
HCL OneDB 2.0.1

HCL OneDB Data Warehouse Guide



ii

Contents
Chapter 1. Dimensional databases....................................3

Dimensional databases................................................... 3
Overview of data warehousing................................ 3
Dimensional databases....................................
What is dimensional data?...................................... 6

Design a dimensional data model.................................. 8
Concepts of dimensional data modeling................8
Building a dimensional data model.......................12
Handle common dimensional data-modeling 
problems................................................................. 30

Implement a dimensional database............................. 33
Implement the sales_demo dimensional 
database................................................................. 34
Moving data from relational tables into 
dimensional tables by using external tables.........43

Performance tuning dimensional databases............... 44
Query execution plans........................................... 44
Data distribution statistics.................................... 45

Index...............................................................................52

ids_ddi_342.dita
ids_ddi_342.dita
ids_ddi_342.dita
ids_ddi_342.dita


Chapter 1. Dimensional databases
The HCL OneDB™  Data Warehouse Guide  provides information to help you design, implement, and manage dimensional 

databases, and describes the tools that you can use to create data warehouses and optimize your data warehouse queries.

These topics are of interest to the following users:

• Database administrators

• System administrators

• Performance engineers

These topics are written with the assumption that you have the following background:

• A working knowledge of your computer, your operating system, and the utilities that your operating system provides

• Some experience working with dimensional databases, relational databases, or exposure to database concepts

• Some experience with database server administration, operating-system administration, or network administration

Dimensional databases
A dimensional database is a relational database that uses a dimensional data model  to organize data. This model uses fact 

tables and dimension tables in a star or snowflake schema.

A dimensional database is the optimal type of database for data warehousing.

The availability and reliability of the HCL OneDB™  database server includes a full active-active cluster solution for high 

availability and low cost scalability. You can use HCL OneDB™  to manage workload distribution across multiple read-only 

or full-transaction nodes. You can dynamically add different types of nodes into your cluster environment to scale out or 

increase availability in the most demanding environments.

Warehouse workloads have the flexibility to work on the same database with operational data, running real-time on a 

separate node in the cluster. Data can also be replicated in real-time using Enterprise Replication, or copied to a separate 

data warehouse server. With HCL OneDB™, you have the flexibility to design the system to meet your needs and to make the 

most of your existing infrastructure.

Overview of data warehousing
Data warehouse databases provide a decision support system (DSS) environment in which you can evaluate the 

performance of an entire enterprise over time.

In the broadest sense, the term data warehouse  is used to refer to a database that contains very large stores of historical 

data. The data is stored as a series of snapshots, in which each record represents data at a specific time. By analyzing these 

snapshots you can make comparisons between different time periods. You can then use these comparisons to help make 

important business decisions.

Data warehouse databases are optimized for data retrieval. The duplication or grouping of data, referred to as database 

denormalization, increases query performance and is a natural outcome of the dimensional design of the data warehouse. 

3



HCL OneDB Data Warehouse Guide

4

By contrast, traditional online transaction processing (OLTP) databases automate day-to-day transactional operations. OLTP 

databases are optimized for data storage and strive to eliminate data duplication. Databases that achieve this goal are 

referred to as normalized  databases.

An enterprise data warehouse (EDW) is a data warehouse that services the entire enterprise. An enterprise data warehousing 

environment  can consist of an EDW, an operational data store (ODS), and physical and virtual data marts.

A data warehouse can be implemented in several different ways. You can use a single data management system, such as 

HCL OneDB™, for both transaction processing and business analytics. Or, depending on your system workload requirements, 

you can build a data warehousing environment that is separate from your transactional processing environment.

HCL OneDB™  uses the umbrella terms data warehousing  and data warehousing environment  to encompass any of the 

following forms that you might use to store your data:

Data warehouse

A database that is optimized for data retrieval to facilitate reporting and analysis. A data warehouse 

incorporates information about many subject areas, often the entire enterprise. Typically you use a dimensional 

data model to design a data warehouse. The data is organized into dimension tables and fact tables using 

star and snowflake schemas. The data is denormalized to improve query performance. The design of a data 

warehouse often starts from an analysis of what data already exists and how to collected in such a way that 

the data can later be used. Instead of loading transactional data directly into a warehouse, the data is often 

integrated and transformed before it is loaded into the warehouse.

The primary advantage of a data warehouse is that it provides easy access to and analysis of vast stores of 

information on many subject areas.



Chapter 1. Dimensional databases

Figure  1. A sample snowflake schema which has the DAILY_SALES table as the fact table.

Data mart

A database that is oriented towards one or more specific subject areas of a business, such as tracking 

inventories or transactions, rather than an entire enterprise. A data mart is used by individual departments or 

groups. Like a data warehouse, you typically use a dimensional data model to build a data mart. For example 

the data mart might use a single star schema comprised of one fact table and several dimension tables. The 

design of a data mart often starts with an analysis of what data the user needs rather than focusing on the 

data that already exists.

5



HCL OneDB Data Warehouse Guide

6

Figure  2. A data mart with the DAILY_SALES fact table

Operational data store

A subject-oriented system that is optimized for looking up one or two records at a time for decision making. 

An operational data store (ODS) is a hybrid form of data warehouse that contains timely, current, integrated 

information. Including the ODS in the data warehousing environment enables access to more current data 

more quickly, particularly if the data warehouse is updated by one or more batch processes rather than updated 

continuously. The data typically is of a higher level granularity than the transaction. You can use an ODS for 

clerical, day-to-day decision making. This data can serve as the common source of data for data warehouses.

What is dimensional data?

Traditional relational databases, such as OLTP databases, are organized around a list of records. Each record contains 

related information that is organized into attributes (fields). The customer  table of the stores_demo  demonstration database, 

which includes fields for name, company, address, phone, and so forth, is a typical example. While this table has several 



Chapter 1. Dimensional databases

fields of information, each row in the table pertains to only one customer. If you wanted to create a two-dimensional 

matrix with customer name and any other field, for example, phone number), you would realize that there is only a one-

to-one correspondence. The following table is an example of a database table with fields that have only a one-to-one 

correspondence.

Table  1. A table with a one-to-one correspondences between fields

A four-column table displaying names and phone numbers.

Customer Phone number --->

Ludwig Pauli 408-789-8075 ---------------- ----------------

Carole Sadler ---------------- 415-822-1289 ----------------

Philip Currie ---------------- ---------------- 414-328-4543

You could put any combination of fields from the preceding customer  table in this matrix, but you would always end up 

with a one-to-one correspondence, which shows that this table is not multidimensional and would not be well suited for a 

dimensional database.

However, consider a relational table that contains more than a one-to-one correspondence between the fields of the table. 

Suppose you create a table that contains sales data for products sold in each region of the country. For simplicity, the 

company has three products that are sold in three regions. The following table shows how you might store this data in a 

table, using a normalized data model. This table lends itself to multidimensional representation because it has more than 

one product per region and more than one region per product.

Table  2. A simple table with a many-to-many correspondence

A three-column table showing sales data for products sold in each region of the country.

Product Region Unit Sales

Football East 2300

Football West 4000

Football Central 5600

Tennis racket East 5500

Tennis racket West 8000

Tennis racket Central 2300

Baseball East 10000

Baseball West 22000

Baseball Central 34000

7



HCL OneDB Data Warehouse Guide

8

Although this data can be forced into the three-field relational table, the data fits more naturally into the two-dimensional 

matrix in the following table. This matrix better represents the many-to-many relationship of product and region data shown 

in the previous table.

Table  3. A simple two-dimensional example

A five-column table showing many-to-many relationship of product and region data.

Region Central East West

Football 5600 2300 4000

Tennis Racket 2300 5500 8000

Product

Baseball 34000 10000 22000

The performance advantages of the dimensional model over the normalized model can be great. A dimensional approach 

simplifies access to the data that you want to summarize or compare. For example, using the dimensional model to query 

the number of products sold in the West, the database server finds the West  column and calculates the total for all row 

values in that column. To perform the same query on the normalized table, the database server has to search and retrieve 

each row where the Region  column equals 'West' and then aggregate the data. In queries of this kind, the dimensional table 

can total all values of the West  column in a fraction of the time it takes the relational table to find all the 'West' records.

Design a dimensional data model
To build a dimensional database, you start by designing a dimensional data model for your business.

You will learn how a dimensional model differs from a transactional model, what fact tables and dimension tables are and 

how to design them effectively. You will learn how to analyze the business processes in your organization where data is 

gathered and use that analysis to design a model for your dimensional data.

HCL OneDB™  includes several demonstration databases that are the basis for many examples in HCL OneDB™  publications, 

including examples in the HCL OneDB™  Data Warehouse Guide. The stores_demo  database illustrates a relational schema 

with information about a fictitious wholesale sporting-goods distributor. You will use SQL and the data in the stores_demo 

database to populate a new dimensional database. The dimensional database is based on the simple dimensional data 

model that you learned about.

To understand the concepts of dimensional data modeling, you should have a basic understanding of SQL and relational 

database theory. This section provides only a summary of data warehousing concepts and describes a simple dimensional 

data model.

Concepts of dimensional data modeling

To build a dimensional database, you start with a dimensional data model. The dimensional data model provides a method 

for making databases simple and understandable. You can conceive of a dimensional database as a database cube  of three 



Chapter 1. Dimensional databases

or four dimensions where users can access a slice of the database along any of its dimensions. To create a dimensional 

database, you need a model that lets you visualize the data.

Suppose your business sells products in different markets and you want to evaluate the performance over time. It is easy 

to conceive of this business process as a cube of data, which contains dimensions for time, products, and markets. The 

following figure shows this dimensional model. The various intersections along the lines of the cube would contain the 

measures  of the business. The measures correspond to a particular combination: product, market, and time data.

Figure  3. A dimensional model of a business that has time, product, and market dimensions

Another name for the dimensional model is the star schema. The database designers use this name because the diagram 

for this model looks like a star with one central table around which a set of other tables are displayed. The central table is the 

only table in the schema with multiple joins connecting it to all the other tables. This central table is called the fact table  and 

the other tables are called dimension tables. The dimension tables all have only a single join that attaches them to the fact 

table, regardless of the query. The following figure shows a simple dimensional model of a business that sells products in 

different markets and evaluates business performance over time.

Figure  4. A typical dimensional model

The fact table
The fact table stores the measures of the business and points to the key value at the lowest level of each dimension table. 

The measures  are quantitative or factual data about the subject.

9



HCL OneDB Data Warehouse Guide

10

The measures are generally numeric and correspond to the "how much" or "how many" aspects of a question. Examples of 

measures are price, product sales, product inventory, revenue, and so forth. A measure can be based on a column in a table 

or it can be calculated.

The following table shows a fact table whose measures are sums of the units sold, the revenue, and the profit for the sales of 

that product to that account on that day.

Table  4. A fact table with sample records

Product Code Account code Day code Units sold Revenue Profit

1 5 32104 1 82.12 27.12

3 17 33111 2 171.12 66.00

1 13 32567 1 82.12 27.12

Before you design a fact table, you must determine the granularity  of the fact table. The granularity corresponds to how you 

define an individual low-level record in that fact table. The granularity might be the individual transaction, a daily snapshot, 

or a monthly snapshot. The fact table shown contains one row for every product sold to each account each day. Thus, the 

granularity of the fact table is expressed as product by account by day.

Dimensions of the data model

A dimension  represents a single set of objects or events in the real world. Each dimension that you identify for the data 

model gets implemented as a dimension table. Dimensions are the qualifiers that make the measures of the fact table 

meaningful, because they answer the what, when, and where aspects of a question. For example, consider the following 

business questions, for which the dimensions are italicized:

• What accounts  produced the highest revenue last year?

• What was our profit by vendor?

• How many units were sold for each product?

In the preceding set of questions, revenue, profit, and units sold are measures (not dimensions), as each represents 

quantitative or factual data.

Dimension elements
A dimension can define multiple dimension elements  for different levels of summation.

For example, all the elements that relate to the structure of a sales organization might comprise one dimension. The 

following figure shows the dimension elements that the Accounts  dimension defines.



Chapter 1. Dimensional databases

Figure  5. Dimension elements in the accounts dimension

Dimensions are made up of hierarchies of related elements. Because of the hierarchical aspect of dimensions, users are able 

to construct queries that access data at a higher level (roll up) or lower level (drill down) than the previous level of detail. The 

figure shows the hierarchical relationships of the dimension elements:

• The account elements roll up to the territory elements

• The territory elements roll up to the region elements

Users can query at different levels of the dimension, depending on the data they want to retrieve. For example, users might 

perform a query against all regions and then drill down to the territory or account level for detailed information.

Dimension elements are usually stored in the database as numeric codes or short character strings to facilitate joins to other 

tables.

Each dimension element can define multiple dimension attributes, in the same way dimensions can define multiple 

dimension elements.

Dimension attributes
A dimension attribute  is a column in a dimension table. Each attribute describes a level of summary within a dimension 

hierarchy.

The dimension elements define the hierarchical relationships within a dimension table. The dimension attributes describe 

the dimension elements in terms that are familiar to users. The following figure shows the dimension elements and 

corresponding attributes of the Account  dimension.

Figure  6. Attributes that correspond to the dimension elements

11



HCL OneDB Data Warehouse Guide

12

Because dimension attributes describe the items in a dimension, they are most useful when they are text.

Tip:  Sometimes during the design process, it is unclear whether a numeric data field from a production data source 

is a measured fact or an attribute. Generally, if the numeric data field is a measurement that changes each time you 

sample it, the field is a fact. If field is a discretely valued description of something that is more or less constant, it is a 

dimension attribute.

Dimension tables
A dimension table  is a table that stores the textual descriptions of the dimensions of the business. A dimension table 

contains an element and an attribute, if appropriate, for each level in the hierarchy.

The lowest level of detail that is required for data analysis determines the lowest level in the hierarchy. Levels higher than 

this base level store redundant data. This denormalized table reduces the number of joins that are required for a query and 

makes it easier for users to query at higher levels and then drill down to lower levels of detail. The term drilling down  means 

to add row headers from the dimension tables to your query. The following table shows an example of a dimension table that 

is based on the Account  dimension.

Table  5. An example of a dimension table

Acct 

code

Account name Territory Salesman Region Region size Region 

manager

1 Javier's Mfg. 101 B. Gupta Asia-Pacific Over 50 T. Sent

2 TBD Sales 101 B. Gupta Asia-Pacific Over 50 T. Sent

3 Tariq's Wares 101 B. Gupta Asia-Pacific Over 50 T. Sent

4 The Golf Co. 201 S. Chiba Asia-Pacific Over 50 T. Sent

Building a dimensional data model

About this task

To build a dimensional data model, you need a methodology that outlines the decisions you need to make to complete 

the database design. This methodology uses a top-down approach because it first identifies the major processes in your 

organization where data is collected. An important task of the database designer is to start with the existing sources of data 

that your organization uses. After the processes are identified, one or more fact tables are built from each business process. 

The following steps describe the methodology you use to build the data model.

A dimensional database can be based on multiple business processes and can contain many fact tables. However, to focus 

on the concepts, the data model that this section describes is based on a single business process and has one fact table.

To build a dimensional database:



Chapter 1. Dimensional databases

1. Choose the business processes that you want to use to analyze the subject area to be modeled.

2. Determine the granularity of the fact tables.

3. Identify dimensions and hierarchies for each fact table.

4. Identify measures for the fact tables.

5. Determine the attributes for each dimension table.

6. Get users to verify the data model.

A business process
A business process  is an important operation in your organization that some legacy system supports. You collect data from 

this system to use in your dimensional database.

The business process identifies what end users are doing with their data, where the data comes from, and how to transform 

that data to make it meaningful. The information can come from many sources, including finance, sales analysis, market 

analysis, customer profiles. The following list shows different business processes you might use to determine what data to 

include in your dimensional database:

• Sales

• Shipments

• Inventory

• Orders

• Invoices

Summary of a business process

Suppose your organization wants to analyze customer buying trends by product line and region so that you can develop more 

effective marketing strategies. In this scenario, the subject area for your data model is sales.

After many interviews and thorough analysis of your sales business process, your organization collects the following 

information:

• Customer-base information has changed.

Previously, sales districts were divided by city. Now the customer base corresponds to two regions: Region 1 for 

California and Region 2 for all other states.

• The following reports are most critical to marketing:

◦ Monthly revenue, cost, net profit by product line from each vendor

◦ Revenue and units sold by product, by region, and by month

◦ Monthly customer revenue

◦ Quarterly revenue from each vendor

• Most sales analysis is based on monthly results, but you can choose to analyze sales by week or accounting period 

(at a later date).

• A data-entry system exists in a relational database.

13



HCL OneDB Data Warehouse Guide

14

To develop a working data model, you can assume that the relational database of sales information has the following 

properties:

◦ The stores_demo  database provides much of the revenue data that the marketing department uses.

◦ The product code that analysts use is stored in the catalog  table by the catalog number.

◦ The product line code is stored in the stock  table by the stock number. The product line name is stored as 

description.

◦ The product hierarchies are somewhat complicated. Each product line has many products, and each 

manufacturer has many products.

• All the cost data for each product is stored in a flat file named costs.lst  on a different purchasing system.

• Customer data is stored in the stores_demo  database.

The region information has not yet been added to the database.

An important characteristic of the dimensional model is that it uses business labels familiar to end users rather than internal 

tables or column names. After the analysis of the business process is completed, you should have all the information you 

need to create the measures, dimensions, and relationships for the dimensional data model. This dimensional data model is 

used to implement the sales_demo  database that the section Implement a dimensional database  on page 33 describes.

The stores_demo  demonstration database is the primary data source for the dimensional data model that this section 

builds. For detailed information about the data sources that are used to populate the tables of the sales_demo  database, see 

Mapping data from data sources to the database  on page 36.

Determine the granularity of the fact table
After you gather all the relevant information about the subject area, the next step in the design process is to determine the 

granularity of the fact table.

To do this you must decide what an individual low-level record in the fact table should contain. The components that make 

up the granularity of the fact table correspond directly with the dimensions of the data model. Therefore, when you define the 

granularity of the fact table, you identify the dimensions of the data model.

How granularity affects the size of the database
The granularity of the fact table also determines how much storage space the database requires.

For example, consider the following possible granularities for a fact table:

• Product by day by region

• Product by month by region

The size of a database that has a granularity of product by day by region would be much greater than a database with a 

granularity of product by month by region. The database contains records for every transaction made each day as opposed 

to a monthly summation of the transactions. You must carefully determine the granularity of your fact table because too fine 

a granularity could result in an astronomically large database. Conversely, too coarse a granularity could mean the data is not 

detailed enough for users to perform meaningful queries against the database.



Chapter 1. Dimensional databases

Use the business process to determine the granularity

A careful review of the information gathered from the business process should provide what you need to determine the 

granularity of the fact table. To summarize, your organization wants to analyze customer-buying trends by product line and 

region so that you can develop more effective marketing strategies.

Customer by product level granularity
The granularity of the fact table should always represent the lowest level for each corresponding dimension.

When you review the information from the business process, the granularity for customer and product dimensions of the fact 

table are apparent. Customer and product cannot be reasonably reduced any further. These dimensions already express the 

lowest level of an individual record for the fact table. In some cases, product might be further reduced to the level of product 

component because a product could be made up of multiple components.

Customer by product by district level granularity
Because the customer buying trends that your organization wants to analyze include a geographical component, you still 

need to decide the lowest level for the region information.

The business process indicates that in the past, sales districts were divided by city, but now your organization distinguishes 

between two regions for the customer base:

• Region 1 for California

• Region 2 for all other states

Nonetheless, at the lowest level, your organization still includes sales district data. The district represents the lowest level for 

geographical information and provides a third component to further define the granularity of the fact table.

Customer by product by district by day level granularity
Customer-buying trends always occur over time, so the granularity of the fact table must include a time component.

Suppose your organization decides to create reports by week, accounting period, month, quarter, or year. At the lowest level, 

you probably want to choose a base granularity of day. This granularity allows your business to compare sales on Tuesdays 

with sales on Fridays, compare sales for the first day of each month, and so forth. The granularity of the fact table is now 

complete.

The decision to choose a granularity of day means that each record in the time  dimension table represents a day. In terms of 

the storage requirements, even 10 years of daily data is only about 3,650 records, which is a relatively small dimension table.

Identify the dimensions and hierarchies
After you determine the granularity of the fact table, it is easy to identify the primary dimensions for the data model because 

each component that defines the granularity corresponds to a dimension.

The following figure shows the relationship between the granularity of the fact table and the dimensions of the data model.

15



HCL OneDB Data Warehouse Guide

16

Figure  7. The granularity of the fact table corresponds to the dimensions of the data model

With the dimensions (customer, product, geography, time) for the data model in place, the schema diagram begins to take 

shape.

Tip:  At this point, you can add additional dimensions to the primary granularity of the fact table, where the new 

dimensions take on only a single value under each combination of the primary dimensions. If you see that an 

additional dimension violates the granularity because it causes additional records to be generated, then you must 

revise the granularity of the fact table to accommodate the additional dimension. For this data model, no additional 

dimensions need to be added.

You can now map out dimension elements and hierarchies for each dimension. The following figure shows the relationships 

among dimensions, dimension elements, and the inherent hierarchies.



Chapter 1. Dimensional databases

Figure  8. The relationships between dimensions, dimension elements, and the inherent hierarchies

In most cases, the dimension elements need to express the lowest possible granularity for each dimension, not because 

queries need to access individual low-level records, but because queries need to cut through the database in precise ways. In 

other words, even though the questions that a data warehousing environment poses are usually broad, these questions still 

depend on the lowest level of product detail.

Product dimension
The dimension elements for the product  dimension are product, product line, and vendor:

17



HCL OneDB Data Warehouse Guide

18

• Product has a roll-up hierarchical relationship with product line and with vendor. Product has an attribute of product 

name.

• Product line has an attribute of product line name.

• Vendor has an attribute of vendor.

Customer dimension
The dimension element for the customer dimension is customer, which has attributes of customer, name, and company.

Geography dimension
The dimension elements for the geography dimension are district, state, and region:

• District has a roll-up hierarchical relationship with state, which has a roll-up hierarchical relationship with region.

• District has an attribute of district name.

• State has an attribute of state name.

Time dimension

The dimensional elements for the time dimension are day, month, quarter, and year.

• Day has a roll-up hierarchical relationship with month, which has a roll-up hierarchical relationship with quarter, which 

has a roll-up hierarchical relationship with year.

• Day has an attribute of order date.

Establish referential relationships
For the database server to support the dimensional data model, you must define logical dependencies between the fact 

tables and their dimension tables.

These logical dependencies should be reflected in the columns and indexes that you include in the schema of each table, 

and in the referential constraints that you define between each fact table and the associated dimension tables. For the large 

fragmented tables in typical data warehousing operations, these logical dependencies can be the basis for:

• Fragment-key expressions

• Join conditions

• Query predicates for fragment elimination

These query components can significantly improve the performance and throughput of the data warehouse.

A referential constraint enforces a one-to-one relationship between the values in referencing columns (of the foreign key) 

and the referenced columns (of the primary key or unique constraint). The relationship between the referenced table with 

the primary key constraint and the referencing table with the foreign key constraint is sometimes called a parent-child 

relationship. The corresponding columns of the parent and child tables can have the same identifiers, but having the same 

identifiers is not a requirement. There can also be a many-to-one relationship between the referencing table (with the foreign 

key) and the referenced table (with the primary key, or with the unique constraint).



Chapter 1. Dimensional databases

In the dimensional model, a primary key constraint or a unique constraint in the fact table corresponds to a foreign key 

constraint in the dimension table. These constraints are specified in the CREATE TABLE or ALTER TABLE statements of SQL 

that defines the schema of the tables. Because the tables in the primary key and foreign key constraints must be in the same 

database, the database schema must include the dimension tables of each fact table.

The same data values can appear in the constrained columns of both tables. As a result, the index on which these referential 

constraints are defined can be used in queries as join predicates to join the fact table and the dimensional table.

For tables that are fragmented by expression  or fragmented by list, you can use the foreign key as the fragmentation key for 

the dimension tables. If you use the foreign key as the fragmentation key, you can use the equality operator or MATCHES 

operator with the primary key and foreign key values as the join predicate in queries and other data manipulation operations. 

The join predicate will be TRUE  for only a subset of the fact table fragments. As a result, the query optimizer can use fragment 

elimination to process only the fact table partitions that contain qualifying rows.

Resisting normalization
Efforts to normalize a dimensional database can actually prohibit an efficient dimensional design.

If the four foreign keys of the fact table are tightly administered consecutive integers, you could reserve as little as 16 bytes 

for all four keys (4 bytes each for time, product, customer, and geography) of the fact table. If the four measures in the fact 

table were each 4-byte integer columns, you would need to reserve only another 16 bytes. Thus, each record of the fact table 

would be only 32 bytes. Even a billion-row fact table would require only about 32 gigabytes of primary data space.

With its compact keys and data, such a storage-lean fact table is typical for dimensional databases. The fact table in a 

dimensional model is by nature highly normalized. You cannot further normalize the extremely complex many-to-many 

relationships among the four keys in the fact table because no correlation exists between the four dimension tables. Virtually 

every product is sold every day to all customers in every region.

The fact table is the largest table in a dimensional database. Because the dimension tables are usually much smaller than 

the fact table, you can ignore the dimension tables when you calculate the disk space for your database. Efforts to normalize 

any of the tables in a dimensional database solely to save disk space are pointless. Furthermore, normalized dimension 

tables undermine the ability of users to explore a single dimension table to set constraints and choose useful row headers.

Choose the attributes for the dimension tables

After you complete the fact table, you can decide the dimension attributes for each of the dimension tables. To illustrate how 

to choose the attributes, consider the time  dimension. The data model for the sales business process defines a granularity of 

day that corresponds to the time dimension, so that each record in the time  dimension table represents a day. Keep in mind 

that each field of the table is defined by the particular day the record represents.

The analysis of the sales business process also indicates that the marketing department needs monthly, quarterly, and 

annual reports, so the time dimension includes the elements: day, month, quarter, and year. Each element is assigned an 

attribute that describes the element and a code attribute, to avoid column values that contain long character strings. The 

following table shows the attributes for the time  dimension table and sample values for each field of the table.

19



HCL OneDB Data Warehouse Guide

20

Table  6. Attributes for the time dimension

time code order date month code month quarter code quarter year

35276 07/31/2010 7 july 3 third q 2010

35277 08/01/2010 8 aug 3 third q 2010

35278 08/02/2010 8 aug 3 third q 2010

The previous table shows that the attribute names you assign should be familiar business terms that make it easy for end 

users to form queries on the database.

The following figure shows the completed data model for the sales business process with all the attributes defined for each 

dimension table. The elements of the Sales fact table are: product code, time code, district code, customer code, revenue, 

cost, units sold, and net profit. Some of these elements join the Sales fact table to the dimension tables. Additional elements 

for each dimension table have been identified.

Figure  9. The completed dimensional data model for the sales business process

Product dimension table

The product code element joins the Sales fact table to the Product dimension table. The additional elements in 

the Product dimension table are: product name, vendor, vendor name, product line, and product line name.

Time dimension table

The time code element joins the Sales fact table to the Time dimension table. The additional elements in the 

Time dimension table are: order date, month, quarter, and year.



Chapter 1. Dimensional databases

Geography dimension table

The district code element joins the Sales fact table to the Geography dimension table. The additional elements 

in the Geography dimension table are: district, state, state name, and region.

Customer dimension table

The customer code element joins Sales fact table to Customer dimension table. The additional elements in the 

Customer dimension table are: customer name and company.

Fragmentation: Storage distribution strategies
The performance of data warehousing applications can typically benefit from distributed storage allocation designs for 

partitioning a database table into two or more fragments. Each fragment has the same schema as the table, and stores a 

subset of the rows in the table (rather than a subset of its columns).

The fragments of a table can be stored in dbspaces on different devices, or in dbspaces on the same physical storage 

device. The fragments can also be stored in named partitions within a single dbspace.

A database can include both fragmented and nonfragmented tables. Index storage can also be fragmented, either in 

the same storage spaces as their table (called attached  indexes) or in a different storage distribution scheme (detached 

indexes).

Potential performance and security advantages of distributed storage include these:

• For frequently-accessed tables, fragmentation can reduce the overhead of I/O contention for data that resides on a 

single storage device.

• The GRANT FRAGMENT and REVOKE FRAGMENT statements of SQL can specify the access privileges that users, 

roles, or the PUBLIC group hold on specified fragments of the table. With appropriate fragmentation strategies, these 

statements can selectively restrict user access to subsets of the records in a table.

• For databases that enables parallel-database queries (PDQ), multiple scan threads require less time to scan the 

fragments than to scan the same rows in a nonfragmented table.

• Input operations that distribute new rows across multiple fragments run more quickly (using multiple INSERT 

threads) that if a single table extent stores the same rows.

• For fragmentation strategies where the storage allocation of rows is correlated with data values, query execution 

plans can ignore fragments that are logically excluded by predicates in the query. Defining fragments to improve 

selectivity is called fragment elimination.

• In cluster environments, fragmentation can reduce the time required for recovery from hardware failure, because 

restoring only a subset of the fragments imposes a smaller data load than restoring the entire table.

• For tables fragmented by interval, the database server create new fragments automatically, simplifying management 

of the data.

Note:  Do not confuse table fragmentation strategies, which can improve the efficiency and throughput of database 

operations, with the various pejorative meanings of fragmentation  in reference to file systems that waste storage 

21



HCL OneDB Data Warehouse Guide

22

space or increase retrieval time through inefficient storage algorithms, or through insufficient use of defragmentation 

tools to store files in contiguous disk partitions.

HCL OneDB™  fragmentation options

HCL OneDB™  supports the following storage fragmentation strategies that can be applied to database tables:

By Round-robin

A specified number of fragments is defined for the table. Inserted rows are automatically distributed for 

storage in these fragments, without regard to data values in the row, in order to balance the number of rows in 

each fragment. Such fragments are called round-robin fragments.

By Expression

Each fragment is defined by a Boolean expression that can be evaluated for one or more columns of the table. 

Inserted rows are stored in a fragments for which the expression that defines the fragment is true for the 

data in that row. Rows that match the expression for more than one fragment are stored in the first matching 

fragment within the ordered list of fragments that the system catalog maintains for the table. Such fragments 

are called expression fragments.

By List

Each fragment is defined by a list of one or more constant values that correspond to one or more columns 

in the table. No two fragments can share the same value in their lists. These values must be categories on a 

nominal scale that has no quantified order within the set of categories. Inserted rows are stored in the fragment 

that matches the data value of one or more columns. Such fragments are called list fragments.

By Interval

At least one fragment must be defined for values less than a numeric, DATE, or DATETIME column in the table. 

An interval size, specifying the range of fragment key values assigned to a single fragment, must also be 

defined. You can optionally specify a list of dbspaces to store interval fragments. The fragments created by the 

user when the fragmentation strategy is defined are called range fragments. The database server automatically 

creates new fragments of the same interval size to store rows whose fragment key values are outside the range 

of the user-defined range fragments. Fragments created by the database server are called interval fragments.

Each user-defined permanent or temporary database table can either be nonfragmented  or else can have exactly one 

fragmentation scheme. You cannot, for example, define a table in which some fragments use a round-robin strategy, and 

other fragments use a  list or interval  strategy.

You can use the ALTER FRAGMENT statement of SQL, however, to modify the fragmentation scheme of a table in various 

ways, including these:

• to change the fragmentation strategy of a fragmented table,

• to define a fragmentation strategy for a nonfragmented table,

• to change a fragmented table to a nonfragmented table,

• to add another fragment to an existing fragmented table,

• to combine two tables that have identical structures into a single fragmented table,



Chapter 1. Dimensional databases

• to drop one or more dbspaces from the list of dbspaces that store interval fragments.

• to detach one fragment from a fragmented table and store the rows in a new nonfragmented table.

For more information about the ALTER FRAGMENT statement and some of the tasks that it can accomplish in data 

warehousing operations, see the Change the storage distribution strategy  on page 40.

Storage fragmentation terms

The following terms are useful for understanding and using the various strategies available for the distributed storage of 

table and index fragments.

Fragment key

The column or a set of columns on which the table or index is fragmented. Depending on the chosen 

fragmentation strategy, the fragment key can be a column, or a single column expression, or a multi-column 

expression. For a row inserted into a table for which a fragment key is defined, the value of the column (or 

the set for values in the fragment key columns) determines which fragment stores the row. A synonym for 

fragment key is partitioning key. Tables partitioned by round-robin have no fragment key.

Fragment list

An ordered list of the fragments that the database server maintains for every fragmented table or index. By 

default, the ordinal positions of each fragment on this list reflects the sequence in which the fragments were 

created. The system catalog stores this integer value in the sysfragments.evalpos  column of the row that 

describes the fragment. Queries that do not use fragment elimination read the fragments in ascending order 

of their evalpos  values. The database server automatically updates evalpos  values to reflect changes to 

the fragment list. Updates to the list are required, for example, when the database server creates an interval 

fragment, or when the ALTER FRAGMENT statement of SQL adds new fragments, or drops or modifies existing 

fragments.

Fragment expression

An expression that defines a specific fragment. For example, if the fragment key is colA  of data type SMALLINT, 

a fragment could be defined by the expression colA <=8 OR colA IN (9,10,21,22,23)  in an expression based 

fragmentation strategy.

• Expression-based fragments are defined by a Boolean expression.

• List-based fragments are defined by one or more constant expressions.

• Range fragments (in interval fragmentation) are defined by a range expression. The only valid operator 

in the range expression is the less-than ( < ) operator. (For example, VALUES < 100).

• System-defined interval fragments (in interval fragmentation) are defined by a system-generated 

expression that includes the greater-than-or-equal >=  relational operator, the AND  Boolean operator, 

and the less-than ( < ) relational operator. (For example, VALUES >= 100 AND VALUES < 300  specifies an 

interval that includes fragmentation key values ranging from 100 to the (non-inclusive) upper limit of 

300. )

Tables partitioned by round-robin have no fragment expressions.

23



HCL OneDB Data Warehouse Guide

24

NULL fragment

A fragment that stores NULL values (either because its range fragment or list fragment expression is IS NULL, 

or because a  list-based or  expression-based fragment is defined with NULL as its fragment expression). For 

all fragmentation strategies except round-robin, the database server returns an exception if you insert a row 

whose fragment key value is missing, but no NULL fragment is defined (and for list or expression strategies, 

no REMAINDER fragment is defined). You do not need to define a NULL fragment if the fragment key column 

enforces a NOT NULL constraint.

REMAINDER fragment

A fragment that stores any row whose fragment key value does not match the fragment expression of any 

fragment. If you attempt to insert a row that does not match any fragment key value for a table or index that 

is fragmented by expression  or by list, and no REMAINDER fragment is defined, the database server issues 

an exception. You cannot define a REMAINDER fragment for tables fragmented by a round-robin  or interval 

strategy.

Transition fragment

In an interval fragmentation scheme, the range fragment whose upper limit in its VALUES clause is larger than 

the upper limit for any other range fragment. If no interval fragments have been created for the table, inserting 

a row whose fragment-key value exceeds that upper limit requires the database server to create a new interval 

fragment. The upper limit of the transition fragment VALUES clause is called the transition value  for the table.

The MODIFY INTERVAL TRANSITION option to the ALTER FRAGMENT statement can increase the transition 

value for a table. This can result in a different fragment becoming the new transition fragment. This and other 

ALTER FRAGMENT operations can cause changes to column values in the sysfragments  system catalog table 

for the transition fragment, including these:

• its position relative to other fragments (the evalpos  column),

• its fragment expression (the exprtext  and exprbin  columns),

• and its name (the partition  column).

Fragmentation by ROUND ROBIN
For a table that uses a round-robin distribution scheme, the rows that the database server stores in an insert or load 

operation are distributed cyclically among a user-defined number of fragments, so that the number of rows inserted into 

each fragment is approximately the same (±100).

Round-robin distributions are also called even  distributions, because the design goal of this strategy is for an evenly balanced 

distribution among the fragments. To that end, a newly added round-robin fragment will be favored exclusively by inserts and 

loads until it no longer has the fewest number of rows among the table’s fragments.

The syntax for defining round-robin interval fragmentation requires that you specify at least two round-robin fragments in one 

of two forms. This form defines round-robin fragments and declares a name for each fragment:

   FRAGMENT BY ROUND ROBIN
      PARTITION partition  IN dbspace,
      . . .



Chapter 1. Dimensional databases

      PARTITION partition  IN dbspace

As in other fragmentation schemes, each PARTITION partition  specification declares the name of a fragment, which must 

be unique among the names of fragments of the same table. The dbspace  specification can be different for each fragment, or 

some fragments (or all of the fragments) can be stored in separate named partitions of the same dbspace. Each partition  is 

the name of a round-robin fragment.

This alternative form defines round-robin fragments with no explicit name:

   FRAGMENT BY ROUND ROBIN IN dbspace_list               

Here the dbspace_list  specification is a comma-separated list of at least 2 (but no more than 2048) dbspaces, each of 

which stores a single round-robin fragment. No dbspace  can appear more than once in this list. (In the system catalog, the 

sysfragments.partition  column stores the identifier of the fragment. For fragments defined without the PARTITION keyword, 

the partition  value is the identifier of the dbspace where the fragment is stored. For this reason, a repeated dbspace  in 

dbspace_list  violates a uniqueness requirement for names of fragments of the same table.)

A round-robin distribution scheme must be defined by only one or the other of these two syntax forms.

A table that is fragmented by round-robin has no fragment key, no fragment expressions, and no REMAINDER fragment. 

(An alternative description is that every round-robin fragment resembles a remainder fragment, because no fragment 

expressions are defined to match a fragment key for the inserted rows. But the REMAINDER keyword is not valid in the SQL 

syntax to define a round-robin distribution strategy.)

Because no fragment expressions are evaluated when the database server loads new rows into round-robin fragments, this 

strategy provides the best performance for insert operations.

Only tables, not indexes, can be defined with round-robin fragmentation. For performance reasons, any indexes that you 

define on a table that is fragmented by round-robin should be nonfragmented indexes.

Because a round-robin distribution strategy has no fragment key and no fragment expressions, you cannot explicitly define a 

NULL round-robin fragment. When rows with missing data are loaded into a table by round-robin, the rows with NULL values 

are stored wherever the database server happens to insert them as it approximately equalizes the number of inserted rows 

for every fragment.

By design, the GRANT FRAGMENT and REVOKE FRAGMENT statements of SQL cannot reference round-robin fragments. 

Because each fragment stores a quasi-random subset of the rows, the DBA cannot predict which rows will be stored in 

a given round-robin fragment. If some rows contain unencrypted sensitive information, table-level (rather than fragment-

level) is a more appropriate granularity for granting or withholding discretionary access privileges in databases that do not 

implement label-based (LBAC) security policies.

Because round-robin fragments are uncorrelated with data values, queries of tables that are fragmented by round-robin 

cannot benefit from fragment elimination. Round-robin distribution schemes are useful for balancing the rows in a set 

of table fragments across multiple devices, but other storage distribution schemes are typically used in data warehouse 

applications that query dimensional tables, because the performance advantages of round-robin in loading data are more 

than offset by slower data retrieval from round-robin fragments.

25



HCL OneDB Data Warehouse Guide

26

Fragmentation by EXPRESSION
For a table that uses an expression-based distribution scheme, the rows that the database server stores in an insert or 

load operation are distributed among a user-defined number of fragments, in which each fragment is defined by a Boolean 

expression for the fragment key.

The fragment expression must be a column expression. This can be the same column (or the same set of columns) for all of 

the fragments, or different fragments can be defined with different keys. The expression can only reference columns in the 

table that is being fragmented. Subqueries or calls to user-defined routines are not valid.

The syntax for defining an expression fragmentation strategy defines one or more expression fragments of this form:

   FRAGMENT BY EXPRESSION
      PARTITION partition expression  IN dbspace,
      . . .
      PARTITION partition expression  IN dbspace,
      PARTITION partition  VALUES (NULL) IN dbspace,
      PARTITION partition  REMAINDER IN dbspace

As in other fragmentation schemes, each PARTITION partition  specification declares the unique name of a fragment. The 

expression  specification defines the fragment expression, and the IN dbspace  specification defines the storage location for 

the fragment. You can optionally define a NULL fragment by specifying NULL  as the expression.

You also can optionally define a REMAINDER fragment for rows that match none of the specified fragment expressions. For 

some queries, the REMAINDER fragment might be difficult to eliminate, and for some tables, the REMAINDER fragment might 

become quite large, but the database server issues an exception if the fragment key value for an inserted row matches no 

fragment expression, and no REMAINDER fragment is defined.

You can optionally define a NULL fragment to stores rows in which the fragment key value is missing.

During an insert into a table that is fragmented by expression, the database server takes these actions:

1. The fragment key value for the row is evaluated.

2. The fragment expression for each fragment is evaluated and compared to the fragment key value for the row, 

beginning with the fragment whose sysfragments.evalpos  value in the system catalog is lowest.

3. If there is no match, the previous step is repeated for the fragment with next highest sysfragments.evalpos  value.

4. This continues until the first match is found between the fragment key value and a fragment expression, after which 

the row is stored in the matching fragment.

5. If no match is found in the entire list of fragments, the row is stored in the REMAINDER fragment. (In this case of a 

row with an unmatched fragment key, if no REMAINDER is defined, an exception is issued.)

For expression-based fragmentation schemes that define overlapping fragment expressions, the storage location of rows 

that match the fragment expression of more than one fragment is dependent on the evalpos  value for that fragment. You can 

avoid this dependency by only defining non-overlapping fragment expressions.

The evalpos  value of a fragment is determined by its position in the initial fragment list within the FRAGMENT BY 

EXPRESSION or PARTITION BY EXPRESSION clause that defined the storage distribution of the table. Any new fragments 



Chapter 1. Dimensional databases

added by ALTER FRAGMENT operations are assigned, by default, the next higher evalpos  value (and will therefore be 

evaluated last during INSERT operations) unless you explicitly specify a position with the BEFORE or AFTER keyword. In this 

case, the evalpos  value for the new fragment will be the ordinal position where was inserted into the fragment list. For tables 

that are fragmented by expression into a large number of fragments, you can achieve greater efficiency in INSERT an LOAD 

operations when fragments that are more likely to match fragment key values have relatively low evalpos  values within the 

fragment list.

Fragmentation by expressions that creates nonoverlapping fragments on a single column can be an effective strategy for 

supporting fragment elimination in queries. The database server can eliminate fragments, for example, for queries with 

range expressions as well as queries with equality expressions if the query predicates correspond to fragment expressions. 

Expressions with relational operators and logical operators (or with both) can similarly be used for fragment expressions that 

match query filters.

Fragmentation by LIST
A list fragmentation strategy partitions data into a set of fragments that are each defined by a list of discrete values of the 

fragment key. Every expression must be a quoted string or a literal value. Each value in the list must be unique among the 

lists for fragments of the same object.

Fragmenting by list resembles fragmentation by expression (where the fragment expressions include the IN operator or the 

logical OR operator) in these respects:

• Every non-REMAINDER fragment stores rows for which the fragment key values matches the fragment expression.

• You can optionally define a REMAINDER fragment.

• You can optionally define a NULL fragment.

As the name implies, however, fragmentation by list defines each fragment by a list of fragment expressions, rather than 

restricting each fragment to a single expression.

The syntax for defining a list fragmentation strategy requires one or more list fragments of the following form.

   FRAGMENT BY LIST
      PARTITION partition  VALUES (expression_list) IN dbspace,
      . . .
      PARTITION partition  VALUES (expression_list) IN dbspace,
      PARTITION partition  VALUES (NULL) IN dbspace,
      PARTITION partition  REMAINDER IN dbspace

Here the last two partitions (whose expressions define a NULL fragment and a REMAINDER fragment) are not required.

As with other fragmentation schemes, each PARTITION partition  specification declares the unique name of a fragment. 

The (expression_list)  specification is the comma-separated list of one or more constant expressions that defines each list 

fragment, and the IN dbspace  specification identifies the storage location of the fragment.

You can optionally define a NULL fragment by specifying NULL  as the only expression in the expression_list. You cannot 

include NULL  in an expression list with other values that define the same fragment.

27



HCL OneDB Data Warehouse Guide

28

An alternative syntax notation for defining the NULL fragment is VALUES IS NULL  (with no delimiting parentheses) as the only 

expression for a fragment. The digit 0  is not equivalent to the NULL or IS NULL keywords.

Just as in expression-based fragmentation, you can optionally define a REMAINDER fragment for rows that match none of 

the specified fragment expressions. If you define a REMAINDER fragment but no NULL fragment, rows with the fragment 

key value missing are stored in the REMAINDER fragment. The database server issues an exception for INSERT operations 

if the fragment key value for an inserted row matches no fragment expression, and no REMAINDER fragment is defined. 

An exception is similarly issued if data us missing from the fragment key column, but the fragment list includes no NULL 

fragment and no REMAINDER fragment.

When you use the CREATE INDEX statement to define an index on a table that is fragmented by list, it is not necessary to 

include the FRAGMENT BY or PARTITION BY clause to create indexes that use the same list fragmentation strategy as 

their table. By default, the database server partitions the index by the same list fragmentation strategy as its table, and 

declares for each index fragment the same name that you specified after the PARTITION keyword for the corresponding table 

fragment.

The most important difference between fragmentation by list and fragmentation by expression is that every value in the 

list for each fragment must be unique among all the expression lists that define fragments of the same table or index. The 

database server issues an error if the lists of expressions for two list fragments include the same fragment key value. This 

uniqueness requirement for fragment expressions simplifies fragment elimination in queries, if the fragment expressions 

correspond to query predicates and filters that support fragment elimination.

A list fragmentation strategy is most effective when the fragment key for a table has finite set of values, and queries on the 

table specify equality predicates on the fragment key. For a table whose fragment key is a numeric or time data type with a 

range of possible values that resembles a continuum, an interval fragmentation scheme is recommended, rather than list 

fragmentation.

Fragmentation by INTERVAL
An interval fragmentation strategy partitions data into fragments based on an interval value of the fragment key. The interval 

value must be a column expression that references a single column of a numeric, DATE, or DATETIME data type.

This type of distribution scheme is sometimes called a range interval  distribution because:

• The RANGE and INTERVAL keywords are required in the DDL syntax that defines this strategy.

• The initial user-defined fragments are called range fragmentsto distinguish these fragments from system-defined 

fragments. The database server creates system-defined fragments automatically when a row is inserted whose 

fragment key value does not match the expression that defines any existing fragment.

The INTERVAL distribution strategy is useful when all possible fragment key values in a growing table are not known, and the 

DBA does not want to allocate fragments for data rows that are not yet loaded. For example, by using a DATE column as a 

fragment key could define a fragment for every month, or a BIGSERIAL column as a fragment key could define a fragment for 

every million customer records. The automatic creation of interval fragments avoids the need for a REMAINDER fragment 

(with its associated fragment-elimination difficulties) and can also reduce the maintenance workload of the DBA.



Chapter 1. Dimensional databases

Defining an interval distribution strategy

The definition of an interval distribution scheme can include several required or optional parameters:

Fragment key

This must specify a column expression referencing a single numeric, DATE, or DATETIME column of the table.

Interval value expression

This constant expression defines an interval size within the range of fragment key values for system-generated 

interval fragments.

Storage location for interval fragments

This is a list of dbspaces where interval fragments will be stored.

Range fragment list

You must declare the name and define the fragment expression and the storage location for at least one range 

fragment.

The syntax for defining these parameters of a range interval distribution has this general form:

   FRAGMENT BY RANGE (column_expr)
      INTERVAL (interval_size) STORE IN (dbspace_list)
         PARTITION partition  VALUES < upper_bound  IN dbspace,
                  . . .
         PARTITION partition  VALUES < upper_bound  IN dbspace,
         PARTITION partition  VALUES IS NULL IN dbspace

In this template, the syntax tokens that are not keywords specify the following parameters of the storage distribution 

scheme:

RANGE(column_expr)

This column expression, referencing a single column and delimited by parentheses, defines the fragment key. 

This clause is required.

INTERVAL(interval_size)

This interval value expression, delimited by parentheses, defines the interval size (within the range of values of 

the fragment key) for system-generated interval fragments. This clause is required.

STORE IN(dbspace_list)

This is a list of dbspaces where interval fragments will be stored. If you specify more than one dbspace, the 

database server creates successive new interval fragments in these dbspaces, in round robin fashion. This 

clause is optional.

If you omit this clause, the database server stores interval fragments in the dbspace that stores the range 

fragment. (If you define two or more range fragments and store them in different dbspaces, the database 

server stores each new interval fragment in one of these dbspaces, assigning successive interval fragments to 

these dbspaces in round robin fashion.)

29



HCL OneDB Data Warehouse Guide

30

PARTITION partition

This declares the name of a range or NULL fragment. You must define at least one range fragment. The NULL 

fragment is optional, but no more than one NULL fragment can be defined.

If you define more than one fragment, their names must conform to the rules for SQL identifiers, and must be 

unique among the fragments of the same table or index.

VALUES < upper_bound

This defines the fragment expression. Unlike list fragments, which can be defined in an arbitrary order, if 

you define more than one range fragment, their expressions must be defined in ascending order of the 

upper_bound. This clause is required.

The last range fragment that you define (which can be the first, if you define only one), is called the transition 

fragment, and its upper bound is called the  transition value  for the fragmented object. Any inserted rows with a 

larger fragment key value must be stored in an interval fragment.

VALUES IS NULL

This is the fragment expression to define the NULL fragment. Whether you define a NULL fragment is optional. 

The NULL fragment is not a range fragment, because NULL indicates the absence of a fragment key value. 

The database server issues an exception if a DML operation attempts to insert a row that has no fragment key 

value into a fragmented table for which no NULL fragment is defined.

If you define a NULL fragment, it can be listed in any position within the PARTITION specifications. The 

database server, rather than the sequence in which you declare the fragments, internally determines the order 

of each fragment within the fragment list of a table or index that uses an interval fragmentation scheme. The 

NULL fragment, if it exists, is always the first on this list, as indicated by its sysfragments.evalpos  value in the 

system catalog.

When a row is inserted whose fragment key value is outside the range of any existing range or interval fragments, the 

database server will automatically create a new interval fragment based on the interval_size  value and the transition value, 

without DBA intervention.

This kind of fragmentation strategy is useful when all possible fragment key values in a growing table are not known and the 

DBA does not want to allocate fragments for data that is not yet loaded.

Handle common dimensional data-modeling problems

The dimensional model that the previous sections describe illustrates only the most basic concepts and techniques of 

dimensional data modeling. The data model you build to address the business needs of your enterprise typically involves 

additional problems and difficulties that you must resolve to achieve the best possible query performance from your 

database. This section describes various methods you can use to resolve some of the most common problems that arise 

when you build a dimensional data model.



Chapter 1. Dimensional databases

Minimize the number of attributes in a dimension table

Dimension tables that contain customer or product information might easily have 50 to 100 attributes and many millions 

of rows. However, dimension tables with too many attributes can lead to excessively wide rows and poor performance. For 

this reason, you might want to separate out certain groups of attributes from a dimension table and put them in a separate 

table called a minidimension  table. A minidimension table consists of a small group of attributes that are separated out from 

a larger dimension table. You might choose to create a minidimension table for attributes that have either of the following 

characteristics:

• The fields are rarely used as constraints in a query.

• The fields are frequently compared together.

The following figure shows a minidimension table for demographic information that is separated out from a customer  table.

Figure  10. A Minidimension Table for Demographics Information

In the demographics  table, you can store the demographics key as a foreign key in both the fact table and the customer 

table, which allows you to join the demographics table directly to the fact table. You can also use the demographics key 

directly with the customer  table to browse demographic attributes.

Dimensions that occasionally change

In a dimensional database where updates are infrequent (as opposed to OLTP systems), most dimensions are relatively 

constant over time, because changes in sales districts or regions, or in company names and addresses, occur infrequently. 

However, to make historical comparisons, these changes must be handled when they do occur. The following figure shows 

an example of a dimension that has changed.

31



HCL OneDB Data Warehouse Guide

32

Figure  11. A dimension that changes

You can use three ways to handle changes that occur in a dimension:

Change the value stored in the dimension column

In the previous figure, the record for Bill Adams in the customer  dimension table is updated to show the new 

address Arlington Heights. All of this customer's previous sales history is now associated with the district of 

Arlington Heights instead of Des Plaines.

Create a second dimension record with the new value and a generalized key

This approach effectively partitions history. The customer  dimension table would now contain two records for 

Bill Adams. The old record with a key of 101 remains, and records in the fact table are still associated with it. 

A new record is also added to the customer  dimension table for Bill Adams, with a new key that might consist 

of the old key plus some version digits (101.01, for example). All subsequent records that are added to the fact 

table for Bill Adams are associated with this new key.

Add a new field in the customer  dimension table for the affected attribute and rename the old attribute

This approach is rarely used unless you need to track old history in terms of the new value and vice-versa. 

The customer  dimension table gets a new attribute named current address, and the old attribute is renamed 

original address. The record that contains information about Bill Adams includes values for both the original 

and current address.

Use the snowflake schema for hierarchical dimension tables

A snowflake schema  is a variation on the star schema, in which very large dimension tables are normalized into multiple 

tables. Dimensions with hierarchies can be decomposed into a snowflake structure when you want to avoid joins to big 

dimension tables when you are using an aggregate of the fact table. For example, if you have brand information that you 

want to separate out from a product  dimension table, you can create a brand snowflake that consists of a single row for each 

brand and that contains significantly fewer rows than the product  dimension table. The following figure shows a snowflake 

structure for the brand and product line elements and the brand_agg  aggregate table.



Chapter 1. Dimensional databases

Figure  12. An example of a snowflake schema

If you create an aggregate table, brand_agg, that consists of the brand code and the total revenue per brand, you can use 

the snowflake schema to avoid the join to the much larger sales  table. For example, you can use the following query on the 

brand  and brand_agg  tables:

SELECT brand.brand_name, brand_agg.total_revenue
FROM brand, brand_agg
   WHERE brand.brand_code = brand_agg.brand_code
   AND brand.brand_name = 'Anza'

Without a snowflaked dimension table, you use a SELECT UNIQUE or SELECT DISTINCT statement on the entire product 

table (potentially, a very large dimension table that includes all the brand and product-line attributes) to eliminate duplicate 

rows.

While snowflake schemas are unnecessary when the dimension tables are relatively small, a retail or mail-order business 

that has customer or product dimension tables that contain millions of rows can use snowflake schemas to significantly 

improve performance.

If an aggregate table is not available, any joins to a dimension element that was normalized with a snowflake schema must 

now be a three-way join, as the following query shows. A three-way join reduces some of the performance advantages of a 

dimensional database.

SELECT brand.brand_name, SUM(sales.revenue)
FROM product, brand, sales
   WHERE product.brand_code = brand.brand_code
   AND brand.brand_name = 'Alltemp'
GROUP BY brand_name

Implement a dimensional database
You will learn the SQL statements that you need to implement the dimensional data model

33



HCL OneDB Data Warehouse Guide

34

This section shows you the SQL statements required to implement the dimensional database that is described in the section 

Design a dimensional data model  on page 8. Remember that this database serves only as an illustrative example of a 

data-warehousing environment. For the sake of the example, it is translated into SQL statements.

This section describes the sales_demo  database.

Implement the sales_demo dimensional database

This section shows the SQL statements that you can use to create a dimensional database from the data model that 

you learned about in Design a dimensional data model  on page 8. You can use interactive SQL to write the individual 

statements that create the database or you can run a script that automatically executes all the statements that you need 

to implement the database. The CREATE DATABASE and CREATE TABLE statements create the data model as tables in a 

database. After you create the database, you can use the LOAD and INSERT statements to populate the tables.

Create the dimensional database
You must create the dimensional database before you can create any of the tables or other objects that the database must 

contain.

When you use the HCL®  OneDB®  database server to create a database, the server sets up records that show the existence 

of the database and its mode of logging. The database server manages disk space directly, so these records are not visible 

to operating-system commands.

The following statement shows the syntax that you use to create a database that is called sales_demo:

CREATE DATABASE sales_demo

The CREATE TABLE statement for the dimension and fact tables

This section includes the CREATE TABLE statements that you use to create the tables of the sales_demo  dimensional 

database.

Referential integrity is, of course, an important requirement for dimensional databases. However, the following schema 

for the sales_demo  database does not define the primary and foreign key relationships that exist between the fact table 

and its dimension tables. The schema does not define these primary and foreign key relationships because data-loading 

performance improves dramatically when the database server does not enforce constraint checking. Given that data 

warehousing environments often require that tens or hundreds of gigabytes of data are loaded within a specified time, data-

load performance should be a factor when you decide how to implement a database in a warehousing environment. Assume 

that if the sales_demo  database is implemented as a live data mart, some data extraction tool (rather than the database 

server) is used to enforce referential integrity between the fact table and dimension tables.



Chapter 1. Dimensional databases

Tip:  After you create and load a table, you can add primary key and foreign key constraints to the table with the 

ALTER TABLE statement to enforce referential integrity. This method is required only for express load mode. If the 

constraints and indexes are necessary and costly to drop before a load, then deluxe load mode is the best option.

The following statements create the time, geography, product, and customer  tables. These tables are the dimensions for the 

sales  fact table. A SERIAL field serves as the primary key for the district_code  column of the geography  table.

CREATE TABLE time
(
time_code     INT,
order_date    DATE,
month_code    SMALLINT,
month_name    CHAR(10),
quarter_code  SMALLINT,
quarter_name  CHAR(10),
year INTEGER
);
 

CREATE TABLE geography
(
district_code  SERIAL,
district_name  CHAR(15),
state_code     CHAR(2),
state_name     CHAR(18),
region         SMALLINT
);
 

CREATE TABLE product (
product_code   INTEGER,
product_name   CHAR(31),
vendor_code    CHAR(3),
vendor_name    CHAR(15),
product_line_code  SMALLINT,
product_line_name  CHAR(15)
);
 

CREATE TABLE customer (
customer_code  INTEGER,
customer_name  CHAR(31),
company_name   CHAR(20)
);

The sales  fact table has pointers to each dimension table. For example, customer_code  references the customer table, 

district_code  references the geography table, and so forth. The sales  table also contains the measures for the units sold, 

revenue, cost, and net profit.

CREATE TABLE sales
(
customer_code  INTEGER,
district_code  SMALLINT,
time_code      INTEGER,
product_code   INTEGER,
units_sold     SMALLINT,
revenue        MONEY(8,2),
cost           MONEY(8,2),

35



HCL OneDB Data Warehouse Guide

36

net_profit     MONEY(8,2)
);

Tip:  The most useful measures (facts) are numeric and additive. Because of the great size of databases in data-

warehousing environments, virtually every query against the fact table might require thousands or millions of 

records to construct a result set. The only useful way to compress these records is to aggregate them. In the sales 

table, each column for the measures is defined on a numeric data type, so you can easily build result sets from the 

units_sold, revenue, cost, and net_profit  columns.

For your convenience, the file called createdw.sql  contains all the preceding CREATE TABLE statements.

Mapping data from data sources to the database
The stores_demo  demonstration database is the primary data source for the sales_demo  database.

The following table shows the relationship between data warehousing business terms and the data sources. It also shows 

the data source for each column and table of the sales_demo  database.

Table  7. The relationship between data warehousing business terms and data sources

A three-column table showing the relationship between data warehousing business terms and the data source.

Business Term Data Source Table.Column Name

Sales Fact Table:

product code sales.product_code

customer code sales.customer_code

district code sales.district_code

time code sales.time_code

revenue stores_demo:items.total_price sales.revenue

units sold stores_demo:items.quantity sales.units_sold

cost costs.lst (per unit) sales.cost

net profit calculated: revenue minus cost sales.net_profit

Product Dimension Table:

product stores_demo:catalog.catalog_num product.product_code

product name stores_demo:stock.manu_code and 

stores_demo:stock.description

product.product_name

product line stores_demo:orders.stock_num product.product_line_code

product line name stores_demo:stock.description product.product_line_name



Chapter 1. Dimensional databases

Table  7. The relationship between data warehousing business terms and data sources

A three-column table showing the relationship between data warehousing business terms and the data source.

(continued)

Business Term Data Source Table.Column Name

vendor stores_demo:orders.manu_code product.vendor_code

vendor name stores_demo:manufact.manu_name product.vendor_name

Customer Dimension Table:

customer stores_demo:orders.customer_num customer.customer_code

customer name stores_demo:customer.fname plus 

stores_demo:customer.lname

customer.customer_name

company stores_demo:customer.company customer.company_name

Geography Dimension Table:

district code generated geography.district_code

district stores_demo:customer.city geography.district_name

state stores_demo:customer.state geography.state_code

state name stores_demo.state.sname geography.state_name

region derived: If state = "CA" THEN region = 1, ELSE region = 

2

geography.region

Time Dimension Table:

time code generated time.time_code

order date stores_demo:orders.order_date time.order_date

month derived from order date generated time.month_name time.month.code

quarter derived from order date generated time.quarter_name time.quarter_code

year derived from order date time.year

Several files with a .unl  suffix contain the data that is loaded into the sales_demo  database. The files that contain the SQL 

statements that create and load the database have a .sql  suffix.

If your database server runs on UNIX™, you can access the *.sql  and *.unl  files from the directory $ONEDB_HOME/demo/

dbaccess.

If your database server runs on Windows™, you can access the *.sql  and *.unl  files from the directory %ONEDB_HOME%

\demo\dbaccess.

37



HCL OneDB Data Warehouse Guide

38

Load data into the dimensional database

An important step when you implement a dimensional database is to develop and document a load strategy. This section 

shows the LOAD and INSERT statements that you can use to populate the tables of the sales_demo  database.

Tip:  In a live data warehousing environment, you typically do not use the LOAD or INSERT statements to load large 

amounts of data to and from HCL®  OneDB®  databases.

HCL®  OneDB®  database servers provide different features for loading and unloading of data.

For information about loading, see your HCL OneDB™  Administrator's Guide.

The following statement loads the time  table with data first so that you can use it to determine the time code for each row 

that is loaded into the sales  table:

LOAD FROM 'time.unl' INSERT INTO time

The following statement loads the geography  table. After you load the geography  table, you can use the district code data to 

load the sales  table.

INSERT INTO geography(district_name, state_code, state_name)
SELECT DISTINCT c.city, s.code, s.sname
   FROM stores_demo:customer c, stores_demo:state s
      WHERE c.state = s.code

The following statements add the region code to the geography  table:

UPDATE geography
   SET region = 1
   WHERE state_code = 'CA'
 

UPDATE geography
   SET region = 2
   WHERE state_code <> 'CA'

The following statement loads the customer  table:

INSERT INTO customer (customer_code, customer_name, company_name)
SELECT c.customer_num, trim(c.fname) ||' '|| c.lname, c.company
FROM stores_demo:customer c

The following statement loads the product  table:

INSERT INTO product (product_code, product_name, vendor_code,
   vendor_name,product_line_code, product_line_name)
SELECT a.catalog_num,
   trim(m.manu_name)||' '||s.description,
   m.manu_code, m.manu_name,
   s.stock_num, s.description
FROM stores_demo:catalog a, stores_demo:manufact m,
   stores_demo:stock s
   WHERE a.stock_num = s.stock_num
      AND a.manu_code = s.manu_code
      AND s.manu_code = m.manu_code;



Chapter 1. Dimensional databases

The following statement loads the sales  fact table with one row for each product, per customer, per day, per district. The cost 

from the cost  table is used to calculate the total cost (cost * quantity).

INSERT INTO sales (customer_code, district_code, time_code,
   product_code, units_sold, cost, revenue, net_profit)
SELECT
   c.customer_num, g.district_code, t.time_code,
   p.product_code, SUM(i.quantity),
   SUM(i.quantity * x.cost), SUM(i.total_price),
   SUM(i.total_price) - SUM(i.quantity * x.cost)
FROM stores_demo:customer c, geography g, time t,
   product p,stores_demo:items i,
   stores_demo:orders o, cost x
WHERE c.customer_num = o.customer_num
   AND o.order_num = i.order_num
   AND p.product_line_code = i.stock_num
   AND p.vendor_code = i.manu_code
   AND t.order_date = o.order_date
   AND p.product_code = x.product_code
   AND c.city = g.district_name
GROUP BY 1,2,3,4;

Test the dimensional database
After you create the tables and load the data into the database, you should test the dimensional database.

You can create SQL queries to retrieve the data necessary for the standard reports listed in the business-process summary 

(see the Summary of a business process  on page 13). Use the following ad hoc queries to test that the dimensional 

database was properly implemented.

The following statement returns the monthly revenue, cost, and net profit by product line for each vendor:

SELECT vendor_name, product_line_name, month_name,
   SUM(revenue) total_revenue, SUM(cost) total_cost,
   SUM(net_profit) total_profit
FROM product, time, sales
WHERE product.product_code = sales.product_code
   AND time.time_code = sales.time_code
GROUP BY vendor_name, product_line_name, month_name
ORDER BY vendor_name, product_line_name;

The following statement returns the revenue and units sold by product, by region, and by month:

SELECT product_name, region, month_name,
   SUM(revenue), SUM(units_sold)
FROM product, geography, time, sales
WHERE product.product_code = sales.product_code
   AND geography.district_code = sales.district_code
   AND time.time_code = sales.time_code
GROUP BY product_name, region, month_name
ORDER BY product_name, region;

The following statement returns the monthly customer revenue:

SELECT customer_name, company_name, month_name,
   SUM(revenue)
FROM customer, time, sales

39



HCL OneDB Data Warehouse Guide

40

WHERE customer.customer_code = sales.customer_code
   AND time.time_code = sales.time_code
GROUP BY customer_name, company_name, month_name
ORDER BY customer_name;

The following statement returns the quarterly revenue per vendor:

SELECT vendor_name, year, quarter_name, SUM(revenue)
FROM product, time, sales
WHERE product.product_code = sales.product_code
   AND time.time_code = sales.time_code
GROUP BY vendor_name, year, quarter_name
ORDER BY vendor_name, year

Change the storage distribution strategy
Use the ALTER FRAGMENT statement to change the storage distribution strategy of the data rows that are being loaded into 

an existing database table.

You should adjust the storage distribution strategy when the volume or distribution of the data is different than what was 

originally expected when the storage distribution plan was first implemented. The ALTER FRAGMENT can also be used as 

part of the workflow of a data warehouse. If a table is partitioned with a fragment key that is based on values in a DATE or 

DATETIME column, the fragments can be detached from the table. As new fragments are added to the table older fragments, 

that store rows from earlier time periods, can be detached from the table.

The ALTER FRAGMENT statement supports the following six options for table fragments. Some ALTER FRAGMENT options 

are valid for nonfragmented tables or for index fragments.

Note:  The following summary ignores tables that are fragmented by ROUND ROBIN, because other fragmentation 

strategies are more often used in data warehousing applications.

ADD

Adds a new fragment in the list of fragments that are part of a table that has been fragmented by any 

fragmentation scheme.

For LIST or EXPRESSION fragments, you can add a NULL fragment or a REMAINDER fragment, if none of these 

types of fragments have already been defined. You can use the BEFORE or AFTER keyword to specify the 

ordinal position of the new fragment in the list of expressions or list of fragments.

For a table that has been fragmented with the INTERVAL option, you can use the ADD option can add new 

storage spaces to the list of dbspaces where the database server creates new INTERVAL fragments.

ATTACH

Combines two or more tables that have identical structures into a fragmentation strategy. All of the consumed 

tables specified in the ALTER FRAGMENT ATTACH statement must have the same structure as the surviving 

table. The number, names, data types, and relative positions of the columns must be identical. The consumed 

tables must be nonfragmented, and must be stored in a different dbspace from the surviving table. The 

ATTACH option does not support index fragments.



Chapter 1. Dimensional databases

For LIST or EXPRESSION fragments, you can attach a NULL fragment or a REMAINDER fragment, if none of 

these types of fragments have already been defined. You can use the BEFORE or AFTER keyword to specify the 

ordinal position of the new fragment in the list of fragments.

For a table that has been fragmented by INTERVAL, the ATTACH option can attach new RANGE fragments. 

However you cannot attach new INTERVAL fragments, and you cannot use the BEFORE or AFTER keyword to 

specify the ordinal position of the new RANGE fragment.

When a new EXPRESSION fragment is attached to table that is fragmented by LIST or by INTERVAL, the rows 

from the consumed table and the affected fragments in the surviving table are scanned and moved into 

appropriate partitions. These strategies are not overlapping.

You can also include the ONLINE keyword in ALTER FRAGMENT ATTACH statements with interval partitioning. 

Specifying this keyword can improve concurrency for other sessions that attempt to access the tables on 

which the ALTER FRAGMENT ONLINE statement operates.

DETACH

Removes a table fragment from a distribution scheme and places the contents into a new, nonfragmented 

table. The DETACH option does not support index fragments.

The table from which the fragment was detached remains fragmented, unless it is fragmented by LIST or by 

EXPRESSION and had only two fragments before the DETACH operation.

The new table does not inherit any indexes, constraints, or discretionary access privileges of the table from 

which it was detached. The new table has the default access privileges of any new table.

The ALTER FRAGMENT DETACH statement cannot remove a fragment from a table that is the parent of a 

referential constraint, or from a table on which a ROWID column is defined.

You can also include the ONLINE keyword in ALTER FRAGMENT DETACH statements with interval partitioning.

DROP

Drops a fragment from a table or index that is fragmented by LIST or by EXPRESSION. Using the DROP option 

requires, however, that any rows currently stored in the fragment can be moved to another existing fragment. 

For LIST fragments, the existing fragment can only be the REMAINDER fragment, because of the uniqueness 

requirement for LIST fragment expressions.

For a table or index that is fragmented by INTERVAL, you can use the DROP option to drop one or more 

dbspaces from the list of dbspaces that store INTERVAL fragments. No new INTERVAL fragments will be 

created in the specified dbspaces.

ALTER TABLE DROP operations that result in moving a large number of rows can fail if insufficient log space 

or disk space is available. You might be able to complete the operation by dividing it into a series of smaller 

operations. If insufficient log space causes the failure, an alternative is to temporarily turning off logging. 

Then retry the ALTER TABLE operation and turn transaction-logging back on after the operation completes. To 

perform ALTER TABLE DROP operations requires a backup of the root  dbspace.

41



HCL OneDB Data Warehouse Guide

42

INIT

Defines, modifies, or replaces the fragmentation strategy or the storage location of an existing table or an 

existing index.

For an index, you can accomplish these tasks:

• Change an existing fragmented index to a nonfragmented index.

• Change the interval value of the interval distribution scheme for a fragmented index.

• Change the interval fragment key of the interval distribution scheme for a fragmented index.

• Fragment an existing index that is not fragmented without redefining the index.

• Change the distribution scheme of an existing fragmented index to another distribution scheme of the 

same expression, list, or interval type, or to a different type of distribution scheme.

For a nonfragmented table, you can accomplish these tasks:

• Move a nonfragmented table from one dbspace to another dbspace.

• Move a nonfragmented table from one dbspace to a named fragment.

• Change a nonfragmented table to a fragmented table.

For a fragmented table, you can accomplish these tasks:

• Convert a fragmented table to a nonfragmented table.

• Replace the current fragmentation scheme with a different fragmentation scheme of the same type or 

of a different type

• Change the expression associated with an existing list-based or expression-based fragment

• Add a new rowid column to a fragmented table. This column stores a unique integer that cannot be 

updated. The database server automatically creates an index on the rowid column. With this column, 

the database server can find the physical location of any row.

If the table is not empty when you convert an existing storage fragmentation strategy to another strategy, the 

database server discards the existing fragmentation strategy and moves data rows to fragments that you 

define in the new fragmentation strategy. Data movement also occurs when you convert a nonfragmented 

index to a fragmented index, and when you convert a fragmented index to an nonfragmented index. For large 

tables, data movement can cause significant logging, or the transaction might approach the long-transaction 

high-watermark, and a relatively long exclusive lock might be held on the affected tables. Use these ALTER 

FRAGMENT INIT options when they do not interfere with day-to-day operations.

MODIFY

Change the current fragmentation list of a table or of an index.

For LIST or EXPRESSION fragments, the MODIFY option can accomplish these tasks:



Chapter 1. Dimensional databases

• Move an existing fragment from one dbspace to a different dbspace.

• Change the expression associated with an existing list-based or expression-based fragment.

• Rename one or more existing fragments.

For a table that is fragmented by INTERVAL, the MODIFY option can accomplish these tasks:

• Modify the expression that defines a range fragment.

• Increase the value of the expression that defines the transition value of the table.

• Enable or disable the automatic creation of interval fragments.

• Replace the list of dbspaces where system-generated interval fragments will be created. Existing 

fragments in the old dbspaces are not moved, and new rows that match their fragment expressions will 

be inserted into those fragments.

• Move a range fragment or an interval fragment to a different dbspace.

• Rename one or more existing fragments.

When you change the expression that defines a range fragment, the replacement expression cannot cross 

adjacent fragment boundaries.

You cannot modify the system-generated expression for any INTERVAL fragment, and you cannot decrease the 

transition value of a table that is fragmented by INTERVAL.

You can also include the ONLINE keyword in ALTER FRAGMENT ON TABLE INTERVAL TRANSITION statements.

Moving data from relational tables into dimensional tables by using external tables
Use SQL statements to unload data from relational tables into external tables, which are data files that are in table format, 

and then load the data from the data files into the dimensional tables.

Before you begin

Before beginning, document a strategy for mapping data in the relational database to the dimensional database.

About this task

To unload data from the relational database into external tables and then load the data into the dimensional database:

1. Unload the data from a relational database to external tables.

Repeat the following steps to create as many external tables as are required for the data that you want to move.

a. Use the CREATE EXTERNAL TABLE statement to describe the location of the external table and the format of 

the data.

Example

The following sample CREATE EXTERNAL TABLE statement creates an external table called emp_ext, with 

data stored in a specified fixed format:

CREATE EXTERNAL TABLE emp_ext
( name CHAR(18) EXTERNAL CHAR(18),
hiredate DATE EXTERNAL CHAR(10),

43



HCL OneDB Data Warehouse Guide

44

address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6) )
USING (
FORMAT 'FIXED',
DATAFILES
("DISK:/work2/mydir/employee.unl")
);

b. Use the INSERT...SELECT statement to map the relational database table to the external table. 

Example

The following sample INSERT statement loads the employee database table into the external table called 

emp_ext:

INSERT INTO emp_ext SELECT * FROM employee

The data from the employee database table is stored in a data file called employee.unl.

2. If necessary, copy or move the data files to the system where the dimensional database is located.

3. Load the data from the data files to the dimensional database.

Repeat the following steps to load all the data files that you created in the previous steps.

a. Use the CREATE EXTERNAL TABLE statement to describe the location of the data file and the format of the 

data.

Example

The following code is a sample CREATE EXTERNAL TABLE statement:

CREATE EXTERNAL TABLE emp_ext
( name CHAR(18) EXTERNAL CHAR(18),
hiredate DATE EXTERNAL CHAR(10),
address VARCHAR(40) EXTERNAL CHAR(40),
empno INTEGER EXTERNAL CHAR(6) )
USING (
FORMAT 'FIXED',
DATAFILES
("DISK:/work3/mydir/employee.unl")
);

b. Use the INSERT...SELECT statement to map the data from the data file to the table in the dimensional 

database. 

Example

The following sample INSERT statement loads the employee data file into the employee database table:

INSERT INTO employee SELECT * FROM emp_ext

Performance tuning dimensional databases
This section describes how to tune the performance of your queries and to understand data distribution statistics.

Query execution plans
When a SELECT statement or other DML operation is submitted to the database server, the query execution optimizer 

designs a query execution plan. The query execution optimizer is often referenced as the query optimizer.



Chapter 1. Dimensional databases

To design a query execution plan, and estimate the costs of candidate query plans, the query optimizer considers a wide 

range of information including:

• Specifications that identify the database objects, predicates, filters, joins, and other operations in the SQL syntax that 

defines the query operation

• System catalog information about indexes and constraints on the tables, views, and columns that are referenced or 

implied in the query

• Data distribution statistics for the tables and indexes, or for their fragments, that are referenced or implied in the 

query

• Optimizer directives that are specified inline or as external optimizer directives that favor or avoid subsets of the 

potential query plans

• Information in the database server environment or in the session environment that affects the query execution 

optimizer

Data distribution statistics
Data distribution statistics are stored in the system catalog for use by the query optimizer when it designs query execution 

plans. These statistics, together with other information, enable the optimizer to estimate the relative costs among the 

execution plans that the optimizer is considering for a specific query. Distribution statistics that the optimizer examines for 

tables that are referenced in queries can include column distribution statistics for the table and for its indexes, as well as 

fragment-level statistics, if the database server has gathered statistics for individual table or index fragments.

The following system catalog tables store data distribution information that is available to the query optimizer:

SYSDISTRIB

Stores data distribution information for tables and indexes.

SYSFRAGDIST

Stores fragment-level data distribution information for fragments of tables and indexes.

The following system catalog tables store information pertaining to changes to rows since the most recent update to table, 

index, or fragment statistics.

SYSDISTRIB

Counts the number of rows changed by DML operations since table statistics were last updated, the date and 

time of that update, and the time required to build column distributions.

SYSFRAGDIST

Counts the number of rows changed by DML operations since fragment-level statistics were last updated, and 

the date and time of that update.

SYSFRAGMENTS

Counts the number of rows changed by DML operations since fragment-level statistics were last updated.

45



HCL OneDB Data Warehouse Guide

46

SYSINDICES

Counts the number of rows changed by DML operations since index statistics were last updated, the date and 

time of that update, and time required to build low level distributions for the lead column of the index.

The following configuration parameters can affect the database server behavior for the calculation, display, or other 

operations on data distribution statistics for tables or for fragments that can be used in query plans:

AUTO_STAT_MODE

Enable or disable the detection (and selective refreshing) of stale statistics during UPDATE STATISTICS 

operations. You can override the setting of this parameter by using the onmode -wm  or onmode -wf  command-

line utilities, or SQL administration API function calls, or (for the current session) by the SET ENVIRONMENT 

AUTO_STAT_MODE statement of SQL.

EXPLAIN_STAT

Enable or disable the inclusion of a Query Statistics section in the explain output file. This is enabled by default.

SYSSBSPACENAME

Specifies the name of the sbspace in which the database server stores data-distribution statistics (as smart 

large objects) that the UPDATE STATISTICS statement collects for certain user-defined data types. Because 

the data distributions for UDTs can be large, you have the option to store them in an sbspace instead of in 

the sysdistrib  system catalog table (for table-level statistics) or in the sysfragdist  system catalog table (for 

fragment-level statistics),  where distribution statistics are stored by default.

STATCHANGE

Specifies a positive integer as a change threshold to identify table or fragment distribution statistics that need 

to be updated. This is the default threshold for refreshing distribution statistics on tables for which no specific 

threshold has been specified as a table or session attribute. If no value is specified, the default is 10. While 

selective refreshing of data distribution statistics enabled (by default, or by the AUITO_STAT_MODE setting, or 

by the AUTO keyword of the UPDATE STATISTICS statement, UPDATE STATISTICS operations only refresh stale 

or missing statistics. The default value of 10 restricts recalculation to only the tables or fragments in which 

DML, load, or TRUNCATE operations have changed more than 10% of the rows since data distribution statistics 

were most recently calculated.

Fragment-level statistics
For tables and indexes that have been partitioned according to fragment key values, the distribution statistics in the system 

catalog for some fragments might closely approximate current data distributions in those fragments, despite subsequent 

DELETE, INSERT, UPDATE, or MERGE operations that have caused the statistics for other fragments to become stale. For 

large tables that contain millions of rows, substantial resources of the database server can be conserved by updating only 

the subset of fragments with stale statistics, rather than recalculating distribution statistics for every fragment.



Chapter 1. Dimensional databases

The STATLEVEL table attribute

For tables and indexes that are partitioned into multiple fragments by a distributed storage scheme, you can specify the 

granularity of its data distribution statistics, and you can specify the criteria by which stale statistics are defined. This can be 

accomplished by specifying keyword options of the Statistics Options clause in either of two DDL statements:

• in the CREATE TABLE statement (when defining a new fragmented table)

• in the ALTER TABLE statement (when changing the statistics granularity of an existing fragmented table).

In both cases, your options for specifying the granularity of the distribution statistics are the same:

STATLEVEL AUTO

Specifies that the database server apply the following criteria at runtime to determine if fragment-level 

distributions should be created:

• The table is fragmented by EXPRESSION, by LIST, or by INTERVAL.

• The table has more than 1,000,000 rows.

Unless both of these criteria are satisfied, table-level distributions are created. AUTO is the default setting in the 

CREATE TABLE statement, if you specify no explicit STATLEVEL setting.

STATLEVEL FRAGMENT

Data distributions will be created and maintained for each fragment. The FRAGMENT option is not valid for 

nonfragmented tables, or for tables that use a round robin storage distribution scheme.

STATLEVEL TABLE

All data distributions for the table will be created at the table level. This emulates the legacy behavior of HCL 

OneDB™  servers earlier than version 11.70.

To support fragment level data distribution statistics, you must specify the name of an sbspace as the setting of the 

SYSSBSPACENAME configuration parameter, and you must also declare the name and allocate storage for that sbspace by 

using the -c -S  option of the onspaces  utility. For any table whose STATLEVEL attribute is set to FRAGMENT, the database 

server returns an error if SYSSBSPACENAME is not set, or if the sbspace to which is SYSSBSPACENAME is set is not properly 

allocated. For each fragment, the most recently calculated data distribution statistics are stored as a BLOB object in the 

sysfragdist.encdist  column in the system catalog.

Data distribution statistics gathered at the fragment level can be aggregated to provide table level statistics from the 

constituent fragment statistics.

The STATCHANGE threshold for refreshing data distribution statistics

The same Statistics Options clause of the CREATE TABLE or ALTER TABLE statement can also specify a change threshold 

for data distribution statistics. The database server applies this STATCHANGE attribute of a fragmented table to all of 

47



HCL OneDB Data Warehouse Guide

48

the fragments of the table. The STATCHANGE table attribute can be set to an integer value, or you can specify the AUTO 

keyword:

integer

This defines an integer change threshold between 0 and 100 which defines how much table or fragment data is 

allowed to change before its statistics are considered stale in UPDATE STATISTICS operations that selectively 

update only stale distribution statistics.

AUTO

The threshold is the value of the STATCHANGE configuration parameter (or else 10, if no value is set for the 

STATCHANGE parameter). If the SET ENVIRONMENT statement has set a different value for the current 

session, that value overrides the default or explicit STATCHANGE configuration parameter setting.

AUTO is the default setting in the CREATE TABLE statement, if you specify no explicit STATCHANGE setting.

For the table and index fragments for which data distribution statistics are already stored in the system catalog, the 

STATCHANGE setting specifies the percentage of rows in the fragment that have been deleted, inserted, or modified by DML 

operations since its distribution statistics were most recently updated. (This is the same significance that STATCHANGE has 

for table-level statistics.)

Automatic management of data distribution statistics
The HCL OneDB™  database server supports several mechanisms for automating some of the tasks that are involved in 

gathering, dropping, and refreshing data distribution statistics for tables, indexes, table fragments, and index fragments.

Automatic detection and refreshing of stale statistics during UPDATE STATISTICS operations

You can set the AUTO_STAT_MODE configuration parameter to enable the HCL OneDB™  database server to automatically 

detect which table and index statistics are stale, and only refresh the stale statistics when the UPDATE STATISTICS 

statement is run. The data distribution statistics that are automatically detected and refreshed are calculated at the table, 

fragment, or index level, not at the individual column level. If you set no value for this parameter, the automatic statistics 

mode is enabled by default. When automatic mode is enabled, the default threshold that defines stale statistics is reached 

when at least 10% of the rows in the table or fragment are changed by DML, LOAD, or TRUNCATE operations since the most 

recent calculation of data distribution statistics.

You can set another configuration parameter, STATCHANGE, to specify a nondefault change threshold for refreshing 

distribution statistics when automatic statistics mode is enabled. For example, if you set the STATCHANGE value to 15, 

statistics are refreshed if 15% of the rows in the table or fragment are changed. If the STATCHANGE parameter is not set, the 

system default value for STATCHANGE is 10.

You can override the STATCHANGE or AUTO_STAT_MODE configuration parameter setting for the current session by using 

the SET ENVIRONMENT statement to set session environment variables of the same names. The DBA can include SET 

ENVIRONMENT statements in the sysdbopen  routine to enable or disable automatic statistics mode, or to change the stale 

distribution threshold (or both) at connection time. These settings are applied to UPDATE STATISTICS statements that are 

issued in the current session.



Chapter 1. Dimensional databases

A table can be created with its own STATCHANGE table attribute, whose value overrides the setting of the STATCHANGE 

session environment variable or configuration parameter. For fragmented tables whose distribution statistics are calculated 

for each fragment, the value of its STATCHANGE attribute determines whether statistics are refreshed for individual 

fragments. The ALTER TABLE statement of SQL can reset the STATCHANGE attribute of a table.

You can also use (or disable for your current operation) the explicit or default AUTO_STAT_MODE and STATCHANGE settings 

during UPDATE STATISTICS statements that include the AUTO or the FORCE keyword:

AUTO

This keyword puts the UPDATE STATISTICS statement in automatic mode for detecting tables and fragments 

whose statistics are stale. Distribution statistics are not refreshed for tables or fragments whose STATCHANGE 

value is below the specified threshold.

FORCE

This keyword refreshes the statistics for all tables and columns within the specified scope. If automatic mode 

for detecting stale statistics is enabled, the FORCE keyword overrides automatic mode, so that values of the 

STATCHANGE attributes of tables and fragments are ignored, and statistics are recalculated for all database 

objects within the scope of the FOR TABLE specification.

The scope of AUTO or FORCE is limited to the UPDATE STATISTICS statement in which the keyword is specified. UPDATE 

STATISTICS statements that include neither of these keywords use the current AUTO_STAT_MODE setting of the database 

server (or for their session environment, if that is different). If AUTO_STAT_MODE is enabled, the STATCHANGE value is 

determined in the following (descending) order of precedence:

1. The value of the STATCHANGE attribute of the table, if AUTO is not the specified value.

2. The value that is set by the most recent SET ENVIRONMENT STATCHANGE statement in the same session.

3. The explicit setting of the STATCHANGE configuration parameter.

4. The system default STATCHANGE value is 10.

Automatic statistics maintenance in DDL operations

The HCL OneDB™  database server automatically creates, updates, or drops data distribution statistics during certain 

operations that create, alter, or destroy database objects.

ALTER FRAGMENT ATTACH operations

If the automatic mode for detecting stale distribution statistics is enabled, and the table that is being attached 

to has fragmented distribution statistics, the database server calculates the distribution statistics of the 

new fragment. Stale distribution statistics of existing fragments are also recalculated. This recalculation of 

fragment statistics runs in the background. After the database server calculates the fragment statistics, it 

merges them to form table distribution statistics, and stores the results in the system catalog.

Distribution statistics are not recalculated, however, unless explicit or default value of the AUTO_STAT_MODE 

configuration parameter or the AUTO_STAT_MODE session environment setting enables the automatic mode 

for detecting stale data distribution statistics.

49



HCL OneDB Data Warehouse Guide

50

ALTER FRAGMENT DETACH operations

Some ALTER FRAGMENT DETACH statements to attach a fragment can cause the database server to 

update the index structure. When an index is rebuilt in those cases, the database server also recalculates the 

associated column distributions, and these statistics are available to the query optimizer when it designs query 

plans for the table from which the fragment was detached:

• For an indexed column (or for a set of columns) on which ALTER FRAGMENT DETACH automatically 

rebuilds a B-tree index, the recalculated column distribution statistics are equivalent to distributions 

created by the UPDATE STATISTICS statement in HIGH mode.

• If the rebuilt index is not a B-tree index, the automatically recalculated statistics correspond to 

distributions created by the UPDATE STATISTICS statement in LOW mode.

If the automatic mode for detecting stale distribution statistics is enabled, and the table from which the 

fragment is being detached has fragment-level distribution statistics, the database server takes the following 

actions:

• Uses the distribution statistics of the detached fragment to form a new table distribution.

• Merges the distribution statistics of the remaining fragments to calculate distribution statistics for the 

surviving table

• Stores the statistics that result from these operations in the system catalog.

This recalculation of fragment statistics runs in the background.

Distribution statistics are not recalculated, however, unless an explicit or default value of the 

AUTO_STAT_MODE configuration parameter or the AUTO_STAT_MODE environment setting enables the 

automatic mode for detecting stale data distribution statistics.

ALTER TABLE ADD CONSTRAINT operations

ALTER TABLE ADD CONSTRAINT statements that use the Single Column Constraint format to implicitly 

create an index on a non-opaque column also automatically calculate the distribution of the specified column. 

Similarly, if the Multiple-Column Constraint format specifies a list of columns as the scope of the new 

constraint, the database server implicitly creates an index on the same non-opaque column or set of columns 

as the referential constraint, distribution statistics are automatically calculated on the specified column, or on 

the lead column of a multiple-column constraint.

These distribution statistics are available to the query optimizer when it designs query plans for the table on 

which the constraint is defined:

• For columns on which the new constraint is implemented as a B-tree index, the recalculated column 

distribution statistics are equivalent to distributions created by the UPDATE STATISTICS statement in 

HIGH mode.

• If the new constraint is not implemented as a B-tree index, the automatically recalculated statistics 

correspond to distributions created by the UPDATE STATISTICS statement in LOW mode.



Chapter 1. Dimensional databases

These distribution statistics are available to the query optimizer when it designs query plans for the table on 

which the new constraint was created.

The automatic calculation of column distribution statistics in ALTER TABLE MODIFY operations that define a 

constraint on a non-opaque column is not dependent on whether AUTO_STAT_MODE is enabled or disabled.

ALTER TABLE MODIFY operations

ALTER TABLE MODIFY statements that use the Single Column Constraint format or Multiple Column Constraint 

format to define constraints similarly cause the database server to calculate data distribution statistics for 

the indexes that are implicitly created to enforce the constraints. These distribution statistics have the same 

attributes as the statistics that are calculated automatically for an index on a non-opaque column, and that are 

also automatically calculated during ALTER TABLE ADD CONSTRAINT operations. These statistics are available 

to the query optimizer when it designs query plans for the table on which the constraints are defined.

The automatic calculation of column distribution statistics in ALTER TABLE MODIFY operations that define a 

constraint on a non-opaque column is not dependent on whether AUTO_STAT_MODE is enabled or disabled.

CREATE INDEX operations

The database server automatically calculates index statistics, equivalent to the statistics gathered by UPDATE 

STATISTICS in LOW mode, when you create a B-tree index on a UDT column of an existing table, or if you create 

a functional index or a virtual index interface (VII) index on a column of an existing table. Statistics that are 

collected automatically by this feature are stored in the system catalog and are available to the query optimizer, 

without the need for running the UPDATE STATISTICS statement manually. When B-tree indexes are created, 

column statistics are collected on the first index column, equivalent to what UPDATE STATISTICS generates in 

HIGH mode, with a resolution is 1% for tables of fewer than a million rows, and 0.5% for larger tables. (Tables 

with more than 1 million rows have a better resolution because they have more bins for statistics.)

The automatic calculation of column distribution statistics in CREATE INDEX operations is not dependent on 

whether AUTO_STAT_MODE is enabled or disabled.

Auto Update Statistics (AUS) maintenance system

This uses a combination of Scheduler sensors, tasks, thresholds, and tables to evaluate and update data distribution 

statistics. The system provides as built-in input criteria a set of configuration parameter values. The system administrator 

can modify these to reflect current requirements and workloads. The AUS system combines these criteria with information 

from the sysmaster  database to automatically identify tables whose distributions are becoming stale, and generates the text 

of UPDATE STATISTICS statements to refresh the distribution statistics for those tables.

The list of generated UPDATE STATISTICS statements is run automatically each week at a designated period of low 

throughput, to update as many table distributions as can be recalculated during the designated maintenance period. Any 

UPDATE STATISTICS statements that do not complete are retained on the list for the next maintenance period.

51



Index
A

Access privileges 21
ALTER FRAGMENT ADD CONSTRAINT 
statement 48
ALTER FRAGMENT ATTACH statement 48
ALTER FRAGMENT DETACH statement 48
ALTER FRAGMENT statement 40
ALTER TABLE MODIFY statement 48
ALTER TABLE statement 46
Attached index 21
AUS_CHANGE configuration parameter 48
Auto Update Statistics (AUS) maintenance 
system 48
AUTO_STAT_MODE configuration 
parameter 45, 48

B
business process

defined 13

C
CREATE DATABASE statement 34

dimensional data model 34
CREATE INDEX statement 48
CREATE TABLE statement 46

dimensional data model 34
CREATE TABLE statements 34

D
Data mart

description 3
data modeling

dimensional 3
Data models

dimensional 8, 12
Data warehouse

denormalization 3
description 3

Databases
demonstration

sales_demo 13
Detached index 21
Dimension table

changing dimensions 31
choosing attributes 19
description 12

Dimension tables
creating 34

dimensional data model
creating fact tables 34

Dimensional data model
building 12
changing dimensions 31
creating dimension tables 34
denormalization 19
designing 8
dimension attributes 11
dimension elements 10
dimension tables 12
dimensions 10
fact table 9
implementing 34
measures, definition 9
minidimension tables 31

Dimensional database 34, 34
loading data 38
loading from external tables 43
snowflake schema 32

testing 39
dimensional database model 3
Dimensional databases

mapping data sources 36
Dimensional table

identifying granularity 15
loading data 38

Discretionary access privileges 21
Distributed storage designs 21

E
EXPLAIN_STAT configuration parameter 45

F
Fact table

description 8, 9
determining granularity 14
dimensions 15
granularity 9

Fact tables
creating 34

Foreign key 18
Fragment elimination 21
Fragment expression 21
Fragment key 21
Fragment list 21
Fragmentation key 18
Fragmentation strategies

by expression 26
by interval 28
by list 27
by round-robin 24

G
granularity

data distribution statistics 46
identifying dimensions 15

Granularity, fact table 9

I
I/O contention 21

L
Logging table

creation 34

N
Nonlogging tables

creation 34
NULL fragment 27

O
Operational data store

description 3

P
Parallel-database queries (PDQ) 21
Primary key 18

Q
query execution plans

considerations 44
query optimizer 44

R
Range fragments 28
Range interval distribution 28
Referential constraints

foreign key 18
primary key 18

REMAINDER fragment 27

S
sales_demo database

creating 34
data model 13
data sources for 36
loading 38

SBSPACENAME configuration parameter 45
SET ENVIRONMENT AUTO_STAT_MODE 
statement 48
SET ENVIRONMENT STATCHANGE 
statement 46, 48
Snowflake schema

example 32
Star schema

description 8
STATCHANGE configuration parameter 45, 46, 
48
STATCHANGE table attribute 48
STATCHANGE table property 46
STATLEVEL table property 46
SYSDISTRIB system catalog table 45
SYSFRAGDIST system catalog table 45, 46
SYSFRAGMENTS system catalog table 45
SYSINDICES system catalog table 45
SYSSBSPACENAME configuration 
parameter 46

T
Transition fragment 21
Transition value 21

U
Unique constraints 18
UPDATE STATISTICS statement 48
Utility program

dbload 34

52


	HCL OneDB Data Warehouse Guide
	Contents
	Chapter 1. Dimensional databases
	Dimensional databases
	Overview of data warehousing
	What is dimensional data?

	Design a dimensional data model
	Concepts of dimensional data modeling
	The fact table
	Dimensions of the data model
	Dimension elements
	Dimension attributes
	Dimension tables


	Building a dimensional data model
	A business process
	Summary of a business process
	Determine the granularity of the fact table
	How granularity affects the size of the database
	Use the business process to determine the granularity
	Customer by product level granularity
	Customer by product by district level granularity
	Customer by product by district by day level granularity


	Identify the dimensions and hierarchies
	Product dimension
	Customer dimension
	Geography dimension
	Time dimension

	Establish referential relationships
	Resisting normalization
	Choose the attributes for the dimension tables

	Fragmentation: Storage distribution strategies
	HCL OneDB™ fragmentation options
	Storage fragmentation terms
	Fragmentation by ROUND ROBIN
	Fragmentation by EXPRESSION
	Fragmentation by LIST
	Fragmentation by INTERVAL
	Defining an interval distribution strategy



	Handle common dimensional data-modeling problems
	Minimize the number of attributes in a dimension table
	Dimensions that occasionally change
	Use the snowflake schema for hierarchical dimension tables


	Implement a dimensional database
	Implement the sales_demo dimensional database
	Create the dimensional database
	The CREATE TABLE statement for the dimension and fact tables
	Mapping data from data sources to the database
	Load data into the dimensional database
	Test the dimensional database
	Change the storage distribution strategy

	Moving data from relational tables into dimensional tables by using external tables

	Performance tuning dimensional databases
	Query execution plans
	Data distribution statistics
	Fragment-level statistics
	The STATLEVEL table attribute
	The STATCHANGE threshold for refreshing data distribution statistics

	Automatic management of data distribution statistics
	Automatic detection and refreshing of stale statistics during UPDATE STATISTICS operations
	Automatic statistics maintenance in DDL operations
	Auto Update Statistics (AUS) maintenance system




	Index

