
以下は、PS イベントの実装方法についての簡単な例です。

Option Explicit
Private WithEvents mPS As autECLPS 'AutPS added as reference
Private WithEvents Mkey as autECLPS

sub main()
'Create Objects
Set mPS = New autECLPS

337

ホストアクセスクラスライブラリ

338

Set mkey = New autECLPS
mPS.SetConnectionByName "A" 'Monitor Session A for PS Updates
mPS.SetConnectionByName "B" 'Intercept Keystrokes intended for Session B

mPS.RegisterPSEvent 'register for PS Updates
mPS.RegisterCommEvent ' register for Communications Link updates for session A
mkey.RegisterKeyEvent 'register for Key stroke intercept

' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
call DisplayGUI()

mPS.UnregisterPSEvent
mPS.UnregisterCommEvent
mkey.UnregisterKeyEvent

set mPS = Nothing
set mKey = Nothing
End Sub

'This sub will get called when the PS of the Session registered
'above changes
Private Sub mPS_NotifyPSEvent()
' do your processing here
End Sub

'This sub will get called when Keystrokes are entered into Session B
Private Sub mkey_NotifyKeyEvent(string KeyType, string KeyString, PassItOn as Boolean)
' do your keystroke filtering here
If (KeyType = "M") Then
'handle mnemonics here
if (KeyString = "[PF1]" then 'intercept PF1 and send PF2 instead
mkey.SendKeys "[PF2]"
set PassItOn = false
end if
end if

End Sub

'This event occurs if an error happens in PS event processing
Private Sub mPS_NotifyPSError()
'Do any error processing here
End Sub

'This event occurs when PS Event handling ends
Private Sub mPS_NotifyPSStop(Reason As Long)
'Do any stop processing here
End Sub

'This event occurs if an error happens in Keystroke processing
Private Sub mkey_NotifyKeyError()
'Do any error processing here
End Sub

'This event occurs when key stroke event handling ends
Private Sub mkey_NotifyKeyStop(Reason As Long)
'Do any stop processing here
End Sub

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

'This sub will get called when the Communication Link Status of the registered
'connection changes
Private Sub mPS_NotifyCommEvent()
' do your processing here
End Sub

'This event occurs if an error happens in Communications Link event processing
Private Sub mPS_NotifyCommError()
'Do any error processing here
End Sub

'This event occurs when Communications Status Notification ends
Private Sub mPS_NotifyCommStop()
'Do any stop processing here
End Sub

autECLScreenDesc クラス
autECLScreenDesc は、HCL ホスト・アクセス・クラス・ライブラリーの画面認識テクノロジーの画面を記述するた

めに使用されるクラスです。これは、カーソル位置はもちろんのこと、 これを説明する表示スペースの 4 つの主な

プレーン (テキスト、フィールド、 拡張フィールド、およびカラー・プレーン) すべてを使用します。

このオブジェクトで用意されているメソッドを使用して、プログラマーは指定された画面が ホスト・サイド・ア

プリケーションでどのように表示されるかを詳細に記述することが できます。autECLScreenDesc オブジェクト

が作成されセットされると、これを autECLPS で提供される 同期 WaitFor... メソッドのいずれかに渡すか、または

autECLScreenReco に渡すことが でき、autECLScreenDesc オブジェクトと一致する画面が PS 内に現れた場合は、

非同期イベントを破棄します。

autECLScreenDesc メソッド
以下のセクションで、autECLScreenDesc に有効なメソッドを説明します。

void AddAttrib(Variant attrib, Variant row, Variant col, Variant plane) void AddCursorPos(Variant row, Variant col)

void AddNumFields(Variant num) void AddNumInputFields(Variant num) void AddOIAInhibitStatus(Variant type)

void AddString(String str, Variant row, Variant col, [optional] Boolean caseSense) void AddStringInRect(String str,

Variant sRow, Variant sCol, Variant eRow, Variant eCol, [optional] Variant caseSense) void Clear()

AddAttrib
画面記述の指定位置に属性値を追加します。

プロトタイプ
void AddAttrib(Variant attrib, Variant row, Variant col, Variant plane)

339

ホストアクセスクラスライブラリ

340

パラメーター
Variant attrib

1 バイトの 16 進数属性の値。

Variant row

行位置。

Variant col

桁位置。

Variant plane

取得する属性のプレーン。プレーンは、以下のような値が可能です。

0. すべてのプレーン

1. テキスト・プレーン

2. カラー・プレーン

3. フィールド・プレーン

4. 拡張フィールド・プレーン

戻り値
なし

例
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
 else
 msgbox "Timeout Occurred"
end if

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

AddCursorPos
指定位置に画面記述のためのカーソル位置をセットします。

プロトタイプ
void AddCursorPos(Variant row, Variant col)

パラメーター
Variant row

行位置。

Variant col

桁位置。

戻り値
なし

例
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

AddNumFields
画面記述にフィールド数を追加します。

プロトタイプ
void AddNumFields(Variant num)

341

ホストアクセスクラスライブラリ

342

パラメーター
Variant num

フィールドの数。

戻り値
なし

例
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

AddNumInputFields
画面記述にフィールド数を追加します。

プロトタイプ
void AddNumInputFields(Variant num)

パラメーター
Variant num

入力フィールドの数。

戻り値
なし

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

例
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

AddOIAInhibitStatus
画面記述のための OIA モニターのタイプをセットします。

プロトタイプ
void AddOIAInhibitStatus(Variant type)

パラメーター
Variant type

OIA 状況のタイプ。有効な値は次のとおりです。

0. 任意

1. 使用可能

戻り値
なし

例
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")

343

ホストアクセスクラスライブラリ

344

Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

AddString
画面記述の指定された位置にストリングを追加します。

プロトタイプ

void AddString(String str, Variant row, Variant col, [optional] Boolean caseSense)

パラメーター
String str

追加するストリング。

Variant row

行位置。

Variant col

桁位置。

Boolean caseSense

この値が True である場合は、ストリングは大/小文字の区別付きで 追加されます。このパラメーター

はオプションです。デフォルト値は True です。

戻り値
なし

例
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

AddStringInRect
画面記述の指定長方形内にストリングを追加します。

プロトタイプ
void AddStringInRect(String str, Variant sRow, Variant sCol, Variant eRow, Variant eCol, [optional] Variant caseSense)

パラメーター
String str

追加するストリング

Variant sRow

左上行位置。

Variant sCol

左上桁位置。

Variant eRow

右下行位置。

Variant eCol

右下桁位置。

Variant caseSense

この値が True である場合は、ストリングは大/小文字の区別付きで 追加されます。このパラメーター

はオプションです。デフォルト値は True です。

345

ホストアクセスクラスライブラリ

346

戻り値
なし

例
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")
autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

クリア
画面記述からすべての記述要素を取り除きます。

プロトタイプ
void Clear()

パラメーター
なし

戻り値
なし

例
Dim autECLPSObj as Object
Dim autECLScreenDescObj as Object

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autECLPSObj = CreateObject("ZIEWin.autECLPS")

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

autECLPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddCursorPos 23,1
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLPSObj.WaitForScreen(autECLScreenDesObj, 10000)) then
 msgbox "Screen reached"
else
 msgbox "Timeout Occurred"
end if

autECLScreenDesObj.Clear // start over for a new screen

autECLScreenReco クラス
autECLScreenReco クラスは、ホスト・アクセス・クラス・ライブラリーの画面認識システム にとってはエンジンに

相当するものです。これには、画面の記述を追加したり除去したりするためのメソッドが含まれています。また、こ

れにはこれらの画面を認識したり、これら画面用に ユーザーのイベント・ハンドラー・コードを非同期的に呼び戻

したりするためのロジックも 含まれています。

autECLScreenReco クラスのオブジェクトを固有な認識セットと考えてください。このオブジェクトは、これが画面

用に監視する複数の autECLPS オブジェクト、および 探索すべき複数の画面を持つことができ、これが追加された

autECLPS オブジェクトの いずれかで登録済み画面を見つけた場合には、これはユーザーのアプリケーションで 定

義されたイベント処理コードを破棄します。

ユーザーが実施すべきことは、アプリケーションを開始するときに ユーザーの autECLScreenReco オブジェ

クトを設定するだけです。 モニターしたい任意の autECLPS で画面が表示されると、イベント・コード が

autECLScreenReco によって呼び出されます。ユーザーは、画面をモニターする 際に何も実行する必要はありませ

ん。

例については、イベント処理の例 (ページ 352)を参照してください。

autECLScreenReco メソッド
以下のセクションで、autECLScreenReco に有効なメソッドを説明します。

void AddPS(autECLPS ps) Boolean IsMatch(autECLPS ps, AutECLScreenDesc sd) void

RegisterScreen(AutECLScreenDesc sd) void RemovePS(autECLPS ps) void UnregisterScreen(AutECLScreenDesc sd)

347

ホストアクセスクラスライブラリ

348

AddPS
autECLScreenReco オブジェクトに対して、モニターすべき autECLPS オブジェクトを追加します。

プロトタイプ
void AddPS(autECLPS ps)

パラメーター
autECLPS ps

モニター対象の PS オブジェクト。

戻り値
なし

例
例については、イベント処理の例 (ページ 352)を参照してください。

IsMatch
autECLPS オブジェクトおよび AutECLScreenDesc オブジェクトを渡すことを可能にし、 画面記述が PS の現在の状

態に一致しているかどうかの判別を可能にします。画面認識のエンジンは このロジックを使用しますが、どのルー

チンもそれを呼び出すことができるように作られます。

プロトタイプ
Boolean IsMatch(autECLPS ps, AutECLScreenDesc sd)

パラメーター
autECLPS ps

比較する autPS オブジェクト。

AutECLScreenDesc sd

比較する autECLScreenDesc オブジェクト。

戻り値
AutECLScreenDesc オブジェクトが PS 内の現行画面に一致する場合は True で、 それ以外の場合は False です。

例
Dim autPSObj as Object
Dim autECLScreenDescObj as Object

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Set autECLScreenDescObj = CreateObject("ZIEWin.autECLScreenDesc")
Set autPSObj = CreateObject("ZIEWin.autECLPS")
autPSObj.SetConnectionByName "A"

autECLScreenDesObj.AddCursorPos 23, 1
autECLScreenDesObj.AddAttrib E8h, 1, 1, 2
autECLScreenDesObj.AddNumFields 45
autECLScreenDesObj.AddNumInputFields 17
autECLScreenDesObj.AddOIAInhibitStatus 1
autECLScreenDesObj.AddString "LOGON", 23, 11, True
autECLScreenDesObj.AddStringInRect "PASSWORD", 23, 1, 24, 80, False

if (autECLScreenReco.IsMatch(autPSObj, autECLScreenDesObj)) then
 msgbox "matched"
else
 msgbox "no match"
end if

RegisterScreen
指定された画面の記述のために画面認識オブジェクトに追加された すべての autECLPS オブジェクトのモニターを

開始します。その画面が PS に現れると、NotifyRecoEvent が発生します。

プロトタイプ
void RegisterScreen(AutECLScreenDesc sd)

パラメーター
AutECLScreenDesc sd

登録対象の画面記述オブジェクト。

戻り値
なし

例
例については、イベント処理の例 (ページ 352)を参照してください。

RemovePS
画面認識モニターから autECLPS オブジェクトを除去します。

プロトタイプ
void RemovePS(autECLPS ps)

349

ホストアクセスクラスライブラリ

350

パラメーター
autECLPS ps

除去する autECLPS オブジェクト。

戻り値
なし

例
例については、イベント処理の例 (ページ 352)を参照してください。

UnregisterScreen
画面認識モニターから画面記述を除去します。

プロトタイプ
void UnregisterScreen(AutECLScreenDesc sd)

パラメーター
AutECLScreenDesc sd

除去する画面記述オブジェクト。

戻り値
なし

例
例については、イベント処理の例 (ページ 352)を参照してください。

autECLScreenReco イベント
以下のイベントは autECLScreenReco に有効です。

void NotifyRecoEvent(AutECLScreenDesc sd, autECLPS ps) void NotifyRecoError() void NotifyRecoStop(Long

Reason)

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

NotifyRecoEvent
このイベントは、autECLScreenReco オブジェクトに追加された PS に登録済み画面記述が 現れたときに起こりま

す。

プロトタイプ
void NotifyRecoEvent(AutECLScreenDesc sd, autECLPS ps)

パラメーター
AutECLScreenDesc sd

その基準を満たしている画面記述オブジェクト。

autECLPS ps

突き合わせが行われた PS オブジェクト。

例
例については、イベント処理の例 (ページ 352)を参照してください。

NotifyRecoError
このイベントは、イベント処理でエラーが発生したときに起こります。

プロトタイプ
void NotifyRecoError()

パラメーター
なし

例
例については、イベント処理の例 (ページ 352)を参照してください。

NotifyRecoStop
このイベントは、イベント処理が停止したときに起こります。

プロトタイプ
void NotifyRecoStop(Long Reason)

351

ホストアクセスクラスライブラリ

352

パラメーター
Long Reason

停止の理由コード。現在は、これは常に 0 です。

イベント処理の例
以下は、画面認識イベントの実装方法についての簡単な例です。

Dim myPS as Object
Dim myScreenDesc as Object
Dim WithEvents reco as autECLScreenReco 'autECLScreenReco added as reference

Sub Main()
 ' Create the objects
 Set reco= new autECLScreenReco
 myScreenDesc = CreateObject("ZIEWin.autECLScreenDesc")
 Set myPS = CreateObject("ZIEWin.autECLPS")
 myPS.SetConnectionByName "A"

 ' Set up the screen description
 myScreenDesc.AddCursorPos 23, 1
 myScreenDesc.AddString "LOGON"
 myScreenDesc.AddNumFields 59

 ' Add the PS to the reco object (can add multiple PS's)
 reco.addPS myPS

 ' Register the screen (can add multiple screen descriptions)
 reco.RegisterScreen myScreenDesc

 ' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
 call DisplayGUI()

 ' Clean up
 reco.UnregisterScreen myScreenDesc
 reco.RemovePS myPS
 set myPS = Nothing
 set myScreenDesc = Nothing
 set reco = Nothing
End Sub

'This sub will get called when the screen Description registered above appears in
'Session A. If multiple PS objects or screen descriptions were added, you can
'determine which screen and which PS via the parameters.

Sub reco_NotifyRecoEvent(autECLScreenDesc SD, autECLPS PS)
 If (reco.IsMatch(PS,myScreenDesc)) Then
 ' do your processing for your screen here
 End If
End Sub

Sub reco_NotifyRecoError
 'do your error handling here

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

End sub

Sub reco_NotifyRecoStop(Reason as Long)
 'Do any stop processing here
End sub

autECLSession クラス
autECLSession オブジェクトは、 一般エミュレーター関連サービスを提供し、ホスト・アクセス・クラス・

ライブラリーの 他の主要なオブジェクトへのポインターを含んでいます。レジストリーでのその名前は

ZIEWin.autECLSession です。

autECLSession に含まれているオブジェクトはそれぞれ 独立させることができますが、これらへの

ポインターは autECLSession クラスに 存在します。autECLSession オブジェクトが作成されるとき

は、autECLPS、autECLOIA、autECLXfer、autECLWindowMetrics、autECLPageSettings、 および

autECLPrinterSettings オブジェクトも作成されます。それらは、他のプロパティーと同じように参照してくださ

い。

注:

1. このオブジェクトの現行バージョンは 1.2 です。このオブジェクトには 2 つのバージョンがあり、レ

ジストリー内の ProgID はそれぞれ ZIEWin.autECLSession.1 および ZIEWin.autECLSession.2 です。

バージョンを区別しない ProgID は、ZIEWin.autECLSession です。ZIEWin.autECLSession.1 オブジェ

クトは、プロパティー autECLPageSettings および autECLPrinterSettings をサポートしません。

2. 最初に、作成したオブジェクトの接続を設定しなければなりません。SetConnectionByName ま

たは SetConnectionByHandle を使用して、オブジェクトを初期化します。接続は一度しか設定でき

ません。接続が設定された後は、SetConnection メソッドをさらに呼び出すと例外を引き起こしま

す。また、接続を設定せずに autECLSession プロパティーまたはメソッドにアクセスしようと して

も、例外が引き起こされます。

以下の例は、Visual Basic で autECLSession オブジェクトを作成し、 設定する方法を示しています。

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example, set the host window to minimized
SessObj.autECLWinMetrics.Minimized = True

プロパティー
autECLSessionプロパティー概要このセクションでは、autECLSession オブジェクトのプロパティーを説明します。

353

ホストアクセスクラスライブラリ

354

タイプ 名前 属性

ストリング 名前 読み取り専用

長形式 ハンドル 読み取り専用

ストリング ConnType 読み取り専用

長形式 CodePage 読み取り専用

ブール値 開始済み 読み取り専用

ブール値 CommStarted 読み取り専用

ブール値 APIEnabled 読み取り専用

ブール値 作動可能 読み取り専用

オブジェクト autECLPS 読み取り専用

オブジェクト autECLOIA 読み取り専用

オブジェクト autECLXfer 読み取り専用

オブジェクト autECLWinMetrics 読み取り専用

オブジェクト autECLPageSettings 読み取り専用

オブジェクト autECLPrinterSettings 読み取り専用

名前
このプロパティーは、autECLSession が設定された接続の接続名ストリングです。Z and I Emulator for Windows

は、短い文字 ID (A から Z、または a から z) のみをストリングで戻します。Z and I Emulator for Windows 接続で

オープンできるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみをオープンできま

す。Name は、String データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Name as String
DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")

' Save the name
Name = SessObj.Name

ハンドル
これは、autECLSession オブジェクトが 設定された接続のハンドルです。特定の 1 つのハンドルに対して 1 つし

か、Z and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A のみをオープンできま

す。Handle は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

' Save the session handle
Hand = SessObj.Handle

ConnType
これは、autECLXfer が設定された接続タイプです。このタイプは、時間の経過とともに変更する場合が ありま

す。ConnType は、String データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Type as String
DIM SessObj as Object

Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' Save the type
Type = SessObj.ConnType

ConnType プロパティーの接続タイプは、以下のとおりです。

戻されるストリング 意味

DISP3270 3270 表示装置

DISP5250 5250 ディスプレイ

PRNT3270 3270 印刷装置

PRNT5250 5250 プリンター

ASCII VT エミュレーション

CodePage
これは、autECLXfer が設定された接続のコード・ページです。このコード・ページは、時間の経過とともに変更さ

れる場合があります。CodePage は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示して

います。

DIM CodePage as Long
DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' Save the code page
CodePage = SessObj.CodePage

開始済み
これは、エミュレーター・ウィンドウが開始されたかどうかを示します。ウィンドウがオープンしている場合、値は

True です。 その他の場合は False です。Started は、Boolean データ型で読み取り専用です。以下の例は、このプ

ロパティーを示しています。

355

ホストアクセスクラスライブラリ

356

DIM Hand as Long
DIM SessObj as Object

Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If SessObj.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
これは、ホストへの接続の状況を示しています。ホストが接続されている場合、値は True です。 その他の場合は

False です。CommStarted は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示してい

ます。

DIM Hand as Long
DIM SessObj as Object

Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")

' This code segment checks to see if communications are connected
' for session A. The results are sent to a text box called
' CommConn.
If SessObj.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
これは、エミュレーターが API 使用可能かどうかを示します。API 設定 (Z and I Emulator for Windows のウィンド

ウでは、「ファイル」->「API の設定」を選択) の状態に応じて、接続が可能な場合と、接続できない場合がありま

す。エミュレーターが使用可能の場合には、True です。その他の場合には、False です。APIEnabled は、Boolean

データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Hand as Long
DIM SessObj as Object

Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

' This code segment checks to see if A is API enabled.
' The results are sent to a text box called Result.
If SessObj.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

作動可能
これは、エミュレーター・ウィンドウが 開始されていて、API 使用可能で、そして接続されているかどうかを示し

ます。このプロパティーは、3 つのすべてのプロパティーを確認します。エミュレーターが準備できている場合に

は、値は True です。 その他の場合には、False です。Ready は、Boolean データ型で読み取り専用です。以下の例

は、このプロパティーを示しています。

DIM Hand as Long
DIM SessObj as Object

Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If SessObj.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLPS オブジェクト
autECLPS オブジェクトを使用すると、ZIEWin.autECLPS クラスに含まれるメソッドにアクセスすることができま

す。詳しくは、autECLPS クラス (ページ 299)を参照してください。以下の例は、このオブジェクトを示していま

す。

DIM SessObj as Object
DIM PSSize as Long
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example, get the PS size
PSSize = SessObj.autECLPS.GetSize()

357

ホストアクセスクラスライブラリ

358

autECLOIA オブジェクト
autECLOIA オブジェクトを使用すると、ZIEWin.autECLOIA クラスに含まれるメソッドにアクセスすることができま

す。詳しくは、autECLOIA クラス (ページ 281)を参照してください。以下の例は、このオブジェクトを示していま

す。

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example, set the host window to minimized
If (SessObj.autECLOIA.Katakana) Then
 'whatever
Endif

autECLXfer オブジェクト
autECLXfer オブジェクトを使用すると、ZIEWin.autECLXfer クラスに含まれるメソッドにアクセスすることができま

す。詳しくは、autECLXfer クラス (ページ 383)を参照してください。以下の例は、このオブジェクトを示してい

ます。

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example
SessObj.Xfer.Sendfile "c:\temp\filename.txt",
 "filename text a0",
 "CRLF ASCII"

autECLWinMetrics オブジェクト
autECLWinMetrics オブジェクトを使用すると、ZIEWin.autECLWinMetrics クラスに含まれるメソッドにアクセスす

ることができます。詳しくは、autECLWinMetrics クラス (ページ 366)を参照してください。以下の例は、このオ

ブジェクトを示しています。

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example, set the host window to minimized
SessObj.autECLWinMetrics.Minimized = True

autECLPageSettings オブジェクト
autECLPageSettings オブジェクトを使用すると、ZIEWin.autECLPageSettings クラスに含まれるメソッドにアクセ

スすることができます。詳しくは、autECLPageSettings クラス (ページ 397)を参照してください。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

以下の例で、autECLPageSettings オブジェクトを示します。

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")
'Initialize the session
SessObj.SetConnectionByName("A")

'For example, set the FaceName
SessObj.autECLPageSettings.FaceName = "Courier New"

autECLPageSettings オブジェクトは VBSCRIPT でもサポートされています。以下の例は、VBSCRIPT を使用する方

法を示しています。

sub test_()
 autECLSession.SetConnectionByName(ThisSessionName)
 autECLSession.autECLPageSettings.FaceName="Courier"
 end sub

autECLPrinterSettings オブジェクト
autECLPrinterSettings オブジェクトを使用すると、ZIEWin.autECLPrinterSettings クラスに含まれるメソッドにアク

セスすることができます。詳しくは、autECLPageSettings クラス (ページ 397)を参照してください。

以下の例で、autECLPageSettings オブジェクトを示します。

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")
' Initialize the session
SessObj.SetConnectionByName("A")

'For example, set the Windows default printer
SessObj.autECLPrinterSettings.SetWinDefaultPrinter

autECLPrinterSettings オブジェクトは VBSCRIPT でもサポートされています。以下の例は、VBSCRIPT を使用する

方法を示しています。

sub test_()
 autECLSession.SetConnectionByName(ThisSessionName)
 autECLSession.autECLPrinterSettings.SetWinDefaultPrinter
end sub

autECLSession メソッド
以下のセクションで、autECLSession オブジェクトに有効な メソッドを説明します。

void RegisterSessionEvent(Long updateType) void RegisterCommEvent() void UnregisterSessionEvent() void

UnregisterCommEvent() void SetConnectionByName (String Name) void SetConnectionByHandle (Long Handle) void

StartCommunication() void StopCommunication()

359

ホストアクセスクラスライブラリ

360

RegisterSessionEvent
このメソッドは、指定されたセッション・イベントの通知を受け取る ための autECLSession オブジェクトを登録し

ます。

注: このメソッドはサポートされません。また、使用を推奨しません。

プロトタイプ
void RegisterSessionEvent(Long updateType)

パラメーター
Long updateType

モニターすべき更新のタイプ。

1. PS の更新

2. OIA の更新

3. PS または OIA の更新

戻り値
なし

例
例については、イベント処理の例 (ページ 366)を参照してください。

RegisterCommEvent
このメソッドは、すべての通信リンク接続/接続解除のイベントの通知を受け取るための オブジェクトを登録しま

す。

プロトタイプ
void RegisterCommEvent()

パラメーター
なし

戻り値
なし

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

例
例については、イベント処理の例 (ページ 366)を参照してください。

UnregisterSessionEvent
セッション・イベント処理を終了します。

注: このメソッドはサポートされません。また、使用を推奨しません。

プロトタイプ
void UnregisterSessionEvent()

パラメーター
なし

戻り値
なし

例
例については、イベント処理の例 (ページ 366)を参照してください。

UnregisterCommEvent
通信リンク・イベント処理を終了します。

プロトタイプ
void UnregisterCommEvent()

パラメーター
なし

戻り値
なし

361

ホストアクセスクラスライブラリ

362

例
例については、イベント処理の例 (ページ 366)を参照してください。

SetConnectionByName
このメソッドは、接続名を使用して、新しく作成された autECLSession オブジェクトの 接続を設定します。Z and

I Emulator for Windows では、この接続名は、短い ID (文字 A から Z、または a から z) です。Z and I Emulator for

Windows 接続でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみを

オープンできます。

プロトタイプ
void SetConnectionByName (String Name)

パラメーター
String 型、Name 型

1 文字の接続のストリング短縮名 (A から Z、または a から z)。

戻り値
なし

例
以下の例は、接続名を使用して、新しく作成された autECLSession オブジェクトの接続を 設定する方法を示しま

す。

DIM SessObj as Object
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
SessObj.SetConnectionByName("A")
' For example, set the host window to minimized
SessObj.autECLWinMetrics.Minimized = True

SetConnectionByHandle
このメソッドは、接続ハンドルを使用して、新しく作成された autECLSession オブジェクトの 接続を設定しま

す。Z and I Emulator for Windows では、この接続ハンドルは Long integer です。特定の 1 つのハンドルに対して 1

つしか、Z and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A のみをオープンで

きます。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

プロトタイプ
void SetConnectionByHandle(Long Handle)

パラメーター
Long Handle

オブジェクトに設定される接続の Long integer 値。

戻り値
なし

例
以下の例は、接続ハンドルを使用して、新しく作成された autECLSession オブジェクトの 接続を設定する方法を示

します。

Dim SessObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
autECLConnList.Refresh
autECLPSObj.SetConnectionByHandle(autECLConnList(1).Handle)

StartCommunication
StartCommunication 集合要素メソッドは、ホスト・データ・ストリームに ZIEWin エミュレーターを接続します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「接続」を選択した場合と同じ結果になります。

プロトタイプ
void StartCommunication()

パラメーター
なし

戻り値
なし

例
以下の例は、ZIEWin エミュレーター・セッションをホストへ接続する方法を示しています。

363

ホストアクセスクラスライブラリ

364

Dim SessObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
autECLConnList.Refresh
SessObj.SetConnectionByHandle(autECLConnList(1).Handle)

SessObj.StartCommunication()

StopCommunication
StopCommunication 集合要素メソッドは、ホスト・データ・ストリームから ZIEWin エミュレーターを切断します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「切断」を選択した場合と同じ結果になります。

プロトタイプ
void StopCommunication()

パラメーター
なし

戻り値
なし

例
以下の例は、ZIEWin エミュレーター・セッションをホストへ接続する方法を示しています。

Dim SessObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set SessObj = CreateObject("ZIEWin.autECLSession")

' Initialize the session
autECLConnList.Refresh
SessObj.SetConnectionByHandle(autECLConnList(1).Handle)

SessObj.StopCommunication()

autECLSession イベント
以下のイベントは、autECLSession に有効です。

void NotifyCommEvent(boolean bConnected) void NotifyCommError() void NotifyCommStop(Long Reason)

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

NotifyCommEvent
指定された通信リンクは、接続あるいは接続解除されています。

プロトタイプ
void NotifyCommEvent(boolean bConnected)

パラメーター
boolean bConnected

通信リンクが現在接続されている場合は True。それ以外の場合は FALSE。

例
例については、イベント処理の例 (ページ 366)を参照してください。

NotifyCommError
このイベントは、イベント処理でエラーが発生したときに起こります。

プロトタイプ
void NotifyCommError()

パラメーター
なし

例
例については、イベント処理の例 (ページ 366)を参照してください。

NotifyCommStop
このイベントは、イベント処理が停止したときに起こります。

プロトタイプ
void NotifyCommStop(Long Reason)

365

ホストアクセスクラスライブラリ

366

パラメーター
Long Reason

停止の理由コード。現在は、これは常に 0 です。

イベント処理の例
以下は、セッション・イベントの実装方法についての簡単な例です。

Option Explicit
Private WithEvents mSess As autECLSession 'AutSess added as reference

sub main()
 'Create Objects
 Set mSess = New autECLSession
 mSess.SetConnectionByName "A"
 mSess.RegisterCommEvent 'register for communication link notifications
 ' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
 call DisplayGUI()
 mSess.UnregisterCommEvent
 set mSess = Nothing
End Sub

'This sub will get called when the Communication Link Status of the registered
'connection changes
Private Sub mSess_NotifyCommEvent()
 ' do your processing here
End Sub

'This event occurs if an error happens in Communications Link event processing
Private Sub mSess_NotifyCommError()
 'Do any error processing here
End Sub

'This event occurs when Communications Status Notification ends
Private Sub mSess_NotifyCommStop()
 'Do any stop processing here
End Sub

autECLWinMetrics クラス
autECLWinMetrics オブジェクト は、エミュレーター・ウィンドウでの操作を実行します。これによって、ウィン

ドウ長方形および位置の操作 (例えば、SetWindowRect、Ypos、および Width) を、 ウィンドウ状態の操作 (例え

ば、Visible または Restored) と同じように実行できます。レジストリーでのその名前は ZIEWin.autECLWinMetrics

です。

最初に、作成したオブジェクトの接続を設定しなければなりません。SetConnectionByName または

SetConnectionByHandle を使用して、オブジェクトを初期化します。接続は一度しか設定できません。接続が設定さ

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

れた後は、接続設定メソッドをさらに呼び出すと例外を引き起こします。また、接続を設定せずにプロパティーまた

はメソッドにアクセスしようとしても、 例外が引き起こされます。

注: autECL オブジェクト内の autECLSession オブジェクト は、autECL オブジェクトにより設定されます。

以下の例は、Visual Basic で autECLWinMetrics オブジェクトを作成し 設定する方法を示しています。

DIM autECLWinObj as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
autECLWinObj.SetConnectionByName("A")
' For example, set the host window to minimized
autECLWinObj.Minimized = True

プロパティー
autECLWinMetricsプロパティー概要このセクションでは、autECLWinMetrics オブジェクトのプロパティーを説明します。

タイプ 名前 属性

ストリング WindowTitle Read/Write

長形式 Xpos Read/Write

長形式 Ypos Read/Write

長形式 Width Read/Write

長形式 Height Read/Write

ブール値 表示 Read/Write

ブール値 アクティブ Read/Write

ブール値 最小化 Read/Write

ブール値 最大化 Read/Write

ブール値 復元 Read/Write

ストリング 名前 読み取り専用

長形式 ハンドル 読み取り専用

ストリング ConnType 読み取り専用

長形式 CodePage 読み取り専用

ブール値 開始済み 読み取り専用

ブール値 CommStarted 読み取り専用

ブール値 APIEnabled 読み取り専用

ブール値 作動可能 読み取り専用

367

ホストアクセスクラスライブラリ

368

WindowTitle
これは、autECLWinMetrics オブジェクトに 関連する接続のタイトル・バーに現在あるタイトルです。このプロパ

ティーは、変更と検索の両方が可能です。WindowTitle は、String データ型で読み取り/書き込み可能です。以下の

例は、このプロセスを示しています。以下の例は、このプロパティーを示しています。

Dim autECLWinObj as Object
Dim ConnList as Object
Dim WinTitle as String
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

WinTitle = autECLWinObj.WindowTitle 'get the window title

' or...

autECLWinObj.WindowTitle = "Flibberdeejibbet" 'set the window title

使用上の注意
ウィンドウ・タイトルがブランクに設定された場合、接続のウィンドウ・タイトルは その元の設定に復元されま

す。

Xpos
これは、エミュレーター・ウィンドウ長方形の上方左の角の x 位置です。このプロパティーは、変更と検索の両方が

可能です。Xpos は、Long データ型で 読み取り/書き込み可能です。ただし、付加した接続がインプレースの組み込

みオブジェクトである場合は、 このプロパティーは読み取り専用です。以下の例は、このプロパティーを示してい

ます。

Dim autECLWinObj as Object
Dim ConnList as Object
Dim x as Long
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

x = autECLWinObj.Xpos 'get the x position

' or...

autECLWinObj.Xpos = 6081 'set the x position

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Ypos
これは、エミュレーター・ウィンドウ長方形の上方左の角の y 位置です。このプロパティーは、変更と検索の両方が

可能です。Ypos は、Long データ型で読み取り/書き込み可能です。ただし、付加した接続がインプレースの組み込

みオブジェクトである場合は、 このプロパティーは読み取り専用です。以下の例は、このプロパティーを示してい

ます。

Dim autECLWinObj as Object
Dim ConnList as Object
Dim y as Long
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

y = autECLWinObj.Ypos 'get the y position

' or...

autECLWinObj.Ypos = 6081 'set the y position

Width
これは、エミュレーター・ウィンドウ長方形の幅です。このプロパティーは、変更と検索の両方が可能です。Width

は、Long データ型で 読み取り/書き込み可能です。ただし、付加した接続がインプレースの組み込みオブジェクト

である場合は、 このプロパティーは読み取り専用です。以下の例は、このプロパティーを示しています。

Dim autECLWinObj as Object
Dim ConnList as Object
Dim cx as Long
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

cx = autECLWinObj.Width 'get the width

' or...

autECLWinObj.Width = 6081 'set the width

Height
これは、エミュレーター・ウィンドウ長方形の高さです。このプロパティーは、変更と検索の両方が可能で

す。Height は、Long データ型で 読み取り/書き込み可能です。ただし、付加した接続がインプレースの組み込み

オブジェクトである場合は、 このプロパティーは読み取り専用です。以下の例は、このプロパティーを示していま

す。

369

ホストアクセスクラスライブラリ

370

Dim autECLWinObj as Object
Dim ConnList as Object
Dim cy as Long
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

cy = autECLWinObj.Height 'get the height

' or...

autECLWinObj.Height = 6081 'set the height

表示
これは、エミュレーター・ウィンドウの可視状態です。このプロパティーは、変更と検索の両方が可能で

す。Visible は、Boolean データ型で読み取り/書き込み可能です。ただし、付加した接続がインプレースの組み込み

オブジェクトである場合は、 このプロパティーは読み取り専用です。以下の例は、このプロパティーを示していま

す。

Dim autECLWinObj as Object
Dim ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

' Set to Visible if not, and vice versa
If (autECLWinObj.Visible) Then
 autECLWinObj.Visible = False
Else
 autECLWinObj.Visible = True
End If

アクティブ
これは、エミュレーター・ウィンドウのフォーカス状態です。このプロパティーは、変更と検索の両方が可能で

す。Active は、Boolean データ型で読み取り/書き込み可能です。ただし、付加した接続がインプレースの組み込み

オブジェクトである場合は、 このプロパティーは読み取り専用です。以下の例は、このプロパティーを示していま

す。

Dim autECLWinObj as Object
Dim ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

' Set to Active if not, and vice versa
If (autECLWinObj.Active) Then
 autECLWinObj.Active = False
Else
 autECLWinObj.Active = True
End If

最小化
これは、エミュレーター・ウィンドウの最小化状態です。このプロパティーは、変更と検索の両方が可能で

す。Minimized は Boolean データ型で読み取り/書き込み可能です。ただし、付加した接続がインプレースの組み込

みオブジェクトである場合は、 このプロパティーは読み取り専用です。以下の例は、このプロパティーを示してい

ます。

Dim autECLWinObj as Object
Dim ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

' Set to minimized if not, if minimized set to maximized
If (autECLWinObj.Minimized) Then
 autECLWinObj.Maximized = True
Else
 autECLWinObj.Minimized = True
End If

最大化
これは、エミュレーター・ウィンドウの最大化状態です。このプロパティーは、変更と検索の両方が可能で

す。Maximized は、Boolean データ型で読み取り/書き込み可能です。ただし、付加した接続がインプレースの組

み込みオブジェクトである場合は、 このプロパティーは読み取り専用です。以下の例は、このプロパティーを示し

ています。

Dim autECLWinObj as Object
Dim ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)

' Set to maximized if not, if maximized set to minimized
If (autECLWinObj.Maximized) Then
 autECLWinObj.Minimized = False

371

ホストアクセスクラスライブラリ

372

Else
 autECLWinObj.Maximized = True
End If

復元
これは、エミュレーター・ウィンドウの復元状態です。Restored は、Boolean データ型で読み取り/書き込み可能

です。ただし、付加した接続がインプレースの組み込みオブジェクトである場合は、 このプロパティーは読み取り

専用です。以下の例は、このプロパティーを示しています。

Dim autECLWinObj as Object
Dim SessList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set SessList = CreateObject("ZIEWin.autECLConnList")

' Initialize the session
SessList.Refresh
autECLWinObj.SetSessionByHandle(SessList(1).Handle)

' Set to restored if not, if restored set to minimized
If (autECLWinObj.Restored) Then
 autECLWinObj.Minimized = False
Else
 autECLWinObj.Restored = True
End If

名前
このプロパティーは、autECLWinMetrics が設定された接続の 接続名ストリングです。現在、Z and I Emulator for

Windows は、短い文字 ID (A から Z、または a から z) のみをストリングで戻します。Z and I Emulator for Windows

接続でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみをオープン

できます。Name は、String データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Name as String
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the name
Name = Obj.Name

ハンドル
これは、autECLWinMetrics オブジェクトが 設定された接続のハンドルです。特定の 1 つのハンドルに対して 1 つ

しか、Z and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A のみをオープンでき

ます。Handle は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the handle
Hand = Obj.Handle

ConnType
これは、autECLWinMetrics が設定された接続タイプです。このタイプは、時間の経過とともに変更する場合が あ

ります。ConnType は、String データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Type as String
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the type
Type = Obj.ConnType

ConnType プロパティーの接続タイプは、以下のとおりです。

戻されるストリング 意味

DISP3270 3270 表示装置

DISP5250 5250 ディスプレイ

PRNT3270 3270 印刷装置

PRNT5250 5250 プリンター

ASCII VT エミュレーション

CodePage
これは、autECLWinMetrics が設定された接続のコード・ページです。このコード・ページは、時間の経過とともに

変更される場合があります。CodePage は、Long データ型で読み取り専用です。以下の例は、このプロパティーを

示しています。

DIM CodePage as Long
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the code page
CodePage = Obj.CodePage

373

ホストアクセスクラスライブラリ

374

開始済み
これは、エミュレーター・ウィンドウが開始されたかどうかを示します。ウィンドウがオープンしている場合、値は

True です。 その他の場合は False です。Started は、Boolean データ型で読み取り専用です。以下の例は、このプ

ロパティーを示しています。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWinZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If Obj.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
これは、ホストへの接続の状況を示しています。ホストが接続されている場合、値は True です。 その他の場合は

False です。CommStarted は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示してい

ます。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If Obj.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
これは、エミュレーターが API 使用可能かどうかを示します。API 設定 (Z and I Emulator for Windows のウィンド

ウでは、「ファイル」->「API の設定」を選択) の状態に応じて、接続が可能な場合と、接続できない場合がありま

す。エミュレーターが使用可能の場合には、True です。その他の場合には、False です。APIEnabled は、Boolean

データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is API enabled.
' The results are sent to a text box called Result.
If Obj.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

作動可能
これは、エミュレーター・ウィンドウが 開始されていて、API 使用可能で、そして接続されているかどうかを示し

ます。このプロパティーは、3 つのすべてのプロパティーを確認します。エミュレーターが準備できている場合に

は、値は True です。 その他の場合には、False です。Ready は、Boolean データ型で読み取り専用です。以下の例

は、このプロパティーを示しています。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If Obj.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLWinMetrics メソッド
以下のセクションで、autECLWinMetrics オブジェクトに有効な メソッドを説明します。

void RegisterCommEvent() void UnregisterCommEvent() void SetConnectionByName(String Name) void

SetConnectionByHandle(Long Handle) void GetWindowRect(Variant Left, Variant Top, Variant Right, Variant

Bottom) void SetWindowRect(Long Left, Long Top, Long Right, Long Bottom) void StartCommunication() void

StopCommunication()

375

ホストアクセスクラスライブラリ

376

RegisterCommEvent
このメソッドは、すべての通信リンク接続/接続解除のイベントの通知を受け取るための オブジェクトを登録しま

す。

プロトタイプ
void RegisterCommEvent()

パラメーター
なし

戻り値
なし

例
例については、イベント処理の例 (ページ 382)を参照してください。

UnregisterCommEvent
通信リンク・イベント処理を終了します。

プロトタイプ
void UnregisterCommEvent()

パラメーター
なし

戻り値
なし

SetConnectionByName
autECLWinMetricsメソッドSetConnectionByNameこのメソッドは、接続名を使用して、新しく作成された autECLWinMetrics オブジェクトの接続を設定します。Z

and I Emulator for Windows では、この接続名は、短い ID (文字 A から Z、または a から z) です。Z and I Emulator

for Windows 接続でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみ

をオープンできます。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

注: autECLSession 内で autECLWinMetrics オブジェクトを使用している場合は、 これを呼び出さないでくだ

さい。

プロトタイプ
void SetConnectionByName (String Name)

パラメーター
String 型、Name 型

1 文字の接続のストリング短縮名 (A から Z、または a から z)。

戻り値
なし

例
以下の例は、接続名を使用して、新しく作成された autECLWinMetrics オブジェクトの接続を 設定する方法を示しま

す。

DIM autECLWinObj as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the connection
autECLWinObj.SetConnectionByName("A")
' For example, set the host window to minimized
autECLWinObj.Minimized = True

SetConnectionByHandle
autECLWinMetricsメソッドSetConnectionByHandleこのメソッドは、接続ハンドルを使用して、新しく作成された autECLWinMetrics オブジェクトの接続を設定しま

す。Z and I Emulator for Windows では、この接続ハンドルは Long integer です。特定の 1 つのハンドルに対して 1

つしか、Z and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A のみをオープンで

きます。

注: autECLSession 内で autECLWinMetrics オブジェクトを使用している場合は、 これを呼び出さないでくだ

さい。

プロトタイプ
void SetConnectionByHandle(Long Handle)

377

ホストアクセスクラスライブラリ

378

パラメーター
Long Handle

オブジェクトに設定される接続の Long integer 値。

戻り値
なし

例
以下の例は、接続ハンドルを使用して、新しく作成された autECLWinMetrics オブジェクトの 接続を設定する方法を

示します。

DIM autECLWinObj as Object
DIM ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)
' For example, set the host window to minimized
autECLWinObj.Minimized = True

GetWindowRect
autECLWinMetricsメソッドGetWindowRectGetWindowRect メソッドは、エミュレーター・ウィンドウ長方形の境界点を戻します。

プロトタイプ
void GetWindowRect(Variant Left, Variant Top, Variant Right, Variant Bottom)

パラメーター
Variant Left, Top, Right, Bottom

エミュレーター・ウィンドウの境界点。

戻り値
なし

例
以下の例は、エミュレーター・ウィンドウ長方形の境界点を戻す方法を示します。

Dim autECLWinObj as Object
Dim ConnList as Object
Dim left

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Dim top
Dim right
Dim bottom
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)
autECLWinObj.GetWindowRect left, top, right, bottom

SetWindowRect
autECLWinMetricsメソッドSetWindowRectSetWindowRect メソッドは、エミュレーター・ウィンドウ長方形の境界点を設定します。

プロトタイプ
void SetWindowRect(Long Left, Long Top, Long Right, Long Bottom)

パラメーター
Long Left, Top, Right, Bottom

エミュレーター・ウィンドウの境界点。

戻り値
なし

例
以下の例は、エミュレーター・ウィンドウ長方形の境界点を設定する方法を示します。

Dim autECLWinObj as Object
Dim ConnList as Object
Set autECLWinObj = CreateObject("ZIEWin.autECLWinMetrics")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection
ConnList.Refresh
autECLWinObj.SetConnectionByHandle(ConnList(1).Handle)
autECLWinObj.SetWindowRect 0, 0, 6081, 6081

StartCommunication
StartCommunication 集合要素メソッドは、ホスト・データ・ストリームに ZIEWin エミュレーターを接続します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「接続」を選択した場合と同じ結果になります。

379

ホストアクセスクラスライブラリ

380

プロトタイプ
void StartCommunication()

パラメーター
なし

戻り値
なし

例
以下の例は、ZIEWin エミュレーター・セッションをホストへ接続する方法を示しています。

Dim WinObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set WinObj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the session
autECLConnList.Refresh
WinObj.SetConnectionByHandle(autECLConnList(1).Handle)

WinObj.StartCommunication()

StopCommunication
StopCommunication 集合要素メソッドは、ホスト・データ・ストリームから ZIEWin エミュレーターを切断します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「切断」を選択した場合と同じ結果になります。

プロトタイプ
void StopCommunication()

パラメーター
なし

戻り値
なし

例
以下の例は、ZIEWin エミュレーター・セッションをホストへ接続する方法を示しています。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Dim WinObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set WinObj = CreateObject("ZIEWin.autECLWinMetrics")

' Initialize the session
autECLConnList.Refresh
WinObj.SetConnectionByHandle(autECLConnList(1).Handle)

WinObj.StopCommunication()

autECL WinMetrics イベント
以下のイベントは、autECL WinMetrics に有効です。

void NotifyCommEvent(boolean bConnected) NotifyCommError() void NotifyCommStop(Long Reason)

NotifyCommEvent
指定された通信リンクは、接続あるいは接続解除されています。

プロトタイプ
void NotifyCommEvent(boolean bConnected)

パラメーター
boolean bConnected

通信リンクが現在接続されている場合は True で、これ以外の場合は False。

例
例については、イベント処理の例 (ページ 382)を参照してください。

NotifyCommError
このイベントは、イベント処理でエラーが発生したときに起こります。

プロトタイプ
NotifyCommError()

パラメーター
なし

381

ホストアクセスクラスライブラリ

382

例
例については、イベント処理の例 (ページ 382)を参照してください。

NotifyCommStop
このイベントは、イベント処理が停止したときに起こります。

プロトタイプ
void NotifyCommStop(Long Reason)

パラメーター
Long Reason

停止の理由コード。現在は、これは常に 0 です。

イベント処理の例
以下は、WinMetrics イベントの実装方法についての簡単な例です。

Option Explicit
Private WithEvents mWmet As autECLWinMetrics 'AutWinMetrics added as reference

sub main()
 'Create Objects
 Set mWmet = New autECLWinMetrics
 mWmet.SetConnectionByName "A" 'Monitor Session A

 mWmet.RegisterCommEvent ' register for Communications Link updates for session A

 ' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
 call DisplayGUI()

 mWmet.UnregisterCommEvent

 set mWmet = Nothing
End Sub

'This sub will get called when the Communication Link Status of the registered
'connection changes
Private Sub mWmet _NotifyCommEvent()
 ' do your processing here
End Sub

'This event occurs if an error happens in Communications Link event processing
Private Sub mWmet _NotifyCommError()
 'Do any error processing here
End Sub

'This event occurs when Communications Status Notification ends

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

Private Sub mWmet _NotifyCommStop()
 'Do any stop processing here
End Sub

autECLXfer クラス
autECLXfer オブジェクト は、ファイル転送サービスを提供します。レジストリーでのその名前は

ZIEWin.autECLXfer です。

最初に、作成したオブジェクトの接続を設定しなければなりません。SetConnectionByName または

SetConnectionByHandle を使用して、オブジェクトを初期化します。接続は一度しか設定できません。接続が

設定された後は、SetConnection メソッドをさらに呼び出すと例外を引き起こします。また、接続を設定せず

に autECLXfer プロパティーまたはメソッドにアクセス しようとしても、例外が引き起こされます。以下の例

は、Visual Basic で autECLXfer オブジェクトを作成し設定する方法を示しています。

DIM XferObj as Object

Set XferObj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
XferObj.SetConnectionByName("A")

プロパティー
autECLXferプロパティー概要このセクションでは、autECLXfer オブジェクトのプロパティーを説明します。

タイプ 名前 属性

ストリング 名前 読み取り専用

長形式 ハンドル 読み取り専用

ストリング ConnType 読み取り専用

長形式 CodePage 読み取り専用

ブール値 開始済み 読み取り専用

ブール値 CommStarted 読み取り専用

ブール値 APIEnabled 読み取り専用

ブール値 作動可能 読み取り専用

名前
このプロパティーは、autECLXfer が設定された接続の接続名ストリングです。Z and I Emulator for Windows は、短

い文字 ID (A から Z、または a から z) のみをストリングで戻します。Z and I Emulator for Windows 接続でオープン

できるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみをオープンできます。Name

は、String データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Name as String
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLXfer")

383

ホストアクセスクラスライブラリ

384

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the name
Name = Obj.Name

ハンドル
これは、autECLXfer オブジェクトが 設定された接続のハンドルです。特定の 1 つのハンドルに対して 1 つし

か、Z and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A のみをオープンできま

す。Handle は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' Save the handle
Hand = Obj.Handle

ConnType
これは、autECLXfer が設定された接続タイプです。このタイプは、時間の経過とともに変更する場合が ありま

す。ConnType は、String データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Type as String
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the type
Type = Obj.ConnType

ConnType プロパティーの接続タイプは、以下のとおりです。

戻されるストリング 意味

DISP3270 3270 表示装置

DISP5250 5250 ディスプレイ

PRNT3270 3270 印刷装置

PRNT5250 5250 プリンター

ASCII VT エミュレーション

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

CodePage
これは、autECLXfer が設定された接続のコード・ページです。このコード・ページは、時間の経過とともに変更さ

れる場合があります。CodePage は、Long データ型で読み取り専用です。以下の例は、このプロパティーを示して

います。

DIM CodePage as Long
DIM Obj as Object
Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")
' Save the code page
CodePage = Obj.CodePage

開始済み
これは、エミュレーター・ウィンドウが開始されたかどうかを示します。ウィンドウがオープンしている場合、値は

True です。 その他の場合は False です。Started は、Boolean データ型で読み取り専用です。以下の例は、このプ

ロパティーを示しています。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If Obj.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
これは、ホストへの接続の状況を示しています。ホストが接続されている場合、値は True です。 その他の場合は

False です。CommStarted は、Boolean データ型で読み取り専用です。以下の例は、このプロパティーを示してい

ます。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if communications are connected

385

ホストアクセスクラスライブラリ

386

' for A. The results are sent to a text box called
' CommConn.
If Obj.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
これは、エミュレーターが API 使用可能かどうかを示します。API 設定 (Z and I Emulator for Windows のウィンド

ウでは、「ファイル」->「API の設定」を選択) の状態に応じて、接続が可能な場合と、接続できない場合がありま

す。エミュレーターが使用可能の場合には、True です。その他の場合には、False です。APIEnabled は、Boolean

データ型で読み取り専用です。以下の例は、このプロパティーを示しています。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is API enabled.
' The results are sent to a text box called Result.
If Obj.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

作動可能
これは、エミュレーター・ウィンドウが 開始されていて、API 使用可能で、そして接続されているかどうかを示し

ます。このプロパティーは、3 つのすべてのプロパティーを確認します。エミュレーターが準備できている場合に

は、値は True です。 その他の場合には、False です。Ready は、Boolean データ型で読み取り専用です。以下の例

は、このプロパティーを示しています。

DIM Hand as Long
DIM Obj as Object

Set Obj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
Obj.SetConnectionByName("A")

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If Obj.Ready = False Then
 Result.Text = "No"
Else

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

 Result.Text = "Yes"
End If

autECLXfer メソッド
以下のセクションで、autECLXfer オブジェクトに有効な メソッドを説明します。

void RegisterCommEvent() void UnregisterCommEvent() void SetConnectionByName(String Name) void

SetConnectionByHandle(Long Handle) void SendFile(String PCFile, String HostFile, String Options) void

ReceiveFile(String PCFile, String HostFile, String Options) void StartCommunication() void StopCommunication()

RegisterCommEvent
このメソッドは、すべての通信リンク接続/接続解除のイベントの通知を受け取るための オブジェクトを登録しま

す。

プロトタイプ
void RegisterCommEvent()

パラメーター
なし

戻り値
なし

例
例については、『イベント処理の例 (ページ 394)』を参照してください。

UnregisterCommEvent
通信リンク・イベント処理を終了します。

プロトタイプ
void UnregisterCommEvent()

パラメーター
なし

387

ホストアクセスクラスライブラリ

388

戻り値
なし

SetConnectionByName
この SetConnectionByName メソッドは、 接続名を使用して、新しく作成された autECLXfer オブジェクトの接続を

設定します。Z and I Emulator for Windows では、この接続名は、短い ID (文字 A から Z、または a から z) です。Z

and I Emulator for Windows 接続でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1

つの接続 A のみをオープンできます。

注: autECLSession 内で autECLXfer オブジェクトを使用している場合は、 これを呼び出さないでください。

プロトタイプ
void SetConnectionByName (String Name)

パラメーター
String 型、Name 型

1 文字の接続のストリング短縮名 (A から Z、または a から z)。

戻り値
なし

例
以下の例は、接続名を使用して、新しく作成された autECLXfer オブジェクトの接続を 設定する方法を示します。

DIM XferObj as Object

Set XferObj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
XferObj.SetConnectionByName("A")

SetConnectionByHandle
この SetConnectionByHandle メソッドは、 接続ハンドルを使用して、新しく作成された autECLXfer オブジェクトの

接続を設定します。Z and I Emulator for Windows では、この接続ハンドルは Long integer です。特定の 1 つのハン

ドルに対して 1 つしか、Z and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A の

みをオープンできます。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

注: autECLSession 内で autECLXfer オブジェクトを使用している場合は、 これを呼び出さないでください。

プロトタイプ
void SetConnectionByHandle(Long Handle)

パラメーター
Long Handle

オブジェクトに設定される接続の Long integer 値。

戻り値
なし

例
以下の例は、接続ハンドルを使用して、新しく作成された autECLXfer オブジェクトの接続を 設定する方法を示しま

す。

DIM XferObj as Object
DIM autECLConnList as Object

Set XferObj = CreateObject("ZIEWin.autECLXfer")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection with the first connection in the list
autECLConnList.Refresh
XferObj.SetConnectionByHandle(autECLConnList(1).Handle)

SendFile
SendFile メソッドは、autECLXfer オブジェクトに関連する 接続について、ワークステーションからホストへファイ

ルを送信します。

プロトタイプ
void SendFile(String PCFile, String HostFile, String Options)

パラメーター
String PCFile

ワークステーション上のファイルの名前。

String HostFile

ホスト上のファイルの名前。

389

ホストアクセスクラスライブラリ

390

String Options (ストリング・オプション)

ホストに依存する転送オプション。詳しくは、使用上の注意 (ページ 390)を参照してください。

戻り値
なし

使用上の注意
ファイル転送オプションは、ホストに応じて異なります。以下に示すのは、VM/CMS ホストの有効なホスト・オプ

ションの一部です。

ASCII

CRLF

APPEND

LRECL

RECFM

CLEAR/NOCLEAR

PROGRESS

QUIET

サポートされるホストとそれに関連したファイル転送オプションのリストは、「エミュレーター・プログラミング」

を参照してください。

例
以下の例は、autECLXfer オブジェクトに関連する接続について、 ワークステーションからホストへファイルを送信

する方法を示しています。

DIM XferObj as Object
DIM autECLConnList as Object
DIM NumRows as Long

Set XferObj = CreateObject("ZIEWin.autECLXfer")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection with the first connection in the autECLConnList
autECLConnList.Refresh
XferObj.SetConnectionByHandle(autECLConnList(1).Handle)

' For example, send the file to VM
XferObj.SendFile "c:\windows\temp\thefile.txt",
 "THEFILE TEXT A0",
 "CRLF ASCII"

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

ReceiveFile
ReceiveFile メソッドは、autECLXfer オブジェクト に関連する接続について、ホストからワークステーションへファ

イルを受信します。

プロトタイプ
void ReceiveFile(String PCFile, String HostFile, String Options)

パラメーター
String PCFile

ワークステーション上のファイルの名前。

String HostFile

ホスト上のファイルの名前。

String Options (ストリング・オプション)

ホストに依存する転送オプション。詳しくは、使用上の注意 (ページ 391)を参照してください。

戻り値
なし

使用上の注意
ファイル転送オプションは、ホストに応じて異なります。以下に示すのは、VM/CMS ホストの有効なホスト・オプ

ションの一部です。

ASCII

CRLF

APPEND

LRECL

RECFM

CLEAR/NOCLEAR

PROGRESS

QUIET

サポートされるホストとそれに関連したファイル転送オプションのリストは、「エミュレーター・プログラミング」

資料を参照してください。

例
以下の例は、autECLXfer オブジェクトに関連した接続について、 ホストからファイルを受け取り、それをワークス

テーションに送信する方法を示しています。

391

ホストアクセスクラスライブラリ

392

DIM XferObj as Object
DIM autECLConnList as Object
DIM NumRows as Long

Set XferObj = CreateObject("ZIEWin.autECLXfer")
Set autECLConnList = CreateObject("ZIEWin.autECLConnList")

' Initialize the connection with the first connection in the list
autECLConnList.Refresh
XferObj.SetConnectionByHandle(autECLConnList(1).Handle)
' For example, send the file to VM
XferObj.ReceiveFile "c:\windows\temp\thefile.txt",
 "THEFILE TEXT A0",
 "CRLF ASCII"

StartCommunication
StartCommunication 集合要素メソッドは、ホスト・データ・ストリームに ZIEWin エミュレーターを接続します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「接続」を選択した場合と同じ結果になります。

プロトタイプ
void StartCommunication()

パラメーター
なし

戻り値
なし

例
以下の例は、ZIEWin エミュレーター・セッションをホストへ接続する方法を示しています。

Dim XObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set XObj = CreateObject("ZIEWin.autECLXfer")

' Initialize the session
autECLConnList.Refresh
XObj.SetConnectionByHandle(autECLConnList(1).Handle)

XObj.StartCommunication()

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

StopCommunication
StopCommunication 集合要素メソッドは、ホスト・データ・ストリームから ZIEWin エミュレーターを切断します。

これは、ZIEWin エミュレーター「通信」メニューを表示して「切断」を選択した場合と同じ結果になります。

プロトタイプ
void StopCommunication()

パラメーター
なし

戻り値
なし

例
以下の例は、ZIEWin エミュレーター・セッションをホストへ接続する方法を示しています。

Dim XObj as Object
Dim autECLConnList as Object

Set autECLConnList = CreateObject("ZIEWin.autECLConnList")
Set XObj = CreateObject("ZIEWin.autECLXfer")

' Initialize the session
autECLConnList.Refresh
XObj.SetConnectionByHandle(autECLConnList(1).Handle)

SessObj.StopCommunication()

autECLXfer イベント
以下のイベントは、autECLXfer に有効です。

void NotifyCommEvent(boolean bConnected) NotifyCommError() void NotifyCommStop(Long Reason)

NotifyCommEvent
指定された通信リンクは、接続あるいは接続解除されています。

プロトタイプ
void NotifyCommEvent(boolean bConnected)

393

ホストアクセスクラスライブラリ

394

パラメーター
boolean bConnected

通信リンクが現在接続されている場合は True で、これ以外の場合は False。

例
例については、イベント処理の例 (ページ 394)を参照してください。

NotifyCommError
このイベントは、イベント処理でエラーが発生したときに起こります。

プロトタイプ
NotifyCommError()

パラメーター
なし

例
例については、イベント処理の例 (ページ 394)を参照してください。

NotifyCommStop
このイベントは、イベント処理が停止したときに起こります。

プロトタイプ
void NotifyCommStop(Long Reason)

パラメーター
Long Reason

停止の理由コード。現在は、これは常に 0 です。

イベント処理の例
以下は、Xfer イベントの実装方法についての簡単な例です。

Option Explicit
Private WithEvents mXfer As autECLXfer 'AutXfer added as reference

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

sub main()
'Create Objects
Set mXfer = New autECLXfer
mXfer.SetConnectionByName "A" 'Monitor Session A

mXfer.RegisterCommEvent ' register for Communications Link updates for session A

' Display your form or whatever here (this should be a blocking call, otherwise sub just ends
call DisplayGUI()

mXfer.UnregisterCommEvent

set mXfer= Nothing
End Sub

'This sub will get called when the Communication Link Status of the registered
'connection changes
Private Sub mXfer _NotifyCommEvent()
' do your processing here
End Sub

'This event occurs if an error happens in Communications Link event processing
Private Sub mXfer _NotifyCommError()
'Do any error processing here
End Sub

'This event occurs when Communications Status Notification ends
Private Sub mXfer _NotifyCommStop()
'Do any stop processing here
End Sub

autSystem クラス
autSystem クラスは、 プログラム言語によっては存在しないユーティリティー操作を実行するために使用されま

す。

autSystem メソッド
以下のセクションで、autSystem オブジェクトに 有効なメソッドを説明します。

Long Shell(VARIANT ExeName, VARIANT Parameters, VARIANT WindowStyle) String Inputnd()

Shell
shell 関数は、実行可能ファイルを実行します。

395

ホストアクセスクラスライブラリ

396

プロトタイプ
Long Shell(VARIANT ExeName, VARIANT Parameters, VARIANT WindowStyle)

パラメーター
VARIANT ExeName

実行可能ファイルの絶対パスおよびファイル名。

VARIANT Parameters

実行可能ファイルに渡す任意のパラメーター。このパラメーターはオプションです。

VARIANT WindowStyle

実行可能であることを示すための初期ウィンドウ・スタイル。このパラメーターはオプションで、以下

のような値が可能です。

1. フォーカスあり、通常 (デフォルト)

2. フォーカスあり、最小化

3. 最大化

4. フォーカスなしの通常ウィンドウ

5. フォーカスなしのアイコン

戻り値
メソッドは、正常終了の場合はプロセス ID を、失敗した場合はゼロを戻します。

例
Example autSystem - Shell()

'This example starts notepad with the file c:\test.txt loaded
dim ProcessID
dim SysObj as object

set SysObj = CreateObject("ZIEWin.autSystem")
ProcessID = SysObj.shell "Notepad.exe","C:\test.txt"
If ProcessID > 0 then
 Msgbox "Notepad Started, ProcessID = " + ProcessID
Else
 Msgbox "Notepad not started"
End if

Inputnd
Inputnd メソッドは、ユーザーに対して表示しないテキスト枠を使用してポップアップ入力ボックスを表示します。

したがって、ユーザーがデータを入力したとき、アスタリスク (*) のみが表示されます。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

プロトタイプ
String Inputnd()

パラメーター
なし

戻り値
入力ボックスに入力された文字、また、何も入力されていない場合は、"" が戻されます。

例
DIM strPassWord
dim SysObj as Object
dim PSObj as Object

set SysObj = CreateObject("ZIEWin.autSystem")
set PSObj = CreateObject("ZIEWin.autPS")

PSObj.SetConnectionByName("A")
'Prompt user for password
strPassWord = SysObj.Inputnd()
PSObj.SetText(strPasssWord)
DIM XferObj as Object

Set XferObj = CreateObject("ZIEWin.autECLXfer")

' Initialize the connection
XferObj.SetConnectionByName("A")

autECLPageSettings クラス
autECLPageSettings オブジェクトは、Z and I Emulator for Windows接続のページ設定を制御します。レジストリー

でのその名前は ZIEWin.autECLPageSettings です。この自動化オブジェクトは VB スクリプトでも使用できます。

読み取り専用プロパティー autECLPageSettings は autECLSession オブジェクトに追加されています。このプロパ

ティーの使用方法については、autECLSession クラス (ページ 353)を参照してください。

注: autECLSession オブジェクト内の autECLPageSettings オブジェクトは、autECLSession オブジェクトに

より設定されます。

以下の例は、Visual Basic で autECLPageSettings オブジェクトを作成し、 設定する方法を示しています。

DIM PgSet as Object
Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
PgSet.SetConnectionByName("A")

397

ホストアクセスクラスライブラリ

398

使用上の注意
最初に、作成したオブジェクトの接続を設定しなければなりません。SetConnectionByName または

SetConnectionByHandle を使用して、オブジェクトを初期化します。接続は一度しか設定できません。接続が設定さ

れた後は、接続設定メソッドをさらに呼び出すと例外を引き起こします。接続を設定せずにプロパティーまたはメ

ソッドにアクセスしようとすると、 例外が引き起こされます。

プロパティー CPI、LPI、および FontSize はプロパティー FaceName によって決定されます。そのため、FaceName

を設定する前に CPI、LPI、または FontSize を設定し、 それらが新しい FaceName に対して有効ではない場合、異

なる CPI、LPI、または FontSize 値が接続で再構成される場合があります。CPI、LPI、または FontSize を設定する前

に FaceName を設定する必要があります。そうしなかった場合には、FaceName を設定するたびに CPI、LPI、およ

び FontSize を照会して、それらが希望する値であることを確認してください。

制約事項
各メソッドに関連する接続は、メソッドを成功させるために 特定の状態になければなりません。制約事項を満たし

ていないと、 該当する例外が引き起こされます。

autECLPageSettings オブジェクトのいずれかのプロパティーまたはメソッドが呼び出されるときには、 以下の制約

事項を満たしている必要があります。

• この API が呼び出されるときにホスト・セッションが印刷中ではない。

• 「ファイル」→「ページ設定」および「ファイル」→「プリンター設定」ダイアログが使用中ではない。

• 関連する接続が PDT モードではない。

特定のプロパティーまたはメソッドに対して追加の制約事項が適用される場合があります。

接続タイプ
autECLPageSettings クラス内のメソッドには、以下の接続タイプが有効です。

• 3270 表示装置

• 3270 印刷装置

• 5250 ディスプレイ

• VT (ASCII)

プロパティーまたはメソッドが、サポートされない接続上でアクセスされたり、呼び出されたりすると、 例外が引

き起こされます。ConnType プロパティーを使用して接続タイプを判別してください。

プロパティー
このセクションでは、autECLPageSettings オブジェクトのプロパティーを説明します。

タイプ 名前 属性

長形式 CPI Read/Write

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

タイプ 名前 属性

ブール値 FontCPI 読み取り専用

長形式 LPI Read/Write

ブール値 FontLPI 読み取り専用

ストリング FaceName Read/Write

長形式 FontSize Read/Write

長形式 MaxLinesPerPage Read/Write

長形式 MaxCharsPerLine Read/Write

ストリング 名前 読み取り専用

長形式 ハンドル 読み取り専用

ストリング ConnType 読み取り専用

長形式 CodePage 読み取り専用

ブール値 開始済み 読み取り専用

ブール値 CommStarted 読み取り専用

ブール値 APIEnabled 読み取り専用

ブール値 作動可能 読み取り専用

CPI
このプロパティーは、1 インチ当たりに印刷される文字数を決定します。これは Long データ型で、読み取り/書き込

み可能です。

このプロパティーを事前定義の定数 pcFontCPI に設定して、 「ページ設定 (Page Settings)」の「フォント CPI」を

選択するか、特定の CPI 値に設定します。接続に FontCPI が構成されているときにこのプロパティーが照会される

と、 実際の CPI 値が戻され、定数 pcFontCPI は戻されません。

FontCPI が接続に設定されているかどうかを判別するには、プロパティー FontCPI を使用します。

例
Dim PgSet as Object
Dim ConnList as Object
Dim CPI as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

CPI = PgSet.CPI ' get the CPI value
' or...
PgSet.CPI = pcFontCPI 'set the connection to use Font CPI.

399

ホストアクセスクラスライブラリ

400

FontCPI
これは、接続に「フォント CPI」が設定されているかどうかを判別します。FontCPI は、Boolean データ型で読み取

り専用です。

例
Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

'check if Font CPI is set
If PgSet.FontCPI Then
 ...

LPI
このプロパティーは、1 インチ当たりに印刷される行数を決定します。これは Long データ型で、読み取り/書き込み

可能です。このプロパティーを事前定義の定数 pcFontLPI に設定して、 「ページ設定」の「フォント LPI」を選択す

るか、特定の LPI 値に設定します。接続に FontLPI が構成されているときにこのプロパティーが照会されると、 実

際の LPI 値が戻され、定数 pcFontLPI は戻されません。FontLPI が接続に設定されているかどうかを判別するには、

プロパティー FontLPI を使用します。

例
Dim PgSet as Object
Dim ConnList as Object
Dim LPI as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

LPI = PgSet.LPI ' get the LPI value
' or...
PgSet.LPI = pcFontLPI 'set the connection to use Font LPI.

FontLPI
このプロパティーは、接続に「フォント LPI」が設定されているかどうかを判別します。FontLPI は、Boolean デー

タ型で読み取り専用です。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

例
Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

'check if Font LPI is set
If PgSet.FontLPI Then
 ...

FaceName
これは、接続の「ページ設定」の「フォント書体名」です。FaceName は、String データ型で読み取り/書き込み可

能です。

例
Dim PgSet as Object
Dim ConnList as Object
Dim FaceName as String

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)
FaceName = PgSet.FaceName ' get the FaceName
' or...
PgSet.FaceName = "Courier New" 'set the FaceName

MaxLinesPerPage
このプロパティーは、1 ページに印刷可能な最大行数です。これは、最大印刷行数 または MPL とも呼ばれます。有

効な値は 1 から 255 の範囲内です。これは Long データ型で、読み取り/書き込み可能です。

例
Dim PgSet as Object
Dim ConnList as Object
Dim MPL as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh

401

ホストアクセスクラスライブラリ

402

PgSet.SetConnectionByHandle(ConnList(1).Handle)

MPL = PgSet.MaxLinesPerPage ' get the MaxLinesPerPage
' or...
PgSet.MaxLinesPerPage = 20 'set the MaxLinesPerPage

MaxCharsPerLine
このプロパティーは、1 行に印刷可能な最大文字数です。これは、最大印刷位置 または MPP とも呼ばれます。有効

な値は 1 から 255 の範囲内です。これは Long データ型で、読み取り/書き込み可能です。

例
Dim PgSet as Object
Dim ConnList as Object
Dim MPP as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

MPP = PgSet.MaxCharsPerLine ' get the MaxCharsPerLine
' or...
PgSet.MaxCharsPerLine = 80 'set the MaxCharsPerLine

名前
このプロパティーは、autECLPageSettings が設定された接続の接続名ストリングです。Z and I Emulator for

Windows は、短い文字 ID (A から Z の単一の英字) のみをストリングで戻します。Z and I Emulator for Windows 接

続でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみをオープンで

きます。Name は、String データ型で読み取り専用です。

例
Dim PgSet as Object
Dim ConnList as Object
DIM Name as String

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

Name = PgSet.Name 'Save the name

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

ハンドル
このプロパティーは、autECLPageSettings オブジェクトが設定された接続のハンドルです。特定の 1 つのハンドル

に対して 1 つしか、Z and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A のみを

オープンできます。Handle は、Long データ型で読み取り専用です。

例
Dim PgSet as Object
Dim ConnList as Object
Dim Hand as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

Hand = PgSet.Handle ' save the handle

ConnType
このプロパティーは、autECLPageSettings が設定された接続タイプです。このタイプは、時間の経過とともに変更

される場合があります。ConnType は、String データ型で読み取り専用です。

ストリング値 接続タイプ

DISP3270 3270 表示装置

DISP5250 5250 ディスプレイ

PRNT3270 3270 印刷装置

PRNT5250 5250 プリンター

ASCII VT エミュレーション

例
Dim PgSet as Object
Dim ConnList as Object
Dim Type as String

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

Type = PgSet.ConnType ' save the type

403

ホストアクセスクラスライブラリ

404

CodePage
このプロパティーは、autECLPageSettings が設定された接続タイプです。このタイプは、時間の経過とともに変更

される場合があります。ConnType は、String データ型で読み取り専用です。

例
Dim PgSet as Object
Dim ConnList as Object
Dim CodePage as Long

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

CodePage = PgSet.CodePage ' save the codepage

開始済み
このプロパティーは、エミュレーター・ウィンドウが開始されたかどうかを示します。ウィンドウがオープンしてい

る場合、値は True です。 その他の場合は False です。Started は、Boolean データ型で読み取り専用です。

例
Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If PgSet.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
このプロパティーは、ホストへの接続の状況を示しています。ホストが接続されている場合、値は True です。 その

他の場合は False です。CommStarted は、Boolean データ型で読み取り専用です。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

例
Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If PgSet.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
このプロパティーは、エミュレーターが API 使用可能かどうかを示します。API 設定の状態に応じて、接続

を API 使用可能または API 使用不可にすることができます (Z and I Emulator for Windows のウィンドウで「設

定」→「API」をクリック)。エミュレーターが API 使用可能の場合には、値は True です。 その他の場合に

は、False です。APIEnabled は、Boolean データ型で読み取り専用です。

例
Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if A is API-enabled.
' The results are sent to a text box called Result.
If PgSet.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

405

ホストアクセスクラスライブラリ

406

作動可能
このプロパティーは、エミュレーター・ウィンドウが開始されているか、API 使用可能か、接続されているかどうか

を示します。このプロパティーは、3 つのすべてのプロパティーを確認します。エミュレーターが準備できている場

合には、値は True です。 その他の場合には、False です。Ready は、Boolean データ型で読み取り専用です。

例
Dim PgSet as Object
Dim ConnList as Object
Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)
' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If PgSet.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLPageSettings メソッド
以下のセクションで、autECLPageSettings オブジェクトに有効なメソッドを説明します。

void RestoreTextDefaults() void SetConnectionByName (String Name) void SetConnectionByHandle (Long

Handle)

RestoreTextDefaults
RestoreTextDefaults メソッドは、接続の「ページ設定」ダイアログの「テキスト」プロパティー・ページのシステ

ム・デフォルト値を復元します。これは、接続の「ページ設定」ダイアログの「テキスト」プロパティー・ページ

で「デフォルト」ボタンを押すことと同じです。

プロトタイプ
void RestoreTextDefaults()

パラメーター
なし

戻り値
なし

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

例
以下の例で、RestoreTextDefaults メソッドを示します。

Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

PgSet.RestoreTextDefaults 'Restores Text Default Settings

SetConnectionByName
この SetConnectionByName メソッドは、接続名を使用して、新しく作成された autECLPageSettings オブジェクト

の接続を設定します。この接続名は、短い接続 ID (A から Z の単一の英字) です。Z and I Emulator for Windows 接続

でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみをオープンでき

ます。

注: autECLSession オブジェクトに含まれる autECLPageSettings オブジェクトを使用している場合には、こ

のメソッドを呼び出さないでください。

プロトタイプ
void SetConnectionByName (String Name)

パラメーター
String 型、Name 型

1 文字の接続のストリング短縮名。有効値は A から Z です。

戻り値
なし

例
以下の例は、接続名を使用して、新しく作成された autECLPageSettings オブジェクトの接続を設定する方法を示し

ます。

Dim PgSet as Object
Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
' Initialize the connection
PgSet.SetConnectionByName("A")
' For example, see if Font CPI is set

407

ホストアクセスクラスライブラリ

408

If PgSet.FontCPI Then
'your logic here...
End If

SetConnectionByHandle
この SetConnectionByHandle メソッドは、接続ハンドルを使用して、新しく作成された autECLPageSettings オブ

ジェクトの接続を設定します。Z and I Emulator for Windows では、この接続ハンドルは Long integer です。特定の

1 つのハンドルに対して 1 つしか、Z and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つ

の接続 A のみをオープンできます。

注: autECLSession オブジェクトに含まれる autECLPageSettings オブジェクトを使用している場合には、こ

のメソッドを呼び出さないでください。

プロトタイプ
void SetConnectionByHandle(Long Handle)

パラメーター
Long Handle

オブジェクトに設定される接続の Long integer 値。

戻り値
なし

例
以下の例は、接続ハンドルを使用して、新しく作成された autECLPageSettings オブジェクトの接続を設定する方法

を示します。

Dim PgSet as Object
Dim ConnList as Object

Set PgSet = CreateObject("ZIEWin.autECLPageSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PgSet.SetConnectionByHandle(ConnList(1).Handle)

' For example, see if Font CPI is set
If PgSet.FontCPI Then
'your logic here...
End If

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

autECLPrinterSettings クラス
autECLPrinterSettings オブジェクトは、Z and I Emulator for Windows接続のプリンター設定を制御します。レジス

トリーでのその名前は ZIEWin.autECLPrinterSettings です。この自動化オブジェクトは VB スクリプトでも使用でき

ます。

読み取り専用プロパティー autECLPrinterSettings が autECLSession オブジェクトに追加されています。このプロパ

ティーの使用方法については、autECLSession クラス (ページ 353)を参照してください。

注: autECLSession オブジェクト内の autECLPrinterSettings オブジェクトは、autECLSession オブジェクト

により設定されます。

以下の例は、Visual Basic で autECLPrinterSettings オブジェクトを作成し、設定する方法を示しています。

DIM PrSet as Object
Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
PrSet.SetConnectionByName("A")

使用上の注意
最初に、作成したオブジェクトの接続を設定しなければなりません。SetConnectionByName または

SetConnectionByHandle を使用して、オブジェクトを初期化します。接続は一度しか設定できません。接続が設定さ

れた後は、接続設定メソッドをさらに呼び出すと例外を引き起こします。接続を設定せずにプロパティーまたはメ

ソッドにアクセスしようとすると、 例外が引き起こされます。

プロパティー CPI、LPI、および FontSize はプロパティー FaceName によって決定されます。そのため、FaceName

を設定する前に CPI、LPI、または FontSize を設定し、 それらが新しい FaceName に対して有効ではない場合、異

なる CPI、LPI、または FontSize 値が接続で再構成される場合があります。CPI、LPI、または FontSize を設定する前

に FaceName を設定する必要があります。そうしなかった場合には、FaceName を設定するたびに CPI、LPI、およ

び FontSize を照会して、それらが希望する値であることを確認してください。

制約事項
各メソッドに関連する接続は、メソッドを成功させるために 特定の状態になければなりません。制約事項を満たし

ていないと、 該当する例外が引き起こされます。

autECLPageSettings オブジェクトのいずれかのプロパティーまたはメソッドが呼び出されるときには、 以下の制約

事項を満たしている必要があります。

• この API が呼び出されるときにホスト・セッションが印刷中ではない。

• 「ファイル」→「ページ設定」および「ファイル」→「プリンター設定」ダイアログが使用中ではない。

特定のプロパティーまたはメソッドに対して追加の制約事項が適用される場合があります。

409

ホストアクセスクラスライブラリ

410

プロパティー
このセクションでは、autECLPrinterSettings オブジェクトのプロパティーを説明します。

タイプ 名前 属性

ブール値 PDTMode 読み取り専用

ストリング PDTFile 読み取り専用

長形式 PrintMode 読み取り専用

ストリング プリンター 読み取り専用

ストリング PrtToDskAppendFile 読み取り専用

ストリング PrtToDskSeparateFile 読み取り専用

ブール値 PrompDialogOption Read/Write

ストリング 名前 読み取り専用

長形式 ハンドル 読み取り専用

ストリング ConnType 読み取り専用

ブール値 CodePage 読み取り専用

ブール値 開始済み 読み取り専用

ブール値 CommStarted 読み取り専用

ブール値 APIEnabled 読み取り専用

ブール値 作動可能 読み取り専用

PDTMode
このプロパティーは、接続が PDT モードであるかどうかを判別します。PDTMode は、Boolean データ型で、読み

取り/書き込み可能です。

例
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

'check if in PDT mode.
If PrSet.PDTMode Then
 ...

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

PDTFile
このプロパティーは、接続に PDT ファイルが構成されているかどうかを示します。このプロパティーは、接続に

PDT ファイルが構成されていない場合にはヌル・ストリングを示します。それ以外の場合、このプロパティーは

PDT ファイルの完全修飾パス名を示します。PDTFile は、String データ型で読み取り専用です。

例
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

If PrSet. PDTFile = vbNullString Then ' get the
 ...
Else
 ...

PrintMode
このプロパティーは、接続の印刷モードを示します。PrintMode は、Long データ型で読み取り専用です。このプロ

パティーは、次の 4 つの列挙型値のいずれかを戻します。

値 列挙型定数の名前 説明

1 pcPrtToDskAppend ディスクへの印刷 - コピー追加モード。これは、接続の「プリンター設

定」ダイアログの「プリンター」リスト・ボックスで「ディスクへの印

刷」→「コピー追加」オプションが選択されていることを意味します。

2 pcPrtToDskSeparate ディスクへの印刷 - 別個モード。これは、接続の「プリンター設定」ダイ

アログの「プリンター」リスト・ボックスで 「ディスクへの印刷」→「別

個」オプションが選択されていることを意味します。

3 pcSpecificPrinter 特定のプリンター・モード。これは、接続の「プリンター設定」ダイアロ

グの「プリンター」リスト・ボックスでいずれかのプリンターが選択され

て、「Windows のデフォルト・プリンターを使用」チェック・ボックス

がクリアされていることを意味します。

4 pcWinDefaultPrinter Windows® のデフォルト・プリンター・モード。これは、「Windows の

デフォルト・プリンターを使用」チェック・ボックスが選択されているこ

とを意味します。

例
Dim PrSet as Object
Dim ConnList as Object

411

ホストアクセスクラスライブラリ

412

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

If PrSet.PrintMode = pcPrtToDskAppend Then
 ...
ElseIf PrSet.PrintMode = pcPrtToDskSeparate Then
 ...
ElseIf PrSet.PrintMode = pcSpecificPrinter Then
 ...
ElseIf PrSet.PrintMode = pcWinDefaultPrinter Then
 ...

プリンター
このプロパティーは、プリンターの名前です。これには、以下のいずれかが入ります。

• 接続の PrintMode が pcSpecificPrinter の場合、特定のプリンターの名前。

• 接続の PrintMode が pcWinDefaultPrinter の場合、Windows のデフォルト・プリンターの名前。

• 接続にプリンターが構成されていない場合、あるいは接続の PrintMode が pcPrtToDskAppend または

pcPrtToDskSeparate の場合、ヌル・ストリング。

Printer は、String データ型で読み取り専用です。

値の形式は次のようにする必要があります。

<Printer name> on <Port Name>

例:

• HP LaserJet 4050 Series PCL 6 on LPT1

例
Dim PrSet as Object
Dim ConnList as Object
Dim Printer as String

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

Printer = PrSet.Printer ' get the Printer Name

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

PrtToDskAppendFile
このプロパティーは、ディスクへの印刷 - コピー追加モードのファイル・セットの名前です。このファイルは、ディ

スクへの印刷 - コピー追加ファイルと呼ばれます。このプロパティーには、以下のいずれかが入ります。

• 接続のディスクへの印刷 - コピー追加ファイルの完全修飾パス名。

• 接続にディスクへの印刷 - コピー追加ファイルが構成されていない場合、ヌル・ストリング。

PrtToDskAppendFile は、String データ型で読み取り専用です。

例
Dim PrSet as Object
Dim ConnList as Object
Dim DskAppFile as String

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

DskAppFile = PrSet. PrtToDskAppendFile ' get the Disk append file.

PrtToDskSeparateFile
このプロパティーは、ディスクへの印刷 - 別個モードのファイル・セットの名前です。このファイルは、ディスクへ

の印刷 - 別個ファイルと呼ばれます。このプロパティーには、以下のいずれかが入ります。

• 接続のディスクへの印刷 - 別個ファイルの完全修飾パス名。

• 接続にディスクへの印刷 - 別個ファイルが構成されていない場合、ヌル・ストリング。

PrtToDskSeparateFile は、String データ型で読み取り専用です。

例
Dim PrSet as Object
Dim ConnList as Object
Dim DskSepFile as String

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

DskSepFile = PrSet. PrtToDskSeparateFile ' get the Disk separate file.

413

ホストアクセスクラスライブラリ

414

PromptDialogOption
このプロパティーは、 印刷前に「プリンター設定」ダイアログを表示するオプションが設定されているかどうかを

示します。PromptDialogOption は、Boolean データ型で読み取り専用です。

例
Dim PrSet as Object
Dim ConnList as Object
Dim PromptDialog as Boolean

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

PromptDialog = PrSet.PromptDialogOption ' get the Prompt Dialog option
' or...
PrSet.PromptDialogOption = True 'set the Prompt Dialog option

名前
このプロパティーは、autECLPrinterSettings が設定された接続の接続名ストリングです。Z and I Emulator for

Windows は、短い文字 ID (A から Z の単一の英字) のみをストリングで戻します。Z and I Emulator for Windows 接

続でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一度に 1 つの接続 A のみをオープンで

きます。Name は、String データ型で読み取り専用です。

例
Dim PrSet as Object
Dim ConnList as Object
DIM Name as String

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

Name = PrSet.Name 'Save the name

ハンドル
このプロパティーは、autECLPrinterSettings オブジェクトが設定された接続のハンドルです。特定の 1 つのハンド

ルに対して 1 つしか、Z and I Emulator for Windows 接続をオープンできません。例えば、一度に 1 つの接続 A のみ

をオープンできます。Handle は、Long データ型で読み取り専用です。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

例
Dim PrSet as Object
Dim ConnList as Object
Dim Hand as Long

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

Hand = PrSet.Handle ' save the handle

ConnType
このプロパティーは、autECLPrinterSettings が設定された接続タイプです。このタイプは、時間の経過とともに変

更される場合があります。ConnType は、String データ型で読み取り専用です。

ストリング値 接続タイプ

DISP3270 3270 表示装置

DISP5250 5250 ディスプレイ

PRNT3270 3270 印刷装置

PRNT5250 5250 プリンター

ASCII VT エミュレーション

例
Dim PrSet as Object
Dim ConnList as Object
Dim Type as String

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

Type = PrSet.ConnType ' save the type

CodePage
このプロパティーは、autECLPrinterSettings が設定された接続のコード・ページです。このコード・ページは、時

間の経過とともに変更される場合があります。CodePage は、Long データ型で読み取り専用です。

415

ホストアクセスクラスライブラリ

416

例
Dim PrSet as Object
Dim ConnList as Object
Dim CodePage as Long

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

CodePage = PrSet.CodePage ' save the codepage

開始済み
このプロパティーは、エミュレーター・ウィンドウが開始されたかどうかを示します。ウィンドウがオープンしてい

る場合、値は True です。 その他の場合は False です。Started は、Boolean データ型で読み取り専用です。

例
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject(".autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if A is started.
' The results are sent to a text box called Result.
If PrSet.Started = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

CommStarted
このプロパティーは、ホストへの接続の状況を示しています。ホストが接続されている場合、値は True です。 その

他の場合は False です。CommStarted は、Boolean データ型で読み取り専用です。

例
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if communications are connected
' for A. The results are sent to a text box called
' CommConn.
If PrSet.CommStarted = False Then
 CommConn.Text = "No"
Else
 CommConn.Text = "Yes"
End If

APIEnabled
このプロパティーは、エミュレーターが API 使用可能かどうかを示します。API 設定の状態に応じて、接続は API 使

用可能または API 使用不可になります (Z and I Emulator for Windows のウィンドウで「設定」→ 「API」をクリッ

ク)。

エミュレーターが API 使用可能の場合には、値は True です。 その他の場合には、False です。APIEnabled

は、Boolean データ型で読み取り専用です。

例
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if A is API-enabled.
' The results are sent to a text box called Result.
If PrSet.APIEnabled = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

作動可能
このプロパティーは、エミュレーター・ウィンドウが開始されているか、API 使用可能か、接続されているかどうか

を示します。このプロパティーは、3 つのすべてのプロパティーを確認します。エミュレーターが準備できている場

合には、値は True です。 その他の場合には、False です。Ready は、Boolean データ型で読み取り専用です。

例
Dim PrSet as Object
Dim ConnList as Object

417

ホストアクセスクラスライブラリ

418

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

' This code segment checks to see if A is ready.
' The results are sent to a text box called Result.
If PrSet.Ready = False Then
 Result.Text = "No"
Else
 Result.Text = "Yes"
End If

autECLPrinterSettings メソッド
以下のセクションで、autECLPrinterSettings オブジェクトに有効なメソッドを説明します。

void SetPDTMode(Boolean bPDTMode, [optional] String PDTFile) void SetPrtToDskAppend([optional] String

FileName) void SetPrtToDskSeparate([optional] String FileName) void SetSpecificPrinter(String Printer) void

SetWinDefaultPrinter() void SetConnectionByName (String Name) void SetConnectionByHandle (Long Handle)

SetPDTMode
SetPDTMode メソッドは、所定の PDT ファイルによって PDT モードに接続を設定するか、非 PDT モード (GDI モー

ド とも呼ばれる) に接続を設定します。

制約事項
このメソッドが bPDTMode を False に設定して呼び出される場合には、 関連する接続の PrintMode が既に

SpecificPrinter または WinDefaultPrinter に設定されている必要があります。

プロトタイプ
void SetPDTMode(Boolean bPDTMode, [optional] String PDTFile)

パラメーター
Boolean bPDTMode

以下の値を指定できます。

• PDT モードに接続を設定するには TRUE。

• 非 PDT モード (GDI モード) に接続を設定するには FALSE。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

String PDTFile

このオプショナル・パラメーターには PDT ファイル名が入ります。

このパラメーターは、bPDTMode が TRUE の場合にのみ使用されます。このパラメーターが指定され

ていない場合に、bPDTMode が TRUE に設定されると、接続に構成されている PDT ファイルが使用さ

れます。接続にまだ PDT ファイルが構成されていない場合、このメソッドは例外をスローして失敗し

ます。

bPDTMode が FALSE の場合、このパラメーターは無視されます。

以下の値を指定できます。

• パスなしのファイル名

Z and I Emulator for Windows のインストール・パスの PDFPDT サブフォルダー内の PDTFile が

使用されます。

• ファイルの完全修飾パス名

PDTFile が存在しない場合、このメソッドは例外をスローして失敗します。

戻り値
なし

例
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

PrSet.SetPDTMode(True, "epson.pdt") 'Set PDT mode
PrSet.SetPDTMode(False) 'Set non-PDT mode (also called GDI mode)

SetPrtToDskAppend
このメソッドは、接続の PrintMode をディスクへの印刷 - コピー追加モードに設定します。これは、このモードに

該当するファイルも設定します。

注:

419

ホストアクセスクラスライブラリ

420

1. このファイルを設定するフォルダーには書き込みアクセス権限が必要です。権限がない場合、 この

メソッドは例外をスローして失敗します。

2. 関連する接続は PDT モードにする必要があります。

プロトタイプ
void SetPrtToDskAppend([optional] String FileName)

パラメーター
String FileName

このオプショナル・パラメーターには、ディスクへの印刷 - コピー追加ファイルの名前が入ります。

ファイルが存在する場合には、それが使用されます。それ以外の場合、 印刷の完了時に作成されま

す。

以下の値を指定できます。

• ファイル名 (パスなし)

ユーザー・クラスのアプリケーション・データ・ディレクトリー・パスを使用してファイルを

見つけます。

• ファイルの完全修飾パス名

パス内にディレクトリーが存在している必要があります。 ない場合、メソッドは例外をスロー

して失敗します。ファイルがパス内に存在する必要はありません。

このパラメーターが指定されていない場合、 接続でこの PrintMode に構成されているファイルが使用

されます。接続にまだファイルが構成されていないと、このメソッドは例外をスローして失敗します。

戻り値
なし

例
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

'If PDTMode, set PrintMode to pcPrtToDskAppend
If PrSet.PDTMode Then
 PrSet.SetPrtToDskAppend("dskapp.txt")

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

SetPrtToDskSeparate
このメソッドは、接続の PrintMode をディスクへの印刷 - 別個モードに設定します。これは、このモードに該当す

るファイルも設定します。

注:

1. このファイルを設定するフォルダーには書き込みアクセス権限が必要です。権限がない場合、 この

メソッドは例外をスローして失敗します。

2. 関連する接続は PDT モードにする必要があります。

プロトタイプ
void SetPrtToDskSeparate([optional] String FileName)

パラメーター
String FileName

このオプショナル・パラメーターには、ディスクへの印刷 - 別個ファイルの名前が入ります。

このパラメーターが指定されていない場合、 接続でこの PrintMode に構成されているファイルが使用

されます。

指定可能な値は以下のとおりです。

• NULL (デフォルト)

接続でこの PrintMode に現在構成されているファイルが使用されます。接続にまだファイルが

構成されていないと、このメソッドは例外をスローして失敗します。

• ファイル名 (パスなし)

ユーザー・クラスのアプリケーション・データ・ディレクトリー・パスを使用してファイルを

見つけます。

• ファイルの完全修飾パス名

パス内にディレクトリーが存在している必要があります。 ない場合、メソッドは例外をスロー

して失敗します。ファイルがパス内に存在する必要はありません。

421

ホストアクセスクラスライブラリ

422

注: ファイル名には拡張子を入れないでください。拡張子が入っていると、このメソッドは例

外をスローして失敗します。

戻り値
なし

例
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

'If PDTMode, set PrintMode to pcPrtToDskSeparate
If PrSet.PDTMode Then
 PrSet.SetPrtToDskSeparate("dsksep")

SetSpecificPrinter
このメソッドは、接続の PrintMode を Printer パラメーターで指定されたプリンターによって特定のプリンター・

モードに設定します。

プロトタイプ
void SetSpecificPrinter(String Printer)

パラメーター
String Printer

プリンターの名前が入ります。プリンターが存在しない場合、このメソッドは例外をスローして失敗し

ます。

値の形式は次のようにする必要があります。

<Printer name> on <Port Name>

例:

• HP LaserJet 4050 Series PCL 6 on LPT1

戻り値
なし

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

例
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

'Set PrintMode to pcSpecificPrinter
PrSet. SetSpecificPrinter("HCL InfoPrint 40 PS on Network Port")

SetWinDefaultPrinter
このメソッドは、接続の PrintMode を Windows のデフォルト・プリンター・モードに設定します (接続は Windows

のデフォルト・プリンターを使用します)。Windows のデフォルト・プリンターが構成されていない場合、 このメ

ソッドは例外をスローして失敗します。

プロトタイプ
void SetWinDefaultPrinter()

パラメーター
なし

戻り値
なし

例
Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

'Set PrintMode to pcWinDefaultPrinter
PrSet. SetWinDefaultPrinter

423

ホストアクセスクラスライブラリ

424

SetConnectionByName
この SetConnectionByName メソッドは、接続名を使用して、新しく作成された autECLPrinterSettings オブジェク

トの接続を設定します。Z and I Emulator for Windows では、この接続名は、短い接続 ID (A から Z の単一の英字) で

す。Z and I Emulator for Windows 接続でオープンできるのは、1 つの名前につき 1 つしかありません。例えば、一

度に 1 つの接続 A のみをオープンできます。

注: autECLSession オブジェクトに含まれる autECLPrinterSettings オブジェクトを使用している場合には、

このメソッドを呼び出さないでください。

プロトタイプ
void SetConnectionByName (String Name)

パラメーター
String 型、Name 型

1 文字の接続のストリング短縮名。有効値は A から Z です。

戻り値
なし

例
以下の例は、接続名を使用して、新しく作成された autECLPrinterSettings オブジェクトの接続を設定する方法を示

します。

Dim PrSet as Object
Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
' Initialize the connection
PrSet.SetConnectionByName("A")
' For example, see if PDTMode
If PrSet.PDTMode Then
'your logic here...
End If

SetConnectionByHandle
この SetConnectionByHandle メソッドは、接続ハンドルを使用して、新しく作成された autECLPrinterSettings オブ

ジェクトの接続を設定します。Z and I Emulator for Windows では、この接続ハンドルは Long integer です。

特定の 1 つのハンドルに対して 1 つしか、Z and I Emulator for Windows 接続をオープンできません。例えば、一度

に 1 つの接続 A のみをオープンできます。

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

注: autECLSession オブジェクトに含まれる autECLPrinterSettings オブジェクトを使用している場合には、

このメソッドを呼び出さないでください。

プロトタイプ
void SetConnectionByHandle(Long Handle)

パラメーター
Long Handle

オブジェクトに設定される接続の Long integer 値。

戻り値
なし

例
以下の例は、接続ハンドルを使用して、新しく作成された autECLPrinterSettings オブジェクトの接続を設定する方

法を示します。

Dim PrSet as Object
Dim ConnList as Object

Set PrSet = CreateObject("ZIEWin.autECLPrinterSettings")
Set ConnList = CreateObject("ZIEWin.autECLConnList")
' Initialize the connection
ConnList.Refresh
PrSet.SetConnectionByHandle(ConnList(1).Handle)

' For example, see if PDTMode
If PrSet.PDTMode Then
'your logic here...
End If

自動化オブジェクトへのプライマリー相互運用アセンブリーのサ
ポート
HCL Z and I Emulator for Windows により公開された自動化オブジェクトは、.NET フレームワークを対象とする任

意の言語で作成されたアプリケーションで使用できます。管理対象の .NET アプリケーションは、自動化オブジェ

クトをラップするプライマリー相互運用アセンブリー (PIA) を使用して、Z and I Emulator for Windows をプログラ

ミングできます。相互運用アセンブリーは、管理対象の (.NET) アプリケーションが COM 準拠オブジェクトを使用

する際のメカニズムです。相互運用アセンブリーには、バインディングおよびメタデータ情報が含まれ、 これによ

り、.NET フレームワーク (CLR) は COM オブジェクトをロードまたはマーシャルして、.NET アプリケーション用に

ラップできます。PIA には、COM 型の提供者によって定義された COM 型の正式な記述が含まれます。PIA は、必

ずオリジナルの COM 型の提供者によってデジタル署名されています。

425

ホストアクセスクラスライブラリ

426

.NET アプリケーションがアセンブリーを参照できる方法は 2 つあります。

• 単純なアプリケーションまたは単一のアプリケーションがアセンブリーを使用する場合、 Microsoft はアセ

ンブリーをアプリケーションと同じディレクトリーにコピーすることを推奨しています。

• 複数のアプリケーションがアセンブリーを参照する場合、 アプリケーションをグローバル・アセンブリー・

キャッシュ (GAC) にインストールして、すべてのソリューションに GAC の アセンブリーを参照させること

ができます。

相互運用アセンブリーによって公開されている型のプログラミング・モデルは COM とよく似ています。COM オ

ブジェクトによって公開されているメソッド、プロパティー、 およびイベントは、いずれの .NET 言語でもその言

語の構文を使用してアクセスできます。C# で作成されたサンプル・アプリケーション (ECLSamps.net) が Z and I

Emulator for Windows のインストール・イメージの \samples ディレクトリーに提供されています。このサンプル

は、 相互運用アセンブリーのさまざまな型の単純な使用法を示します。

Visual Basic 6.0 で、Z and I Emulator for Windows の自動化オブジェクトを使用し、変換支援ウィザードを使用して

Visual Basic .NET に移行したプロジェクトでは、ユーザーは、対応する Z and I Emulator for Windows 相互運用参照

(\Interops ディレクトリー) を使用して変換支援ウィザードによって暗黙で生成される参照を置換して、再コンパイ

ルするだけです。参照を置換する方法は、 変換支援によって生成されたすべての参照を削除し、Visual Studio .NET

を使用して .NET 相互運用参照を追加します。GAC に登録してあるアセンブリーを使用する場合、参照を追加し

て、Z and I Emulator for Windows 相互運用参照の「ローカルのコピー」プロパティーを「False」に設定します。

Z and I Emulator for Windows のエミュレーター自動化オブジェクトの PIA は、Z and I Emulator for Windows のイン

ストール・イメージの \Interops ディレクトリーにインストールされます。Z and I Emulator for Windows 製品イン

ストーラーによって .NET フレームワークが存在することが検出された場合、GAC 内に型を登録するための追加オ

プションが提供されます。GAC にアセンブリーをインストールすると、PIA は対応する型ライブラリーのレジスト

リー・キーの下のレジストリーにも置かれます。

表 2 : Z and I Emulator for Windows の自動化オブジェクトへのプライマリー相互運用アセンブリー (ページ 426)

に、Z and I Emulator for Windows の自動化オブジェクトに提供される PIA をリストします。

表 2. Z and I Emulator for Windows の自動化オブジェクト

へのプライマリー相互運用アセンブリー

自動化オブジェクト 相互運用アセンブリー依存関係

autECLConnList Interop.AutConnListTypeLibrary.dll

autECLConnMgr Interop.AutConnMgrTypeLibrary.dll

autECLConnList Interop.AutPSTypeLibrary.dll

autECLOIA Interop.AutOIATypeLibrary.dll

autECLPS Interop.AutPSTypeLibrary.dll

autECLScreenDesc Interop.AutScreenDescTypeLibrary.dll

autECLScreenReco Interop.AutScreenRecoTypeLibrary.dll

autECLSession Interop.AutSessTypeLibrary.dll

autECLPageSettings Interop.AutSettingsTypeLibrary.dll

autECLPrinterSettingsInterop.AutSettingsTypeLibrary.dll

autECLWinMetrics Interop.AutWinMetricsTypeLibrary.dll

Chapter 3. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト

表 2. Z and I Emulator for Windows の自動化オブジェクト

へのプライマリー相互運用アセンブリー (続く)

自動化オブジェクト 相互運用アセンブリー依存関係

autECLXfer Interop.AutXferTypeLibrary.dll

autSystem Interop.AutSystemTypeLibrary.dll

427

428

第 4 章. Java 用ホスト・アクセス・クラス・ライブラリー
ホスト・アクセス・クラス・ライブラリー (HACL) Java クラスでは、Java プログラミング環境で Z and I Emulator

for Windows の HACL 関数が使用できるようにします。したがって、HACL の 各クラスで提供されている関数を使

用する Java アプレットおよびアプリケーションの作成が可能です。

HACL Java HTML ファイルは、以下のパスにある Z and I Emulator for Windows の製品資料に付属している

Docs_Admin_Aids zip フォルダーにあります: ZIEWin_3.0_Docs_Admin_Aids.zip\publications\ja\doc\hacl ディレクト

リー。

第 5 章. トラブルシューティング
問題のトラブルシューティングを支援する以下のセルフヘルプ情報リソースとツールを使用できます。

• ご使用の製品のリリース情報で、既知の問題、次善策、およびトラブルシューティング情報を参照します。

• お客さまの問題を解決するダウンロードまたはフィックスが提供されているどうかを確認する。

• 提供されているナレッジ・ベースを検索して、問題の解決方法が既に 文書化されているかどうかを調べる。

• さらに支援が必要な場合は、HCL ソフトウェア・サポートに連絡して、問題を報告してください。

HCL Z and I Emulator for Windows .NET Interop アセンブリーでセッ
ション OIA 通知を起動できない

問題

OIA イベント通知の登録を行う .NET アプリケーションが、これらのイベントの通知を受け取りませ

ん。また、対応する COM タイプ・ライブラリーのいくつかのメソッドが Visual Studio のインテリ

ジェンス機能で表示されません。

原因

.NET Interop アセンブリーは、Microsoft SDK に付属するツール TlbImp.exe を使用して対応する COM

タイプ・ライブラリーから派生します。タイプ・ライブラリー・インポーターは、COM タイプ・ライ

ブラリー内で見つかったタイプ定義を、共通言語ランタイム・アセンブリー内の同等の定義に変換しま

す。しかし、ランタイム・マーシャラーは一部のデータ・タイプをマーシャルできません。そのため、

いくつかの COM タイプ・ライブラリー定義が、結果として生成された共通言語ランタイム・アセンブ

リーに見つかりません。

解決方法

これは TlbImp.exe の制限事項です。

429

430

付録 A. Sendkeys 略号キーワード
表 3 : Sendkeys メソッドの略号キーワード (ページ 430) では、Sendkeys メソッドの略号キーワードを記載してい

ます。

表 3. Sendkeys メソッドの略号キーワード

キーワード 説明

[backtab] 後退タブ

[clear] 画面消去

[delete] 削除

[enter] Enter

[eraseeof] フィールドの終わりを消去

[help] ヘルプ\n

[insert] 挿入

[jump] ジャンプ

[left] 左

[newline] 新規行

[space] スペース

[print] 印刷

[reset] リセット

[tab] Tab

[up] 上へ

[Down] 下

[capslock] CapsLock

[right] 右

[home] ホーム

[pf1] PF2

[pf2] PF2

[pf3] PF3

[pf4] PF4

[pf5] PF5

[pf6] PF6

[pf7] PF7

[pf8] PF8

[pf9] PF9

[pf10] PF10

[pf11] PF11

[pf12] PF12

[pf13] PF13

Chapter 1. Sendkeys 略号キーワード

表 3. Sendkeys メソッドの略号キーワード (続く)

キーワード 説明

[pf14] PF14

[pf15] PF15

[pf16] PF16

[pf17] PF17

[pf18] PF18

[pf19] PF19

[pf20] PF20

[pf21] PF21

[pf22] PF22

[pf23] PF23

[pf24] PF24

[eof] ファイルの終わり

[scrlock] [Scroll Lock]

[numlock] [Num Lock]

[pageup] PageUp

[pagedn] PageDown

[pa1] PA 1

[pa2] PA 2

[pa3] PA 3

[test] テスト

[worddel] ワード削除

[fldext] フィールドの終了

[erinp] 入力消去

[sysreq] システム要求

[instog] 挿入切り替え

[crsel] カーソル選択

[fastleft] 高速カーソル左移動

[attn] 警告

[devcance] 装置取り消し (DvCnl)

[printps] 表示スペース印刷

[fastup] 高速カーソル上移動

[fastdown] 高速カーソル下移動

[hex] 16 進

[fastright] 高速カーソル右移動

[revvideo] 反転表示

[underscr] 下線

[rstvideo] 反転表示のリセット

431

ホストアクセスクラスライブラリ

432

表 3. Sendkeys メソッドの略号キーワード (続く)

キーワード 説明

[red] 赤

[pink] Pink

[green] 緑

[yellow] 黄

[blue] 青

[turq] ターコイズ

[white] White

[rstcolor] ホスト・カラー のリセット

[printpc] 印刷 (PC)

[wordright] 正方向ワード・タブ

[wordleft] 逆方向ワード・タブ

[field-] フィールド -

[field+] フィールド +

[rcdbacksp] レコード・バックスペース

[printhost] ホストでの表示スペース印刷

[dup] 重複

[fieldmark] フィールド・マーク

[dispsosi] SO/SI の表示

[gensosi] SO/SI 生成

[dispattr] 表示属性

[fwdchar] 文字前進

[splitbar] 縦破線

[altcsr] カーソル切り替え

[backspace] Backspace

[NULL] NULL

付録 B. ECL プレーン — 形式および内容
この付録では、ECL 表示スペース・モデルでの 種々のデータ・プレーンの形式および内容を説明します。各プレー

ンでは、ホスト表示スペースの 異なる面を示しています。例えば、文字の内容、色指定、 フィールド属性などで

す。ECL::GetScreen メソッドその他によって、 異なる表示スペース・プレーンからデータを戻します。

各プレーンには、各ホスト表示スペース文字の位置 につき 1 バイトが含まれています。それぞれのプレーンについ

ては、論理的内容およびデータ・フォーマットの点から、以下のセクションに分けて説明しています。プレーンのタ

イプは、ECLPS.HPP ヘッダー・ファイルに列挙されています。

TextPlane
テキスト・プレーンには、表示スペースにある可視の文字が表示されます。テキスト・プレーンには非表示フィー

ルドも表示されます。テキスト・プレーンの それぞれの要素のバイト値は、表示される文字の ASCII 値に対応しま

す。テキスト・プレーンには、バイナリー・ゼロ (null) 文字値は含まれません。表示スペース内の null 文字 (null 埋

め込み 入力フィールドなど) は、ASCII ブランク (0x20) 文字として示されます。

FieldPlane
フィールド・プレーンは、表示スペースでのフィールド位置および属性を示します。このプレーンは、フィールド形

式の表示スペースにのみ意味があります(例えば、VT 接続はフォーマット設定されていません)。

このプレーンは、フィールド属性値の散在的な配列です。このプレーンの値は、表示スペースでフィールド属性文字

がある場所を除いてすべてバイナリー・ゼロです。バイナリー・ゼロ以外の位置では、値はそこで開始するフィール

ドの属性です。フィールドの長さは、フィールド属性位置と表示スペース内の次のフィールド属性との間の線形距離

であり、 その属性位置自体は含まれません。

フィールド属性位置の値は、以下の表に示されているとおりです。

注: 属性値は、接続のタイプによって異なります。

表 4. 3270 フィールド属性

ビット位置 (0 が最下位のビット) 意味

7 常に "1"

6 常に "1"

5 0

無保護

1

保護されています

433

ホストアクセスクラスライブラリ

434

表 4. 3270 フィールド属性 (続く)

ビット位置 (0 が最下位のビット) 意味

4 0

英数字データ

1

数値データのみ

3, 2 0, 0

通常輝度、ペン検出不可能

0, 1

通常輝度、ペン検出可能

1, 0

高輝度、ペン検出可能

1, 1

非表示、ペン検出不可能

1 予約済み

0 0

フィールドは変更されていません

1

無保護フィールドが変更されました

表 5. 5250 フィールド属性

ビット位置 (0 が最下位のビット) 意味

7 常に "1"

6 0

非表示

1

表示

5 0

無保護

1

保護されています

4 0

通常輝度

Chapter 2. ECL プレーン — 形式および内容

表 5. 5250 フィールド属性 (続く)

ビット位置 (0 が最下位のビット) 意味

1

高輝度

3, 2, 1 0, 0, 0

英数字データ

0, 0, 1

英字のみ

0, 1, 0

数字シフト

0, 1, 1

数値データおよび数値特殊記号

1, 0, 1

数値のみ

1, 1, 0

磁気ストライプ読み取り装置データのみ

1, 1, 1

符号付き数字のみ

0 0

フィールドは変更されていません

1

無保護フィールドが変更されました

表 6 : マスク値 (ページ 435) は、さまざまなマスク値を定義しています。

表 6. マスク値

ニーモニック マスク 説明

FATTR_MDT 0x01 変更フィールド

FATTR_PEN_MASK 0x0C ペン検出可能フィールド

FATTR_BRIGHT 0x08 高輝度フィールド

FATTR_DISPLAY 0x0C 可視フィールド

FATTR_ALPHA 0x10 英数字フィールド

FATTR_NUMERIC 0x10 数値のみフィールド

FATTR_PROTECTED 0x20 保護フィールド

FATTR_PRESENT 0x80 フィールド属性の表示

FATTR_52_BRIGHT 0x10 5250 高輝度フィールド

435

ホストアクセスクラスライブラリ

436

表 6. マスク値 (続く)

ニーモニック マスク 説明

FATTR_52_DISP 0x40 5250 可視フィールド

ColorPlane
カラー・プレーンには、 表示スペースのそれぞれの文字のカラー情報が含まれています。それぞれの文字の前景お

よび背景の色は、 ホスト・データ・ストリームで指定されたとおりに表現されます。カラー・プレーンの色は、エ

ミュレーター・ウィンドウのカラー表示マッピングにより修正されることはありません。カラー・プレーンの各バイ

トには、以下のカラー情報が入ります。

表 7. カラー・プレーン情報

ビット位置 (0 が最下位のビット) 意味

7 - 4 背景の文字色

0x0

空白

0x1

青

0x2

緑

0x3

シアン

0x4

赤

0x5

マジェンタ

0x6

茶 (3270)、黄色 (5250)

0x7

White

3-0 前景の文字色

0x0

空白

Chapter 2. ECL プレーン — 形式および内容

表 7. カラー・プレーン情報 (続く)

ビット位置 (0 が最下位のビット) 意味

0x1

青

0x2

緑

0x3

シアン

0x4

赤

0x5

マジェンタ

0x6

茶 (3270)、黄色 (5250)

0x7

白 (通常の輝度)

0x8

グレー

0x9

明るい青

0xA

明るい緑

0xB

明るいシアン

0xC

明るい赤

0xD

明るいマジェンタ

0xE

黄

0xF

ホワイト (高輝度)

437

ホストアクセスクラスライブラリ

438

ExfieldPlane
このプレーンには、拡張文字属性データが入ります。

このプレーンは、拡張文字属性値の散在的な配列です。配列内の値は、ホストが拡張文字属性を指定した 表示ス

ペースでの文字以外は、すべてバイナリー・ゼロです。拡張文字属性値の意味は、以下のとおりです。

表 8. 3270 拡張文字属性

ビット位置 (0 が最下位のビット) 意味

7, 6 文字の強調表示

0, 0

正常

0, 1

明滅

1, 0

反転表示

1, 1

下線

5, 4, 3 文字色

0, 0, 0

デフォルト

0, 0, 1

青

0, 1, 0

赤

0, 1, 1

Pink

1, 0, 0

緑

1, 0, 1

ターコイズ

1, 1, 0

黄

Chapter 2. ECL プレーン — 形式および内容

表 8. 3270 拡張文字属性 (続く)

ビット位置 (0 が最下位のビット) 意味

1, 1, 1

White

2, 1 文字属性

00

デフォルト

11

2 バイト文字

0 予約済み

表 9. 5250 拡張文字属性

ビット位置 (0 が最下位のビット) 意味

7 0

標準イメージ

1

反転イメージ

6 0

下線なし

1

下線

5 0

明滅なし

1

明滅

4 0

桁分離線なし

1

桁分離線あり

3, 2, 1, 0 予約済み

439

440

付録 C. 特記事項
本書は米国 HCL が提供する製品およびサービスについて作成したものであり、 本書に記載の製品、サービス、また

は機能が日本においては提供されていない場合があります。日本で利用可能な製品、サービス、および機能について

は、日本 HCL の営業担当員にお尋ねください。本書で HCL 製品、プログラム、またはサービスに言及していても、

その HCL 製品、プログラム、またはサービスのみが使用可能であることを意味するものではありません。これらに

代えて、HCL の知的所有権を侵害することのない、機能的に同等の製品、プログラム、またはサービスを使用する

ことができます。ただし、HCL 以外の製品とプログラムの操作またはサービスの評価および検証は、お客様の責任

で行っていただきます。

本書に記述されている主題事項に関して HCL が特許権 (特許出願を含む) を所有していることがあります。本書の提

供は、お客様にこれらの特許権について実施権を許諾することを意味するものではありません。実施権についてのお

問い合わせは、書面にて下記宛先にお送りください。

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

注意: Office of the General Counsel

HCL TECHNOLOGIES LTD. 本書を特定物として現存するままの状態で提供し、 商品性の保証、特定目的適合性の保証

および法律上の瑕疵担保責任を含むすべての明示 もしくは黙示の保証責任を負わないものとします。国または地域

によっては、法律の強行規定により、保証責任の制限が禁じられる場合、強行規定の制限を受けるものとします。

この情報には、技術的に不適切な記述や誤植を含む場合があります。本書は定期的に見直され、必要な変更は本書の

次版に組み込まれます。HCL は予告なしに、随時、この文書に記載されている製品またはプログラムに対して、改

良または変更を行うことがあります。

本書において HCL 以外の文書または HCL 以外の Web サイトに言及している場合がありますが、 便宜のため記載し

ただけであり、決してそれらの文書または Web サイトを推奨するものではありません。それらの Web サイトにある

資料は、この HCL 製品の資料の一部ではありません。それらの Web サイトは、お客様の責任でご使用ください。

HCL は、お客様が提供するいかなる情報も、お客様に対してなんら義務も負うことのない、自ら適切と信ずる方法

で、使用もしくは配布することができるものとします。

本プログラムのライセンス保持者で、(i) 独自に作成したプログラムとその他のプログラム (本プログラムを含む) と

の間での情報交換、および (ii) 交換された情報の相互利用を可能にすることを目的として、本プログラムに関する情

報を必要とする方は、下記に連絡してください。

HCL

330 Potrero Ave.

Sunnyvale, CA 94085

USA

注意: Office of the General Counsel

本プログラムに関する上記の情報は、適切な使用条件の下で使用できますが、有償の場合もあります。

Chapter 3. 特記事項

本書で説明されているライセンス・プログラムまたはその他のライセンス資料は、HCL 所定のプログラム契約の契

約条項、HCL プログラムのご使用条件、またはそれと同等の条項に基づいて、HCL より提供されます。

本書に含まれるパフォーマンス・データは、特定の動作および環境条件下で得られたものです。実際の結果は、異な

る可能性があります。ご使用条件

HCL 以外の製品に関する情報は、その製品の供給者もしくは公開されているその他のソースから入手したもので

す。HCL は、それらの製品のテストは行っておりません。したがって、他社製品に関する実行性、互換性、または

その他の要求について HCL は確証できません。HCL 以外の製品の性能に関する質問は、それらの製品の供給者にお

願いします。

本書には、日常の業務処理で用いられるデータや報告書の例が含まれています。より具体性を与えるために、それら

の例には、個人、企業、ブランド、あるいは製品などの名前が含まれている場合があります。これらの名称はすべて

架空のものであり、名称や住所が類似する企業が実在しているとしても、それは偶然にすぎません。

商標
HCL、HCL ロゴおよび hcl.com は、世界の多くの国で登録された HCL Technologies Ltd. の商標または登録商標で

す。他の製品名およびサービス名等は、それぞれ IBM® または各社の商標である場合があります。

441

	ホストアクセスクラスライブラリ
	本書について
	本書の対象読者
	本書の使用方法
	詳細情報の参照先

	第 1 章. 概要
	C++ オブジェクト
	Java オブジェクト
	自動化オブジェクト
	ECL の概念
	接続、ハンドルと名前の
	セッション
	ECL コンテナー・オブジェクト
	ECL リスト・オブジェクト
	イベント
	エラー処理
	アドレッシング (行、桁、位置)

	移行、EHLLAPI からの
	実行/言語インターフェース
	特徴
	セッション ID
	表示スペース・モデル
	SendKey インターフェース
	イベント
	PS 接続/切断およびマルチスレッド化

	第 2 章. ホスト・アクセス・クラス・ライブラリー C++
	作成、C++ ECL プログラムの
	Microsoft Visual C++
	ソース・コードの準備
	コンパイル
	リンク
	実行中

	ECLBase クラス
	派生

	ECLBase メソッド
	GetVersion
	プロトタイプ
	パラメーター
	戻り値
	例

	ConvertHandle2ShortName
	プロトタイプ
	パラメーター
	戻り値
	例

	ConvertShortName2Handle
	プロトタイプ
	パラメーター
	戻り値
	例

	ConvertTypeToString
	プロトタイプ
	パラメーター
	戻り値
	例

	ConvertPos
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLConnection クラス
	派生

	ECLConnection メソッド
	ECLConnection コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLConnection デストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	GetCodePage
	プロトタイプ
	パラメーター
	戻り値
	例

	GetHandle
	プロトタイプ
	パラメーター
	戻り値
	例

	GetConnType
	プロトタイプ
	パラメーター
	戻り値
	例

	GetName
	プロトタイプ
	パラメーター
	戻り値
	例

	GetEncryptionLevel
	プロトタイプ
	パラメーター
	戻り値
	例

	IsStarted
	プロトタイプ
	パラメーター
	戻り値
	例

	IsCommStarted
	プロトタイプ
	パラメーター
	戻り値
	例

	IsAPIEnabled
	プロトタイプ
	パラメーター
	戻り値
	例

	IsReady
	プロトタイプ
	パラメーター
	戻り値
	例

	StartCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	StopCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	RegisterCommEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterCommEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLConnList クラス
	派生
	使用上の注意

	ECLConnList メソッド
	ECLConnList コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLConnList デストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	GetFirstConnection
	プロトタイプ
	パラメーター
	戻り値
	例

	GetNextConnection
	プロトタイプ
	パラメーター
	戻り値
	例

	FindConnection
	プロトタイプ
	パラメーター
	戻り値
	例

	GetCount
	プロトタイプ
	パラメーター
	戻り値
	例

	最新表示
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLConnMgr クラス
	派生

	ECLConnMgr メソッド
	ECLConnMgr コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLConnMgr デコンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	GetConnList
	プロトタイプ
	パラメーター
	戻り値
	例

	StartConnection
	プロトタイプ
	パラメーター
	戻り値
	使用上の注意
	例

	StopConnection
	プロトタイプ
	パラメーター
	戻り値
	使用上の注意
	例

	RegisterStartEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterStartEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLCommNotify クラス
	派生
	例

	ECLCommNotify メソッド
	NotifyEvent
	プロトタイプ
	パラメーター
	戻り値

	NotifyError
	プロトタイプ
	パラメーター
	戻り値

	NotifyStop
	プロトタイプ
	パラメーター
	戻り値

	ECLErr クラス
	派生

	ECLErr メソッド
	GetMsgNumber
	プロトタイプ
	パラメーター
	戻り値
	例

	GetReasonCode
	プロトタイプ
	パラメーター
	戻り値
	例

	GetMsgText
	プロトタイプ
	パラメーター
	戻り値
	例
	使用上の注意

	ECLField クラス
	派生
	コピー・コンストラクターおよび代入演算子

	ECLField メソッド
	GetStart
	プロトタイプ
	パラメーター
	戻り値
	例

	GetStartRow
	プロトタイプ
	パラメーター
	戻り値
	例

	GetStartCol
	プロトタイプ
	パラメーター
	戻り値
	例

	GetEnd
	プロトタイプ
	パラメーター
	戻り値
	例

	GetEndRow
	プロトタイプ
	パラメーター
	戻り値
	例

	GetEndCol
	プロトタイプ
	パラメーター
	戻り値
	例

	GetLength
	プロトタイプ
	パラメーター
	戻り値
	例

	GetScreen
	プロトタイプ
	パラメーター
	戻り値
	例

	SetText
	プロトタイプ
	パラメーター
	戻り値
	例

	IsModified, IsProtected, IsNumeric, IsHighIntensity, IsPenDetectable, IsDisplay
	プロトタイプ
	パラメーター
	戻り値
	例

	GetAttribute
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLFieldList クラス
	派生
	プロパティー

	ECLFieldList メソッド
	最新表示
	プロトタイプ
	パラメーター
	戻り値
	例

	GetFieldCount
	プロトタイプ
	パラメーター
	戻り値
	例

	GetFirstField
	プロトタイプ
	パラメーター
	戻り値
	例

	GetNextField
	プロトタイプ
	パラメーター
	戻り値
	例

	FindField
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLKeyNotify クラス
	派生
	例

	ECLKeyNotify メソッド
	NotifyEvent
	プロトタイプ
	パラメーター
	戻り値

	NotifyError
	プロトタイプ
	パラメーター
	戻り値

	NotifyStop
	プロトタイプ
	パラメーター
	戻り値

	ECLListener クラス
	派生
	使用上の注意

	ECLOIA クラス
	派生
	使用上の注意

	ECLOIA メソッド
	ECLOIA コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	IsAlphanumeric
	プロトタイプ
	パラメーター
	戻り値
	例

	IsAPL
	プロトタイプ
	パラメーター
	戻り値
	例

	IsUpperShift
	プロトタイプ
	パラメーター
	戻り値
	例

	IsNumeric
	プロトタイプ
	パラメーター
	戻り値
	例

	IsCapsLock
	プロトタイプ
	パラメーター
	戻り値
	例

	IsInsertMode
	プロトタイプ
	パラメーター
	戻り値
	例

	IsCommErrorReminder
	プロトタイプ
	パラメーター
	戻り値
	例

	IsMessageWaiting
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForInputReady
	プロトタイプ
	パラメーター
	戻り値

	WaitForSystemAvailable
	プロトタイプ
	パラメーター
	戻り値

	WaitForAppAvailable
	プロトタイプ
	パラメーター
	戻り値

	WaitForTransition
	プロトタイプ
	パラメーター
	戻り値

	InputInhibited
	プロトタイプ
	パラメーター
	戻り値
	例

	GetStatusFlags
	プロトタイプ
	パラメーター
	戻り値

	RegisterOIAEvent
	プロトタイプ
	パラメーター
	戻り値

	UnregisterOIAEvent
	プロトタイプ
	パラメーター
	戻り値

	ECLOIANotify クラス
	派生
	使用上の注意

	ECLOIANotify メソッド
	NotifyEvent
	プロトタイプ
	パラメーター
	戻り値

	NotifyError
	プロトタイプ
	パラメーター
	戻り値

	NotifyStop
	プロトタイプ
	パラメーター
	戻り値

	ECLPS クラス
	派生
	プロパティー
	使用上の注意

	ECLPS メソッド
	ECLPS コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLPS デストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	GetPCCodePage
	プロトタイプ
	パラメーター
	戻り値

	GetHostCodePage
	プロトタイプ
	パラメーター
	戻り値

	GetOSCodePage
	プロトタイプ
	パラメーター
	戻り値

	GetSize
	プロトタイプ
	パラメーター
	戻り値
	例

	GetSizeRows
	プロトタイプ
	パラメーター
	戻り値
	例

	GetSizeCols
	プロトタイプ
	パラメーター
	戻り値
	例

	GetCursorPos
	プロトタイプ
	パラメーター
	戻り値
	例

	GetCursorPosRow
	プロトタイプ
	パラメーター
	戻り値
	例

	GetCursorPosCol
	プロトタイプ
	パラメーター
	戻り値
	例

	SetCursorPos
	プロトタイプ
	パラメーター
	戻り値
	例

	SendKeys
	プロトタイプ
	パラメーター
	戻り値
	例

	SearchText
	プロトタイプ
	パラメーター
	戻り値
	例

	GetScreen
	プロトタイプ
	パラメーター
	戻り値
	例

	GetScreenRect
	プロトタイプ
	パラメーター
	戻り値
	例

	SetText
	プロトタイプ
	パラメーター
	戻り値
	例

	CopyText
	プロトタイプ
	パラメーター
	戻り値
	例

	PasteText
	プロトタイプ
	パラメーター
	戻り値
	例

	ConvertPosToRowCol
	プロトタイプ
	パラメーター
	戻り値
	例

	ConvertRowColToPos
	プロトタイプ
	パラメーター
	戻り値
	例

	ConvertPosToRow
	プロトタイプ
	パラメーター
	戻り値
	例

	ConvertPosToCol
	プロトタイプ
	パラメーター
	戻り値
	例

	RegisterKeyEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterKeyEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	GetFieldList
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForCursor
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitWhileCursor
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForString
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitWhileString
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForStringInRect
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitWhileStringInRect
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForAttrib
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitWhileAttrib
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForScreen
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitWhileScreen
	プロトタイプ
	パラメーター
	戻り値
	例

	RegisterPSEvent
	プロトタイプ
	パラメーター
	戻り値

	StartMacro
	プロトタイプ
	パラメーター
	戻り値
	使用上の注意
	例

	UnregisterPSEvent
	プロトタイプ
	パラメーター
	戻り値

	ECLPSEvent クラス
	派生
	使用上の注意

	ECLPSEvent メソッド
	GetPS
	プロトタイプ
	パラメーター
	戻り値

	GetType
	プロトタイプ
	パラメーター
	戻り値

	GetStart
	プロトタイプ
	パラメーター
	戻り値

	GetEnd
	プロトタイプ
	パラメーター
	戻り値

	GetStartRow
	プロトタイプ
	パラメーター
	戻り値

	GetStartCol
	プロトタイプ
	パラメーター
	戻り値

	GetEndRow
	プロトタイプ
	パラメーター
	戻り値

	GetEndCol
	プロトタイプ
	パラメーター
	戻り値

	ECLPSListener クラス
	派生
	使用上の注意

	ECLPSListener メソッド
	NotifyEvent
	プロトタイプ
	パラメーター
	戻り値

	NotifyError
	プロトタイプ
	パラメーター
	戻り値

	NotifyStop
	プロトタイプ
	パラメーター
	戻り値

	ECLPSNotify クラス
	派生
	使用上の注意

	ECLPSNotify メソッド
	NotifyEvent
	プロトタイプ
	パラメーター
	戻り値

	NotifyError
	プロトタイプ
	パラメーター
	戻り値

	NotifyStop
	プロトタイプ
	パラメーター
	戻り値

	ECLRecoNotify クラス
	派生

	ECLRecoNotify メソッド
	ECLRecoNotify コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLRecoNotify デストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	NotifyEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	NotifyStop
	プロトタイプ
	パラメーター
	戻り値
	例

	NotifyError
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLScreenDesc クラス
	派生

	ECLScreenDesc メソッド
	ECLScreenDesc コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLScreenDesc デストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	AddAttrib
	プロトタイプ
	パラメーター
	戻り値
	例

	AddCursorPos
	プロトタイプ
	パラメーター
	戻り値
	例

	AddNumFields
	プロトタイプ
	パラメーター
	戻り値
	例

	AddNumInputFields
	プロトタイプ
	パラメーター
	戻り値
	例

	AddOIAInhibitStatus
	プロトタイプ
	パラメーター
	戻り値
	例

	AddString
	プロトタイプ
	パラメーター
	戻り値
	例

	AddStringInRect
	プロトタイプ
	パラメーター
	戻り値
	例

	クリア
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLScreenReco クラス
	派生

	ECLScreenReco メソッド
	ECLScreenReco コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLScreenReco デストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	AddPS
	プロトタイプ
	パラメーター
	戻り値
	例

	IsMatch
	プロトタイプ
	パラメーター
	戻り値
	例

	RegisterScreen
	プロトタイプ
	パラメーター
	戻り値
	例

	RemovePS
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterScreen
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLSession クラス
	派生
	プロパティー
	使用上の注意

	ECLSession メソッド
	ECLSession コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLSession デストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	GetPS
	プロトタイプ
	パラメーター
	戻り値
	例

	GetOIA
	プロトタイプ
	パラメーター
	戻り値
	例

	GetXfer
	プロトタイプ
	パラメーター
	戻り値
	例

	GetWinMetrics
	プロトタイプ
	パラメーター
	戻り値
	例

	GetPageSettings
	プロトタイプ
	パラメーター
	戻り値
	例

	GetPrinterSettings
	プロトタイプ
	パラメーター
	戻り値
	例

	RegisterUpdateEvent
	UnregisterUpdateEvent

	ECLStartNotify クラス
	派生
	例

	ECLStartNotify メソッド
	NotifyEvent
	プロトタイプ
	パラメーター
	戻り値

	NotifyError
	プロトタイプ
	パラメーター
	戻り値

	NotifyStop
	プロトタイプ
	パラメーター
	戻り値

	ECLUpdateNotify クラス
	ECLWinMetrics クラス
	派生
	プロパティー
	使用上の注意

	ECLWinMetrics メソッド
	ECLWinMetrics コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLWinMetrics デストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	GetWindowTitle
	プロトタイプ
	パラメーター
	戻り値
	例

	SetWindowTitle
	プロトタイプ
	パラメーター
	戻り値
	例
	使用上の注意

	GetXpos
	プロトタイプ
	パラメーター
	戻り値
	例

	SetXpos
	プロトタイプ
	パラメーター
	戻り値
	例

	GetYpos
	プロトタイプ
	パラメーター
	戻り値
	例

	SetYpos
	プロトタイプ
	パラメーター
	戻り値
	例

	GetWidth
	プロトタイプ
	パラメーター
	戻り値
	例

	SetWidth
	プロトタイプ
	パラメーター
	戻り値
	例

	GetHeight
	プロトタイプ
	パラメーター
	戻り値
	例

	SetHeight
	プロトタイプ
	パラメーター
	戻り値
	例

	GetWindowRect
	プロトタイプ
	パラメーター
	戻り値
	例

	SetWindowRect
	プロトタイプ
	パラメーター
	戻り値
	例

	IsVisible
	プロトタイプ
	パラメーター
	戻り値
	例

	SetVisible
	プロトタイプ
	パラメーター
	戻り値
	例

	IsActive
	プロトタイプ
	パラメーター
	戻り値
	例

	SetActive
	プロトタイプ
	パラメーター
	戻り値
	例

	IsMinimized
	プロトタイプ
	パラメーター
	戻り値
	例

	SetMinimized
	プロトタイプ
	パラメーター
	戻り値
	例

	IsMaximized
	プロトタイプ
	パラメーター
	戻り値
	例

	SetMaximized
	プロトタイプ
	パラメーター
	戻り値
	例

	IsRestored
	プロトタイプ
	パラメーター
	戻り値
	例

	SetRestored
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLXfer クラス
	派生
	プロパティー
	使用上の注意

	ECLXfer メソッド
	ECLXfer コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLXfer デストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	SendFile
	プロトタイプ
	パラメーター
	戻り値
	例
	使用上の注意

	ReceiveFile
	プロトタイプ
	パラメーター
	戻り値
	例
	使用上の注意

	ECLPageSettings クラス
	派生
	プロパティー
	制約事項
	使用上の注意

	ECLPageSettings メソッド
	接続タイプ
	ECLPageSettings コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	SetCPI
	プロトタイプ
	パラメーター
	戻り値
	例

	GetCPI
	プロトタイプ
	パラメーター
	戻り値
	例

	IsFontCPI
	プロトタイプ
	パラメーター
	戻り値
	例

	SetLPI
	プロトタイプ
	パラメーター
	戻り値
	例

	GetLPI
	プロトタイプ
	パラメーター
	戻り値
	例

	IsFontLPI
	プロトタイプ
	パラメーター
	戻り値
	例

	SetFontFaceName
	プロトタイプ
	パラメーター
	戻り値
	例

	GetFontFaceName
	プロトタイプ
	パラメーター
	戻り値
	例

	SetFontSize
	プロトタイプ
	パラメーター
	戻り値

	SetMaxLinesPerPage
	プロトタイプ
	パラメーター
	戻り値
	例

	GetMaxLinesPerPage
	プロトタイプ
	パラメーター
	戻り値
	例

	SetMaxCharsPerLine
	プロトタイプ
	パラメーター
	戻り値
	例

	GetMaxCharsPerLine
	プロトタイプ
	パラメーター
	戻り値
	例

	RestoreDefaults
	プロトタイプ
	パラメーター
	戻り値
	例

	ECLPrinterSettings クラス
	派生
	プロパティー
	制約事項
	使用上の注意

	ECLPrinterSettings メソッド
	ECLPrinterSettings コンストラクター
	プロトタイプ
	パラメーター
	戻り値
	例

	SetPDTMode
	プロトタイプ
	パラメーター
	戻り値
	例

	GetPDTFile
	プロトタイプ
	パラメーター
	戻り値
	例

	IsPDTMode
	プロトタイプ
	パラメーター
	戻り値
	例

	GetPrintMode
	プロトタイプ
	パラメーター
	戻り値
	例

	SetPrtToDskAppend
	プロトタイプ
	パラメーター
	戻り値
	例

	GetPrtToDskAppendFile
	プロトタイプ
	パラメーター
	戻り値
	例

	SetPrtToDskSeparate
	プロトタイプ
	パラメーター
	戻り値
	例

	GetPrtToDskSeparateFile
	プロトタイプ
	パラメーター
	戻り値
	例

	SetSpecificPrinter
	プロトタイプ
	パラメーター
	戻り値
	例

	SetWinDefaultPrinter
	プロトタイプ
	パラメーター
	戻り値
	例

	GetPrinterName
	プロトタイプ
	パラメーター
	戻り値
	例

	SetPromptDialog
	プロトタイプ
	パラメーター
	戻り値
	例

	IsPromptDialogEnabled
	プロトタイプ
	パラメーター
	戻り値
	例

	第 3 章. ホスト・アクセス・クラス・ライブラリーの自動化オブジェクト
	autSystem クラス
	autECLConnList クラス
	プロパティー
	カウント
	名前
	ハンドル
	ConnType
	CodePage
	開始済み
	CommStarted
	APIEnabled
	作動可能

	autECLConnList メソッド
	集合要素メソッド
	最新表示
	プロトタイプ
	パラメーター
	戻り値
	例

	FindConnectionByHandle
	プロトタイプ
	パラメーター
	戻り値
	例

	FindConnectionByName
	プロトタイプ
	パラメーター
	戻り値
	例

	StartCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	StopCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	autECLConnMgr クラス
	プロパティー
	autECLConnList

	autECLConnMgr メソッド
	RegisterStartEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterStartEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	StartConnection
	プロトタイプ
	パラメーター
	戻り値
	使用上の注意
	例

	StopConnection
	プロトタイプ
	パラメーター
	戻り値
	使用上の注意
	例

	autECLConnMgr イベント
	NotifyStartEvent
	プロトタイプ
	パラメーター
	例

	NotifyStartError
	プロトタイプ
	パラメーター
	例

	NotifyStartStop
	プロトタイプ
	パラメーター

	イベント処理の例

	autECLFieldList クラス
	プロパティー
	カウント
	StartRow
	StartCol
	EndRow
	EndCol
	長さ
	変更日
	保護されています
	数字
	HighIntensity
	PenDetectable
	表示

	autECLFieldList メソッド
	集合要素メソッド
	最新表示
	プロトタイプ
	パラメーター
	戻り値
	例

	FindFieldByRowCol
	プロトタイプ
	パラメーター
	戻り値
	例

	FindFieldByText
	プロトタイプ
	パラメーター
	戻り値
	例

	GetText
	プロトタイプ
	パラメーター
	戻り値
	例

	SetText
	プロトタイプ
	パラメーター
	戻り値
	例

	autECLOIA クラス
	プロパティー
	英数字
	APL
	カタカナ
	Hiragana
	UpperShift
	数字
	CapsLock
	InsertMode
	CommErrorReminder
	MessageWaiting
	InputInhibited
	名前
	ハンドル
	ConnType
	CodePage
	開始済み
	CommStarted
	APIEnabled
	作動可能
	NumLock

	autECLOIA メソッド
	RegisterOIAEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterOIAEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByName
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByHandle
	プロトタイプ
	パラメーター
	戻り値
	例

	StartCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	StopCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForInputReady
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForSystemAvailable
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForAppAvailable
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForTransition
	プロトタイプ
	パラメーター
	戻り値
	例

	CancelWaits
	プロトタイプ
	パラメーター
	戻り値

	autECLOIA イベント
	NotifyOIAEvent
	プロトタイプ
	パラメーター
	例

	NotifyOIAError
	プロトタイプ
	パラメーター
	例

	NotifyOIAStop
	プロトタイプ
	パラメーター

	イベント処理の例

	autECLPS クラス
	プロパティー
	autECLFieldList
	NumRows
	NumCols
	CursorPosRow
	CursorPosCol
	名前
	ハンドル
	ConnType
	CodePage
	開始済み
	CommStarted
	APIEnabled
	作動可能

	autECLPS メソッド
	RegisterPSEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	RegisterKeyEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	RegisterCommEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterPSEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterKeyEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterCommEvent
	プロトタイプ
	パラメーター
	戻り値

	SetConnectionByName
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByHandle
	プロトタイプ
	パラメーター
	戻り値
	例

	SetCursorPos
	プロトタイプ
	パラメーター
	戻り値
	例

	SendKeys
	プロトタイプ
	パラメーター
	戻り値
	例

	SearchText
	プロトタイプ
	パラメーター
	戻り値
	例

	GetText
	プロトタイプ
	パラメーター
	戻り値
	例

	SetText
	プロトタイプ
	パラメーター
	戻り値
	例

	CopyText
	プロトタイプ
	パラメーター
	戻り値
	例

	PasteText
	プロトタイプ
	パラメーター
	戻り値
	例

	GetTextRect
	プロトタイプ
	パラメーター
	戻り値
	例

	SetTextRect
	プロトタイプ
	パラメーター
	戻り値
	例

	StartCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	StopCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	StartMacro
	プロトタイプ
	パラメーター
	戻り値
	使用上の注意
	例

	待機
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForCursor
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitWhileCursor
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForString
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitWhileString
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForStringInRect
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitWhileStringInRect
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForAttrib
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitWhileAttrib
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitForScreen
	プロトタイプ
	パラメーター
	戻り値
	例

	WaitWhileScreen
	プロトタイプ
	パラメーター
	戻り値
	例

	CancelWaits
	プロトタイプ
	パラメーター
	戻り値

	autECLPS イベント
	NotifyPSEvent
	プロトタイプ
	パラメーター
	例

	NotifyKeyEvent
	プロトタイプ
	パラメーター
	例

	NotifyCommEvent
	プロトタイプ
	パラメーター
	例

	NotifyPSError
	プロトタイプ
	パラメーター
	例

	NotifyKeyError
	プロトタイプ
	パラメーター
	例

	NotifyCommError
	プロトタイプ
	パラメーター
	例

	NotifyPSStop
	プロトタイプ
	パラメーター
	例

	NotifyKeyStop
	プロトタイプ
	パラメーター
	例

	NotifyCommStop
	プロトタイプ
	パラメーター

	イベント処理の例

	autECLScreenDesc クラス
	autECLScreenDesc メソッド
	AddAttrib
	プロトタイプ
	パラメーター
	戻り値
	例

	AddCursorPos
	プロトタイプ
	パラメーター
	戻り値
	例

	AddNumFields
	プロトタイプ
	パラメーター
	戻り値
	例

	AddNumInputFields
	プロトタイプ
	パラメーター
	戻り値
	例

	AddOIAInhibitStatus
	プロトタイプ
	パラメーター
	戻り値
	例

	AddString
	プロトタイプ
	パラメーター
	戻り値
	例

	AddStringInRect
	プロトタイプ
	パラメーター
	戻り値
	例

	クリア
	プロトタイプ
	パラメーター
	戻り値
	例

	autECLScreenReco クラス
	autECLScreenReco メソッド
	AddPS
	プロトタイプ
	パラメーター
	戻り値
	例

	IsMatch
	プロトタイプ
	パラメーター
	戻り値
	例

	RegisterScreen
	プロトタイプ
	パラメーター
	戻り値
	例

	RemovePS
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterScreen
	プロトタイプ
	パラメーター
	戻り値
	例

	autECLScreenReco イベント
	NotifyRecoEvent
	プロトタイプ
	パラメーター
	例

	NotifyRecoError
	プロトタイプ
	パラメーター
	例

	NotifyRecoStop
	プロトタイプ
	パラメーター

	イベント処理の例

	autECLSession クラス
	プロパティー
	名前
	ハンドル
	ConnType
	CodePage
	開始済み
	CommStarted
	APIEnabled
	作動可能
	autECLPS オブジェクト
	autECLOIA オブジェクト
	autECLXfer オブジェクト
	autECLWinMetrics オブジェクト
	autECLPageSettings オブジェクト
	autECLPrinterSettings オブジェクト

	autECLSession メソッド
	RegisterSessionEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	RegisterCommEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterSessionEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterCommEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByName
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByHandle
	プロトタイプ
	パラメーター
	戻り値
	例

	StartCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	StopCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	autECLSession イベント
	NotifyCommEvent
	プロトタイプ
	パラメーター
	例

	NotifyCommError
	プロトタイプ
	パラメーター
	例

	NotifyCommStop
	プロトタイプ
	パラメーター

	イベント処理の例

	autECLWinMetrics クラス
	プロパティー
	WindowTitle
	使用上の注意

	Xpos
	Ypos
	Width
	Height
	表示
	アクティブ
	最小化
	最大化
	復元
	名前
	ハンドル
	ConnType
	CodePage
	開始済み
	CommStarted
	APIEnabled
	作動可能

	autECLWinMetrics メソッド
	RegisterCommEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterCommEvent
	プロトタイプ
	パラメーター
	戻り値

	SetConnectionByName
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByHandle
	プロトタイプ
	パラメーター
	戻り値
	例

	GetWindowRect
	プロトタイプ
	パラメーター
	戻り値
	例

	SetWindowRect
	プロトタイプ
	パラメーター
	戻り値
	例

	StartCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	StopCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	autECL WinMetrics イベント
	NotifyCommEvent
	プロトタイプ
	パラメーター
	例

	NotifyCommError
	プロトタイプ
	パラメーター
	例

	NotifyCommStop
	プロトタイプ
	パラメーター

	イベント処理の例

	autECLXfer クラス
	プロパティー
	名前
	ハンドル
	ConnType
	CodePage
	開始済み
	CommStarted
	APIEnabled
	作動可能

	autECLXfer メソッド
	RegisterCommEvent
	プロトタイプ
	パラメーター
	戻り値
	例

	UnregisterCommEvent
	プロトタイプ
	パラメーター
	戻り値

	SetConnectionByName
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByHandle
	プロトタイプ
	パラメーター
	戻り値
	例

	SendFile
	プロトタイプ
	パラメーター
	戻り値
	使用上の注意
	例

	ReceiveFile
	プロトタイプ
	パラメーター
	戻り値
	使用上の注意
	例

	StartCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	StopCommunication
	プロトタイプ
	パラメーター
	戻り値
	例

	autECLXfer イベント
	NotifyCommEvent
	プロトタイプ
	パラメーター
	例

	NotifyCommError
	プロトタイプ
	パラメーター
	例

	NotifyCommStop
	プロトタイプ
	パラメーター

	イベント処理の例

	autSystem クラス
	autSystem メソッド
	Shell
	プロトタイプ
	パラメーター
	戻り値
	例

	Inputnd
	プロトタイプ
	パラメーター
	戻り値
	例

	autECLPageSettings クラス
	使用上の注意
	制約事項
	接続タイプ
	プロパティー
	CPI
	例

	FontCPI
	例

	LPI
	例

	FontLPI
	例

	FaceName
	例

	MaxLinesPerPage
	例

	MaxCharsPerLine
	例

	名前
	例

	ハンドル
	例

	ConnType
	例

	CodePage
	例

	開始済み
	例

	CommStarted
	例

	APIEnabled
	例

	作動可能
	例

	autECLPageSettings メソッド
	RestoreTextDefaults
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByName
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByHandle
	プロトタイプ
	パラメーター
	戻り値
	例

	autECLPrinterSettings クラス
	使用上の注意
	制約事項
	プロパティー
	PDTMode
	例

	PDTFile
	例

	PrintMode
	例

	プリンター
	例

	PrtToDskAppendFile
	例

	PrtToDskSeparateFile
	例

	PromptDialogOption
	例

	名前
	例

	ハンドル
	例

	ConnType
	例

	CodePage
	例

	開始済み
	例

	CommStarted
	例

	APIEnabled
	例

	作動可能
	例

	autECLPrinterSettings メソッド
	SetPDTMode
	制約事項
	プロトタイプ
	パラメーター
	戻り値
	例

	SetPrtToDskAppend
	プロトタイプ
	パラメーター
	戻り値
	例

	SetPrtToDskSeparate
	プロトタイプ
	パラメーター
	戻り値
	例

	SetSpecificPrinter
	プロトタイプ
	パラメーター
	戻り値
	例

	SetWinDefaultPrinter
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByName
	プロトタイプ
	パラメーター
	戻り値
	例

	SetConnectionByHandle
	プロトタイプ
	パラメーター
	戻り値
	例

	自動化オブジェクトへのプライマリー相互運用アセンブリーのサポート

	第 4 章. Java 用ホスト・アクセス・クラス・ライブラリー
	第 5 章. トラブルシューティング
	HCL Z and I Emulator for Windows .NET Interop アセンブリーでセッション OIA 通知を起動できない

	付録 A. Sendkeys 略号キーワード
	付録 B. ECL プレーン — 形式および内容
	TextPlane
	FieldPlane
	ColorPlane
	ExfieldPlane

	付録 C. 特記事項
	商標

