<L

HCL OneDB 2.0.1

OneDB JDBC Driver Programmer's Guide

Contents

Chapter 1. HCL OneDB™ JDBC Driver Guide...................... 4
Getting started.........c.ocooveieiieieeeeeee 4
What is @ JDBC driver?........ccccooeeieieieeceeeenee 4

HCL OneDB™ JDBC DriVer........ccccceeceeiiieieeiieenee. 5

Using the driver in an application..............cc.cc.c....... 7
Connect to the database..........ccccooveeiiirieciiineieeees 8
Loading the HCL OneDB™ JDBC Diriver................... 8

A DataSource Object..........cceeveievieiieicieeeeeeen 9

The DriverManager.getConnection() method....... 11

HCL OneDB™ JDBC Driver properties................... 15

Dynamically reading the HCL OneDB™ sqlhosts

Connections to the servers of a high-availability

ClUSEEI ...
Specify sqlhosts file lookup
Encryption options........coccceviiiiiiiiniieceeeeeeeee
Connecting JDBC applications with SSL.............. 33
PAM authentication method..............c.ccoooeiiil 35
PAM in UDBC......ooieieiieieecieieeeeeeeeeie e 36
Perform database operations............c.cccecvevevecveennanee. 37
Query the database.........cc.ccoceviviiieieeeeen 37
Result Sets.....cooveeiiiieecc 40
Deallocate resources...........ccceceverieereneeeeeneenenn. 41
Execute across threads..........ccccoeveerevieenerieennne 11
SCrOll CUISOTS.....oiceiiceeeeeeceee e 41
Hold CUISOIS....cveiiieeeeeceee e 42
Update the database...........cccccooevieieieiiiieiceee 43
Perform batch updates...........cccooeveeiiieiee, 43
Perform bulk inserts............ccoooeeiiiieieeeeeee 44
Parameters, escape syntax, and unsupported
MELhOAS... .ot 44
The CallableStatement OUT parameters.............. 44
Named parameters in a CallableStatement.......... 51
The escape SYNtaX.......cccceeeeeeievieeieieeieieeieeiene 56
Unsupported methods and methods that behave
differently........ccooeeieieeieeee e 56
Handle transactions...........cccceceveeieinienieeneneeeeeeeas 59
AUTOCOMMIL....ctiiieiieiee e 61
Transactions with Large Objects..........cccceeuvnnen. 61
Transactions with XA.........c.coocoiiiiiiiie 62
Transactions with Savepoints...........ccccccoeevveneeee. 62
Handle errOrS........cooeieirieieeeeeeee e 63
Handle errors with the SQLException class.......... 64
Retrieve the syntax error offset.........cccccooveeienenee. 65
Handle errors with the com.informix.jdbc.Message
ClasSS....oo e 65
Access database metadata..........c.coccooeeeieiiiienn. 66

Other HCL OneDB™ extensions to the JDBC API......... 67
The Auto Free feature.........ccccocevevieeneneceeeene, 67
Obtaining driver version information..................... 68

Store and retrieve XML documents...........c.cccocueeueenene. 68
Set up your environment to use XML
MENOAS...c.eiiiiiceieeee e 69
Insert data........cccoeeieiiiiieieieeeeeeee 70
Retrieve data........cccoeieiriinieiieeeee e 71
Insert data examples.........ccccooevreieeecceiciee, 72
Retrieve data examples.........c..cccovevievieeneenennn. 73

Work with HCL OneDB™ types........ccccceeieievierienneennneen 75
Distinct data types........cccceevveviiviieieiiieeeceeeee 75
BYTE and TEXT data types........ccceeevrvereeerrennenenn 78
SERIAL and SERIALS8 data types........ccccceeeeuennene. 81
BIGINT and BIGSERIAL data types........c.cccceuenu.... 82
INTERVAL data type......cccoovevieieiiieeiceeieieie e 83
Collections and arrays..........cccceeveeeverieeereneernenennns 89
Named and unnamed rows............cceceecverienerennnnen. 93
Type cache information...........ccccoeiiieienennenene 105
Smart large object data types.......cc.cccceeveeuenenn. 105

Work with opaque types........ccocvvevieireneceeenieeeenns 135
The IfmxUDTSQLInput interface......................... 136
The IfmxUDTSQLOutput interface....................... 137
Map opaque data types.......cccceeevueerverieierrenene. 138
Type cache information...........cccceeeveinenieennnnnne 138
Unsupported methods..........c.cccoevvieiiiiiieiienens 138
Creating opaque types and UDRs....................... 139
EXamMPIES.....ocuooieiiiiciieeceeee 157

Globalization and date formats.........ccccccevererieinnnnene 178
Support for Java™ and globalization.................. 178
Support for HCL OneDB™ GLS variables............. 178
Support for DATE end-user formats.................... 179
Precedence rules for end-user formats.............. 185
Support for code-set conversion......................... 186
User-defined locales.........ccccoeveieievieniiiieienee. 190
Support for globalized error messages.............. 191

Smart trigger feature..........ccoooooveiiieoieiceeeees 192
Detach trigger.........ceveeiiieieieeee e 193

Tuning and troubleshooting............ccceceeeeniiieieiennnns 193
Debug your JDBC API program............cccccveuennn. 193
Manage performance.............cccocoeeveveeieeennennnnn. 195

APPENAIXES.....oiieiiiiieeeeee ettt 204
Sample code files.......ccoooeiiieieiiiieeeee 204
DataSource extensions........c..cccceveveveeeenenennen. 213
Mapping data types........ccceevieireneieieeeee 215
Convert internal HCL OneDB™ data types........... 236

Contents | iii

Chapter 1. HCL OneDB™ JDBC Driver Guide

The HCL OneDB™ JDBC Driver Programmer’s Guide describes how to install, load, and use HCL OneDB™ JDBC Driver to
connect to the HCL OneDB™ database from within a Java™ application.

These topics describe the HCL OneDB™ extensions to JDBC in a task-oriented format; it does not include every method and
parameter in the interface. For the complete reference, including all methods and parameters, see the online Javadoc™,
which appears in the doc/ j avadoc directory where you installed HCL OneDB™ JDBC Driver.

You can also use OneDB® JDBC Driver for writing user-defined routines that are executed in the server.

These topics are written for Java™ programmers who use the JDBC API to connect to HCL OneDB™ databases with the
OneDB® JDBC Driver. To use these topics, you should know how to program in Java™ and, in particular, understand the
classes and methods of the JDBC API.

For information about software compatibility, see the HCL OneDB™ JDBC Driver release notes.

Getting started

These topics provide an overview of HCL OneDB™ JDBC Driver and the JDBC API.

What is a JDBC driver?

The JDBC API defines the Java™ interfaces and classes that programmers use to connect to databases and send queries. A

JDBC driver implements these interfaces and classes for a particular DBMS vendor.

Java™ database connectivity (JDBC) is the Oracle™ specification of a standard application programming interface (API) that
allows Java™ programs to access database management systems. The JDBC API consists of a set of interfaces and classes
written in the Java™ programming language.

Using these standard interfaces and classes, programmers can write applications that connect to databases, send queries
written in structured query language (SQL), and process the results.

Since JDBC is a standard specification, one Java™ program that uses the JDBC API can connect to any database
management system (DBMS), as long as a driver exists for that particular DBMS.

A Java™ program that uses the JDBC API loads the specified driver for a particular DBMS before it actually connects to a
database. The JDBC DriverManager class then sends all JDBC API calls to the loaded driver.

There are four types of JDBC drivers. Of the four, OneDB JDBC driver is a Type 4 driver
Native-protocol, pure-Java driver, also called Type 4 driver

Converts JDBC API calls directly into the DBMS-specific network protocol without a middle tier

This driver allows the client applications to connect directly to the database server.

Chapter 1. HCL OneDB™ JDBC Driver Guide

Obtaining the JDBC Driver

The HCL OneDB™ JDBC Driver is present in the following locations:

- Download the HCL OneDB™ JDBC Driver for your specific platform from the HCL License and Delivery portal
« Obtain the driver from Maven Central at https://search.maven.org/. The Driver is under the following Maven
Coordinates
<dependency>
<gr oupl d>com hcl . onedb</ gr oupl d>
<artifactld>onedb-jdbc</artifactld>

<ver si on>8. 0. 1. 0</ ver si on>
</ dependency>

HCL OneDB™ JDBC Driver

HCL OneDB™ JDBC Driver is a native-protocol, pure-Java driver that supports the JDBC specification 4.1.
For information about JDBC specification compliance, go to Java technology dependencies .

When you use OneDB® JDBC Driver in a Java™ program to interact with the HCL OneDB™ database, your session connects

directly to the database or database server.

You can use the JDBC driver for Java™ applications that access the HCL OneDB™ database server. The installation includes

onedb- j dbc- conpl et e- <ver si on>. j ar Java library.

Javadoc™ pages describe the HCL OneDB™ extension classes, interfaces, and methods in detail and can be found in the

Javadoc directory of the installation package.

Classes implemented in HCL OneDB™ JDBC Driver

To support DataSource objects and distributed transactions, HCL OneDB™ JDBC Driver provides classes that implement
interfaces and classes for compliance with the Java™ Database Connectivity (JDBC) 4.0 specification.

HCL OneDB™ classes that implement Java™ interfaces

The following table lists the Java™ interfaces and classes and the HCL OneDB™ classes that implement them.

JDBC interface or class HCL OneDB™ class
java.sgl.Connection com.informix.jdbc.IfmxConnection
javax.sql.DataSource com.onedb.jdbcx.OneDBDataSource
javax.sql.XADataSource com.informix.jdbcx.IfxXADataSource
java.sql.ParameterMetaData com.informix.jdbc.lIfxParameterMetaData

HCL OneDB™ JDBC Driver, implements the updateXXX() methods defined in the ResultSet interface by the JDBC 3.0
specification. These methods, such as updateClob, which are further defined in the JDBC specification, require that the

https://hclsoftware.flexnetoperations.com/flexnet/operationsportal/logon.do
https://search.maven.org/
http://download.oracle.com/otndocs/jcp/jdbc-4.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/jdbc-4.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/jdbc-4.0-fr-eval-oth-JSpec/

OneDB JDBC Driver Programmer's Guide

ResultSet object can be updated. The updateXXX() methods allow rows to be updated by using Java™ variables and objects

and extend to include additional JDBC types.

These methods update JDBC types implemented with locators, not the data designated by the locators.

HCL OneDB™ classes that extend the JDBC specification

To support the HCL OneDB™ implementation of SQL statements and data types, HCL OneDB™ JDBC Driver provides classes

that extend the supported JDBC specification (see Java technology dependencies). The following table lists the Java™

classes and the HCL OneDB™ classes that application programs can use to extend them.

JDBC interface or class

HCL OneDB™ class

Adds methods or constants for...

java.lang.Object

com.informix.lang.IfxTypes

Representing data types

java.lang.Object

com.informix.jdbc.lfxStatementTypes

Representing SQL statements

java.lang.Object

com.informix.jdbc.In’cerval1

Interval qualifiers and some
common methods for the next two
classes (base class for the next
two)

java.lang.Object

com.informix.jdbc.IntervaIYM1

Interval year-to-month

java.lang.Object

com.informix.jdbc.In’cervaIDF1

Interval day-to-fraction

java.lang.Object

com.informix.jdbc.lfxSmartBlob

Access methods for smart large
objects

java.lang.Object

com.informix.jdbc.IfxLocator

Large object locator pointer

java.lang.Object

com.informix.jdbc.IfxLoStat

Statistical information about smart

large objects

java.lang.Object

com.informix.jdbc.lfxLobDescriptor

Internal characteristics of smart

large objects

java.lang.Object

com.informix.jdbc.IfxUDTInfo

General information about opaque
and distinct types, detailed

information about complex types

java.sql.Blob

com.informix.jdbc.IfxBblob

Binary large objects

java.sql.CallableStatement

com.informix.jdbc.lfmxCallableStatement

Parameter processing with HCL
OneDB™ types

java.sql.Clob

com.informix.jdbc.IfxCblob

Character large objects

java.sgl.Connection

com.informix.jdbc.lfmxConnection

Opaque, distinct, and complex

types

java.sql.SQLData

com.informix.jdbc.IfxBSONObject '

HCL OneDB™ BSON data type

Chapter 1. HCL OneDB™ JDBC Driver Guide

JDBC interface or class HCL OneDB™ class Adds methods or constants for...

See the IfxBSONObjectDemo.java
program in the

$ONEDB_HOVE/ deno/ bson
directory for examples of how to
insert and query JSON and BSON
data and use the IfxBSONObject
methods.

java.sql.PreparedStatement com.informix.jdbc.lfmxPreparedStatement Parameter processing with HCL
OneDB™ types

java.sql.ResultSet com.informix.jdbc.lfmxResultSet HCL OneDB™ interval data types

java.sqgl.ResultSetMetaData com.informix.jdbc.lfmxResultSetMetaData Columns with HCL OneDB™ data
types

java.sql.SQLInput com.informix.jdbc.IfmxComplexSQLInput Opaque, distinct, and complex
types

java.sql.SQLInput com.informix.jdbc.lfmxUDTSQLInput Opaque, distinct, and complex
types

java.sql.SQLOutput com.informix.jdbc.IfmxComplexSQLOutput Opaque, distinct, and complex
types

java.sql.SQLOutput com.informix.jdbc.IfmxUDTSQLOutput Opaque, distinct, and complex
types

java.sql.Statement com.informix.jdbc.lfmxStatement Single result sets, autofree mode,

statement types, and SERIAL data
type processing

Using the driver in an application

To use HCL OneDB™ JDBC Driver in an application, you must set the Java™ virtual machine (JVM) CLASSPATH to point
to the driver libraries. The CLASSPATH environment variable tells the Java™ virtual machine (JVM) and other applications

where to find the Java™ class libraries used in a Java™ program.

UNIX™

There are two ways to set your CLASSPATH environment variable:

« Add the full or relative path name of onedb- j dbc- conpl et e. j ar to CLASSPATH:

export CLASSPATH=/ pat h/t o/ onedb- j dbc- conpl et e. j ar : $CLASSPATH

OneDB JDBC Driver Programmer's Guide

- Specify the path to the driver in the java or javac -cp command line option CLASSPATH:

java -cp /path/to/onedb-jdbc-conplete.jar ...

Windows™

There are two ways to set your CLASSPATH environment variable:

« Add the full path name of onedb- j dbc- conpl et e. j ar to CLASSPATH:
set CLASSPATH=c: \ pat h\ t o\ onedb-j dbc- conpl et e. j ar ; UCLASSPATHY
« Specify the path to the driver in the java or javac -cp command line option CLASSPATH:

java -cp /path/to/onedb-jdbc-conplete.jar ...

Connect to the database

These topics explain the information you need to use HCL OneDB™ JDBC Driver to connect to the HCL OneDB™ database.

You must first establish a connection to the HCL OneDB™ database server or database before you can start sending queries

and receiving results in your Java™ program.

You establish a connection by completing two actions:

1. Load OneDB® JDBC Driver.

2. Create a connection to either a database server or a specific database in one of the following ways:
> Use a DataSource object.
o Use the DriverManager.getConnection() method.

Using a DataSource object is preferable to using the DriverManager.getConnection() method because a DataSource object is
portable and allows the details about the underlying data source to be transparent to the application. The target data source
implementation can be modified, or the application can be redirected to a different server without affecting the application

code.

A DataSource object can also provide support for connection pooling and distributed transactions. In addition, Enterprise

JavaBeans™ and J2EE require a DataSource object.

Loading the HCL OneDB™ JDBC Driver

The Driver uses an automatic registration mechanism when you load the driver into your application. You should not need to

manually execute any programming logic to 'load' the driver. However if you wish to do so you may

To load HCL OneDB™ JDBC Driver, use the Class.forName() method, passing in the OneDBDriver class name.

try {
Cl ass. f or Name(" com onedb. j dbc. OneDBDri ver") ;

}
catch (Exception e) {
Systemout.println("ERROR failed to | oad OneDB JDBC driver.");

Chapter 1. HCL OneDB™ JDBC Driver Guide

e. printStackTrace();
return;

}

The Class.forName() method loads the HCL OneDB™ implementation of the Driver class, OneDBDriver. OneDBDriver then
creates an instance of the driver and registers it with the DriverManager class.

A DataSource object

HCL OneDB™ JDBC Driver extends the standard DataSource interface to allow connection properties (both the standard

properties and HCL OneDB™ environment variables) to be defined in a DataSource object instead of through the URL.

The following table describes how HCL OneDB™ connection properties correspond to DataSource properties.

HCL OneDB™ connection DataSource property Data type Required? Description

property

HOST host String Yes for client-side The IP address or the host name
JDBC, unless of the computer running the HCL

SQLH_TYPE is OneDB™ database server
defined; no for

server-side JDBC

PORT port int Yes for client-side The port number of the HCL
JDBC, unless OneDB™ database server.
SQLH_TYPE is
defined

DATABASE database String No, however The name of the HCL OneDB™

most applications database to which you want to

would want connect

to specify the

database. If you do not specify the name of a
database, a connection is made to

the HCL OneDB™ database server.

Connections
without a
database

USER user String Yes The user name controls (or
determines) the session privileges
when connected to the HCL
OneDB™ database or database

server

Normally, you must specify
both user name and password;

however, if the user running the

10

OneDB JDBC Driver Programmer's Guide

HCL OneDB™ connection DataSource property Data type Required? Description
property

JDBC application is trusted by the
DBMS, you might omit both.

PASSWORD password String Yes The password of the user

Normally, you must specify both
the user name and the password;
however, if the user running the
JDBC application is trusted by the
DBMS, you might omit both.

Specify connection information

If an LDAP (Lightweight Directory Access Protocol) server or sql host s file provides the IP address, host name, or port
number or service name of the HCL OneDB™ database server through the SQLH_TYPE property, you do not have to specify
them using the standard DataSource properties. For more information, see Dynamically reading the HCL OneDB sglhosts file
on page 23.

Connection Properties

For a list of supported connection properties, see HCL OneDB JDBC Driver properties on page 15. For a list of HCL
OneDB™ DataSource extensions, which allow you to define connection properties, see DataSource extensions on page 213.

The driver does not consult the users environment to determine configuration property values.
High-availability data replication

You can use a DataSource object with High-Availability Data Replication. For more information, see Connections to the

servers of a high-availability cluster on page 25.

Example: Use of a DataSource object in an example program

The following example defines and uses a DataSource object to connect to the database server using key/value pairs as

properties:

i nport com onedb. j dbcx. OneDBDat aSour ce;
i nport com onedb. j dbcx. OneDBPar ans;

OneDBDat aSour ce ds = new OneDBDat aSour ce() ;
ds. set Property(OneDBPar ans. HOST, "l ocal host"); // default is |ocal host
ds. set Property(OneDBPar ans. PORT, "9088"); //default is 9088
ds. set Property(OneDBPar ans. DATABASE, "sysmaster"); //choose a database to connect to
try(java. sgl . Connecti on con = ds. get Connecti on("usernane", "password")) {
// do dat abase work

}
catch (SQ.Exception e) {

Chapter 1. HCL OneDB™ JDBC Driver Guide

e.printStackTrace();

Example: Setting parameters for a OneDBDataSource object using methods

The following are examples of using methods from the OneDBDataSource object to set parameters for establishing a
database connection.

Example 1

OneDBDat aSour ce ds = new OneDBDat aSour ce() ;
ds. set LockTi meout (65) ; /'l wait up to 65 seconds to obtain alock on the server
int waitMde = ds. getLockTi neout ();

The DriverManager.getConnection() method

To create a connection to the HCL OneDB™ database or database server, you can use the DriverManager.getConnection()
method. This method creates a Connection object, which is used to create SQL statements, send them to the HCL OneDB™

database, and process the results.

The DriverManager class tracks the available drivers and handles connection requests between appropriate drivers and
databases or database servers. The url parameter of the getConnection() method is a database URL that specifies the

subprotocol (the database connectivity mechanism), the database or database server identifier, and a list of properties.

A second parameter to the getConnection() method, property, is the property list. See Specify Connection Properties on

page 14 for an example of how to specify a property list.

The following example shows a database URL that connects to a database called testDB from a client application:

j dbc: onedb: //123. 45. 67. 89: 1533/ t est DB; user =onedbsa; passwor d=onedbsapasswor d
The details of the database URL syntax are described in the next section.

The following partial example from the Cr eat eDB. j ava program shows how to connect to database testDB by using
DriverManager.getConnection(). In the full example, the url variable, described in the preceding example, is passed in as a

parameter when the program is run at the command line.

try {
conn = DriverManager . get Connection(url);

}

catch (SQLException e){
Systemout.println("ERROR failed to connect!");
Systemout.println("ERROR " + e.getErrorCode());
e.printStackTrace();

11

12

OneDB JDBC Driver Programmer's Guide

! Important: The only HCL OneDB™ connection type supported by HCL OneDB™ JDBC Driver is tep. Shared memory
and other connection types are not supported. For more information about connection types, see the HCL OneDB™
Administrator's Guide for your database server.

! Important: Not all methods of the Connection interface are supported by HCL OneDB™ JDBC Driver. For a list of

unsupported methods, see Unsupported methods and methods that behave differently on page 56.

Client applications should close the connection when it is finished its work with the database. To improve performance a

connection pool can be used to manage reusable connections to the database.

Format of database URLs

The format of a database URL is determined by whether you are connecting from a client or on the database server.

Note: Starting OneDB JDBC Driver version 8.1.1.3, the use of LDAP to retrieve OneDB server connectivity information
from a stored SQLHost files inside of an LDAP server has been removed.

For connections from a client, use the following format:

i dbc: onedb: // hostname: portnum / database_name; [user=userid; passworD=password] [ONEDB_SERVER=servername; | [

- name=value |

[user =userid; password=password] [; name=value]

hostname
This required parameter specifies the host name of the computer that is running the HCL OneDB™ database

server.

This parameter is required for client-side JDBC, unless the SQLH_TYPE property is defined or the IFXHOST
property is used. This parameter is optional for server-side JDBC.

portnum

This required parameter specifies the port number of the HCL OneDB™ database server.
This parameter is required for client-side JDBC unless the SQLH_TYPE property is defined.

database_name

This required parameter specifies the name of the HCL OneDB™ database to connect to. If you do not specify

the name of a database, a connection is made to the HCL OneDB™ database server.

This parameter is not required but highly recommended that the connection is made to the database the
application is going to use. Connection pool software presumes you connect to a particular database and may

not function correctly if the database name is omitted.

Chapter 1. HCL OneDB™ JDBC Driver Guide

USER=userid
This optional parameter specifies the user ID that is used in connections to the HCL OneDB™ database server.
This parameter is optional, however, if you specify USER then you must also specify the PASSWORD. If you
do not specify the USER and PASSWORD, the driver calls System.getProperty() to obtain the name of the
user currently running the application, and the client is assumed to be trusted. Trusted connections without a

username/password can only be established when the JDBC client application is running on the same host as

the database server.

PASSWORD=password

This optional parameter specifies the password for the specified user ID.
This parameter is optional, however, if you specify password then you must also specify the USER.

name=value

This optional parameter specifies the name-value pair that specifies a value for the HCL OneDB™ properties
that is contained in the name variable, which is recognized by either HCL OneDB™ JDBC Driver or by HCL

OneDB™ database servers. The name variable is not case-sensitive.

For more information, see Specify Connection Properties on page 14 and HCL OneDB JDBC Driver

properties on page 15.

If an LDAP server or sql host s file provides the IP address, host name, or port number through the SQLH_TYPE property, you
do not have to specify them in the database URL. For more information, see Dynamically reading the HCL OneDB sglhosts file

on page 23.
Example

In the following example, the connection syntax for a client-side connection is shown:

j dbc: onedb: //123. 45. 67. 89: 1533/ t est DB;
user =r dt est ; passwor d=t est

IP address in connection URLs
The HCL OneDB™ JDBC Driver, Version 3.0 and later is IPv6 aware.

That is, the code that parses the connection URL can handle the longer (128-bit mode) IPv6 addresses (as well as IPv4
format). This IP address can be a IPv6 literal, for example:

ffe:ffff:ffff:ffff:0:0:0:12

To connect to the IPv6 port with the HCL OneDB™ server, use the system property, for example:

java -Djava. net. preferl Pv6Addresses=true ...

You must create a well-formed URL for the driver to recognize an IPvé6 literal address. Note, in the following example:

13

14

OneDB JDBC Driver Programmer's Guide

» Thej dbc: onedb: // is required.

« The port number is required.

e Thesffe:ffff:ffff:ffff:0::12is notvalidated by the driver. It is passed directly into the Java networking classes
 The 8088 must be a valid number < 32k.

jdbc: onedb: //3ffe:ffff:ffff:ffff:0::12: 8088/ your_dat abase; USER=onedbsa. . .

Specify Connection Properties

When you use the DriverManager.getConnection() method to create a connection, HCL OneDB™ JDBC Driver reads HCL
OneDB™ properties only from the name-value pairs in the connection database URL or from a connection property list. The

driver does not consult the user's environment for any properties.

To specify HCL OneDB™ properties in the name-value pairs of the connection database URL, see Format of database URLs
on page 12.

To specify HCL OneDB™ properties via a property list, use the java.util.Properties class to build the list of properties. The list
of properties might include HCL OneDB™ properties, such as OPTOFC, as well as USER and PASSWORD.

After you have built the property list, pass it to the DriverManager.getConnection() method as a second parameter. You still
need to include a database URL as the first parameter, although in this case you do not need to include the list of properties
in the URL.

The following code shows how to use the java.util.Properties class to set connection properties. It first uses the
Properties.put() method to set the environment variable OPTOFC to 1 in the connection property list; then it connects to the
database.

The DriverManager.getConnection() method in this example takes two parameters: the database URL and the property
list. The example creates a connection similar to the example given in The DriverManager.getConnection() method on
page 11.

The following database URL is passed in as a parameter to the example program when the program is run at the command
line:

j dbc: onedb: // myhost : 1533;
USER=r dt est ; PASSWORD=t est

The code is:

try {
Properties pr = new Properties();
pr.put (" OPTOFC', "1");
conn = DriverMnager. get Connecti on(newlrl, pr);
}
catch (SQ.Exception e) {
System out.println("ERROR failed to connect!");
e.printStackTrace();

Chapter 1. HCL OneDB™ JDBC Driver Guide

HCL OneDB™ JDBC Driver properties

The following table lists most of the HCL OneDB™ properties supported by the client JDBC driver. For server-side JDBC, use

property settings in the database URL rather than setting properties, because the properties would apply to all programs

running in the database server. For more information about properties, see Specify Connection Properties on page 14.

For a list of properties that provide globalization features, see Globalization and date formats on page 178. For a list of

properties useful for troubleshooting, see Tuning and troubleshooting on page 193

HCL OneDB™ JDBC properties

D Description

lue

appendisamCodeToSqlException

f When set to t r ue, the APPENDISAM property appends the ISAM Error

acode and message (if present) to the SQL Exception message, which is

| shown when .toString() or .getMessage() of an SQL Exception is called. The
exception message is shown in the following format:

<SQL ERROR MESSAGE> (<SQLCODE>)
ISAM error: <ISAM MESSAGE> (<ISAM CODE>)

autoCaseSchema

I se

autoFreeCursors

f When set to t r ue, specifies that the Statement.close() method does not
arequire a network round trip to free the database server cursor resources if

| $he cursor has already been closed in the database server.

The database server automatically frees the cursor resources after the
cursor is closed, either explicitly by the ResultSet.close() method or
implicitly through the optOFC property. After the cursor resources have been
freed, the cursor can no longer be referenced. For more information, see The

Auto Free feature on page 67.

batchlnsertPreprocessing

f When set to t rue, enables more efficient bulk inserts on data inserted with
aJDBC API calls for batched inserts. For more information, see Perform bulk

| $eserts on page 44.

certificateVerification

t Validate the certificates used for the encrypted connection

rue

15

OneDB JDBC Driver Programmer's Guide

HCL OneDB™ JDBC properties

D Description

lue

CLIENT_LOCALE

The locale + encoding of the characters the client application wants to
receive from the JDBC driver.

commitBeforelsolationChange

f
Whether you want the driver to automatically commit the current transaction
a

: if it detects you are trying to change the transaction isolation level for the
se

session.

connectionCleanerDelay

1
5Number of milliseconds for the cleaner thread to wait until it looks for more

0(\)JODBC resources to clean up.

Set to 0 or -1 to disable the cleaner thread

customNLSMap Allows new mappings to be defined between NLS and Java development kit
locales and code sets.
For more information, see User-defined locales on page 190.
database The database the connection should be established against.
DB_LOCALE The locale + encoding of the database you are connecting to.
DBANSIWARN f When set to t rue, checks for HCL OneDB™ extensions to ANSI-standard

asyntax

| se

defaultCursorHoldability

2Indicate the default cursor holdability See {@link
ResultSet#HOLD_CURSORS_OVER_COMMIT}.

delimident f When set to t r ue, specifies that strings set off by double quotation marks
aare delimited identifiers
I se

udtCache t When set to t r ue, caches the data type information for opaque, distinct, or

16

riew data types.

Chapter 1. HCL OneDB™ JDBC Driver Guide

HCL OneDB™ JDBC properties D Description

lue

When a Struct or SQLData object inserts data into a column and
getSQLTypeName() returns the type name, the driver uses the cached

information instead of querying the database server.

encrypt f When set to t r ue, enables the connection to use SSL/TLS encryption for
acommunication to the server.

| se

encryptionProtocols T
LOverride the encryption protocols presented to the server using a comma

Sseparated list of valid JDK protocols that are also supported by your

database server
\"

1

2
=
L
S
\'
1
1
=
L
svi
GL_DATETIME
host Specifies the host name or IP address to connect to.
invalidAutoCommitThrowError Throws an exception if you disable autocommit (enabling transactions) on a

non-logged database

17

OneDB JDBC Driver Programmer's Guide

HCL OneDB™ JDBC properties

D Description

lobBufferSize

1Size of buffer used to retrieve large objects from the server
6
384

lobCodesetConversionMemory

-1
The amount of memory used for conversion of character codesets when

processing large objects before using temporary files for caching.

If set to a number greater than or equal to 0, automates code-set conversion
for TEXT and CLOB data types between client and database locales. The
value of this variable determines whether code-set conversion is done

in memory in or in temporary files. If set to 0, code-set conversion uses
temporary files. If set to a value greater than 0, code-set conversion occurs
in the memory of the client computer, and the value represents the number
of bytes of memory allocated for the conversion. For more information, see
Convert with the IFX_CODESETLOB environment variable on page 188.

lobReadonly f Whether BLOB/CLOB objects are forced to be readonly
a
| se
lockTimeout -1
How long (in seconds) to wait on a lock on a server.
-1 Wait Forever
0 Do not wait
>0 Wait X seconds
loginRetries oNumber of times retry establishing a connection to the server

loginTimeout

1#nitial wait time in seconds to connect to the server

metadataReplicationColumn

f Indicate to the server and DatabaseMetaData queries to use the
aifx_replcheck column.

I se

Chapter 1. HCL OneDB™ JDBC Driver Guide

HCL OneDB™ JDBC properties

D Description

metadataUppercaseValues

f Uppercase values from ResultSetMetaData queries
a

I se

optOFC

f When set to t r ue, the ResultSet.close() method does not require a network

around trip if all the qualifying rows have already been retrieved in the clients

| $aple buffer. The database server automatically closes the cursor after all
the rows have been retrieved. HCL OneDB™ JDBC Driver might not have
additional rows in the clients tuple buffer before the next ResultSet.next()
method is called. Therefore, unless HCL OneDB™ JDBC Driver has received
all the rows from the database server, the ResultSet.close() method might

still require a network round trip when OPTOFC is set to t r ue.

padVarchar

f Simulate a CHAR column from a VARCHAR by padding the end of VARCHAR
acolumns to the size of the column.

| se

password

Specifies the password that corresponds to the USER value set.

port

9Specifies the port number to connect to the database server with
088

preparedStatementCacheSize

protocolTraceFile

File path to generate a protocol level trace file for support teams. Only
enable the trace file when directed by a technical support representative.

removeLobTempFilesOnRSClose

f
Remove temporary files used with large objects when the ResultSet is
a

closed.
se

If true when a ResultSet is closed, the temporary files are removed, and any
references to BLOB/CLOB objects that reference those files will no longer

function.

If false, then the temporary files can persist until the connection is closed.

19

OneDB JDBC Driver Programmer's Guide

HCL OneDB™ JDBC properties

D Description

20

replaceUnmappableCharacterSequences

f

What to do if a character is not mappable from the database encoding to the
a

client encoding.
| se

true - replace the character with the charsets default replacement string

fal se - throw an error to indicate unmappable characters are present

resultsBufferSize

40verrides the default setting for the size of the fetch buffer for all data

oexcept large objects.

secondaryServerName

Server name for looking up a secondary server from a SQLHOST file

secondarySwitch

f When set to t r ue, secondary server properties are used to connect to the

asecondary server if the primary server is unavailable.

I se
secondaryHost Host or IP address of the secondary server
secondaryPort Port of the secondary server
serverName Specifies which database server a connection is made to by a client

application when looking up via a SQLHOSTS file

sessionVariables

HCL OneDB™ server allows the setting of many variables at the session
(Connection) level. Instead of executing a SET ENVIRONMENT SQL
statement for each settion variable that needs set, you can specify a comma
separated list of session variables. You end the list with a semi-colon as you

would any other connection property

Below is an example of mixing in a number of session variables along with

normal connection properties.

user =nmyuser ; sessi onVari abl es=AUTOLOCATE = ' 1', EXTDI RECTI VES=OFF ,

force_ddl _exec=" OFF' ; passwor d=nypasswor d

See SET ENVIRONMENT statement for the list of session variables you can
set.

Chapter 1. HCL OneDB™ JDBC Driver Guide

HCL OneDB™ JDBC properties D Description

lue

SQLH_LOC Path to a client SQLHOST file which contains entries on servers the driver

can connect to.

SQLH_TYPE When set to FILE, specifies that database information (such as host-name,
port-number, user, and password) is specified in an sql host s file.

For more information, see Dynamically reading the HCL OneDB sqlhosts file
on page 23.

socketTimeout oHow long to wait in milliseconds for a response on the TCP socket

ver

socketKeepAlive f Enable keep alive on the TCP socket connection
a

| se

serverName 0

tempDir Specifies where temporary files for handling smart large objects are created.

You must supply an absolute path name.

transactionlisolationLevel Defines the degree of concurrency among processes that attempt to access

the same rows simultaneously.

Possible values:

0 Equivalent to TRANSACTI ON_NONE
1 Dirty Read (equivalent to TRANSACTI ON_READ_UNCOVM TTED)
2 Committed Read (equivalent to TRANSACTI ON_READ_COMM TTED

21

OneDB JDBC Driver Programmer's Guide

HCL OneDB™ JDBC properties

D Description

e
f
a
ult
v
a
lue
3 Cursor Stability (equivalent to TRANSACTI ON_READ_COMM TTED)
4 Repeatable Read (equivalent to TRANSACTI ON_REPEATABLE_READ)
5 Committed Read LAST COMMITTED (equivalent to
TRANSACTI ON_LAST_COWM TTED)
8 Equivalent to TRANSACTI ON_SERI ALI ZABLE

Specifying U after the mode means retain update locks. For example, a value
could be: 2u (equivalent to SET | SOLATI ON TO COVM TTED READ RETAI N UPDATE
LOCKS

trimTrailingSpaces

f Removes trailing spaces from character columns queried from the database
aserver

I se

trustStore Specifies the location of the truststore to load by the JDBC driver.

trustStorePassword Specifies the password to the truststore that is being loaded by the JDBC
driver.

trustedContext f When set to t r ue, a trusted connection request is sent from client. Either

aa successful trusted connection is established or the following error is
| seturned from the server: SQ. Exception : -28021(Trusted Connection

request rejected.)

uppercaseMetaDataRSColumnNames

f Return UPPERCASE column names in the link DatabaseMetaData ResultSet
acolumn names.

I se

user

The user which you want to authenticate to the database server with.

For a detailed description of a particular property, see HCL OneDB™ Guide to SQL: Reference.

Code example lockTimeout property

Connection conn = DriverManager. get Connecti on
("jdbc:onedb://I ocal host: 9080/ st or es_deno; user =r dt est ; passwor d=ny_passwd; | ockTi nmeout =15") ;

Chapter 1. HCL OneDB™ JDBC Driver Guide

Code example transactionlsolationLevel property

Connection conn = Driver Manager. get Connection("jdbc: onedb:/ /1 ocal host: 9088;
user =r dt est ; passwor d=my_passwd; t ransacti onl sol ati onLevel =1U") ;

! Important: The isolation property can be set in the URL only when it is an explicit connection to a database.

Dynamically reading the HCL OneDB™ sqlhosts file

HCL OneDB™ JDBC Driver supports the JNDI (Java™ naming and directory interface). This support enables JDBC programs
to access the HCL OneDB™ sql host s file. The sql host s file lets a client application find and connect to the HCL OneDB™
database server anywhere on the network. For more information about this file, see the HCL OneDB™ Administrator's Guide

for your database server.

You can access sql host s data from a local file or from an LDAP server. The system administrator must load the sql host s
data into the LDAP server using the HCL OneDB™ utility.

Your CLASSPATH variable must reference the JNDI JAR (Java™ archive) files and the LDAP SPI (service provider interface)
JAR files. You must use LDAP Version 3.0 or later, which supports the object class extensibleObject.

You can use the sqgl host s file group option to specify the name of a database server group for the value of ONEDB_SERVER.
The group option is useful with High-Availability Data Replication (HDR); list the primary and secondary database servers in
the HDR pair sequentially. For more information on about how to set or use groups in sql host s file, see the HCL OneDB™
Administrator's Guide. For more information about HDR, see Connections to the servers of a high-availability cluster on

page 25.
Connection property syntax

Note: Starting OneDB JDBC Driver version 8.1.1.3, the use of LDAP to retrieve OneDB server connectivity information

from a stored SQLHost files inside of an LDAP server has been removed.

You can let HCL OneDB™ JDBC Driver look up the host name or port number in an LDAP server instead of specifying them in
a database URL or DataSource object directly. You must specify the following properties in the database URL or DataSource
object for the LDAP server:

* SQLH_TYPE=LDAP
« LDAP_URL=Idap://host-name:port-number
host-name and port-number are those of the LDAP server, not the database server.

« LDAP_IFXBASE=Informix-base-DN
* LDAP_USER=user
« LDAP_PASSWD=password

23

OneDB JDBC Driver Programmer's Guide

If LDAP_USER and LDAP_PASSWD are not specified, HCL OneDB™ JDBC Driver uses an anonymous search to search the
LDAP server. The LDAP administrator must make sure that an anonymous search is allowed on the sqgl host s entry. For
more information, see your LDAP server documentation.

Informix-base-DN has the following basic format:

cn=combn- nanme, 0=0r gani zati on, c=country

If common-name, organization, or country consists of more than one word, you can use one entry for each word. For example:

cn=i nf or m x, cn=sof t war e

Here is an example database URL:

j dbc: onedb: ONEDB_SERVER=val ue; SQLH_TYPE=LDAP;
LDAP_URL=I dap: / / davi nci : 329; LDAP_I| FXBASE=cn=i nf or mi X,
cn=sof t war e, o=kmart, c=US; LDAP_USER=abcd; LDAP_PASSWD=secr et

You can also specify the sql host s file in the database URL or DataSource object. The host name and port number or the
service name of the HCL OneDB™ database server as specified in the / et ¢/ ser vi ces file are read from the sql host s file.
You must specify the following properties for the file:

* SQLH_TYPE=FILE
» SQLH_FILE=sqlhosts-filename

The sql host s file can be local or remote, so you can refer to it in the local file system format or URL format. Here are some

examples:

* SQLH_FI LE=ht t p: / / host - nane: port - nunber/ sql hosts. i usSQLH_FI LE=ht t p: / / host - nane: servi ce- nane/ sql hosts. i us

The host-name and port-number or service-name of the HCL OneDB™ database server (from the et ¢/ ser vi ces file)

elements are those of the server on which the sql host s file resides.

* SQLH FILE=file://D:/Ilocal / myown/ sql hosts.ius

* SQLH_FI LE=/ u/ | ocal / sql hosts. i us

Here is an example database URL:

jdbc:inform x-sqgli: ONEDB_SERVER=val ue; SQLH _TYPE=FI LE;
SQ.H_FI LE=/ u/ | ocal / sql hosts. i us

If the database URL or DataSource object references the LDAP server or sql host s file but also directly specifies the IP
address, host name, and port number, then the IP address, host name, and port number specified in the database URL or
DataSource object take precedence. For information about how to set these connection properties by using a DataSource

object, see DataSource extensions on page 213.

24

Chapter 1. HCL OneDB™ JDBC Driver Guide

Administration requirements

Note: Starting OneDB JDBC Driver version 8.1.1.3, the use of LDAP to retrieve OneDB server connectivity information

from a stored SQLHost files inside of an LDAP server has been removed.

If you want the LDAP server to store sql host s information that a JDBC program can look up, the following requirements

must be met:

« The LDAP server must be installed on a computer that is accessible to the client. The LDAP administrator must
create an IFXBASE entry in the LDAP server.

For more information about LDAP directory servers, see:
o www.oracle.com
o www.openldap.org
» The LDAP administrator must make sure that anonymous search is allowed on the sql host s entry. For more

information, see the LDAP server documentation.

Connections to the servers of a high-availability cluster

Using the JDBC driver, Java™ applications can connect to HCL OneDB™ database servers in a high-availability cluster. Java™
applications can also connect to HCL OneDB™ Connection Managers, which can handle failover for high-availability clusters

and redirect connections to cluster servers.

To connect your Java™ application to the servers of a high-availability cluster, you must set properties in the connection
URL or DataSource. If the application performs update operations on secondary servers, configure the application to initially
check for read-only server status.

When you configure HCL OneDB™ Connection Managers to handle connections between your Java™ application server and
high-availability cluster, you get the following benefits:

* You can direct connection requests to the most appropriate secondary server through rule-based redirection policies.

- You can manage failover for your high-availability clusters, automatically promoting a secondary server to the role of
primary server if the primary server fails.

« You can prioritize connections between a specific application server and the primary server of your high-availability
cluster when you install and configure HCL OneDB™ Connection Managers on the same hosts as your Java™
application servers.

« When database servers are behind a firewall, HCL OneDB™ Connection Managers can act as proxy servers, and

handle client/server communication.

You can use high-availability secondary servers with connection pooling. For more information, see High-Availability Data

Replication with connection pooling on page 202.

Demonstration programs are available in the hdr directory within the deno directory where HCL OneDB™ JDBC Driver is

installed. For details about the files, see Sample code files on page 204.

25

26

OneDB JDBC Driver Programmer's Guide

Properties for connecting to high-availability cluster servers through HCL OneDB™
Connection Managers

A JDBC application can connect to Connection Manager, just as the application might connect to a database server.
Application connection requests are then redirected to the most appropriate server in a high-availability cluster.

You can configure multiple Connection Managers, and then create a Connection Manager group entry in sql host file that
is used by the Java™ application server. If one Connection Manager fails, connection requests can be directed to working
Connection Managers. The SQLH_FILE connection property directs the JDBC driver to search for group entries.

To connect to the HCL OneDB™ Connection Manager that then connects to the servers of a high-availability cluster, you must
include the following properties in the connection URL or DataSource:

ONEDB_SERVER=CM or _gr oup_nane
SQLH_TYPE=FI LE
SQLH_FI LE=sql host s
USER=user _nane
PASSWORD=passwor d
Include the following properties in the connection URL to prevent your Java™ applications from waiting indefinitely if a

Connection Manager is running, but has a hung connection.

CONNECT_RETRI ES=val ue
CONNECT_TI MEQUT=val ue
LOG NTI MEQUT=val ue

The values are set based on the network environment.

Example

Example 1: Connecting to a high-availability cluster through the HCL OneDB™ Connection Manager

In this example, you have the following system setup:

« You have a high-availability cluster (my_cluster) that is composed of four servers.
« The user name on all cluster servers is my_user.
» The password on all cluster servers is my_password.

- connection_manager, on cmhost1.example.com uses the following configuration file:

NAME connecti on_manager

CLUSTER my_cl ust er

{
ONEDB_SERVER ny_servers
SLA sl a_primry DBSERVERS=PRI
SLA sl a_secondari es DBSERVERS=SDS, HDR, RSS
FOC ORDER=ENABLED \
PRI ORI TY=1
}

* You have a Java™ application server on host1.example.com, and the Java™ application server uses the following

sgl host file entries:

Chapter 1. HCL OneDB™ JDBC Driver Guide

#dbser ver nanme nettype host nanme servi cenane options
sla_prinmary onsoctcp crmhost 1. exanpl e.com cmport_1
sl a_secondaries onsoctcp cmhost 1. exanpl e.com cmport_1
« If the initial connection attempt by the client fails, you want it to retry two times.
* You want the CONNECT statement to wait 10 seconds to establish a connection.

« You want the connection to fail if the server port is polled and does not connect within 10 milliseconds.

To connect the Java™ application client to the primary server of my_cluster, use the following URL:

j dbc: onedb: // ONEDB_SERVER=s| a_pri nary;
SQ.H_TYPE=FI LE; SQLH_FI LE=sql host s;
USER=ny_user _name; PASSWORD=ny_passwor d;
CONNECT_RETRI ES=2; CONNECT_TI MEQUT=10; LOG NTI MEQUT=10

To connect the Java™ application client to a secondary server of my_cluster, use the following URL:

j dbc: onedb: / / ONEDB_SERVER=s| a_secondari es;
SQ.H_TYPE=FI LE; SQLH_FI LE=sql host s;
USER=ny_user _nane; PASSWORD=ny_passwor d;
CONNECT_RETRI ES=2; CONNECT_TI MEQUT=10; LOQd NTI MEQUT=10

Example

Example 2: Connecting to a high-availability cluster through HCL OneDB™ Connection Managers

In this example, you have the following system setup:

« You have a high-availability cluster (my_cluster) that is composed of four servers.

» The user name on all cluster servers is my_user.

« The password on all cluster servers is my_password.

- connection_manager_1, on cmhost1.example.com uses the following configuration file for client redirection and

failover:

NAME connecti on_manager _1

CLUSTER ny_cl uster

{
ONEDB_SERVER ny_servers
SLA sla_primary_1 DBSERVERS=PRI
FOC ORDER=ENABLED \
PRI ORI TY=1
CVALARMPROGRAM $ONEDB_HOVE/ et ¢/ CVALARMPROGRAM sh
}

« connection_manager_2, on cmhost2.example.com uses the following configuration file for client redirection and

failover:

NAME connecti on_manager _2

CLUSTER ny_cl uster
{

27

28

OneDB JDBC Driver Programmer's Guide

ONEDB_SERVER my_servers
SLA sl a_prinmary_1 DBSERVERS=PRI
FOC ORDER=ENABLED \
PRI ORI TY=2
CVALARMPROGRAM $ONEDB_HOME/ et ¢/ CMALARMPROGRAM sh

}

- You have a Java™ application server on host1.example.com, and the Java™ application server uses the following

sql host file entries:

#dbser ver nanme nettype host nane servi cenane options
g_primary group - - c=1,e=sla_primry_2
sla_primary_1 onsoctcp cnhostl. exanpl e.com cmport_1 g=g_prinary
sla_primary_2 onsoct cp cnmhost 2. exanpl e.com cmport_2 g=g_pri mary

« If the initial connection attempt by the client fails, you want it to retry two times.
* You want the CONNECT statement to wait 10 seconds to establish a connection.

« You want the connection to fail if the server port is polled and does not connect within 10 milliseconds.

To connect the Java™ application client to the primary server of my_cluster through either connection_manager_1 or
connection_manager_2, use the following URL:
j dbc: onedb: // ONEDB_SERVER=g_pri nary;
SQLH_TYPE=FI LE; SQLH_FI LE=sql host s;

USER=my_user _name; PASSWORD=my_passwor d;
CONNECT_RETRI ES=2; CONNECT_TI MEQUT=10; LOG NTI MEQUT=10

Properties for connecting to high-availability cluster servers through SQLHOST file group
entries

You can define sql host group entries, so that your application connection attempt is always directed to the primary server
of a high-availability cluster, even if failover occurs.

To connect to the primary server of a high-availability cluster, include the following properties in the connection URL or
DataSource:

ONEDB_SERVER=gr oup_nane
SQLH TYPE=FI LE
SQLH_FI LE=sql host s
USER=user _nane
PASSWORD=passwor d
An exception is thrown if the JDBC driver cannot find a primary server in the group.

Enforcing connections to the primary server is enabled for HCL OneDB™, Version 9.40.xC6 and later only.

Example

Example: Connecting to the primary server of a high-availability cluster through SQLHOST file group
entries

In this example, you have the following system setup:

Chapter 1. HCL OneDB™ JDBC Driver Guide

« You have a high-availability cluster (my_cluster) that is composed of four servers:
- server_1 (primary), on host1.example.com
- server_2 (shared-disk secondary), on host1.example.com
- server_3 (HDR), on host2.example.com
- server_4 (Remote-standalone secondary), on host3.example.com
» The user name on all cluster servers is my_user.
« The password on all cluster servers is my_password.
« You have a Java™ application server on host4.example.com. The server uses the following sqgl host file entries:

#dbser ver name nettype host nanme servi cenane opti ons
nmy_servers - - c=1, e=server_4
server_1 onsoct cp host 1. exanpl e.com port_1 g=ny_servers
server_2 onsoctcp host1.exanple.com port_2 g=ny_servers
server_3 onsoct cp host 2. exanpl e.com port_3 g=ny_servers
server_4 onsoct cp host 3. exanpl e.com port_4 g=ny_servers

To connect the Java™ application client to the primary server of my_cluster, use the following URL:

j dbc: onedb: // ONEDB_SERVER=ny_servers;
SQLH _TYPE=FI LE; SQLH_FI LE=sql host s;
USER=my_user _name; PASSWORD=ny_passwor d

Properties for connecting directly to an HDR pair of servers

You can define your client application's connection URL or DataSource so that your application connects directly to an HDR
pair of servers. If a connection attempt to the primary server fails, the client application can attempt to connect to the HDR

secondary server.

To connect directly to a primary server and HDR secondary server, include the following properties in the connection URL or
DataSource:

ONEDB_SERVER=pri mary_server _nane

| NFORM XSERVER_SECONDARY=secondary_server _nane

| FXHOST_SECONDARY=secondar y_host _nane

PORTNO_SECONDARY=secondar y_port _nunber

USER=user _nane

PASSWORD=passwor d

ENABLE _HDRSW TCH=t r ue

If you are setting values in the DataSource, you must also include the following values:
| FXHOST=pr i mar y_host _nane

PORTNO=pr i nary_port _nunber

When you are using a DataSource object, you can set and get the secondary server connection properties with setXXX() and
getXXX() methods. These methods are listed with their corresponding connection property in Read and write properties on
page 213.

29

OneDB JDBC Driver Programmer's Guide

You can manually redirect a connection to the secondary server in an HDR pair by editing the ONEDB_SERVER, PORTNO, and
IFXHOST properties in the DataSource or by editing the ONEDB_SERVER property in the URL. Manual redirection requires
editing the application code and then restarting the application.

Example

Example: Connecting to an HDR pair of servers

The following example shows a connection URL for a primary server that is named server_1 and an HDR secondary server
that is named server_2:
jdbc: onedb: // nmy_host: ny_port/ nmy_dat abase;
ONEDB_SERVER=ser ver _1; | NFORM XSERVER_SECONDARY=ser ver _2;
| FXHOST_SECONDARY=host 2. exanpl e. comj PORTNO_SECONDARY=port _2;

user =my_nane; passwor d=my_passwor d;
ENABLE_HDRSW TCH=t r ue

Checks for read-only status of high-availability secondary servers

You can write applications to check for read-only server status, so that update operations are not attempted on read-only

secondary servers.

The HCL OneDB™ JDBC driver has extension methods to the java.sql.Connection class that provide a way to check the HDR
secondary server's status. Users can type cast connection objects to 'com.informix.jdbc.IfmxConnection’ to access the
following extension methods.

Information obtained Method signature Additional information
Whether the server is read-only | public boolean is ReadOnly() throws Returns true if the active server is a
(a secondary server) SQLException secondary server

Returns an exception if a database access

error occurs

If ENABLE_HDRSWITCH is set to false,
isReadOnly() returns the value that is
initially set after the last successful HDR

connection was obtained.

Whether HDR is enabled public boolean is HDREnabled() Returns true if both servers in the HDR pair

are available

Returns false if one of the servers is

unavailable
The type of the server public string getHDRtype() Returns primary or standard for a primary
(primary, secondary, or server, secondary for a secondary server

standard)

Chapter 1. HCL OneDB™ JDBC Driver Guide

Information obtained Method signature Additional information

The database administrator can manually
reset the type of the server.

For example, you can use one of the following strategies:

« Use the isReadOnly() method before each SQL statement that might contain an update operation. If the value of
isReadOnly() is t r ue, perform an appropriate action, such as sending an error message to the user or notifying the
server administrator.

* You call the isReadOnly() method after you establish a connection and then set a flag, like READ_ONLY, and then
perform operations that are based on the flag value.

An administrator can manually switch a secondary server to a primary server to allow update operations. However, the server

must be shut down in the process, which can cause uncommitted transactions to be lost.

Connection retry attempts to HDR secondary servers

You can write applications so that if a connection is lost during query operations, HCL OneDB™ JDBC Driver returns a new
connection to the secondary database server and the application reruns the queries.

The following example shows how to retry a connection with the secondary server information, and then rerun an SQL
statement that received an error because the primary server connection failed:

public class HDRConnect {
static |fmkConnection conn;

public static void main(String[] args)

{
get Connection(args[0]);
doQuery(conn);
cl oseConnection();
}
static void getConnection(String url)
{
Cl ass. for Name("com i nform x.jdbc. |fxDriver");
conn = (I fnmxConnection)DriverManager . get Connection(url);
}
static void cl oseConnecti on()
{
try
{
conn. cl ose();
}
catch (SQLException e)
{

31

32

OneDB JDBC Driver Programmer's Guide

Systemout.println("ERROR failed to close the connection!");

return;
}
}
static void doQuery(Connection con)
{
int rc=0;
String crmd=nul | ;
Statenment stnt = null;
try
{
/'l execute sone sql statenent
}
catch (SQLException e)
{
if (e.getErrorCode() == -79716) || (e.getErrorCode() == -79735)
/] systemor internal error
{
/1 This is expected behavior when primary server is down
get Connection(url);
doQuery(conn);
}
el se
System out. println("ERROR execution failed - statement: " + cnd);
return;
}
}

Specify where LDAP lookup occurs

Note: Starting OneDB JDBC Driver version 8.1.1.3, the use of LDAP to retrieve OneDB server connectivity information
from a stored SQLHost files inside of an LDAP server has been removed.

When used with other LDAP keywords, the SQLH_LOC keyword indicates where an LDAP lookup occurs.

SQLH_LOC can have a value of either cLI ENT or PROXY. If the value is cLI ENT, the driver performs the LDAP lookup on the client
side. If the value is PROXY, the proxy performs the lookup on the server side. If no value is specified, the driver uses CLI ENT as
the default value.

Here is the format for an applet or application URL with LDAP keywords that specifies a server-side LDAP lookup:

jdbc:inform x-sqli: ONEDB_SERVER=i nf or m x- server - nane;

PROXY=pr oxy- host name- or - i p- addr ess: pr oxy- port-no?

PROXYTI MEQUT=60; SQLH_TYPE=LDAP; LDAP_URL=| dap:

/ /'l dap- host nane- or -i p- addr ess: | dap- port - no; LDAP_|I FXBASE=dc=nydonai n, dc=com
SQLH_LOC=PROXY;

This example obtains the database server host name and port from an LDAP server:

Chapter 1. HCL OneDB™ JDBC Driver Guide

jdbc:inform x-sqgli: ONEDB_SERVER=sansar a; SQLH _TYPE=LDAP;
LDAP_URL=l dap: // davi nci : 329; LDAP_I| FXBASE=cn=i nf or m X,

o=kmart, c=US; LDAP_USER=abcd; LDAP_PASSWD=secr et ; SQLH_LOC=PROXY;
PROXY=webser ver: 1462

For a complete example of using an LDAP server with the proxy, see the pr oxy applet and application in the deno directory
where your JDBC driver is installed.

Specify sqglhosts file lookup

The SQLH_LOC keyword also applies to sql host s file lookups when you are using the proxy. If the URL includes SQLH_LOC
=PROXY, the driver reads the sql host s file on the server. If SQLH_LOC =PROXY is not specified, the driver reads the file on
the client.

This example obtains the information from an sql host s file on the server:

jdbc:inform x-sqgli: ONEDB_SERVER=sansar a; SQLH _TYPE=FI LE;
SQ.H_FI LE=/ wor k/ 9. x/ et c/ sqgl host s; SQLH_LOC=PROXY;
PROXY=webser ver: 1462

Encryption options

You can use either password (SECURITY=PASSWORD) or network encryption to establish the security of your connection.
To use either the password option or to use network encryption, you must have a Java™ Cryptography Extension (JCE)-

compliant encryption services provider installed in your Java™ runtime environment.

It is recommended that you do not mix security packages on the same client. The following topics describe how to configure

each package.

Connecting JDBC applications with SSL
You can configure database connections for the HCL OneDB™ JDBC Driver to use the Secure Sockets Layer (SSL) protocol.

Before you begin
The client must use the same public key certificate file as the server.

1. Create a truststore: Use the keytool utility that comes with your Java™ runtime environment to import a client-side

keystore database and add the public key certificate to the keystore.

C.\wor k>keytool -inportcert -file filenanme. extension -keystore .keystore

Follow the prompts to enter a new keystore password and to trust the certificate.
2. Define the truststore location: Configure an SSL/TLS connection to the database from your Java™ application by
using the following options:

Option 1: Use system properties

Set the location and password of the truststore using Java system properties.

33

OneDB JDBC Driver Programmer's Guide

Note: These settings apply to all the SSL connections made from this application.

C.\wor k>j ava -Dj avax. net.ssl.trustStore=/opt/ids/.keystore
- Dj avax. net . ssl . trust St or ePasswor d=password -j ar yourapplication.jar

or set the location and password inside the java code using the System.setProperty API.

Syst em set Property("javax. net.ssl.trustStore", "/opt/ids/.keystore");
Syst em set Property("javax. net.ssl.trust St orePassword", "password");

Option 2: Use a DataSource object

Define "per connection" the truststore location and password using a DataSource object by using the setTrustStore
and setTrustStorePassword methods on the IfxDataSource object.

OneDBDat aSour ce ds = new OneDBDat aSour ce() ;
ds. set Trust Store("/opt/ keystore");

ds. set Trust St or ePasswor d(" passwor d") ;

/1 Add your additional connection details

Option 3: Pass in through the connection URL

If you do not use a DataSource object you can pass in the truststore and password via URL properties using
SSL_TRUSTSTORE=/opt/ids/.keystore and SSL_TRUSTSTORE_PASSWORD=password

Connection ¢ = Driver Manager. get Connecti on("j dbc: onedb: // | ocal host: 9089/ nydat abase;
SSL_TRUSTSTORE=/ opt / keyst or e; SSL_TRUSTSTORE_PASSWORD=passwor d

3. Declare the connection for SSL: This is set per connection and can be done through the DataSource or the URL.
Option 1: Use a DataSource object

OneDBDat aSour ce ds = new OneDBDat aSour ce() ;
ds. set Encrypt (true);

Option 2: Pass in through the connection URL

Connection ¢ = DriverManager. get Connecti on("j dbc: onedb: // | ocal host: 9089/ nydat abase;
encrypt =true;

Example

JDBC sample for SSL connection

This sample Java™ program highlights the operations that are required to connect to the stores_demo database by using
SSL.

inport java.sql.Connection;
inmport java.sql.SQLException;

i nport com onedb. j dbcx. OneDBDat aSour ce;

public class SSLConnecti onExanple {

Chapter 1. HCL OneDB™ JDBC Driver Guide

public static void main(String[] args) {

/* System properties for keystore */

/* you can set this here for your whole systemor you can set on */
/* the data source (show below) or directly on your connection */
/* properties using SSL_TRUSTSTORE and SSL_TRUSTSTORE PASSWORD */
System set Property("javax.net.ssl.trustStore", "/path/to/keystore");
System set Property("javax. net.ssl.trust StorePassword", "password");

/* Instantiate OneDB data source */
OneDBDat aSour ce ds = new OneDBDat aSour ce() ;

ds. set User (" dbuser");

ds. set Passwor d(" password") ;
ds. set Dat abase("stores_demn");
ds. set Port (9888);

/* Enabl e SSL/TLS (required when using SSL/TLS) */
cds. set Encrypt (true);

/* Optional if you don't set a system property */

/* You can set the trust store and password in the data source */
cds. set Trust Store("/opt/keystore");

cds. set Trust St or ePasswor d(" password") ;

try (Connection conn = ds. get Connection()) {
Systemout. println(" Successfully connected to database using SSL Connection");

Systemout. println(" Database version ...: " + conn.getMtaData().getDatabaseProductVersion());
} catch (SQLException e) {

Systemerr.println("Error Message : " + e.getMessage());

Systemerr.println("Error Code " + e.getErrorCode());
}

}
}

PAM authentication method

The HCL OneDB™ JDBC Driver, Version 2.21. JC5 and later, implements support for handling PAM (Pluggable
Authentication Module)-enabled HCL OneDB™ server 9.40 and later servers. This implementation supports a challenge-
response dialog between PAM and the end user. To facilitate this dialog, the JDBC developer must implement the
com.informix.jdbc.IfmxPAM interface. The IfxPAM() method in the IfmxPAM interface acts as the gateway between PAM
and the user.

The IfxPAM() method is called when the JDBC server encounters a PAM challenge method. The return value from the
IfxPAM() method acts as the response to the challenge message and is sent to PAM.

The signature for the IfxPAM() method is:

public | fxPAVMResponse | fxPAM | fxPAMChal | enge chal | engeMessage)

Two classes, IfxPAMChallenge and IfxPAMResponse, usher messages between the JDBC driver and PAM. The
IfxPAMChallenge class contains the information that has been sent from PAM to the user.

The challenge message is obtained from the IfxPAMChallenge class by using the getChallenge() method. This message is
what is sent directly from PAM running on HCL OneDB™ server to be routed to the end user. The challenge messages are
listed in the following table.

35

OneDB JDBC Driver Programmer's Guide

Table 1. Types of challenge messages

Message Description

PAM_PROMPT_ECHO_ON The message is displayed to the user and the users response can be
echoed back.

PAM_PROMPT_ECHO_OFF The message is displayed to the user and the users response
is hidden or masked (that is, when the user enters a password,
asterisks are displayed instead of the exact characters the user

types).

PAM_PROMPT_ERROR_MSG The message is displayed to the user as an error, with no response
required.

PAM_TEXT_INFO_MSG The message is displayed to the user as an informational message,

with no response required.

The challenge message type is governed by the PAM standard and can have vendor-specific values. See the PAM standard

and vendor-specific information for possible values and interpretations.

The PAM standard defines the maximum size of a PAM message to be 512 bytes
(IfxPAMChallenge.PAM_MAX_MESSAGE_SIZE).

The IfxPAMResponse class is similar to IfxPAMChallenge, but instead of being used by PAM to send a message to the
user, the IfxPAMResponse class is used to send a message from the user to PAM. Use the IfxPAMResponse.setResponse()
method to send the challenge-response string to PAM. However, set the response type (which is set by using the

IfxPAMResponse.setResponseType() method) to zero, the default, as the response type is currently reserved for future use.

The challenge-response string is limited to the size of the challenge message: IfxPAMResponse.PAM_MAX_MESSAGE_SIZE
or 512 bytes. If the response string exceeds this limit, an SQL exception is thrown.

Additionally, when the challenge message is of type PAM_INFO_TEXT or PAM_PROMPT_ERR_MSG (see PAM standards for
meaning and integer values), PAM expects no user response. Thus, a null IlxPAMResponse object or one that has not been
set with specific values can be returned to JDBC. The IfxPAMResponse class provides the following method to allow the

JDBC developer to stop the connection attempt during a PAM session:

public void set Term nat eConnecti on(bool ean fl ag)

The value of the flag can be TRUE or FALSE. If the value of the parameter passed to setTerminateConnection is TRUE, then
the connection to the PAM-enabled HCL OneDB™ server immediately terminates upon returning from IfxPAM(). If the value is

set to FALSE, then the connection attempt to the PAM-enabled server continues as usual.

PAM in JDBC

JDBC developers using PAM to communicate with a PAM-enabled HCL OneDB™ server must implement the

com.informix.jdbc.IfmxPAM interface. To do so, put the following on the class declaration line in a Java™ class file:

i npl erents | f nkPAM

Chapter 1. HCL OneDB™ JDBC Driver Guide

That Java™ class must then implement the IfmxPAM interface conforming to Java™ standards and the details provided
previously. The next step is to inform the JDBC driver what Java™ class has implemented the IfmxPAM interface. There are
two ways to do this:

« Add the key-value pair IFX_PAM_CLASS=your.class.name to the connection URL, where the value your.class.name is

the path to the class that has implemented the IfmxPAM interface.

This method is typically used when connecting to the HCL OneDB™ server by using the DriverManager.getConnection
(URL) approach.

« Add the property IFX_PAM_CLASS with the value your.class.name to your properties list before attempting the
connection to the PAM-enabled server.

This method is used when connecting to the HCL OneDB™ server by using the DataSource.getConnection() approach.

JDBC developers have a wide latitude in implementing the IfmxPAM interface. The following actions happen during
authentication that uses PAM:

1. The JDBC driver, when detecting communication with a PAM-enabled server, contacts the IfxPAM() method and
passes it a IfxPAMChallenge object containing the PAM challenge question.

2. A dialog box you create appears with a text question containing the challenge message that was sent by PAM.

3. When the user furnishes the response, it is packaged into an IfxPAMResponse object, and it is returned to the JDBC
driver by exiting the IfxPAM() method returning the IfxPAMResponse object.

4. When PAM receives the response from the challenge question, it can authorize the user, deny access to the user, or

issue another challenge question, in which case the previous process is repeated.

This process continues until either the user is authorized or the user is denied access. The Java™ developer or user can
terminate the PAM authorization sequence by calling the IfxPAMResponse.setTerminateConnection() method with a value of
TRUE.

Perform database operations

These topics explain what you need to use HCL OneDB™ JDBC Driver to perform operations against the HCL OneDB™
database.

Query the database

HCL OneDB™ JDBC Driver complies with the JDBC API specification for sending queries to a database and retrieving the
results. The driver supports most of the methods of the Statement, PreparedStatement, CallableStatement, ResultSet, and
ResultSetMetaData interfaces.

Example of sending a query to the HCL OneDB™ database

The following example shows how to use the PreparedStatement interface to execute a SELECT statement that has one
input parameter:

37

38

OneDB JDBC Driver Programmer's Guide

try(PreparedStatenent pstnt = conn. prepareStatenment ("SELECT tabi d FROM systabl es WHERE tablid = ?")

{
pstnt.setint (1, 11);
try(ResultSet r = pstnt.executeQuery()) {
while(r.next()) {
int i =r.getlnt(1);
Systemout. println("Select: colum tabid =" + i);

}
catch (SQ.Exception e) {
System out. println("ERROR Fetch statement failed: " +
e. get Message());

The program first uses the Connection.prepareStatement() method to prepare the SELECT statement with its single input
parameter. It then assigns a value to the parameter by using the PreparedStatement.setint() method and executes the query
with the PreparedStatement.executeQuery() method.

The program returns resulting rows in a ResultSet object, through which the program iterates with the ResultSet.next()
method. The program retrieves individual column values with the ResultSet.getInt() method, since the data type of the
selected column is INTEGER.

Finally, both the ResultSet and PreparedStatement objects are implicitly closed with the appropriate using Java's try-with-

resources block to close any object that implements java.lang.AutoCloseable

For more information about which getXXX() methods retrieve individual column values, see Data type mapping for
ResultSet.getXXX() methods on page 229.

Reoptimize queries

When you prepare SELECT, EXECUTE FUNCTION, or EXECUTE PROCEDURE statements, the database server uses a query
plan to optimize the query. If you later modify the data that is associated with the prepared statement, you can compromise

the effectiveness of the query plan for that statement. However, when you change the data, you can reoptimize your query.

You can reoptimize a query by setting the OneDB® JDBC Driver extension method to reuse the PreparedStatement

object but reoptimize the previously prepared query plan. Alternatively, you can create a new PreparedStatement object.
Reoptimizing an existing PreparedStatement object, which rebuilds only the query plan, has the following advantages over
creating a new PreparedStatement object, which rebuilds the whole statement:

- Uses fewer resources
 Reduces overhead
* Requires less time

To enable reoptimization, set the withReoptimization argument to the IfmxPreparedStatement.executeQuery() method to
true. The executeQuery() method has the following format:

Chapter 1. HCL OneDB™ JDBC Driver Guide

com i nform x. j dbc. | f nxPrepar edSt at enent . execut eQuer y(bool ean wi t hHol d,
bool ean wi t hReOpti m zati on)

The following query uses the IfmxPreparedStatement.executeQuery() method to enable reoptimization:

Connection conn = Driver Manager . get Connecti on(URL) ;
cominform x.jdbc. | fnxPreparedStatenent pStnt =
(cominformx.jdbc. | fnxPreparedSt at enent)
conn. prepar eSt at enent (" SELECT * FROM cust oner");
ResultSet rs = pStnt.executeQuery(false, true);

Returning Query Results as Java Streams with BSON

The HCL OneDB™ JDBC Driver can simplify converting trasitional ResultSet objects into JSON/BSON structures using Java
Streams via Statement or PreparedStatement objects. After creating a Statement or PreparedStatement you can use the

extended classes to access a set of methods for streaming the rows of the database as BSON records.

Java applications can access the stream(...) methods by casting the Statement or PreparedStatement to the HCL OneDB™
JDBC Driver implementation classes. By default each row is streamed from the Driver (using the normal fetch buffers), but
you can override this to prefetch all rows BEFORE the streams API starts processing.

Once you have a java.util.Stream object (Seehttps://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html), you
can use the Java Streams API to process each row.

Each row of a database table is represented by a BSON object represented by the IfxBSONODbject class. See the Javadocs for
the list of methods for IfxBSONObject.

The example below shows how to cast the Statement object from the connection and issue a query that returns a Stream.

try(lfxStatement s = connection.createStatenment().unwap(lfxStatenent.class)) {
String sql = "SELECT tabnane, tabid from systables where tabid < 10";
System out . println(s.strean(sql)
.count()); // Prints 9
System out. println(s.strean(sqgl, |fxStatenment. STREAMS FETCH NG PREFETCH) //Prefetch all rows.
Opt i onal
.count()); // Prints 9
s.strean(sql).forEach(Systemout::printlin); //prints each row as a JSON obj ect

Data types supported

The streaming of results only works with a subset of datatypes that can be mapped into a BSON object. See the

documentation on BSON objects to understand the mappings.

Supported Types Description

CHAR/VARCHAR/LVARCHAR

int/smallint/decimal/double/r

eal

39

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

OneDB JDBC Driver Programmer's Guide

Supported Types Description

BLOB/CLOB Yout get the large object reference ID, which can be used to query the entire large object
separately.

SET/MULTISET/LIST

DATE/DATETIME

Result sets

The HCL OneDB™ JDBC Driver implementation of the Statement.execute() method returns a single ResultSet object.
Because the server does not support multiple ResultSet objects, this implementation differs from the JDBC API
specification, which states that the Statement.execute() method can return multiple ResultSet objects.

Returning multiple Result Sets is not supported by the HCL OneDB™ JDBC Driver.

Scrollable result set for multiple rows

The Scrollable ResultSet fetches one row at a time from the server. A performance enhancement for Scrollable ResultSet

allows multiple rows to be fetched at one time. In the following example, where the rows m through n are desired, the

following fetches the rows into a ResultSet. As long as only rows between m and n inclusive are accessed, no further fetches

occur. In this example, the rows 50 through 100 are desired and the ResultSet is SCROLL_INSENSITIVE:
rs.setFetchSize(51);

rs.absolute(49); // one row w |l be fetched
rs.next() // rs will contain 51 rows

HCL OneDB™ only fetches in the forward direction and only fetches one row, except when a DIR_NEXT fetch is used to
fetch rows. For a DIR_NEXT operation, the server sends rows until the fetch buffer is filled or until the last row is sent. Only

ResultSet.next() can generate a DIR_NEXT operation.

This performance enhancement does not change the behavior of FORWARD_ONLY ResultSets. The calculation of the size of

the fetch buffer is unchanged.

For SCROLL_INSENTIVE ResultSets, the size of the fetch buffer is determined by the fetch size and row size.
Statement.setFetchSize() and ResultSet.setFetchSize() can be used to set the fetch size. If fetch size is zero, the default

fetch buffer size is used. The fetch buffer size is limited to 32 K.

Certain ResultSet methods require information about the number of rows generated by the query. The methods might result
in fetching a row to obtain the information and then refetching the current row. The methods are isBeforeFirst(), isLast(), and

absolute(-row).

Additionally, setMaxRows() can change the fetch buffer size for SCROLL_INSENSITIVE ResultsSets. Because additional
server support is required to ensure efficient use of setMaxRows(), it is recommended that ResultSet.setMaxRows() is not

used as this time.

40

Chapter 1. HCL OneDB™ JDBC Driver Guide

Deallocate resources

Close a Statement, PreparedStatement, and CallableStatement object by calling the appropriate close() method in your
Java™ program when you have finished processing the results of an SQL statement. This closure immediately deallocates
the resources that have been allocated to execute your SQL statement. Although the ResultSet.close() method closes the
ResultSet object, it does not deallocate the resources allocated to the Statement, PreparedStatement, or CallableStatement
objects.

It is good practice to call ResultSet.close() and Statement.close() methods when you have finished processing the results of
an SQL statement, to indicate to HCL OneDB™ JDBC Driver that you are done with the statement or result set. When you do
so, your program releases all its resources on the database server. It is, however, not required to call ResultSet.close() and

Statement.close() specifically, as long as you call to Connection.close(), which takes care of releasing these resources.

Execute across threads

The same Statement or ResultSet instance cannot be accessed concurrently across threads. You can, however, share a

Connection object between multiple threads.

For example, if one thread executes the Statement.executeQuery() method on a Statement object, and another thread
executes the Statement.executeUpdate() method on the same Statement object, the results of both methods are unexpected

and depend on which method was executed last.

Similarly, if one thread executes the method ResultSet.next() and another thread executes the same method on the same

ResultSet object, the results of both methods are unexpected and depend on which method was executed last.

Scroll cursors

The scroll cursors feature of HCL OneDB™ JDBC Driver follows the JDBC 3.0 specification, with these exceptions:

Scroll sensitivity

The HCL OneDB™ database server implementation of scroll cursors places the rows fetched in a temporary table. If another
process changes a row in the original table (assuming the row is not locked) and the row is fetched again, the changes are
not visible to the client.

This behavior is similar to the SCROLL_INSENSITIVE description in the JDBC 3.0 specification. HCL OneDB™ JDBC Driver
does not support SCROLL_SENSITIVE cursors. To see updated rows, your client application must close and reopen the

cursor.

Client-side scrolling

The JDBC specification implies that the scrolling can happen on the client-side result set. HCL OneDB™ JDBC Driver supports
the scrolling of the result set only to the extent that the database server supports scrolling.

41

42

OneDB JDBC Driver Programmer's Guide

Result set updatability

The JDBC 3.0 API does not provide exact specifications for SQL queries that yield result sets that can be updated. Generally,

queries that meet the following criteria can produce result sets that can be updated:

« The query references only a single table in the database.

« The query does not contain any JOIN operations.

» The query selects the primary key of the table it references.

- Every value expression in the select list must consist of a column specification, and no column specification can
appear more than once.

« The WHERE clause of the table expression cannot include a subquery.

HCL OneDB™ JDBC Driver relaxes the primary key requirement, because the driver performs the following operations:

1. The driver looks for a column called ROWID.
2. The driver looks for a SERIAL, SERIALS, or BIGSERIAL column in the table.

3. The driver looks for the tables primary key in the system catalogs.

If none of these is provided, the driver returns an error.

When you delete a row in a result set, the ResultSet.absolute() method is affected, because the positions of the rows change

after the delete.

When the query contains a SERIAL column and the data is duplicated in more than one row, execution of updateRow() or

deleteRow() affects all the rows containing that data.

The Scrol | Cursor. j ava example file shows how to retrieve a result set with a scroll cursor. For examples of
how to use a scrollable cursor that can be updated, see the Updat eCur sor 1. j ava, Updat eCur sor 2. j ava, and
Updat eCur sor 3. j ava files.

Hold cursors

When transaction logging is used, HCL OneDB™ generally closes all cursors and releases all locks when a transaction ends.

In a multiuser environment, this behavior is not always desirable.

HCL OneDB™ JDBC Driver had already implemented holdable cursor support with HCL OneDB™ extensions. HCL OneDB™
database servers (5.x, 7., SE, 8.x, 9.x, and 10.x, or later) support adding keywords WITH HOLD in the declaration of the
cursor. Such a cursor is referred to as a hold cursor and is not closed at the end of a transaction.

HCL OneDB™ JDBC Driver, in compliance with the JDBC 3.0 specifications, adds methods to JDBC interfaces to support
holdable cursors.

For more information about hold cursors, see the HCL OneDB™ Guide to SQL: Syntax.

Chapter 1. HCL OneDB™ JDBC Driver Guide

Update the database

You can issue batch update statements or perform bulk inserts to update the database.

Perform batch updates

The batch update feature is similar to multiple HCL OneDB™ SQL PREPARE statements. You can issue batch update
statements as in the following example:
PREPARE stnmt FROM "insert into tab values (1);

insert into tab val ues (2);
update table tab set col = 3 where col = 2";

The batch update feature in HCL OneDB™ JDBC Driver follows the JDBC 3.0 specification, with these exceptions:

+ SQL statements
« Return value from Statement.executeBatch()

SQL statements and batch updates

The following commands cannot be put into multistatement PREPARE statements:

» SELECT (except SELECT INTO TEMP) statement
« DATABASE statements
« CONNECTION statements

For more details, see HCL OneDB™ Guide to SQL: Syntax.

Return value from Statement.executeBatch() method

The return value differs from the JDBC 3.0 specification in the following ways:

- If the IFX_BATCHUPDATE_PER_SPEC environment variable is set to 0, only the update count of the first statement
executed in the batch is returned. If the IFX_BATCHUPDATE_PER_SPEC environment variable is set to 1 (the default),
the return value equals the number of rows affected by all SQL statements executed by Statement.executeBatch().
For more information, see HCL OneDB JDBC Driver properties on page 15.

« When errors occur in a batch update executed in a Statement object, no rows are affected by the statement; the
statement is not executed. Calling BatchUpdateException.getUpdateCounts() returns o in this case.

« When errors occur in a batch update executed in a PreparedStatement object, rows that were successfully inserted
or updated on the database server do not revert to their pre-updated state. However, the statements are not always

committed; they are still subject to the underlying autocommit mode.

The Bat chUpdat e. j ava example file shows how to send batch updates to the database server.

43

OneDB JDBC Driver Programmer's Guide

Perform bulk inserts

A bulk insert is the HCL OneDB™ extension to the JDBC 3.0 batch update feature. The bulk insert feature improves the
performance of single INSERT statements that are executed multiple times, with multiple value settings. To enable this

feature, set the IFX_USEPUT environment variable to 1. (The default value is 0.)

This feature does not work for multiple statements passed in the same PreparedStatement instance or for statements other
than INSERT. If this feature is enabled and you pass in an INSERT statement followed by a statement with no parameters, the
statement with no parameters is ignored.

The bulk insert feature requires the client to convert the Java™ type to match the target column type on the server for all data
types except opaque types or complex types.

The Bul kI nsert.j ava example, which is installed in the deno directory where your JDBC driver is installed, shows how to

perform a bulk insert.

Parameters, escape syntax, and unsupported methods

This section contains the following information:

* How to use OUT parameters
« How to use named parameters in a CallableStatement
« Support for the DESCRIBE INPUT statement

» How to use escape syntax to translate from JDBC to HCL OneDB™

It also lists unsupported methods and methods that behave differently from the standard.

The CallableStatement OUT parameters

The CallableStatement methods handle OUT parameters in C function and Java™ user-defined routines (UDRSs). Two
registerOutParameter() methods specify the data type of OUT parameters to the driver. A series of getXXX() methods
retrieves OUT parameters.

The OUT parameter routine makes available a valid blob descriptor and data to the JDBC client for a BINARY OUT parameter.
Using receive methods, you can use these OUT parameter descriptors and data provided by the server.

Exchange of descriptor and data between HCL OneDB™ and JDBC is consistent with the existing mechanism by which
data is exchanged for the result set methods of JDBC, such as passing the blob descriptor and data through SQLI protocol
methods. (SPL UDRs are the only type of UDRs supporting BINARY OUT parameters.)

For background information, see the following documentation:

« HCL OneDB™ User-Defined Routines and Data Types Developer's Guide provides introductory and background
information about opaque types and user-defined routines (UDRs) for use in the HCL OneDB™ database.

« HCL® J/Foundation Developer's Guide describes how to write Java™ UDRs for use in the database server.

44

Chapter 1. HCL OneDB™ JDBC Driver Guide

» The HCL OneDB™ Guide to SQL: Tutorial describes how to write stored procedure language (SPL) routines.
» The HCL OneDB™ DataBlade® API Programmer's Guide describes how to write external C routines.

HCL OneDB™ database servers return one or multiple OUT parameter to HCL OneDB™ JDBC Driver.

For examples of how to use OUT parameters, see the Cal | Qut 1. j ava, Cal | Qut 2. j ava, Cal | Qut 3. j ava, and
Cal | Qut 4. j ava example programs in the basi ¢ subdirectory of the denp directory where your HCL OneDB™ JDBC Driver

is installed.

Server and driver restrictions and limitations

Server restrictions

This topic describes the restrictions imposed by different versions of the 9.x and later HCL OneDB™ server. It also describes

enhancements made to the JDBC driver and the restrictions imposed by it.

Versions 9.2x and 9.3x of have the following requirements and limitations concerning OUT parameters:

« Only a function can have an OUT parameter. A function is defined as a UDR that returns a value. A procedure is
defined as a UDR that does not return a value.

« There can be only one OUT parameter per function.

» The OUT parameter has to be the last parameter.

« You cannot specify INOUT parameters.

HCL OneDB™, Version 10.0, or later allows you to specify INOUT parameters (C, SPL, or Java™ UDRs).

« The server does not correctly return the value NuLL for external functions.
« You cannot specify OUT parameters that are complex types.
- You cannot specify C and SPL routines that use the RETURN WITH RESUME syntax.

These restrictions, for server versions 9.2x and 9.3x, are imposed whether users create C, SPL, or Java™ UDRs.

The functionality of the , Version 9.4 allows:

« Any parameters to be OUT parameters for C, SPL, or Java™ UDRs
« User-defined procedures with no return value to have OUT parameters
» Multiple OUT parameters

You cannot specify INOUT parameters.

For more information about UDRs, see HCL OneDB™ User-Defined Routines and Data Types Developer's Guide and HCL®

J/Foundation Developer's Guide.

45

46

OneDB JDBC Driver Programmer's Guide

Driver enhancement

The CallableStatement object provides a way to call or execute UDRs in a standard way for all database servers. Results

from the execution of these UDRs are returned as a result set or as an OUT parameter.

The following is a program that creates a user-defined function, myudr, with two OUT parameters and one IN parameter, and
then executes the myudr() function. The example requires server-side support for multiple OUT parameters; hence it only
works for, Version 9.4 or above. For more information about UDRs, see HCL OneDB™ User-Defined Routines and Data Types
Developer's Guide and HCL® J/Foundation Developer's Guide.

i mport java.sql.*;
public class nyudr {

public nyudr() {
}

public static void main(String args[]) {
Connection nyConn = null;
try {
nyConn = Dri ver Manager. get Connecti on(
"j dbc: onedb: / / MYSYSTEM 18551/t est DB; "
+" user =USERI D; "
+" passwor d=MYPASSWORD") ;
}
catch (C assNot FoundException e) {
System out . printl n(
"problemwith loading Ifx Driver\n" + e.getMessage());
}
catch (SQLException e) {
System out . print!| n(
"problemwi th connecting to db\n" + e.getMessage());
}
try {
Statenent stnt = nyConn. createStatenment();
stnt. execut e(" DROP FUNCTI ON nyudr");
}
catch (SQLException e){
}
try
{
Statement stnt = myConn.createStatenment();

stnt . execut e(
" CREATE FUNCTI ON myudr (QUT argl int, arg2 int, OUT arg3 int)"
+" RETURNS bool ean; LET argl = arg2; LET arg3 = arg2 * 2;"
+"RETURN 't'; END FUNCTION; ");
}
catch (SQ.Exception e) {
System out . printl n(
"problemwi th creating function\n" + e.getMessage());

Chapter 1. HCL OneDB™ JDBC Driver Guide

Connecti on conn = nyConn;

try
{
String command = "{? = call myudr(?, 2, ?)}";
Cal | abl eSt at ement cstnt = conn. prepareCall (conmand);

/'l Register argl QUT paraneter
cstnt.registerQutParaneter (1, Types.|NTECGER);

/'l Pass in value for IN paraneter
cstnt.setInt(2, 4);

/'l Register arg3 QUT paraneter
cstnt.registerQutParaneter (3, Types.|NTECER);

/| Execute myudr
ResultSet rs = cstnt.executeQuery();

/'l executeQuery returns values via a resultSet
while (rs.next())
{

/] get value returned by myudr

bool ean b = rs. get Bool ean(1);

Systemout.println(“return value fromnyudr =" + b);
}
/] Retrieve OUT paraneters from nyudr
int i = cstnt.getlnt(1);
Systemout.println("argl OUT paraneter value =" + i);

int k = cstnt.getlnt(3);
System out. println("arg3 OUT paraneter val ue

1
oy
~

<

rs.close();
cstnt.close();
conn. cl ose();

}
catch (SQLException e)
{
System out . println("SQLException: " + e.getMessage());
Systemout. println("ErrorCode: " + e.getErrorCode());
e.printStackTrace();
}
}
}
$> java ... nmyudr

return value frommyudr = true
argl QUT paraneter value = 4
arg3 QUT paraneter value = 8

OneDB JDBC Driver Programmer's Guide

Driver restrictions and limitations

HCL OneDB™ JDBC Driver has the following requirements and limitations concerning OUT parameters:

- With, Version 9.2, the driver always returns a -9752 error if a function contains an OUT parameter. The driver creates
an SQLWarning object and chains this to the CallableStatement object.

You can determine if a function contains an OUT parameter by calling the CallableStatement.getWarnings() method
or by calling the IfmxCallableStatement.hasOutParameter() method, which return TRUE if the function has an OUT
parameter.

If a function contains an OUT parameter, you must use the CallableStatement.registerOutParameter() method to
register the OUT parameter, the setXXX() methods to register the IN and OUT parameter values, and the getXXX()
method to retrieve the OUT parameter value.

« The CallableStatement.getMetaData() method returns NuLL until the executeQuery() method has been executed. After
executeQuery() has been called, the ResultSetMetaData object contains information only for the return value, not the
OUT parameter.

* You must specify all IN parameters by using setXXX() methods. You cannot use literals in the SQL statement. For
example, the following statement produces unreliable results:

Cal | abl eSt atement cstnt = nyConn. prepareCal | ("{call
myFunction(25, ?)}");

Instead, use a statement that does not specify literal parameters:
Cal | abl eSt atement cstnt = nmyConn. prepareCal | ("{call
nyFunction(?, ?)}");
Call the setXXX() methods for both parameters.

« Do not close the ResultSet returned by the CallableStatement.executeQuery() method until you have retrieved the
OUT parameter value by using a getXXX() method.
« You cannot cast the OUT parameter to a different type in the SQL statement. For example, the following cast is
ignored:
Cal | abl eSt at enent cstnt = nyConn. prepareCal | ("{call
foo(?::lvarchar, ?)}";
+ The setMaxRows() and registerOutParameter() methods both take java.sql.Types values as parameters. There are

some one-to-many mappings from java.sql.Types values to HCL OneDB™ types.

In addition, some HCL OneDB™ types do not map to java.sql.Types values. Extensions for setMaxRows() and

registerOutParameter() fix these problems. See IN and OUT parameter type mapping on page 49.

These restrictions apply to a JDBC application that handles C, SPL, or Java™ UDRs.

IN and OUT parameter type mapping

Chapter 1. HCL OneDB™ JDBC Driver Guide

An exception is thrown by the registerOutParameter(int, int), registerOutParameter(int, int, int), or setNull(int, int) method if

the driver cannot find a matching HCL OneDB™ type or finds a mapping ambiguity (more than one matching HCL OneDB™

type). The table that follows shows the mappings the CallableStatement interface uses. Asterisks (*) indicate mapping

ambiguities.

java.sqgl.Types

com.informix.lang.IfxTypes

Array*

Bigint
Binary
Bit

Blob
Char
Clob
Date
Decimal
Distinct*
Double
Float
Integer

Java_Object*

Long

Longvarbinary*

Longvarchar*

IFX_TYPE_LIST
IFX_TYPE_MULTISET
IFX_TYPE_SET

IFX_TYPE_INT8
IFX_TYPE_BYTE
Not supported
IFX_TYPE_BLOB
IFX_TYPE_CHAR (n)
IFX_TYPE_CLOB
IFX_TYPE_DATE
IFX_TYPE_DECIMAL
Depends on base type
IFX_TYPE_FLOAT
IFX_TYPE_FLOAT'
IFX_TYPE_INT

IFX_TYPE_UDTVAR
IFX_TYPE_UDTFIX
IFX_TYPE_BIGINT
IFX_TYPE_BIGSERIAL
IFX_TYPE_BYTE
IFX_TYPE_BLOB
IFX_TYPE_TEXT

IFX_TYPE_CLOB

49

OneDB JDBC Driver Programmer's Guide

java.sqgl.Types com.informix.lang.IfxTypes

IFX_TYPE_LVARCHAR

Null Not supported

Numeric IFX_TYPE_DECMIAL

Other Not supported

Real IFX_TYPE_SMFLOAT

Ref Not supported

Smallint IFX_TYPE_SMINT

Struct IFX_TYPE_ROW

Time IFX_TYPE_DTIME (hour to second)

Timestamp IFX_TYPE_DTIME (year to

fraction(5))
Tinyint IFX_TYPE_SMINT
Varbinary IFX_TYPE_BYTE
Varchar IFX_TYPE_VCHAR (n)
Nothing* IFX_TYPE_BOOL

T This mapping is JDBC compliant. You can map the JDBC FLOAT data type to the HCL OneDB™ SMALLFLOAT data type for
compatibility with earlier versions by setting the IFX_SET_FLOAT_AS_SMFLOAT connection property to 1.

To avoid mapping ambiguities, use the following extensions to CallableStatement, defined in the IfmxCallableStatement
interface:
public void |fxRegisterCQutParaneter(int paraneterlndex,

int ifxType) throws SQLExcepti on;

public void |IfxRegisterQutParaneter(int paraneterlndex,
int ifxType, String nane) throws SQLExcepti on;

public void |IfxRegisterQutParaneter(int paraneterlndex,
int ifxType, int scale) throws SQLExcepti on;

public void IfxSetNull (int i, int ifxType) throws SQLExcepti on;
public void IfxSetNull (int i, int ifxType, String nane) throws
SQ.Excepti on;

Possible values for the ifxType parameter are listed in The IfxTypes class on page 223.

HCL OneDB™, Version 10.0, or later makes available to the JDBC client valid BLOB descriptors and data to support binary
OUT parameters for SPL UDRs.

50

Chapter 1. HCL OneDB™ JDBC Driver Guide

HCL OneDB™ JDBC Driver, Version 3.0, or later can receive the OUT parameter descriptor and data provided by the server and

use it in Java™ applications.

The single correct return value for any JDBC binary type (BINARY, VARBINARY, LONGVARBINARY) retrieved via method
getParameterType (ParameterMetaData) is -4, which is associated with java.sql.Type.LONGVARBINARY data type. This
reflects the fact that all the JDBC binary types are mapped to the same HCL OneDB™ SQL data type, BYTE.

Named parameters in a CallableStatement

A CallableStatement provides a way to call a stored procedure on the server from a Java™ program. You can use named
parameters in a CallableStatement to identify the parameters by name instead of by ordinal position. This enhancement was
introduced in the JDBC 3.0 specification. If the procedure is unique, you can omit parameters that have default values and
you can enter the parameters in any order. Named parameters are especially useful for calling stored procedures that have

many arguments and some of those arguments have default values.

The JDBC driver ignores case for parameter names. If the stored procedure does not have names for all the arguments, the

server passes an empty string for missing names.

Requirements and restrictions for named parameters in a CallableStatement

HCL OneDB™ JDBC Driver has the following requirements and restrictions for named parameters in a CallableStatement:

» Parameters for the CallableStatement must be specified by either name or by the ordinal format within a single
invocation of a routine. If you name a parameter for one argument, for example, you must use parameter names for
all of the arguments.

- Named parameters are not supported for a remote CallableStatement.

 Support for named parameters is subject to existing limitations for calling stored procedures.

Verify support for named parameters in a CallableStatement

The JDBC specification provides the DatabaseMetaData.supportsNamedParameters() method to determine if the driver and
the RDMS support named parameters in a CallableStatement. For example:

Connection nyConn = . . . /] connection to the RDBMS for Database

Dat abaseMet aDat a dbnd = myConn. get Met aDat a() ;

i f (dbnd. support sNamedPar aneters() == true)
{
System out . printl n("NAVMED PARAMETERS FOR CALLABLE"
+ "STATEMENTS | S SUPPORTED");
}

The system returns t r ue if named parameters are supported.

51

52

OneDB JDBC Driver Programmer's Guide

Retrieve parameter names for stored procedures

To retrieve the names of parameters for stored procedures, use DatabaseMetaData methods defined by the JDBC
specification as shown in the following example.

Connection nyConn = ... /] connection to the RDBMS for Database

Dat abaseMet aDat a dbrmd = myConn. get Met aDat a() ;
Resul t Set rs = dbnd. get Procedur eCol unms(
"myDB", schemaPattern, procedureNanmePattern, col umNanePattern);
rs.next() {
String paraneterNane = rs.getString(4);
- - - or - - -
String paraneterNane = rs.getString("COLUMWN_NAME");

System out. println("Col um Nane: " + paraneter Nane);
The names of all columns that match the parameters of the getProcedureColumns() method are displayed.

Parameter names are not part of the ParameterMetaData interface and cannot be retrieved from a ParameterMetaData
object.

When you use the getProcedureColumns() method, the query retrieves all procedures owned by informix (including system-
generated routines) from the sysprocedures system catalog table. To prevent errors, verify that the stored procedures you

are using have been configured with correct permissions on the server.

See Unsupported methods and methods that behave differently on page 56 for important differences in JDBC API
behavior for the getProcedureColumns() method.

Named parameters and unique stored procedures

A unique stored procedure has a unique name and a unique number of arguments. Named parameters are supported for
unique stored procedures when the number of parameters in the CallableStatement is equal to or less than the number of
arguments in the stored procedure.

Example of number of named parameters equals the number of arguments

The following stored procedure has five arguments

create procedure createProduct Def (productname varchar(64),
product desc varchar (64),

listprice float,
m nprice float,
out prod_id float);

let prod_id = <value for prod_id>;
end procedur e;

The following Java™ code with five parameters corresponds to the stored procedure. The question mark characters (?) within

the parentheses of a JDBC call refer to the parameters. (In this case five parameters for five arguments.) Set or register all

Chapter 1. HCL OneDB™ JDBC Driver Guide

the parameters. Name the parameters by using the format cstnt . set String("arg”, nane);, where arg is the name of the
argument in the corresponding stored procedure. You do not need to name parameters in the same order as the arguments
in the stored procedure.

String sqlCall = "{call CreateProductDef(?,?,?,?2,?2)}";
Cal | abl eSt at ement cstnt = conn. prepareCal | (sql Cal l);

cstmt.setString("productnane”, nane); /'l Set Product Nare.
cstnt.setString("productdesc", desc); /] Set Product Description.
cstnt.setFloat("listprice", listprice); /1 Set Product ListPrice.
cstnt.setFloat("mnprice", mnprice); /'l Set Product M nPrice.

/'l Register out paranmeter which should return the product is created.
cstnt.registerQutParaneter("prod_id", Types.FLQOAT);

/'l Execute the call.
cstnt.execute();

/] Get the value of the id fromthe OUT paraneter: prod_id
float id = cstnt.getFloat("prod_id");

The Java™ code and the stored procedure show the following course of events:

. A call to the stored procedure is prepared.
. Parameter names indicate which arguments correspond to which parameter value or type.
. The values for the input parameters are set and the type of the output parameter is registered.

. The stored procedure executes with the input parameters as arguments.

a A W N =

. The stored procedure returns the value of an argument as an output parameter and the value of the output parameter

is retrieved.

Example of number of named parameters Is less than the number of arguments

If the number of parameters in CallableStatement is less than the number of arguments in the stored procedure, the
remaining arguments must have default values. You do not need to set values for arguments that have default values
because the server automatically uses the default values. You must, however, indicate the arguments that have non-default

values or override default values with a question mark character (?) in the CallableStatement.

For example, if a stored procedure has 10 arguments of which 4 have non-default values and 6 have default values, you must

have at least four question marks in the CallableStatement. Alternatively, you can use 5, 6, or up to 10 question marks.

If the CallableStatement is prepared with more parameters than non-default values, but less than the number of stored
procedure arguments, it must set the values for non-default arguments. The remaining parameters can be any of the other

arguments and they can be changed with each execution.

In the following unique stored procedure, the arguments I i st pri ce and ni npri ce have default values:

create procedure createProduct Def (productname varchar(64),
product desc varchar (64),

53

OneDB JDBC Driver Programmer's Guide

listprice float default 100. 00,
m nprice float default 90.00,
out prod_id float);

let prod_id = <value for prod_id>;
end procedure;

The following Java™ code calls the stored procedure with fewer parameters than arguments in the stored procedure (four
parameters for five arguments). Because | i st pri ce has a default value, it can be omitted from the CallableStatement.

String sqglCall = "{call CreateProductDef(?,?,?,?2)}";
/'l 4 parans for 5 args
Cal | abl eStatement cstnmt = conn. prepareCall (sql Call);

cstnt.setString("productnane", nane); /'l Set Product Nane.
cstnt.setString("productdesc", desc); /'l Set Product Description.

cstnt.setFloat("mnprice", mnprice); /1 Set Product M nPrice.
/'l Register out paraneter which should return the product id created.
cstnt.regi sterQutParaneter("prod_id", Types.FLQAT);

/| Execute the call.
cstnt. execute();

/'l Get the value of the id fromthe OUT paraneter: prod_id

float id = cstnt.getFloat("prod_id");

Alternatively, for the same stored procedure you can omit the parameter for the mi npri ce argument. You do not need to

prepare the CallableStatement again.

cstnt.setString("productnanme", name); // Set Product Nane.
cstnt.setString("productdesc", desc); // Set Product Description.

cstm.setFloat("listprice", listprice); // Set Product ListPrice.
/'l Register out paranmeter which should return the product id created.
cstnt.regi sterQutParaneter("prod_id", Types.FLQAT);

/'l Execute the call.
cstnt. execute();

/] Get the value of the id fromthe OUT paraneter: prod_id
float id = cstnt.getFloat("prod_id");
Or you can omit the parameters for both of the default arguments:

cstnt.setString("productnane", nane);
cstnt.setString("productdesc", desc);
cstnt.registerQutParaneter("prod_id", Types.FLOAT);

54

Chapter 1. HCL OneDB™ JDBC Driver Guide

cstnt.execute();
float id = cstnt.getFloat("prod_id");

Named parameters and overloaded stored procedures

If multiple stored procedures have the same name and the same number of arguments, the procedures are overloaded (also

known as overloaded UDRs).

The JDBC driver throws an SQLException for overloaded stored procedures because the call cannot resolve to a single
stored procedure. To prevent an SQLException, specify the HCL OneDB™ server data type of the named parameters in the
parameter list by appending : : data_type to the question mark characters where data_type is the HCL OneDB™ server data
type. For example 2: : varchar or 2:: fl oat. You must also enter the named parameters for all the arguments and in the same

order as the overloaded stored arguments of procedure.

For example, the following two procedures have the same name (createProductDef) and the same number of arguments.
The data type for the prod_id argument is a different data type in each procedure.

Procedure 1

create procedure createProduct Def (productname varchar(64),
product desc varchar (64),
listprice float default 100. 00,
m nprice float default 90.00,
prod_id float);

let prod_id = <value for prod_id>;
end procedure;

Procedure 2

create procedure createProduct Def (productname varchar(64),
product desc varchar (64),
listprice float default 100. 00,
m nprice float default 90.00,
prod_id int);

let prod_id = <value for prod_id>;
end procedure;

If you use the following Java™ code, it returns an SQLException because it cannot resolve to only one procedure:

String sqlCall = "{call CreateProductDef(?,?,?,?2,?2)}";
Cal | abl eSt at enent cstnt = con. prepareCall (sql Call);
cstmt.setString("productnane", nane); /] Set Product Nane.

If you specify the HCL OneDB™ data type for the argument that has a different data type, the Java™ code resolves to one
procedure. The following Java™ code resolves to Stored Procedure 1 because the code specifies the FLOAT data type for the

prod_id argument:

55

56

OneDB JDBC Driver Programmer's Guide

String sqlCall = "{call CreateProductDef(?,?,?, 2, ?2::float)}";
Cal | abl eSt at enent cstnt = con. prepareCal |l (sql Call);
cstnt.setString("productnane”, nane); /1 Set Product Nane

The escape syntax

Escape syntax indicates information that must be translated from JDBC format to HCL OneDB™ native format. Valid escape

syntax for SQL statements is as follows.

Type of statement Escape syntax
Procedure {call procedure}
Function {var = call function}
Date {d'yyyy-mm-dd'}
Time {t 'hh:mm:ss'}

Timestamp (Datetime) {ts 'yyyy-mm-dd hh:mm:ss[.fffff]’}

Function call {fn func|(args)]}

Escape character {escape 'escape-char’}

Outer join {oj outer-join-statement}

Limit {limit number-to-limit}

Skip {limit number-to-limit number-to-skip}

You can put any of this syntax in an SQL statement, as follows:

execut eUpdate("insert into tabl values({d '1999-01-01'})");

Everything inside the brackets is converted into a valid HCL OneDB™ SQL statement and returned to the calling function.

Unsupported methods and methods that behave differently

The following JDBC API methods are not supported by HCL OneDB™ JDBC Driver and cannot be used in a Java™ program
that connects to HCL OneDB™ databases:

« CallableStatement.getRef(int)

« Connection.setCatalog()

« Connection.setReadOnly()

« PreparedStatement.addBatch(String)

« PreparedStatement.setRef(int, Ref)

« PreparedStatement.setUnicodeStream(int, java.io.InputStream, int)
* ResultSet.getRef(int)

* ResultSet.getRef(String)

* ResultSet.getUnicodeStream(int)

Chapter 1. HCL OneDB™ JDBC Driver Guide

* ResultSet.getUnicodeStream(String)
* ResultSet.refreshRow()

* ResultSet.rowDeleted()

* ResultSet.rowlnserted()

* ResultSet.rowUpdated()

* ResultSet.setFetchSize()

- Statement.setMaxFieldSize()

The Connection.setCatalog() and Connection.setReadOnly() methods return with no error. The other methods throw the

exception: Met hod not Support ed.

The following JDBC API methods behave other than specified by the JavaSoft specification:

« CallableStatement.execute()

Returns a single result set

« DatabaseMetaData.getProcedureColumns()

Example:

DBMD. get Procedur eCol ums(String catal og,
String schemaPattern,
String procedureNanePattern,
String col uimNanePat t er n)

Ignores the columnNamePattern field; returns NuLL when used with any server version older than 9.x.

When you use the getProcedureColumns() method, the query retrieves all procedures owned by informix (including
system-generated routines) from the sysprocedures system catalog table. To prevent errors, verify that the stored
procedures you are using have been configured with correct permissions on the server.
For example, if you use one of the following statements:

get Procedur eCol umms("","","","")

get Procedur eCol ums("",informx,"","")
The DatabaseMetaData.getProcedureColumns() method loads all server UDRs or all UDRs owned by user informix. If

you chose not to install J/Foundation, or if the configuration parameters for J/Foundation are not set to valid values

in your onconf i g file, the method fails. Also, if any one UDR is not set up correctly on the server, the method fails.

For information about how to set up J/Foundation on HCL OneDB™ servers and how to run Java™ UDRs on HCL
OneDB™ servers, see the HCL® J/Foundation Developer's Guide. For information about how to set up and run C UDRs,
see the HCL OneDB™ User-Defined Routines and Data Types Developer's Guide.

 DatabaseMetaData.othersUpdatesAreVisible()

Always returns FALSE

« DatabaseMetaData.othersDeletesAreVisible()

OneDB JDBC Driver Programmer's Guide

Always returns FALSE

- DatabaseMetaData.othersInsertsAreVisible()

Always returns FALSE

« DatabaseMetaData.ownUpdatesAreVisible()

Always returns FALSE

« DatabaseMetaData.ownDeletesAreVisible()

Always returns FALSE

« DatabaseMetaData.ownlinsertsAreVisible()

Always returns FALSE

- DatabaseMetaData.deletesAreDetected()

Always returns FALSE

+ DatabaseMetaData.updatesAreDetected()

Always returns FALSE

 DatabaseMetaData.insertsAreDetected()

Always returns FALSE

* PreparedStatement.execute()

Returns a single result set

« ResultSet.getFetchSize()

Always returns 0

« ResultSetMetaData.getCatalogName()

Always returns a String object containing one blank space

* ResultSetMetaData.getTableName()
Returns the table name for SELECT, INSERT, and UPDATE statements

SELECT statements with more than one table name and all other statements return a String object containing one
blank space.

* ResultSetMetaData.getSchemaName()

Always returns a String object containing one blank space

« ResultSetMetaData.isDefinitelyWriteable()

Always returns TRUE

Chapter 1. HCL OneDB™ JDBC Driver Guide

* ResultSetMetaData.isReadOnly()

Always returns FALSE

* ResultSetMetaData.isWriteable()

Always returns TRUE

- Statement.execute()

Returns a single result set

« Connection.isReadOnly()

Returns TRUE only when connecting to a secondary server in HDR scenario (see the following Important note)

Important: HCL® OneDB® servers do not currently support read-only connections. For the HCL OneDB™ JDBC Driver,
Version 2.21.JC4, the implementation of the setReadOnly() method from the java.sql.Connection interface has been
changed to accept the value passed to it by the calling process. The setReadOnly() method simply returns to the
calling process without any interaction to the HCL OneDB™ database server. (Previous versions of the JDBC driver
threw an unsupported method exception.) This change has been made to synchronize the functionality present in the
HCL OneDB™ JDBC Driver to the .NET Core Provider JDBC driver and also to achieve a higher level of compliance in
the Sun Conformance Test (CTS).

Handle transactions

By default, all new Connection objects are in autocommit mode. When autocommit mode is on, a COMMIT statement is
automatically executed after each statement that is sent to the database server. To turn off autocommit mode , explicitly call

Connection.setAutoCommit(false).

When autocommit mode is off, HCL OneDB™ JDBC Driver implicitly starts a new transaction when the next statement is
sent to the database server. This transaction lasts until the user issues a COMMIT or ROLLBACK statement. If the user has
already started a transaction by executing setAutoCommit(false) and then calls setAutoCommit(false) again, the existing
transaction continues unchanged. The Java™ program must explicitly terminate the transaction by issuing either a COMMIT
or a ROLLBACK statement before it drops the connection to the database or the database server.

In a database that has been created with logging, if a COMMIT statement is sent to the database server and autocommit
mode is on, the error - 255: Not in transaction is returned by the database server because there is currently no user
transaction started. This occurs whether the COMMIT statement was sent with the Connection.commit() method or directly

with an SQL statement.

In a database created in ANSI mode, explicitly sending a COMMIT statement to the database server commits an empty
transaction. No error is returned because the database server automatically starts a transaction before it executes the

statement if there is no user transaction currently open.

59

OneDB JDBC Driver Programmer's Guide

For an XAConnection object, autocommit mode is off by default and must remain off while a distributed transaction is
occurring. The transaction manager performs commit and rollback operations; therefore, you avoid performing these

operations directly.

For HCL OneDB™ releases later than 11.50.xC2, two JDBC classes support SQL transactions that can be rolled back to a
savepoint (rather than canceled in its entirety) after an adverse event is encountered:

« IfmxSavepoint (Interface)

« IfxSavepoint (Savepoint class)

JDBC applications can create, destroy, or rollback to savepoint objects through the following standard JDBC methods:

Table 2. JDBC savepoint classes and methods

Cl
ass Method

IfxC

onn

setSavepoint()

releaseSavepoint()
ect rollback(savepoint)
ion
IfxS

ave

po
int These two methods are not interchangeable. A call to getSavepointName() fails with an error unless the savepoint

object is declared with a string argument to the setSavepoint() method or to the setSavepointUnique() method.

Similarly, an error is returned if you call getSavepointld() for a named savepoint object.

getSavepointld()
getSavepointName()

In addition, the setSavepointUnique() method can set a named savepoint whose identifier is unique. While the unique
savepoint is active,HCL OneDB™ issues an exception if the application attempts to reuse its name within the same

connection.

The following restrictions apply to savepoint objects in JDBC:

« Savepoints are not valid within XA transactions.

 Savepoints cannot be used unless the current connection sets autocommit mode off.

« Savepoints are not valid in connections to unlogged databases.

« Savepoints cannot be referenced in a triggered action.

« In cross-server distributed queries in which any participating subordinate server does not support savepoint objects,
a warning is issued if you set a savepoint after connecting to a server that does not support savepoints, and any call

to rollbacksavepoint fails with an error.

See the descriptions of the SAVEPOINT, RELEASE SAVEPOINT, and ROLLBACK WORK TO SAVEPOINT statements in HCL

OneDB™ Guide to SQL: Syntax for more information about using savepoint objects in SQL transactions.

60

Chapter 1. HCL OneDB™ JDBC Driver Guide

Autocommit

By default, all new Connection objects are in autocommit mode. When autocommit mode is on, a COMMIT statement is
automatically executed after each statement that is sent to the database server. To turn off autocommit mode, explicitly call

Connection.setAutoCommit(false).

When autocommit mode is off the JDBC Driver implicitly starts a new transaction when the next statement is sent to the
database server. This transaction lasts until the user issues a COMMIT or ROLLBACK statement. If the user has already
started a transaction by executing setAutoCommit(false) and then calls setAutoCommit(false) again, the existing transaction
continues unchanged. The Java™ program must explicitly terminate the transaction by issuing either a COMMIT or a

ROLLBACK statement before it drops the connection to the database or the database server.

Logged Database

In a database that has been created with logging, if a COMMIT statement is sent to the database server and autocommit
mode is enabled, the error -255: Not in transaction is returned by the database server because there is currently no user
transaction started. This occurs whether the COMMIT statement was sent with the Connection.commit() method or directly

with an SQL statement.

ANSI Databases

In a database created in ANSI mode, explicitly sending a COMMIT statement to the database server commits an empty
transaction. No error is returned because the database server automatically starts a transaction before it executes the

statement if there is no user transaction currently open.

Non-logged Databases

You cannot turn off autocommit on non-logged databases. Because NONLOGGED databases do not support transactions

you cannot disable auto-commit which forces JDBC to attempt to start a transaction.

Transactions with Large Objects

Large objects are a special consideration when dealing with database transactions. Manipulating a large object (BLOB/
CLOB) is considered a distinct step in a transaction. This has the following implications:

Autocommit is enabled

When autocommit is enabled, creating and inserting a large object is considered two steps. Consider the following example:

Byt eArrayl nput St r eam byt eSt r eam = new Byt eArrayl nput St rean(buf fer);
PreparedStatenent p = c. prepareStatenent ("I NSERT | NTO bl obTest Val ues(?)")) {
p. setBi naryStrean(1, byteStreamn;
p. execut e();

In this example we are inserting a single row into the table. Since the column we are inserting is a BLOB, this is two

operations. First, JDBC needs to create the BLOB object on the server. This is a single operation and with auto-commit

61

62

OneDB JDBC Driver Programmer's Guide

enabled, this is commited and the BLOB is now present on the server. Second, we insert the BLOB pointer into the table
row. This operation is then committed. Any error on the INSERT does NOT rollback or dispose of the BLOB object that was
created. Since the BLOB was dynamically created by the JDBC driver, you will lose all references to the object in the system.
It can be cleaned up by a DBA running on the database system, but not by the JDBC application.

If you want to ensure the BLOB is not lost in this scenario you MUST using an explicit transaction like the following example
shows:

Byt eArrayl nput St ream byt eSt ream = new Byt eArrayl nput St r eam(buffer);

c. set AutoCommi t (f al se);

PreparedStatement p = c.prepareStatenment ("I NSERT | NTO bl obTest Val ues(?)")) {

p. setBinaryStrean(1, byteStream;
p. execut e();

}

c.commit();

Autocommit is disabled

If autocommit is disabled then you are using explicit transactions and most large object operations will work as expected in
between your transaction boundaries. However, you are free to commit/rollback the intermediate large object operations if
you use an explicit Blob/Clob object.

c. set Aut oConmi t (f al se);
PreparedStatenment p = c.prepareStatenent ("I NSERT | NTO bl obTest Val ues(?)")) {
Bl ob bl ob = c.createBl ob();
c.commt(); //Commits the blob creation
p. set Bl ob(1, bl ob);
p. execut e();

}

c.rol |l back(); //rollback the insert, the bl ob survives

Transactions with XA

For a XAConnection object, autocommit mode is off by default and must remain off while a distributed transaction is
occurring. The transaction manager performs commit and rollback operations; therefore, you avoid performing these
operations directly.

Transactions with Savepoints

Since JDBC 3.00.JC2 and Informix server 11.50.xC2, Informix supports SQL transactions that can be rolled back to a
Savepoint. A Savepoint is a marker created at any point during a transaction that you can rollback to rather than completely
rolling back the entire transaction.

JDBC applications can create, destroy, or rollback to Savepoint objects through the following standard JDBC methods:

Chapter 1. HCL OneDB™ JDBC Driver Guide

Table 3. JDBC Savepoint classes and methods

Class Method
Connection
setSavepoint()
setSavepoint(String name)
releaseSavepoint(Savepoint)
rollback(Savepoint)
Savepoint

getSavepointid()

getSavepointName()

These two methods are not interchangeable. A call

to getSavepointName() fails with an error unless the
savepoint object is declared with a string argument to the
setSavepoint() method or to the setSavepointUnique()
method. Similarly, an error is returned if you call

getSavepointld() for a named savepoint object.

In addition, the setSavepointUnique(String name) method can set a named savepoint whose identifier is unique. If the
application attempts to reuse its name within the same connection JDBC will throw a SQLException.

The following restrictions apply to Savepoint objects in JDBC:

« Savepoints are not valid within XA transactions.

- Savepoints cannot be used unless the current connection sets autocommit mode off.

- Savepoints are not valid in connections to unlogged databases.

 Savepoints cannot be referenced in a triggered action.

« In cross-server distributed queries in which any participating subordinate server does not support savepoint objects,
a warning is issued if you set a savepoint after connecting to a server that does not support savepoints, and any call
to rollbacksavepoint fails with an error.

Form more information, see IBM Informix Guide to SQL: Syntax.

Handle errors

Use the JDBC API SQLException class to handle errors in your Java™ program. The HCL OneDB™-specific
com.informix.jdbc.Message class can also be used outside a Java™ program to retrieve the HCL OneDB™ error text for a

given error number.

63

64

OneDB JDBC Driver Programmer's Guide

Handle errors with the SQLException class

Whenever an error occurs from either HCL OneDB™ JDBC Driver or the database server, an SQLException is raised. Use the
following methods of the SQLException class to retrieve the text of the error message, the error code, and the SQLSTATE

value:
getMessage()

Returns a description of the error

SQLException inherits this method from the java.util. Throwable class.
getErrorCode()

Returns an integer value that corresponds to the HCL OneDB™ database server or HCL OneDB™ JDBC Driver

error code
getSQLState()

Returns a string that describes the SQLSTATE value
The string follows the X/Open SQLSTATE conventions.
All HCL OneDB™ JDBC Driver errors have error codes of the form - 79xxx, such as - 79708: can't take nul | input.

For a list of HCL OneDB™ database server errors, see HCL OneDB™ Error Messages. For a list of HCL OneDB™ JDBC Driver

errors, see Error messages on page 245.

The following example from the Si npl eSel ect . j ava program shows how to use the SQLException class to catch HCL
OneDB™ JDBC Driver or database server errors by using a try-catch block:

try

{

Pr epar edSt at enent pstnt = conn. prepar eSt at enent (" Sel ect *
fromx "
+ "where a = ?2;");

pstnt.setint (1, 11);

Resul t Set r = pstnt.executeQuery();

whi I e(r.next())

{
short i = r.getShort(1);
Systemout.printin("Select: colum a =" + i);
}

r.close();

pstnt.close();

}

catch (SQ.Exception e)
{

System out.println("ERROR Fetch statenent failed: " +
e. get Message());

Chapter 1. HCL OneDB™ JDBC Driver Guide

Retrieve the syntax error offset

If there is an incorrect SQL statement executed which results in a syntax error, the driver will throw a

java.sqgl.SQLSyntaxErrorException.

As part of the messasge in that exception will be the offset (if provided by the server) in characters to where the syntax error

was detected.
An example would be:
java. sql . SQLSynt axError Exception: A syntax error has occurred near position: 10

To programatically retrieve the exact location of a syntax error, use the getSQLStatementOffset() method to return the syntax

error offset.

The following example shows how to retrieve the syntax error offset from an SQL statement (which is 10 in this example):

try {
Statenent stnt = conn.createStatenent();
String command = "select * fomtt";
stnt. execute(command);

}

cat ch(Exception e)

{
System out. println
("Error Offset :" + ((com onedb.jdbc. OneDBConnecti on) conn).get SQLSt at ement Of fset ());
System out. println(e. get Message());

}

Catch RSAM error messages

RSAM messages are attached to SQLCODE messages. For example, if an SQLCODE message says that a table cannot be
created, the RSAM message states the reason, which might be insufficient disk space.

You can use the SQLException.getNextException() method to catch RSAM error messages. For an example of how to catch

these messages, see the Er r or Handl i ng. j ava program, which is included in HCL OneDB™ JDBC Driver.

Handle errors with the com.informix.jdbc.Message class

HCL OneDB™ provides the class com.informix.jdbc.Message for retrieving HCL OneDB™ error message text based on
the HCL OneDB™ error number. To use this class, call the Java™ interpreter java directly, passing it the HCL OneDB™ error

number, as shown in the following example:

java com i nform x.jdbc. Message 100

The example returns the message text for HCL OneDB™ error 100:

100: ISAM error: duplicate value for a record with unique key.

A positive error number is returned if you specify an unsigned number when using the com.informix.jdbc.Message class.

This differs from the finderr utility, which returns a negative error number for an unsigned number.

65

66

OneDB JDBC Driver Programmer's Guide

Access database metadata

To access information about the HCL OneDB™ database, use the JDBC API DatabaseMetaData interface.
HCL OneDB™ JDBC Driver implements all the JDBC 3.0 specifications for DatabaseMetaData methods.

The following methods in DatabaseMetaData are included in HCL OneDB™ JDBC Driver for JDBC 3.0 compliance:

« getSuperTypes()

« getSuperTables()

« getAttributes()

« getResultSetHoldability()

- getDatabaseMajorVersion()

« getDatabaseMinorVersion()
 getJDBCMajorVersion()

« getJDBCMinorVersion()

- getSQLStateType()

+ locatorsUpdateCopy()

« supportsGetGeneratedKeys()

- supportsMultipleOpenResults()
+ supportsNamedParameters()

« supportsGetGeneratedKeys()

« supportsMultipleOpenResults()

Methods retrieve server-generated keys. Retrieving autogenerated keys involves the following actions:

1. The JDBC application programmer provides an SQL statement to be executed.

2. The server executes the SQL statement and an indication that autogenerated keys can be retrieved is returned.

3. Before the server executes the SQL statement, columnNames or columnindexes (if provided) are validated. An
SQLException is thrown if they are invalid.

4. If requested, the JDBC driver and server returns a resultSet object. If no keys were generated, the resultSet is empty,
containing no rows or columns.

5. The user can request metadata for the resultSet object, and the JDBC driver and server returns a resultSetMetaData
Object.

For more information about retrieving autogenerated keys, see the JDBC 3.0 Specification, Section 13.6, “Retrieving Auto
Generated Keys."

HCL OneDB™ JDBC Driver uses the sysmaster database to get database metadata. If you want to use the DatabaseMetaData
interface in your Java™ program, the sysmaster database must exist in the HCL OneDB™ database server to which your
Java™ program is connected.

Chapter 1. HCL OneDB™ JDBC Driver Guide

HCL OneDB™ JDBC Driver interprets the JDBC API term schemas to mean the names of HCL OneDB™ users who own tables.
The DatabaseMetaData.getSchemas() method returns all the users found in the owner column of the systables system
catalog.

Similarly, HCL OneDB™ JDBC Driver interprets the JDBC API term catalogs to mean the names of HCL OneDB™ databases.
The DatabaseMetaData.getCatalogs() method returns the names of all the databases that currently exist in the HCL OneDB™
database server to which your Java™ program is connected.

The example DBMet aDat a. j ava shows how to use the DatabaseMetaData and ResultSetMetaData interfaces to gather
information about a new procedure. Refer to Sample code files on page 204 for more information about this example.

Other HCL OneDB™ extensions to the JDBC API

This section describes the HCL OneDB™-specific extensions to the JDBC API not already discussed in this guide. These

extensions handle information that is specific to HCL OneDB™ databases.

Another HCL OneDB™ extension, the com.informix.jdbc.Message class, is fully described in Handle errors on page 63.

The Auto Free feature

If you enable the HCL OneDB™ Auto Free feature, the database server automatically frees the cursor when it closes the
cursor. Therefore, your application does not have to send two separate requests to close and then free the cursor—closing
the cursor is sufficient.

You can enable the Auto Free feature by setting the IFX_AUTOFREE property to TRUE in the database URL, as in this example:

j dbc: onedb: //123. 45. 67. 89: 1533; user =r dt est ; passwor d=t est ; i f x_aut of ree=true

You can also use one of the following methods:

public void set Aut oFree (bool ean fl ag)
publ i c bool ean get Aut oFree()

The setAutoFree() method should be called before the executeQuery() method, but the getAutoFree() method can be called

before or after the executeQuery() method.

To use these methods, your applications must import classes from the HCL OneDB™ package com i nf or mi x. j dbc and

cast the Statement class to the IfmxStatement class, as shown here:

i nport com i nform x.jdbc.*;
(I f xSt at enent) st mt . set Aut oFr ee(true);

The Auto Free feature is available for the following database server versions:

» Version 7.23 and later

» Version 9.0 and later

67

OneDB JDBC Driver Programmer's Guide

Obtaining driver version information
About this task

There are two ways to obtain version information about HCL OneDB™ JDBC Driver: from your Java™ program or from the
UNIX™ or MS-DOS command prompt.

To get version information from your Java™ program:

1. Import the HCL OneDB™ package com i nf or mi x. j dbc. * into your Java™ program by adding the following line to

the import section:
i nport cominform x.jdbc.*;
2. Invoke the static method IfxDriver.getJDBCVersion().
This method returns a String object that contains the complete version of the current HCL OneDB™ JDBC Driver.

An example of a version of HCL OneDB™ JDBC Driver is 2.00.JC1.

The IfxDriver.getJDBCVersion() method returns only the version, not the serial number you provided during
installation of the driver.

Results

! Important: For version X.Y of HCL OneDB™ JDBC Driver, the JDBC API methods Driver.getMajorVersion()
and DatabaseMetaData.getDriverMajorVersion() always return the value X. Similarly, the methods

Driver.getMinorVersion() and DatabaseMetaData.getDriverMinorVersion() always return the value Y.

To get the version of HCL OneDB™ JDBC Driver from the command line, enter the following command at the UNIX™ shell

prompt or the Windows™ command prompt:

java com i nform x.jdbc. Version

The command also returns the serial number you provided when you installed the driver.

Store and retrieve XML documents

Extensible Markup Language (XML), as defined by the World Wide Web Consortium (W3C) provides rules, guidelines, and
conventions for describing structured data in a plain text, editable file (called an XML document). XML uses tags only to
delimit pieces of data, leaving the interpretation of the data to the application that uses it. XML is an method of representing

data in an open, platform-independent format.

The currently available API for accessing XML documents is called JAXP (Java™ API for XML Parsing). The API has the
following two subsets:

68

Chapter 1. HCL OneDB™ JDBC Driver Guide

« Simple API for XML (SAX) is an event-driven protocol, with the programmer providing the callback methods that the
XML parser invokes when it analyzes a document.

» Document Object Model (DOM) is a random-access protocol, which converts an XML document into a collection
of objects in memory that can be manipulated at the programmers discretion. DOM objects have the data type
Document.

JAXP also contains a plugability layer that standardizes programmatic access to SAX and DOM by providing standard factory
methods for creating and configuring SAX parsers and creating DOM objects.

HCL OneDB™ extensions to the JDBC API facilitate storage and retrieval of XML data in database columns. The methods
used during data storage assist in parsing the XML data, verify that well-formed and valid XML data is stored, and ensure
that invalid XML data is rejected. The methods used during data retrieval assist in converting the XML data to DOM objects
and to type InputSource, which is the standard input type to both SAX and DOM methods. The HCL OneDB™ extensions are
designed to support XML programmers while still providing flexibility regarding which JAXP package the programmer is
using.

Set up your environment to use XML methods

This section contains information you need to know to prepare your system to use the JDBC driver XML methods.

Set your CLASSPATH

To use the XML methods, add the path names of the following files to your CLASSPATH setting:

«ifxtools.jar

e Xerces.jar

All of these files are located in the | i b directory where you installed your driver.
The Xerces XML library xer ces. j ar has been removed from distribution with the HCL OneDB™ JDBC Driver, Version 3.00.

The XML methods are not part of the i f xj dbc. j ar file. Instead, they are released in a separate . j ar file named
i fxtool s.j ar.To use the methods, you must add this file to your CLASSPATH setting along with i f xj dbc. j ar.

In addition, building i f xt ool s. j ar requires that you use code from a . j ar file that supports the SAX, DOM, and JAXP
methods. Tousei f xt ool s. j ar, you must add these . j ar files to your CLASSPATH setting.

The Java development kit uses the default XML parser even if the xml4j parser is in the CLASSPATH. To use the xml4j
implementation of the SAX parser, set the following system properties in the application code or use the -D command-line
option:

 The property javax.xml.parsers.SAXParserFactory must be set to org.apache.xerces.jaxp.SAXParserFactorylmpl.
- For the Document Object Model, the property javax.xml.parsers.DocumentBuilderFactory must be set to
org.apache.xerces.jaxp.DocumentBuilderFactorylmpl.

For more info about how to set the properties, see Specify a parser factory on page 70.

69

OneDB JDBC Driver Programmer's Guide

Specify a parser factory
By default, the xml4j xerces parser (and as a result, i f xt ool s. j ar) uses the non-validating XML parser. To use an
alternative SAX parser factory, run your application from the command line as follows:

% j ava - Dj avax. xml . par ser s. SAXPar ser Fact or y=new- f act ory

If you are not running from the command line, the factory name must be enclosed in double quotation marks:

% j ava - D avax.xnl . parsers. SAXPar ser Fact or y="new- f act ory"

You can also set a system property in your code:
System set Property("javax. xm . par sers. SAXPar ser Fact ory",

"new factory")

In this code, new-factory is the alternative parser factory. For example, if you are using the xerces parser, then new-factory is

replaced by org.apache.xerces.jaxp.SAXParserFactorylmpl.

It is also possible to use an alternative document factory for DOM methods. Run your application from the command line as

follows:

% j ava - Dj avax. xml . par ser s. Docunent Bui | der Fact or y=new-f act ory

If you are not running from the command line, the factory name must be enclosed in double quotation marks:

% j ava -Djavax. xm . par sers. Docunment Bui | der Fact ory="new-f act ory"

You can also set a system property in your code:

System set Property("javax. xnl . parsers. Docunent Bui | der Fact ory",
"newfactory")

For example, if you are using the xerces parser, then new-factory is replaced by
jorg.apache.xerces.jaxp.DocumentBuilderFactorylmpl.

Insert data

You can use the methods in this section to insert XML data into a database column.

The parameters in method declarations in this section have the following meanings:

« The file parameter is an XML document. The document can be referenced by a URL (such as http://server/file.xml or
file:///path/file.xml) or a path name (suchas/tnp/file.xm orc:\\work\\file.xmn).

 The handler parameter is an optional class you supply, containing callback routines that the SAX parser invokes as it
is parsing the file. If no value is specified, or if handler is set to NuLL, the driver uses empty callback routines that echo
success or failure (the driver reports failure in the form of an SQLException).

« The validating parameter tells the SAX parser factory to use a validating parser instead of a parser that only checks

form.

70

Chapter 1. HCL OneDB™ JDBC Driver Guide

If you do not specify nsa or validating, the driver uses the xml4j nonvalidating XML parser. To change the default, see

Specify a parser factory on page 70.

« The nsa parameter tells the SAX parser factory whether it can use a parser that can handle namespaces.

The following methods parse a file by using SAX and convert it to a string. You can then use the string returned by these
methods as input to the PreparedStatement.setString() method to insert the data into a database column.
public String XM.toString(String file, String handl er, bool ean

val i dati ng, bool ean nsa) throws SQLExcepti on

public String XM.toString(String file, String handler) throws
SQ.Exception

public String XM.toString(String file) throws SQLException

The following methods parse a file by using SAX and convert it to an object of class InputStream. You can then use
the InputStream object as input to the PreparedStatement.setAsciiStream(), PreparedStatement.setBinaryStream(), or

PreparedStatement.setObject() methods to insert the data into a database column.

public | nputStream XM.tol nput Streanm(String file, String handler,
bool ean val i dating, bool ean nsa) throws SQ.Excepti on;

public | nputStream XM.tol nput Stream(String file, String handl er)
t hrows SQLExcepti on;

public | nputStream XM.tol nputStreanm(String file) throws
SQLExcepti on;

For examples of using these methods, see Insert data examples on page 72.
If no value is specified, or if handler is set to NULL, the driver uses the default HCL OneDB™ handler.
! Important: The driver truncates any input data that is too large for a column. For example, if you insert the x. xni
file into a column of type char (55) instead of a column of type char (255), the driver inserts the truncated file with no

errors (the driver throws an SQLWarn exception, however). When the truncated row is selected, the parser throws a

SAXParseException because the row contains invalid XML.

Retrieve data

You can use the methods in this section to convert XML data that has been fetched from a database column. These
methods help you either convert selected XML text to DOM or parse the data with SAX. The InputSource class is the input
type to JAXP parsing methods.

For information about the file, handler, nsa, and validating parameters, see Insert data on page 70.

The following methods convert objects of type String or InputStream to objects of type InputSource. You can use the
ResultSet.getString(), ResultSet.getAsciiStream(), or ResultSet.getBinarylnputStream() methods to retrieve the data from the

71

OneDB JDBC Driver Programmer's Guide

database column and then pass the retrieved data to getinputSource() for use with any of the SAX or DOM parsing methods.

(For an example, see Retrieve data examples on page 73.)
public | nput Source getl nput Source(String s) throws SQLExcepti on;
publ i c | nput Source get | nput Source(l nput Streamis) throws
SQLExcepti on;
The following methods convert objects of type String or InputStream to objects of type Document:
public Docunent StringtoDOM String s, String handl er, bool ean

val i dati ng, bool ean nsa) throws SQ.Exception

public Docunent StringtoDOM String s, String handler) throws
SQLException

public Docunment StringtoDOM String s) throws SQLException

publ i c Docunent |nputStreantoDOM String s, String handl er, bool ean
val i dati ng, bool ean nsa) throws SQ.Exception

public Docunent |nputStreantoDOM String file, String handler)
throws SQLException

public Docunent |nputStreantoDOM String file) throws SQLException

For examples of using these methods, see Retrieve data examples on page 73.

Insert data examples

The examples in this section illustrate converting XML documents to formats acceptable for insertion into HCL OneDB™

database columns.

The XMLtoString() examples

The following example converts three XML documents to character strings and then uses the strings as parameter values in
an SQL INSERT statement:

PreparedStatenent p = conn.prepareStatenent("insert into tab
values(?,?2,?)");

p.setString(1, UtilXM.XMtoString("/home/filel.xm"));

p.setString(2, UtilXM.XMtoString("http://server/file2.xm");

p.setString(3, UtilXM.XMtoString("file3.xm");

The following example inserts an XML file into an LVARCHAR column. In this example, tab1 is a table created with the SQL

statement:

create table tabl (col 1l |Ivarchar);

The code is:

try
{

72

Chapter 1. HCL OneDB™ JDBC Driver Guide

String cnd = "insert into tabl values (?)";

PreparedSt at enent pstnmt = conn. prepareSt at enent (cnd) ;
pstnt.setString(1, UtilXM..XMtoString("/tnmp/x.xm"));
pstnt . execute();

pstnt.close();

}
catch (SQLException e)
{
/'l Error handling
}

The XMLtolnputStream() example

The following example inserts an XML file into a text column. In this example, table tab2 is created with the SQL statement:

create table tab2 (coll text);

The code is:

try
{

String cnd = "insert into tab2 values (?)";

Prepar edSt at enent pstnt = conn. prepareSt at enent (cnd) ;

pstnt.setAscii Stream(1, Util XM.. XM_t ol nput Strean("/tnp/x.xm"),
(int)(new File("/tnmp/x.xm").length()));

pstnt. execute();

pstnt.cl ose();

}

catch (SQLException e)
{

/1 Error handling

}

Retrieve data examples

The following examples illustrate retrieving data from HCL OneDB™ database columns and converting the data to formats

acceptable to XML parsers.

The StringtoDOM() example

This example operates under the assumption that xmlcol is a column of type Ivarchar that contains XML data. The data
could be fetched and converted to DOM with the following code:

ResultSet r = stnt.executeQuery("select xmcol fromtable where
R I
while (r.next()
{
Docunment doc= Util XM.. StringtoDOMr.getString("xmcol"));
/'l Process ‘doc'

}

73

74

OneDB JDBC Driver Programmer's Guide

The InputStreamtoDOM() example

The following example fetches XML data from a text column into a DOM object:

try
{
String sql = "select coll fromtab2";
Statenment stnt = conn.createStatenent();
ResultSet r = stnt.executeQery(sql);
whi [e(r.next())
{
Docunment doc = Util XM.. | nput St reant oDOMr. get Ascii Strean(1));
}
r.close();
}
catch (Exception e)
{
/1 Error handling
}

The getinputSource() examples
This example retrieves the XML data stored in column xmlcol and converts it to an object of type InputSource; the
InputSource objecti can then be used with any SAX or DOM parsing methods:
I nput Source i = Util XM.. get | nput Sour ce
(resul tset.getString("xmcol"));
This example uses the implementation of JAXP AP, in xer ces. j ar, to parse fetched XML data in column xmlcol:

I nput Source input = Uil XM. get | nput Source(resul tset.getString("xmcol"));
SAXPar ser Factory f = SAXParser Fact ory. new nstance();

SAXPar ser parser = f.newSAXParser();

par ser. parse(input);

In the examples that follow, tab1 is a table created with the SQL statement:

create table tabl (coll |varchar);

The following example fetches XML data from an LVARCHAR column into an InputSource object for parsing. This example

uses SAX parsing by invoking the parser at org.apache.xerces.parsers.SAXParser.

try
{
String sql = "select coll fromtabl";
Statenment stnt = conn.createStatenent();
ResultSet r = stnt.executeQery(sql);
Parser p = ParserFactory. nakeParser ("org. apache. xer ces. par sers. SAXParser") ;
whi | e(r.next())
{
I nput Source i = Uil XM. get | nput Source(r.getString(1));
p. parse(i);
}

r.close();

Chapter 1. HCL OneDB™ JDBC Driver Guide

}

catch (SQLException e)
{

[/ Error handling

}

The following example fetches XML data from a text column into an InputSource object for parsing. This example is the

same example as the previous one, but it uses JAXP factory methods instead of the SAX parser to analyze the data.

try
{
String sql = "select coll fromtab2";
Statement stnt = conn.createStatenent();
Resul tSet r = stnt.executeQery(sql);
SAXPar ser Factory factory = SAXParser Fact ory. newl nst ance() ;
Parser p = factory. newSAXParser () ;
whi | e(r.next())

{
I nput Source i = Util XM.. get | nput Source(r. getAscii Stream(1));
p. parse(i);
}
r.close();
}
catch (Exception e)
{
/] Error handling
}

Work with HCL OneDB™ types

These topics explain the data types that are specific to HCL OneDB™ (other than opaque types) supported in HCL OneDB™
JDBC Driver. For information about opaque types, see Work with opaque types on page 135.

Distinct data types

A distinct type can map to the underlying base type or to a user-defined Java™ object. For example, a distinct type of INT
can map to int or to a Java™ object that encapsulates the data representation. This Java™ object must implement the
java.sql.SQLData interface. You must provide a custom type map as described in Mapping data types on page 215, to map
this Java™ object to the corresponding SQL type name.

Insert data examples

The following example shows an SQL statement that defines a distinct type:
CREATE DI STINCT TYPE nynoney AS NUMERI C(10, 2);
CREATE TABLE di stinct_tab (nynoney_col mnynoney);

The following is an example of mapping to the base type:

String s = "insert into distinct_tab (nynoney_col) values (?)";
System out. println(s);

76

OneDB JDBC Driver Programmer's Guide

pstnt = conn. prepar eSt at enent (s) ;

Bi gDeci mal bi gDecObj = new Bi gDeci mal (123. 45) ;
pstnt. set Bi gDeci mal (1, bigDecObj);

System out . println("setBigDecimal...ok");

pst nt . execut eUpdat e() ;

When you map to the underlying type, HCL OneDB™ JDBC Driver performs the mapping on the client side because the

database server provides implicit casting between the underlying type and the distinct type.

You can also map distinct types to Java™ objects that implement the SQLData interface. The following example shows an

SQL statement that defines a distinct type:

CREATE DI STINCT TYPE nynpney AS NUMERI C(10, 2)

The following code maps the distinct type to a Java™ object named MyMoney:

i nport java.sql.*;

i nport cominform x.jdbc.*;

public class nyMney inplenents SQLData
{

private String sql _type = "mynoney";
public java.math. Bi gDeci nal val ue;

public myMoney() { }

public myMoney(j ava. mat h. Bi gDeci mal val ue)

this.val ue = val ue;

public String get SQLTypeNane()

{
return sql _type;
{
public void readSQL(SQLI nput stream String type) throws
SQLException
{

sql _type = type;
val ue = stream readBi gDeci mal ();

{
public void witeSQ(SQ.Qut put stream throws SQLException
{
stream wri t eBi gDeci nal (val ue);
}

/'l overides bject.equal s()
publ i ¢ bool ean equal s(Obj ect b)

return val ue. equal s(((myMney)b). val ue);

}
public String toString()

{

Chapter 1. HCL OneDB™ JDBC Driver Guide

return "val ue=" + val ue;

}

String s - "insert into distinct_tab (nynoney_col) values (?)";
pstnt = conn. prepareStatenent(s);

nyMoney nmynoney = new nyMoney();

nynoney. val ue = new j ava. mat h. Bi gDeci mal (123. 45) ;

pstnt . set Gbj ect (1, nynoney);

System out . printl n("set Obj ect (nyMoney)...ok");

pst nt . execut eUpdat e() ;

In this case, you use the setObject() method instead of the setBigDecimal() method to insert data.

Retrieve data example

You can fetch a distinct type as its underlying base type or as a Java™ object, if the mapping is defined in a custom type map.

Using the previous example, you can fetch the data as a Java™ object, as shown in the following example:

java.util.Map custontypemap = conn. get TypeMap();
System out . printl n("get TypeMap. .. ok");
if (custontypemap == null)
{
Systemout.println("\n***ERROR. typemap is null!");
return;

}
cust omt ypenmap. put (" nynmoney", Cl ass. for Name(" myMney"));

String s = "sel ect nynoney_col fromdistinct_tab order by 1";
try
{

St atement stnt = conn.createStatenent();

ResultSet rs = stnt.executeQery(s);

System out. println("Fetching data ...");

int curRow = 0;

while (rs.next())

{
cur Rowt+;
myMoney nynmoneyret = (myMoney)rs. get Obj ect (" mynoney_col ");
}
Systemout.printin("total rows expected: " + curRow);
stnt.close();
}
catch (SQ.Exception e)
{
Systemout.printIn("***ERROR " + e.getErrorCode() + " " +
e. get Message());
e.printStackTrace();
}

In this case, you use the getObject() method instead of the getBigDecimal() method to retrieve data.

77

78

OneDB JDBC Driver Programmer's Guide

Unsupported methods

The following methods of the SQLInput and SQLOutput interfaces are not supported for distinct types:

« java.sql.SQLInput
o readArray()
- readCharacterStream()
> readRef()

« java.sql.SQLOutput
o writeArray()
 writeCharacterStream(Reader x)
o writeRef(Ref x)

BYTE and TEXT data types

This section describes the HCL OneDB™ BYTE and TEXT data types and how to manipulate columns of these data types with
the JDBC API.

The BYTE data type is a data type for a simple large object that stores any data in an undifferentiated byte stream. Examples
of this binary data include spreadsheets, digitized voice patterns, and video clips. The TEXT data type is a data type for a

simple large object that stores any text data. It can contain both single and multibyte characters.
Columns of either data type have a theoretical limit of 23 bytes and a practical limit determined by your disk capacity.

For more detailed information about the HCL OneDB™ BYTE and TEXT data types, see HCL OneDB™ Guide to SQL: Reference
and HCL OneDB™ Guide to SQL: Syntax.

Cache large objects

Whenever an object of type BLOB, CLOB, text, or byte is fetched from the database server, the data is cached in client
memory. If the size of the large object is bigger than the value in the LOBCACHE environment variable, the large object data
is stored in a temporary file. For more information about the LOBCACHE variable, see Manage memory for large objects on
page 196.

Example: Inserting or updating data

To insert into or update BYTE and TEXT columns, read a stream of data from a source, such as an operating system file, and
transmit it to the database as a java.io.InputStream object. The PreparedStatement interface provides methods for setting
an input parameter to this Java™ input stream. When the statement is executed, HCL OneDB™ JDBC Driver makes repeated

calls to the input stream, reading its contents and transmitting those contents as the actual parameter data to the database.

For BYTE data types, use the PreparedStatement.setBinaryStream() method to set the input parameter to the InputStream

object. For TEXT data types, use the PreparedStatement.setAsciiStream() method.

The following example from the Byt eType. j ava program shows how to insert the contents of the operating system file

dat a. dat into a column of data type BYTE:

Chapter 1. HCL OneDB™ JDBC Driver Guide

try
{
stnt = conn.createStatenent();
stnt. executeUpdate("create table tabl(coll byte)");
}
catch (SQLException e)
{
Systemout.println("Failed to create table ..." + e.getMessage());
}
try
{
pstnt = conn.prepareStatenent ("insert into tabl values (?)");
}
catch (SQLException e)
{
Systemout.println("Failed to Insert into tab: " + e.toString());
}

File file = new Fil e("data.dat");

int fileLength = (int) file.length();
I nput Stream val ue = nul | ;
FilelnputStreamfileinp = null;

int row = 0;

String str = null;

int rc = 0;

ResultSet rs = null;

Systemout.println("lInserting data ...\n");

try

{
fileinp = new FilelnputStrean(file);
value = (I nputStreamfileinp;

}
catch (Exception e) {}
try
{
pstnt.setBi naryStrean(1, val ue, 10); //set 1st col um
}
catch (SQLException e)
{
System out.println("Unable to set paraneter");
}

set _execute();

public static void set_execute()

79

80

OneDB JDBC Driver Programmer's Guide

{
try
{
pst nt . execut eUpdat e() ;
}
catch (SQ.Exception e)
{
Systemout.printin("Failed to Insert into tab: " + e.toString());
e.printStackTrace();
}
}

The example first creates a java.io.File object that represents the operating system file dat a. dat . The example then creates
a FileInputStream object to read from the object of type File. The object of type FilelnputStream is cast to its superclass
InputStream, which is the expected data type of the second parameter to the PreparedStatement.setBinaryStream() method.
The setBinaryStream() method executes on the already prepared INSERT statement, which sets the input stream parameter.
Finally, the PreparedStatement.executeUpdate() method executes, which inserts the contents of the dat a. dat operating
system file into the column of type BYTE.

The Text Type. j ava program shows how to insert data into a column of type TEXT. It is similar to inserting into a column
of type BYTE, except the method setAsciiStream() is used to set the input parameter instead of setBinaryStream().

Example: Selecting data

After you select from a table into a ResultSet object, you can use the ResultSet.getBinaryStream() method to retrieve a
stream of binary or ASCII data from the columns of type BYTE. You can also use the ResultSet.getAsciiStream() method to
retrieve a stream of binary or ASCII data from the columns of type TEXT. Both methods return an InputStream object, which

can be used to read the data in chunks.
All the data in the returned stream in the current row must be read before you call the next() method to retrieve the next row.

The following example from the Byt eType. j ava program shows how to select data from a column of type BYTE and print
out the data to the standard output device:

try
{
stnt = conn.createStatenent();
rs = stnt.executeQuery("Select * fromtabl");
while(rs.next())
{
r OWH+;
value = rs.getBinaryStrean(1);
di spVal ue(val ue);
}
}

catch (Exception e) { }

public static void dispVal ue(l nputStream i n)

Chapter 1. HCL OneDB™ JDBC Driver Guide

{
int size;
byt e buf;
int count = O;
try
{
size = in.available();
byte ary[] = new byte[size];
buf = (byte) in.read();
whi | e(buf!=-1)
{
ary[count] = buf;
count ++;
buf = (byte) in.read();
}
}
catch (Exception e)
{
Systemout. println("Error occured while reading stream... \n");
}
}

The example first puts the result of a SELECT statement into a ResultSet object. It then executes the method

ResultSet.getBinaryStream() to retrieve the BYTE data into a Java™ InputStream object.

The method dispValue(), whose Java™ code is also included in the example, is used to print out the contents of the column

to the standard output device. The dispValue() method uses byte arrays and the InputStream.read() method to systematically

read the contents of the column of type BYTE.

The Text Type. j ava program shows how to select data from a column of type TEXT. It is similar to selecting from a
column of type BYTE, except the getAsciiStream() method is used instead of getBinaryStream().

SERIAL and SERIALS data types

HCL OneDB™ JDBC Driver provides support for the HCL OneDB™ SERIAL and SERIAL8 data types through the methods
getSerial() and getSerial8(), which are part of the implementation of the java.sql.Statement interface.

Because the SERIAL and SERIAL8 data types do not have an obvious mapping to any JDBC API data types from the
java.sqgl.Types class, you must import classes that are specific to HCL OneDB™ into your Java™ program to handle SERIAL
and SERIALS8 columns. To do this, add the following import line to your Java™ program:

i nport com informx.jdbc.*;

Use the getSerial() method after an INSERT statement to return the serial value that was automatically inserted into the
SERIAL column of a table. Use the getSerial8() method after an INSERT statement to return the serial value that was

automatically inserted into the SERIAL8 column of a table. The methods return o if any of the following conditions are true:

81

OneDB JDBC Driver Programmer's Guide

« The last statement was not an INSERT statement.
« The table being inserted into does not contain a SERIAL or SERIAL8 column.
« The INSERT statement has not executed yet.

If you execute the getSerial() or getSerial8() method after a CREATE TABLE statement, the method returns 1 by default
(assuming the new table includes a SERIAL or SERIAL8 column). If the table does not contain a SERIAL or SERIAL8 column,
the method returns o. If you assign a new serial starting number, the method returns that number.

If you want to use the getSerial() and getSerial8() methods, you must cast the Statement or PreparedStatement object to
IfmxStatement, the implementation of the Statement interface, which is specific to HCL OneDB™. The following example
shows how to perform the cast:

cmd = "insert into serial Table(i) values (100)";

st nt . execut eUpdat e(cnd) ;

System out. println(cmd+"...okay");

int serialValue = ((IfnmxStatenent)stnt). getSerial();
Systemout.println("serial value: " + serial Val ue);

If you want to insert consecutive serial values into a column of data type SERIAL or SERIALS, specify a value of o for the
SERIAL or SERIAL8 column in the INSERT statement. When the column is set to 0, the database server assigns the next-

highest value.

For more detailed information about the HCL OneDB™ SERIAL and SERIAL8 data types, see the HCL OneDB™ Guide to SQL:
Reference and the HCL OneDB™ Guide to SQL: Syntax.

BIGINT and BIGSERIAL data types

The BIGINT and BIGSERIAL data types have the same range of values as INT8 and SERIAL8 data types. However, BIGINT and
BIGSERIAL have advantages for storage and computation over INT8 and SERIALS.

Both the BIGINT and BIGSERIAL data types map to the to BIGINT Java™ type in the class java.sql.Types. When data is
retrieved from the database, the BIGINT and BIGSERIAL data types map to long Java™ Type.

The OneDB® JDBC Driver provides support for the HCL OneDB™ BIGSERIAL and BIGINT data types through the getBigSerial()

method, which is a part of the java.sql.Statement interface

Because the BIGSERIAL and BIGINT data types do not have an obvious mapping to any JDBC API data types from the
java.sql.Types class, you must import classes that are specific to HCL OneDB™ into your Java™ program to handle

BIGSERIAL and BIGINT columns. To do this, add the following import line to your Java™ program:

i mport cominform x.jdbc. *;

Use the getBigSerial() method after an INSERT statement to return the value that was inserted into the BIGSERIAL or BIGINT
column of a table.

If you want to use the getBigSerial() method, you must cast the Statement or PreparedStatement object to IfmxStatement,
the implementation of the Statement interface, which is specific to HCL OneDB™. The following example shows how to
perform the cast:

82

Chapter 1. HCL OneDB™ JDBC Driver Guide

cmd = "insert into bigserial Table(i) values (100)";

st nt . execut eUpdat e(cnd) ;

System out. println(cmd+"...okay");

I ong serialValue = ((IfnxStatenent)stmnt). getBigSerial();
Systemout.println("serial value: " + serial Val ue);

These types are part of the com.informix.lang.IfxTypes class. See the The |fxTypes class on page 223 table for the

IfxTypes constants and the corresponding HCL OneDB™ data types.

INTERVAL data type

The HCL OneDB™ INTERVAL data type stores a value that represents a span of time. INTERVAL data types comprise two
types: year-month intervals and day-time intervals. A year-month interval can represent a span of years and months, and a
day-time interval can represent a span of days, hours, minutes, seconds, and fractions of a second. For more information
about the INTERVAL data type and definitions of qualifier, precision, and fraction, see the following publications:

e HCL OneDB™ Guide to SQL: Tutorial
« HCL OneDB™ Guide to SQL: Reference
« HCL OneDB™ Guide to SQL: Syntax

The Interval class

The com.informix.lang.Interval class is the HCL OneDB™-specific extension to the JDBC specification. Interval is the base
class for the INTERVAL data type. Interval has two subclasses: IntervalYM (for year-month qualifiers) and IntervalDF (for day-
time qualifiers). You use these subclasses to create and manipulate INTERVAL data types.

o Tip: Many of the Interval, IntervalYM, and IntervalDF constructors take a Connection object as a parameter. This
passes the value of the CLIENT_LOCALE environment variable to the Interval, IntervalYM, or IntervalDF object, which
allows the display of localized error messages if an exception is thrown. For more information, see Support for

globalized error messages on page 191.

For information about the string INTERVAL formats in this section, see the HCL OneDB™ Guide to SQL: Syntax.

This section discusses many of the methods you can use with the INTERVAL data types. For complete reference information,
see the online reference documentation in the directory doc/ j avadoc/ * after you install your software. (The doc directory
is a subdirectory of the directory where you installed HCL OneDB™ JDBC Driver.)

Variables for binary qualifiers

You can use string qualifiers to manipulate INTERVAL data types, but using binary qualifiers results in faster performance.
The following variables are defined in the Interval base class and represent the time unit (start and end code) of a field in
the binary qualifier. To use these variables, instantiate objects of the IntervalYM and IntervalDF classes, which inherit these
variables from the Interval base class.

TU_YEAR

Time unit for the YEAR qualifier field

83

84

OneDB JDBC Driver Programmer's Guide

TU_MONTH

Time unit for the MONTH qualifier field
TU_DAY

Time unit for the DAY qualifier field
TU_HOUR

Time unit for the HOUR qualifier field
TU_MINUTE

Time unit for the MINUTE qualifier field
TU_SECOND

Time unit for the SECOND qualifier field
TU_FRAC

Time unit for the leading FRACTION qualifier field
TU_F1

Time unit for the ending field of the first position of FRACTION
TU_F2

Time unit for the ending field of the second position of FRACTION
TU_F3

Time unit for the ending field of the third position of FRACTION
TU_F4

Time unit for the ending field of the fourth position of FRACTION
TU_F5

Time unit for the ending field of the fifth position of FRACTION

Interval methods

You can use the Interval methods to extract information about binary qualifiers. To use these methods, instantiate objects of

the IntervalYM and IntervalDF classes, which inherit these variables from the Interval base class.

Some of the tasks you can perform and the methods you can use follow:

« Extracting the length of a qualifier:
public static byte getlLength(short qualifier)

« Extracting the starting field code (one of the TU_XXX variables) from a qualifier:
public static byte getStart Code(short qualifier)

- Extracting the ending field code (one of the TU_XXX variables) from a qualifier:

Chapter 1. HCL OneDB™ JDBC Driver Guide

public static byte get EndCode(short qualifier)

« Obtaining the string value that corresponds to the TU_XXX value of part of an interval (for example,

get Fi el dNane(TU_YEAR) returns the string year):
public static String getFiel dNane(byte code)
« Obtaining the entire name of the interval as a character string, taking a qualifier as input:

public static String getlfxTypeName(int type,
short qualifier)

« Obtaining the number of digits in the FRACTION part of the INTERVAL data type:

public static byte getScal e(short qualifier)

« Creating a binary qualifier from a length, start code (TU_XXX), and end code (TU_XXX):

public static short getQualifier(byte | ength, byte
start Code, byte endCode) throws SQ.Exception

For example, get Qual i fi er (4, TU_YEAR, TU_MONTH) creates a binary representation of the YEAR TO MONTH qualifier.

The IntervalYM class

The com.informix.lang.IntervalYM class allows you to manipulate year-month intervals.

The IntervalYM constructors

The default constructor is defined as follows:

public Interval YM) throws SQ.Exception

Use this second version of the constructor to display localized error messages if an exception is thrown:

public Interval YM Connection conn) throws SQLException

Use the following constructors to create year-month intervals from specific input values:

« Two time stamps, returning the IntervalYM value that equals Timestamp1 - Timestamp2:

public Interval YMTinestanp t1, Tinestanp t2) throws
SQ.Exception
public Interval YM (Tinestanp t1, Tinmestanp t2, Connection
conn) throws SQLException
The second version allows you to support localized error messages.

« Year and month values (large month values are converted to year):

public Interval YMint years, int nmonths) throws
SQLException

public Interval YMint years, int nonths,
Connection conn) throws SQ.Exception

85

86

OneDB JDBC Driver Programmer's Guide

The second version allows you to support localized error messages.

« A month value and the encoded qualifier:
public Interval YMint nmonths, short qualifier,

Connection conn) throws SQ.Exception

To specify the qualifier, you can use the getQualifier() method described in Interval methods on page 84. This

constructor supports localized error messages.
A string:
public Interval YMString string) throws SQ.Exception
public Interval YM String string, Connection conn) throws
SQ.Exception

The second version allows you to support localized error messages.

« A string and qualifier:
public Interval YMString string, short qualifier,

Connection conn) throws SQ.Exception

To specify the qualifier, you can use the getQualifier() method described in Interval methods on page 84. This
constructor supports localized error messages.

« A string and qualifier information:
public Interval YMString string, int |ength,

byte startCode, byte endCode) throws SQ.Exception

public Interval YMString string, int |ength,
byte startCode, byte endCode, Connection conn) throws
SQ.Exception

The second version allows you to support localized error messages.

The IntervalYM methods

The following methods allow you to manipulate year-month intervals. (You can also use the Interval methods, described
previously.) Some of the tasks you can perform with IntervalYM methods include the following:

» Comparing two intervals:

bool ean equal s(Obj ect ot her)
bool ean great er Than(I nterval YM ot her)
bool ean | essThan(I nt erval YM ot her)

- Setting a value for an interval from:
o A string:

void fronString(String other)
voi d set(String string)

> Year and month values (large month values are converted to years):

Chapter 1. HCL OneDB™ JDBC Driver Guide

void set(int years, int nonths)
o Two time stamps:
void set(Tinmestanp t1, Tinmestanp t?2)

« Setting the qualifier for an interval:
> From the length, start code, and end code:

void setQualifier(int length, byte startcode, byte
endcode)

> Using an existing qualifier:
void setQualifier(short qualifier)
« Obtaining the number of months in the interval:

| ong get Mont hs()

- Creating a string representation of the interval in the format yyyy- mm

String toString()

The fields present depend on the qualifier. Blanks replace leading zeros.

The IntervalDF class

The com.informix.lang.IntervalDF class allows you to manipulate intervals.

The IntervalDF constructors

The default constructor is defined as follows:

public Interval DF() throws SQ.Exception

Use this second version of the default constructor to display localized error messages if an exception is thrown:

public I nterval DF(Connection conn) throws SQLException

Use the following constructors to create intervals from specific input values:

» Two time stamps t7 and t2, returning the IntervalDF value that equals t7 - t2:

public Interval DF(Timestanp t1, Tinestanp t2)
throws SQ.Exception

public Interval DF(Tinmestanp t1, Tinmestanp t2, Connection conn)
throws SQLException

The second version allows you to support localized error messages.

« A number of seconds and nanoseconds (large second values are converted to minutes, hours, or days):

public Interval DF(l ong seconds, |ong nanos)
throws SQ.Exception

87

88

OneDB JDBC Driver Programmer's Guide

public Interval DF(l ong seconds, |ong nanos, Connection conn)
throws SQLException
The second version allows you to support localized error messages.

« A number of seconds, a number of nanoseconds, and qualifier:

public Interval DF(l ong seconds, |ong nanos, short qualifier)
throws SQ.Exception

public Interval DF(l ong seconds, |ong nanos, short qualifier, Connection conn)
throws SQ.Exception

To specify the qualifier, you can use the getQualifier() method described in Interval methods on page 84. The
second version allows you to support localized error messages.
A string:

public Interval DF(String string)
throws SQ.Exception

public Interval DF(String string, Connection conn)
throws SQLException

The second version allows you to support localized error messages.
When you use these constructors, the default qualifier is set to the following values:
leading field precision: 2 start code: Tu DAY end code: TU_F5

For information about string INTERVAL formats, see the HCL OneDB™ Guide to SQL: Syntax.
- A string and a qualifier:

public Interval DF(String string, short qualifier)
throws SQLException

public Interval DF(String string, short qualifier, Connection conn)
throws SQLException

To specify the qualifier, you can use the getQualifier() method described in Interval methods on page 84. The
second version allows you to support localized error messages.

« A string and qualifier information:

public Interval DF(String string, int length, byte startcode, byte endcode)
throws SQLException

public Interval DF(String string, int length, byte startcode,
byt e endcode, Connection conn) throws SQ.Exception

The second version allows you to support localized error messages.

Chapter 1. HCL OneDB™ JDBC Driver Guide

The IntervalDF methods

The following methods allow you to manipulate intervals. (You can also use the Interval methods, described previously.) The

tasks you can perform, and the methods you can use, are as follows:

« Comparing two intervals:

bool ean equal s(Cbj ect ot her)
bool ean greater Than(I nt erval DF ot her)
bool ean | essThan(| nt erval DF ot her)

« Setting a value for an interval from:
o A string:

void fronmBtring(String other)
void set(String string)

- Second and nanosecond values (large second values are converted to minutes, hours, or days):
voi d set(long seconds, |ong nanos)
o Two time stamps:
void set(Tinmestanp t1, Tinmestanp t?2)
- Setting the qualifier from the length, start code, and end code:
void setQualifier(int length, byte startcode, byte endcode)
« Obtaining the number of nanoseconds in the interval:
| ong get NanoSeconds()
- Obtaining the number of seconds in the interval:
| ong get Seconds()
« Creating a string representation of the interval in the format ddddd hh: nm ss. nano:

String toString()

The fields present depend on the qualifier. Blanks replace leading zeros.

Interval example

The I nt er val deno. j ava program, which is included in HCL OneDB™ JDBC Driver, shows how to insert into and select

from the two types of INTERVAL data types.

Collections and arrays

The JDBC 3.0 specification describes only one method to exchange collection data between a Java™ client and a relational

database: an array.

Because the array interface does not include a constructor, HCL OneDB™ JDBC Driver includes an extension that allows a
java.util.Collection object to be used in the PreparedStatement.setObject() and ResultSet.getObject() methods.

89

90

OneDB JDBC Driver Programmer's Guide

If you prefer to use an Array object, use the PreparedStatement.setArray() and ResultSet.getArray() methods. A Collection

object is easier to use, but an Array object conforms to JDBC 3.0 standards.

By default, the driver maps LIST columns to java.util. ArrayList objects and SET and MULTISET columns to java.util. HashSet
objects during a fetch. You can override these defaults, but the class you use must implement the java.util.Collection
interface.

To override this default mapping, you can use other classes in the java.util.Collection interface, such as the TreeSet class.
You can also create your own classes that implement the java.util.Collection interface. In either case, you must provide a
customized type map using the Connection.setTypeMap() method.

During an INSERT operation, any java.util.Collection object that is an instance of the java.util.Set interface is mapped to the
HCL OneDB™ MULTISET data type. An instance of the java.util.List interface is mapped to the HCL OneDB™ LIST data type.

You can override these defaults by creating a customized type mapping.

For information about customized type mappings, see Mapping data types on page 215.

Important: Sets are by definition unordered. If you select collection data using a HashSet object, the order of
the elements in the HashSet object might not be the same as the order specified when the set was inserted. For
example, if the data on the database server is the set {1, 2, 3}, it might be retrieved into the HashSet object as {3, 2, 1}

or any other order.

The complete versions of all of the examples in the following sections are in the conpl ex- t ypes directory where you

installed the driver. For more information, see Sample code files on page 204.

Collection examples

Following is a sample database schema:

create table tab (a set(integer not null), b integer);
insert into tab values ("set{1, 2, 3}", 10);

The following is a fetch example using a java.util. HashSet object:

java. util.HashSet set;

Pr epar edSt at enent pstnt;

Resul t Set rs;

pstnt = conn. prepareStatenent ("select * fromtab");
Systemout. println("prepare ... ok");

rs = pstnt.executeQuery();

System out . println("executeQuery ... ok");

rs.next();
set = (HashSet) rs.getObject(1);
Systemout.println("getObject() ... ok");

/* The user can now use HashSet.iterator() to extract
* each elenent in the collection.

=
Iterator it = set.iterator();
oj ect obj;
Cass cls = null;
int i =0
while (it.hasNext())
{
obj = it.next();
if (cls == null)
{
cls = obj.getd ass();
System out . println(" Col I ection cl ass:
}
System out. println(" element[" + i + "] ="
obj.toString());
i ++;
}
pstnt.cl ose();

" + cls.getName());

+

Chapter 1. HCL OneDB™ JDBC Driver Guide

Inthe set = (HashSet) rs. get vject (1) statement of this example, HCL OneDB™ JDBC Driver gets the type for column 1.

Because it is a SET type, a HashSet object is instantiated. Next, each collection element is converted into a Java™ object and

inserted into the collection.

The following fetch example uses a java.util. TreeSet object:

java.util.TreeSet set;

Prepar edSt at enent pstnt;
Resul t Set rs;

* Fetch a SET as a TreeSet instead of the default

* HashSet. In this exanple a new java.util.Mp object has

* been allocated and passed in as a paraneter to

get Ooj ect ().

* Connection. get TypeMap() coul d have been used as well.

*/

ava. util.Map map = new HashMap();

map. put ("set", C ass.forName("java.util.TreeSet"))
System out. println("nmapping ... ok");

—

pstnt = conn. prepareStatenent ("sel ect * fromtab")

Systemout.println("prepare ... ok");

rs = pstnt.executeQuery();

System out . println("executeQuery ... ok");
rs.next();

set = (TreeSet) rs.getObject(1, nap);
System out . printl n("getObject(Mp) ... ok");

/* The user can now use HashSet.iterator() to extract

* each elenent in the collection.
*/

91

92

OneDB JDBC Driver Programmer's Guide

Iterator it = set.iterator();
bj ect obj ;
Class cls = null;
int i =0;
while (it.hasNext())
{
obj = it.next();
if (cls == null)
{
cls = obj.getd ass();
System out. println(" Col lection class: " + cls.getName());
}
System out . println(" element[" + i + "] =" +
obj.toString());
i ++;
}
pstnt.cl ose();

In the map. put ("set”, O ass.forName("java.util.TreeSet")); statement, the default mapping of set = HashSet is
overridden.

Inthe set = (TreeSet) rs.get vject (1, map) statement, HCL OneDB™ JDBC Driver gets the type for column 1 and finds that

it is a SET object. Then the driver looks up the type mapping information, finds TreeSet, and instantiates a TreeSet object.

Next, each collection element is converted into a Java™ object and inserted into the collection.

The following example shows an insert. This example inserts the set (0, 1, 2, 3, 4) into a SET column:

java.util.HashSet set = new HashSet ();
I nt eger intQbject;
int i;

/* Popul ate the Java collection */
for (i=0; i < 5; i++)
{
intoject = new Integer(i);
set. add(i nt Obj ect) ;

}
System out . println("popul ate java.util.HashSet...ok");

Pr epar edSt at enent pstnt = conn. prepar eSt at enent
("insert into tab values (?, 20)");
System out. println("prepare...ok");

pstnt.set Gbj ect (1, set);

Systemout. println("setObject()...ok");

pst nt . execut eUpdat e() ;

System out . printl n("executeUpdate()...ok");
pstnt.cl ose();

Chapter 1. HCL OneDB™ JDBC Driver Guide

The pst nt . set vj ect (1, set) statement in this example first serializes each element of the collection. Next, the type
information is constructed as each element is converted into a Java™ object. If the types of any elements in the collection do
not match the type of the first element, an exception is thrown. The type information is sent to the database server.

Array example

Following is a sample database schema:

CREATE TABLE tab (a set(integer not null), b integer);
I NSERT | NTO tab VALUES ("set{1,2,3}", 10);

The following example fetches data using a java.sql.Array object:

PreparedSt atenent pstmt = conn. prepareStatenent ("select a fromtab");
Systemout.println("prepare ... ok");

Resul t Set rs = pstnt.executeQuery();

System out . println("executeQuery ... ok");

rs.next();

java.sql . Array array = rs.getArray(1);
Systemout.println("getArray() ... ok");
pstnt.cl ose();

* The user can now materialize the data into either

* an array or else a ResultSet. If the collection elenents

* are primtives then the array should be an array of primtives,
* not Objects. Mapping data can be provided at this point.

*/

Obj ect obj = array.getArray((long) 1, 2);

int [] intArray = (int []) obj; // cast it to an array of ints
int i;
for (i=0; i < intArray.length; i++)

{

Systemout.println("integer element =" + intArray[i]);

}

pstnt.cl ose();

Thejava.sql. Array array = rs.getArray(1) statement instantiates a java.sql.Array object. Data is not converted at this
point.

The vject obj = array.getArray((long) 1, 2) statement converts data into an array of integers (int types, not Integer
objects). Because the getArray() method has been called with index and count values, only a subset of data is returned.

Named and unnamed rows

The JDBC 3.0 specification refers to an SQL type called a structured type or struct, which is equivalent to the HCL OneDB™
named row. The specification defines two approaches to exchange structured-type data between a Java™ client and a
relational database:

93

OneDB JDBC Driver Programmer's Guide

- Using the SQLData interface. A single Java™ class per named row type implements the SQLData interface. The class
has a member for each element in the named row.

« Using the Struct interface. This interface instantiates the necessary Java™ object for each element in the named row
and constructs an array of java.util.Object Java™ objects.

Whether HCL OneDB™ JDBC Driver instantiates a Java™ object or a Struct object for a fetched named row depends on

whether there is a customized type-mapping entry or not, as follows:

« If there is an entry for a named row in the Connection.getTypeMap() map, or if you provided a type mapping using the
getObject() method, a single Java™ object is instantiated.

« If there is no entry for a named row in the Connection.getTypeMap() map, and if you have not provided a type
mapping using the getObject() method, a Struct object is instantiated.

Unnamed rows are always fetched into Struct objects.

Important: Regardless of whether you use the SQLData or Struct interface, if a named or unnamed row contains an
opaque data type column, there must be a type-mapping entry for it. If you are using the Struct interface to access a
row that contains an opaque data type column, you need a customized type map for the opaque data type column,

but not for the row as a whole.

For more information about custom type mapping, see Mapping data types on page 215.

Interval and collection support

The java.sql.SQLOutput and java.sql.SQLInput methods are extended to support Collection and Interval objects in named
and unnamed rows. These extensions include the following methods:

+ The com.informix.jdbc.IfmxComplexSQLInput.readObject() method returns the appropriate java.util.Collection object
if the data is a set, list, or multiset data type.

« The com.informix.jdbc.IfmxComplexSQLInput.readinterval() method returns the appropriate IntervalYM or IntervalDF
object for an interval data type, depending on the qualifier.

+ The com.informix.jdbc.IfmxComplexSQLOutput.writeObject() method accepts objects derived from the

java.util.Collection interface or from IntervalYM and IntervalDF objects.

Unsupported methods

The following SQLInput methods are not supported for selecting a ROW column into a Java™ object that implements
SQLData:

- readByte()
« readCharacterStream()
« readRef()

94

Chapter 1. HCL OneDB™ JDBC Driver Guide

The following SQLOutput methods are not supported for inserting a Java™ object that implements SQLData into a ROW

column:

- writeByte(byte)
« writeCharacterStream(java.io.Reader x)
« writeRef(Ref x)

The SQLData interface

The Java™ class for the named row must implement the SQLData interface. The class must have a member for each element

in the named row but can have other members in addition to these. The members can be in any order and need not be public.

The Java™ class must implement the writeSQL(), readSQL(), and getSQLTypeName() methods for the named row as defined
in the SQLData interface, but can implement additional methods. You can use the ClassGenerator utility to create the class;

for more information, see The ClassGenerator utility on page 103.

To link this Java™ class with the named row, create a customized type mapping using the Connection.setTypeMap() method

or the getObject() method. For more information about type mapping, see Mapping data types on page 215.

You cannot use the SQLData interface to access unnamed rows.

SQLData examples

The complete versions of all of the examples in this section are in the denp/ conpl ex- t ypes directory where you installed

the driver. For more information, see Sample code files on page 204.
The following example includes a Java™ class that implements the java.sql.SQLData interface.

Here is a sample database schema:

CREATE ROW TYPE ful | nane_t (first char(20), |ast char(20));

CREATE ROW TYPE person_t (id int, nane fullnane_t, age int);

CREATE TABLE teachers (person person_t, dept char (20));

I NSERT | NTO t eachers VALUES ("row(100, row(‘Bill', 'Smith'"), 27)", "physics");

This is the fullname Java™ class:

i nport java.sql.*;
public class fullname inplenents SQLData
{

public String first;

public String |ast;

private String sql _type = "fullnane_t";

public String get SQLTypeNamne()

{
return sql _type;
}
public void readSQL (SQLInput stream String type) throws

SQ.Exception

95

OneDB JDBC Driver Programmer's Guide

{
sgl _type = type;
first = streamreadString();
| ast = streamreadString();
}

public void witeSQL (SQLQutput strean) throws SQLExcepti on
{

streamwiteString(first);
streamwiteString(last);

}
/*
* Function not required by SQ.Data interface, but nmakes
* it easier for displaying results.
S
public String toString()
{
String s = "fullnanme: “;
s += "first: " + first +" last: " + |ast;
return s;
}

This is the person Java™ class:

i nport java.sql.*;
public class person inplenents SQ.Data
{
public int id;
public full nane name;
public int age;
private String sql _type = "person_t";

public String get SQLTypeNane()
{
return sql _type;
}
public void readSQ. (SQLInput stream String type) throws SQ.Exception
{
sql _type = type;
id = streamreadint();
name = (full name)stream readObj ect();
age = streamreadlnt();
}
public void witeSQ (SQ.Cutput streanm) throws SQLException
{
streamwitelnt(id);
stream wit e(oj ect (nane) ;
stream witel nt(age);

}
public String toString()
{
String s = "person:";
s +="id: " +id + "\n";

96

Chapter 1. HCL OneDB™ JDBC Driver Guide

s += " nane: " + nane.toString() + "\n";
s +=" age: " + age + "\n";
return s;

Here is an example of fetching a named row:

java.util.Map map = conn. get TypeMap();

conn. set TypeMap(map) ;

map. put ("ful I name_t", d ass.forName("full nane"));
map. put ("person_t", C ass.forNanme("person"));

Pr epar edSt at enent pstnt;

Resul t Set rs;

pstnt = conn. prepareSt atenent ("sel ect person from teachers");
System out . println("prepare ...ok");

rs = pstnt.executeQuery();
System out . printl n("executetQuery()...ok");

while (rs.next())

{

person who = (person) rs.getQbject(1);
System out . println("getObject()...ok");
Systemout.println("Data fetched:");
Systemout.println("row. " + who.toString());

}
pstnt.cl ose();

The conn.getTypeMap() method returns the named row mapping information from the java.util.Map object through the
Connection object.

The map.put() method registers the mappings between the nested named row on the database server, fullname_t, and the
Java™ class fullname, and between the named row on the database server, person_t, and the Java™ class person.

The person who = (person) rs.get Gbject (1) statement retrieves the named row into the Java™ object who. HCL OneDB™
JDBC Driver recognizes that this object who is a named row, a distinct type, or an opaque type, because the information sent
by the database server has an extended name of person_t.

The driver looks up person_t and finds it is a named row. The driver calls the map.get() method with the key person_t, which

returns the person class object. An object of class person is instantiated.

The readSQL() method in the person class calls methods defined in the SQLInput interface to convert each field in the ROW
column into a Java™ object and assign each to a member in the person class.

The following example shows a method for inserting a Java™ object into a named row column using the setObject() method:

java.util.Map map = conn. get TypeMap();
map. put ("fullname_t", C ass.forNanme("fullnane"));
map. put ("person_t", d ass.forName("person"));

97

98

OneDB JDBC Driver Programmer's Guide

Pr epar edSt at enent pstnt;

System out . printl n("Popul ate person and ful |l nane objects");
person who = new person();

ful |l name name = new ful | name();

nane. | ast = "Jones";

name.first = "Sarah";

who.id = 567;

who. nane = nane;

who. age = 17;

String s = "insert into teachers values (?, 'physics')";

pstnt = conn. prepareStatenent (s);
System out . printl n("prepared...ok");

pstnt. set Gbj ect (1, who);
Systemout. println("setObject()...ok");

int rowount = pstnt.executeUpdate();
System out . printl n("executeUpdate()...ok");
pstnt. cl ose();

The conn.getTypeMap() method returns the named row mapping information from the java.util.Map object through the
Connection object.

The map.put() method registers the mappings between the nested named row on the database server, fullname_t, and the
Java™ class fullname and between the named row on the database server, person_t, and the Java™ class person.

HCL OneDB™ JDBC Driver recognizes that the object who implements the SQLData interface, so it is either a named row, a
distinct type, or an opaque type. HCL OneDB™ JDBC Driver calls the getSQLTypeName() method for this object (required for
classes implementing the SQLData interface), which returns person_t. The driver looks up person_t and finds it is a named

row.

The writeSQL() method in the person class calls the corresponding SQLOutput.writeXXX() method for each member in the
class, each of which maps to one field in the named row person_t. The writeSQL() method in the class contains calls to
the SQLOutput.writeObject(name) and SQLOutput.writelnt(id) methods. Each member of the class person is serialized and

written into a stream.

The Struct interface

The JDBC documentation does not specify that Struct objects can be parameters to the PreparedStatement.setObject()
method. However, HCL OneDB™ JDBC Driver can handle any object passed by the PreparedStatement.setObject() or
ResultSet.getObject() method that implements the java.sql.Struct interface.

You must use the Struct interface to access unnamed rows.

You do not need to create your own class to implement the java.sql.Struct interface. However, you must perform a fetch
to retrieve the ROW data and type information before you can insert or update the ROW data. HCL OneDB™ JDBC Driver

Chapter 1. HCL OneDB™ JDBC Driver Guide

automatically calls the getSQLTypeName() method, which returns the type name for a named row or the row definition for an

unnamed row.

If you create your own class to implement the Struct interface, the class you create must implement all the java.sql.Struct
methods, including the getSQLTypeName() method. You can choose what the getSQLTypeName() method returns.

Although you must return the row definition for unnamed rows, you can return either the row name or the row definition for

named rows. Each has advantages:

« Row definition. The driver does not need to query the database server for the type information. In addition, the row
definition returned does not have to match the named row definition exactly, because the database server provides
casting, if needed. This is useful if you want to use strings to insert into an opaque type in a row, for example.

- Row name. If a user-defined routine takes a named row as a parameter, the signature has to match, so you must pass

in a named row.

For more information about user-defined routines, see the following publications: HCL® J/Foundation Developer's
Guide (for information specific to Java™); HCL OneDB™ User-Defined Routines and Data Types Developer's Guide and
HCL OneDB™ Guide to SQL: Reference (both for general information about user-defined routines); and HCL OneDB™

Guide to SQL: Syntax (for the syntax to create and invoke user-defined routines).

| Important: If you use the Struct interface for a named row and provide type-mapping information for the named

row, a ClassCastException message is generated when the ResultSet.getObject() method is called, because Java™

cannot cast between an SQLData object and a Struct object.

Struct examples

The complete versions of all of the examples in this section are in the deno/ conpl ex- t ypes directory where you installed
the driver. For more information, see Sample code files on page 204.

This example fetches an unnamed ROW column. Here is a sample database schema:

CREATE TABLE teachers

(

person row(
idint,
name row(first char(20), |ast char(20)),
age int

)
dept char (20)
)i
I NSERT | NTO t eachers VALUES ("row(100, row('Bill', 'Smith'), 27)", "physics");

This is the rest of the example:

Pr epar edSt at enent pstnt;

Resul t Set rs;

pstnt = conn. prepareSt atenent ("sel ect person from teachers");
Systemout . println("prepare ...ok");

99

OneDB JDBC Driver Programmer's Guide

rs = pstnt.executeQuery();
System out . printl n("executetQuery()...ok");

rs.next();

Struct person = (Struct) rs.getCbject(1);
System out . println("getCbject()...ok");
Systemout.println("\nData fetched:");

I nteger id;

Struct nane;

| nt eger age;

Obj ect[] el ements;

/* Get the row description */

String personRowType = person. get SQLTypeNane() ;

System out. println("person row description: " + personRowType);
Systemout.println("");

/* Convert each elenment into a Java object */
el ements = person.getAttributes();

/*

* Run through the array of objects in 'person' getting out each structure

* field. Use the class Integer instead of int, because int is not an object.
*/

id = (Integer) elenments[0];

name = (Struct) elenments[1];

age = (Integer) el enents[2];

Systemout.println("person.id: " + id);

System out. println("person.age: " + age);

Systemout.println("");

/* Convert 'nane' as well. */

/* get the row definition for 'name' */

String nameRowType = nane. get SQLTypeNane() ;

System out. println("nane row description: " + naneRowType);

/* Convert each elenment into a Java object */
el ements = nane. getAttributes();

/*

* run through the array of objects in 'nanme' getting out each structure
* field.

*/

String first = (String) el enments[0];

String last = (String) elenments[1];

Systemout.println("nane.first: " + first);
Systemout.println("nanme.last: " + last);

pstnt.cl ose();

The struct person = (Struct) rs.get Object (1) statement instantiates a Struct object if column 1 is a ROW type and there is

no extended data type name (if it is a named row).

100

Chapter 1. HCL OneDB™ JDBC Driver Guide

The el enents = person.getAttributes(); statement performs the following actions:

« Allocates an array of java.lang.Object objects with the correct number of elements
« Converts each element in the row into a Java™ object

If the element is an opaque type, you must provide type mapping in the Connection object or pass in a java.util.Map
object in the call to the getAttributes() method.

The string personrowType = person. get SQLTypeNane(); statement returns the row type information. If this type is a named
row, the statement returns the name. Because the type is not a named row, the statement returns the row definition: row(int
id, row(first char(20), last char(20)) name, int age).

The example then goes through the same steps for the unnamed row name as it did for the unnamed row person.

The following example uses a user-created class, GenericStruct, which implements the java.sql.Struct interface. As an

alternative, you can use a Struct object returned from the ResultSet.getObject() method instead of the GenericStruct class.

i nport java.sql.*;
inport java.util.*;
public class GenericStruct inplenments java.sql.Struct
{
private Oobject [] attributes = null;
private String typeName = null;

/*

* Constructor

Ff

GenericStruct() { }

GenericStruct (String nane, Cbject [] obj)

{
typeNanme = nane;
attri butes = obj;
}
public String get SQLTypeNamne()
{
return typeNane;
}
public Object [] getAttributes()
{
return attributes;
}
public Cbject [] getAttributes(Map nap) throws SQLException
{
/1 this class shouldn't be used if there are el enents
/'l that need custom zed type mappi ng.
return attributes;
}
public void setAttributes(Object [] objArray)
{

attributes = objArray;

101

OneDB JDBC Driver Programmer's Guide

}
public void set SQLTypeNanme(Stri ng nane)
{
typeNane = nane;
}

The following Java™ program inserts a ROW column:

Prepar edSt at enent pstnt;
Resul t Set rs;
GenericStruct gs;

String rowlype;

pstnt = conn.prepareStatenent("insert into teachers values (?, '"Math')");
System out.println("prepare insert...ok\n");

System out. println("Popul ate name struct...");
Ooj ect[] name = new Object[2];

/'l popul ate inner row first
nane[0] = new String("Jane");
nanme[1] = new String("Snith");

rowType = "row(first char(20), |last char(20))";
gs = new GenericStruct (rowlype, nane);
Systemout.println("Instantiate GenericStruct Qbj ect...okay\n");

System out . printl n("Popul ate person struct...");
/| popul ate outer row next
oj ect[] person = new Object[3];

person[0] = new I nteger(99);
person[1] = gs;
person[2] = new | nteger(56);

rowType = "row(id int, " +

"nanme row(first char(20), last char(20)), " +

"age int)";
gs = new GenericStruct (rowlype, person);
Systemout.println("lInstantiate GenericStruct Object...okay\n");

pstnt.setObject(1l, gs);

System out. println("setObject()...okay");

pst nt . execut eUpdat e() ;

System out . printl n("executeUpdate()...okay");
pstnt.close();

At the pstnt . set bj ect (1, gs) statement in this example, HCL OneDB™ JDBC Driver determines that the information is to be
transported from the client to the database server as a ROW column, because the GenericStruct object is an instance of the

java.sql.Struct interface.

102

Chapter 1. HCL OneDB™ JDBC Driver Guide

Each element in the array is serialized, verifying that each element matches the type as defined by the getSQLTypeName()

method.

The ClassGenerator utility

The ClassGenerator utility generates a Java™ class for a named row type defined in the system catalog. The utility is the HCL
OneDB™ extension to the JDBC specification.

The created Java™ class implements the java.sql.SQLData interface. The class has members for each field in the named
row. The readSQL(), writeSQL(), and SQLData.readSQL() methods read the attributes in the order in which they appear in the
definition of the named row type in the database. Similarly, writeSQL() writes the data to the stream in that order.

ClassGenerator is packaged in the i f xt ool s. j ar file, so the CLASSPATH environment variable must point to

i fxtools.jar.

The syntax for using ClassGenerator is as follows:

java O assGenerator rowtypenane [-u URL] [-c cl assnane]
The default value for classname is the value for rowtypename.
If the URL parameter is not specified, the required information is retrieved from the set up. st d file in the home directory.

The structure of set up. st d is as follows:

URL j dbc: host - nane: port - nunber
ONEDB_SERVER i nf or mi xser ver name
dat abase dat abase

user user

passwd password

Simple named row example

To use ClassGenerator, you first create the named row on the database server as shown in this example:

create row type enpl oyee (name char (20), age int);

Next, run ClassGenerator:

java O assGenerator enpl oyee

The class generator generates enpl oyee. j ava, as shown next, and retrieves the database URL information from

set up. st d, which has the following contents:

URL j dbc: davi nci : 1528
dat abase test

user scott

passwd ti ger
ONEDB_SERVER pi casso_i us

Following is the generated . j ava file:

103

OneDB JDBC Driver Programmer's Guide

i nport java.sql.*;

i nport java.nath. *;

public class enployee inplenents SQ.Data
{

public String nane;
public int age;
private String sql _type;

public String get SQLTypeName() { return "enpl oyee"; }

public void readSQ. (SQ.Input stream String type) throws
SQLExcepti on

sql _type = type;
name = streamreadString();
age = streamreadlnt();

public void witeSQ (SQ.Qutput streanm) throws SQLExcepti on
{

stream witeStri ng(nane);
stream witelnt(age);

Nested named row example

To use ClassGenerator for a nested row, you first create the named row on the database server:

create row type manager (enp enployee, salary int);

Next, run ClassGenerator. In this case, the set up. st d file is not consulted, because you provide all the needed information
at the command line:

java O assCenerat or nanager -c Manager -u "jdbc:davinci: 1528/ test: user=scott;
passwor d=t i ger ; ONEDB_SERVER=pi casso_i us"

The -c option defines the Java™ class you are creating, which is Manager (with uppercase M).

The preceding command generates the following Java™ class:

i nport java.sql.*;
i nport java.nath. *;
public class Manager inplenents SQ.Data
{
public enpl oyee enp;
public int salary;
private String sql _type;

public String get SQLTypeName() { return "manager"; }

public void readSQ. (SQ.Input stream String type) throws
SQLExcepti on

104

Chapter 1. HCL OneDB™ JDBC Driver Guide

{
sgl _type = type;
enp = (enpl oyee)stream readCbject();
salary = streamreadint();
}
public void witeSQ (SQ.Cutput stream) throws SQLException
{
stream wr it eQbj ect (enp) ;
streamwitelnt(salary);
}

Type cache information

When objects of some data types insert data into columns of certain other data types, HCL OneDB™ JDBC Driver verifies that
the data provided matches the data the database server expects by calling the SQLData.getSQLTypeName() method. The

driver asks the database server for the type information with each insertion.

This occurs in the following cases:

» When an SQLData object inserts data into an opaque type column and getSQLTypeName() returns the name of the
opaque type

» When a Struct or SQLData object inserts data into a row column and getSQLTypeName() returns the name of a
named row

* When an SQLData object inserts data into a DISTINCT type column.

By default the driver will cache the data type information the first time it is retrieved. The driver then asks the cache for the
type information before requesting the data from the database server.

In the database URL, you can set the property udtCache=f al se to disable the cache.

Smart large object data types

A smart large object is a large object with the following features:

- A smart large object can hold a very large amount of data.
Currently, a single smart large object can hold up to four terabytes of data. This data is stored in a separate disk
space called an sbspace.

« A smart large object is recoverable.
The database server can log changes to smart large objects and therefore can recover smart-large-object data in the
event of a system or hardware failure. Logging of smart large objects is not the default behavior.

- A smart large object supports random access to its data.

105

OneDB JDBC Driver Programmer's Guide

Access to a simple large object (BYTE or TEXT) is on an “all or nothing basis; that is, the database server returns all of
the simple large-object data that you request at one time. With smart large objects, you can seek to a desired location

and read or write the desired number of bytes.
- You can customize storage characteristics of a smart large object.
When you create a smart large object, you can specify storage characteristics for the smart large object such as:
o Whether the database server logs the smart large object in accordance with the current database log mode

> Whether the database server keeps track of the last time the smart large object was accessed
o Whether the database server uses page headers to detect data corruption

Smart large objects are stored in the database as BLOB and CLOB data types, which you can access in two ways:

* In HCL OneDB™ JDBC Driver 3.0, and later, and HCL OneDB™ servers that support smart large object data types, you
can use the standard JDBC API methods described in the JDBC 3.0 specifications. This is the simpler approach.

The following JDBC 3.0 methods for BLOB and CLOB internal update have already been implemented in previous

releases:
int setBytes(long, byte[]) throws SQ.Exception

voi d truncate(long) throws SQ.Exception

The following JDBC 3.0 methods from the BLOB interface are implemented in HCL OneDB™ JDBC Driver, Version 3.0,

or later:

Qut put St ream set Bi naryStrean{| ong) throws SQLException

int setBytes(long, byte[], int, int) throws SQ.Exception
The following JDBC 3.0 methods from the CLOB interface are implemented in HCL OneDB™ JDBC Driver, Version 3.0,
or later:

Qut put St ream set Asci i Strean(l ong) throws SQ.Exception
Witer setCharacterStrean(long) throws SQLException

int setString(long, String) throws SQLException
int setString(long, String, int, int) throws SQ.Exception

« You can use HCL OneDB™ extensions that are based on smart-large-object support within . This approach offers

more options.

Smart large objects in the database server

In the database server, a smart large object has two parts:

 The data, which is stored in an sbspace
« A large-object handle, known as an LO handle, which identifies the location of the smart-large-object data in its

sbspace

106

Chapter 1. HCL OneDB™ JDBC Driver Guide

Suppose you store the picture of an employee as a smart large object. The following figure shows how the LO handle
contains information about the location of the actual employee picture in the shspace1_100 sbspace.

Figure 1. Smart large object in the database server
Picture of
amployes

sbspace1_100

LO handle

Disk 100

In the figure, the sbspace holds the actual employee image that the LO handle identifies. For more information about
the structure of an sbspace, and the onspaces database utility that creates and drops sbspaces, see the HCL OneDB™

Administrator's Guide.

! Important: Smart large objects can only be stored in shspaces. You must create an shspace before you attempt to

insert smart large objects into the database.

Because a smart large object is potentially very large, the database server stores only its LO handle in a database table; it can
then use this handle to find the actual data of the smart large object in the sbspace. This arrangement minimizes the table

size.

Applications obtain the LO handle from the database and use it to locate the smart-large-object data and to open the smart

large object for read and write operations.

Smart large objects in a client application

On the client, your JDBC application can use ResultSet methods to access smart-large-object data, such as:

« getClob() and getAsciiStream() for CLOB data
- getBlob() and getBinaryStream() for BLOB data
« getString() for both CLOB and BLOB data

On the client side, the JDBC driver references the LO handle through an IfxLocator object. Your JDBC application obtains

an instance of the IfxLocator class to contain the smart-large-object locator handle, as shown in the following figure. Your
application creates a smart large object independently and then inserts the smart large object into different columns, even in
multiple tables. Using multiple threads, an application can write or read data from various portions of the smart large object

in parallel, which is very efficient.

107

OneDB JDBC Driver Programmer's Guide

Figure 2. Locating a smart large object In a client application

Database server

Picture of
employes

Client application

shspace1_100

IfsLocator
object LD hardle |-

Disk 100

In, support for HCL OneDB™ smart large object data types is available only with 9.x and later versions of the database server.

Creating smart large objects

About this task

The smart large object implementation is based on the following classes:

- IfxLobDescriptor stores attributes for the large object.

« IfxLocator contains the handle to the large object in the database server.

- IfxSmartBlob contains methods for working with the smart large object, such as positioning within the object,
reading data from the object, and writing data to the object.

- IfxBblob and IfxCblob implement the java.sql.Blob and java.sql.Clob interfaces from the JDBC 3.0 specification.

- IfxLoStat stores status information about the large object.

0 Tip: This section describes how to use the HCL OneDB™ smart-large-object interface, but it does not currently

document every method and parameter in the interface. For a comprehensive reference to all the methods in the
interface and their parameters, see the javadoc files for HCL OneDB™ JDBC Driver, located in the doc/ j avadoc

directory where your driver is installed.

To create a smart large object:

108

1. For a new smart large object, ensure that the smart large object has an sbspace specified for its data.

For detailed documentation about the onspaces utility that creates sbspaces, see the HCL OneDB™ Administrator's

Guide. For an example of creating an sbspace, see Example of setting shspace characteristics on page 122.

2. Create an IfxLobDescriptor object.

This allows you to set storage characteristics for the smart large object. The driver passes the IfxLobDescriptor

object to the database server when the IfxSmartBlob.IfxLoCreate() method creates the large object.

3. If desired, call methods in the IfxLobDescriptor object to specify storage characteristics.

For most smart large objects, the shspace name is the only storage characteristic that you need to specify.

The database server can calculate values for all other storage characteristics. You can set particular storage

Chapter 1. HCL OneDB™ JDBC Driver Guide

characteristics to override these calculated values. However, most applications do not need to set storage

characteristics at this level of detail. For more information, see Work with storage characteristics on page 119.

4. Create an IfxLocator object.

This is the pointer to the smart large object on the client.

5. Create an IfxSmartBlob object.

This lets you perform various common operations on the smart large object.

6. Execute the IfxSmartBlob.IfxLoCreate() method to create the large object in the database server.

IfxLoCreate() takes the IfxLocator and IfxLobDescriptor objects as parameters to identify the smart large object in

the database server.

7. Execute IfxSmartBlob.lfxLoWrite() to write data to the smart large object in the database server.

8. Execute additional IfxSmartBlob methods to position within the object, read from the object, and so forth.

9. Execute IfxSmartBlob.IfxLoClose() to close the large object.
10. Insert the smart large object into the database (see Inserting a smart large object into a column on page 113).
11. Execute IfxSmartBlob.IfxLoRelease() to release the locator pointer.

Create an IfxLobDescriptor object
The IfxLobDescriptor class stores the internal storage characteristics for a smart large object. Before you can create a smart
large object on the database server, you must create an IfxLobDescriptor object, as follows:

| f xLobDescri ptor | oDesc = new |fxLobDescri ptor(conn);

The conn parameter is a java.sql.Connection object. The IfxLobDescriptor() constructor sets all the default values for the
object.

For more information about the internal storage characteristics, see Work with storage characteristics on page 119.

Create an IfxLocator object

The IfxLocator object (usually known as the locator pointer or large object locator) identifies the location of the smart large
object, as shown in Figure 2: Locating a smart large object In a client application on page 108; the locator pointer is the
communication link between the database server and the client for a particular large object. Before it creates a large object
or opens a large object for reading or writing, an application must create an IfxLocator object:

| fxLocator |oPtr = new | fxLocator();
| fxLocator |oPtr = new I fxLocat or (Connecti on conn);

Use the second of these constructors to display localized error messages if an exception is thrown. For more information,

see Support for globalized error messages on page 191.

109

110

OneDB JDBC Driver Programmer's Guide

Create an IfxSmartBlob object

To create a smart large object and obtain access to the methods for performing operations on the object, call the

IfxSmartBlob constructor, passing a reference to the JDBC connection:

| fxSmart Bl ob snb = new | f xSmart Bl ob(myConn)

Once you have written all the methods that perform operations you need in the smart large object, you can then use the
IfxSmartBlob.IfxLoCreate() method to create the large object in the database server and open it for access within your
application. The method signature is as follows:
public int |fxLoCreate(lfxLobDescriptor |oDesc, int flag,
| fxLocator loPtr) throws SQ.Exception
public int |fxLoCreate(lfxLobDescriptor |oDesc, int flag,
| f xBbl ob bl ob)t hrows SQ.Exception

public int |fxLoCreate(lfxLobDescriptor |oDesc, int flag,
| fxCbl ob clob throws SQLException

The return value is the locator handle, which you can use in subsequent read, write, seek, and close methods (you can pass
it as the locator file descriptor (lofd) parameter to the methods that operate on open smart large objects; these methods are

described beginning with Position within a smart large object on page 115).

The flag parameter is an integer value that specifies the access mode in which the new smart large object is opened in the
server. The access mode determines which read and write operations are valid on the open smart large object. If you do not
specify a value, the object is opened in read-only mode.

Use the access mode flag values in the following table with the IfxLoCreate() and IfxLoOpen() methods to open or create
smart large objects with specific access modes.

Access mode Purpose Flag value in
IfxSmartBlob
Read only Allows read operations only LO_RDONLY
Write only Allows write operations only LO_WRONLY
Write/Append Appends data you write to the end of the smart large object By itself, LO_APPEND

it is equivalent to write-only mode followed by a seek to the end of the
smart large object. Read operations fail. When you open a smart large
object in write/append mode only, the smart large object is opened

in write-only mode. Seek operations move the seek position, but read
operations to the smart large object fail, and the seek position remains
unchanged from its position just before the write. Write operations

occur at the seek position, and then the seek position is moved.

Read/Write Allows read and write operations LO_RDWR

The following example shows how to use a LO_RDWR flag value:

Chapter 1. HCL OneDB™ JDBC Driver Guide

I fxSmart Bl ob snb = new | f xSmart Bl ob(nyConn) ;
int 1oFd = snb. |fxLoCreate(l oDesc, snb.LO RDWR, |oPtr);

The loDesc and loPtr objects are previously created IfxLobDescriptor and IfxLocator objects, respectively.

The database server uses the following system defaults when it opens a smart large object.
Open-mode information
Default open mode
Access mode
Read-only
Access method
Random
Buffering
Buffered access
Locking

Whole-object locks
For more information about locking, see Work with locks on page 130.

The following table provides the full set of open-mode flags:

Op
en-m
ode
flag Description

LO_A Appends data you write to the end of the smart large object
PP

END By itself, it is equivalent to write-only mode followed by a seek to the end of the smart large object. Read operations

fail.

When you open a smart large object in write/append mode only, the smart large object is opened in write-only mode.
Seek operations move the seek position, but read operations to the smart large object fail, and the seek position
remains unchanged from its position just before the write. Write operations occur at the seek position, and then the
seek position is moved.

LO_ Allows write operations only
WRO
NLY

LO_R Allows read operations only
DO
NLY

111

OneDB JDBC Driver Programmer's Guide

Op
en-m

ode

flag Description
LO_R Allows read and write operations
DWR
LO_D For open only
IRTY

R Allows you to read uncommitted data pages for the smart large object
EAD you cannot write to a smart large object after you set the mode to LO_DIRTY_READ. When you set this flag, you reset

the current transaction isolation mode to Dirty Read for the smart large object.
Do not base updates on data that you obtain from a smart large object in Dirty Read mode.

LO_R Overrides optimizer decision
AN
DOM Indicates that I/0 is random and that the database server should not read ahead. Default open mode.
LO_S Overrides optimizer decision
EQU
ENT Indicates that reads are sequential in either forward or reverse direction.
IAL
LO_F Used only for sequential access to indicate forward direction
ORW
ARD
LO_R Used only for sequential access to indicate reverse direction
EVE
RSE
LO_B Use standard database server buffer pool.
UF
FER
LO_ Do not use the standard database server buffer pool. Use private buffers from the session pool of the database
NOB server.
UF
FER
LO_ Do not allow dirty reads on smart large object. See LO_DIRTY_READ flag for more information.
NODI
RTY_
R
EAD

112

Chapter 1. HCL OneDB™ JDBC Driver Guide

Op
en-m
ode
flag Description

LO_L Specifies that locking will occur on entire smart large object
OCK
ALL

LO_L Specifies that locking will occur for a range of bytes
OCK
RA

NGE

You specify the range of bytes through the IfxSmartBlob.IfxLoLock() method when you place the lock.

Inserting a smart large object into a column
About this task

After creating a smart large object, you must insert it into a BLOB or CLOB column to save it in the database. To do this, you

must convert the IfxLocator object to an IfxBblob or IfxCblob object, depending upon the column type.

To insert a smart large object into a BLOB or CLOB column:

1. Create an IfxBblob or IfxCblob object, as follows:

| fxBbl ob blb = new | fxBbl ob(l oPtr);
The loPtr parameter is an IfxLocator object obtained from one of the previous sets of steps.

2. Use the PreparedStatement.setBlob() or setClob() method to insert the object into the column.

Results

! Important: The sbspace for the smart large object must exist in the database server before the insertion executes.

Accessing smart large objects
About this task

Follow these steps to use the HCL OneDB™ extensions to select a smart large object from a database column.

To access a smart large object:

1. Cast the java.sql.Blob or java.sql.Clob object to an IfxBblob or IfxCblob object.

2. Use the IfxBblob.getLocator() or IfxCblob.getLocator() method to extract an IfxLocator object.
3. Create an IfxSmartBlob object.

4. Use the IfxSmartBlob.IfxLoOpen() method to open the smart large object.

113

OneDB JDBC Driver Programmer's Guide

5. Use the IfxSmartBlob.IfxLoRead() method to read the data from the smart large object.
6. Close the smart large object using the IfxSmartBlob.IfxLoClose() method.
7. Release the locator pointer in the server by calling the IfxSmartBlob.IfxLoRelease() method.

Results

Standard JDBC ResultSet methods such as ResultSet.getBinaryStream(), getAsciiStream(), getString(), getBytes(), getBlob(),
and getClob() can fetch BLOB or CLOB data from a table. The HCL OneDB™ extension classes can then access the data.

Perform operations on smart large objects

In the database server, you can store a smart large object directly in a column that has one of the following data types:

» The CLOB data type holds text data.

- The BLOB data type can store any kind of binary data in an undifferentiated byte stream.

The CLOB or BLOB column holds an LO handle for the smart large object. Therefore, when you select a CLOB or BLOB
column, you do not obtain the actual data of the smart large object, but the LO handle that identifies this data. Columns for

smart large objects have a theoretical limit of 4 terabytes and a practical limit determined by your disk capacity.

You can use either of the following ways to store a smart large object in a column:

- For direct access to the smart large object, create a column of the CLOB or BLOB data type.

- To hide the smart large object within an atomic data type, create an opaque type that holds a smart large object.

In a client application, the IfxBblob and IfxCblob classes are bridges between the way of handling smart large object data
described in the JDBC 3.0 specification and the HCL OneDB™ extensions. The IfxBblob class implements the java.sql.Blob
interface, and the IfxCblob class implements the java.sql.Clob interface. The HCL OneDB™ extensions require an IfxLocator

object to identify the smart large object in the database server.

When you query a table containing a column of type BLOB or CLOB, an object of type Blob or Clob is returned, depending
upon the column type. You can then use the JDBC 3.0 supporting methods for objects of type Blob or Clob to access the
smart large object.

The constructors create an IfxBblob or IfxCblob object from the IfxLocator object loPtr:

public IfxBblob(lfxLocator |oPtr)
public IfxCblob(lfxLocator |oPtr)

The following locator method returns an IfxLocator object from an IfxBblob or IfxCblob object. You can then open, read, and
write to the smart large object using the IfxSmartBlob.IfxLoOpen(), IfxLoRead(), and IfxLoWrite() methods:

public IfxLocator getLocator() throws SQ.Exception

Open a smart large object

The following methods in the IfxSmartBlob class open an existing smart large object in the database server:

114

Chapter 1. HCL OneDB™ JDBC Driver Guide

public int |fxLoOpen(lfxLocator |loPtr, int flag) throws
SQ.Exception

public int |fxLoOpen(lfxBblob blob, int flag) throws SQ.Exception

public int IfxLoOpen(lfxCblob clob, int flag) throws SQLException

The first version opens the smart large object that is referenced by the locator pointer loPtr. The second and third versions
open the smart large objects that are referenced by the specified IfxBblob and IfxCblob objects, respectively. The flag

parameter is a value from the table in Create an IfxSmartBlob object on page 110.

Position within a smart large object

The IfxLoTell() method in the IfxSmartBlob class returns the current seek position, which is the offset for the next read or
write operation on the smart large object. The IfxLoSeek() method in the IfxSmartBlob class sets the read or write position

within an already opened large object.

public | ong I fxLoTel | (i nt | ofd)
public long |IfxLoSeek(int |ofd, long offset, int whence) throws
SQLExcepti on

The absolute position depends on the value of the second parameter, offset, and the value of the third parameter, whence.

The lofd parameter is the locator file descriptor returned by the IfxLoCreate() or IfxLoOpen() method. The offset parameter is
an offset from the starting seek position.

The whence parameter identifies the starting seek position. Use the whence values in the following table to define the
position within a smart large object to start a seek operation.

Starting seek position Whence value
Beginning of the smart large object IfxSmartBlob.LO_SEEK_SET
Current® location in the smart large IfxSmartBlob.LO_SEEK_CUR
object
End of the smart large object IfxSmartBlob.LO_SEEK_

END

The return value is a long integer representing the absolute position within the smart large object.

The following example shows how to use a LO_SEEK_SET whence value:

| f xLobDescri ptor | oDesc = new | fxLobDescri ptor(nyConn);
| fxLocator loPtr = new IfxLocator();

I fxSmart Bl ob snb = new I f xSmart Bl ob(nyConn) ;

int 1oFd = snb. |fxLoCreate(l oDesc, snmb. LO RDWR, |oPtr);
int n =snb.lfxLoWite(loFd, fin, filelLength);

snb. | f xLod ose(| oFd) ;

| oFd = snb. | fxLoOpen(loPtr, smb. LO RDWR);

long m= snb. |fxLoSeek(l oFd, 200, snmb.LO SEEK SET);

The writing position is set at an offset of 200 bytes from the beginning of the smart large object.

115

116

OneDB JDBC Driver Programmer's Guide

Read data from a smart large object

You can read data from a smart large object in the following ways:

+ Read the data from the object into a byte[] buffer.
- Read the data from the object into a file output stream.
 Read the data from the object into a file.

Use the IfxLoRead() method in the IfxSmartBlob class, which has the following signatures, to read from a smart large object
into a buffer or file output stream:
public byte[] I|fxLoRead(int lofd, int nbytes) throws SQ.Exception
public int |fxLoRead(int [ofd, byte[] buffer, int nbytes) throws
SQ.Exception
public int IfxLoRead(int lofd, FileQutputStreamfout, int nbytes
t hrows SQLExcepti on

public int |fxLoRead(int [ofd, byte[] buffer, int nbytes, int
of fset throws SQLException

The lofd parameter is a locator file descriptor returned by the IfxLoRead() or IfxLoOpen() method.

The first version returns nbytes bytes of data into a byte buffer. This version of the method allocates the memory for the
buffer. The second version reads nbytes bytes of data into an already allocated buffer. The third version reads nbytes bytes
of data into a file output stream. The fourth version reads nbytes bytes of data into a byte buffer starting at the current seek
position plus offset into the smart large object. The return values for the last three versions indicate the number of bytes
read.

Use the IfxLoToFile() method in the IfxSmartBlob class, which has the following signatures, to read from a smart large object
into a file:
public int |fxLoToFile(lfxLocator |loPtr, String filenane, int flag
, int whence) throws SQ.Exception
public int IfxLoToFile(lfxBblob blob, String filenane, int flag ,
int whence) throws SQLException

public int |fxLoToFile(lfxCblob clob, String filenane, int flag ,
int whence) throws SQLException

The first version reads the smart large object that is referenced by the locator pointer loPtr. The second and third versions

read the smart large objects that are referenced by the specified IfxBblob and IfxCblob objects, respectively.

The flag parameter indicates whether the file is on the client or the server. The value is either | f xSmar t Bl ob. LO_CLI ENT_FI LE Or
I fxSmart Bl ob. LO_SERVER FI LE. The whence parameter identifies the starting seek position. For the values, see Position within

a smart large object on page 115.

0 Tip: There has been a change in the signature of the following function:

| f xSmart Bl ob. | f xLoToFi |l e() .

Chapter 1. HCL OneDB™ JDBC Driver Guide

This function used to accept four parameters, but now only accepts three parameters. All three overloaded functions

for IfxLoToFile() accept three parameters.

Write data to a smart large object

You can write data to a smart large object in the following ways:

« Write the data from a byte[] buffer to the object.
- Write the data from a file input stream to the object.
- Write the data from a file to the object.

Use the IfxLoWrite() methods in the IfxSmartBlob class to write to a smart large object from a byte[] buffer or file input

stream:

public int IfxLoWite(int |ofd, byte[] buffer) throws SQ.Exception
public int IfxLoWite(int lofd, InputStreamfin, int |ength)
throws SQLException

The first version of the method writes buffer.length bytes of data from the buffer into the smart large object. The second

version writes length bytes of data from an InputStream object into the smart large object.

The lofd parameter is a locator file descriptor returned by the IfxLoCreate() or IfxLoOpen() method. The buffer parameter is
the bytel] buffer where the data is read. The fin parameter is the InputStream object from which data is written into the smart
large object. The length parameter is the number of bytes written into the smart large object. The driver returns the number
of bytes written.

Use the IfxLoFromFile() method in the IfxSmartBlob class to write data to a smart large object from a file:
public int IfxLoFronFile (int lofd, String filenane, int flag, int

of fset, int amount) throws SQLException

The lofd parameter is a locator file descriptor returned by the IfxLoCreate() or IfxLoOpen() method. The flag
parameter indicates whether the file is on the client or the server. The value is either | f xSnart Bl ob. LO_CLI ENT_FI LE OF
I f xSmart Bl ob. LO SERVER FI LE.

The driver returns the number of bytes written.

Truncate a smart large object

Use the IfxLoTruncate() method in the IfxSmartBlob class to truncate a large object at an offset you specify. The method
signature is as follows:
public void | fxLoTruncate(int |lofd, long offset) throws

SQLException

The offset parameter is the absolute position at which the smart large object is truncated.

117

OneDB JDBC Driver Programmer's Guide

Measure a smart large object

Use the IfxLoSize() method in the IfxSmartBlob class to return the size of a smart large object. This method returns a long

integer representing the size of the large object.

The method signature is as follows:

public long |fxLoSize(int |ofd) throws SQ.Exception

Close and release a smart large object

After you have performed all the operations your application needs, you must close the object and then release the resources
in the server. The methods in the IfxSmartBlob class that perform these tasks are as follows:

public void I fxLoC ose(int |ofd) throws SQ.Exception

public void |IfxLoRel ease(lfxLocator |oPtr) throws SQLException

public void |IfxLoRel ease(lfxBbl ob bl ob) throws SQLException
public void |IfxLoRel ease(lfxCblob clob) throws SQ.Exception

For any further access to the same large object, you must reopen it with the IfxLoOpen() method.

Convert IfxLocator to a hexadecimal string

Some applications, for example, web browsers, can only process ASCII data; they require IfxLocator to be converted to
hexadecimal string format. In a typical web-based application, the web server queries the database table and sends the
results to the browser. Instead of sending the entire smart large object, the web server converts the locator into hexadecimal
string format and sends it to the browser. If the user requests the browser to display the smart large object, the browser
sends the locator in hexadecimal format back to the web server. The web server then reconstructs the binary locator from

the hexadecimal string and sends the corresponding smart large object data to the browser.

To convert between the IfxLocator byte array and a hexadecimal number, use the methods listed in the following table.

Task performed Method signature Additional information

Converts a byte array to public static String toHexString(byte[] byteBuf); Works on data other than

a hexadecimal character IfxLocator Provided in the

string com.informix.util.stringUtil class
Converts a hexadecimal public static byte[] fromHexString(String str) throws ~ Works on data other than
character string to a byte NumberFormatException; IfxLocator Provided in the

array com.informix.util.stringUtil class
Constructs an IfxLocator public IfxLocator(byte[] byteBuf) throws Provided in the IfxLocator class

object using a byte array SQLException;

Converts an IfxLocator public String toString(); Provided in the IfxLocator class
byte array to a

hexadecimal character

string

Chapter 1. HCL OneDB™ JDBC Driver Guide

Task performed Method signature Additional information

Converts a hexadecimal public byte[] toBytes(); Provided in the IfxLocator class
character string to an

IfxLocator byte array

The following example uses the toString() and toBytes() methods to fetch the locator from a smart large object and then
convert it into a hexadecimal string:

String hexLoc = "";
byte[] bl obBytes;
byte[] rawLocA = null;
| f xLocat or | oc;

try
{
ResultSet rs = stnt.executeQery("select bl from btab");
whi | e(rs. next())
{
| f xBbl ob b=(1fxBbl ob)rs. get Bl ob(1);
| oc =b. getLocator();
hexLoc = loc.toString();
rawLocA = |l oc.toBytes();
}
}
cat ch(SQLExcepti on e)
{}

The following example uses the IfxLocator() method to construct an IfxLocator, which is then used to read a smart large
object:

try

| fxLocator |oc2 = new IfxLocator (rawLoc);
| fxSmart Bl ob b2 = new | f xSnart Bl ob((I fxConnecti on) myConn) ;
int lofd = b2.1fxLoOpen(loc2, b2. LO RDWR);
bl obByt es = b2.|fxLoRead(l ofd, fileLength);
}
cat ch(SQLExcepti on e)
{}

Work with storage characteristics

Storage characteristics tell the database server how to manage a smart large object. These characteristics include such

areas as sizing, logging, locking, and open modes. You have the following options with respect to storage characteristics:

119

120

OneDB JDBC Driver Programmer's Guide

- Use the system-specified storage characteristics as a basis for obtaining the storage characteristics of a smart large
object.
« Override the system defaults with one of the following:
o Storage characteristics defined for a particular CLOB or BLOB column in which you want to store the smart
large object
- Storage characteristics that are unique to a particular CLOB or BLOB column called column-level storage
characteristics
> Special storage characteristics that you define for this smart large object only called user-specified storage
characteristics

The database server uses a hierarchy, which the following figure shows, to obtain the storage characteristics for a new smart
large object.

Figure 3. Storage-characteristics hierarchy

Database server storage characteristics
{systam defaults)

System-specified
storage characteristics

Shspace storage characteristics
(assigned when the sbspace is created with the onspaces
utility cir when you change the sbepace with onspaces -ch)

L
Column-level storage characteristics
(assigned when the table s created with the CREATE TABLE
staternent or when you change the table with the ALTER TABLE statement)

Y
User-specified storage characteristics
[zssigned when the smart large object s created with an
IfxSmartBlob. FxLoCreate() method)

For a given storage characteristic, any value defined at the column level overrides the system-specified value, and any
user-level value overrides the column-level value. You can specify storage characteristics at the three points shown in the
following table.

When specified How specified For more information
When an sbspace is Options of onspaces utility System-specified storage characteristics on
created page 121

HCL OneDB™ Administrator's Guide

When a database table Keywords in PUT clause of CREATE TABLE HCL OneDB™ Guide to SQL: Syntax

is created statement

When a smart large Create flags and methods in the Set create flags on page 128

object is created ifxLobDescriptor class

Chapter 1. HCL OneDB™ JDBC Driver Guide

System-specified storage characteristics

The database administrator establishes system-specified storage characteristics when he or she initializes the database
server and creates an sbspace with the onspaces utility, as follows:

- If the onspaces utility has specified a value for a particular storage characteristic, the database server uses the
onspaces value as the system-specified storage characteristic.
« If the onspaces utility has not specified a value for a particular storage characteristic, the database server uses the

system default as the system-specified storage characteristic.

The system-specified storage characteristics apply to all smart large objects that are stored in the shspace, unless a smart
large object specifically overrides them with column-level or user-specified storage characteristics.

For the storage characteristics that onspaces can set, as well as the system defaults, see Table 5: Specifying disk-storage

information on page 124 and Table 6: Specifying attribute information on page 125.

For most applications, it is recommended that you use the system-specified default values for the storage characteristics.
Note the following exceptions:

« Your application needs to obtain extra performance.

You can use setXXX() methods in ifxLobDescriptor to change the disk-storage information of a new smart large

object. For more information, see Set create flags on page 128.

 You want to use the storage characteristics of an existing smart large object.

The IfxLoStat.getLobDescriptor() method can obtain the large-object descriptor of an open smart large object. You
can then create a new object and use the IfxSmartBlob.ifxLoAlter() method to set its characteristics to the new

descriptor. For more information, see Changing the storage characteristics on page 127.

« You are working with more than one smart large object and do not want to use the default sbspace.

The DBA can specify a default sbspace name with the SBSPACENAME configuration parameter in the onconf i g
file. However, you must ensure that the location (the name of the sbspace) is correct for the smart large object that
you create. If you do not specify an shspace name for a new smart large object, the database server stores it in this
default sbspace. This arrangement can lead to space constraints.

« If you know the size of the smart large object, specify this size in your application using the
IfxLobDescriptor.setEstBytes() method instead of in the onspaces utility (system level) or the CREATE TABLE or the
ALTER TABLE statement (column level).

Obtain information about storage characteristics

To obtain the column-level storage characteristics of a smart large object, your application can call the following method in
the IfxSmartBlob class, passing the name of the column for the colname parameter:

| f xLobDescriptor |fxLoCol|Info(java.lang.String col nane) throws
SQ.Exception

121

OneDB JDBC Driver Programmer's Guide

Most applications only need to ensure correct storage characteristics for an sbspace name (the location of the smart large
object). You can get information for this and other storage characteristics by calling the various getXXX() methods in the
ifxLobDescriptor class before creating the IfxSmartBlob object. The following table summarizes the getXXX() methods.

Method signature in

ifxLobDescriptor Purpose
int getCreateFlags() Obtains the create flags for the object
long getEstSize() Obtains the estimated size, in bytes, of the object
int getExtSize() Obtains the extent size of the object
long getMaxBytes() Obtains the maximum size, in bytes, of the object
java.lang.String getSbspace() Obtains the name of the sbspace in the database server in which the object is
stored

Example of setting sbspace characteristics

The following call to the onspaces utility creates an sbspace called sb1 in the /dev/sbspace1 partition:

onspaces -c -S shl -p /dev/sbspacel -o 500 -s 2000
-Df "AVG LO Sl ZE=32"

The following table shows the resulting system-specified storage characteristics for all smart large objects in the sb1

sbspace.

Table 4. System-specified storage characteristics for the sh1 shspace

Disk-storage information System-specified value Specified by onspaces utility
Size of extent Calculated by database server System default
Size of next extent Calculated by database server System default
Minimum extent size Calculated by database server System default
Size of smart large object 32 kilobytes (database server uses as size | AVG_LO_SIZE
estimate)
Maximum size of 1/0 block Calculated by database server System default
Name of sbspace sb1 -S option
Logging OFF System default
Last-access time OFF System default

Work with disk-storage information

Disk-storage information helps the database server determine how to manage the smart large object most efficiently on disk.

122

Chapter 1. HCL OneDB™ JDBC Driver Guide

! Important: For most applications, use the values that the database server calculates for the disk-storage

information. Methods provided in HCL OneDB™ JDBC Driver are intended for special situations.

This disk-storage information includes:

« Allocation-extent information:

o Extent size:

An allocation extent is a collection of contiguous bytes within an sbspace that the database server allocates
to a smart large object at one time. The database server performs storage allocations for smart large objects
in increments of the extent size.

You can specify an extent size by calling the ifxLobDescriptor.setExtSize() method.

o Next-extent size:

The database server tries to allocate an extent as a single, contiguous region in a chunk. However, if no
single extent is large enough, the database server must use multiple extents as necessary to satisfy the
current write request. After the initial extent fills, the database server attempts to allocate another extent of

contiguous disk space. This process is called next-extent allocation.

For more information about extents, see the topics on disk structure and storage in the HCL OneDB™ Administrator's
Guide.

« Sizing information:
- Estimated number of bytes in a new smart large object

o Maximum number of bytes to which the smart large object can grow

To specify sizing information, you can use the setMaxBytes() and setEstBytes() methods in the ifxLobDescriptor
class.

If you know the size of the smart large object, specify this size using the setEstBytes() method. This is the best way

to set the extent size because the database server can allocate the entire smart large object as one extent.

 Location:

The name of the sbspace identifies the location at which to store the smart large object. To set this name, you can
use the vifxLobDescriptor.setSbSpace() method.

The database server uses the disk-storage information to determine how best to size, allocate, and manage the extents of
the sbspace. It can calculate all disk-storage information for a smart large object except the sbspace name.

The following table summarizes the ways to specify disk-storage information for a smart large object.

123

OneDB JDBC Driver Programmer's Guide

Table 5. Specifying disk-storage information

Disk-storage information

System-specified storage characteristics

Column-level
storage

characteristics

User-specified
storage

characteristics

sbspace in which a
smart large object:
IN clause

System default value | Specified by onspaces | Specified by PUT Specified by the
utility clause of CREATE HCL OneDB™ JDBC
TABLE Driver method
Size of extent Calculated by EXTENT_SIZE EXTENT SIZE Yes
database server
Size of next extent Calculated by NEXT_SIZE No No
database server
Minimum extent size 4 kilobytes MIN_EXT_SIZE No No
Size of smart large object | Calculated by Average size of all No Estimated size
database server smart large objects in of a particular
sbspace: AVG_LO_SIZE smart large object
Maximum size of
a particular smart
large object
Maximum size of I/0 block | Calculated by MAX_IO_SIZE No No
database server
Name of sbspace SBSPACENAME -S option Name of an existing |Yes

Work with logging, last-access time, and data integrity

Database administrators and applications can affect some additional smart-large-object attributes:

» Whether to log changes to the smart large object in the system log file

- Whether to save the last-access time for a smart large object

- How to format the pages in the sbspace of the smart large object

The following table summarizes how you can alter these attributes at the system, column, and application levels.

124

Table 6. Specifying attribute information

Chapter 1. HCL OneDB™ JDBC Driver Guide

Attribute information

System-specified

System-specified

Column-level storage

User-specified storage

storage storage characteristics, specified characteristics,
characteristics characteristics, |by PUT clause of CREATE specified by a JDBC
default value specified by TABLE driver method
onspaces utility
Logging OFF LOGGING LOG, NO LOG Yes
Last-access time OFF ACCESSTIME KEEP ACCESS TIME, NO Yes
KEEP ACCESS TIME
Buffering mode OFF BUFFERING No No
Lock mode Lock entire smart | LOCK_MODE No Yes
large object
Data integrity High integrity No HIGH INTEG, MODERATE Yes

INTEG

Logging

By default, the database server does not log the user data of a smart large object. You can control the logging behavior for a

smart large object as part of its create flags. For more information, see Set create flags on page 128.

When a database performs logging, smart large objects might result in long transactions for the following reasons:

- Smart large objects can be very large, even several gigabytes in size.

The amount of log storage needed to log user data can easily overflow the log.

» Smart large objects might be used in situations where data collection can be quite long.

For example, if a smart large object holds low-quality audio recording, the amount of data collection might be modest

but the recording session might be quite long.

A simple workaround is to divide a long transaction into multiple smaller transactions. However, if this solution is not
acceptable, you can control when the database server performs logging of smart large objects. (Table 6: Specifying attribute
information on page 125 shows how you can control the logging behavior for a smart large object.)

When logging is enabled, the database server logs changes to the user data of a smart large object. It performs this logging
in accordance with the current database log mode.

For a database that is not ANSI compliant, the database server does not guarantee that log records that pertain to smart
large object are flushed at transaction commit. However, the metadata is always restorable to an action-consistent state; that
is, to a state that ensures no structural inconsistencies exist in the metadata (control information of the smart large object,

such as reference counts).

125

126

OneDB JDBC Driver Programmer's Guide

An ANSI-compliant database uses unbuffered logging. When smart-large-object logging is enabled, all log records (metadata
and user data) that pertain to smart large objects are flushed to the log at transaction commit. However, user data is not
guaranteed to be flushed to its stable storage location at commit time.

When logging is disabled, the database server does not log changes to user data even if the database server logs other
database changes. However, the database server always logs changes to the metadata. Therefore, the database server can
still restore the metadata to an action-consistent state.

Important: Consider carefully whether to enable logging for a smart large object. The database server incurs
considerable overhead to log smart large objects. You must also ensure that the system log file is large enough to
hold the value of the smart large object. The logical log size must exceed the total amount of data that the database

server logs while the update transaction is active.

Write your application so that any transactions with smart large objects that have potentially long updates do not cause
other transactions to wait. Multiple transactions can access the same smart-large-object instance if the following conditions
are satisfied:

« The transaction can access the database row that contains an LO handle for the smart large object.

Multiple references can exist on the same smart large object if more than one column holds an LO handle for the
same smart large object.

- Another transaction does not hold a conflicting lock on the smart large object.

For more information about smart large object locks, see Work with locks on page 130.

The best update performance and fewest logical-log problems result when you disable the logging feature when you load a
smart large object and re-enable it after the load operation completes. If logging is turned on, you might want to turn logging
off before a bulk load and then perform a level-0 backup.

Last-access time

The last-access time of a smart large object is the system time at which the database server last read or wrote the smart
large object. The last-access time records access to the user data and metadata of a smart large object. This system time is
stored as number of seconds since January 1, 1970. The database server stores this last-access time in the metadata area
of the sbspace.

By default, the database server does not save the last access time. You can specify saving the last-access time by
setting the LO_KEEP_LASTACCESS_TIME create flag and calling the IfxLobDescriptor.setCreateFlags() method. For more
information, see Set create flags on page 128.

The database server also tracks the last-modification time and the last change in status for a smart large object. For more

information, see Work with status characteristics on page 129.

Chapter 1. HCL OneDB™ JDBC Driver Guide

! Important: Consider carefully whether to track last-access time for a smart large object. The database server incurs

considerable overhead in logging and concurrency to maintain last-access times for smart large objects.

Data integrity

You can specify data integrity with the LO_HIGH_INTEG and LO_MODERATE_INTEG create flags, by calling the
IfxLobDescriptor.setCreateFlags() method. For more information, see Set create flags on page 128.

An sbpage is the unit of allocation for smart large object data, which is stored in the user-data area of an shspace. The
structure of an sbpage in the sbspace determines how much data integrity the database server can provide. The database

server uses the page header and trailer to detect incomplete writes and data corruption.

The database server supports the following levels of data integrity:

« High integrity tells the database server to use both a page header and a page trailer in each sbpage.

« Moderate integrity tells the database server to use only a page header in each sbpage.
Moderate integrity provides the following benefits:

« It eliminates an additional data copy operation that is necessary when an sbpage has page headers and page trailers.

« It preserves the user data alignments on pages because no page header and page trailer are present.

Moderate integrity might be useful for smart large objects that contain large amounts of audio or video data that is moved
through the database server and that do not require a high data integrity. By default, the database server uses high integrity
(page headers and page trailers) for sbspace pages. You can control the data integrity for a smart large object as part of its

storage characteristics.

! Important: Consider carefully whether to use moderate integrity for sbpages of a smart large object. Although

moderate integrity takes less disk space per page, it also reduces the ability of the database server to recover

information if disk errors occur.
For information about the structure of sbspace pages, see the HCL OneDB™ Administrator's Guide.

Changing the storage characteristics
About this task
The IfxLoAlter() methods in the IfxSmartBlob class let you change the storage characteristics of a smart large object.

To change smart-large-object characteristics:

1. Create a new large-object descriptor.
Example

For example:

127

OneDB JDBC Driver Programmer's Guide

| f xLobDescri ptor | oDesc = new |fxLobDescri ptor(conn);

2. Call IfxLobDescriptor.setCreateFlags(), setEstBytes(), IfxLobDescriptor.setMaxBytes(), setExtSize, and setSbspace()

to specify the new characteristics:

public void setCreateFlags(int flags)

public void setEstBytes(long estSize)

public void set MaxBytes (|l ong nmaxSi ze)

public void setExtSize (long extSize)

public void set Sbspace(java.lang. String sbspacenane)

The flag parameter is a constant from Set create flags on page 128.
3. Call IfxLoAlter() to alter the existing smart large object to contain the new descriptor:

public int IfxLoAlter(IfxLocator |oPtr, |fxLobDescriptor |oDesc)
throws SQLException

public int IfxLoAlter(lfxBblob blob, IfxLobDescriptor |oDesc)
throws SQLException

public int |fxLoAlter(IfxCblob clob, |IfxLobDescriptor |oDesc)
throws SQLException

Results

IfxLoAlter() obtains an exclusive lock in the server for the entire smart large object before it proceeds with the update. It

holds this lock until the update completes.

Set create flags

You can change the following characteristics by calling the IfxLobDescriptor.setCreateFlags() method:

* Logging characteristics
You can specify the LO_LOG or LO_ NOLOG constant.

LO_LOG causes the server to follow the logging procedure used with the current database log for the corresponding

smart large object. This option can generate large amounts of log traffic and increase the risk that the logical log fills
up.

Instead of full logging, you might turn off logging when you load the smart large object initially and then turn logging
back on once the smart large object is loaded. If you use NO LOG, you can restore the smart-large-object metadata

later to a state in which no structural inconsistencies exist. In most cases, no transaction inconsistencies will exist
either, but that result is not guaranteed.

For more usage details on logging, see Logging on page 125.
- Last-access time characteristics
You can specify the LO_ KEEP_LASTACCESS_TIME or LO NOKEEP_LASTACCESS_TIME constant. LO_

KEEP_LASTACCESS_TIME records, in the smart-large-object metadata, the system time at which the corresponding

smart large object was last read or written.

Chapter 1. HCL OneDB™ JDBC Driver Guide

For more usage details on last-access time, see Last-access time on page 126.

« Whether to detect incomplete writes and data corruption by producing user-data pages with a page header and page

trailer

You can specify the LO_ HIGH_INTEG or LO_moderate_integ constant. LO_ HIGH_INTEG is the default data-integrity
behavior.

For more usage details on data integrity, see Data integrity on page 127.

The following example sets multiple flags:

| oDesc. set Cr eat eFl ags
(1fxSmartBl ob. LO LOGH f xSmart Bl ob. LO TEMP+. . .)

A parallel getXXX() method lets you obtain the current storage characteristics for the large object:

public int getCreateFl ags()

For more detailed information about all of the characteristics, see the section describing the PUT clause for the CREATE
TABLE statement, in the HCL OneDB™ Guide to SQL: Syntax.

Work with status characteristics

The IfxLoStat class stores some statistical information about a smart large object such as the size, last access time, last
modified time, last status change, and so on. The following table shows the status information that you can obtain.

Table 7. Status information for a smart large object

Status
information Description

Last-access The time, in seconds, that the smart large object was last accessed

time
This value is available only if the last-access time attribute is enabled for the smart large object. For more

information, see Last-access time on page 126.

Last-change The time, in seconds, of the last change in status for the smart large object

time
A change in status includes changes to metadata and user data (data updates and changes to the number of

references). This system time is stored as number of seconds since January 1, 1970.

Last-modifi The time, in seconds, that the smart large object was last modified

cation time
A modification includes only changes to user data (data updates). This system time is stored as the number

of seconds since January 1, 1970.

On some platforms, the last-modification time might also have a microseconds component, which can be

obtained separately from the seconds component.

129

OneDB JDBC Driver Programmer's Guide

Table 7. Status information for a smart large object (continued)

Status
information Description
Size The size, in bytes, of the smart large object
Storage See Work with storage characteristics on page 119.

characterist

ics

To obtain a reference to the status structure, call the following method in the IfxSmartBlob class:

I fxLoStat |fxLoGetStat(int |ofd)

To obtain particular categories of status information, call the methods shown in the following table.

Table 8. Methods for obtaining status information

Status information Method signature in ifxLoStat class
Last-access time int getLastAccessTime()
Last-change time int getLastStatusTime()

Last-modification time int getLastModifyTimeM() - time in microseconds

int getLastModifyTimeS() - time rounded to

seconds
Size int getSize()
Storage ifxLobDescriptor getLobDescriptor()

characteristics

Work with locks

To prevent simultaneous access to smart-large-object data, the database server obtains a lock on this data when you open

the smart large object. This smart-large-object lock is distinct from the following kinds of locks:

* Row locks

Alock on a smart large object does not lock the row in which the smart large object resides. However, if you retrieve
a smart large object from a row and the row is still current, the database server might hold a row lock as well as a
smart-large-object lock. Locks are held on the smart large object instead of on the row because many columns could

be accessing the same smart-large-object data.

« Locks of different smart large objects in the same row of a table

A lock on one smart large object does not affect other smart large objects in the row.

130

Chapter 1. HCL OneDB™ JDBC Driver Guide

The following table shows the lock modes that a smart large object can support.

Table 9. Lock modes for a smart large object

Lock mode Purpose Description

Lock-all Lock the entire smart large object | Indicates that lock requests apply to all data for the smart

large object

Byte-range Lock only specified portions of the [Indicates that lock requests apply only to the specified

smart large object number of bytes of smart-large-object data

When the server opens a smart large object, it uses the following information to determine the lock mode of the smart large
object:

» The access mode of the smart large object

The database server obtains a lock as follows:
> In share mode, when you open a smart large object for reading (read-only)
> In update mode, when you open a smart large object for writing (write-only, read/write, write/append)
When a write operation (or some other update) is actually performed on the smart large object, the server
upgrades this lock to an exclusive lock.
« The isolation level of the current transaction

If the database table has an isolation mode of Repeatable Read, the server does not release any locks that it obtains
on a smart large object until the end of the transaction.

By default, the server chooses the lock-all lock mode.

The server retains the lock as follows:

« It holds share-mode locks and update locks (which have not yet been upgraded to exclusive locks) until one of the
following events occurs:
> The close of the smart large object
> The end of the transaction
= An explicit request to release the lock (for a byte-range lock only)
« It holds exclusive locks until the end of the transaction even if you close the smart large object.

When one of the preceding conditions occurs, the server releases the lock on the smart large object.

131

132

OneDB JDBC Driver Programmer's Guide

| Important: You lose the lock at the end of a transaction even if the smart large object remains open. When the server
H P ge o) p
detects that a smart large object has no active lock, it automatically obtains a new lock when the first access occurs

to the smart large object. The lock that it obtains is based on the original access mode of the smart large object.

The server releases the lock when the current transaction terminates. However, the server obtains the lock again when the
next function that needs a lock executes. If this behavior is undesirable, the server-side SQL application can use BEGIN
WORK transaction blocks and place a COMMIT WORK or ROLLBACK WORK statement after the last statement that needs to
use the lock.

Byte-range locking

By default, the database server uses whole lock-all locks when it needs to lock a smart large object. Lock-all locks are an “all
or nothing" lock; that is, they lock the entire smart large object. When the database server obtains an exclusive lock, no other
user can access the data of the smart large object as long as the lock is held.

If this locking is too restrictive for the concurrency requirements of your application, you can use byte-range locking instead
of lock-all locking. With byte-range locking, you can specify the range of bytes to lock in the smart-large-object data. If other

users access other portions of the data, they can still acquire their own byte-range lock.

Use the IfxLoLock() method in the IfxSmartBlob class to specify byte-range locking:

public long IfxLoLock(int |Iofd, long offset, int whence, |ong
range, int |ocknode) throws SQLException

To unlock a range of bytes in the object, use the IfxLoUnLock() method:

public long IfxLoUnLock(int lofd, |long offset, int whence, |ong
range) throws SQ.Exception

The lofd parameter is the locator file descriptor returned by the IfxLoCreate() or IfxLoOpen() method. The offset parameter
is an offset from the starting seek position. The whence parameter identifies the starting seek position. The values are
described in the table in Position within a smart large object on page 115.

The range parameter indicates the number of bytes to lock or unlock within the smart large object. The lockmode
parameter indicates what type of lock to create. The values can be either | f xSnar t Bl ob. LO_EXCLUSI VE_MODE OF
I f xSmar t Bl ob. LO_SHARED MODE.

Cache large objects

Whenever an object of type BLOB, CLOB, text, or byte is fetched from the database server, the data is cached in client
memory. If the size of the large object is bigger than the value in the LOBCACHE environment variable, the large object data
is stored in a temporary file. For more information about the LOBCACHE variable, see Manage memory for large objects on
page 196.

Chapter 1. HCL OneDB™ JDBC Driver Guide

Avoid errors transferring large objects

The IFX_LOB_XFERSIZE environment variable is used to specify the number of bytes in a CLOB or BLOB to transfer from a
client application to the database server before checking whether an error has occurred. The error check occurs each time
the specified number of bytes is transferred. If an error occurs, the remaining data is not sent and an error is reported. If no

error occurs, the file transfer will continue until it finishes.

For example, if the value of IFX_LOB_XFERSIZE is set to 10485760 (10 MB), then error checking will occur after every
10485760 bytes of the CLOB or BLOB is sent. If the IFX_LOB_XFERSIZE environment variable is not set, the error check
occurs after the entire BLOB or CLOB is transferred.

The valid range for the IFX_LOB_XFERSIZE environment variable is from 1 to 9223372036854775808 bytes. The
IFX_LOB_XFERSIZE environment variable is set on the client.

You should adjust the value of IFX_LOB_XFERSIZE to suit your environment. Set the IFX_LOB_XFERSIZE environment
variable low enough so that transmission errors of large BLOB or CLOB data types are detected early, but not so low that

excessive network resources are consumed.

Smart large object examples

The following examples illustrate some of the tasks discussed in this section.

Create a smart large object

This example illustrates the steps shown in Creating smart large objects on page 108.

file = new Fil e("data.dat");
FilelnputStreamfin = new Fil el nputStrean(file);

byte[] buffer = new byte[200];;

| f xLobDescri ptor | oDesc = new | fxLobDescri pt or (myConn);
| fxLocator loPtr = new I fxLocator();
I fxSmart Bl ob snb = new | f xSmart Bl ob(nyConn) ;

/1l Now create the large object in server. Read the data fromthe
file

/] data.dat and wite to the | arge object.

int loFd = snb. |fxLoCreate(l oDesc, snmb. LO RDWR, |o0Ptr);

Systemout.println("A smart-blob is created ");

int n=fin.read(buffer);

if (n>0)
n = snb. | fxLoWite(l oFd, buffer);
Systemout.println("Wote: " + n +" bytes into it");

/'l Cose the |arge object and rel ease the | ocator.
snb. | f xLod ose(| oFd) ;

Systemout.println("Smart-blob is closed ");

snb. | f xLoRel ease(l oPtr);

Systemout.println("Snart Bl ob Locator is released ");

133

OneDB JDBC Driver Programmer's Guide

The contents of the file dat a. dat are written to the smart large object.

Insert data into a smart large object

The following code inserts data into a smart large object:

String s = "insert into large_tab (col1, col?2) values (?,?)";
pstnt = myConn. prepar eSt at enent (s) ;

file = new Fil e("data.dat");
FilelnputStreamfin = new Fil el nputStrean(file);

byte[] buffer = new byte[200];;

| f xLobDescri ptor | oDesc = new |fxLobDescri ptor(nyConn);
| fxLocator loPtr = new IfxLocator();
| fxSmart Bl ob snb = new | f xSmart Bl ob(nyConn) ;

// Create a smart |arge object in server

int loFd = snb. | fxLoCreate(l oDesc, snb. LO RDWR, |0Ptr);
System out.println("A snart-bl ob has been created ");
int n=fin.read(buffer);

if (n>0)

n = snb. | fxLoWite(loFd, buffer);

snb. | f xLoCl ose(| oFd) ;

Systemout.println("Wote: " + n +" bytes into it");
Systemout.println("Smart-blob is closed ");

Bl ob bl b = new | fxBbl ob(loPtr);

pstnt.setlnt(1, 2); // set the Integer colum

pstnt.setBlob(2, blb); // set the blob colum

pst nt . execut eUpdat e() ;

Systemout . println("Binding of smart |arge object to table is
done");

pstnt.cl ose();
snb. | f xLoRel ease(l oPtr);
Systemout.println("Smart Blob Locator is released ");

The contents of the file dat a. dat are written to the BLOB column of the large_tab table.

Retrieve data from a smart large object

The example in this topic illustrates the steps in Accessing smart large objects on page 113.

The following code example shows how to access the smart large object data using HCL OneDB™ extension classes:

byte[] buffer = new byte[200];
System out . println("Readi ng data now ...");
try

{

int row = 0;

134

Chapter 1. HCL OneDB™ JDBC Driver Guide

St at ement stnt = myConn. creat eStatenent ();
ResultSet rs = stnt.executeQuery("Select * fromdeno_14");
while(rs.next())

{

r OWAH+;

String str = rs.getString(1l);

I nput St ream val ue = rs. getAscii Stream 2);

| fxBblob b = (IfxBblob) rs.getBlob(2);

| fxLocator |oPtr = b.getLocator();

| fxSmart Bl ob snb = new | f xSnart Bl ob(myConn) ;

int 1oFd = snb. | fxLoOpen(loPtr, snb.LO RDONLY);

Systemout.println("The Shart Blob is Opened for reading ..");
int number = snb.|fxLoRead(| oFd, buffer, buffer.l|ength);
Systemout. println("Read total " + nunmber + " bytes");

snb. | f xLoCl ose(| oFd) ;

Systemout.println("C osed the Smart Blob ..");

smb. | f xLoRel ease(l oPtr);

Systemout.println("Locator is released ..");
}
rs.close();
}
cat ch(SQLExcepti on e)
{
Systemout.println("Select Failed ...\n" +e.get Message());
}

First, the ResultSet.getBlob() method gets an object of type BLOB. The casting is required to convert the returned object
to an object of type IfxBblob. Next, the IfxBblob.getLocator() method gets an IfxLocator object from the IfxBblob object.
After the IfxLocator object is available, you can instantiate an IfxSmartBlob object and use the IfxLoOpen() and IfxLoRead()
methods to read the smart large object data. Fetching CLOB data is similar, but it uses the methods ResultSet.getClob(),

IfxCblob.getLocator(), and so on.

If you use getBlob() or getClob() to fetch data from a column of type BLOB, you do not need to use the HCL OneDB™
extensions to retrieve the actual BLOB content as outlined in the preceding sample code. You can simply use
Java.Blob.getBinaryStream() or Java.Clob.getAsciiStream() to retrieve the content. HCL OneDB™ JDBC Driver implicitly gets
the content from the database server for you, using basically the same steps as the sample code. This approach is simpler
than the approach of the preceding example but does not provide as many options for reading the contents of the BLOB

column.

Work with opaque types

An opaque data type is an atomic data type that you define to extend the database server. The database server has no

information about the opaque data type until you provide routines that describe it.

Extending the database server also frequently requires that you create user-defined routines (UDRs) to support the
extensions. A UDR is a routine that you create that can be invoked in an SQL statement, by the database server, or from

another UDR. UDRs can be part of opaque types, or they can be separate.

135

OneDB JDBC Driver Programmer's Guide

The JDBC 3.0 standard provides the java.sql.SQLInput and java.sql.SQLOutput methods to access opaque types. The
definition of these interfaces is extended to fully support HCL OneDB™ fixed binary and variable binary opaque types. This
extension includes the following interfaces:

* IfmxUdtSQLInput
« IfmxUdtSQLOutput

In addition, the following classes simplify creating Java™ opaque types and UDRs in the database server from a JDBC client
application:

- UDTManager
» UDTMetaData
- UDRManager
+ UDRMetaData

The UDTManager and UDRManager classes provide an infrastructure for mapping client-side Java™ classes as opaque data
types and UDRs and storing their instances in the database.

This facility works only in client-side JDBC. For details about the features and limitations of server-side JDBC, see the HCL®
J/Foundation Developer's Guide.

For detailed information about opaque types and UDRs, see the following publications:

« HCL OneDB™ User-Defined Routines and Data Types Developer's Guide discusses the terms and concepts about
opaque types and UDRs that you need to use the information in this section, including the internal data structure,
support functions, and implicit and explicit casts.

» The HCL® J/Foundation Developer's Guide discusses information specific to writing UDRs in Java™.

The IfmxUDTSQLInput interface

The com.informix.jdbc.lfmxUdtSQLInput interface extends java.sql.SQLInput with several added methods. To use these
methods, you must cast the SQLInput references to IfmxUdtSQLInput. The methods allow you to perform the following

functions:

- Read data.
« Position in the data stream.

« Set or obtain attributes of the data.

Read data

The readString() method reads the next attribute in the stream as a Java™ string. The readBytes() method reads the next
attribute in the stream as a Java™ byte array. Both methods are similar to the SQLInput.readBytes() method except that a

fixed length of data is read in:

public String readString(int maxlen) throws SQ.Excepti on;
public byte[] readBytes(int maxlen) throws SQ.Excepti on;

136

Chapter 1. HCL OneDB™ JDBC Driver Guide

In both methods, you must supply a length for HCL OneDB™ JDBC Driver to read the next attribute properly, because the
characteristics of the opaque type are unknown to the driver. The maxlen parameter specifies the maximum length of data to
read in.

Position in the data stream
The getCurrentPosition() method retrieves the current position in the input stream. The setCurrentPosition() method changes
the position in the input stream to the position specified by the position parameter:

public int getCurrentPosition();
public void setCurrentPosition(int position) throws SQLExcepti on;
public void skipBytes(int |en) throws SQ.Exception;

The position parameter must be a positive integer. The skipBytes() method changes the position in the input stream by the

number of bytes specified by the len parameter, relative to the current position. The len parameter must be a positive integer.

In both setCurrentPosition() and skipBytes(), HCL OneDB™ JDBC Driver generates an SQLException if the new position

specified is after the end of the input stream.

Set or obtain data attributes
The length() method returns the total length of the entire data stream. The getAutoAlignment() method retrieves the TRUE or
FALSE (on or off) state of the auto alignment feature. The setAutoAlignment() method sets the state to TRUE or FALSE:

public int length();
public bool ean get Aut oAl i gnnent () ;
public void set Aut oAl i gnnment (bool ean val ue);

! Important: Setting the auto alignment feature might result in discarded bytes from the input stream if the data is not

already aligned. JDBC applications should provide aligned data or set the auto alignment feature to FALSE.

The IfmxUDTSQLOutput interface

The com.informix.jdbc.lfmxUdtSQLOutput interface extends java.sql.SQLOutput with the following added methods:

public void witeString(String str, int |length) throws
SQ.Excepti on;
public void witeBytes(byte[] b, int length) throws SQ.Exception;
To use these methods, you must cast the SQLOutput references to IfmxUdtSQLOutput.

Use the writeString() method to write the next attribute to the stream as a Java™ string. If the string passed in is shorter than
the specified length, HCL OneDB™ JDBC Driver pads the string with zeros.

Use the writeBytes() method to write the next attribute to the stream as a Java™ byte array.

Both methods are similar to the SQLOutput.writeBytes() method except that a fixed length of data is written to the stream.
If the array or string passed in is shorter than the specified length, HCL OneDB™ JDBC Driver pads the array or string with

137

OneDB JDBC Driver Programmer's Guide

zeros. In both methods, you must supply a length for HCL OneDB™ JDBC Driver to write the next attribute properly, because
the opaque type is unknown to the driver.

Map opaque data types

opaque types map to Java™ objects, which must implement the java.sql.SQLData interface. These Java™ objects describe all
the data members that make up the opaque type. These Java™ objects are strongly typed; that is, each read or write method
in the readSQL or writeSQL method of the Java™ object must match the corresponding data member in the opaque type
definition.HCL OneDB™ JDBC Driver cannot perform any type conversion because the type structure is unknown to it.

HCL OneDB™ JDBC Driver also requires that all opaque data be transported as HCL OneDB™ DataBlade® API data types, as
defined in i t ypes. h (this file is included in all installations). All opaque data is stored in the database server tableina C
struct, which is made up of various DataBlade® API types, as defined in the opaque type.

You do not need to handle mapping between Java™ and C if you use the UDT and UDR Manager facility to create opaque
types. For more information, see Creating opaque types and UDRs on page 139.

Type cache information

When objects of some data types insert data into columns of certain other data types, HCL OneDB™ JDBC Driver verifies that
the data provided matches the data the database server expects by calling the SQLData.getSQLTypeName() method. The
driver asks the database server for the type information with each insertion.

This occurs in the following cases:

» When an SQLData object inserts data into an opaque type column and getSQLTypeName() returns the name of the
opaque type

» When a Struct or SQLData object inserts data into a row column and getSQLTypeName() returns the name of a
named row

« When an SQLData object inserts data into a DISTINCT type column,

In the database URL, you can set the environment variable ENABLE_TYPE_CACHE=TRUE to have the driver cache the data
type information the first time it is retrieved. The driver then asks the cache for the type information before requesting the
data from the database server.

Unsupported methods

The following methods of the SQLInput and SQLOutput interfaces are not supported for opaque types:

- java.sql.SQLInput
> readAsciiStream()
> readBinaryStream()
o readBytes()
- readCharacterStream()
> readObject()

138

Chapter 1. HCL OneDB™ JDBC Driver Guide

> readRef()
o readString()
- java.sql.SQLOutput
o writeAsciiStream(InputStream x)
o writeBinaryStream(InputStream x)
- writeBytes(byte[] x)
o writeCharacterStream(Reader x)
- writeObject(Object x)
o writeRef(Ref x)
o writeString(String x)

Creating opaque types and UDRs

About this task

The UDTManager and UDRManager classes allow you to easily create and deploy opaque types and user-defined routines

(UDRs) in the database server.

Before using the information in this section, read the following two additional publications:

« For information about configuring your system to support Java™ UDRs, see the HCL® J/Foundation Developer's
Guide.
- For detailed information about developing opaque types, see HCL OneDB™ User-Defined Routines and Data Types

Developer's Guide.

Overview of creating opaque types and UDRs

In the database server, any Java™ class that implements the java.sql.SQLData interface and is accessible to the Java™
Virtual Machine can be stored as an opaque type. The UDTManager and UDRManager classes, together with their supporting
UDTMetaData and UDRMetaData classes, extend this facility to client applications: your Java™ client application can use
these classes to create opaque types and user-defined routines and transfer their class definitions to the database server.

The client does not need to be accessible to the database server to use this functionality.

! Important: This functionality is tightly coupled with server support for creating and using Java™ opaque types
and user-defined routines. Any limitations on using Java™ opaque types and user-defined routines that exist in
your version of the database server apply equally to Java™ opaque types and routines you create in your client
applications.

When you use the UDTManager and UDTMetaData classes, HCL OneDB™ JDBC Driver performs all of the following actions

for your application:

1. Obtains the JAR file you specify

2. Transports the JAR file from the client local area to the server local area

139

140

OneDB JDBC Driver Programmer's Guide

You define the server local area using the UDTManager.setJarFileTmpPath() method. The default is / t np on UNIX™
systems and C: \ t enp on Windows™ systems.

3. Installs the JAR file in the server
4. Registers the opaque data type in the database with the CREATE OPAQUE TYPE SQL statement, taking input from the

UDTMetaData class

5. Registers the support functions and casts you provide for the opaque type using the CREATE Function and CREATE

CAST SQL statements

You define support functions and casts using the setSupportUDR() and setXXXCast() methods in the UDTMetaData
class.

If you do not provide input and output functions for the opaque type, the driver registers the default functions (see the
release notes for any limitations on this feature).

6. Registers any other nonsupport routines or casts (if any) that you specified, taking input from the

UDTMetaData.setUDR() and UDTMetaData.setXXXCast() method calls in your application

7. Creates a mapping between an SQL OPAQUE type and a Java™ object (using the sqlj.setUDTExtName() method)
When you use the UDRManager and UDRMetaData classes, HCL OneDB™ JDBC Driver performs the following actions:

1. Obtains the JAR file you specify

2. Transports the JAR file from the client local area to the server local area

3. Installs the JAR file in the server

4. Registers the UDRs in the database with the CREATE FUNCTION SQL statement, taking input from the

UDRMetaData.setUDR() method calls in your application

The methods in the UDT and UDR Manager facility perform the following main functions:

- Creating opaque types in Java™ without preexisting Java™ classes, using the default input and output methods the
server provides

« Converting existing Java™ classes on the client to opaque types and UDRs in the database server

 Converting Java™ static methods to UDRs

Preparing to create opaque types and UDRs

Before you begin

Before using the UDT and UDR Manager facility, perform the following setup tasks:

« Make sure your database server supports Java™.

The UDT and UDR Manager facility does not work in legacy servers that do not include Java™ support.

* Include either the i f xt ool s. j ar ori f xt ool s_g. j ar file in your CLASSPATH setting.

Chapter 1. HCL OneDB™ JDBC Driver Guide

- Create a directory named / usr /i nf or mi x in the database server, with owner and group set to user informix and
permissions set to 777.
- Add the following entry to the / et ¢/ gr oup file in the database server:

i nf orm x:: uni que-i d- nunber :

» Check the release notes for the driver and database server for any further limitations in this release.

Creating opaque types

About this task

Using UDT Manager, you can create a Java™ opaque type from an existing Java™ class that implements the SQLData
interface. UDT Manager can also help you create a Java™ opaque type without requiring that you have the Java™ class ready;

you specify the characteristics of the opaque type you want to create, and the UDT Manager facility creates the Java™ class
and then the Java™ opaque type.

Follow the steps in this section to use the UDTManager classes.

Creating an opaque type from an existing Java™ class
About this task

To create an opaque type from an existing Java™ class:

1. Ensure that the class meets the requirements for conversion to an opaque type.

For the requirements, see Requirements for the Java class on page 145.

2. If you do not want to use the default input and output routines provided by the server, write support UDRs for input
and output.

For general information about writing support UDRs, see HCL OneDB™ User-Defined Routines and Data Types
Developer's Guide.

3. Create a default sbspace on the database server to hold the JAR file that contains the code for the opaque type.
For information about creating an sbspace, see the HCL OneDB™ Administrator's Guide for your database server and
the HCL® J/Foundation Developer's Guide.

4. Open a JDBC connection.

Make sure a database object is associated with the connection object. The driver cannot create an opaque type

without a database object. For details about creating a connection with a database object, see Connect to the

database on page 8.
5. Instantiate an UDTManager object and an UDTMetaData object:

UDTManager udt ngr = new UDTManager (connecti on);
UDTMet aDat a ndata = new UDTMet aDat a() ;

6. Set properties for the opaque type by calling methods in the UDTMetaData object.

141

142

OneDB JDBC Driver Programmer's Guide

At a minimum, you must specify the SQL name, UDT length, and JAR file SQL name. For an explanation of SQL
names, see SQL names on page 146.

You can also specify the alignment, implicit and explicit casts, and any support UDRs:

ndat a. set SQLNane("circl e2");

ndat a. set Lengt h(24) ;

ndat a. set Al i gnnment (UDTMet aDat a. El GHT_BYTE)

ndat a. set Jar Fi | eSQLNanme("circle2_jar");

ndat a. set UDR(ar eanet hod, "area");

ndat a. set Support UDR(i nput, "input", UDTMetaData. | NPUT)

ndat a. set Suppor t UDR(out put, "out put", UDTMet aDat a. QUTPUT)

ndat a. Set I nplicitCast(cominform x.|ang.|fxTypes. | FX_TYPE_
LVARCHAR, "input");

ndat a. Set Expl i ci t Cast (com i nform x. | ang. | f xTypes. | FX_TYPE_
LVARCHAR, "output");

7. If desired, specify a path name where the driver should place the JAR file in the database server file system:

String pathname = "/work/srv93/ exanpl es";
udt mgr . set Jar Fi | eTnpPat h(pat hnane) ;

Make sure the path exists in the server file system. For more information, see Specify a JAR file temporary path on
page 151.

8. Create the opaque type:

udt ngr. createUDT(ndata, “"Circle2.jar", "Circle2", 0);

Results

For additional information about creating an opaque type from existing code, see Creating an opaque type from existing
code on page 151.

For a complete code example of using the preceding steps to create an opaque type, see Create an opaque type from an

existing Java class with UDTManager on page 163.

Creating an opaque type without an existing Java™ class

About this task

To create an opaque type without an existing Java™ class:

1. Create a default sbspace on the database server to hold the JAR file that contains the code for the opaque type.

For information about creating an sbspace, see the HCL OneDB™ Administrator's Guide for your database server and
the HCL® J/Foundation Developer's Guide.

2. Open a JDBC connection.

Make sure the connection object has a database object associated with it. For details, see Connect to the database
on page 8.

Chapter 1. HCL OneDB™ JDBC Driver Guide

3. Instantiate a UDTManager object and a UDTMetaData object:

UDTManager udt ngr = new UDTManager (connecti on);
UDTMet aDat a ndata = new UDTMet aDat a() ;

4. Specify the characteristics of the opaque type by calling methods in the UDTMetaData class:

ndat a. set SQLNanme("acircle");
ndat a. set Lengt h(24) ;
ndat a. set Fi el dCount (3) ;
ndat a. set Fi el dName(1, "x");
ndat a. set Fi el dName(2, "y");
ndat a. set Fi el dNane(3, "radius");
ndat a. set Fi el dType
(1, cominform x.lang.|fxTypes. | FX_TYPE_| NT);
ndat a. set Fi el dType
(2, cominform x.lang.|fxTypes. | FX_TYPE_| NT);
ndat a. set Fi el dType
(3,cominform x.|ang.|fxTypes. | FX_TYPE_| NT);
ndat a. set Jar Fi | eSQ_Narme("ACi rcl eJar");

For more information about setting characteristics for opaque types, see Specify characteristics for an opaque type
on page 146.
5. Create the Java™ file, the class file, and the JAR file:

ndat a. keepJavaFi | e(true);

String classnane = udtngr. creat eUDTC ass(ndat a) ;

String jarfil ename = udtngr.createdar(ndata, new String[]
{cl assname + .class"});

For more information, see Creating the JAR and class files on page 149.

6. If desired, specify a path name where the driver should place the JAR file in the database server file system:

String pathname = "/work/srv93/ exanpl es";
udt mgr . set Jar Fi | eTnpPat h(pat hnane) ;

Make sure the path exists in the server file system. For more information, see Specify a JAR file temporary path on
page 151.

7. Send the class definition to the database server:

udt ngr . creat eUDT(ndata, jarfil enane, classnane, 0);
For more information, see Send the class definition to the database server on page 150.

Results

For a complete code example of using the preceding steps to create an opaque type, see Create an opaque type without an

existing Java class on page 173.

143

144

OneDB JDBC Driver Programmer's Guide

Creating a UDR

About this task
The following topics shows you how to create a UDR from a Java™ class.

To create a UDR:

. Write a Java™ class with one or more static method to be registered as UDRs.

For more information, see Requirements for the Java class on page 145.

. Create an sbspace on the database server to hold the JAR file that contains the code for the UDR.

For information about creating an sbspace, see the HCL OneDB™ Administrator's Guide for your database server and
the HCL® J/Foundation Developer's Guide.

. Open a JDBC connection.

Make sure the connection object has a database object associated with it. For details, see Connect to the database

on page 8.

. Instantiate a UDRManager object and a UDRMetaData object:

UDRManager udrngr = new UDRManager (myConn) ;
UDRMet aDat a ndata = new UDRMet aDat a() ;

. Create java.lang.Reflect.Method objects for the static methods to be registered as UDRs.

Example
In the following example, method1 is an instance that represents the udr1(string, string) method in the Group1 java

class; method2 is an instance that represents the udr2(Integer, String, String) method in the Group1 Java™ class:

Cl ass gpl = O ass.forNanme(" G oupl");
Met hod net hodl = gpl. get Met hod(" udr 1",
new Cl ass[]{String.class, String.class});
Met hod net hod2 = gpl. get Met hod(" udr2",
new Cl ass[]{Integer.class, String.class, String.class});

. Specify which methods to register as UDRs.

The second parameter specifies the SQL name of the UDR:

ndat a. set UDR(net hod1, "groupl_udrl");
ndat a. set UDR(net hod2, "groupl_udr2");

For more information, see Create UDRs on page 154.

. Specify the JAR file SQL name:

ndat a. set Jar Fi | eSQLName(" groupl_jar");

. If desired, specify a path name where the driver should place the JAR file in the database server file system:

String pathname = "/work/srv93/ exanpl es";
udr ngr . set Jar Fi | eTnpPat h(pat hnane) ;

Chapter 1. HCL OneDB™ JDBC Driver Guide

Make sure the path exists in the database server file system. For more information, see Specify a JAR file temporary

path on page 151.
9. Install the UDRs in the database server:

udrngr . creat eUDRs(ndata, "G oupl.jar”, "Goupl", 0);

For more information, see Create UDRs on page 154.

Results

For complete code examples of creating UDRs, see Create UDRs with UDRManager on page 176.

Requirements for the Java™ class

To qualify for converting into an opaque type, your Java™ class must meet the following conditions:

 The class must implement the java.sql.SQLData interface. For an example, see Examples on page 157.

« If the class contains another opaque type, the additional opaque type must be implemented in a similar way and the
additional . cl ass file must be packaged as part of the same JAR file as the original opaque type.

- If the class contains DISTINCT types, the class can either implement the SQLData interface for the DISTINCT types or
let the driver map the DISTINCT types to the base types. For more information, see Distinct data types on page 75.

« The class cannot contain complex types.

- If you are creating an opaque type from an existing Java™ class and using the default support functions in the
database server, you must cast the SQLInput and SQLOutput streams in SQLData.readSQL() and SQLData.writeSQL()
to IfmxUDTSQLInput and IfmxUDTSQLOutput.

For a code example that shows how to do this, see Create an opaque type using default support functions on
page 163.

- All Java™ methods for the opaque type must be in the same . j ava file with the class that defines the opaque type.
Additional requirements for UDRs are as follows:

« All class methods to be registered as UDRs must be static.
» The method argument types and the return types must be valid Java™ data types.
» The methods can use all basic nongraphic Java™ packages that are included in the Java™ development kit, such as
java.util,java.io,java. net,java.rm,java. sqgl, and so forth.
« Data types of method arguments and return types must conform to the data type mapping tables shown in Data type
mapping for UDT manager and UDR manager on page 233.
- The following SQL argument or return types are not supported:
> MONEY
o DATETIME with qualifier other than hour to second or year to fraction(5)
> INTERVAL with qualifier other than year to month or day to fraction(5)
> Any data type not shown in the mapping tables for method arguments and return types; for the tables, see
Data type mapping for UDT manager and UDR manager on page 233.

145

OneDB JDBC Driver Programmer's Guide

SQL names

Some of the methods in the UDTMetaData class set an SQL name for an opaque type or a JAR file that contains the opaque
type or UDR code. The SQL name is the name of the object as referenced in SQL statements. For example, assume your
application makes the following call:

ndat a. set SQLNane("circl e2");

The name as used in an SQL statement is as follows:

CREATE TABLE tab (c circle2);

Similarly, assume the application sets the JAR file name as follows:

ndat a. set Jar Fi | eSQLnane("circle2_jar");

The JAR file name as referenced in SQL is as follows:

CREATE FUNCTI ON circle2_output (...)
RETURNS ci rcl e2
EXTERNAL NANMVE

‘circle2_jar: circle2.fronString (...)"
LANGUAGE JAVA
NOT VARI ANT
END FUNCTI ON;

! Important: There is no default value for an SQL name. Use the setSQLname() or setJarFileSQLName() method to
specify a name, otherwise an SQL exception will be thrown.

Specify characteristics for an opaque type

The following topics provide additional information about creating an opaque type without a preexisting Java™ class. Details
about creating an opaque type from an existing Java™ class begin with Creating an opaque type from existing code on
page 151.

Using the methods in the UDTMetaData class, you can specify characteristics for a new opaque type. These settings apply
for new opaque types; for opaque types created from existing files, see Creating an opaque type from existing code on
page 151.

You can set the following characteristics:

« The number of fields in the internal data structure that defines the opaque type

- Additional characteristics, such as data type, name, and scale, of each field in the internal structure that defines the
opaque type

« The length of the opaque type

« The alignment of the opaque type

» The SQL name of the opaque type and the JAR file

« The name of the generated Java™ class

« Whether to keep the generated . j ava file

146

Chapter 1. HCL OneDB™ JDBC Driver Guide

Specify field count

The setFieldCount() method specifies the number of fields in the internal data structure that defines the opaque type:

public void setFieldCount(int fieldCount) throws SQLException

Specify additional field characteristics

The following methods set additional characteristics for fields in the internal data structure:

public void setFieldName (int field, String nane) throws SQ.Exception
public void setFieldType (int field, int ifxtype) throws SQ.Exception
public void setFieldTypeNane(int field, String sqltypenane) throws SQ.Exception
public void setFieldLength(int field, int |Iength) throws SQ.Exception

The field parameter indicates the field for which the driver should set or obtain a characteristic. The first field is 1; the second

field is 2, and so forth.

The name you specify with setFieldName() appears in the Java™ class file. The following example sets the first field name to

| MAGE.

ndat a. set Fi el dNane(1, "1 MAGE");

The setFieldType() method sets the data type of a field using a constant from the file com.informix.lang.IfxTypes. For more
information, see Mapping for field types on page 235. The following example specifies the CHAR data type for values in
the third field:

ndat a. set Fi el dType(3, cominform x.|ang.|fxTypes. | FX_TYPE_CHAR) ;

The setFieldTypeName() method sets the data type of a field using the SQL data type name:

ndat a. set Fi el dTypeName(1, "1 MAGE_UDT");
This method is valid only for opaque and distinct types; for other types, the driver ignores the information.

The length parameter has the following meanings, depending on the data type of the field:
Character types
Maximum length in characters
DATETIME
Encoded length
INTERVAL
Encoded length
Other data type or no type specified
Driver ignores the information

The possible values for encoded length are those in the JDBC 2.20 specification: hour to second; year to second; and year to

fraction(1), year to fraction(2), up through year to fraction(s).

147

148

OneDB JDBC Driver Programmer's Guide

The following example specifies that the third (VARCHAR) field in an opaque type cannot store more than 24 characters:
ndat a. set Fi el dLengt h(3, 24);
Specify length

The setLength() method specifies the total length of the opaque type:

public void setlLength(int |ength) throws SQ.Exception

If you are creating an opaque type from an existing Java™ class and do not specify a length, the driver creates a variable-
length opaque type. If you are creating an opaque type without an existing Java™ class, you must specify a length; UDT
Manager creates only fixed-length opaque types in this case.

Specify alignment

The setAlignment() method specifies the opaque types alignment:

public void setAlignment(int alignnent)

The alignment parameter is one of the alignment values shown in the next section. If you do not specify an alignment, the

database server aligns the opaque type on 4-byte boundaries.

Alignment values

Alignment values are shown in the following table.

Value Constant Structure begins with Boundary aligned
on

1 SINGLE_BYTE 1-byte quantity single-byte

2 TWO_BYTE 2-byte quantity (such as SMALLINT) 2-byte

4 FOUR_BYTE 4-byte quantity (such as FLOAT or UNSIGNED INT) 4-byte

8 EIGHT_BYTE 8-byte quantity 8-byte

Specify SQL names

Specify SQL names with the setSQLName() and setJarFileSQLName() methods:

public void set SQLNane(String nanme) throws SQ.Exception
public void setJarFil eSQLNane(String nane) throws SQLException

By default, the driver uses the name you set through the setSQLName() method as the file names of the Java™ class and JAR
files generated when you call the UDTManager.createUDTCclass() and UDTManager.createJar() methods. For example, if
you called set sQ.Nane("circl e") and then called createUDTCclass() and createJar(), the class file name generated would
becircl e. cl ass and the JAR file name would be ci r cl e. j ar. You can specify a Java™ class file name other than the

default by calling the setClassName() method.

Chapter 1. HCL OneDB™ JDBC Driver Guide

The JAR file SQL name is the name as it will be referenced in the SQL CREATE FUNCTION statement the driver uses to
register a UDR.

! Important: The JAR file SQL name is the name of the JAR file in SQL statements; it has no relationship to the
contents of the JAR file.

Specify the Java™ class name

Use setClassName() to specify the Java™ class name:

public void setC assNanme(String nane)throws SQLException

If you do not set a class name with setClassName(), the driver uses the SQL name of the opaque type (set through
setSQLName()) as the name of the Java™ class and the file name of the . cl ass file generated by the createUDTCclass()
method.

Specifying Java™ source file retention

Use keepJavaFile() to specify whether to retain the . j ava source file:
public void keepJavaFi | e(bool ean val ue)
The value parameter indicates whether the createUDTClass() method should retain the . j ava file that it generates when

it creates the Java™ class file for the new opaque type. The default is to remove the file. The following example specifies
keeping the . j ava file:

ndat a. keepJavaFi | e(true);

Creating the JAR and class files

About this task

Once you have specified the characteristics of the opaque type through the UDTMetaData methods, you can use the

methods in the UDTManager class to create opaque types and their class and JAR files in the following order:

1. Instantiate the UDTManager object.

The constructor is defined as follows:
publ i ¢ UDTManager (Connection conn) throws SQ.Exception

2. Create the . cl ass and . j ava files with the createUDTClass() method.
3. Create the . j ar file with the createJar() method.
4. Create the opaque type with the createUDT() method.

Create the .class and .java files

The createUDTClass() method has the following signature:

public String createUDTC ass(UDTMet aDat a ndata) throws SQLException

149

150

OneDB JDBC Driver Programmer's Guide

The createUDTClass() method causes the driver to perform all of the following actions for your application:

1. Creates a Java™ class with the name you specified in the UDTMetaData.setClassName() method

If no class name was specified, the driver uses the name specified in the UDTMetaData.setSQLName() method.

2. Puts the Java™ class code into a . j ava file and then compile the fileto a . cl ass file

3. Returns the name of the newly created class to your application

If you specified TRUE by calling the UDTMetaData.keepJavaFile() method, the driver retains the generated . j ava file. The
default is to delete the . j ava file.

Your application should call the createUDTClass() method only to create new . cl ass and . j ava files to define an opaque
type, not to generate an opaque type from existing files.

Create the .jar file

The createJar() method compiles the class files you specify in the classnames list. The files in the list must have the . cl ass
extension.
public String createJar(UDTMet aData ndata, String[] classnanes)
throws SQLExcepti on;

The driver creates a JAR file named sql nane. j ar (where sqglname is the name you specified by calling
UDTMetaData.setSQLName()) and returns the file name to your application.

Send the class definition to the database server

After you have created the JAR file, use the UDTManager.createUDT() method to create the opaque type by sending the class
definition to the database server:

public void createUDT(UDTMet aData ndata, String jarfile, String
classnanme, int deploy) throws SQLException;

The jarfile parameter is the path name of a JAR (. j ar) file that contains the class definition for the opaque type. By default,
the classes inthe j ava. i o package resolve relative path names against the current user directory as named by the system
property user.dir; it is typically the directory in which the Java™ Virtual Machine was invoked. The file name must be included

in your CLASSPATH setting if you use an absolute path name.
The classname parameter is the name of the class that implements the opaque type.

The SQL name of the opaque type defaults to the class name if your application does not call setClassName(). You can
specify an SQL name by calling the UDTMetaData.setSQLName() method.

Chapter 1. HCL OneDB™ JDBC Driver Guide

! Important: If your application calls createUDT() within a transaction or your database is ANSI or enables logging,

some extra guidelines apply. For more information, see Execute in a transaction on page 157.

Specify deployment descriptor actions

In the UDTManager and UDRManager methods, the deploy parameter indicates whether install_actions should be executed
if a deployment descriptor is present in the JAR file. The undeploy parameter indicates whether remove_actions should be
executed.

0

Execute install_actions or remove_actions.
Nonzero

Do not execute install_actions or remove_actions.

A deployment descriptor allows you to include the SQL statements for creating and dropping UDRs in a JAR file. For more

information about the deployment descriptor, see the HCL® J/Foundation Developer's Guide and the SQLJ specification.

Specify a JAR file temporary path

When the driver ships the JAR file for an opaque type or UDR, it places the file by default in / t np (on UNIX™) orin C: \ t enp
(on Windows™). You can specify an alternative path name by calling the setJarTmpPath() method in either the UDTManager

or UDRManager class:

public void setJar TnpPath(String path) throws SQ.Exception

You can call this method at any point before calling createUDT() or createUDR(), the UDTManager or UDRManager objects.

The path parameter must be an absolute path name, and you must ensure that the path exists on the server file system.

Creating an opaque type from existing code

About this task

The preceding topics describe methods you use to create a new opaque type without an existing Java™ class. When you
create an opaque type from existing Java™ code, you specify the SQL name, JAR file SQL name, support UDRs (if any), and
any additional nonsupport UDRs that are included in the opaque type. (For an explanation of SQL names, see SQL names on

page 146.) You can also specify the length, alignment, and implicit and explicit casts.

To create an opaque type from existing code, use the following methods:

» UDTMetaData.setSQLName() to specify the SQL name of the opaque type as referenced in SQL statements
« UDTMetaData.setSupportUDR() for each support UDR in the opaque type
Support UDRs are input/output, send/receive, and so forth.

+ UDTMetaData.setUDR() for each nonsupport UDR in the opaque type
» UDTMetaData.setJarFileSQLName() to specify an SQL name for the JAR file

151

OneDB JDBC Driver Programmer's Guide

» UDTMetaData.setimplicitCast() or UDTMetaData.setExplicitCast() to specify each cast

» UDTMetaData.setLength() if the opaque type is fixed length (the driver defaults to variable length)

- UDTMetaData.setAlignment() to specify the byte boundary on which the opaque type is aligned (necessary only if you
do not want the database server to default to a 4-byte boundary)

» UDTManager.createJar() to create a JAR (. j ar) file if you do not already have one

« UDTManager.createUDT() to create the opaque type

In addition, the setXXXCast(), setSupportUDR(), and setUDR() methods are used only for creating an opaque type from
existing code:
public void setlnmplicitCast(int ifxtype, String nmethodsqgl nane)
throws SQLException

public void setExplicitCast(int ifxtype, String nmethodsqgl nane)
throws SQ.Exception

public void set Support UDR(Met hod nmet hod, String sql nane, int type)
t hrows SQLExcepti on

public void set UDR(Met hod net hod, String sql nane)
throws SQLException

The setXXXCast() methods

The setXXXCast() methods specify the implicit or explicit cast to convert data from an opaque type to the data type
specified.

The ifxtype parameter is a type code from the class com.informix.lang.lfxTypes. Data type mapping between the ifxtype
parameter and the SQL type in the database server is detailed in Mapping for casts on page 234. The methodsqlname

parameter is the SQL name of the Java™ method that implements the cast.

The following example sets an implicit cast implemented by a Java™ method with the SQL name circle2_input:
setlnplicitCast(cominform x.|ang.|fxTypes. | FX_TYPE_LVARCHAR,
"circle2_input");
The following example sets an explicit cast implemented by a Java™ method with the SQL name circle_output:
set ExplicitCast(cominform x.|ang. | fxTypes. | FX_TYPE_LVARCHAR,
"circle2_output");
The following example sets an explicit cast for converting a circle2 opaque type to an integer:

set ExplicitCast(cominformx.|ang.|fxTypes. | FX_TYPE_I NT,
"circle2_to_int");

The setSupportUDR() and setUDR() methods

The setSupportUDR() method specifies a Java™ method in an existing Java™ class that will be registered as a support UDR

for the opaque type.

152

Chapter 1. HCL OneDB™ JDBC Driver Guide

The method parameter specifies an object from java.lang.reflect.Method to be registered as a Java™ support UDR for the
opaque type in the database server. Support UDRs are Input, Output, Send, Receive, and so forth (for more information, see
HCL OneDB™ User-Defined Routines and Data Types Developer's Guide.)

The sqglname parameter specifies the SQL name of the method. For more information, see SQL names on page 146.

The type parameter specifies the kind of support UDR, as follows:

UDTMet aDat a. | NPUT

UDTMet aDat a. OUTPUT

UDTMet aDat a. SEND

UDTMet aDat a. RECEIl VE
UDTMet aDat a. | MPORT
UDTMet aDat a. EXPORT

UDTMet aDat a. Bl NARYlI MPORT
UDTMet aDat a. Bl NARYEXPORT

For step-by-step information about creating an opaque type from existing code, see Creating an opaque type from an

existing Java class on page 141.

e Tip: It is not necessary to register the methods in the SQLData interface. For example, you do not need to register
SQLData.getSQLTypeName(), SQLData.readSQL(), or SQLData.writeSQL().

To specify other UDRs, use setUDR() as described in Create UDRs on page 154.

Remove opaque types and JAR files

You can remove opaque types and their JAR files using the following methods:

public static void removeUDT(String sql nane) throws SQLException
public static void removeldar(String jarfilesqgl name, int undepl oy)
throws SQLException

The removeUDT() method removes the opaque type, with all its casts and UDRs, from the database server. It does not

remove the JAR file itself because other opaque types or UDRs could be using the same JAR file.

! Important: If your application calls removeUDT() within a transaction or if your database is ANSI or enables logging,

some extra guidelines apply. For more information, see Execute in a transaction on page 157.

The removeJar() method removes the JAR file from the system catalog. The jarfilesqlname parameter is the name you
specified with the setJarFileSQLName() method.

For the undeploy parameter, see Specify deployment descriptor actions on page 157.

153

154

OneDB JDBC Driver Programmer's Guide

! Important: Before calling removeJar(), you must first remove all functions and procedures that depend on the JAR

file. Otherwise, the database server fails to remove the file.

Create UDRs

Using UDR Manager to create UDRs in the database server involves:

 Coding the UDRs and packaging the code in a JAR file

For details about coding UDRs, see the HCL® J/Foundation Developer's Guide.

- Creating a default sbspace in the database server to hold the JAR file that contains the code for the UDR
For information about creating an sbspace, see the HCL OneDB™ Administrator's Guide for your database server and
the HCL® J/Foundation Developer's Guide.

- Calling methods in the UDRMetaData class to specify the information necessary for HCL OneDB™ JDBC Driver to
register the UDRs in the database server

- If desired, specifying a path name where the driver should place the JAR file in the database server file system

« Installing the UDRs in the server

Creating a UDR for a C-language opaque type is not supported; the opaque type must be in Java™.

To specify a UDR for the driver to register, use this method in UDRMetaData:

public void set UDR(Met hod nethod, String sql nane) throws SQLException

The method parameter specifies an object from java.lang.Reflect.Method to be registered as a Java™ UDR in the database
server. The sqlname parameter is the name of the method as used in SQL statements.

Once you have specified the UDRs to be registered, you can set the JAR file SQL name using
UDRMetaData.setJarFileSQLName() and then use the UDRManager.createUDRs() method to install the UDRs in the database

server, as follows:

public void createUDRs(UDRMet aData ndata, String jarfile, String
cl assnane, int deploy) throws SQLException

The jarfile parameter is the absolute or relative path name of the client-side JAR file that contains the Java™ method

definitions. If you use the absolute path name, the JAR file name must be included in your CLASSPATH setting.

The classname parameter is the name of a Java™ class that contains the methods you want to register as UDRs in the

database server. Requirements for preparing the Java™ methods are described on 1 on page 144.
For the deploy parameter, see Specify deployment descriptor actions on page 151.

The createUDRs() method causes the driver to perform all of the following steps for your application:

1. Obtain the JAR file designated by the first parameter.
2. Transport the JAR file from the client local area to the server local area.

Chapter 1. HCL OneDB™ JDBC Driver Guide

3. Register the UDRs specified in the UDRMetaData object (set through one or more calls to UDRMetaData.setUDR()).
4. Install the JAR file and create the UDRs in the server.

After createUDRs() executes, your application can use the UDRs in SQL statements.

Important: If your application calls createUDRs() within a transaction, or if your database is ANSI or enables logging,
some extra guidelines apply. For more information, see Execute in a transaction on page 157.

Remove UDRs and JAR files

You can remove UDRs using the following methods:

public void renoveUDR(String sqgl nanme) throws SQ.Exception

public void renpvedar(String jarfilesql nane, int undeploy) throws
SQLException

0 Tip: The removeUDR() method removes the UDR from the server but does not remove the JAR file, because other
opaque types or UDRs could be using the same JAR file.

The removeJar() method is described in Remove opaque types and JAR files on page 153.

Remove overloaded UDRs

To remove overloaded UDRs, use the removeUDR() method with an additional parameter:
public void removeUDR(String sql nane, C ass[] nethodparans) throws

SQ.Exception

The methodparams parameter specifies the data type of each parameter in the UDR. Specify NULL to indicate no parameters.
For example, assume a UDR named print() is overloaded with two additional method signatures.

Correspo
Java™ method signature nding SQL name
void print() print1
void print(String x, String y, int print2
r
void print(int a, int b) print3

The code to remove all three UDRs is:

udrngr. renoveUDR("print1", null);
udr nmgr . renoveUDR(" pri nt 2",

new C ass[] {String.class, String.class, int.class});
udrgr . renoveUDR("print3", new Cass[] {int.class, int.class});

155

156

OneDB JDBC Driver Programmer's Guide

Obtain information about opaque types and UDRs

Many of the setXXX() methods in the UDTMetaData and UDRMetaData classes have parallel getXXX() methods for obtaining

characteristics of existing opaque types and UDRs.

The getXXX() methods in the UDTMetaData class

The following table summarizes the available getXXX() methods in the UDTMetaData class. For the field parameter, 1

designates the first field in the internal data structure, 2 is the second, and so forth. For details about SQL names, see SQL

names on page 146.

Information obtained

Method signature

Additional information

Number of fields in the
internal data structure

public int getFieldCount()

Returns o if no fields are present

Name of a field in the internal
data structure

public String getFieldName int field) throws
SQLException

Returns NULL if no name exists

Data type code of a field in
the internal data structure

public int getFieldType (int field) throws
SQLException

Data type codes come from the class
com.informix.lang.lfxTypes. Returns -1 if

no data type exists

Data type name of a field in
the internal data structure

public String getFieldTypeName (int field)
throws SQLException

Returns NULL if no name exists

For character type: maximum
number of characters in the
field; for date-time or interval

type: encoded qualifier

public int getFieldLength (int field) throws
SQLException

Returns - 1 if no length was set

SQL name of the opaque type

public String getSQLName()

Returns NULL if no name was set

SQL name of the JAR file

public String getJarFileSQLName()

Returns NULL if no name was set

Name of the Java™ class for

the opaque type

public String getClassName()

If no class name was set through
setClassName(), sglname is returned (this
is the default). If no SQL name was set
through setSQLName(), returns NULL

Length of a fixed-length
opaque type

public int getLength()

Returns- 1 if no length was set

Alignment of an opaque type

public int getAlignment()

Returns - 1 if no alignment was set

For the alignment codes, see Alignment

values on page 148.

Chapter 1. HCL OneDB™ JDBC Driver Guide

Information obtained Method signature Additional information

An array of Method objects public Method[] getSupportUDRs() For details about support UDRs, see the
that have been specified description of setSupportUDR() in Creating
as support UDRs through an opaque type from existing code on
setSupportUDR() page 151. Returns NULL if no support

UDRs were specified

SQL name of a Java™ public String getSupportUDRSQLName Returns NULL if no name was set
method that was specified (Method method) throws SQLException

as a support UDR through

setSupportUDR()

The getXXX() methods in the UDRMetaData class

To obtain information about UDRs, use the methods in the following table.

Information obtained Method signature Additional information

An array of public Method[] getUDRs() To specify a UDR for an opaque type, call the
java.lang.Method.Reflect UDTMetaData.setUDR() method. Returns
methods that have been NULL if no UDRs were specified

specified as UDRs for an

opaque type.

SQL name of a Java™ method public String getUDRSQLName(Method Returns NULL if no SQL name was specified
method) throws SQLException for the UDR Method object

Execute in a transaction

If your database is ANSI or has logging enabled, and the application is not already in a transaction, the driver executes the
SQL statements to create opaque types and UDRs on the server within a transaction. This means that either all the steps will
succeed, or all will fail. If the opaque type or UDR creation fails at any point, the driver rolls back the transaction and throws

an SQLException.

If the application is already in a transaction when the UDTManager.createUDT() or UDRManager.createUDRs() method
calls are issued, the SQL statements are executed within the existing transaction. This means that if the driver returns
an SQLException to your application during the creation of the opaque type or UDR, your application must roll back the
transaction to ensure the integrity of the database. Otherwise, the opaque type, parts of its casts, or UDRs could be left in the

database.

Examples

The rest of this section contains examples for creating and using opaque types and UDRs.

157

OneDB JDBC Driver Programmer's Guide

The first four examples are released with your JDBC driver software in the deno/ udt - di sti nct directory; the last two are

in the deno/ t ool s/ udt udr ngr directory. See the READVE file in each directory for a description of the files.

Class definition

The class for the C opaque type, charattrUDT in the following example, must implement the SQLData interface:

i mport java.sql.*;
i nport com inform x.jdbc.*;
/*

* C struct of charattr_udt:

*

* typedef struct charattr_type

A

* char chrl[4+1];

* m _bool ean bol d; /1 m _boolean (1 byte)

* m _smal | int font si ze; /1 m _smallint (2 bytes)
“}

* charattr;

* typedef charattr charattr_udt;
*/
public class charattrUDT inplenents SQLData
{
private String sql _type = "charattr_udt";
/1 an ASCI| character/a multibyte character, and is null-term nated.
public String chri,;
/1 1s the character in bol df ace?
public bool ean bol d;
/1 font size of the character
public short fontsize;

public charattrUDT() { }

public charattrUDT(String chrl, boolean bold, short fontsize)

{
this.chrl = chril;
this.bold = bol d;
this.fontsize = fontsize;
}
public String get SQLTypeNane()
{
return sql _type;
}

/'l reads a stream of data val ues and builds a Java object
public void readSQ(SQ.I nput stream String type) throws SQLException
{

sql _type = type;

chrl = ((1fmUDTSQLI nput)stream.readString(5);

bol d = stream readBool ean();

158

Chapter 1. HCL OneDB™ JDBC Driver Guide

fontsize = streamreadShort();

}

/'l wites a sequence of values froma Java object to a stream
public void witeSQ(SQ.CQut put stream) throws SQLException

{
((1 fmUDTSQLQut put)strean).witeString(chrl, 5);
stream wr it eBool ean(bol d) ;
stream writeShort (fontsize);

}

/'l overides Object.equals()
publi ¢ bool ean equal s(oj ect b)

{
return (chrl.equal s(((charattrUDT)b).chrl) &&
bold == ((charattrUDT)b).bold &&
fontsize == ((charattrUDT)b).fontsize);
}
public String toString()
{
return "chr1=" + chrl + " bold=" + bold + " fontsize=" + fontsize;
}

In your JDBC application, a custom type map must map the SQL-type name charattr_udt to the charattrUDT class:

java.util.Map custontypemap = conn. get TypeMap();

if (custontypemap == null)
{
Systemout . println("\n***ERROR. typemap is null!");
return;

}
cust omt ypemap. put ("charattr_udt", C ass.forNane("charattrUDT"));

Insert data

You can insert an opaque type as either its original type or its cast type. The following example shows how to insert opaque
data using the original type:

String s = "insert into charattr_tab (int_col, charattr_col)
values (?, ?)";

System out . println(s);

pstnt = conn. prepareStat enent (s);

charattrUDT charattr = new charattrUDT();
charattr.chrl = "a";

charattr.bold = true;

charattr.fontsize = (short)1;

pstnt.setlnt(1, 1);
Systemout.println("setlnt...ok");

pstnt.setObject(2, charattr);
System out. println("setObject(charattrUDT)...ok");

159

OneDB JDBC Driver Programmer's Guide

pst nt . execut eUpdat e() ;

If a casting function is defined, and you would like to insert data as the casting type instead of the original type, you must
call the setXXX() method that corresponds to the casting type. For example, if you have defined a function casting CHAR or
LVARCHAR to a charattrUDT column, you can use the setString() method to insert data, as follows:

/1 Insert into UDT columm using setString(int,String) and Java
String object.

String s =
"insert into charattr_tab " +
"(decinal _col, date_col, charattr_col, float_col) " +
"values (?,?2,?2,?2)";

writeQutputFile(s);

PreparedSt at enent pstnt = nyConn. prepar eSt at ement (s) ;

String strObj = "(A f, 18)";
pstnt.setString(3, strQnj);

Retrieve data

To retrieve HCL OneDB™ opaque types, you must use ResultSet.getObject(). HCL OneDB™ JDBC Driver converts the data to
a Java™ object according to the custom type map you provide. Using the previous example of the charattrUDT type, you can
fetch the opaque data, as in the following example:

String s = "select int_col, charattr_col fromcharattr_tab order by 1";
Systemout. println(s);

Statenent stnt = conn.createStatenent();
ResultSet rs = stnt.executeQuery(s);
System out . printl n("execute...ok");

Systemout. println("Fetching data ...");
int curRow = 0;
while (rs.next())
{
cur Row++;
Systemout.println("currentrow=" + curRow + " : ");

int intret = rs.getlnt("int_col");
System out . println(" int_col " +intret);

charattrUDT charattrret = (charattrUDT)rs. get Object("charattr_col");

System out . print (" charattr_col ");
if (curRow == 2 || curRow == 6)
{

if (rs.wasNull())
Systemout. println("<null>");
el se
Systemout.println("***ERROR. " + charattrret);

160

Chapter 1. HCL OneDB™ JDBC Driver Guide

}
el se
Systemout.println(charattrret+"");
} //while
Systemout.println("total rows expected: " + curRow);

stnt.cl ose();

Smart large objects within an opaque type

A smart large object can be a data member within an opaque type, although you are most likely to create a large object on

the database server, outside of the opaque type context, using the HCL OneDB™ extension classes.
For more information about smart large objects, see Smart large object data types on page 105.

A large object is stored as an IfxLocator object within the opaque type; in the C struct that defines the opaque type internally,
the large object is referenced through a locator pointer of type MI_LO_HANDLE. The object is created using the methods
provided in the IfxSmartBlob class, and the large object handle obtained from these methods becomes the data member
within the opaque type. Both BLOB and CLOB objects use the same large object handle, as shown in the following example:

i mport java.sql.*;

i mport cominform x.jdbc.*;

/ *

* C struct of l|arge_bin_udt:

* typedef struct LARGE Bl N _TYPE

* |

* M _LO HANDLE | b_handl e; /1 handle to | arge object (72 bytes)
*}

* | arge_bin_udt;

*/
public class | argebi nUDT i npl enents SQ.Dat a

{
private String sql _type = "large_bin_udt";
public C ob | b_handl e;
public |argebi nUDT() { }

public | argebi nUDT(C ob cl ob)

{
I b_handl e = cl ob;
}
public String get SQ.TypeNane()
{
return sql _type;
}

/] reads a stream of data val ues and builds a Java object
public void readSQ.(SQLI nput stream String type) throws SQ.Exception
{
sql _type = type;

161

OneDB JDBC Driver Programmer's Guide

I b_handl e = stream readd ob();
}
/'l wites a sequence of values froma Java object to a stream
public void witeSQ(SQ.CQutput stream throws SQ.Exception
{

streamwited ob(lb_handl e);

In a JDBC application, you create the MI_LO_HANDLE object using the methods provided by the IfxSmartBlob class:

String s = "insert into largebin_tab (int_col, largebin_col, Ivc_col) " +
"values (?,?,?)";

System out . println(s);

pstnt = conn. prepareStatenent(s);

/] create a large object using |fxSnartBlob's nethods
String filename = "l bin_inl. dat";

File file = new File(fil enane);

int fileLength = (int) file.length();
FilelnputStreamfin = new Fil el nputStrean(file);

| f xLobDescri ptor | oDesc = new |fxLobDescri ptor(conn);
Systemout.println("create | arge object descriptor...ok");

| fxLocator loPtr = new IfxLocator();

I fxSmart Bl ob snb = new | fxSnart Bl ob((I fxConnecti on)conn);
int loFd = snb.|fxLoCreate(loDesc, 8, |oPtr);
Systemout.println(“create |arge object...ok");

int n = snb.|fxLoWite(loFd, fin, fileLength);
Systemout.println("wite file content into |arge object...ok");

pstnt.setlnt(1, 1);
Systemout.println("setlnt...ok");

[/ initialize |argebin object using the |arge object created
/| above, before doing setObject for the |large_bin_udt col um.
| ar gebi nUDT | ar gebi nCbj = new | ar gebi nUDT() ;

| argebi nQoj . I b_handl e = new | fxChl ob(loPtr);

pstnt.set Obj ect (2, |argebinj);

System out . printl n("set Obj ect (| argebi nUDT) ... ok");

pstnt.setString(3, "Sydney");
Systemout.println("setString...ok");

pst nt . execut eUpdat e() ;
System out . printl n("execute...ok");

/'l closelrel ease | arge obj ect

snb. | f xLoCl ose(| oFd) ;
Systemout . println("close |arge object...ok");

162

Chapter 1. HCL OneDB™ JDBC Driver Guide

snb. | f xLoRel ease(l oPtr);
Systemout.println("rel ease | arge object...ok");

See Smart large object data types on page 105 for details.

Create an opaque type from an existing Java™ class with UDTManager

The following example shows how an application can use the UDTManager and UDTMetaData classes to convert an existing
Java™ class on the client (inaccessible to the database server) to an SQL opaque type in the database server.

Create an opaque type using default support functions

The following example creates an opaque type named Circle, using an existing Java™ class and using the default support
functions provided in the database server:

*/

i nport java.sql.*;

i nport com i nform x.jdbc. | fnmUDTSQLI nput ;
i nport com i nform x.jdbc. | fnmUDTSQLCut put ;

public class Circle inplenents SQLDat a

{
private static double PI = 3.14159;
doubl e x; /'l x coordinate
doubl e y; /1 y coordinate

doubl e radi us;

private String type = "circle";

public String get SQLTypeNane() { return type; }

public void readSQ.(SQLI nput stream String typeNane)
throws SQLException

/'l To be able to use the DEFAULT support functions supplied
/1 by the server, you nust cast the streamto |fnxUDTSQLI nput.
/1 (Server requirenent)

I f mkUDTSQLI nput in = (IfnxUDTSQLI nput) stream
X = in.readDoubl e();

y = in.readDoubl e();

radi us = in.readDoubl e();

public void witeSQ(SQ.CQutput stream throws SQ.Exception

{
/1 To be able to use the DEFAULT support functions supplied

/'l by the server, have to cast the streamto |fnxUDTSQLCut put .
/1 (Server requirenent)

163

OneDB JDBC Driver Programmer's Guide

I f mkUDTSQLQut put out = (IfnxUDTSQLCQut put) stream
out.witeDoubl e(x);

out . writeDoubl e(y);

out.w it eDoubl e(radius);

}
public static double area(Crcle c)
{ return Pl * c.radius * c.radius;
}
}
The opaque type

The following JDBC client application installs the class Circle (which is packaged in Ci r cl e. j ar) as an opaque type in the
system catalog. Applications can then use the opaque type Circle as a data type in SQL statements:

i mport java.sql.*;
inport java.lang.reflect.*;

public class PlayWthCircle
{

String dbname = "test";
String url = null;
Connecti on conn = null;

public static void main (String args[])

{
new Pl ayWthGircle(args);
}
PlayWthC rcle(String args[])
{
Systemout.printin("---------------- "),
Systemout.println("- Start - Denp 1");
Systemout.printIn("---------------- "),
N
/] Getting URL
N L
if (args.length == 0)
{

Systemout. println("\n***ERROR connection URL nust be provided " +
"in order to run the deno!");
return;

}
url = args[0];

N
/'l Loading driver

164

A
try
{
System out . print("Loading JDBC driver...");
Cl ass. forName("com i nform x.jdbc. | fxDriver");
System out. println("ok");
}
catch (java.l ang. O assNot FoundException e)
{
Systemout.println("\n***ERROR. " + e.getMessage());
e.printStackTrace();
return;
}
A
/] Getting connection
I
try
{
Systemout.print("CGetting connection...");
conn = DriverManager. get Connection(url);
System out. println("ok");
}
catch (SQLException e)
{
Systemout.println("URL = "" + url + """);

Systemout.println("\n***ERROR. " + e.getMessage());
e. printStackTrace();

return,;

}
Systemout. println();
A
/'l Setup UDT neta data
N
Met hod areanet hod = nul | ;
try

{

Class ¢ = Cass.forNane("Circle");
areanmet hod = c. get Met hod("area", new Class[] {c});
}
catch (C assNot FoundException e)
{
System out . println("Cannot get Class: " + e.toString());
return;
}
catch (NoSuchMet hodException e)
{
System out . printl n("Cannot get Method: " + e.toString());
return;

}

Chapter 1. HCL OneDB™ JDBC Driver Guide

165

OneDB JDBC Driver Programmer's Guide

UDTMet aData ndata = nul | ;
try
{
Systemout.print("Setting ndata...");
ndata = new UDTMet aDat a() ;
ndat a. set SQLName("circle");
ndat a. set Lengt h(24) ;
ndat a. set Al i gnnent (UDTMet aDat a. El GHT_BYTE) ;
ndat a. set UDR(ar eanet hod, "area");
ndat a. set Jar Fi | eSQLNanme("circle_jar");
System out . println("ok");
}
catch (SQLException e)
{
Systemout.println("\n***ERROR " + e.getMessage()):
return;

L e
/1 Install the UDT in the database
L
UDTManager udtnmgr = null;
try

{

udt rgr = new UDTManager (conn) ;

Systemout . println("\ncreatedar()");
String jarfilename = udtnmgr. createlar (ndat a,

new String[] {"Grcle.class"}); // jarfilenane = circle.jar
System out . println(" jarfilename = " + jarfil enane);

System out. println("\nsetJarTnpPath()");
udt ngr . set Jar TnpPat h("/t nmp");

Systemout. print("\ncreateUDT()...");
udt ngr . cr eat eUDT(ndat a,
"/vobs/ jdbc/ deno/tool s/udtudrngr/" + jarfilenane, "Circle", 0);
System out. println("ok");
}
catch (SQLException e)
{
Systemout.println("\n***ERROR. " + e.getMessage());
return;

}

Systemout . println();

A
/1 Now use the UDT
I L
try
{
String s = "drop table tab";

166

Chapter 1. HCL OneDB™ JDBC Driver Guide

Systemout.print(s + "...");

Statenent stnt = conn.createStatenent();
int count = stnt.executeUpdate(s);
stnt.cl ose();

System out . println("ok");

}
catch (SQLException e)
{
/1l -206 The specified table (%) is not in the database.
if (e.getErrorCode() != -206)
{
Systemout.println("\n***ERROR " + e.getMessage());
return;
}
System out . printl n("ok");
}

execut eUpdate("create table tab (c circle)");

/'l test DEFAULT I nput function
execut eUpdate("insert into tab values ('10 10 10')");

/] test DEFAULT CQutput function

try
{
String s = "select c::lvarchar fromtab";
System out . println(s);
Statenent stnt = conn.createStatenent();
ResultSet rs = stnt.executeQuery(s);
if (rs.next())
{
String ¢ = rs.getString(l);
System out . println(" circle ="'" +c¢ +"'");
}
rs.close();
stnt.cl ose();
}
catch (SQ.Exception e)
{
Systemout.println("***ERROR. " + e.getMessage());
}

Systemout . println();

/'l test DEFAULT Send function
try
{
/] setup type map before using getObject() for UDT data.
java.util.Mp custontypenap = conn. get TypeMap();
System out . printl n("get TypeMap. .. ok");
if (custontypemap == null)
{
Systemout.println("***ERROR map is null!");

167

OneDB JDBC Driver Programmer's Guide

return;

}
cust omt ypemap. put ("circle", Cass.forName("Circle"));
Systemout. println("put...ok");

String s = "select ¢ fromtab";

System out . println(s);

Statement stnt = conn.createStatenent();
Resul t Set rs = stnt.executeQery(s);

if (rs.next())

{
Crcle c = (Crcle)rs.getObject(l, custontypenap);
System out . println(" c.Xx =" + c.X);
System out . println(" c.y =" +c.y);
System out. println(" c.radius = " + c.radius);
}
rs.close();
stnt.close();
}
catch (SQLException e)
{
Systemout.println("***ERROR " + e.getMessage());
}
catch (d assNot FoundException e)
{
Systemout.println("***ERROR: " + e.getMessage());
}

Systemout.println();

/] test user's non-support UDR

try
{
String s = "select area(c) fromtab";
System out . println(s);
Statenment stnt = conn.createStatenent();
Resul tSet rs = stnt.executeQery(s);
if (rs.next())
{
doubl e a = rs. get Doubl e(1);
System out . println(" area =" + a);
}
rs.close();
stnt.close();
}
catch (SQLException e)
{
Systemout.println("***ERROR " + e.getMessage());
}

System out. println();

execut eUpdate("drop table tab");

168

Chapter 1. HCL OneDB™ JDBC Driver Guide

L
/1 C osing connection
L A
try

{

System out . print("C osing connection...");
conn. cl ose();
System out . println("ok");
}
catch (SQLException e)
{
Systemout.println("\n***ERROR " + e.getMessage());
}

Create an opaque type using support functions you supply

In this example, the Java™ class Circle2 on the client is mapped to an SQL opaque type named circle2. The circle2 opaque

type uses support functions provided by the programmer.

i mport java.sql.*;

i nport java.text.*;

i nport com i nform x.jdbc. | fnmUDTSQLI nput ;

i nport com i nform x.jdbc.|fnmUDTSQLCut put ;

public class Circle2 inplenents SQ.Data

{
private static double PI = 3.14159;
doubl e x; /'l x coordinate
doubl e y; /'l y coordinate

doubl e radi us;

private String type = "circle2";

public String get SQLTypeNane() { return type; }

public void readSQ.(SQLI nput stream String typeNane)

{

throws SQ.Exception

/* commented out - because the first rel ease of the UDT/UDR Manager feature

*

*

does not support m xing user-supplied support functions
wi th server DEFAULT support functions.

* However, once the mx is supported, this code needs to be used to
* repl ace the existing code.

/'l To be able to use the DEFAULT support functions (other than
/1 Input/CQutput) supplied by the server, you nmust cast the stream
/1 to |IfmUDTSQLI nput .

| f mUDTSQLI nput in = (I fmUDTSQLI nput) stream
X = in.readDoubl e();

169

170

OneDB JDBC Driver Programmer's Guide

*/

y = in.readDoubl e();
radi us = in.readDoubl e();

X = stream readDoubl e();
y = stream readDoubl e();
radi us = stream readDoubl e();

public void witeSQ(SQ.CQutput stream throws SQ.Exception

{

/* commented out - because the 1st rel ease of UDT/ UDR Manager feature

*
*

*

*

*/

doesn't support the m xing of user support functions
wi th server DEFAULT support functions.

However, once the mx is supported, this code needs to be used to
* repl ace the existing code.

/'l To be able to use the DEFAULT support functions (other than
/1 Input/CQutput) supplied by the server, you nmust cast the stream
/1 to |IfmUDTSQLCut put .

| f mM«UDTSQLQut put out = (I fnxUDTSQLQut put) stream
out.w it eDoubl e(x);

out . writeDoubl e(y);

out.w it eDoubl e(radi us);

stream writ eDoubl e(x);
stream writ eDoubl e(y);
stream wri t eDoubl e(radi us) ;

nput function - return the object fromthe String representation -

"X y radius'.

ic static Circle2 fronBtring(String text)

Nurmber a nul | ;
Nurber b nul | ;
Nurmber r = nul|;

try
{
Par sePosi ti on ps = new ParsePosition(0);
a = Nunber For mat . get | nst ance() . parse(text, ps);
ps. set I ndex(ps. getlndex() + 1);
b = Nunber For mat . get | nst ance() . parse(text, ps);
ps. set I ndex(ps. getl ndex() + 1);
r = Nunber For mat . get | nstance(). parse(text, ps);

}
catch (Exception e)

Chapter 1. HCL OneDB™ JDBC Driver Guide

{

Systemout.println("In exception : " + e.getMessage());

}

Crcle2 ¢ = new Circle2();
c.Xx = a.doubl eVal ue();

c.y = b. doubl eVal ue();
c.radius = r.doubl eVal ue();

return c;

/**

* Qutput function - return the string of the form'x y radius'.
*/

public static String makeString(Crcle2 c)

{
StringBuffer sbuff = new StringBuffer();
Fi el dPosition fp = new Fi el dPositi on(Nunber For mat . | NTEGER FI ELD) ;
Nunber For mat . get | nstance().format(c. x, sbuff, fp);
sbuf f.append(" ");
Nurmber For mat . get I nstance().format(c.y, sbuff, fp);
sbuf f. append(" ");
Nunber For mat . get | nst ance() . format (c. radi us, sbuff, fp);
return sbuff.toString();

}

/**

* user function - get the area of a circle.

pui)l ic static double area(Crcle2 c)
{ return Pl * c.radius * c.radius;
}
}
The opaque type

The following JDBC client application installs the class Circle2 (which is packaged in Gi r cl e2. j ar) as an opaque type in

the system catalog. Applications can then use the opaque type Circle2 as a data type in SQL statements:

i nport java.sql.*;
import java.lang.reflect.*;

public class PlayWthCircle2

{

String dbname = "test";
String url = null;
Connection conn = null;

171

OneDB JDBC Driver Programmer's Guide

public static void main (String args[])

{

new Pl ayWt hGircl e2(args);
}
PlayWthGCrcle2(String args[])
{

I L

/] Getting URL

N L

if (args.length == 0)

{
System out. println("\n***ERROR: connection URL nust be provided " +

"in order to run the deno!");
return;

A
/'l Loading driver
Mho-eeeeee - -
try
{
System out. print ("Loading JDBC driver...");
Cl ass. forName("com i nform x.jdbc. |fxDriver");
}
catch (java.l ang. C assNot FoundExcepti on e)
{
Systemout.println("\n***ERROR " + e.getMessage());
e. printStackTrace();
return;
}
try
{
conn = DriverManager. get Connection(url);
}
catch (SQLException e)
{
Systemout.println("URL = "'" + url + """);

Systemout.println("\n***ERROR " + e.getMessage());
e.printStackTrace();
return;

}
System out. println();

172

Create an opaque type without an existing Java™ class

Chapter 1. HCL OneDB™ JDBC Driver Guide

In this example, the Java™ class MyCircle on the client is used to create a fixed-length opaque type in the database server

named ACircle. The ACircle opaque type uses the default support functions provided by the database server:

i nport java.sql.*;

public class M/Circle

{
String dbnane = "test";
String url = null;
Connection conn = null;

public static void main (String args[])

{
new MyCircl e(args);

M/Circle(String args[])

Systemout.println("---------------- ")
Systemout.println("- Start - Denp 3");
Systemout.printin("---------------- "),

N
/] Cetting URL
e
if (args.length == 0)
{
System out. println("\n***ERROR connecti on URL nust
"in order to run the denmo!");

return;
}
url = args[0];
A R
/] Loading driver
A
try
{
System out . print("Loading JDBC driver...");
Cl ass. for Name("com i nform x.jdbc. | fxDriver");
System out . printl n("ok");
}
catch (java.lang. G assNot FoundException e)
{
Systemout.println("\n***ERROR " + e.getMessage());
e.printStackTrace();
return;
}
A R

be provided " +

173

OneDB JDBC Driver Programmer's Guide

/] Getting connection

A T

try
{
Systemout.print("CGetting connection...");
conn = DriverManager. get Connection(url);
System out . printl n("ok");
}

catch (SQLException e)
{
Systemout.println("URL = "" + url + """);
Systemout.println("\n***ERROR " + e.getMessage());
e.printStackTrace();
return;

L L
/1 Setup UDT neta data
A e
UDTMet aDat a ndata = nul | ;
try
{
ndata = new UDTMet aDat a() ;

Systemout.print("Setting fields in ndata...");
ndat a. set SQLNane("acircle");
ndat a. set Lengt h(24) ;
ndat a. set Fi el dCount (3) ;
ndat a. set Fi el dName(1, "x");
ndat a. set Fi el dName(2, "y");
ndat a. set Fi el dNane(3, "radius");
ndat a. set Fi el dType(1, cominform x.|ang. |fxTypes. | FX_TYPE I NT);
ndat a. set Fi el dType(2, cominform x.|ang. | fxTypes. | FX_TYPE_ | NT);
ndat a. set Fi el dType(3, cominform x.|ang.|fxTypes. | FX_TYPE_| NT);
/] set class nanme if don't want to use the default nane
/'l <udtsqgl nane>. cl ass
ndat a. set Cl assNane("ACi rcle");
ndat a. set Jar Fi | eSQLNanme("ACi rcl eJar");
ndat a. keepJavaFi | e(true);
System out. println("ok");
}
catch (SQLException e)
{
Systemout.println("***ERROR " + e.getMessage());
return;

I e e
/] create java file for UDT and install UDT in the database
A
UDTManager udtngr = nul | ;
try

{

udt rgr = new UDTManager (conn) ;

174

cat

Chapter 1. HCL OneDB™ JDBC Driver Guide

Systemout.println("Creating .class/.java files - " +
"createUDTC ass()");

String classnane = udtngr. createUDTd ass(ndata); // generated
/ljava file is kept

System out . println(" cl assnane = " + cl assnane);

Systemout.println("\nCreating .jar file - createdar()");
String jarfilename = udtmgr. createlar (ndat a,
new String[]{"AC rcle.class"}); // jarfilenane is
/] <udtsqgl name>. j ar
/] ie. acircle.jar

System out . println("\nsetJar TnpPath()");
udt ngr . set Jar TnpPat h("/tmp");

System out. print("\ncreateUDT()...");
udt ngr . cr eat eUDT(ndat a,

"/vobs/jdbc/ deno/tool s/udtudrngr/" + jarfil enane, "AC rcle",

System out . println("ok");
}
ch (SQLException e)
{
Systemout.println("\n***ERROR " + e.getMessage());
return;

}

System out . println();

/1
/1
11
try
{

}

cat

{

Now use the UDT

String s = "drop table tab";
Systemout.print(s + "...");

Statement stnt = conn.createStatenent();
int count = stnt.executeUpdate(s);
stnt.cl ose();

System out . println("ok");

ch (SQLException e)

/] -206 The specified table (%) is not in the database.

if (e.getErrorCode() != -206)
{
Systemout.println("\n***ERROR. " + e.getMessage());
return;
}

System out . println("ok");

175

OneDB JDBC Driver Programmer's Guide

execut eUpdate("create table tab (c acircle)");

/] test DEFAULT | nput function
execut eUpdate("insert into tab values ('10 10 10')");

/] test DEFAULT Cutput function

try
{
String s = "select c::lvarchar fromtab";
System out . println(s);
Statenment stnt = conn.createStatenent();
Resul tSet rs = stnt.executeQery(s);
if (rs.next())

{
String ¢ = rs.getString(1);
System out . println(" acircle ='" + ¢ +"'");
}
rs.close();
stnt.close();
}
catch (SQ.Exception e)
{
Systemout.println("***ERROR: " + e.getMessage());
}

System out. println();

execut eUpdate("drop table tab");

A LR R
/1 Cl osing connection
A
try
{
System out. print("Cd osing connection...");
conn. cl ose();
System out . println("ok");
}
catch (SQ.Exception e)
{
Systemout.println("\n***ERROR " + e.getMessage());
}
Systemout.println("------------------ ")
Systemout.println("- End - UDT Denp 3");
Systemout.printin("------------------ ")

Create UDRs with UDRManager

The following code shows how an application can use the UDRManager and UDRMetaData classes to convert methods in a

Java™ class on the client (inaccessible to the database server) to Java™ UDRs in the database server. Applications can later

176

Chapter 1. HCL OneDB™ JDBC Driver Guide

reference the UDRs in SQL statements. In this example, the Java™ class on the client is named Group1. The class has two

routines, udr1 and udr2.

The following code creates methods in the Group1 class to be registered as UDRs in the database server:

i nport java.sql.*;

public class G oupl

{
public static String udrl (String s1, String s2)
throws SQ.Exception
{
return sl + s2;
}
/!l Return a formatted string with all inputs
public static String udr2 (Integer i, String si,
String s2) throws SQLException
{
return "{" +i + ", " + sl + " " +s2 +"}";
}
}

The following code creates Java™ methods udr1 and udr2 as UDRs group1_udr1 and group1_udr2 in the database server
and then uses the UDRs:

i nport java.sql.*;
inport java.lang.reflect.*;

public class PlayWthG oupl

{
/1 Open a connection...
url = "jdbc: onedb://host nane: port num db; user =scot t ; passwor d=t i ger;

nmyConn = Driver Manager. get Connecti on(url);

/llnstall the routines in the database.
UDRManager udt ngr = new UDRManager (myConn) ;
UDRMet aDat a ndata = new UDRMet aDat a() ;
Class gpl = O ass. forNanme(" G oupl");
Met hod net hodl = gpl. get Met hod("udr 1",
new Cl ass[]{String.class, String.class});
Met hod et hod2 = gpl. get Met hod(" udr 2",
new Cl ass[]{Integer.class, String.class, String.class});
ndat a. set UDR(net hod1, "groupl_ udrl");
ndat a. set UDR(net hod2, "groupl_udr2");
ndat a. set Jar Fi | eSQLNane("groupl_jar");
udt ngr . creat eUDRs(ndata, "G oupl.jar", "G oupl", 0);

/1 Use the UDRs in SQL statenents:

Statenent stnt = myConn. createStatenent();

stnt . executeUpdate("create table tab (cl1l varchar(10),
c2 char(20)", c3 int);

stnt.close();

Statement stnt = myConn. createStatenment();

177

OneDB JDBC Driver Programmer's Guide

stnt. execut eUpdate("insert into tab values ('hello', 'world",
222)");
stnt.close();

Statenment stnt = myConn. createStatenent();

ResultSet r = stnt.executeQuery("select c¢3, groupl_udr2(c3, cl, c2)
fromtab where groupl_udri(cl, c2) = '"hello world");

Globalization and date formats

HCL OneDB™ JDBC Driver extends the Java™ globalization features by providing access to HCL OneDB™ databases that are

based on different locales and code sets.

Globalization allows you to develop software independently of the countries or languages of its users and then to localize

your software for multiple countries or regions.

For general information about setting up Global Language Support (GLS), see the HCL OneDB™ GLS User's Guide.

Support for Java™ and globalization

The Java™ development kit provides a rich set of APIs for developing global applications. These globalization APIs are
based on the Unicode 2.0 code set and can adapt text, numbers, dates, currency, and user-defined objects to any country

conventions.

The globalization APIs are concentrated in three packages:

- Thej ava. t ext package contains classes and interfaces for handling text in a locale-sensitive way.

- Thej ava. i o package contains new classes for importing and exporting non-Unicode character data.

« Thejava. uti| package contains the Locale class, the globalization support classes, and new classes for date and
time handling.

! Important: There is no connection between Java™ development kit locales and code sets; you must keep these code

sets in agreement.

Support for HCL OneDB™ GLS variables

Globalization adds several environment variables to HCL OneDB™ JDBC Driver, which are summarized in the following table.

Supported HCL OneDB™ Description

environment variables

CLIENT_LOCALE Specifies the locale of the client that is accessing the database. Provides defaults for
user-defined formats such as the GL_DATE format. User-defined data types can use it

178

Chapter 1. HCL OneDB™ JDBC Driver Guide

Supported HCL OneDB™ Description

environment variables

for code-set conversion. Together with the DB_LOCALE variable, the database server
uses this variable to establish the server processing locale. The DB_LOCALE and
CLIENT_LOCALE values must be the same, or their code sets must be convertible.

DBCENTURY Enables you to specify the appropriate expansion for one- or two-digit year DATE
values
DBDATE Specifies the end-user formats of values in DATE columns. Supported for

compatibility with earlier versions; GL_DATE is preferred.

DB_LOCALE Specifies the locale of the database. HCL OneDB™ JDBC Driver uses this variable to
perform code-set conversion between Unicode and the database locale. Together
with the CLIENT_LOCALE variable, the database server uses this variable to establish
the server processing locale. The DB_LLOCALE and CLIENT_LOCALE values must be

the same, or their code sets must be convertible.

GL_DATE Specifies the end-user formats of values in DATE columns

GL_USEGLU To enable Unicode collation by Java/JDBC client applications with the International
Components for Unicode (ICU), specify GL_USEGLU=1 in the connection string
before connecting to the HCL OneDB™ instance. This enables the server to use
advanced Unicode converters that are required to work with Java™. The GL_USEGLU
environment variable must be set to a value of 1 (one) in the database server
environment before the server is started, and before the database is created.

NEWCODESET Allows new code sets to be defined between releases of HCL OneDB™ JDBC Driver.

NEWLOCALE Allows new locales to be defined between releases of HCL OneDB™ JDBC Driver.

The HCL OneDB™ JDBC Driver does not change the decimal format, even if there is a CLIENT_LOCALE setting available.

Globalization should be done within the Java™ application with the DecimalFormat class.

! Important: The DB_LOCALE, CLIENT_LOCALE, and GL_DATE variables are supported only if the database server

supports the feature.

Support for DATE end-user formats

The end-user format is the format in which a DATE value appears in a string variable. This section describes the GL_DATE,
DBDATE, and DBCENTURY variables, which specify DATE end-user formats. These variables are optional.

! Important: HCL OneDB™ JDBC Driver does not support ALS 6.0, 5.0, or 4.0 formats for the DBDATE or GL_DATE
environment variables.

For more information about GL_DATE, see HCL OneDB™ GLS User's Guide.

179

OneDB JDBC Driver Programmer's Guide

The GL_DATE variable

The GL_DATE environment variable specifies the end-user formats of values in DATE columns. A GL_DATE format string can

contain the following characters:

« One or more white space characters
+ An ordinary character (other than the percent symbol (%) or a white space character)
« A formatting directive, which is composed of the percent symbol (%) followed by one or two conversion characters

that specify the required replacement

Date formatting directives are defined in the following table.

Dire
ctive Replaced by
%a The abbreviated weekday name as defined in the locale
%A The full weekday name as defined in the locale
%b The abbreviated month name as defined in the locale
%B The full month name as defined in the locale
%C The century number (the year divided by 100 and truncated to an integer) as a decimal number (00 through
99)
%d The day of the month as a decimal number (01 through 31)
A single digit is preceded by a zero (0).
%D Same as the %m/%d/%y format
%e The day of the month as a decimal number (1 through 31)
A single digit is preceded by a space.
%h Same as the %b formatting directive
%iy The year as a two-digit decade (00 through 99)
It is the formatting directive that is specific to HCL OneDB™ for %y.
%iY The year as a four-digit decade (0000 through 9999)
It is the formatting directive that is specific to HCL OneDB™ for %Y.
%m The month as a decimal number (01 through 12)
%n A newl i ne character
%t The TAB character
%W The weekday as a decimal number (0 - 6)

180

Chapter 1. HCL OneDB™ JDBC Driver Guide

Dire
ctive Replaced by
The 0 represents the locale equivalent of Sunday.

%X A special date representation that the locale defines
%Y The year as a two-digit decade (00 - 99)
%Y The year as a four-digit decade (0000 - 9999)
%% % (to allow % in the format string)

! Important: GL_DATE optional date format qualifiers for field specifications are not supported.

For example, by using %4m to display a month as a decimal number with a maximum field width of 4 is not
supported.

The GL_DATE conversion modifier O, which indicates use of alternative digits for alternative date formats, is not
supported.

White space or other nonalphanumeric characters must appear between any two formatting directives. If a GL_DATE variable

format does not correspond to any of the valid formatting directives, errors can result when the database server attempts to

format the date.

For example, for a U.S. English locale, you can format an internal DATE value for 09/29/1998 using the following format:

* Sep 29, 1998 this day is:(Tuesday), a fine day *

To create this format, set the GL_DATE environment variable to this value:

* O %, % this day is: (%), a fine day *
To insert this date value into a database table that has a date column, you can perform the following types of inserts:

» Nonnative SQL, in which SQL statements are sent to the database server unchanged

Enter the date value exactly as expected by the GL_DATE setting.

- Native SQL, in which escape syntax is converted to a format that is specific to HCL OneDB™

Enter the date value in the JDBC escape format yyyy- mm dd; the value is converted to the GL_DATE format
automatically.

The following example shows both types of inserts:
To retrieve the formatted GL_DATE DATE value from the database, call the getString() method of the ResultSet class.

To enter strings that represent dates into database table columns of char, varchar, or Ivarchar type, you can also build date
objects that represent the date string value. The date string value must be in GL_DATE format.

181

182

OneDB JDBC Driver Programmer's Guide

The following example shows both ways of selecting DATE values:

PreparedSt atenent pstnmt = conn. prepareStatenent ("Select * from
t abl enane "
+ "where col2 like ?;");

pstnt.setString(1l, "%ue%);

ResultSet r = pstnt.executeQuery();

whi | e(r.next())

{

String s = r.getString(1);

java.sql .Date d = r.getDate(2);

Systemout.println("Select: colum coll (G _DATE format) = <"
+ s + ">");

System out.println("Select: colum col2 (JDBC Escape format) = <"
+d + ">");

}

r.close();
pstnt.cl ose();

The DBDATE variable (deprecated)

Support for the DBDATE environment variable provides compatibility with earlier versions for client applications that are
based on HCL OneDB™ database server versions before 7.2x, 8.x, or 9.x. Use the GL_DATE environment variable for new
applications.

The DBDATE environment variable specifies the end-user formats of values in DATE columns. End-user formats are used in
the following ways:

» When you input DATE values, HCL® OneDB® products use the DBDATE environment variable to interpret the input.
For example, if you specify a literal DATE value in an INSERT statement, HCL OneDB™ database servers require this
literal value to be compatible with the format specified by the DBDATE variable.

» When you display DATE values, HCL® OneDB® products use the DBDATE environment variable to format the output.

With standard formats, you can specify the following attributes:

« The order of the month, day, and year in a date
« Whether the year is printed with two digits (Y2) or four digits (Y4)

« The separator between the month, day, and year
The format string can include the following characters:

« Hyphen (-), dot (.), and slash (/) are separator characters in a date format. A separator appears at the end of a
format string (for example vamp-).

« A 0 indicates that no separator is displayed.

- D and M are characters that represent the day and the month.

» Y2 and Y4 are characters that represent the year and the number of digits in the year.

The following format strings are valid standard DBDATE formats:

Chapter 1. HCL OneDB™ JDBC Driver Guide

* DMY2
- DMY4
* MDY4
* MDY2
* YAMD
* YADM
* Y2MD
* Y2DM

The separator always goes at the end of the format string (for example, bwv2/). If no separator or an invalid character is

specified, the slash (/) character is the default.

For the U.S. ASCII English locale, the default setting for DBDATE is y4MvD-, where Y4 represents a four-digit year, M represents
the month, D represents the day, and hyphen (-) is the separator (for example, 1998-10-08).

To insert a date value into a database table with a date column, you can perform the following types of inserts:

- Nonnative SQL. SQL statements are sent to the database server unchanged. Enter the date value exactly as expected
by the DBDATE setting.

- Native SQL. Escape syntax is converted to a format that is specific to HCL OneDB™. Enter the date value in the JDBC
escape format yyyy- nm dd; the value is converted to the DBDATE format automatically.

The following example shows both types of inserts (the DBDATE value is MDY2-):

stmt = conn. createStatenment();

cnmd = "create table tablenane (col 1l date, col 2 varchar(20));";
rc = stnt.executeUpdate(cnd);. .
.String[] datevals = {"'08-10-98'", "{d '1998-08-11'}" };
String[] charvals = {"'08-10-98'", "'08-11-98"" };
int numRows = dateVal s. | ength;
for (int i = 0; i < nunRows; i++)

{

cmd = "insert into tablenanme values(" + dateVals[i] + ", " +

charVval s[i] + ")";
rc = stnt.executeUpdate(cnd);

Systemout.println("lnsert: colum coll (date) =" + dateVals[i]);
Systemout.println("lInsert: colum col2 (varchar) =" + charVals[i]);
}

To retrieve the formatted DBDATE DATE value from the database, call the getString method of the ResultSet class.

To enter strings that represent dates into database table columns of char, varchar, or Ivarchar type, you can build date objects

that represent the date string value. The date string value needs to be in DBDATE format.

The following example shows both ways to select DATE values:

PreparedSt at enent pstnt = conn. prepareSt at enent (“Sel ect * from tabl enane "
+ "where coll = ?;");
Gregori anCal endar gc = new G egori anCal endar (1998, 7, 10);

183

OneDB JDBC Driver Programmer's Guide

java.sql . Date date(bj = new java.sql.Date(gc.getTine().getTinme());
pstnt.setDate(1l, date(pj);
ResultSet r = pstnt.executeQery();
whi | e(r.next())
{
String s =r.getString(1);
java.sql .Date d = r.get Date(2);
Systemout . println("Select: colum col1l (DBDATE format) = <"
+ s + ">");
Systemout. println("Select: colum col2 (JDBC Escape format) = <"
+d + ">");
}
r.close();
pstnt.cl ose();

The DBCENTURY variable

If a String value represents a DATE value that has less than a three-digit year and DBCENTURY is set, HCL OneDB™ JDBC
Driver converts the String value to a DATE value and uses the DBCENTURY property to determine the correct four-digit
expansion of the year.

The methods affected and the conditions under which they are affected are summarized in the following table.

Method Condition
PreparedStatement.setString(int, String) The target column is DATE.
PreparedStatement.setObject(int, String) The target column is DATE.
IfxPreparedStatement.|fxSetObject(String) The target column is DATE.
ResultSet.getDate(int) The source column is a String type.

ResultSet.getDate(int, Calendar)
ResultSet.getDate(String)
ResultSet.getDate(String, Calendar)

ResultSet.getTimestamp(int) The source column is a String type.

ResultSet. getTimestamp(int, Calendar)
ResultSet.getTimestamp(String)
ResultSet.getTimestamp(String, Calendar)

ResultSet.updateString(int, String) The target column is DATE.

ResultSet.updateString(String, String)

ResultSet.updateObject(int, String) The target column is DATE.

ResultSet.updateObject(int, String, int)

184

Chapter 1. HCL OneDB™ JDBC Driver Guide

Method Condition

ResultSet.updateObject(String, String)
ResultSet.updateObject(String, String, int)

The following table describes the four possible settings for the DBCENTURY environment variable.

Setting Meaning Description

P Past Uses past and present centuries to expand the year value.

F Future Uses present and next centuries to expand the year value.

C Closest Uses past, present, and next centuries to expand the year value.
R Present Uses present century to expand the year value.

See the "Environment Variables" section in the HCL OneDB™ Guide to SQL: Reference for a discussion of the algorithms used

for each setting and examples of each setting.

Here is an example of a URL that sets the DBCENTURY value:

j dbc: onedb: // nmyhost : 1533; user =nmynane; passwor d=nypasswd; DBCENTURY=F
A URL must not have a line break.

HCL OneDB™ JDBC Driver always includes four-digit years when it sends java.sql.Date and java.sql.Timestamp values to the
server. Similarly, the server always includes four-digit years when it sends HCL OneDB™ date values to HCL OneDB™ JDBC
Driver.

For examples of how to use DBCENTURY with HCL OneDB™ JDBC Driver, see the DBCENTURYSel ect . j ava,
DBCENTURYSel ect 2. j ava, DBCENTURYSel ect 3. j ava, DBCENTURYSel ect 4. j ava, and DBCENTURYSel ect 5. j ava
example programs.

Precedence rules for end-user formats

The precedence rules that define how to determine an end-user format for an internal DATE value are listed here:

- If a DBDATE format is specified, this format is used.
« If a GL_DATE format is specified, a locale must be determined:

o If a CLIENT_LOCALE value is specified, it is used with the GL_DATE format string to display DATE values.

o If a DB_LOCALE value is specified but a CLIENT_LOCALE value is not, the DB_LLOCALE value is compared with
the database locale (read from the systables table of the user database) to verify that the DB_LOCALE value
is valid. If the DB_LOCALE value is valid, it is used with the GL_DATE format string to display DATE values. If
the DB_LOCALE value is not valid, the database locale is used with the GL_DATE format string.

o If the CLIENT_LOCALE or DB_LOCALE values are not specified, the database locale is used with the GL_DATE
format string to display DATE values.

« If a CLIENT_LOCALE value is specified, the DATE formats conform to the default formats associated with this locale.

185

OneDB JDBC Driver Programmer's Guide

- If a DB_LOCALE value is specified but no CLIENT_LOCALE value is specified, the DB_LLOCALE value is compared with
the database locale to verify that the DB_LLOCALE value is valid.

If the DB_LOCALE value is valid, the DB_LOCALE default formats are used. If the DB_LOCALE value is not valid, the
default formats for dates associated with the database locale are used.

« If the CLIENT_LOCALE or DB_LOCALE values are not specified, all DATE values are formatted in U.S. English format,
Y4AND- .

Support for code-set conversion

Code-set conversion converts character data from one code set to another. In a client/server environment, character data
might need to be converted from one code set to another if the client and database server computers use different code
sets to represent the same characters. For detailed information about code-set conversion, see the HCL OneDB™ GLS User's
Guide.

You must specify code-set conversion for the following types of character data:

« SQL data types (char, varchar, nchar, nvarchar)

» SQL statements

 Database objects such as database names, column names, table names, statement identifier names, and cursor
names

- Stored procedure text

« Command text

» Environment variables

HCL OneDB™ JDBC Driver converts character data as it is sent between client and database server. The code set (encoding)
used for the conversion is specified in the systables catalog for the opened database. You set the DB_LOCALE and
CLIENT_LOCALE values in the connection properties or database URL.

Unicode to database code set

Java™ is Unicode based, so HCL OneDB™ JDBC Driver converts data between Unicode and the HCL OneDB™ database code
set. The code-set conversion value is extracted from the DB_LOCALE value specified at the time the connection is made. If

the DB_LOCALE value is incorrect, a Dat abase Local e i nformati on mi smat ch €rror Occurs.

The DB_LOCALE value must be a valid HCL OneDB™ locale, with a valid HCL OneDB™ code-set name or number as shown
in the compatibility table that follows. The following table maps the supported Java™ development kit encodings to HCL

OneDB™ code sets.

HCL OneDB™ code set name HCL OneDB™ code set number JDK code set
8859-1 819 8859_1
GB18030-2000 5488 GB18030

186

Chapter 1. HCL OneDB™ JDBC Driver Guide

You cannot use the HCL OneDB™ locale with a code set for which there is no JDK-supported encoding. This incorrect usage

results in an Encodi ng or code set not supported €rror message.

The supported locales are en_us and zh_cn.

Unicode to client code set

Because the Unicode code set includes all existing code sets, the Java™ virtual machine (JVM) must render the character
with the platforms local code set. Inside the Java™ program, you must always use Unicode characters. The JVM on that

platform converts input and output between Unicode and the local code set.

For example, you specify button labels in Unicode, and the JVM converts the text to display the label correctly. Similarly,
when the getText() method gets user input from a text box, the client program gets the string in Unicode, no matter how the
user entered it.

Never read a text file one byte at a time. Always use the InputStreamReader() or OutputStreamWriter() methods to
manipulate text files. By default, these methods use the local encoding, but you can specify an encoding in the constructor of
the class, as follows:

I nput St reanReader = new | nput St reanReader (in, "SJIS");

You and the JVM are responsible for getting external input into the correct Java™ Unicode string. Thereafter, the database
locale encoding is used to send the data to and from the database server.

Connect to a database with non-ASCIl characters

If you do not specify the database name at connection time, the connection must be opened with the correct DB_LOCALE

value for the specified database.

If close database and database dbname statements are issued, the connection continues to use the original DB_LOCALE
value to interpret the database name. If the DB_LOCALE value of the new database does not match, an error is returned. In
this case, the client program must close and reopen the connection with the correct DB_LOCALE value for the new database.

If you supply the database name at connection time, the DB_LOCALE value must be set to the correct database locale.

You can connect to an NLS database by defining a locale with NEWCODESET and NEWLOCALE connection properties.
For information about their formats, see Connecting with the NEWLOCALE and NEWCODESET Environment Variables on
page 190.

Code-set conversion for TEXT and CLOB data types

HCL OneDB™ JDBC Driver does not automatically convert between code sets for TEXT, BYTE, CLOB, and BLOB data types.

You can convert between code sets for TEXT and CLOB data types in one of the following ways:

187

188

OneDB JDBC Driver Programmer's Guide

- You can automate code-set conversion for TEXT or CLOB data between the client and database locales by using the
IFX_CODESETLOB environment variable.

* You can convert between code sets for TEXT data by using the getBytes(), getString(), InputStreamReader(), and
OutputStreamWriter() methods.

Convert with the IFX_CODESETLOB environment variable

You can automate the following pair of code-set conversions for TEXT and CLOB data types:

« Convert from client locale to database locale before the data is sent to the database server.

« Convert from database locale to client locale before the data is retrieved by the client.

To automate code-set conversion for TEXT and CLOB data types, set the IFX_CODESETLOB environment variable in the
connection URL. For example: | FX_CODESETLOB = 4096. You can also use the following methods of the IfxDataSource class to
set and get the value of IFX_CODESETLOB:

public void setlfxl FX_ CODESETLOB(i nt codeset| obFl ag);
public int getlfxlFX_ CODESETLOB();

IFX_CODESETLOB can have the following values:
none

Default

Automatic code-set conversion is not enabled.

Automatic code-set conversion takes place in internal temporary files.

>0
Automatic code-set conversion takes place in the memory of the client computer. The value indicates the
number of bytes allocated for the conversion.

If the number of allocated bytes is less than the size of the large object, an error is returned.

To perform conversion in memory, you must specify an amount that is smaller than the memory limits of the client machines
and larger than the possible size of any converted large object.

When you are using any of the following java.sql.Clob interface methods or HCL OneDB™ extensions to the Clob interface, no
code-set conversion is performed, even if the IFX_CODESETLOB environment variable is set. These methods include:

I fxCbl ob: : set Asci i Strean{| ong)
Cl ob: :setAscii Strean(long position, InputStreamfin, int |ength)

IFX_CODESETLOB takes effect only for methods from the java.sql.PreparedStatement interface.

However when using any of following java.sql.Clob interface methods or HCL OneDB™ extensions to Clob interface, Unicode
characters are always converted automatically to the database locale code set. Here is a list of those methods:

Chapter 1. HCL OneDB™ JDBC Driver Guide

Cl ob: : set Character Strean(| ong) throws SQLException
Clob::setString(long, String) throws SQ.Exception

Clob:: setString(long pos, String str, int offset, int len)

| f xCbl ob: : set SubString(long position, String str, int |ength)

Convert with Java™ methods

The Java™ methods getBytes(), getString(), InputStreamReader(), and OutputStreamWriter() take a code-set parameter that
converts to and from Unicode and the specified code set.

Here is sample code that shows how to convert a file from the client code set to Unicode and then from Unicode to the
database code set:

File infile = new File("data_jpn.dat");

File outfile = new File ("data_conv.dat");..

.pstnt = conn.prepareStatenent("insert into t_text values (?)");..
./l Convert data fromclient encoding to database encoding

System out. println("Converting data ...\n");

try
{
String from= "SJI S";
String to = "8859 1";
convert(infile, outfile, from to);
}
catch (Exception e)
{
Systemout.println("Failed to convert file");
}
Systemout.println("lnserting data ...\n");
try
{
int fileLength = (int) outfile.length();
fin = new Fil el nput Strean(outfile);
pstnt.setAsciiStream(1 , fin, filelLength);
pst nt . execut eUpdat e() ;
}
catch (Exception e)
{
Systemout.println("Failed to setAsciiStreant);
}..

.public static void convert(File infile, File outfile, String from String to)
throws | OException
{
InputStreamin = new FilelnputStrean(infile);
Qut put Stream out = new Fi | eQut put Stream(outfile);

Reader r = new BufferedReader(new | nput StreanReader(in, from);
Witer w = new BufferedWiter(new QutputStreanmWiter(out, to));

/| Copy characters frominput to output. The InputStreanReader converts
/1 fromthe input encoding to Unicode, and the CutputStreanViter

189

190

OneDB JDBC Driver Programmer's Guide

/'l converts from Unicode to the output encoding. Characters that can
/'l not be represented in the output encoding are output as '?

char[] buffer = new char[4096];

int len;

while ((len = r.read(buffer)) = -1)
w. wite(buffer, 0, len);

r.close();

w. flush();

w. cl ose();

}

When you retrieve data from the database, you can use the same approach to convert the data from the database code set to
the client code set.

Code-set conversion for BLOB and BYTE data types

When you use java.sql.PreparedStatement::setCharacterStream() to insert in a CLOB column, Java™ Unicode characters

are converted automatically to the database locale code set. If the environment variable IFX_CODESETLOB is set, its value
determine whether to perform code set conversion using temporary files or to perform the code set conversion in memory. If
IFX_CODESETLOB is not set, the LOBCACHE environment variable determines whether the code set conversion takes place

in temporary files or in memory.

However, you are discouraged from using java.sql.PreparedStatement::setCharacterStream() to insert BLOB or BYTE
columns. The JDBC driver cannot insert Java™ characters in a database and consequently attempts code set conversion of
the characters. Using java.sql.PreparedStatement::setBinaryStream() is the preferred way to insert BLOB or BYTE columns.

User-defined locales

HCL OneDB™ JDBC Driver uses the Java™ globalization APl to manipulate international data.

The classes and methods in that API take a Java™ development kit locale or encoding as a parameter, but because the HCL
OneDB™ DB_LOCALE and CLIENT_LOCALE properties specify the locale and code set based on HCL OneDB™ names, these
HCL OneDB™ names are mapped to the Java™ development kit names. These mappings are kept in internal tables, which are
updated periodically.

For example, the HCL OneDB™ and Java™ development kit names for the ASCII code set are 8859-1 and 8859_1, respectively.
HCL OneDB™ JDBC Driver maps 8859-1 to 8859_1 in its internal tables and uses the appropriate name in the Java™
development kit classes and methods.

Connect with the NEWLOCALE and NEWCODESET properties

Because new locales may be created between updates of these tables, two connection properties, NEWLOCALE and
NEWCODESET, let you specify a locale or code set that is not specified in the tables. Here is an example URL using these
properties:

Chapter 1. HCL OneDB™ JDBC Driver Guide

j dbc: onedb: // myhost : 1533;
user =mynane; passwor d=nypasswd; NEW.OCALE=en_us, en_us;
NEWCODESET=8859_1, 8859-1, 819;

A URL must be on one line.

The NEWLOCALE and NEWCODESET properties have the following formats:

NEW.OCALE=JDK- | ocal e, | f x-|1 ocal e: JDK-1 ocal e, | fx-l ocal e. . .

NEWCODESET=JDK- encodi ng, | f x- codeset, | f x- codeset - nunber : JDK-
encodi ng, |fx-codeset, | fx-codeset-nunber. ..

There is no limit to the number of locale or code-set mappings you can specify.
You can connect to an NLS database by defining a locale using NEWCODESET and NEWLOCALE connection properties.

If you specify an incorrect number of parameters or values, you get a Local e Not Supported OF Encodi ng or Code Set Not

Support ed message.

If these properties are set in the URL or a DataSource object, the new values in NEWLOCALE and NEWCODESET override
the values in the JDBC internal tables. For example, if JDBC already maps 8859-1 to 8859_1 internally, but you specify
NEWCODESET=8888, 8859- 1, 819 instead, the new value 8888 is used for the code-set conversion.

Connect with the NEWNLSMAP property

To support connecting to NLS databases, HCL OneDB™ JDBC Driver maintains a table for mapping NLS locale to the
corresponding Java™ development kit locale and code set. Locales and code sets that are not supported in a particular
version of the development kit might be supported in later versions of the development kit. Use the NEWNLSMAP connection
property to specify mappings for an NLS locale that is not specified in the table.

The NEWNLSMAP property has the following format:

NEWALSVAP=NLS- | ocal e, JDK- | ocal e, JDK- codeset : NLS-| ocal e, JDK- | ocal e,
JDK- codeset,

Here is an example URL using these properties:

j dbc: onedb: //
nmyhost : 9088/ nydat abase; user =mynane; passwor d=nmypasswd; NEWNLSMAP=r umani an, r o_RO, | SO8859_2;

There is no limit to the number of mappings you can specify. If you specify an incorrect number of parameters or values, you

get aLocal e Not Supported Or Encoding or Code Set Not Supported message.

Support for globalized error messages

Message text is usually the text of an SQLException object, but can also be an SQLWarn object or any other text output from
the driver.

There are two requirements to enable globalized message text output, as follows:

191

192

OneDB JDBC Driver Programmer's Guide

» You must add the full path of the i f x| ang. j ar file to the $CLASSPATH (UNIX™) or %CLASSPATH% (Windows™)
environment variable. This JAR file contains globalized versions of all message text supported by HCL OneDB™ JDBC
Driver. Supported languages are English and Chinese.

» The CLIENT_LOCALE environment variable value must be passed through the property list to the connection object at
connection time if you are using a nondefault locale. For more information about CLIENT_LOCALE and GLS features

in general, see Support for HCL OneDB GLS variables on page 178.

Several public classes have constructors that take the current connection object as a parameter so they have access to
the CLIENT_LOCALE value. If you want access to non-English error messages, you must use the constructors that include
the connection object. Otherwise, any error message text from those classes is in English only. Affected public classes are
Interval, IntervalYM, IntervalDF, and IfxLocator. For more information about the constructors to use for these classes, see
Work with HCL OneDB types on page 75.

For an example of how to use the globalized error message support feature, see the | ocnsg. j ava program, which is
included with HCL OneDB™ JDBC Driver.

Smart trigger feature

Smart Triggers in JDBC are a set of classes/interfaces that provide an ease of use capability to the Push data feature.

A smart trigger is a set of commands issued to the database that sets up a push notification when certain changes happen
to data in a table. These changes are detected by a SQL query that is run after INSERT, UPDATE, or DELETE commands are

executed.

Using the smart trigger feature, you can quickly watch one or more tables for changes and receive callbacks when a change
is detected. Using the following JDBC AP, if you make any change to the customer's table (insert/update/delete) the notify()
method that you specified will get called, allowing you to see the effects of the change and take action.

/* Create a new smart trigger */
| f xThr eadedSnart Tri gger push = new | fxSmart Tri gger ("JDBC URL to sysadm n dat abase here");
/* Create your own call back class */
| f xSmart Tri gger Cal | back cal | back = new | f mxSmart Tri gger Cal | back() {
@verride
public void notify(String json) {
/*Here you can process the json fromthe trigger event*/
Systemout.println("Trigger received! Data: " + json);

s
/* Set additional properties like the tineout or a default |abel */
push. | abel ("test-1abel ").tinmeout (60);
/* Add one or nobre triggers against the tabl e/ owner/database using a SQ. query */
push. addTri gger ("custonmers”, "inform x", "stores_denp", "SELECT * FROM
custoners", "test-I|abel -pushtest", callback);
/* | fnmxThreadedSmart Tri gger i s runnable so you can easily start it in a background thread*/
Thread t = new Thread(push);

t.start();
/* you can wait on that thread or go and do other work */
j.join();

oxy_ex-1/erp/ids_erp_pushdata.dita

Chapter 1. HCL OneDB™ JDBC Driver Guide

A dedicated server connection is required for using the smart trigger feature. Because of this, the IfmxSmartTrigger class

uses a URL or a DataSource object for creating a new JDBC connection.

You can close or shut down the smart trigger by executing a close() method on the IfmxSmartTrigger object. This will queue-
up a smooth shutdown of the session. You can also add or remove triggers anytime, as required. If the application has not
started either the run() or watch() method, then the changes occur immediately. Otherwise, changes are queued until the
driver receives data from the server. This will occur when any trigger is fired or when the timeout is reached.

If you want to manage the smart trigger without creating another thread, you can directly call the watch() method.
Warning: The watch() method is a blocking call and will never return unless another thread interrupts it or calls a close().
For details on all of the API's added, see the Javadoc documentation on the IfmxThreadedSmartTrigger interface.
Related links:

Push data feature

Detach trigger

Using the detach trigger methods in IfmxThreadedSmartTrigger, you can declare a Smart Trigger to be 'detachable’. A

detachable trigger has an unique identifier which allows you to reconnect to the session on the server.

/* Detach a trigger */

| fxSmart Tri gger push = new | fxSmart Trigger("jdbc-url-here");

push. det achabl e(true); //Set the trigger as detachable

push. open();

String sessionl = push. get Det achabl eSessionl D(); //Get the session id
/1 Cl oses the JDBC connection and returns the session ID

/1 This is the same session id as you get fromthe call above

Sessi onl = push. detach();

On detaching from the session, you can create a new Smart Trigger object and pass in the session ID.

push = new | fxSmart Tri gger (“jdbc-url-here");

/] Assign the session |ID before you start the smart trigger

push. sessi onl D(sessi onl D) ;

Test PushCal | back cal | backl = new Test PushCal | back();

push. regi sterCal | back("test-|abel -pushtest", call backl);

push.start();

/1 You pick up where you left off, retrieving any nessages you m ssed fromthe server

Tuning and troubleshooting

These topics provides tuning and troubleshooting information for HCL OneDB™ JDBC Driver.

Debug your JDBC API program

There are two mechanisms to generate trace outputs in JDBC. A legacy mechanism SQLDEBUG and a more modern use of a

logging framework.

193

oxy_ex-1/erp/ids_erp_pushdata.dita

194

OneDB JDBC Driver Programmer's Guide

Note: Enabling tracing can have a noticeable impact on driver performance. Enable only logging to assist in

diagnosing a problem with the driver.

JDBC Tracing Using Logging

You can enable tracing of the JDBC driver via the logging API Log4j. For JDBC versions 8.1.1.2 and above you will need
to include the optional logging library which is found at https://search.maven.org/artifact/org.apache.logging.log4j/log4j-
core/2.17.1/jar alongside the JDBC jar file in yoru CLASSPATH.

! Important: The JDBC trace feature should only be used when directed by the HCL technical support representative.

You will need to provide to your application an XML configuration file that specifies what and where to log JDBC tracing
information. You can take the example XML configuration file for Log4j2 below and save it where you application is running.
Notice you can adjust modify the file path as well as the trace level. JDBC will only print events on 'trace’ and 'debug' levels to
avoid inadvertant printing of trace messages when the driver is used in applications already using Log4j.

This file must exist in the CLASSPATH of the running application or be specified using the Java system property

| 0og4j 2. configurationFil e=/path/to/l og4j2. xm

<?xm version="1.0" encodi ng="UTF-8"?>
<Configuration ="30" =" \WARN" >
<Property ="pattern">%d{yyyy-Mtdd HH nmm ss.SSS} | %5level | % | %{1} | %rethod | %rarker |
%rsg%m</ Property>
<Appender s>

<File ="consol e" ="/t nmp/ onedb-j dbc. | og" >
<Pat t er nLayout ="${pattern}" />
</File>
</ Appender s>
<Logger s>
<!-- Change this to 'trace' to print out driver events -->
<Root ="trace" ="fal se">
<Appender Ref ="consol e" />
</ Root >

</ Logger s>
</ Confi gurati on>

If you already using Log4j or another logger you can enable JDBC logging by enabling trace events on the JDBC packages.

For more information on the customization and options available using Log4j refer to the Log4j configuration guide at

https://logging.apache.org/log4j/2.x/manual/configuration.html

Package Name

com.onedb.jdbc

com.onedb.jdbcx

com.informix

https://search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://search.maven.org/artifact/org.apache.logging.log4j/log4j-core/2.17.1/jar
https://logging.apache.org/log4j/2.x/manual/configuration.html

Chapter 1. HCL OneDB™ JDBC Driver Guide

SQLIDEBUG

You can set the SQLIDEBUG connection property to generate binary protocol trace. You set the connection property
SQLIDEBUG to specify a file. For example:

SQLI DEBUG=/t np/ j dbctrace. | og

A new trace file is generated for every connection and is suffixed with a timestamp. If you are using the OneDBDataSource
class, you can use the OneDBDataSource.setPropery("SQLIDEBUG", "/tmp/jdbctrace.log") method.

! Important: The binary SQLI protocol trace feature (SQLIDEBUG) should only be used when directed by the HCL

technical support representative.

Manage performance

This section describes issues that might affect the performance of your queries:

» The FET_BUF_SIZE and BIG_FET_BUF_SIZE environment variables
« Memory management of large objects

« Reducing network traffic

« Using bulk inserts

« Tuning the connection pool.

Manage the fetch buffer size

Use the FET_BUF_SIZE and SRV_FET_BUF_SIZE environment variables to set the size of the fetch buffer.

When a SELECT statement is sent from a Java™ program to the HCL OneDB™ database, the returned rows, or tuples, are
stored in a tuple buffer in HCL OneDB™ JDBC Driver. The default size of the tuple buffer is the larger of the returned tuple size
or 4096 bytes.

You can use the HCL OneDB™ FET_BUF_SIZE environment variable to override the default size of the tuple buffer.
FET_BUF_SIZE can be set to any positive integer less than or equal to 2 GiB (2147483648). If the FET_BUF_SIZE
environment variable is set, and its value is larger than the default tuple buffer size, the tuple buffer size is set to the value of
FET_BUF_SIZE.

Similarly, you can use the SRV_FET_BUF_SIZE environment variable to set the fetch buffer size for the local database server
to use when it participates in cross-server distributed DML transactions. For 11.70.xC5 and newer versions, the maximum
size to which SRV_FET_BUF_SIZE can be set is 1048576 (= 1 MiB).

Increasing the size of the tuple buffer can reduce network traffic between your Java™ program and the database, often
resulting in better performance of queries. There are times, however, when increasing the size of the tuple buffer can actually
degrade the performance of queries. This could happen if your Java™ program has many active connections to a database or
if the swap space on your computer is limited. If this is true for your Java™ program or computer, you might not want to use
the FET_BUF_SIZE or SRV_FET_BUF_SIZE environment variables to increase the size of the tuple buffer.

195

196

OneDB JDBC Driver Programmer's Guide

For more information about setting HCL OneDB™ environment variables, see Connect to the database on page 8. For

more information about increasing the fetch buffer size, see the HCL OneDB™ Guide to SQL: Reference.

Manage memory for large objects

Whenever a large object (a BYTE, TEXT, BLOB, or CLOB data type) is fetched from the database server, the data is either

cached into memory or stored in a temporary file (if it exceeds the memory buffer).

You can specify how large object data is stored by using an environment variable, LOBCACHE, that you include in the

connection property list, as follows:

- To set the maximum number of bytes allocated in memory to hold the data, set the LOBCACHE value to that number
of bytes.

If the data size exceeds the LOBCACHE value, the data is stored in a temporary file. If a security violation occurs
during creation of this file, the data is stored in memory.

- To always store the data in a file, set the LOBCACHE value to o.

In this case, if a security violation occurs, HCL OneDB™ JDBC Driver makes no attempt to store the data in memory.

- To always store the data in memory, set the LOBCACHE value to a negative number.

If the required amount of memory is not available, HCL OneDB™ JDBC Driver throws the SQLException message aut

of Menory.

If the LOBCACHE size is invalid or not defined, the default size is 4096.

You can set the LOBCACHE value through the database URL, as follows:

URL = jdbc: onedb://158.58. 9. 37: 9088/ t est ; user =guest ; passwor d=i anaguest ; | obcache=4096";

The preceding example stores the large object in memory if the size is 4096 bytes or fewer. If the large object exceeds 4096
bytes, HCL OneDB™ JDBC Driver tries to create a temporary file. If a security violation occurs, memory is allocated for the
entire large object. If that fails, the driver throws an SQLException message.

Here is another example:

URL = "j dbc: onedb:// host nane: 9088/ t est db; user =guest ; passwd=whoknows; | obcache=0";
The preceding example uses a temporary file for storing the fetched large object.

Here is a third example:

URL = "jdbc:onedb://icarus: 7110/ t est db; user =guest ; passwd=whoknows; | obcache=-1";
The preceding example always uses memory to store the fetched large object.

For programming information about how to use the TEXT and BYTE data types in a Java™ program, see BYTE and TEXT data
types on page 78. For programming information about how to use the BLOB and CLOB data types in a Java™ program,

see Smart large object data types on page 105.

Chapter 1. HCL OneDB™ JDBC Driver Guide

Reduce network traffic

The two environment variables OPTOFC and IFX_AUTOFREE can be used to reduce network traffic when you close

Statement and ResultSet objects.

Set OPTOFC to 1 to specify that the ResultSet.close() method does not require a network round trip if all the qualifying rows
have already been retrieved in the clients tuple buffer. The database server automatically closes the cursor after all the rows
have been retrieved.

HCL OneDB™ JDBC Driver might or might not have additional rows in the clients tuple buffer before the next ResultSet.next()
method is called. Therefore, unless HCL OneDB™ JDBC Driver has received all rows from the database server, the
ResultSet.close() method might still require a network round trip when OPTOFC is set to 1.

Set IFX_AUTOFREE to 1 to specify that the Statement.close() method does not require a network round trip to free the
database server cursor resources if the cursor has already been closed in the database server.

You can also use the setAutoFree(boolean flag) and getAutoFree() methods to free database server cursor resources. For
more information, see The Auto Free feature on page 67.

The database server automatically frees the cursor resources after the cursor is closed, either explicitly by the
ResultSet.close() method or implicitly by the OPTOFC environment variable.

When the cursor resources have been freed, the cursor can no longer be referenced.

For examples of how to use the OPTOFC and IFX_AUTOFREE environment variables, see the aut of r ee. j ava and
opt of c. j ava demonstration examples described in Sample code files on page 204. In these examples, the variables are
set with the Properties.put() method.

For more information about setting HCL OneDB™ environment variables, see HCL OneDB JDBC Driver properties on
page 15.
Bulk inserts

The bulk insert feature improves the performance of single INSERT statements that are executed multiple times with multiple

value settings. For more information, see Perform bulk inserts on page 44.

Statement Caching

Statement caching is a way to improve client performance by caching and reusing PreparedStatement and
CallableStatement objects. When you re-use a PreparedStatement or CallableStatement, you avoid the overhead of
statement preparation which involves work in both the driver as well as the server to prepare the query for execution. As a
result, you can get a performance benefit when re-using statements.

197

198

OneDB JDBC Driver Programmer's Guide

Note: Statement caching only works for PreparedStatement and CallableStatement objects. A basic Statement

object cannot be cached as it does not have a set SQL string which is saved on the server.

Each physical connection to the server will have its own Statement cache. Statements are cached with a key. For implicit
caching the key used is the SQL string used for the Statement. For an explicit cache, you can specific the key you want to

save the Statement with.

Enabling Statement Caching

You can enable Statement caching in two ways. You can enable it by setting the statement cache size by calling the method
IfxConnection.setStatementCacheSize or you can use the connection parameter IFX_PREPAREDSTATEMENT_CACHE_SIZE
1o the size you want set. A size of 0 disables the cache for this connection. By default, the statement cache is disabled (size
is 0).
Connection conn =
Driver. get Connection("j dbc: onedb: //| ocal host: 9889/t est db; user =onedbsa; passwor d=passwor d;
| FX_PREPAREDSTATEMENT CACHE S| ZE=20") ;

((IfxConnection)conn). set St at ement CacheSi ze(20); // Can set the cache size at any tinme on the
connect i on

Explicitly Statement Caching

You can explicitly save a statement into the case with a specified key. You must have already enabled the cache on the
parent Connection object. You can then close any PreparedStatement or CallableStatement with closeWithKey(String

uniqueKey). This caches the statement with your key instead of the SQL statement.

You can retrieve a statement using the IfxConnection.getStatementWithKey(String key) or
IfxConnection.getCallWithKey(String key) depending on if you are retrieving a PreparedStatement or a CallableStatement.

PreparedStatnent p = conn. prepareSt at enent (" SELECT * FROM syst abl es");
((IfxPreparedSt at ement) p). cl oseWt hKey("sanpl e-key");

p = ((IfxConnection)conn).get Statenent Wt hKey("sanpl e-key");

Disabling Caching for a single Statement

Sometimes you do not want a Statement to be cached. In this case, you can use the JDBC Statement API to turn off the pool
setting before you close the connection.

stnt . set Pool abl e(fal se);
stnt.cl ose();

Example

Properties prop = new Properties();
prop. set Property("| FX_PREPAREDSTATEMENT CACHE SI ZE", "20"); //save 20 prepared statenents
try(Connecti on con = Driver Manager . get Connection(“JDBC-url-here", prop)) {
try(PreparedStatenent p = con. prepareStatenent ("1 NSERT | NTO nytabl e VALUES(?)")) {
/1 do wor k
} I/ prepared statenent closed/cached

Chapter 1. HCL OneDB™ JDBC Driver Guide

/1 SQL matches, so we get back the prepared statenent handle to reuse

try(PreparedStatenent p = con. prepareStatenent ("I NSERT | NTO nytabl e VALUES(?)")) {
/1 do wor k

} //prepared statenent closed/cached

}

A connection pool

To improve the performance and scalability of your application, you can obtain your connection to the database server
through a DataSource object that references a ConnectionPoolDataSource object. HCL OneDB™ JDBC Driver provides

a Connection Pool Manager as a transparent component of the ConnectionPoolDataSource object. The Connection

Pool Manager keeps a closed connection in a pool instead of returning the connection to the database server as closed.
Whenever a user requests a new connection, the Connection Pool Manager gets the connection from the pool, avoiding the
overhead of having the server close and re-open the connection.

Using the ConnectionPoolDataSource object can significantly improve performance in cases where your application receives
frequent, periodic connection requests.

For complete information about how and why to use a DataSource or ConnectionPoolDataSource object, see the JDBC 3.0
API.

! Important: This feature does not affect IfxXAConnectionPoolDataSource, which operates under the assumption that
connection pooling is handled by the transaction manager.

Deploying a ConnectionPoolDataSource object

About this task

In the following steps:

- The variable cpds refers to a ConnectionPoolDataSource object.

» The JNDI logical name for the ConnectionPoolDataSource object is myCPDS.
« The variable ds refers to a DataSource object.

* The logical name for the DataSource object is DS_Pool.

To deploy a ConnectionPoolDataSource object:

1. Instantiate an IfxConnectionPoolDataSource object.
2. Set any desired tuning properties for the object:

cpds. set | f xCPM ni t Pool Si ze(15) ;
cpds. set | f xCPMM nPool Si ze(2);
cpds. set | f xCPMvaxPool Si ze(20) ;
cpds. set | f xCPMSer vi cel nt erval (30);

3. Register the ConnectionPoolDataSource object using JNDI to map a logical name to the object:

199

OneDB JDBC Driver Programmer's Guide

Context ctx = new Initial Context();
ct x. bi nd(" nyCPDS", cpds) ;

4. Instantiate an IfxDataSource object.
5. Associate the DataSource object with the logical name you registered for the ConnectionPoolDataSource object:

ds. set Dat aSour ceNanme(" myCPDS", ds) ;

6. Register the DataSource object using JNDI:

Context ctx = new Initial Context();
ct x. bi nd("DS_Pool ", ds) ;

Tune the Connection Pool Manager

During the deployment phase, you or your database administrator can control how connection pooling works in your

applications by setting values for any of these Connection Pool Manager properties:

« IFMX_CPM_INIT_POOLSIZE lets you specify the initial number of connections to be allocated for the pool when the
ConnectionPoolDataSource object is first instantiated and the pool is initialized. The default is 0.

Set this property if your application will need many connections when the ConnectionPoolDataSource object is first
instantiated.

To obtain the value, call getlfxCPMInitPoolSize().

To set the value, call setifxCPMInitPoolSize (int init).

IFMX_CPM_MAX_CONNECTIONS lets you specify the maximum number of simultaneous physical connections that

the DataSource object can have with the server.
The val ue -1 specifies an unlimited number. The default is - 1.
To obtain the value, call getlfxCPMMaxConnections().

To set the value, call setifxCPMMaxConnections(int limit).

IFMX_CPM_MIN_POOLSIZE lets you specify the minimum number of connections to maintain in the pool. See the
IFMX_CPM_MIN_AGELIMIT parameter for what to do when this minimum number of connections kept in the pool
exceeds the age limit. The default is 0.

To obtain the value, call getlfxCPMMinPoolSize().

To set the value, call setifxCPMMinPoolSize(int min).

IFMX_CPM_MAX_POOLSIZE lets you specify the maximum number of connections to maintain in the pool. When the
pool reaches this size, all connections return to the server. The default is 50.

To obtain the value, call getlfxCPMMaxPoolSize().

To set the value, call setifxCPMMaxPoolSize(int max).

200

Chapter 1. HCL OneDB™ JDBC Driver Guide

« IFMX_CPM_AGELIMIT lets you specify the time, in seconds, that a free connection is kept in the free connection pool.
The default is - 1, which means that the free connections are retained until the client terminates.
To obtain the value, call getlfxCPMAgeLimit().

To set the value, call setifxCPMAgeLimit(long limit).

IFMX_CPM_MIN_AGELIMIT lets you specify the additional time, in seconds, that a connection in the free connection

pool is retained when no connection requests have been received.

Use this setting to reduce resources held in the pool when there are expected periods in which no connection
requests will be made. A value of o indicates that no additional time is given to a connection in the minimum pool: the

connection is released to the server whenever it exceeds IFMX_CPM_AGELIMIT.
The default is - 1, which means that a minimum number of free connections is retained until the client terminates.
To obtain the value, call getifxCPMMinAgeLimit().

To set the value, call setifxCPMAgeMinLimit(long limit).

IFMX_CPM_SERVICE_INTERVAL lets you specify the pool service frequency, in milliseconds.

Pool service activity includes adding free connections (if the number of free connections falls below the minimum

value) and removing free connections. The default is 50.
To obtain the value, call getlfxCPMServicelnterval().

To set the value, call setifxCPMServicelnterval (long interval).

IFMX_CPM_ENABLE_SWITCH_HDRPOOL lets you specify whether to allow automatic switching between the primary
and secondary connection pools of an HDR database server pair.

Set this property if your application relies on High-Availability Data Replication with connection pooling. The default is

fal se.
To obtain the value, call getlfxCPMSwitchHDRPool().

To set the value, call setifxCPMSwitchHDRPool(boolean flag).

A demonstration program is available in the connection-pool directory within the deno directory where your JDBC driver
is installed. For connection pooling with HDR, a demonstration program is available in the hdr directory within the deno
directory. For details about the files, see Sample code files on page 204.

Some of these properties overlap Sun JDBC 3.0 properties. The following table lists the Sun JDBC 3.0 properties and their
HCL OneDB™ equivalents.

Sun JDBC property name HCL OneDB™ property name Additional information

initialPoolSize IFMX_CPM_INIT_POOLSIZE

201

202

OneDB JDBC Driver Programmer's Guide

Sun JDBC property name HCL OneDB™ property name Additional information

maxPoolSize IFMX_CPM_MAX_POOLSIZE For maxPoolSize, 0 indicates no maximum
size. For IFMX_CPM_MAX_POOLSIZE, you
must specify a value.

minPoolSize IFMX_CPM_MIN_POOLSIZE

maxldleTime IFMX_CPM_AGELIMIT For maxlIdleTime, 0 indicates no time limit.
For IFMX_CPM_AGELIMIT, -1 indicates no
time limit.

The following Sun JDBC 3.0 properties are not supported:

» maxStatements
« propertyCycle

High-Availability Data Replication with connection pooling

HCL OneDB™ JDBC Driver implementation of connection pooling provides the ability to pool connections with database
servers in an HDR pair:

 The primary pool contains connections to the primary server in an HDR pair.

» The secondary pool contains connections to the secondary server in an HDR pair.

You do not have to change application code to take advantage of connection pooling with HDR. Set the
IFMX_CPM_ENABLE_SWITCH_HDRPOOL property to TRUE to allow switching between the two pools. When switching is

allowed, the Connection Pool Manager validates and activates the appropriate connection pool.

When the primary server fails, the Connection Pool Manager activates the secondary pool. When the secondary pool is
active, the Connection Pool Manager validates the state of the pool to check if the primary server is running. If the primary
server is running, the Connection Pool Manager switches new connections to the primary server and sets the active pool to
the primary pool.

If IFMX_CPM_ENABLE_SWITCH_HDRPOOL is set to FALSE, you can force switching to the other connection pool by calling the
activateHDRPool_Primary() or activateHDRPool_Secondary() methods:

public void activat eHDRPool Primary(void) throws SQLException

public void activat eHDRPool _Secondary(voi d) throws SQ.Exception

The activateHDRPool_Primary() method switches the primary connection pool to be the active connection pool. The
activateHDRPool_Secondary() method switches the secondary connection pool to be the active pool.

You can use the isReadOnly(), isHDREnabled(), and getHDRtype() methods with connection pooling (see Checks for read-
only status of high-availability secondary servers on page 30).

A demonstration program is available in the hdr directory within the deno directory where HCL OneDB™ JDBC Driver is
installed. For details about the files, see Sample code files on page 204.

Chapter 1. HCL OneDB™ JDBC Driver Guide

Clean pooled connections

You can alter connections from their original, default properties by setting database properties, such as AUTOCOMMIT and
TRANSACTION ISOLATION. When a connection is closed, these properties revert to their default values. However, a pooled
connection does not automatically revert to default properties when it is returned to the pool.

In HCL OneDB™ JDBC Driver, you can call the scrubConnection() method to:

- Reset the database properties and connection level properties to the default values.
« Close open cursors and transactions.

» Retain all statements.

This now enables the application server to cache the statements, and it can be used across applications and sessions to
provide better performance for end-user applications.

The signature of the scrubConnection() method is:

public void scrubConnection() throws SQ.Exception

The following example demonstrates how to call scrubConnection():

try
{
I f mxConnecti on conn = (I|fnxConnecti on)nyConn;
conn. scrubConnecti on();

}

catch (SQLException e)
{
e.printStackTrace();
}

The following method verifies whether a call to scrubConnection() has released all statements:

publ i ¢ bool ean scrubConnecti onRel easesAl | St at enent s()

Manage connections

The following table contrasts different implementations of the connection.close() and scrubConnection() methods when
they are in connection pool setup or not.

Connection pooling status Behavior with connection.close() Behavior with scrubconnection()
method method

Non-connection pool setup Closes database connection, all Returns connection to default state,
associated statement objects, and keeps opened statements, but closes
their result sets Connection is no result sets Connection is still valid.
longer valid. Releases resources associated with

result sets only.

203

204

OneDB JDBC Driver Programmer's Guide

Connection pooling status Behavior with connection.close() Behavior with scrubconnection()
method method

Connection Pool with HCL OneDB™ Closes connection to the database Returns a connection to the default

Implementation and reopens it to close any state and keeps all open statements,
statements associated with the but closes all result sets. Calling this
connection object and reset the method is not recommended here.

connection to its original state
Connection object is then returned to
the connection pool and is available
when requested by a new application

connection.
Connection Pool with AppServer Defined by users connection pooling Returns connection to default state
Implementation implementation and retains opened statements, but

closes result sets

Avoid application hanging problems (HP-UX only)

If your JDBC application hangs on your HP-UX server, check the setting for the PTHREAD_COMPAT_MODE environment
variable on the HP-UX server. The PTHREAD_COMPAT_MODE environment variable should be set to 1. This variable tells the
pthread library (libpthread) to runin 1 X 1 mode instead of MxN mode. 1 X 1 is the default mode now on HP-UX. Setting this
environment variable should resolve the hang problem.

Appendixes

Sample code files

This section contains tables that list and briefly describe the code examples provided with the client-side version of HCL
OneDB™ JDBC Driver.

Most of these examples can be adapted to work with server-side JDBC by changing the syntax of the connection URL. For

more information, see Format of database URLs on page 12.

The examples in the t ool s/ udt udr ngr directory and the deno/ xmi directory are for client-side JDBC only in the 2.2
release.

Summary of available examples

The examples are provided in two directories:

 The deno directory where your HCL OneDB™ JDBC Driver software is installed
« The t ool s directory beneath the deno directory

Chapter 1. HCL OneDB™ JDBC Driver Guide

Examples in the demo directory

Each example has its own subdirectory. Most of the directories include a README file that describes the examples and how

to run them.
Directory Type of examples
basi c Examples that show common database operations
bson Examples that show the usage of the IFxBSONODbject extension class, which is used to access the HCL
OneDB™ BSON data type.

cl ob- bl ob Examples that use smart large objects

udt - di sti Examples that use opaque and DISTINCT data types (there are additional examples using opaque types in
nct Examples in the udtudrmgr directory on page 213)

conpl ex-ty Examples that use row and collection types

pes

rm An example using Remote Method Invocation

stores? The stores7 demonstration database

pi ckaseat An example using DataSource objects

connecti Examples that illustrate using a connection pool

on- pool

pr oxy Examples that illustrate using an HTTP proxy server

xm Examples that illustrate storing and retrieving XML documents

hdr Examples that illustrate using High-Availability Data Replication

Examples in the basic directory

The following table lists the files in the basi c directory.

Demo pro

gram name

Description

autof ree.java Shows how to use the IFX_AUTOFREE environment variable

Bat chUpdat e. j Shows how to send batch updates to the server

ava

Byt eType. java Shows how to insert into and select from a table that contains a column of data type BYTE

Call Qut 1.j ava Executes a C function that has an OUT parameter using CallableStatement methods

Cal | Qut 2. j ava Executes an SPL function that has an OUT parameter using CallableStatement methods

205

OneDB JDBC Driver Programmer's Guide

Demo pro

gram name

Description

206

Call Qut 3. j ava

Call Qut4.java

Creat eDB. j ava

DBCENTURYSel ect

.java

DBCENTURYSel ect

2.java

DBCENTURYSel ect
3.java

DBCENTURYSel ect
4.java

DBCENTURYSel ect
5.java

DBConnecti on. j

ava

DBDATESel ect . j

ava
DBMet aDat a. j ava
Dr opDB. j ava

Error Handl i ng. j

ava

Executes a C function that has a Boolean OUT parameter using the

IfmxCallableStatement.|fxRegisterOut Parameter() method

Executes a C function that has a CLOB type OUT parameter and uses the

IfmxCallableStatement.hasOutParameter() method
Creates a database called testDB

Uses the getString() method to retrieve a date string representation in which the four-digit year
expansion is based on the DBCENTURY property value

Retrieves a date string representation in which the four-digit year expansion is based on the
DBCENTURY property value using string-to-binary conversion

Uses the getDate() method to build a java.sql.Date object upon which the date string representation

is based

Retrieves a date string representation in which the four-digit year expansion is based on the

DBCENTURY property value using string-to-binary conversion

Uses the getTimestamp() method to build a java.sql.Timestamp object upon which the date string

representation is based

Retrieves a date string representation in which the four-digit year expansion is based on the
DBCENTURY property value using binary-to-string conversion

Uses the getDate() method to build a java.sql.Date object upon which the date string representation
is based

Retrieves a date string representation in which the four-digit year expansion is based on the
DBCENTURY property value using binary-to-string conversion

Uses the getTimestamp() method to build a java.sql.Timestamp object upon which the date string
representation is based

Creates connections to both a database and a database server

Shows how to retrieve a date object and a date string representation from the database based on the
DBDATE property value from the URL string

Shows how to retrieve information about a database with the DatabaseMetaData interface
Drops a database called testDB

Shows how to retrieve RSAM error messages

Chapter 1. HCL OneDB™ JDBC Driver Guide

Demo pro

gram name

Description

GLDATESel ect . j

ava

I nt erval deno. j

ava

LOCALESel ect . j

ava
| ocnsg. j ava

Mul ti RowCal | .

ava

Opti mi zedSel ect

.java
optofc.java

Pr oper t yConnect

ion.java
RSMet aDat a. j ava

Scrol | Cursor. j

ava
Serial.java
Si npl eCal | . java

Si npl eConnecti o

n.java

Si nmpl eSel ect . j
ava

Text Conv. j ava

Text Type. j ava

Updat eCur sor 1. j

ava

Updat eCur sor 2. j

ava

Updat eCur sor 3. j

ava

Shows how to retrieve a date object and a date string representation from the database based on the

GL_DATE property value from the URL string

Shows how to insert and select HCL OneDB™ interval data

Shows how to retrieve a date object and a date string representation from the database based on the
CLIENT_LOCALE property value from the URL string

Shows how to use HCL OneDB™ extension methods that support localized error messages

Shows how to return multiple rows in a stored procedure call

Shows how to use the FET_BUF_SIZE environment variable to adjust the HCL OneDB™ JDBC Driver

tuple buffer size
Shows how to use the OPTOFC environment variable

Shows how to specify connection environment variables via a property list

Shows how to retrieve information about a result set with the ResultSetMetaData interface

Shows how to retrieve a result set with a scroll cursor

Shows how to insert and select HCL OneDB™ SERIlal and SERIal8 data
Shows how to call a stored procedure

Shows how to connect to a database or database server

Shows how to send a simple SELECT query to the database server

Shows how to convert a file from the client code set to Unicode and then from Unicode to the

database code set

Shows how to insert into and select from a table that contains a column of data type TEXT

Shows how to create an updatable scroll cursor using a ROWID column in the query

Shows how to create an updatable scroll cursor using a SERIAL column in the query

Shows how to create an updatable scroll cursor using a primary key column in the query

207

OneDB JDBC Driver Programmer's Guide

Examples in the bson directory

The following table lists the files in the bson directory.

Demo program name Description

| f xBSONOhj ect Denp. j ava Shows the usage of BSON and JSON data types.

Examples in the clob-blob directory

The following table lists the files in the cl ob- bl ob directory.

Demo prog

ram name Description

denol.java Shows how to create two tables with BLOB and CLOB columns and compare the data

denp2.java Shows how to create one table with BYTE and TEXT columns and a second table with BLOB and CLOB
columns and how to compare the data

denp3.java Shows how to create one table with BLOB and CLOB columns and a second table with BYTE and TEXT
columns and how to compare the data

deno4.java Shows how to create two tables with BYTE and TEXT columns and compare the data
denp5.java Shows how to store data from a file into a BLOB table column

deno6. java Shows how to read a portion of the data in a smart large object

deno_11.j Shows how to read data from a file into a buffer and write the contents of the buffer into a smart large
ava object

deno_13.j Shows how to write data into a smart large object and then insert the smart large object into a table
ava

deno_14.j Shows how to fetch smart large object data from a table

ava

Examples in the udt-distinct directory

The following table lists the files in the udt - di st i nct directory (there are additional examples using opaque types in

Examples in the udtudrmgr directory on page 213.)

Demo program name Description

charattrUDT. java Shows how to implement an opaque fixed-length type using SQLData
createDB.java Creates a database that the other udt - di sti nct demonstration files use
creat eTypes. j ava Shows how to create opaque and distinct types in the database

di stinct_d1.java Shows how to create a distinct type without using SQLData

208

Chapter 1. HCL OneDB™ JDBC Driver Guide

Demo program name Description

di stinct_d2
dr opDB. j ava

| ar gebi nUDT

. java Shows how to create a second distinct type without using SQLData
Drops the database that the other udt - di st i nct demonstration files use

. j ava Shows how to implement an opaque type (smart large object embedded) using SQLData

manual UDT. java Shows how to implement an opaque type that allows you to change the position in the input

stream
nyMoney. j ava Shows how to implement a distinct type using SQLData
udt _d1.java Shows how to create a fixed-length opaque type
udt _d2.java Shows how to create an opaque type with an embedded smart large object
udt _d3.java Shows how to create an opaque type that allows you to change the position in the input stream

Examples in the complex-types directory

The following table lists the files in the conpl ex- t ypes directory.

Demo prog
ram name Description
createDB.j Creates a database with named rows
ava
listl.java Inserts and selects a simple collection using both the java.sql.Array and java.util.Collection classes
l'ist2.]java Inserts and selects a collection with a nested row element
Uses both the java.sql.Array and java.util.Collection classes for the collection and both the SQLData and
Struct interfaces for the nested row
rl t.java Definesthe SQLData class for named row ri_t
r2_t.java Defines the SQLData class for named row r2_t
Generi cStr Instantiates a java.sql.Struct object for inserting into named or unnamed rows
uct.java
rowl. java Inserts and selects a simple named row using both the SQLData and Struct interfaces
row2. java Inserts and selects a named row with a nested collection using both the SQLData and Struct interfaces
The SQLData interface uses the HCL OneDB™ IfmxComplexSQLOutput. writeObject() and
IfmxComplexSQLOutput.readObject() extension methods to write and read the nested collection.
row3. java Inserts and selects an unnamed row with a nested collection
full name.j Contains the SQLData class for the named row fullname_t
ava

209

OneDB JDBC Driver Programmer's Guide

Demo prog
ram name Description
Used by the demo1.java and demo2.java files
person. j Contains the SQLData class for the named row person_t Used by the denpl. j ava and denp2. j ava files
ava

denpl. j ava Fetches anamed row into an SQLData object

denp2. j ava Inserts an SQLData object into a named row column

denp3. j ava Fetches an unnamed row column into a Struct object

deno4. j ava Inserts a Struct object into a named row column

denp5. j ava Fetches the HCL OneDB™ SET column into a java.util. HashSet object

deno6. j ava Fetches the HCL OneDB™ SET column into a java.util. TreeSet object
A customized type mapping is provided to override the default.

deno?. j ava Inserts a java.util.HashSet object into the HCL OneDB™ SET column
denp8. j ava Fetchesthe HCL OneDB™ SET column into a java.sql.Array object

dr opDB. j Drops the database

ava

Examples in the proxy directory

The following table lists the files in the pr oxy directory. A READIVE file in the directory contains setup information.

Demo pro
gram name Description
ProxySel ect . j (application) Creates a sample database and connects to it using four scenarios:
ava
« Connection with a proxy server and no LDAP server
« Connection with an LDAP server and no proxy server
- Connection using an sql host s file
« Direct connection (no proxy servlet, sql host s file, or LDAP server)
proxy. sh (shell script) Launches Pr oxySel ect . j ava. To run the script (and the demo), type:
proxy.sh -d ProxySel ect -s 2
proxy.j ava (applet) Performs the same operations as Pr oxySel ect . j ava from an applet. To run the applet,

type:

appl et vi ewer proxy. ht m

210

Chapter 1. HCL OneDB™ JDBC Driver Guide

Demo pro

gram name Description
proxy. ht m HTML file for pr oxy. j ava
i fmx. conf Sample LDAP configuration file
ifrmx. ldif Sample LDAP | di f file

Examples in the connection-pool directory

The following table lists the files in the connect i on- pool directory. A READVE file in the directory contains setup
information.

Demo
program

name Description

AppSi mul Simulates multiple client threads making DataSource connections
ator.j

ava

Set upDB. Creates and populates a sample database. See the comments at the beginning of the code for a sample run
j ava command

DS_Pool . Lists properties for a connection-pooling application
prop

nyCPDS. p Lists properties for a connection-pooling application, with the optional tuning parameters included
rop

DS _no_Po Lists properties for an application without connection pooling
ol . prop

Regi st er Registers a DataSource object with a JNDI Name registry

.java
A sample run command is:

java Regi ster DS no_Pool /tnp

runDeno (Shell script) Creates and populates a sample database; registers the data sources DS_no_Pool and DS_Pool;
and runs an application to simulate multiple client threads that connect to the sample database

Examples in the xml directory

The following table lists the files in the xmi directory.

211

OneDB JDBC Driver Programmer's Guide

Demo prog
ram name Description

Creat eDB.j Creates a sample database

ava
makefil e Compiles the examples

nyHandl er. Sample class of callback routines for the SAX parser
j ava

sanpl el. Simple XML slide

xm

sanpl e2. Sample set of XML slides
xm

sanpl e2. Document-type definition for sanpl el. xm
dtd

xm denpl.j Uses XMLtoString(), getinputSource(), and myHandl er . j ava to convert the XML in sanpl el. xnl to an

ava InputSource object and then parses it using the SAX parser

Examples in the hdr directory

The following table lists the files in the hdr directory. A README file in the directory contains setup information.

Demo pro

gram name Description

Set upDB. j ava Creates a sample database and table

Regi ster.java Registers the DS_no_Pool and DS_Pool DataSource objects with a JNDI Name registry. A sample run

command is:
java Regi ster DS no_Pool /tnp
AppSi mul at or.j Simulates High-Availability Data Replication redirection for pooled and nonpooled connections made
ava with the DataSource.getConnection() method

Hdr Si npl eConne Shows how to implement HDR redirection with the DriverManager.getConnection() method

ct.java

Examples in the tools directory

The t ool s directory includes the following subdirectories:

» The udt udr ngr directory contains examples that use UDT and UDR Manager to create opaque types and UDRs.

- The cl assgener at or directory contains sample output files of the ClassGenerator utility.

212

Chapter 1. HCL OneDB™ JDBC Driver Guide

Examples in the udtudrmgr directory

The following table lists the files in the udt udr ngr directory. A READVE file in the directory contains setup information.

Demo pro

gram name Description

createDB. java Creates a sample database
dr opDB. j ava Drops the sample database

Crcle.java (Demo application 1) Implements a Java™ class, using the default Input and Output functions, to be

converted to a Java™ opaque type
Pl ayWthGCircle. (Demo application 1) Uses the Circle opaque type in a client application
j ava
Crcle2.java (Demo application 2) Implements a Java™ class, with user-supplied Input and Output functions, to be

converted to a Java™ opaque type

Pl ayWt hGircl e2 (Demo application 2) Uses the Circle2 opaque type in a client application

.java
MyCircle.java (Demo application 3) Creates a fixed-length opaque type without a preexisting Java™ class
G oupl.java (Demo application 4) Maps methods in an existing Java™ class to Java™ UDRs

Pl ayW t hGr oupl. (Demo application 4) Uses the UDRs from Gr oupl. j ava in a client application

j ava

DataSource extensions

This section lists the HCL OneDB™ extensions to standard JDBC classes:
» The OneDBDataSource class, which implements the javax.sql.DataSource interface.

For information about how and why to use a DataSource object, see the JDBC 3.0 API.

HCL OneDB™ JDBC Driver provides extensions for the following purposes:

« Reading and writing properties
« Getting and setting standard properties
« Getting and setting HCL OneDB™ connection properties

Read and write properties

The com.onedb.jdbcx.OneDBDataSource extends the commonly used java.util.Properties class and as such all of the
methods of a Properties object can be used to set and get any property from the datasource as a String.

213

OneDB JDBC Driver Programmer's Guide

Example adding and getting a property using the Properties methods. You can use a String as the key, or use the
com.onedb.jdbcx.OneDBParams constants.

OneDBDat aSour ce ds = new OneDBDat aSour ce() ;

/I both of these set the sane property

ds. set Property("preparedSt at enent CacheSi ze", 20);

ds. set Property(com onedb. j dbc. OneDBPar ans. PREPAREDSTATEMENT _CACHE_SI ZE, 20);

// exanpl e getting the paraneter value back, including a default if it is not set.
String cacheSi ze = ds. get Property("preparedStatenent CacheSi ze"); key, Object val ue);

Each property supported by the driver also has it's own set/get methods. These methods match the name of the property.
The example below shows setting and getting the PreparedStatement cache size property.

/] for preparedStatenment CacheSi ze

ds. set Prepar edSt at enent CacheSi ze(20); //uses int, not String
int cacheSize = ds. get Prepar edSt at ement CacheSi ze() ; key) ;

Get and set standard properties

The following methods are defined in the extended DataSource interface for getting and setting properties defined in the
JDBC 3.0 API.

Property getXXX() and setXXX() method signatures

portNumber public int getPortNumber();

public void setPortNumber(int value);
databaseName public String getDatabaseName();

public void setDatabaseName(String value);
serverName public String getServerName();

public void setServerName(String value);
user public String getUser();

public void setUser(String value);
password public String getPassword();

public void setPassword(String value);
description public String getDescription();

public void setDescription(String value);
dataSourceName

public String getDataSourceName();
public void setDataSourceName(String value);

214

Chapter 1. HCL OneDB™ JDBC Driver Guide

The networkProtocol and roleName properties are not supported by HCL OneDB™ JDBC Driver.

Mapping data types

This section discusses mapping issues between data types defined in a Java™ program and the data types supported by the
HCL OneDB™ database server.

Data type mapping between HCL OneDB™ and JDBC data types

Because there are variations between the SQL data types supported by each database vendor, the JDBC API defines a set of

generic SQL data types in the class java.sql.Types. Use these JDBC API data types to reference generic SQL types in your

Java™ programs that use the JDBC API to connect to HCL OneDB™ databases.

The following table shows the HCL OneDB™ data type to which each JDBC API data type maps.

JDBC API data type

HCL OneDB™ data type

BIGINT
BINARY
BIT'
REF
CHAR

DATE

DECIMAL
DOUBLE

FLOAT

INTEGER
LONGVARBINARY
LONGVARCHAR
NUMERIC
NUMERIC

REAL

SMALLINT

TIME

TIMESTAMP

TINYINT

INT8, BIGINT, BIGSERIAL
BYTE

BOOLEAN

Not supported

CHAR(n)

DATE

DECIMAL

FLOAT

FLOAT?

INTEGER

BYTE or BLOB

TEXT or CLOB

DECIMAL

MONEY

SMALLFLOAT
SMALLINT

DATETIME HOUR TO SECOND?

DATETIME YEAR TO
FRACTION(5)®

SMALLINT

215

OneDB JDBC Driver Programmer's Guide

JDBC API data type HCL OneDB™ data type
VARBINARY BYTE

VARCHAR VARCHAR(m,r)

BOOLEAN BOOLEAN

SMALLINT SMALLINT

T With Java™ 1.4 s, java.sqgl.Types.BOOLEAN maps to BOOLEAN.

2 This mapping is JDBC compliant. You can map the JDBC FLOAT data type to the HCL OneDB™ SMALLFLOAT data type for
backward compatibility by setting the IFX_SET_FLOAT_AS_SMFLOAT environment variable to 1.

3 HCL OneDB™ DATETIME types are very restrictive and are not interchangeable. For more information, see Field lengths and

date-time data on page 236.

Data type mapping between extended types and Java™ and JDBC types

The following table lists mappings between the extended data types supported in and the corresponding Java™ and JDBC

types.
JDBC type Java™ object type HCL OneDB™ type
java.sql.Types.LONGVARCHAR java.sql.String LVARCHAR

java.io.inputStream

IfxTypes.IFX_TYPE_LVARCHAR

java.sql.Types.JAVA_OBJECT

java.sgl.SQLData

Opaque type
IfxTypes.IFX_TYPE_UDTFIXED
IfxTypes.IFX_TYPE_UDTVAR

java.sql.Types.LONGVARBINARY
java.sql.Types.BLOB

java.sql.Blob
java.io.inputStream
bytel]

BLOB
IfxTypes.IFX_TYPE_BLOB

java.sql.Types.LONGVARCHAR
java.sql.Types.CLOB

java.sql.Clob
java.io.inputStream
java.lang.String

CLOB
IfxTypes.IFX_TYPE_CLOB

java.sql.Types.LONGVARBINARY
java.sql.Types.BLOB

java.io.inputStream
java.sql.Blob byte][]

BYTE
IfxTypes.IFX_TYPE_BYTE

java.sql.Types.LONGVARCHAR
java.sql.Types.CLOB

java.io.InputStream

java.sqgl.Clob java.sql.String

TEXT
IfxTypes.IFX_TYPE_TEXT

216

Chapter 1. HCL OneDB™ JDBC Driver Guide

JDBC type Java™ object type HCL OneDB™ type
java.sql.Types.JAVA_OBJECT java.sgl.SQLData Named row
java.sql.Types.STRUCT java.sql.Struct IfxTypes.IFX_TYPE_ROW
java.sql.Types.STRUCT java.sql.Struct Unnamed row

IfxTypes.IFX_TYPE_ROW

java.sql.Types.ARRAY java.sql.Array set, multiset
java.sql.Types.OTHER java.util.LinkedList IfxTypes.IFX_TYPE_SET
java.util.HashSet IfxTypes.IFX_TYPE_MULTISET

java.util. TreeSet

java.sql.Types.ARRAY java.sql.Array LIST
java.sql.Types.OTHER java.util.ArrayList IfxTypes.IFX_TYPE_LIST
java.util.LinkedList

A Java™ boolean object can map to the HCL OneDB™ smallint data type or the HCL OneDB™ boolean data type. HCL OneDB™
JDBC Driver attempts to map it according to the column type. However, in cases such as PreparedStatement host variables,
HCL OneDB™ JDBC Driver cannot access the column types, so the mapping is somewhat limited. For more details on data

type mapping, see Data type mapping for PreparedStatement.setXXX() extensions on page 218.

Data type mapping between C opaque types and Java™

To create an opaque type using Java™, you can use the UDT and UDR Manager facility. For more information, see Work with

opaque types on page 135.

All opaque data is stored in the database server table in a C struct, which is made up of various DataBlade® API types, as
defined in the opaque type. (For more information, see the HCL OneDB™ DataBlade® API Programmer's Guide.)

The following table lists the mapping of DataBlade® API types to their corresponding Java™ types.

DataBlade® APl type Java™ type

MI_LO_HANDLE BLOB or CLOB
gl_wchar_t String
mi_boolean boolean
mi_char String
mi_char1 String

mi_date Date
mi_datetime TimeStamp

217

218

OneDB JDBC Driver Programmer's Guide

DataBlade® APl type Java™ type

mi_decimal BigDecimal

mi_double_precision double

mi_int1 byte

mi_int8 long
mi_integer int

mi_interval Not supported
mi_money BigDecimal
mi_numeric BigDecimal
mi_real float
mi_smallint short
mi_string String

mi_unsigned_char1 String
mi_unsigned_int8 long
mi_unsigned_integer int
mi_unsigned_smallint short

mi_wchar String

The C struct may contain padding bytes. HCL OneDB™ JDBC Driver automatically skips these padding bytes to make sure the
next data member is properly aligned. Therefore, your Java™ objects do not have to take care of alignment themselves.

Data type mapping for PreparedStatement.setXXX() extensions

introduces many extended data types. As a result, there can be multiple mappings between a JDBC or Java™ data type and
the corresponding HCL OneDB™ data type.

For example, you can use PreparedStatement.setAsciiStream() to insert into either a text column or a CLOB column.
Similarly, you can also use PreparedStatement.setBinaryStream() to insert into a byte column or a BLOB column. Because
the actual column information is not available to HCL OneDB™ JDBC Driver at all times, there can be ambiguity for the driver
when it maps data types.

Normally, with INSERT, SELECT, or DELETE statements, the column information is available to the driver, so the driver can
determine how the data can be sent to the database server.

However, when the data is referenced in an UPDATE statement or inside a WHERE clause, HCL OneDB™ JDBC Driver does not
have access to the column information. In those cases, unless you use the HCL OneDB™ extensions, the driver maps those
columns using the corresponding HCL OneDB™ data types listed in the first table in Data type mapping between HCL OneDB

Chapter 1. HCL OneDB™ JDBC Driver Guide

and JDBC data types on page 215. For the PreparedStatement.setAsciiStream() method, the driver tries to map to a text
data type, and for the PreparedStatement.setBinaryStream() method, it tries to map to a byte data type.

The mapping extensions

To direct the driver to map to a certain data type (so there is no ambiguity in UPDATE statements and WHERE clauses), you
can use extensions to the PreparedStatement.setXXX() methods. The only data types that might have ambiguity are boolean,
Ivarchar, text, byte, BLOB, and CLOB.

To use these extended methods, you must cast your PreparedStatement references to IfmxPreparedStatement. For
example, the following code casts the statement variable p_stmt to IfmxPreparedStatement to call the IfxSetObject()
method and insert the contents of a file as a large object of type CLOB. IfxSetObject() is defined as I:

public void I fxSetQbject(int i, Oobject x, int scale, int ifxType)
throws SQLException
public void IfxSetCoject(int i, Qoject x, int ifxType) throws

SQ.exception

The code is:

File file = new Fil e("sbl ob_06.dat");

int fileLength = (int)file.length();

byte[] buffer = new byte[fileLength];
FilelnputStreamfin = new Fil el nput Strean(file);
fin.read(buffer,O,fileLength);

String str = new String(buffer);

writeQutputFile("Prepare");
PreparedSt at ement p_stnt = myConn. pr epar eSt at enent
("insert into shlob_t20(cl) values(?)");

witeQutputFile("lfxSetbject");
((IfmxPreparedStatenent)p_stnt).|fxSetObject(l,str, 30, !fxTypes.|FX
_TYPE_CLOB);

For the IfmxPreparedStatement.IfxSetObject extension, you cannot simply overload the method signature with an added
ifxType parameter, because such overloading creates method ambiguity. You must name the method to IfxSetObject

instead.

The extensions for opaque types

The extensions for processing opaque types allow your application to specify the return type to which the database server
should cast the opaque type before returning it to the client. This is known as prebinding the return value. The methods are:

« setBindColType(), which allows applications to specify the output type of result-set values using standard JDBC data
types from java.sql.Types

« setBindCollfxType(), which allows applications to specify the output type of result-set values using HCL OneDB™ data
types from com.informix.lang.IfxTypes

219

220

OneDB JDBC Driver Programmer's Guide

For more information about the available types, see The IfxTypes class on page 223.

« clearBindColType(), which resets values set through the previous two methods
In the following topics:

 The colindex parameter specifies the column: 1 is the first column, 2 the second, and so forth
« The sqltype parameter is a value from java.sql.Types: for example, Types. | NTEGER.
* The ifxtype parameter is a value from IfxTypes: for example, | f xTypes. | FX_TYPE_DECI MAL.

The setBindColType() methods

The methods are as follows:

public void setBi ndCol Type(int col I ndex, int sqgltype) throws SQLException;
public void setBi ndCol Type(int col I ndex, int sqgltype, int scale)

throws SQ.Excepti on;
public void setBindCol Type(int collndex, int sqltype, String nane)

t hrows SQLExcepti on;

The first overloaded method allows applications to specify the output type to be j ava. sql . DECI MAL OF j ava. sql . NUMVERI C,
the scale parameter specifies the number of digits to the right of the decimal point. The second overloaded method allows
applications to specify the output type to be j ava. sql . STRUCT, j ava. sql . ARRAY, j ava. sql . DI STI NCT, Of j ava. sql . JAVA_OBJECT by

assigning one of these values to the name parameter.

The setBindCollfxType() methods

The methods are as follows:

public void setBindCol | fxType(int collndex, int ifxtype) throws SQ.Exception;
public void setBindCol | fxType(int collndex, int ifxtype, int scale)

t hrows SQLExcepti on;
public void setBindCol | fxType(int collndex, int ifxtype, String nane)

throws SQ.Excepti on;

The first overloaded method allows applications to specify the output type to be | FX_TYPE_DECI MAL OF | FX_TYPE_NUMERI G;

the scale parameter specifies the number of digits to the right of the decimal point. The second overloaded method allows
applications to specify the output type to be | FX_TYPE_LI ST, | FX_TYPE_ROW | FX_TYPE_MULTI SET, | FX_TYPE_SET, | FX_TYPE_UDTVAR,
or | FX_TYPE_UDTFI XED by assigning one of these values to the name parameter.

The clearBindColType() method

The method is as follows:

public void clearBindCol Type() throws SQ.Excepti on;

Chapter 1. HCL OneDB™ JDBC Driver Guide

Prebinding example

The following code from the udt _bi ndCol . j ava sample program prebinds an opaque type to the HCL OneDB™ VARCHAR
and then to a standard Java™ Integer type. The table used in this example has one int column and one opaque type column

and is defined as follows:

create table charattr_tab (int_col int, charattr_col charattr_udt)

The code to select and prebind the opaque type in the charattr_col column is as follows:

String s = "select int_col, charattr_col as cast_udt_to_ lvec, " +
"charattr_col as cast_udt _to_int fromcharattr_tab order by 1";

pstnt = conn. prepareSt at enent (s);
((IfxPreparedSt at ement) pstnt) . set Bi ndCol | f xType(2, | fxTypes. | FX_TYPE_LVARCHAR) ;
((IfxPreparedSt at enent) pst nt) . set Bi ndCol Type(3, Types. | NTEGER) ;

ResultSet rs = pstnt.executeQuery();

Systemout.println("Fetching data ...");
int curRow = 0;

while (rs.next())

{

cur Row++;
int intret = rs.getlnt("int_col");
String strret = rs.getString("cast_udt_to_lvc");
int intret2 = rs.getlnt("cast_udt_to_int");
} I/ end while

Other mapping extensions

The remaining method signatures are listed next, along with any additional considerations that apply. In each case, the HCL

OneDB™ type must be the last parameter to the standard JDBC PreparedStatement.setXXX() interface.

IfmxPreparedStatement.setArray()
public void setArray(int paranmeterlndex, Array x, int ifxType)
throws SQLException
IfmxPreparedStatement.setAsciiStream()
public void setAsciiStrean(int i, InputStreamx, int length, int

i fxType) throws SQ.Exception

When your application is inserting a very large ASCII value into a LONGVARCHAR column, it is sometimes more efficient to

send the ASCII value to the server using java.io.InputStream.

IfmxPreparedStatement.setBigDecimal()

public void setBigDecimal (int i, BigDecimal x, int ifxType)
t hrows SQLExcepti on

IfmxPreparedStatement.setBinaryStream()

221

OneDB JDBC Driver Programmer's Guide

public void setBinaryStrean(int i, InputStreamx, int length, int
i fxType) throws SQLException

When your application is inserting a very large binary value into a LONGVARbinary column, it is sometimes more efficient to

send the binary value to the server using java.io.InputStream.
IfmxPreparedStatement.setBlob()
public void setBlob(int paraneterlndex, Blob x, int ifxType)
throws SQLException
IfmxPreparedStatement.setBoolean()
public void setBool ean(int i, boolean x, int ifxType) throws
SQ.Exception
IfmxPreparedStatement.setByte()
public void setByte(int i, byte x, int ifxType) throws
SQLExcepti on
IfmxPreparedStatement.setBytes()
public void setBytes(int i, byte x[], int ifxType) throws
SQLException
IfmxPreparedStatement.setCharacterStream()
public void setCharacterStrean(int paraneterlndex, Reader reader,

int length, int ifxType) throws SQLException

When your application is setting a LONGVARCHAR parameter to a very large UNICODE value, it is sometimes more efficient
to send the UNICODE value to the server using java.io.Reader.

IfmxPreparedStatement.setClob()
public void setd ob(int paraneterlndex, Cob x, int ifxType)
t hrows SQLExcepti on
IfmxPreparedStatement.setDate()

public void setDate(int i, Date x, int ifxType) throws
SQ.Exception
public void setDate(int paraneterlndex, Date x, Cal endar Cal,
int ifxType) throws SQLException
IfmxPreparedStatement.setDouble()
public void setDouble(int i, double x, int ifxType) throws SQ
LExcepti on

IfmxPreparedStatement.setFloat()

public void setFloat(int i, float x, int ifxType) throws
SQ.Exception

222

IfmxPreparedStatement.setint()

public void setInt(int i, int x, int ifxType) throws SQ.Exception

IfmxPreparedStatement.setLong()
public void setLong(int i, long x, int ifxType) throws
SQ.Exception
IfmxPreparedStatement.setNull()
public void setNull (int i, int sql Type, int ifxType) throws
SQ.Exception
IfmxPreparedStatement.setShort()
public void setShort(int i, short x, int ifxType) throws
SQLException
IfmxPreparedStatement.setString()
public void setString(int i, String x, int ifxType) throws
SQLException
IfmxPreparedStatement.setTime()

public void setTime(int i, Time x, int ifxType) throws
SQLException

public void setTime(int paraneterlndex, Tine tinme, Calendar Cal,
int ifxType) throws SQ.Exception

IfmxPreparedStatement.setTimestamp()

public void setTimestanp(int i, Timestanp x, int ifxType) throws
SQLException

public void setTi mestanp(int paraneterlndex, Tinmestanp x, Cal endar
Cal) throws SQ.Exception

The IfxTypes class

Chapter 1. HCL OneDB™ JDBC Driver Guide

The extended IfmxPreparedStatement methods require you to pass in the HCL OneDB™ data type to which you want to map.

These types are part of the com.informix.lang.lfxTypes class.

The following table shows the IfxTypes constants and the corresponding HCL OneDB™ data types.

HCL OneDB™
IfxTypes constant data type
IfxTypes.IFX_TYPE_BIGINT BIGINT

IfxTypes.IFX_TYPE_BIGSERIAL ~ BIGSERIAL
IfxTypes.IFX_TYPE_CHAR CHAR

IfxTypes.IFX_TYPE_SMALLINT =~ SMALLINT

223

OneDB JDBC Driver Programmer's Guide

HCL OneDB™

IfxTypes constant data type
IfxTypes.IFX_TYPE_INT INT
IfxTypes.IFX_TYPE_FLOAT FLOAT
IfxTypes.IFX_TYPE_SMFLOAT SMALLFLOAT
IfxTypes.IFX_TYPE_DECIMAL DECIMAL
IfxTypes.IFX_TYPE_SERIAL SERIAL
IfxTypes.IFX_TYPE_DATE DATE
IfxTypes.IFX_TYPE_MONEY MONEY
IfxTypes.IFX_TYPE_NULL NULL
IfxTypes.IFX_.TYPE_DATETIME = DATETIME
IfxTypes.IFX_TYPE_BYTE BYTE
IfxTypes.IFX_TYPE_TEXT TEXT
IfxTypes.IFX_.TYPE_.VARCHAR ~ VARCHAR
IfxTypes.IFX_TYPE_INTERVAL INTERVAL
IfxTypes.IFX_TYPE_NCHAR NCHAR
IfxTypes.IFX_TYPE_NVARCHAR NVARCHAR
IfxTypes.IFX_TYPE_INT8 INT8
IfxTypes.IFX_TYPE_SERIAL8 SERIALS8
IfxTypes.IFX_TYPE_SET SQLSET
IfxTypes.IFX_TYPE_MULTISET SQLMULTISET
IfxTypes.IFX_TYPE_LIST SQLLIST
IfxTypes.IFX_TYPE_ROW SQLROW
IfxTypes.IFX_TYPE_COLLECT COLLECTION
ION
IfxTypes.IFX_TYPE_UDTVAR UDTVAR
IfxTypes.IFX_TYPE_UDTFIXED UDTFIXED
IfxTypes.IFX_TYPE_REFSERS REFSERS8
IfxTypes.IFX_.TYPE_LVARCHAR LVARCHAR
IfxTypes.IFX_TYPE_SENDRECV SENDRECV
IfxTypes.IFX_TYPE_BOOL BOOLEAN

Chapter 1. HCL OneDB™ JDBC Driver Guide

HCL OneDB™
IfxTypes constant data type
IfxTypes.IFX_TYPE_IMPEXP IMPEXP

IfxTypes.IFX_TYPE_IMPEXPBIN IMPEXPBIN
IfxTypes.IFX_TYPE_CLOB CLOB

IfxTypes.IFX_TYPE_BLOB BLOB

Extension summary

The tables in this section list the PreparedStatement.setXXX() methods that HCL OneDB™ JDBC Driver supports for
nonextended data types and HCL OneDB™ extended data types.

Nonextended data types

The following tables list the PreparedStatement.setXXX() methods that HCL OneDB™ JDBC Driver supports for nonextended
data types. The top heading lists the standard JDBC API data types defined in the java.sql.Types class. These translate to
specific HCL OneDB™ data types, as shown in the table in Data type mapping between extended types and Java and JDBC
types on page 216. The tables below list the setXXX() methods you can use to write data of a particular JDBC API data
type. An uppercase and bold X indicates the setXXX() method that it is recommended you use with HCL OneDB™ JDBC
Driver; a lowercase x indicates other setXXX() methods that HCL OneDB™ JDBC Driver supports.

Numeric JDBC API data types

Table 10. Numeric JDBC API data types from java.sql.Types

setXXX() method TINYINT SMALLINT INTEGER BIGINT
setByte() X X X X
setShort() X X X X
setint() X X X X
setLong() X X X X
setFloat() X X X X
setDouble() X X X X
setBigDecimal() X X X X
setBoolean() X X X X
setString() X X X X
setObject() X X X X

225

OneDB JDBC Driver Programmer's Guide

Table 11. Numeric JDBC API data types from java.sql.Types (continued)

setXXX() method REAL FLOAT DOUBLE DECIMAL NUMERIC
setByte() X X X X X
setShort() X X X X X
setint() X X X X X
setLong() X X X X X
setFloat() X X X X X
setDouble() X X X X X
setBigDecimal() X X X X X
setBoolean() X X X X X
setString() X X X X X
setObject() X X X X X

Character and chronological JDBC API data types

Table 12. Character and chronological JDBC API data types from java.sql.Types

setXXX() method CHAR VARCHAR LONGVARCHAR BINARY

setByte() x| on page 227 x| On page 227

setShort() 1 on page 227 «1 on page 227

setint() i on page 227 « on page 227

setLong() x| On page 227 x| on page 227

setFloat() i on page 227 «1 on page 227

setDoubIe() X1 on page 227 X1 on page 227

setBigDecimal() X X

setBoolean() X X

setString() X X X X
setBytes() X X
setDate() X X

setTime() X X

setTimestamp() X X

226

Chapter 1. HCL OneDB™ JDBC Driver Guide

Table 12. Character and chronological JDBC API data types from java.sql.Types (continued)

setXXX() method CHAR VARCHAR LONGVARCHAR BINARY
setAsciiStream() X X
setCharacterStream() X X
setBinaryStream() X X
setObject() X X 2 on page 227 X

Notes:

1. The column value must match the type of setXXX() exactly, or an SQLException is raised. If the column value

is not within the allowed value range, the setXXX() method raises an exception instead of converting the data

type. For example, setByte(1) raises an SQLException if the value being written is 1000.

2. A byte array is written.

Table 13. Character and chronological JDBC API data types from java.sql.Types (continued)

setXXX() method VARBINARY LONGVARBINARY DATE TIME TIMESTAMP
setString() X X X X X
setBytes() X X
setDate() X X
setTime() X X
setTimestamp() X X
setAsciiStream() X X
setCharacterStream() X X
setBinaryStream() X X
setObject() X « on page 227 X w2 on X
page 227

Notes:

1. A byte array is written.

2. A Timestamp object is written instead of a Time object.

The setMaxRows() method writes an SQL null value.

227

OneDB JDBC Driver Programmer's Guide

HCL OneDB™ extended data types

The following table lists the PreparedStatement.setXXX() methods that HCL OneDB™ JDBC Driver supports for the HCL
OneDB™ extended data types, the mappings for which are shown in the table Data type mapping between extended types
and Java and JDBC types on page 216. The table lists the setXXX() methods you can use to write data of a particular
extended data type.

An uppercase and bold X indicates the recommended setXXX() method to use; a lowercase x indicates other setXXX()
methods supported by HCL OneDB™ JDBC Driver. The table does not include setXXX() methods that you cannot use with any
of the HCL OneDB™ extended data types.

Table 14. HCL OneDB™ extended data types

setXXX() method BOOLEAN LVARCHAR | Opaque types | BLOB CLOB BYTE TEXT
setByte() X X
setShort() X
setint() X
setBoolean() X
setString() X X X
setBytes() X X
setAsciiStream() X X X
setCharacterStream() X X X
setBinaryStream() X X X
setObject() X X X X X X X
setArray()
setBlob() X
setClob() X
Table 15. HCL OneDB™ extended data types (continued)

setXXX() method NAMED ROW UNNAMED ROW SET or MULTISET LIST
setObject() X X X X
setArray() X X

The setMaxRows() method writes an SQL null value.

228

Chapter 1. HCL OneDB™ JDBC Driver Guide

Data type mapping for ResultSet.getXXX() methods

Use the ResultSet.getXXX() methods to transfer data from the HCL OneDB™ database to a Java™ program that uses the
JDBC API to connect to the HCL OneDB™ database. For example, use the ResultSet.getString() method to get the data stored
in a column of data type LVARCHAR.

mportant: If you use an expression within an statement—for example, SELECT myt ype: : LVARCHAR
! important: Ify pression within an SQL statement—f pl
FROM nyt ab—you might not be able to use ResultSet.getXXX(columnName) to retrieve the value. Use
ResultSet.getXXX(columnindex) to retrieve the value instead.

The getXXX() methods return a null value if the retrieved column value is an SQL null value.

The tables in this section list the ResultSet.getXXX() methods that HCL OneDB™ JDBC Driver supports for nonextended data
types and HCL OneDB™ extended data types.

Nonextended data types

The following tables list the ResultSet.getXXX() methods that HCL OneDB™ JDBC Driver supports for nonextended data
types. The top heading lists the standard JDBC API data types defined in the java.sql.Types class. These translate to specific
HCL OneDB™ data types, as shown in the first table in Data type mapping between HCL OneDB and JDBC data types on

page 215. The tables list the getXXX() methods you can use to retrieve data of a particular JDBC API data type.

An uppercase and bold X indicates the recommended getXXX() method to use; a lowercase x indicates other getXXX()
methods supported by HCL OneDB™ JDBC Driver.

Numeric JDBC API data types

Table 16. Numeric JDBC API data types from java.sql.Types

getXXX() method TINYINT SMALLINT INTEGER BIGINT
getByte() X X X X
getShort() X X X X
getint() X X X X
getLong() X X X X
getFloat() X X X X
getDouble() X X X X
getBigDecimal() X X X X
getBoolean() X X X X
getString() X X X "
getObject() X X X X

229

OneDB JDBC Driver Programmer's Guide

Table 17. Numeric JDBC API data types from java.sql.Types (continued)

getXXX() method REAL FLOAT DOUBLE DECIMAL NUMERIC
getByte() X X X X
getShort() X X X X
getint() X X X X
getLong() X X X X
getFloat() X X X X
getDouble() X X X X
getBigDecimal() X X X X
getBoolean() X X X X
getString() X X X X
getObject() X X X X
Character and chronological JDBC API data types
Table 18. Character and chronological JDBC API data types from java.sql.Types
getXXX() method CHAR VARCHAR LONGVARCHAR BINARY

getByte() «| on page 231 « on page 231

getShort() «1 on page 231 «1 on page 231

getint() «1 on page 231 « on page 231

getLong() «1 on page 231 «| on page 231

getFloat() «1 on page 231 «1 on page 231

getDouble() «1 on page 231 « on page 231

getBigDecimal() X X

getBoolean() X X

getString() X X X X
getBytes() X X X X
getDate() X X

getTime() X X

getTimestamp() X X

230

Chapter 1. HCL OneDB™ JDBC Driver Guide

Table 18. Character and chronological JDBC API data types from java.sql.Types (continued)

getXXX() method CHAR VARCHAR LONGVARCHAR BINARY
getAsciiStream() X X
getCharacterStream() X X
getBinaryStream() X X
getObject() X X x2 Onpage 231 X

Notes:

1. The column value must match the type of getXXX() exactly, or an SQLException is raised. If the column value

is not within the allowed value range, the getXXX() method raises an exception instead of converting the data

type. For example, getByte(1) raises an SQLException if the column value is 1000.

2. A byte array is returned.

Table 19. Character and chronological JDBC API data types from java.sql.Types (continued)

getXXX() method VARBINARY LONGVARBINARY DATE TIME TIMESTAMP
getString() X X X X X
getBytes() X X
getDate() X X
getTime() X X
getTimestamp() X X
getAsciiStream() X X
getCharacterStream() X X
getBinaryStream() X X
getObject() X « 1 on page 232 X «2 0N page 232 X

Notes:

231

232

OneDB JDBC Driver Programmer's Guide

1. A byte array is returned.

2. A Timestamp object is returned instead of a Time object.

HCL OneDB™ extended data types

The following table lists the ResultSet.getXXX() methods that HCL OneDB™ JDBC Driver supports for the HCL OneDB™

extended data types, the mappings for which are shown in the table Data type mapping between extended types and Java

and JDBC types on page 216. The table lists the getXXX() methods you can use to retrieve data of a particular extended

data type.

An uppercase and bold X indicates the recommended getXXX() method to use; a lowercase x indicates other getXXX()

methods supported by HCL OneDB™ JDBC Driver. The table does not include getXXX() methods that you cannot use with any
of the HCL OneDB™ extended data types.

Table 20. HCL OneDB™ extended data types

getXXX() method

BOOLEAN

LVARCHAR

Opaque
types

BLOB

CLOB

BYTE

getByte()

getShort()

getint()

getBoolean()

getString()

getBytes()

getAsciiStream()

getCharacterStream()

getBinaryStream()

getObject()

getBlob()

getClob()

Table 21. HCL OneDB™ extended data types (continued)

getXXX() method

TEXT

NAMED ROW

UNNA
MED ROW

SET or MUL
TISET

LIST

getString()

getBytes()

Table 21. HCL OneDB™ extended data types (continued) (continued)

Chapter 1. HCL OneDB™ JDBC Driver Guide

getXXX() method TEXT NAMED ROW UNNA SET or MUL LIST
MED ROW TISET

getAsciiStream() X
getCharacterStream() X
getBinaryStream()
getObject() X X X X X
getArray() X X
getBlob()
getClob()

Data type mapping for UDT manager and UDR manager

When you use the UDTManager and UDRManager classes to create opaque types and Java™ UDRs in the database server,

the driver maps Java™ method arguments and return types to SQL data types according to the tables in this section. Any

data type not shown in these tables is not supported.

If the Java™ method has arguments of any of the following Java™ types, the arguments and return type are mapped to SQL
types in the server as shown in the following table. The table shows the HCL OneDB™ data type to which each Java™ data

type maps.

Java™ data type

SQL data type

boolean,
java.lang.Boolean

char

byte

short, java.lang.Short
int, java.lang.Integer
long, java.lang.Long
float, java.lang.Float

double,

java.lang.Double
java.lang.String

java.math.BigDecimal

BOOLEAN

CHAR(1)
CHAR(1)
SMALLINT
INT

INT8
SMALLFLOAT

FLOAT'

LVARCHAR

DECIMAL

233

OneDB JDBC Driver Programmer's Guide

Java™ data type SQL data type

Default precision is set by the server to be: DECIMAL(16, 0) for an ANSI database decimal (16, 255)
for a non-ANSI database

java.sqgl.Date DATE

java.sqgl.Time DATETIME HOUR TO SECOND

java.sql.Timestamp DATETIME YEAR TO FRACTION(5)

com.informix.lang.Inter INTERVAL YEAR TO MONTH
valYM

com.informix.lang.Inter INTERVAL DAY TO FRACTION(5)

valDF
java.sql.Blob BLOB
java.sql.Clob CLOB

T This mapping is JDBC compliant. You can map the Java™ double data type (via the JDBC FLOAT data type) to the HCL
OneDB™ SMALLFLOAT data type for backward compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT environment
variable to 1.

Mapping for casts

The following table shows the mapping supported between the type defined for the ifxtype parameter in the
UDTMetaData.setXXXCast() methods and SQL data types in the server.

ifxtype parameter type from HCL OneDB™

com.informix.lang.lfxTypes data type
IFX_TYPE_CHAR CHAR
IFX_TYPE_SMALLINT SMALLINT
IFX_TYPE_INT INT
IFX_TYPE_FLOAT FLOAT
IFX_TYPE_SMFLOAT SMALLFLOAT
IFX_TYPE_DECIMAL DECIMAL
IFX_TYPE_SERIAL SERIAL
IFX_TYPE_DATE DATE
IFX_TYPE_MONEY MONEY
IFX_TYPE_DATETIME DATETIME
IFX_TYPE_BYTE BYTE

234

Chapter 1. HCL OneDB™ JDBC Driver Guide

ifxtype parameter type from HCL OneDB™

com.informix.lang.lfxTypes data type
IFX_TYPE_TEXT TEXT
IFX_TYPE_VARCHAR VARCHAR
IFX_TYPE_INTERVAL INTERVAL
IFX_TYPE_NCHAR NCHAR
IFX_TYPE_NVARCHAR NVARCHAR
IFX_TYPE_INTS8 INT8
IFX_TYPE_SERIAL8 SERIAL8
IFX_TYPE_LVARCHAR LVARCHAR
IFX_TYPE_SENDRECV SENDRECV
IFX_TYPE_BOOL BOOLEAN
IFX_TYPE_IMPEXP IMPEXP
IFX_TYPE_IMPEXPBIN IMPEXPBIN
IFX_TYPE_CLOB CLOB
IFX_TYPE_BLOB BLOB

Mapping for field types

The following table shows the mapping supported between the types defined for the ifxtype parameter in the

UDTMetaData.setFieldType() method and the Java™ data types as they appear in the Java™ class file. Data types not shown

in this table are not supported within the opaque type.

ifxtype parameter type from

com.informix.lang.IfxTypes

Java™ data type

IFX_TYPE_BIGINT
IFX_TYPE_BIGSERIAL
IFX_TYPE_CHAR
IFX_TYPE_SMALLINT
IFX_TYPE_INT
IFX_TYPE_FLOAT
IFX_TYPE_SMFLOAT
IFX_TYPE_DECIMAL

IFX_TYPE_SERIAL

long

long

java.lang.String
short

int

double

float'
java.lang.BigDecimal

int

235

236

OneDB JDBC Driver Programmer's Guide

ifxtype parameter type from

com.informix.lang.lfxTypes Java™ data type
IFX_TYPE_DATE Date
IFX_TYPE_MONEY java.lang.BigDecimal
IFX_TYPE_DATETIME java.lang.Timestamp if starting qualifier is Year, Month, or Day; otherwise, java.lang.Time

(see Field lengths and date-time data on page 236).

IFX_TYPE_INTERVAL com.informix.lang.IfxIntervalYM if starting qualifier is Year or Month; otherwise,
com.informix.lang.IfxIntervalDF (see Field lengths and date-time data on page 236).

IFX_TYPE_NCHAR java.lang.String
IFX_TYPE_INT8 long
IFX_TYPE_SERIAL8 long
IFX_TYPE_BOOL boolean
IFX_TYPE_CLOB java.sql.Clob
IFX_TYPE_BLOB java.sql.Blob

T This mapping is JDBC compliant. You can map IFX_TYPE_SMFLOAT data type (via the JDBC FLOAT data type) to the Java™
double data type for backward compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT environment variable to 1.

Field lengths and date-time data

When you set a field type to a date-time or interval data type by calling setFieldType(IFX_TYPE_DATETIME) or
setFieldType(IFX_TYPE_INTERVAL), the driver maps the date-time field to either java.sql.Timestamp or java.sql.Time,
depending on the encoded length you set by calling setFieldLength().

For example, given that the standard format for a date-time field is YYYY-MM-DD HH:MM:SS, the driver uses the following
mapping algorithm:

« If the encoded length has the start code from hour or less, it is mapped to java.sql.Time.

- If the encoded length has the start code from year or less, it is mapped to java.sql.TimeStamp.
For intervals, the standards are either YYYY-MM or DD HH:MM:SS.frac. The mapping is as follows:

« If the encoded length has the start code from day or less, it is mapped to com.informix.jdbc.IfxIntervalDF.

- If the encoded length has the start code from year or less, it is mapped to com.informix.jdbc.IfxIntervalYM.

Convert internal HCL OneDB™ data types

For your Java™ application to work with the internal server representation of HCL OneDB™ data types, use the IfxToJavaType
class. For example, if your application is using the HCL® OneDB® Change Data Capture API, you can use the IfxToJavaType
class to interpret the byte stream.

The IfxToJavaType class

Chapter 1. HCL OneDB™ JDBC Driver Guide

The IfxToJavaType class handles all the HCL OneDB™ to Java™ data type conversions. Separate methods are provided for

converting each HCL OneDB™ data type.

The primitive data types of Java™ are boolean, char, byte, short, int, long, float, double. When ever possible, the conversion

returns the primitive data type rather than the Object.

The following table shows the data types that can be converted between the HCL OneDB™ data types to Java™ data types.

Table 22. Conversion between HCL OneDB™ and Java™ data types

HCL OneDB™ data types Java™ data types

BIGINT long

BYTE int (as a large object ID, without an input
stream)

CHAR (n) / CHARACTER string

(n)

DATE java.sql.Date

DATETIME java.sql.Timestamp

DATETIME interval

DATETIME string

DEC/DECIMAL (p,s)
DOUBLE PRECISION (n)
FLOAT

INT8

INT/INTEGER
INTERVAL

MONEY (p,s)
NUMERIC (p,s)
REAL

SERIAL (n)
SMALLFLOAT
SMALLINT

TEXT

java.lang.Bignum
double

Same as DOUBLE PRECISION
long

int

interval

Same as DECIMAL
Same as DECIMAL
real

int

Same as REAL
short

int (as a large object ID, without an input

stream)

237

238

OneDB JDBC Driver Programmer's Guide

Table 22. Conversion between HCL OneDB™ and Java™ data types
(continued)

HCL OneDB™ data types Java™ data types

VARCHAR (m,r) string
In addition to the conversion methods, the follow methods are also provided

« convertDateToDays()
« convertDaysToDate()
« rleapyear()

+ widenByte()

The convertDateToDays() method
The convertDateToDays() method converts java.sqgl.Date to an int data type that encodes the number of days since January

1,1900 as 1. Dates earlier than January 1, 1900 are encoded as negative numbers.

Method signature

public static int convertDateToDays (java.sql.Date dt)

Input parameter
dt

The java.sql date.

The convertDaysToDate() method

The convertDaysToDate() method converts days to year, date, or month. The convertDaysToDate() method handles negative
days, interpreted as backwards from December 31, 1899 as 0. The convertDaysToDate() method interprets January 1, 1900
as 1. No dates before January 1, 0000 are allowed. The method relies on HCL OneDB™ to generate valid dates.

Method signature

public static java.sql.Date convertDaysToDate (int dt)

Input parameter
dt

The number of days since January 1, 1900 (as 1).

The IfxToJavaChar() method

The IfxToJavaChar() method converts the HCL OneDB™ CHAR (n) and CHARACTER (n) data types to the Java™ string data
type. The conversion is achieved by creating a string from given bytes.

Method signature

public String |IfxToJavaChar (byte b [],

public String |fxToJavaChar (byte b [],

public String |IfxToJavaChar (byte b [],
short prec, bool ean encopti on)

public String |IfxToJavaChar (byte b [],
bool ean encopti on)

public String |IfxToJavaChar (byte b [],
bool ean encopti on)

public String |IfxToJavaChar (byte b [],
throws | OException

public String |IfxToJavaChar (byte b [],
short prec,
String dbEnc, bool ean encopti on)

public String |IfxToJavaChar (byte b [],

String dbEnc, bool ean encopti on)

Input parameters

b

The bytes encoding data

dbEnc

The JDK encoding.

offset

The offset into byte array.

prec

short

pr ec, bool ean encopti on)

bool ean encopti on)

int offset,
int offset,
short prec,

String dbEnc,

int offset,

int offset,

The precision as received from HCL OneDB™.

length

The data length.

The IfxToJavaDate() method

The IfxToJavaDate() method converts the HCL OneDB™ DATE data type to the Java™ java.sql.Date data type.

Method signature
public static java.sql.Date |fxToJavaDate (byte
public static java.sql.Date |fxToJavaDate (byte
public static java.sql.Date |fxToJavaDate (byte
int length, short prec)
public static java.sql.Date |fxToJavaDate (byte

Input parameters

b

The bytes encoding data

b [],
b [1)
b [],

b [T,

i nt

i nt

i nt

i nt

| engt h,

| engt h,

String dbEnc,

Chapter 1. HCL OneDB™ JDBC Driver Guide

bool ean encopti on)

| engt h,

| engt h,

short prec)
int offset,

int offset)

239

240

OneDB JDBC Driver Programmer's Guide

offset

The offset into byte array.
prec

The precision as received from HCL OneDB™.
length

The data length.

The IfxToJavaDateTime() method

The IfxToJavaDateTime() method converts the HCL OneDB™ DATETIME data type to the Java™ java.sql.Timestamp data
type. The conversion path is HCL OneDB™ to decimal to timestamp.

Method signature
public static java.sql.Tinestanp |fxToJavaDateTime (byte b [], short prec)
public static java.sql.Tinestanp |fxToJavaDateTime (byte b [], int offset,
int length, short prec)
public static java.sql.Tinestanp |fxToJavaDateTinme (byte b [], int offset,

int length, short prec, Cal endar cal)

Input parameters
b
The bytes encoding data
offset
The offset into byte array.
prec
The precision as received from HCL OneDB™.
length

The data length.

The IfxToDateTimeUnloadString() method

The IfxToDateTimeUnloadString() method converts the HCL OneDB™ DATETIME data type to the Java™ string data type,
which is in format compatible with SQL LOAD/UNLOAD format. The conversion path is HCL OneDB™ to decimal to string.

Method signature

public static String |fxToDateTi meUnl oadString (byte b [], int offset,
int length, short prec)

Chapter 1. HCL OneDB™ JDBC Driver Guide

Input parameters
b
The bytes encoding data
offset
The offset into byte array.
prec
The precision as received from HCL OneDB™.
length

The data length.

The IfxToJavaDecimal() method

The IfxToJavaDecimal() method converts the HCL OneDB™ DECIMAL data type to the Java™ java.lang.Bignum data type.

Method signature
public static java.math. BigDeci mal |fxToJavaDeci mal (byte b [], short prec)
public static java. math. Bi gDeci mal |fxToJavaDeci mal (byte b [], int offset,
int length, short prec)
Input parameters
b
The bytes encoding data
offset
The offset into byte array.
prec
The precision as received from HCL OneDB™.
length

The data length.

The IfxToJavaDouble() method

The IfxToJavaDouble() method converts the HCL OneDB™ DOUBLE PRECISION data type to the Java™ double data type.

Method signature

public static double IfxToJavaDouble (byte b [], short prec)

public static double |IfxToJavaDouble (byte b [])

public static double |IfxToJavaDouble (byte b [], int offset, int length,
short prec)

public static double |IfxToJavaDouble (byte b [], int offset)

241

OneDB JDBC Driver Programmer's Guide

Input parameters
b
The bytes encoding data
offset
The offset into byte array.
prec
The precision as received from HCL OneDB™.
length

The data length.
The IfxToJavalnt() method
The IfxToJavalnt() method converts the HCL OneDB™ INTEGER data type to the Java™ int data type.

Method signature

public static int |fxToJavalnt (byte b [], short prec)
public static int |fxToJavalnt (byte b [])

public static int |IfxToJavalnt (byte b [], int offset, int |ength,
short prec)
public static int |fxToJavalnt (byte b [], int offset)

Input parameters
b
The bytes encoding data
offset
The offset into byte array.
prec
The precision as received from HCL OneDB™.
length

The data length.

The IfxToJavalnterval() method

The IfxToJavalnterval() method converts the HCL OneDB™ DATETIME data type to the Java™ interval data type. The
conversion path is HCL OneDB™ to decimal to interval.

Method signature

public static Interval |fxToJavalnterval (byte b [], short prec)
public static Interval |fxToJavalnterval (byte b [], int offset, int length,
short prec)

242

Chapter 1. HCL OneDB™ JDBC Driver Guide

Input parameters
b
The bytes encoding data
offset
The offset into byte array.
prec
The precision as received from HCL OneDB™.
length

The data length.

The IfxToJavaLongBigInt() method

The IfxToJavaLongBigInt() method converts the HCL OneDB™ BIGINT data type to the Java™ long data type.

Method signature
public static long | fxToJavalLongBi gl nt(byte b [], short prec)
public static long |IfxToJavaLongBi gl nt(byte b [])
public static long | fxToJavaLongBi gl nt(byte buf [], int offset,
int length, short prec)
public static long |fxToJavalLongBi gl nt(byte b[], int offset)
Input parameters
b and buff
The bytes encoding data
offset
The offset into byte array.
prec
The precision as received from HCL OneDB™.

length

The data length.

The IfxToJavalLongint() method

The IfxToJavaLongInt() method converts the HCL OneDB™ INT8 data type to the Java™ long data type.

Method signature

public static long |fxToJavaLonglnt(byte b [], short prec)
public static long |IfxToJavaLonglnt(byte b [])
public static long |IfxToJavaLonglnt(byte buf [], int offset, int |ength,

243

OneDB JDBC Driver Programmer's Guide

short prec)
public static long |fxToJavaLonglnt(byte buf [], int offset)
Input parameters

b and buf

The bytes encoding data
offset

The offset into byte array.
prec

The precision as received from HCL OneDB™.
length

The data length.

The IfxToJavaReal() method

The IfxToJavaReal() method converts the HCL OneDB™ REAL data type to the Java™ real data type.

Method signature
public static float |fxToJavaReal (byte b [], short prec)
public static float |fxToJavaReal (byte b [])
public static float |fxToJavaReal (byte b [], int offset,
int length, short prec)
public static float |fxToJavaReal (byte b [], int offset)
Input parameters
b
The bytes encoding data
offset
The offset into byte array.
prec
The precision as received from HCL OneDB™.

length

The data length.

The IfxToJavaSmalllnt() method

The IfxToJavaSmallint() method converts the HCL OneDB™ SMALLINT data type to the Java™ short data type.

Method signature

public static short |fxToJavaSmalllInt (byte b [], short prec)
public static short |fxToJavaSmalllnt (byte b [])

244

Chapter 1. HCL OneDB™ JDBC Driver Guide

public static short |fxToJavaSmalllInt (byte b [], int offset
int length, short prec)
public static short |fxToJavaSnalllInt (byte b [], int offset)
Input parameters
b
The bytes encoding data
offset
The offset into byte array.
prec
The precision as received from HCL OneDB™.
length

The data length.

The rleapyear() method

The rleapyear() method determines if the year is a leap year.

Method signature

public static final boolean rleapyear(int yr)

The widenByte() method

The widenByte() method moves BYTE into the short data type in such a way that the high bit is not propagated.

Method signature

protected static final short w denByte(byte b)

Error messages

-79700
Method not supported

Explanation: HCL OneDB™ JDBC Driver does not support this JDBC method.

-79702

Cannot create new object

Explanation: The software could not allocate memory for a new String object.

-79703

Row/column index out of range

245

246

OneDB JDBC Driver Programmer's Guide

Explanation: The row or column index is out of range.

User response: Compare the index to the number of rows and columns expected from the query to ensure that it is within
range.

-79704

Cant load driver

Explanation: HCL OneDB™ JDBC Driver could not create an instance of itself and register it in the DriverManager class. The
rest of the SQLException text describes what failed.

-79705

Incorrect URL format
Explanation: The database URL you have submitted is invalid. HCL OneDB™ JDBC Driver does not recognize the syntax.

User response: Check the syntax and try again.

-79706

Incomplete input
Explanation: An invalid character was found during conversion of a String value to an IntervalDF or IntervalYM object.

User response: Check INTERVAL data type on page 83 for correct values.

-79707

Invalid qualifier

Explanation: An error was found during construction of an Interval qualifier from atomic elements: length, start, or end
values.

User response: Check the length, start, and end values to verify that they are correct. See INTERVAL data type on page 83
for correct values.

-79708

Cannot take null input
Explanation: The string you have provided is null. HCL OneDB™ JDBC Driver does not understand null input in this case.

User response: Check the input string to ensure that it has the proper value.

-79709

Error in date format
Explanation: The expected input is a valid date string in the following format: yyyy- rm dd.

User response: Check the date and verify that it has a four-digit year, followed by a valid two-digit month and two-digit day.
The delimiter must be a hyphen (-).

Chapter 1. HCL OneDB™ JDBC Driver Guide

-79710

Syntax error in SQL escape clause

Explanation: Invalid syntax was passed to a jdbc escape clause. Valid JDBC escape clause syntax is demarcated by braces
and a keyword: for example, {keyword syntax}.

User response: Check the JDBC specification for a list of valid escape clause keywords and syntax.

-79711

Error in time format

Explanation: An invalid time format was passed to a JDBC escape clause. The escape clause syntax for time literals has the
following format: {t 'nh: rm ss'}.

-79712

Error in timestamp format

Explanation: An invalid time stamp format was passed to a JDBC escape clause. The escape clause syntax for time stamp
literals has the following format: {ts 'yyyy-nm dd hh: nmss.f...}.

-79713

Incorrect number of arguments

Explanation: An incorrect number of arguments was passed to the scalar function escape syntax. The correct syntax is {fn
function(arguments)}.

User response: Verify that the correct number of arguments was passed to the function.

-79714

Type not supported
Explanation: You have specified a data type that is not supported by HCL OneDB™ JDBC Driver.

User response: Check your program to make sure the data type used is supported by the driver.

-79715

Syntax error

Explanation: Invalid syntax was passed to a jdbc escape clause. Valid JDBC escape clause syntax is demarcated by braces
and a keyword: {keyword syntax}.

User response: Check the JDBC specification for a list of valid escape clause keywords and syntax.

-79716

System or internal error

247

OneDB JDBC Driver Programmer's Guide

Explanation: An operating or runtime system error or a driver internal error occurred. The accompanying message describes
the problem.

-79717

Invalid qualifier length
Explanation: The length value for an Interval object is incorrect.

User response: See INTERVAL data type on page 83 for correct values.

-79718

Invalid qualifier start code
Explanation: The start value for an Interval object is incorrect.

User response: See INTERVAL data type on page 83 for correct values.

-79719

Invalid qualifier end code
Explanation: The end value for an Interval object is incorrect.

User response: See INTERVAL data type on page 83 for correct values.

-79720

Invalid qualifier start or end code
Explanation: The start or end value for an Interval object is incorrect.

User response: See INTERVAL data type on page 83 for correct values.

-79721

Invalid interval string

Explanation: An error occurred during conversion of a String value to an IntervalDF or IntervalYM object. Check INTERVAL
data type on page 83 for the correct format.

-79722

Numeric character(s) expected

Explanation: An error occurred during conversion of a String value to an IntervalDF or IntervalYM object. A numeric value
was expected and not found. Check INTERVAL data type on page 83 for the correct format.

-79723

Delimiter character(s) expected

248

Chapter 1. HCL OneDB™ JDBC Driver Guide

Explanation: An error occurred during conversion of a String value to an IntervalDF or IntervalYM object. A delimiter was
expected and not found. Check the INTERVAL data type on page 83 for the correct format.

-79724

Character(s) expected

Explanation: An error occurred during conversion of a String value to an IntervalDF or IntervalYM object. End of string was
encountered before conversion was complete.

User response: Check INTERVAL data type on page 83 for the correct format.

-79725

Extra character(s) found

Explanation: An error occurred during conversion of a String value to an IntervalDF or IntervalYM object. End of string was
expected, but there were more characters in the string.

User response: Check INTERVAL data type on page 83 for the correct format.

-79726

Null SQL statement
Explanation: The SQL statement passed in was null.

User response: Check the SQL statement string of your program to make sure that it contains a valid statement.

-79727

Statement was not prepared

Explanation: The SQL statement was not prepared properly. If you use host variables (for example,insert into nytab
val ues (2, ?);)inyour SQL statement, you must use connection.prepareStatement() to prepare the SQL statement before
you can execute it.

-79728

Unknown object type

Explanation: If this object type is a null opaque type, the type is unknown and cannot be processed. If this object type is a
complex type, the data in the collection or array is of an unknown type and cannot be mapped to any HCL OneDB™ type. If
this object type is a row, one of the elements in the row cannot be mapped to any HCL OneDB™ type. Verify the customized
type mapping or data type of the object.

-79729

Method cannot take argument

Explanation: The method does not take an argument. See your Java™ API specification or the appropriate section of this
guide to make sure that you are using the method properly.

249

250

OneDB JDBC Driver Programmer's Guide

-79730

Connection not established
Explanation: A connection was not established.

User response: You must obtain the connection by calling the DriverManager.getConnection() or
DataSource.getConnection() method first.

-79731

MaxRows out of range

Explanation: You have specified an out-of-range maxRow value. Make sure that you specify a value between 0 and
Integer. MAX_VALUE.

-79732

Illegal cursor name

Explanation: The cursor name specified is not valid. Make sure the string passed in is not null or empty.

-79733

No active result

Explanation: The statement does not contain an active result. Check your program logic to make sure that you have called
the executeXXX() method before you attempt to refer to the result.

-79734
ONEDB_SERVER has to be specified

Explanation: ONEDB_SERVER is a property required for connecting to the HCL OneDB™ database. You can specify it in the
database URL or as part of a Properties object that is passed to the connect() method.

-79735

Cant instantiate protocol

Explanation: An internal error occurred during a connection attempt. Call technical support.

-79736

No connection/statement establish yet
Explanation: There is no current connection or statement.

User response: Check your program to make sure that a connection was properly established or a statement was created.

Chapter 1. HCL OneDB™ JDBC Driver Guide

-79737

No metadata
Explanation: There is no metadata available for this SQL statement.

User response: Make sure that the statement generates a result set before you attempt to use it.

-79738

No such column name

Explanation: The column name specified does not exist. Make sure that the column name is correct.

-79739

No current row

Explanation: The cursor is not properly positioned. You must first position the cursor within the result set by using a method
such as ResultSet.next(), ResultSet.beforeFirst(), ResultSet.first(), or ResultSet.absolute().

-79740

No statement created

Explanation: There is no current statement. Make sure that the statement was properly created.

-79741

Cannot convert to

Explanation: There is no data conversion possible from the column data type to the one specified. The actual data type is
appended to the end of this message.

User response: Review your program logic to make sure that the conversion you have asked for is supported. See Mapping
data types on page 215 for the data mapping matrix.

-79742

Cannot convert from

Explanation: No data conversion is possible from the data type you specified to the column data type. The actual data type is
appended to the end of this message.

User response: Check your program logic to make sure that the conversion you have asked for is supported. See Mapping
data types on page 215 for the data mapping matrix.

-79744

Transactions not supported

251

252

OneDB JDBC Driver Programmer's Guide

Explanation: The user has tried to call commit() or rollback() on a database that does not support transactions or has tried
to set autoCommit to Fal se on a nonlogging database.

User response: Verify that the current database has the correct logging mode and review the program logic.

-79745

Read only mode not supported

Explanation: HCL OneDB™ does not support read-only mode.

-79746

No Transaction Isolation on non-logging db's

Explanation: HCL OneDB™ does not support setting the transaction isolation level on nonlogging databases.

-79747

Invalid transaction isolation level

Explanation: If the database server could not complete the rollback, this error occurs. See the rest of the SQLException
message for more details about why the rollback failed.

This error also occurs if an invalid transaction level is passed to setTransactionlsolation(). The valid values are:

* TRANSACTI ON_NONE

* TRANSACTI ON_READ_UNCOWM TTED
* TRANSACTI ON_READ_COMM TTED

* TRANSACTI ON_REPEATABLE_READ
* TRANSACTI ON_SERI ALI ZABLE

* TRANSACTI ON_LAST_COMM TTED

-79748

Cannot lock the connection

Explanation: HCL OneDB™ JDBC Driver normally locks the connection object just before beginning the data exchange with
the database server. The driver could not obtain the lock. Only one thread at a time should use the connection object.

-79749

Number of input values does not match number of question marks

Explanation: The number of variables that you set with the PreparedStatement.setXXX() methods in this statement does not
match the number of 2 placeholders that you wrote into the statement.

User response: Locate the text of the statement and verify the number of placeholders and then check the calls to
PreparedStatement.setXXX().

-79750

Method only for queries

Chapter 1. HCL OneDB™ JDBC Driver Guide

Explanation: The Statement.executeQuery(String) and PreparedStatement.executeQuery() methods should

only be used if the statement is a SELECT statement. For other statements, use the Statement.execute(String),
Statement.executeBatch(), Statement.executeUpdate(String), Statement.getUpdateCount(), Statement.getResultSet(), or
PreparedStatement.executeUpdate() method.

-79755

Object is null

Explanation: The object passed in is null. Check your program logic to make sure that your object reference is valid.

-79756
Must start with ‘jdbc’
Explanation:

The first token of the database URL must be the keyword jdbc as in the following example:

j dbc: onedb: // mymachi ne: 1234/
mydat abase; user =ne; passwor d=secr et

-79757

Invalid subprotocol

Explanation: The current valid subprotocol is onedb.

-79758

Invalid IP address

Explanation: When you connect to the HCL OneDB™ database server through an IP address, the IP address must be valid. A
valid IP address is a set of four numbers 0 - 255, separated by dots (.): for example, 127.0.0.1.

-79759
Invalid port number
Explanation:

The port number must be a valid four-digit number, as follows:

j dbc: onedb: // mymachi ne: 1234/
mydat abase; user =ne; passwor d=secr et

In this example, 1234 is the port number.

-79760

Invalid database name

253

254

OneDB JDBC Driver Programmer's Guide

Explanation: This statement contains the name of a database in some invalid format. Both database and cursor names must
begin with a letter and contain only letters, numbers, and underscore characters. Database and cursor names can begin with
an underscore. In MS-DOS systemes, file names can be a maximum of eight characters plus a three-character extension.

-79761

Invalid property format

Explanation: The database URL accepts property values in key=value pairs. For example, user =i nf or ni x: passwor d=i nf or ni x
adds the key=value pairs to the list of properties that are passed to the connection object.

User response: Check the syntax of the key=value pair for syntax errors. Make sure that there is only one = sign; that there
are no spaces separating the key, value, or =; and that key=value pairs are separated by one colon(:), again with no spaces.

-79762

Attempt to connect to a non 5.x server

Explanation: When connecting to a Version 5.x database server, the user must set the database URL property USESSERVER
to any non-null value. If a connection is then made to a Version 6.0 or later database server, this exception is thrown.

User response: Verify that the version of the database server is correct and modify the database URL as needed.

-79764

Invalid fetch direction value

Explanation: An invalid fetch direction was passed as an argument to the Statement.setFetchDirection() or
ResultSet.setFetchDirection() method. Valid values are FETCH_FORWARD, FETCH_REVERSE, and FETCH_UNKNOWN.

-79765
ResultSet type is TYPE_FETCH_FORWARD, direction can only be FETCH_FORWARD

Explanation: The result set type has been set to TYPE_FORWARD_ONLY, but the setFetchDirection() method has been called
with a value other than FETCH_FORWARD. The direction specified must be consistent with the result type specified.

-79766

Incorrect fetch size value

Explanation: The Statement.setFetchSize() method has been called with an invalid value. Verify that the value passed in is
greater than o. If the setMaxRows() method has been called, the fetch size must not exceed that value.

-79767
ResultSet type is TYPE_LFORWARD_ONLY

Explanation: A method such as ResultSet.beforeFirst(), ResultSet.afterLast(), ResultSet.first(), ResultSet.last(),
ResultSet.absolute(), ResultSet.relative(), ResultSet.current(), or ResultSet.previous() has been called, but the result set type
is TYPE_FORWARD_ONLY. Call only the ResultSet.next() method if the result set type is TYPE_LFORWARD_ONLY.

Chapter 1. HCL OneDB™ JDBC Driver Guide

-79768

Incorrect row value

Explanation: The ResultSet.absolute(int) method has been called with a value of 0. The parameter must be greater than o.

-79769

A customized type map is required for this data type

Explanation: You must register a customized type map to use any opaque types.

-79770
Cannot find the SQLTypeName specified in the SQLData or Struct

Explanation: The SQLTypename object you specified in the SQLData or Struct class does not exist in the database. Make
sure that the type name is valid.

-79771

Input value is not valid

Explanation: The input value is not accepted for this data type. Make sure this input value is a valid input for this data type.

-79772

No more data to read or write. Verify your SQLData class or getSQLTypeName()

Explanation: This error occurs when a Java™ user-defined routine attempts to read or set a position beyond the end of the
opaque type data available from a data input stream.

User response: Check the length and structure of the opaque type carefully against the data-input UDR code. The
SQLTypeName object that was returned by the getSQLTypeName() method might also be incorrect.

-79774

Unable to create local file

Explanation: Large object data read from the database server can be stored either in memory or in a local file. If the
LOBCACHE value is 0 or the large object size is greater than the LOBCACHE value, the large object data from the database
server is always stored in a file. In this case, if a security exception occurs, HCL OneDB™ JDBC Driver makes no attempt to
store the large object into memory and throws this exception.

-79775
Only TYPE_SCROLL_INSENSITIVE and TYPE_FORWARD_ONLY are supported

Explanation: HCL OneDB™ JDBC Driver only supports a result set type of TYPE_SCROLL_INSENSITIVE and
TYPE_FORWARD_ONLY. Only these values should be used.

255

256

OneDB JDBC Driver Programmer's Guide

-79776

Type requested (%s) does not match row type information (%s) type

Explanation: Row type information was acquired either through the system catalogs or through the supplied row definition.
The row data provided does not match this row element type. The type information must be modified, or the data must be
provided.

-79777

readObject/writeObject() only supports UDTs, Distincts, and complex types
Explanation: The SQLData.writeObject() method was called for an object that is not a user-defined, distinct, or complex type.

User response: Verify that you have provided customized type-mapping information.

-79778

Type mapping class must be a java.util.Collection implementation

Explanation: You provided a type mapping to override the default for a set, list, or multiset data type, but the class does not
implement the java.util.Collection interface.

-79780

Data within a collection must all be the same Java™ class and length

Explanation: Verify that all the objects in the collection are of the same class.

-79781

Index/Count out of range

Explanation: Array.getArray() or Array.getResultSet() was called with index and count values. Either the index is out of range
or the count is too large.

User response: Verify that the number of elements in the array is sufficient for the index and count values.

-79782

Method can be called only once

Explanation: Make sure methods such as Statement.getUpdateCount() and Statement.getResultSet() are called only once
per result.

-79783

Encoding or code set not supported
Explanation: The encoding or code set entered in the DB_LLOCALE or CLIENT_LOCALE variable is not valid.

User response: Check Support for code-set conversion on page 186 for valid code sets.

Chapter 1. HCL OneDB™ JDBC Driver Guide

-79784

Locale not supported
Explanation: The locale entered in the DB_LOCALE or CLIENT_LOCALE variable is not valid.

User response: Check Support for code-set conversion on page 186 for valid locales.

-79785

Unable to convert JDBC escape format date string to localized date string

Explanation: The JDBC escape format for date values must be specified in the format {d 'yyyy- nm dd'}. Verify that the JDBC
escape date format specified is correct.

User response: Verify the DBDATE and GL_DATE settings for the correct date string format if either of these environment
variables was set to a value in the connection database URL string or property list.

-79786

Unable to build a Date object based on localized date string representation

Explanation: The localized date string representation specified in a char, varchar, or lvarchar column is not correct, and a
date object cannot be built based on the year, month, and day values.

User response: Verify that the date string representation conforms to the DBDATE or GL_DATE date formats if either one
of these is specified in a connection database URL string or property list. If neither DBDATE or GL_DATE is specified but
a CLIENT_LOCALE or DB_LOCALE is explicitly set in a connection database URL string or property list, verify that the date
string representation conforms to the JDK short default format (DateFormat.SHORT).

-79788

User name must be specified
Explanation: The user name is required to establish a connection with HCL OneDB™ JDBC Driver.

User response: Make sure that you pass in user =your _user_nane as part of the database URL or one of the properties.

-79789
Server does not support GLS variables DB_LOCALE, CLIENT_LOCALE or GL_DATE

Explanation: These variables can only be used if the database server supports GLS.

User response: Check the documentation for your database server version and omit these variables if they are not
supported.

-79790

Invalid complex type definition string

Explanation: The value returned by the getSQLTypeName() method is either null or invalid.

257

258

OneDB JDBC Driver Programmer's Guide

User response: Check the string to verify that it is either a valid named-row name or a valid row type definition.

-79792

Row must contain data

Explanation: The Array.getAttributes() or Array.getAttributes(Map) method has returned o elements. These methods must
return a nonzero number.

-79793

Data in array does not match getBaseType() value

Explanation: The Array.getArray() or Array.getArray(Map) method has returned an array where the element type does not
match the JDBC base type.

-79794

Row length provided (%s) does not match row type information (%s)

Explanation: Data in the row does not match the length in the row type information. You do not have to pad string lengths to
match what is in the row definition, but lengths for other data types should match.

-79795

Row extended ID provided (%s) does not match row type information (%s)
Explanation: The extended ID of the object in the row does not match the extended ID as defined in row type information.

User response: Either update the row type information (if you are providing the row definition) or check the type mapping
information.

-79796

Cannot find UDT, distinct, or named row (%s) in database
Explanation: The getSQLTypeName() method has returned a name that cannot be found in the database.

User response: Verify that the Struct or SQLData object returns the correct information.

-79797

DBDATE setting must be at least four characters and no longer than six characters

Explanation: This error occurs because the DBDATE format string that is passed to the database server either has too few
characters or too many.

User response: To fix the problem, verify the DBDATE format string with the user documentation and make sure that the
correct year, month, day, and possibly era parts of the DBDATE format string are correctly identified.

Chapter 1. HCL OneDB™ JDBC Driver Guide

-79798

A numeric year expansion is required after 'Y' character in DBDATE string

Explanation: This error occurs because the DBDATE format string has a year designation (specified by the character v), but
there is no character following the year designation to denote the numeric year expansion (2 or 4).

User response: To fix the problem, modify the DBDATE format string to include the numeric year expansion value after the Y
character.

-79799

An invalid character is found in the DBDATE string after the 'Y’ character

Explanation: This error occurs because the DBDATE format string has a year designation (specified by the character v), but
the character following the year designation is not a 2 (two-digit years) or 4 (four-digit years).

User response: To fix the problem, modify the DBDATE format string to include the required numeric year expansion value
after the Y character. Only a 2 or 4 character should immediately follow the Yy character designation.

-79800

No 'Y' character is specified before the numeric year expansion value

Explanation: This error occurs because the DBDATE format string has a numeric year expansion (2 to denote two-digit years
or 4 to denote four-digit years), but the year designation character (Y) was not found immediately before the numeric year
expansion character specified.

User response: To fix the problem, modify the DBDATE format string to include the required v character immediately before
the numeric year expansion value requested.

-79801
An invalid character is found in DBDATE format string
Explanation: This error occurs because the DBDATE format string has a character that is not allowed.

User response: To fix the problem, modify the DBDATE format string to only include the correct date part designations: year
(Y), numeric year expansion value (2 or 4), month (M), and day (p). Optionally, you can include an era designation (E) and a
default separator character (hyphen, dot, or slash), which is specified at the end of the DBDATE format string. Refer to the
user documentation for further information about correct DBDATE format string character designations.

-79802

Not enough tokens are specified in the string representation of a date value

Explanation: This error occurs because the date string specified does not have the minimum number of tokens or separators
needed to form a valid date value (composed of year, month, and day numeric parts). For example, 12/15/98 is a valid date
string representation with the slash character as the separator or token. But 12/1598 is not a valid date string representation,
because there are not enough separators or tokens.

User response: To fix the problem, modify the date string representation to include a valid format for separating the day,
month, and year parts of a date value.

259

260

OneDB JDBC Driver Programmer's Guide

-79803

Date string index out of bounds during date format parsing to build Date object

Explanation: This error occurs because there is not a one-to-one correspondence between the date string format required by
DBDATE or GL_DATE and the actual date string representation you defined. For example, if GL_DATE is set to % 9 % and
you specify a character string of cct, there is a definite mismatch between the format required by GL_DATE and the actual
date string.

User response: To fix the problem, modify the date string representation of the DBDATE or GL_DATE setting so that the date
format specified matches one-to-one with the required date string representation.

-79804

No more tokens are found in DBDATE string representation of a date value

Explanation: This error occurs because the date string specified does not have any more tokens or separators needed

to form a valid date value (composed of year, month, and day numeric parts) based on the DBDATE format string. For
example, 12/15/98 is a valid date string representation when DBDATE is set to Mby2/ . But 12/1598 is not a valid date string
representation, because there are not enough separators or tokens.

User response: To fix the problem, modify the date string representation to include a valid format for separating the day,
month, and year parts of a date value based on the DBDATE format string setting.

-79805

No era designation found in DBDATE/GL_DATE string representation of date value

Explanation: This error occurs because the date string specified does not have a valid era designation, as required by
the DBDATE or GL_DATE format string setting. For example, if DBDATE is set to Y2MDE-, but the date string representation
specified by the user is 98- 12- 15, this is an error because there is no era designation at the end of the date string value.

User response: To fix the problem, modify the date string representation to include a valid era designation based on the
DBDATE or GL_DATE format string setting. In this example, a date string representation of 98- 12- 15 AD would probably
suffice, depending on the locale.

-79806

Numerical day value can not be determined from date string based on DBDATE

Explanation: This error occurs because the date string specified does not have a valid numeric day designation as required
by the DBDATE format string setting. For example, if DBDATE is set to yY2m>-, but the date string representation you specify is
98- 12- bl ah, this is an error, because bl ah is not a valid numeric day representation.

User response: To fix the problem, modify the date string representation to include a valid numeric day designation (from 1
to 31) based on the DBDATE format string setting.

-79807

Numerical month value can not be determined from date string based on DBDATE

Explanation: This error occurs because the date string specified does not have a valid numeric month designation as
required by the DBDATE format string setting. For example, if DBDATE is set to Y2vm,, but the date string representation you
specify is 98- bl ah- 15, this is an error, because bl ah is not a valid numeric month representation.

Chapter 1. HCL OneDB™ JDBC Driver Guide

User response: To fix the problem, modify the date string representation to include a valid numeric month designation (from
1 to 12) based on the DBDATE format string setting.

-79808

Not enough tokens specified in %D directive representation of date string

Explanation: This error occurs because the date string specified does not have the correct number of tokens or separators
needed to form a valid date value based on the GL_DATE %D directive (1 dd/ yy format). For example, 12/15/98 is a valid
date string representation based on the GL_DATE %D directive, but 12/1598 is not a valid date string representation, because
there are not enough separators or tokens.

User response: To fix the problem, modify the date string representation to include a valid format for the GL_DATE %D
directive.

-79809

Not enough tokens specified in %x directive representation of date string

Explanation: This error occurs because the date string specified does not have the correct number of tokens or separators
needed to form a valid date value based on the GL_DATE %Xx directive (format required is based on day, month, and year
parts, and the ordering of these parts is determined by the specified locale). For example, 12/15/98 is a valid date string
representation based on the GL_DATE %x directive for the U.S. English locale, but 12/1598 is not a valid date string
representation because there are not enough separators or tokens.

User response: To fix the problem, modify the date string representation to include a valid format for the GL_DATE %x
directive based on the locale.

-79811

Connection without user/password not supported
Explanation: You called the getConnection() method for the DataSource object, and the user name or the password is null.

User response: Use the user name and password arguments of the getConnection() method or set these values in the
DataSource object.

-79812

User/Password does not match with datasource

Explanation: You called the getConnection(user, passwd) method for the DataSource object, and the values you supplied did
not match the values already found in the data source.

-79814

Blob/Clob object is either closed or invalid

Explanation: If you retrieve a smart large object using the ResultSet.getBlob() or ResultSet.getClob() method or create one
using the IfxBlob() or IfxCblob() constructor, a smart large object is opened. You can then read from or write to the smart
large object. After you execute the IfxBlob.close() method, do not use the smart large object handle for further read/write
operations, or this exception is thrown.

261

262

OneDB JDBC Driver Programmer's Guide

-79815

Not in Insert mode. Need to call moveTolnsertRow() first
Explanation: You tried to use the insertRow() method, but the mode is not set to Insert.

User response: Call the moveTolnsertRow() method before calling insertRow().

-79816

Cannot determine the table name

Explanation: The table name in the query is either incorrect or refers to a table that does not exist.

-79817

No serial, rowid, or primary key specified in the statement

Explanation: The updatable scrollable feature works only for tables that have a SERIAL column, a primary key, or a row ID
specified in the query. If the table does not have any of these attributes, an updatable scrollable cursor cannot be created.

-79818
Statement concurrency type is not set to CONCUR_UPDATABLE

Explanation: You tried to call the insertRow(), updateRow(), or deleteRow() method for a statement that has not been created
with the CONCUR_UPDATABLE concurrency type.

User response: Re-create the statement with this type set for the concurrency attribute.

-79819

Still in Insert mode. Call moveToCurrentRow() first

Explanation: You cannot call the updateRow() or deleteRow() method while still in Insert mode. Call the
moveToCurrentRow() method first.

-79820

Function contains an output parameter

Explanation: You have passed in a statement that contains an OUT parameter, but you have not used the drivers
CallableStatement.registerOutParameter() and getXXX() methods to process the OUT parameter.

-79821

Name unnecessary for this data type
Explanation:

If you have a data type that requires a name (an opaque type or complex type) you must call a method that has a parameter
for the name, such as the following methods:

Chapter 1. HCL OneDB™ JDBC Driver Guide

public void IfxSetNull (int i, int ifxType
String nane)
public void regi sterQut Paranet er
(i nt paraneterlndex,
int sql Type, java.lang. String nane);
public void |IfxRegisterQutParanet er
(i nt paraneterlndex,
int ifxType, java.lang.String nane);

The data type you have specified does not require a name.

User response: Use another method that does not have a type parameter.

-79822

OUT parameter has not been registered

Explanation: The function specified using the CallableStatement interface has an OUT parameter that has not been
registered.

User response: Call one of the registerOutParameter() or IfxRegisterOutParameter() methods to register the OUT parameter
type before calling the executeQuery() method.

-79823

IN parameter has not been set
Explanation: The function specified using the CallableStatement interface has an IN parameter that has not been set.

User response: Call the setMaxRows() or IfxSetNull() method if you want to set a null IN parameter. Otherwise, call one of
the set methods inherited from the PreparedStatement interface.

-79824

OUT parameter has not been set
Explanation: The function specified using the CallableStatement interface has an OUT parameter that has not been set.

User response: Call the setMaxRows() or IfxSetNull() method if you want to set a null OUT parameter. Otherwise, call one of
the set methods inherited from the PreparedStatement interface.

-79825

Type name is required for this data type
Explanation: This data type is an opaque type, distinct type, or complex type, and it requires a name.

User response: Use set methods for IN parameters and register methods for OUT parameters that take a type name as a
parameter.

-79826

Ambiguous java.sql.Type, use IfxRegisterOutParameter()

263

264

OneDB JDBC Driver Programmer's Guide

Explanation: The SQL type specified either has no mapping to the HCL OneDB™ data type or has more than one mapping.

User response: Use one of the IfxRegisterOutParameter() methods to specify the HCL OneDB™ data type.

-79827

Function doesn't have an output parameter

Explanation: This function does not have an OUT parameter, or this function has an OUT parameter whose value the server
version does not return. None of the methods in the CallableStatement interface apply. Use the inherited methods from the
PreparedStatement interface.

-79828

Function parameter specified isnt an OUT parameter

Explanation: HCL OneDB™ functions can have only one OUT parameter, and it is always the last parameter.

-79829

Invalid directive used for the GL_DATE environment variable

Explanation: One or more of the directives specified by the GL_DATE environment variable is not allowed. Refer to The
GL_DATE variable on page 180 for a list of the valid directives for a GL_DATE format.

-79830

Insufficient information given for building a time or timestamp Java™ object.

Explanation: To perform string-to-binary conversions correctly for building a java.sql.Timestamp or java.sql.Time object, all
the DATETIME fields must be specified for the chosen date string representation. For java.sql. Timestamp objects, the year,
month, day, hour, minute, and second parts must be specified in the string representation. For java.sql.Time objects, the hour,
minute, and second parts must be specified in the string representation.

-79831

Exceeded maximum no. of connections configured for Connection Pool Manager

Explanation: If you repeatedly connect to a database using a DataSource object without closing the connection, connections
accumulate. When the total number of connections for the DataSource object exceeds the maximum limit (100), this error is
thrown.

-79834

Distributed transactions (XA) are not supported by this database server.

Explanation: This error occurs when the user calls the method XAConnection.getConnection() against an unsupported
server.

-79836

Proxy Error: No database connection

Chapter 1. HCL OneDB™ JDBC Driver Guide

Explanation: This error is thrown by the HCL OneDB™ HTTP Proxy if you try to communicate with the database on an invalid
or bad database connection.

User response: Make sure your application has opened a connection to the database, check your web server and database
error logs.

-79837

Proxy Error: Input/output error while communicating with database

Explanation: This error is thrown by the HCL OneDB™ HTTP Proxy if an error is detected while the proxy is communicating
with the database. This error can occur if your database server is not accessible.

User response: Make sure your database server is accessible, check your database and web server error logs.

-79838

Cannot execute change permission command (chmod/attrib)

Explanation: The driver is unable to change the permissions on the client JAR file. This could happen if your client platform
does not support the chmod or attrib command, or if the user running the JDBC application does not have the authority to
change access permissions on the client JAR file.

User response: Make sure that the chmod or attrib command is available for your platform and that the user running the
application has the authority to change access permissions on the client JAR file.

-79839

Same Jar SQL name already exists in the system catalog

Explanation: The JAR file name specified when your application called UDTManager.createJar() has already been registered
in the database server.

User response: Use UDTMetaData.setJarFileSQLName() to specify a different SQL name for the JAR file.

-79840

Unable to copy jar file from client to server

Explanation: This error occurs when the path name set using setJarTmpPath() is not writable by user informix or the user
specified in the JDBC connection.

User response: Make sure the pathname is readable and writable by any user.

-79842

No UDR information was set in UDRMetaData

Explanation: Your application called the UDRManager.createUDRs() method without specifying any UDRs for the database
server to register.

User response: Specify UDRs for the database server to register by calling the UDRMetaData.setUDR() method before calling
the UDRManager.createUDRs() method.

265

266

OneDB JDBC Driver Programmer's Guide

-79843
SQL name of the jar file was not set in UDR/UDT MetaData

Explanation: Your application called either the UDTManager.createUDT() or the UDRManager.createUDRs() method without
specifying an SQL name for the JAR file containing the opaque types or UDRs for the database server to register.

User response: Specify an SQL name for a JAR file by calling the UDTMetaData.setJarFileSQLName() or
UDRMetaData.setJarFileSQLName() method before calling the UDTManager.createUDT() or UDRManager.createUDRs()
method.

-79844

Cant create/remove UDT/UDR as no database is specified in the connection
Explanation:

Your application created a connection without specifying a database. The following example establishes a connection and
opens a database named test:

url = "jdbc:onedb://nyhost: 1533/t est; user=rdtest; password=test";
conn = DriverManager. get Connection(url);

The following example establishes a connection with no database open:
url = "jdbc:onedb://nyhost: 1533; user =r dt est ; passwor d=t est ";

conn = DriverManager. get Connection(url);

User response:

To resolve this problem, use the following SQL statements after the connection is established and before calling the
createUDT() or createUDRs() methods:

Statenent stnt = conn.createStatenent();
stnt . execut eUpdat e("creat e dat abase test
")
Alternatively, use the following code:

st nt . execut eUpdat e(" dat abase test");

-79845
JAR file on the client does not exist or cant be read
Explanation:

This error occurs for one of the following reasons:

« You failed to create a client JAR file.

« You specified an incorrect pathname for the client JAR file.

« The user running the JDBC application or the user specified in the connection does not have permission to open or
read the client JAR file.

Chapter 1. HCL OneDB™ JDBC Driver Guide

-79846

Invalid JAR file name

Explanation: The client JAR file your application specified as the second parameter to UDTManager.createUDT() or
UDRManager.createUDRs() must end with the . j ar extension.

-79847
The 'javac' or 'jar' command failed
Explanation:

The driver encountered compilation errors in one of the following cases:

» Compiling . cl ass filesinto . j ar files, using the jar command, in response to a createJar() command from the JDBC
application

» Compiling . j ava files into . cl ass files and . j ar files, using the javac and jar commands, in response to a
UDTManager.createUDTClass() method call from the JDBC application.

-79848

Same UDT SQL name already exists in the system catalog

Explanation: Your application called UDTMetaData.setSQLName() and specified a name that is already in the database
server.

-79849
UDT SQL name was not set in UDTMetaData

Explanation: Your application failed to call UDTMetaData.setSQLName() to specify an SQL name for the opaque type.

-79850

UDT field count was not set in UDTMetaData

Explanation: Your application called UDTManager.createUDTClass() without first specifying the number of fields in the
internal data structure that defines the opaque type.

User response: Specify the number of fields by calling UDTMetaData.setFieldCount().

-79851
UDT length was not set in UDTMetaData

Explanation: Your application called UDTManager.createUDTClass() without first specifying a length for the opaque type.

User response: Specify the total length for the opaque type by calling UDTMetaData.setLength().

267

268

OneDB JDBC Driver Programmer's Guide

-79852
UDT field name or field type was not set in UDTMetaData

Explanation: Your application called UDTManager.createUDTClass() without first specifying a field name and data type for
each field in the data structure that defines the opaque type.

User response: Specify the field name by calling UDTMetaData.setFieldName(); specify a data type by calling
UDTMetaData.setFieldType().

-79853

No class files to be put into the jar
Explanation:

Your application called the createJar() method and passed a zero-length string for the classnames parameter. The method
signature is as follows:

createJar (UDTMet aDat a ndata, String[]
cl assnanes)

-79854

UDT java class must implement java.sql.SQLData interface

Explanation: Your application called UDTManager.createUDT() to create an opaque type whose class definition does not
implement the java.sql.SQLData interface. UDTManager cannot create an opaque type from a class that does not implement
this interface.

-79855

Specified UDT java class is not found

Explanation: Your application called the UDTManager.createUDT() method but the driver could not find a class with the name
you specified for the third parameter.

-79856

Specified UDT does not exists in the database.

Explanation: Your application called UDTManager.removeUDT(String sglname) to remove an opaque type named sglname
from the database, but the opaque type with that name does not exist in the database.

-79857

Invalid support function type

Explanation: This error occurs only if your application called the UDTMetaData.setSupportUDR() method and passed an
integer other than o through 7 for the type parameter.

User response: Use the constants defined for the support UDR types. For more information, see The setSupportUDR() and
setUDR() methods on page 152.

Chapter 1. HCL OneDB™ JDBC Driver Guide

-79858

The command to remove file on the client failed

Explanation: If UDTMetaData.keepJavaFile() is not called or is set to FALSE, the driver removes the generated . j ava file
when the UDTManager.createUDTClass() method executes. This error results if the driver was unable to remove the . j ava
file.

-79859
Invalid UDT field number

Explanation: Your application called a UDTMetaData.setXXX() or UDTMetaData.getXXX() method and specified a field
number that was less than o or greater than the value set through the UDTMetaData.setFieldCount() method.

-79860

Ambiguous java type(s) - can't use Object/SQLData as method argument(s)

Explanation: One or more parameters of the method to be registered as a UDR is of type java.lang.Object or
java.sql.SQLData. These Java™ data types can be mapped to more than one HCL OneDB™ data type, so the driver is unable
to choose a type.

User response: Avoid using java.lang.Object or java.sql.SQLData as method arguments.

-79861

Specified UDT field type has no Java™ type match
Explanation:

Your application called UDTMetaData.setFieldType() and specified a data type that has no 100 percent match in Java™. The
following data types are in this category:

| fxTypes. | FX_TYPE_BYTE

I f xTypes. | EX_TYPE_TEXT

I f xTypes. | FX_TYPE_VARCHAR
| f xTypes. | FX_TYPE_NVARCHAR
I f xTypes. | EX_TYPE_LVARCHAR

User response: Use IFX_TYPE_CHAR or IFX_TYPE_NCHAR instead; these data types map to java.lang.String.

-79862
Invalid UDT field type

Explanation: Your application called UDTMetaData.setFieldType() and specified an unsupported data type for the opaque
type. For supported data types, see Mapping for field types on page 235.

-79863
UDT field length was not set in UDTMetaData

269

270

OneDB JDBC Driver Programmer's Guide

Explanation: Your application specified a field of character, date-time, or interval type by calling UDTMetaData.setFieldType(),
but failed to specify a field length. Call UDTMetaData.setFieldLength() to set a field length.

-79864

Statement length exceeds the maximum

Explanation: Your application issued an SQL PREPARE, DECLARE, or EXECUTE IMMEDIATE statement that is longer than the
database server can handle. The limit differs with different implementations, but in most cases is up to 32,000 characters.

User response: Review the program logic to ensure that an error has not caused your application to present a string that is
longer than intended. If the text has the intended length, revise the application to present fewer statements at a time. This is
the same as error -460 returned by the database server.

-79865

Statement already closed

Explanation: This error occurs when an application attempts to access a statement method after the stmt.close() method.

-79868

Result set not open, operation not permitted

Explanation: This error occurs when an application attempts to access a ResultSet method after the ResultSet.close()
method.

-79877

Invalid parameter value for setting maximum field size to a value less than zero

Explanation: This error occurs when an application attempts to set the maximum field size to a value less than zero.

-79878

Result set not open, operation next not permitted. Verify that autocommit is OFF

Explanation: This error occurs when an application attempts to access the ResultSet.next() method without executing a
result set query.

-79879

An unexpected exception was thrown. See next exception for details

Explanation: This error occurs when a non-SQL exception occurs; for example, an 10 exception.

-79880

Unable to set JDK Version for the Driver

Explanation: This error occurs when the driver cannot obtain the JDK version from the Java™ virtual machine.

Chapter 1. HCL OneDB™ JDBC Driver Guide

-79881

Already in local transaction, so cannot start XA transaction

Explanation: This error occurs when the application attempts to start an XA transaction while a local transaction is still in
progress.

271

ndex

Special Characters

A

c

Jjava file, retaining 149

absolute() method 42, 251, 254
activateHDRPool_Primary() method 202
activateHDRPool_Secondary() method 202
addBatch() method 56

addProp() method 213

afterLast() method 254

Alignment values 148

Anonymous search of sglhosts information 23
appendlsamCodeToSqlException property 15
Array class 93

ArrayList class 89

Arrays 89, 93

autoCaseSchema property 15

Autocommit transaction mode 59
autofree.java example program 197, 205
autoFreeCursors property 15

Automatically freeing the cursor 67, 197

Batch updates to the database 43
batchinsertPreprocessing property 15
BatchUpdate.java example program 43, 205
BatchUpdateException interface 43
beforeFirst() method 251, 254
BEGIN WORK statement 130
BIG_FET_BUF_SIZE environment variable 195
BIGINT
data type 82
BIGINT data type 243
BIGSERIAL
data type 82
Binary qualifiers for INTERVAL data types 83
BLOB and CLOB data types, accessing 105
BLOB and CLOB example programs 208
BLOB data type
caching 78, 132, 196
code set conversion for 190
definition of 114
examples of
creation 133
data retrieval 134
extensions for 105
format of 114
BOOLEAN data type 216
bson
example 208
IfxBSONObjectDemo.java 208
BSON 39
Bulk inserts 44
Bulkinsert.java example program 44
BYTE and TEXT example programs 208
Byte array, converting to hexadecimal 118
BYTE data type
caching 196
code set conversion for 190
examples for
data inserts and updates 78
data retrieval 80
extensions for 78
ByteType.java example program 78, 80, 205

Caching large objects 196
CallableStatement

named parameters 51

with overloaded stored procedures 55
CallableStatement interface 37, 44, 263, 264
CallOut1.java example program 205
CallOut2.java example program 205
CallOut3.java example program 205
CallOut4.java example program 205
Catalogs

HCL OneDB

JDBC Driver interpretation

66

systables 66, 186
certificateVerification property 15
CHAR (n) data type 238
CHARACTER (n) data type 238
charattrUDT.java example program 208
Class name 149
Classes

Array 93

ArrayList 89

extensibleObject 23

HashSet 89, 89, 90

IfmxStatement 67

IfxBblob 114

IfxCblob 114

IfxConnectionEventListener 5

IfxLobDescriptor 109

IfxLocator 118

IfxTypes 219, 223

IfxUDTManager 139

IfxUDTMetaData 139

IfxXADataSource 5

Interval 83

IntervalDF 87

IntervalYM 85

Locales 178

Message 65

OneDBDataSource 5, 213

OneDBDriver 8

Properties 14

ResultSet 180, 182

SQLException 64, 64, 65, 225, 228, 229,

229,232

TreeSet 90

UDRManager 139

UDRMetaData 139

Version 68
Classes implemented 5

extending Java specification 6

Java interfaces 5
ClassGenerator utility 103,212
CLASSPATH 7
CLASSPATH environment variable 7, 69, 103
Cleaning connections 203
CLIENT_LOCALE environment variable 178,
185
CLIENT_LOCALE property 15
CLOB data type

caching 78, 132, 196

code set conversion 188

code set conversion for 187

definition of 114

examples of

creation 133
data retrieval 134

extensions for 105

format of 114
close() method 41, 41, 41,197

272

Code sets 186

conversion of 186, 187

converting TEXT data types 188

synchronizing with locales 178

user-defined 190
Collection data types

examples of

using the array interface 93
using the collection interface 90

extensions for 89

in named and unnamed rows 94
Collection interface 89, 89, 89
com.informix.jdbc.Message class 67
COMMIT WORK statement 130
commit() method 59
commitBeforelsolationChange property 15
Concurrency and multiple threads 41
connect() method 250
Connection interface 37, 59
Connection pool 199

cleaning connections 203

demo program 200

example programs 211

Sun JDBC 3.0 properties 200

tuning parameters 200

using 199

with HDR 202
Connection Pool Manager 200
Connection pooling 8
Connection properties

DATABASE 9

HOST 9

ONEDB_SERVER 9

PASSWORD 9, 12

USER9, 12
connectionCleanerDelay property 15
ConnectionEventListener interface 5
ConnectionPoolDataSource object 199
Connections

cleaning 203

creating using a DataSource object 9

creating using DriverManager.

getConnection() 11

to a database with non-ASCI|

characters 187
Constructors

IfxBblob() 114

IfxCblob() 114

IfxLobDescriptor() 109

IfxLocator() 109

IntervalDF() 87

IntervalYM() 85
convertDateToDays() method

input parameters 238

method signature 238
convertDaysToDate() method

input parameters 238

method signature 238
Converting

decimal notation 178

IfxLocator to hexadecimal 118

internal

HCL OneDB

data types

236
Create opaque type from existing code 151
createJar() method 150
createTypes.java example program 208

createUDRs() method 154
createUDT() method 150
createUDTClass() method 149, 149, 149
Creating opaque type without preexisting
class 146
Creating smart large objects 108
Cryptology options 33
current() method 254
Cursors

automatically freeing 67, 197

hold 42

scroll 41
customNLSMap property 15

Data integrity 127
Data types
BLOB 196
BOOLEAN 216
BYTE 78,196
CLOB 196
collection 89
conversion between
HCL OneDB
and Java
237
DataBlade API 138
distinct 75
INTERVAL 83
LVARCHAR 216, 229, 229, 232
mapping
for CallableStatement parameters 49
opaque data types 138
named row 93
opaque 135
and transactions 157
SERIAL 81
SERIALS8 81
TEXT 78,196
unnamed row 93
DATABASE environment variable 9, 12
Database Locale information mismatch 186
database property 15
Database server name
setting in database URLs 12
setting in DataSource objects 9
DatabaseMetaData interface 66, 68
DatabaseMetaData methods 66
DatabaseMetaData.supportsNamedParameters()
method 51
Databases
batch updates of 43
names of, setting
in database URLs 12
in DataSource objects 9
querying 37
specifying the locale of 178
URL 11,12
with non-ASCII characters 187
DataBlade API data types 138
DataSource interface
example of 205
extensions of 213
HCL OneDB
classes supporting
5
standard properties 9, 214
DATE data type 239
Dates
DBDATE formats of 182
formatting directives for 180

four-digit year expansion 184

GL_DATE formats of 180

inserting values 180, 182

native SQL formats of 180, 182

nonnative SQL formats of 180, 182

precedence rules for end-user formats 185

represented by strings 180

retrieving values 180, 182

string-to-date conversion 184

support for end-user formats 179
DATETIME data type 240, 240, 242
DB_LOCALE environment variable 178, 185
DB_LOCALE property 15
DBANSIWARN property 15
DBCENTURY environment variable 178, 184
DBCENTURYSelect.java example
program 184, 205
DBCENTURYSelect2.java example
program 184, 205
DBCENTURYSelect3.java example
program 184, 205
DBCENTURYSelect4.java example
program 184, 205
DBCENTURYSelect5.java example
program 184, 205
DBConnection.java example program 205
DBDATE environment variable 178, 182, 185
DBDATESelect.java example program 205
DBMetaData.java example program 205
Deallocating resources 41
Debugging 193
Decimal conversion 178
DECIMAL data type 241
defaultCursorHoldability property 15
deleteRow() method 42, 262
deletesAreDetected() method 56
delimident property 15
Deploy parameter 151
Deployment descriptor 151
Detach trigger 193
Directives, formatting, for dates 180
dispValue() method 80
Distinct data types

examples for

inserting data 75
retrieving data 77

extensions for 75

Type caching information 105, 138

unsupported methods for 78
distinct_d1.java example program 208
distinct_d2.java example program 208
Distributed transactions 5, 8, 9, 59
DOM (Document Object Model) 68
double data type 241
DOUBLE PRECISION data type 241
driver 5
Driver interface 68
Driver restrictions, limitations 48
DriverManager interface 4, 8,11, 14

ENABLE_HDRSWITCH environment

variable 26, 28

ENABLE_TYPE_CACHE environment

variable 138

encrypt property 15

encryptionProtocols property 15

End-user formats for dates
precedence rules for 185
support for 179

Environment variables

273

CLASSPATH 7, 69, 103
CLIENT_LOCALE 178,185
DATABASE 12
DB_LOCALE 178, 185
DBCENTURY 178, 184
DBDATE 178, 182, 185
ENABLE_HDRSWITCH 26, 28
ENABLE_TYPE_CACHE 138
FET_BUF_SIZE 195, 205
GL_DATE 178,180, 185
GL_USEGLU 178
IFMX_CPM_AGELIMIT 200
IFMX_CPM_ENABLE_SWITCH_HDRPOOL 200
IFMX_CPM_INIT_POOLSIZE 200
IFMX_CPM_MAX_CONNECTIONS 200
IFMX_CPM_MAX_POOLSIZE 200
IFMX_CPM_MIN_AGELIMIT 200
IFMX_CPM_MIN_POOLSIZE 200
IFMX_CPM_SERVICE_INTERVAL 200
IFX_AUTOFREE 197, 205
IFX_BATCHUPDATE_PER_SPEC 43
IFX_CODESETLOB 188
IFX_LOB_XFERSIZE 133
IFX_USEPUT 44
IFXHOST 12
IFXHOST_SECONDARY 26, 28
INFORMIXSERVER_SECONDARY 26, 28
LOBCACHE 78, 132
NEWCODESET 178
NEWLOCALE 178
ONEDB_SERVER 12
OPTOFC 197, 205
PORTNO 12
PORTNO_SECONDARY 26, 28
specifying 12
SRV_FET_BUF_SIZE 195
supported 178
equals() method 86, 89
Error messages
globalization of 191
RSAM 65
SQLCODE 65
standard
HCL OneDB
245
ErrorHandling.java example program 65, 205
Errors
handling 63
retrieving message text 65
retrieving syntax error offset 65
SQLException class, using 64
Escape syntax 56
Example programs
connection pool 211
HDR 212
proxy server 210
XML documents 211
Examples
autofree.java 197, 205
BatchUpdate.java 43, 205
BLOB and CLOB 208
BLOB and CLOB data types
creation 133
data retrieval 134
bson 208
Bulkinsert.java 44
BYTE and TEXT 208
BYTE and TEXT data types 78, 80
ByteType.java 78, 80, 205
CallOut1.java 205
CallOut2.java 205

CallOut3.java 205
CallOut4.java 205
charattrUDT.java 208
collection data types
using the array interface 93
using the collection interface 90
createTypes.java 208
DataSource 205
DBCENTURYSelect.java 184, 205
DBCENTURYSelect2.java 184, 205
DBCENTURYSelect3.java 184, 205
DBCENTURYSelect4.java 184, 205
DBCENTURYSelect5.java 184, 205
DBConnection.java 205
DBDATESelect.java 205
DBMetaData.java 205
distinct data types
inserting data 75
retrieving data 77
distinct_d1.java 208
distinct_d2.java 208
ErrorHandling.java 65, 205
GenericStruct.java 209
GLDATESelect.java 205
IfxBSONObjectDemo.java 208
Intervaldemo.java 89, 205
json 208
largebinUDT.java 208
list1.java 209
list2.java 209
LOCALESelect.java 205
locmsg.java 191, 205
manualUDT.java 208
MultiRowCall.java 205
myMoney.java 208
named and unnamed rows
creating a Struct class for 99
using the SQLData interface for a named
row 95
using the Struct interface 99
named row 209
opaque data types
defining a class for 158
large objects 161
retrieving data 160
OptimizedSelect.java 205
optofc.java 197, 205
OUT parameter 44
PropertyConnection.java 205
row3.java 209
RSMetaData.java 205
ScrollCursor.java 42, 205
Serial java 205
SimpleCall.java 205
SimpleConnection.java 205
SimpleSelect.java 205
smart large object 208
TextConv.java 205
TextType.java 78, 80, 205
UDR Manager 213
UDT Manager 213
udt_d1.java 208
udt_d2.java 208
udt_d3.java 208
UpdateCursor1.java 42, 205
UpdateCursor2.java 42, 205
UpdateCursor3.java 42, 205
user-defined routines 176
XML documents 72
execute() method 40, 56, 56, 56, 252
executeBatch() method 252

executeQuery() method 37, 48, 48, 67
executeUpdate() method 78, 252
executeXXX() method 250
extensibleObject class 23

FET_BUF_SIZE environment variable 195, 195,
205

File interface 78

FilelnputStream interface 78

first() method 251, 254

Formatting directives for dates 180
forName() method 8

fromHexString() method 118

fromString() method 86, 89

GenericStruct.java example program 209
getAlignment() method 156
getArray() method 89, 93, 93, 258
getAsciiStream() method 80, 80, 113
getAttributes() method 99, 258
getAutoAlignment() method 137
getAutoFree() method 67, 197
getBigSerial() method 82
getBinaryStream() method 80, 80, 80, 113
getBlob() method 113, 134, 261
getBytes() method 113, 187, 189
getCatalogName() method 56
getCatalogs() method 66
getClassName() method 156
getClob() method 113, 134, 261
getConnection() method 11, 14, 14, 250
getCurrentPosition() method 137
getDatabaseName() method 214
getDataSourceName() method 214
getDate() method 184, 184, 184, 184
getDescription() method 214
getDriverMajorVersion() method 68
getDriverMinorVersion() method 68
getDsProperties() method 213
getEndCode() method 84
getErrorCode() method 64
getFetchSize() method 56
getFieldCount() method 156
getFieldLength() method 156
getFieldName method 156
getFieldName() method 84
getFieldTypeName() method 156
getHDRtype() method 30
getlfxTypeName() method 84
getinputSource() method 71
getJarFileSQLName() method 156
getJDBCVersion() method 68
getLength() method 84, 156
getLocator() method 114, 134
getMajorVersion() method 68
getMessage() method 64
getMetaData() method 48
getMinorVersion() method 68
getMonths() method 86
getNanoSeconds() method 89
getNextException() method 65
getObject() method 89, 93, 95, 98, 99
getPassword() method 214
getPortNumber() method 214
getProcedureColumns() method 56
getProp() method 213

getQualifier() method 84

getRef() method 56, 56, 56
getResultSet() method 252, 256
getSavepointld() method 59

274

getSavepointName() method 59
getScale() method 84
getSchemaName() method 56
getSchemas() method 66
getSeconds() method 89
getSerial() method 81
getSerial8() method 81
getServerName() method 214
getSQLName() method 156
getSQLState() method 64
getSQLStatementOffset() method 65
getSQLTypeName() method 95, 95, 98, 99, 99,
105,138
getStartCode() method 84
getString() method 113, 180, 182, 187, 189
getTableName() method 56
getText() method 187
getTimestamp() method 184, 184, 184, 184
getTypeMap() method 93, 95, 95
getUDR() method 157
getUDRSQLname() method 157
getUnicodeStream() method 56, 56
getUpdateCount() method 252, 256
getUpdateCounts() method 43
getUser() method 214
getWarnings() method 48
getXXX() method 37, 44, 229, 229, 229, 229,
232,232,262
GL_DATE environment variable 178, 180, 185
GL_DATETIME property 15
GL_USEGLU environment variable 178
GLDATESelect.java example program 205
Global Language Support (GLS) 178
Globalization 178

decimal notation 178
greaterThan() method 86, 89
Group entries in an HDR pair 29
group option, of sglhosts file 23

HashSet class 89, 89, 90
hasOutParameter() method 48
HCL OneDB
JDBC Driver
5
connection pools, using with 199
HDR
group entry 29
HDR pair 29
Hexadecimal format, converting between 118
Hexadecimal string format 118
High-Availability Data Replication
checking read-only status 30
environment variables for 26, 28
example programs 212

IFMX_CPM_ENABLE_SWITCH_HDRPOOL 200

retrying connections 31
specifying secondary servers 26, 28
with connection pooling 202
High-availability server connections
demo for 25
JDBC 25
Hold cursors 42
Host names, setting
in database URLs 12
in DataSource objects 9
host property 15
HP-UX
PTHREAD_COMPAT_MODE 204

IBM xml4j parser 69

IFMX_CPM_AGELIMIT environment
variable 200
IFMX_CPM_ENABLE_SWITCH_HDRPOOL
environment variable 200
IFMX_CPM_INIT_POOLSIZE environment
variable 200
IFMX_CPM_MAX_CONNECTIONS environment
variable 200
IFMX_CPM_MAX_POOLSIZE environment
variable 200
IFMX_CPM_MIN_AGELIMIT environment
variable 200
IFMX_CPM_MIN_POOLSIZE environment
variable 200
IFMX_CPM_SERVICE_INTERVAL environment
variable 200
IfmxCallableStatement interface 49
IfmxStatement class 67
IfmxUdtSQLInput interface 135, 136
IfmxUdtSQLOutput interface 135, 137
IFX_AUTOFREE environment variable 197, 205
IFX_BATCHUPDATE_PER_SPEC environment
variable 43
IFX_CODESETLOB environment variable 188
IFX_LOB_XFERSIZE environment variable 133
IFX_USEPUT environment variable 44
IfxBblob class 114
IfxBblob() constructor 114
IfxCblob class 114
IfxCblob interface 114
IfxCblob() constructor 114
IfxConnectionEventListener class 5
IFXHOST environment variable 12
IFXHOST_SECONDARY environment
variable 26, 28
ifxlang.jar file 191
IfxLobDescriptor class 109
IfxLobDescriptor() constructor 109
IfxLocator class 118
IfxLocator object 109

converting to hex format 118

converting to hexadecimal 118
IfxLocator() constructor 109
IfxLocator() method 118
IfxLoClose() method 118
IfxLoCreate() method 110, 110,110, 110
IfxLoOpen() method 110, 114, 114, 134
IfxLoRead() method 114, 116,116, 116, 134
IfxLoRelease() method 118,118,118
IfxLoSeek() method 115
IfxLoSize() method 118
IfxLoTell() method 115
IfxLoTruncate() method 117
IfxLoWrite() method 114, 117
IfxRegisterOutParameter() method 49, 262,
263,263
IfxSetNull() method 49, 262
IfxSetObject() method 184, 219
IfxToDateTimeUnloadString() method

conversion path 240

input parameters 240

method signature 240
IfxToJavaChar() method

input parameters 238

method signature 238
IfxToJavaDataTime() method

conversion path 240

input parameters 240

method signature 240
IfxToJavaDate() method

input parameters 239

method signature 239
IfxToJavaDecimal() method
input parameters 241
method signature 241
IfxToJavaDouble() method
input parameters 241
method signature 241
IfxToJavalnt() method
input parameters 242
method signature 242
IfxToJavalnterval() method
conversion path 242
input parameters 242
method signature 242
IfxToJavalLongBigInt() method
input parameters 243
method signature 243
IfxToJavaLonglInt() method
input parameters 243
method signature 243
IfxToJavaReal() method
input parameters 244
method signature 244
IfxToJavaSmallint() method
input parameters 244
method signature 244
IfxToJavaType class 237
ifxtools.jar file 69, 103
IfxTypes class 219, 223
IfxXADataSource class 5
INFORMIXSERVER_SECONDARY environment
variable 26, 28
initialPoolSize 200
INOUT parameters 45
InputStream interface 78
InputStreamReader() method 187, 187, 189
InputStreamtoDOM() method 71
Inserting DATE values 180, 182
Inserting smart large objects 113
Inserting XML data 70
insertRow() method 262, 262
Inserts, bulk 44
insertsAreDetected() method 56
install 5
int data type 242
INT8 data type 243
INTEGER data type 242
Interfaces
BatchUpdateException 43
CallableStatement 37, 44, 263, 264
Collections 89, 89, 89
ConnectionEventListener 5
Connections 37, 59
DatabaseMetaData 66, 68
DataSource 9
HCL OneDB
classes supporting
5
standard properties 214
Driver 68
DriverManager 4, 8,11, 14
FilelnputStream 78
Files 78
IfmxCallableStatement 49
IfmxUdtSQLInput 136
IfmxUdtSQLOutput 137
IfxCblob 114
InputStream 78
java.sql.Blob 114
List 89

275

PreparedStatement 37, 37, 43, 218, 229,
229,232
ResultSet 37, 40, 197, 229, 229, 229, 229,
232,232
ResultSetMetaData 37
Set 89
SQLData 93, 95, 103, 138, 139
SQLInput 95
Statements 37, 43,197
Struct 93, 98
Types 81, 215
XAConnection 59
XADataSource 5
Internationalization 178, 191
Interval class 83
interval data type 242
INTERVAL data type
binary qualifiers for 83
extensions for 83
in named and unnamed rows 94
Intervaldemo.java example program 89, 205
IntervalDF class 87
IntervalDF() constructor 87
IntervalYM class 85
IntervalYM() constructor 85
invalidAutoCommitThrowError property 15
IP address, setting
in database URLs 12
in DataSource objects 9
IPv6 aware 13
isDefinitelyWriteable() method 56
isHDREnabled() method 30
isReadOnly() method 30, 56, 56
isWriteable() method 56

JAR file, location on server 151
JAR files
for JNDI 23
for LDAP SPI 23
ifxlang.jar 191
ifxtools.jar 103
java 5
Java7
java database connectivity 4
Java database connectivity
driver 5
specification 5
Java naming and directory interface (JNDI)
and the sqglhosts file 23
JAR files for 23
Java virtual machine (JVM) 7
java.io file 178
java.lang.Bignum data type 241
java.sql.Blob interface 114
java.sql.Date data type 239

java.sql.PreparedStatement::setBinaryStream() 190

java.sql.Timestamp data type 240
java.text file 178
java.util file 178
JDBC 5
driver 5
specification 5
SSL connections 33
JDBC 3.0
methods 105
JDBC 3.0 specification
java.sql.Blob interface 108
java.sql.Clob interface 108
JDBC 3.0 Specification compliance 66
JDBC API 5

K

L

JDBC driver, general 4, 4
jdbc logging 193
jdbc tracing 193
json
example 208
IfxBSONObjectDemo.java 208
JSON 39

keepJavaFile() method 149

largebinUDT.java example program 208
last() method 254
LDAP server 9
and HTTP proxy 32
length() method 137
lessThan() method 86, 89

Lightweight directory access protocol (LDAP)

server
administration requirements for 25
and the sqglhosts file 23
JAR files for 23
URL syntax for 23
version requirement 23
Limitations, driver 48
Limitations, server 45
List interface 89
list1.java example program 209
list2.java example program 209
LO handle
in BLOB column 114
in CLOB column 114
Loading
HCL OneDB
JDBC Driver
8
lobBufferSize property 15
LOBCACHE environment variable 78, 132
LOBCACHE property 196
lobCodesetConversionMemory property 15
lobReadonly property 15
Locale class 178
Locales 186
client, specifying 178
database, specifying 178
synchronizing with code sets 178
user-defined 190
LOCALESelect.java example program 205
Locator object 109
Lock
row 130
lockTimeout property 15
locmsg.java example program 191, 205
log4j 193
logging 193
loginRetries property 15
loginTimeout property 15
long data type 243, 243
LVARCHAR data type 216, 229, 229, 232

manualUDT.java example program 208

map.get() method 95

map.put() method 95, 95

Mapping
for CallableStatement parameters 49
opaque data types 138

maxIdleTime 200

maxPoolSize 200

maxStatements 200

Message class 65

Metadata, accessing database 66
metadataReplicationColumn property 15
metadataUppercaseValues property 15
Methods

absolute() 42, 251, 254

activateHDRPool_Primary() 202

activateHDRPool_Secondary() 202

addBatch() 56

addProp() 213

afterLast() 254

beforeFirst() 251, 254

close() 41,41, 41,197

commit() 59

connect() 250

createJar() 150

createUDRs() 154

createUDT() 150

createUDTClass() 150

current() 254

DatabaseMetaData 52

DatabaseMetaData.supportsNamedParameters() 51

deleteRow() 262
deleteRow(), and scroll cursors 42
deletesAreDetected() 56
dispValue() 80

equals() 86, 89

execute() 40, 56, 252
executeBatch() 252
executeQuery() 37, 48, 48, 67
executeUpdate() 78, 252
executeXXX() 250

first() 251, 254

forName() 8
fromHexString() 118
fromString() 86, 89
getAlignment() 148
getArray() 89, 93, 93, 258
getAsciiStream() 80, 80, 113
getAttributes() 99, 258
getAutoAlignment() 137
getAutoFree() 67, 197
getBigSerial() 82
getBinaryStream() 80, 80, 80, 113
getBlob() 113, 134, 261
getBytes() 113,187,189
getCatalogName() 56
getCatalogs() 66
getClassName() 156
getClob() 113, 134, 261
getConnection() 11, 14, 14, 250
getCurrentPosition() 137
getDatabaseName() 214
getDataSourceName() 214
getDate() 184, 184, 184, 184
getDescription() 214
getDriverMajorVersion() 68
getDriverMinorVersion() 68
getDsProperties() 213
getEndCode() 84
getErrorCode() 64
getFetchSize() 56
getFieldCount() 156, 156
getFieldLength() 156
getFieldName() 84, 156
getFieldType() 156
getFieldTypeName() 156
getHDRtype() 30
getlfxTypeName() 84
getinputSource() 71
getJarFileSQLName() 156
getJDBCVersion() 68

276

getLength() 84, 148
getLocator() 114, 134
getMajorVersion() 68
getMessage() 64
getMetaData() 48
getMinorVersion() 68
getMonths() 86
getNanoSeconds() 89
getNextException() 65
getObject() 89, 93, 95, 98, 99
getPassword() 214
getPortNumber() 214
getProcedureColumns() 56
getProp() 213

getQualifier() 84

getRef() 56

getResultSet() 252, 256
getSavepointld() 59
getSavepointName() 59
getScale() 84
getSchemaName() 56
getSchemas() 66

getSeconds() 89

getSerial() 81

getSerial8() 81
getServerName() 214
getSQLName() 156, 156
getSQLState() 64
getSQLStatementOffset() 65
getSQLTypeName() 95, 95, 98, 99, 99, 105,
138

getStartCode() 84

getString() 113, 180, 182, 187, 189
getTableName() 56

getText() 187

getTimestamp() 184, 184, 184,184
getTypeMap() 93, 95, 95
getUDR() 154
getUDRSQLname() 154
getUnicodeStream() 56
getUpdateCount() 252, 256
getUpdateCounts() 43
getUser() 214

getWarnings() 48

getXXX() 37, 44, 229, 229, 229, 229, 232,
232,262

greaterThan() 86, 89
hasOutParameter() 48
IfxLocator() 118

IfxLoClose() 118

IfxLoCreate() 110,110,110, 110
IfxLoOpen() 110, 114,114, 134
IfxLoRead() 114, 116,116,116, 134
IfxLoRelease() 118,118,118
IfxLoSeek() 115

IfxLoSize() 118

IfxLoTell() 115

IfxLoTruncate() 117

IfxLoWrite() 114,117
IfxRegisterOutParameter() 49, 262, 263,
263

IfxSetNull() 49, 262
IfxSetObject() 184, 219
InputStreamReader() 187, 187, 189
InputStreamtoDOM() 71
insertRow() 262, 262
insertsAreDetected() 56
isDefinitelyWriteable() 56
isHDREnabled() 30
isReadOnly() 30, 56
isWriteable() 56

keepJavaFile() 149

last() 254

length() 137

lessThan() 86, 89

map.get() 95

map.put() 95, 95
moveToCurrentRow() 262
moveTolnsertRow() 262
next() 37, 80,197
othersDeletesAreVisible() 56
othersinsertsAreVisible() 56
othersUpdatesAreVisible() 56
OutputStreamWriter() 187, 187, 189
ownDeletesAreVisible() 56
ownlnsertsAreVisible() 56
ownUpdatesAreVisible() 56
prepareStatement() 37
previous() 254

put() 14,197

read() 80

readArray() 78
readAsciiStream() 138
readBinaryStream() 138
readByte() 94

readBytes() 136, 138
readCharacterStream() 78, 94, 138
readObject() 94, 94, 138
readProperties() 213
readRef() 78,94, 138
readSQL() 95, 95,103, 138
readString() 136, 138
refreshRow() 56
registerOutParameter() 44, 262, 263
relative() 254
releaseSavepoint() 59
removeJar() 155, 155
removeProperty() 213
removeUDR() 155, 155
rollbackSavepoint() 59
rowDeleted() 56
rowInserted() 56
rowUpdated() 56
scrubConnection() 203
set() 86, 89

setAlignment() 148
setArray() 89, 221
setAsciiStream() 78, 78, 218, 221
setAutoAlignment() 137
setAutoCommit() 59
setAutoFree() 67, 197
setBigDecimal() 75, 77, 221
setBinaryStream() 78, 78, 218, 221
setBlob() 221

setBoolean() 221

setByte() 221

setBytes() 221

setCatalog() 56
setCharacterStream() 221
setClassName() 149
setClob() 221
setCurrentPosition() 137
setDatabaseName() 214
setDataSourceName() 214
setDate() 221
setDescription() 214
setDouble() 221
setExplicitCast() 151
setFetchDirection() 254
setFetchSize() 56, 254
setFieldCount() 147
setFieldLength() 147

setFieldType() 147
setFieldTypeName() 147
setFloat() 221
setimplicitCast() 151
setint() 37, 221
setJarFileSQLName() 148, 153
setJarTmpPath() 151
setLength() 148
setLong() 221
setMaxFieldSize() 56
setMaxRows() 254
setNull() 48, 221
setObject() 75, 77, 89, 98, 184
setPassword() 214
setPortNumber() 214
setQualifier() 86, 89
setReadOnly() 56
setRef() 56
setSavepoint() 59
setServerName() 214
setShort() 221
setSQLName() 148, 148, 149, 149, 267, 267
setString() 159, 184, 221
setTime() 221
setTimestamp() 221
setTypeMap() 89, 95
setUDR() 154
setUDTExtName() 139
setUnicodeStream() 56
setUser() 214
setXXX() 48, 159, 219, 225, 225, 225, 228,
228,228
skipBytes() 137
SQLInput() 94, 135
SQLOutput() 94, 135
StringtoDOM() 71
toBytes() 118
toHexString() 118
toString() 86, 89
unsupported
for distinct data types 78
for named rows 94
for opaque data types 138
for querying the database 56
updateObject() 184, 184, 184, 184
updateRow() 262
updateRow(), and scroll cursors 42
updatesAreDetected() 56
updateString() 184, 184
writeArray() 78
writeAsciiStream() 138
writeBinaryStream() 138
writeByte() 94
writeBytes() 137, 138
writeCharacterStream() 78, 94, 138
writelnt() 95
writeObject() 94, 95, 138, 256
writeProperties() 213
writeRef() 78, 94, 138
writeSQL() 95, 95, 95, 103, 138
writeString() 137, 138
writeXXX() 95
XMLtolnputStream 70
XMLtoString() 70
Methods, DatabaseMetaData 66
minPoolSize 200
mitypes.h file 138
moveToCurrentRow() method 262
moveTolnsertRow() method 262
Multiple OUT parameters 45
MultiRowCall.java example program 205

277

myMoney.java example program 208
N

Name-value pairs of database URL 12
Named notation 51
Named parameters
and stored procedures 52
in a CallableStatement 51
Named row data types
examples of
creating a Struct class for 99
using the SQLData interface 95
using the Struct interface 99
extensions for 93
generating using the ClassGenerator
utility 103
intervals and collections in 94
opaque data type columns in 93
unsupported methods for 94
using the SQLData interface for 95
using the Struct interface for 98
Named row example programs 209
Native SQL date formats 180, 182
NEWCODESET environment variable 178
NEWCODESET property 190
NEWLOCALE environment variable 178
NEWLOCALE property 190
NEWNLSMAP property 191
next() method 37, 80, 197
Nonnative SQL date formats 180, 182

0

Objects
IfxLocator 109
Locator 109

ODBC 4

ONEDB_SERVER environment variable 9, 12

OneDBDataSource class 5,213
OneDBDriver class 8
onspaces utility 121
Opaque data types
creating 139
definition of 135
examples of
defining a class for 158
large objects 161
retrieving data 160
examples of creating 163
mappings for 138
steps for creating 141
Type caching information 105, 138
unsupported methods 138
Opaque type
SQL name 149
Opaque types
and transactions 157
creating 139

OptimizedSelect.java example program 205

OPTOFC environment variable 197, 205
optOFC property 15

optofc.java example program 197, 205
othersDeletesAreVisible() method 56
othersinsertsAreVisible() method 56
othersUpdatesAreVisible() method 56
OUT parameter 45

OUT parameter example programs 44

OutputStreamWriter() method 187, 187, 189

Overloaded UDRs

with a CallableStatement 55
Overloaded UDRs, removing 155
ownDeletesAreVisible() method 56
ownlnsertsAreVisible() method 56

ownUpdatesAreVisible() method 56
P

padVarchar property 15
ParameterMetaData class 52
Parameters
named in a CallableStatement 51
retrieving names 52
PASSWORD connection property 9, 12
password property 15
Passwords
setting in DataSource object 9
URL syntax of 12
Performance 195
PORT connection property 9
Port numbers, setting
in database URLs 12
in DataSource objects 9
in sqlhosts file or LDAP server 23
port property 15
PORTNO environment variable 12
PORTNO_SECONDARY environment
variable 26, 28
Precedence rules for date formats 185
PREPARE statements, executing multiple 43
PreparedStatement interface 37, 37, 43, 218,
229,229,232
PreparedStatement.setXXX() methods
support for
HCL OneDB
extended data types
225,228
support for nonextended data types 225,
225
preparedStatementCacheSize property 15
prepareStatement() method 37
previous() method 254
Properties 15
LOBCACHE 196
NEWCODESET 190
NEWLOCALE 190
NEWNLSMAP 191
specifying 14
Properties class 14
Property
appendlsamCodeToSqlException 15
autoFreeCursors 15
batchinsertPreprocessing 15
BIG_autoCaseSchema_BUF_SIZE 15
certificateVerification 15
CLIENT_LOCALE 15
commitBeforelsolationChange 15
connectionCleanerDelay 15
customNLSMap 15
database 15
DB_LOCALE 15
DBANSIWARN 15
defaultCursorHoldability 15
delimident 15
encrypt 15
encryptionProtocols 15
GL_DATETIME 15
host 15
invalidAutoCommitThrowError 15
lobBufferSize 15
lobCodesetConversionMemory 15
lobReadonly 15
lockTimeout 15
loginRetries 15
loginTimeout 15
metadataReplicationColumn 15

metadataUppercaseValues 15
optOFC 15
padVarchar 15
password 15
port 15
preparedStatementCacheSize 15
protocolTraceFile 15
queryBufferSize 15
removeLobTempFilesOnRSClose 15
replaceUnmappableCharacterSequences 15
secondaryHost 15
secondaryPort 15
secondaryServerName 15
secondarySwitch 15
serverName 15
sessionVariables 15
socketKeepAlive 15
socketTimeout 15
SQLH_LOC 15
SQLH_TYPE 15
tempDir 15
transactionlsolationLevel 15
trimTrailingSpaces 15
trustedContext 15
trustStore 15
trustStorePassword 15
udtCache 15
uppercaseMetaDataRSColumnNames 15
user 15
Property lists 14
property udtCache 105
PropertyConnection.java example
program 205
propertyCycle 200
protocolTraceFile property 15
Proxy server
example programs 210
pthread library
HP-UX 204
PTHREAD_COMPAT_MODE
environment variable 204
put() method 14, 197

Qualifiers, binary, for INTERVAL data types 83
Query plans, reoptimize 38

queryBufferSize property 15

Querying the database 37

Read-only connections 56

read() method 80

readArray() method 78
readAsciiStream() method 138
readBinaryStream() method 138
readByte() method 94

readBytes() method 136, 138
readCharacterStream() method 78, 94, 138
readObject() method 94, 94, 138
readProperties() method 213
readRef() method 78, 94, 138
readSQL() method 95, 95, 103, 138
readString() method 136, 138

real data type 244

REAL data type 244

Ref type 215

refreshRow() method 56
Registering

HCL OneDB

JDBC Driver

8

registerOutParameter() method 44, 262, 263

278

type mappings for 49
relative() method 254
releaseSavepoint() method 59
removeJar() method 153, 155
removeLobTempFilesOnRSClose property 15
removeProperty() method 213
removeUDR() method 155, 155
removeUDT() method 153
Reoptimize queries 38
replaceUnmappableCharacterSequences
property 15
Restrictions, driver 48
Restrictions, server 45
ResultSet class 180, 182
ResultSet interface 37, 40, 197, 229, 229, 229,
229,232,232
ResultSet.getXXX() method

support for

HCL OneDB

extended data types

229

support for nonextended data types 229
ResultSetMetaData interface 37
Retrieving

database names 66

date values 180, 182

HCL OneDB

error message text

65

syntax error offset 65

user names 66

version information 68

XML data 71
Retrieving parameter names 52
rleapyear() method

method signature 245
ROLLBACK WORK statement 130
rollback(savepoint) method 59
row3.java example program 209
rowDeleted() method 56
rowlInserted() method 56
rowUpdated() method 56
RSMetaData.java example program 205

Savepoint objects 59
SAX (Simple API for XML) 68
SBSPACENAME configuration parameter 121,
122
sbspaces

metadata area 125

name of 122,122

user-data area 125
Schemas,
HCL OneDB
JDBC Driver interpretation
66
Scroll cursors 41
SCROLL_INSENTIVE ResultSets 40
Scrollable Result Sets 40
ScrollCursor.java example program 42, 205
scrubConnection() method 203
Search, anonymous, of sglhosts
information 23
secondaryHost property 15
secondaryPort property 15
secondaryServerName property 15
secondarySwitch property 15
Secure Sockets Layer 33
Selecting smart large objects 113
SERIAL columns and scroll cursors 42

SERIAL data type 81

Serial.java example program 205
SERIALS data type 81

Server restrictions, limitations 45
serverName property 15

Service provider interface (SPI) 23
sessionVariables property 15

Set interface 89

set() method 86, 89
setAlignment() method 148
setArray() method 89, 221
setAsciiStream() method 78, 78, 218, 221
setAutoAlignment() method 137
setAutoCommit() method 59
setAutoFree() method 67, 197
setBigDecimal() method 75, 77, 221
setBinaryStream() method 78, 78, 218, 221
setBlob() method 221

setBoolean() method 221

setByte() method 221

setBytes() method 221
setCatalog() method 56
setCharacterStream() method 221
setClassName() method 149
setClob() method 221
setCurrentPosition() method 137
setDatabaseName() method 214
setDataSourceName() method 214
setDate() method 221
setDescription() method 214
setDouble() method 221
setExplicitCast() method 151
setFetchDirection() method 254
setFetchSize() method 56, 254
setFieldCount() method 147
setFieldLength() method 147
setFieldName method 147
setFieldType() method 147
setFieldTypeName() method 147
setFloat() method 221
setimplicitCast() method 151
setint() method 37, 221
setJarFileSQLName() method 146, 148, 153
setJarTmpPath() method 151
setLength() method 148

setLong() method 221
setMaxFieldSize() method 56
setMaxRows() method 254
setNull() method 48, 221
setObject() method 75, 77, 89, 98, 184
setPassword() method 214
setPortNumber() method 214
setQualifier() method 86, 89
setReadOnly() method 56

setRef() method 56

setSavepoint() method 59
setSavepointUnique() method 59
setServerName() method 214
setShort() method 221
setSQLname() method 146

setSQLName() method 148, 149, 149, 267, 267

setString() method 159, 184, 221
setTime() method 221
setTimestamp() method 221
Setting
autocommit 59
CLASSPATH environment variable 7
properties 14
setTypeMap() method 89, 95
setUDR() method 139, 154, 157, 265, 266
setUDTExtName() method 139

setUnicodeStream() method 56

setup.std file 103

setUser() method 214

setXXX() method 48, 159, 219, 219, 225, 225,
225,228, 228,228

short data type 244

SimpleCall.java example program 205

SimpleConnection.java example program 205

SimpleSelect.java example program 205
skipBytes() method 137
SMALLINT data type 244
Smart large object example programs 208,
208
Smart large objects
access mode 130
attributes 124
buffering mode 124
byte data in 114
character datain 114
closing 130
creating 108
data integrity 127
estimated size 122
extent size 122,122, 122
inserting 113
last-access time 124, 126, 127,129, 129
last-change time 129, 129
last-modification time 129, 129
locking 124
logging 127
logging of 124, 125,127
maximum I/0 block size 122
metadata 125, 125, 126, 129
minimum extent size 122
next-extent size 122, 122
sbspaces 122, 122
selecting 113
size of 121,122,122,129, 129
transactions with 125, 130, 130
unlocking 130, 130
user data 126, 129, 129
Smart large objects, accessing 105
Smart large objects, implementation
classes
IfxBblob 108
IfxCblob 108
IfxLobDescriptor 108
IfxLocator 108
IfxLoStat 108
IfxSmartBlob 108
smart trigger 192
Smart-large-object lock
exclusive 127,130, 130, 132
lock-all 130
releasing 130
share-mode 130, 130
update 130
update mode 130
Smart-large-object support in IDS 105
socketKeepAlive property 15
socketTimeout property 15
SQL date formats
native 180, 182
nonnative 180, 182
SQL name 146, 149, 152
SQLCODE messages 65
SQLData interface 93, 95, 103, 138, 139
SQLData objects
Type caching information 105, 138
SQLException class 64, 64, 65, 225, 228, 229,
229,232

279

T

SQLH_LOC property 15
SQLH_TYPE property 9, 15
sqlhosts file

administration requirements for 25

group option 23

reading 23

URL syntax for 23
SQLIDEBUG tracing 193
SQLInput interface 95
SQLInput() method 94, 135
SQLOutput() method 94, 135
SQLSTATE values 64

SRV_FET_BUF_SIZE environment variable 195

SSL protocol 33
sslConnection property 33
Statement interface 37, 43,197
Statement Local Variables 44
Statement ResultSet Streams 39
Statement Streams 39
Status information
definition of 129
last-access time 129, 129
last-change time 129, 129
last-modification time 129, 129
size 129,129
Storage characteristics
attribute information 124
column-level 122, 124
definition of 119
disk-storage information 122
system default 121, 122, 124
system-specified 122, 124
user-specified 122,124
Stored procedures
and named parameters 52
Streams ResultSet 39
string data type 238
compatible format with SQL LOAD/
UNLOAD 240
Strings, representing dates using 180
StringtoDOM() method 71
Struct interface 93, 98
Struct objects
Type caching information 105, 138
Structured type (Struct) 93
Sun JDBC 3.0 properties 200
Supported environment variables 178
Syntax error offset, retrieving 65
Syntax of database URLs 12
sysmaster database 66
systables catalog
and code set conversion 186
and metadata 66

tempDir property 15
TEXT data type
caching 196
code set conversion 188
code set conversion for 187
examples for
data inserts and updates 78
data retrieval 80
extensions for 78
TextConv.java example program 205
TextType.java example program 78, 80, 205
Threads, multiple, and concurrency 41
toBytes() method 118
toHexString() method 118
toString() method 86, 89
Methods

toString() 118 updateRow() method 42, 262

tracing 193 Updates, batch 43
Transaction management updatesAreDetected() method 56
smart large objects and 125, 130, 130 updateString() method 184, 184
transactionlsolationLevel property 15 uppercaseMetaDataRSColumnNames
Transactions property 15
beginning 130 URLs
committing 130 database 11,12
distributed 5, 8, 9, 59 syntax for LDAP server and sqlhosts file 23
handling 59 USER connection property 9, 12
rolling back 130 User names, setting
Transactions, creating opaque types and in database URLs 12
UDRs 157 in DataSource object 9
TreeSet class 90 user property 15
trustedContext property 15 User-defined routines
trustStore property 15 and named row parameters 98
trustStorePassword property 15 and transactions 157
TU_DAY variable 83, 87 creating 139
TU_F1 variable 83 definition of 135, 145
TU_F2 variable 83 examples of creating 176
TU_F3 variable 83 User-defined routines, steps for creating 144
TU_F4 variable 83 Using JDBC
TU_F5 variable 83, 87 in an application 7
TU_FRAC variable 83 Utilities
TU_HOUR variable 83 ClassGenerator 103
TU_MINUTE variable 83 jar7
TU_MONTH variable 83 \V/
TU_SECOND variable 83
TU_YEAR variable 83 Variz?bles for binary qualifiers 83
Tuple buffer 195 Vers!on class 68
Version, of

Type caching information 105, 138

Types interface 81,215 HCL OneDB
JDBC Driver
U 68
UDR Manager w
example programs 213
UDR. 75 widenByte method
UDRManager class 135, 139 method signature 245
UDRMetaData class 135, 139 writeArray() method 78
UDT Manager writeAsciiStream() method 138
example programs 213 writeBinaryStream() method 138
udt_d1.java example program 208 WriteByte() method 94
udt_d2.java example program 208 writeBytes() method 137, 138
udt_d3.java example program 208 writeCharacterStream() method 78, 94, 138
UDT. 75 writelnt() method 95
udtCache property 15, 105 writeObject() method 94, 95, 138, 256
UDTManager class 135 writeProperties() method 213
UDTMetaData class 135 writeRef() method 78, 94, 138
Unicode writeSQL() method 95, 95, 95, 103, 138
and internationalization APIs 178 writeString() method 137, 138
and the client code set 187 writeXXX() method 95
and the database code set 186 X
Unique names XA (distributed transactions) 5, 8, 9, 59

for stored procedures and named
parameters 52
Unnamed row data types
examples of
creating a Struct class for 99
using the Struct interface 99
extensions for 93

intervals and collections in 94 setting up environment for 69
using the Struct interface for 98 XMLtolnputStream() method 70

Unsuppprt.ed methods XMLtoString() method 70
for distinct data types 78

for named rows 94

for opaque data types 138

for querying the database 56
UpdateCursor1.java example program 42, 205
UpdateCursor2.java example program 42, 205
UpdateCursor3.java example program 42, 205
updateObject() method 184, 184, 184, 184

XAConnection interface 59
XADataSource interface 5
xerces parser 69
xerces.jar file 69
XML documents
example programs 211
examples 72

280

	OneDB JDBC Driver Programmer's Guide
	Contents
	Chapter 1. HCL OneDB™ JDBC Driver Guide
	Getting started
	What is a JDBC driver?
	Obtaining the JDBC Driver

	HCL OneDB™ JDBC Driver
	Classes implemented in HCL OneDB™ JDBC Driver
	HCL OneDB™ classes that implement Java™ interfaces
	HCL OneDB™ classes that extend the JDBC specification

	Using the driver in an application
	UNIX™
	Windows™

	Connect to the database
	Loading the HCL OneDB™ JDBC Driver
	A DataSource object
	Specify connection information
	Connection Properties
	High-availability data replication
	Example: Use of a DataSource object in an example program
	Example: Setting parameters for a OneDBDataSource object using methods

	The DriverManager.getConnection() method
	Format of database URLs
	IP address in connection URLs

	Specify Connection Properties

	HCL OneDB™ JDBC Driver properties
	Code example lockTimeout property
	Code example transactionIsolationLevel property

	Dynamically reading the HCL OneDB™ sqlhosts file
	Connection property syntax
	Administration requirements

	Connections to the servers of a high-availability cluster
	Properties for connecting to high-availability cluster servers through HCL OneDB™ Connection Managers
	Example 1: Connecting to a high-availability cluster through the HCL OneDB™ Connection Manager
	Example 2: Connecting to a high-availability cluster through HCL OneDB™ Connection Managers

	Properties for connecting to high-availability cluster servers through SQLHOST file group entries
	Example: Connecting to the primary server of a high-availability cluster through SQLHOST file group entries

	Properties for connecting directly to an HDR pair of servers
	Example: Connecting to an HDR pair of servers

	Checks for read-only status of high-availability secondary servers
	Connection retry attempts to HDR secondary servers
	Specify where LDAP lookup occurs

	Specify sqlhosts file lookup

	Encryption options
	Connecting JDBC applications with SSL
	JDBC sample for SSL connection

	PAM authentication method
	PAM in JDBC

	Perform database operations
	Query the database
	Example of sending a query to the HCL OneDB™ database
	Reoptimize queries
	Returning Query Results as Java Streams with BSON
	Data types supported

	Result sets
	Scrollable result set for multiple rows

	Deallocate resources
	Execute across threads
	Scroll cursors
	Scroll sensitivity
	Client-side scrolling
	Result set updatability

	Hold cursors

	Update the database
	Perform batch updates
	SQL statements and batch updates
	Return value from Statement.executeBatch() method

	Perform bulk inserts

	Parameters, escape syntax, and unsupported methods
	The CallableStatement OUT parameters
	Server and driver restrictions and limitations
	Server restrictions
	Driver enhancement
	Driver restrictions and limitations
	IN and OUT parameter type mapping

	Named parameters in a CallableStatement
	Requirements and restrictions for named parameters in a CallableStatement
	Verify support for named parameters in a CallableStatement

	Retrieve parameter names for stored procedures
	Named parameters and unique stored procedures
	Example of number of named parameters equals the number of arguments
	Example of number of named parameters Is less than the number of arguments

	Named parameters and overloaded stored procedures
	Procedure 1
	Procedure 2

	The escape syntax
	Unsupported methods and methods that behave differently

	Handle transactions
	Autocommit
	Logged Database
	ANSI Databases
	Non-logged Databases

	Transactions with Large Objects
	Autocommit is enabled
	Autocommit is disabled

	Transactions with XA
	Transactions with Savepoints

	Handle errors
	Handle errors with the SQLException class
	Retrieve the syntax error offset
	Catch RSAM error messages

	Handle errors with the com.informix.jdbc.Message class

	Access database metadata
	Other HCL OneDB™ extensions to the JDBC API
	The Auto Free feature
	Obtaining driver version information

	Store and retrieve XML documents
	Set up your environment to use XML methods
	Set your CLASSPATH
	Specify a parser factory

	Insert data
	Retrieve data
	Insert data examples
	The XMLtoString() examples
	The XMLtoInputStream() example

	Retrieve data examples
	The StringtoDOM() example
	The InputStreamtoDOM() example
	The getInputSource() examples

	Work with HCL OneDB™ types
	Distinct data types
	Insert data examples
	Retrieve data example
	Unsupported methods

	BYTE and TEXT data types
	Cache large objects
	Example: Inserting or updating data
	Example: Selecting data

	SERIAL and SERIAL8 data types
	BIGINT and BIGSERIAL data types
	INTERVAL data type
	The Interval class
	Variables for binary qualifiers
	Interval methods

	The IntervalYM class
	The IntervalYM constructors
	The IntervalYM methods

	The IntervalDF class
	The IntervalDF constructors
	The IntervalDF methods

	Interval example

	Collections and arrays
	Collection examples
	Array example

	Named and unnamed rows
	Interval and collection support
	Unsupported methods
	The SQLData interface
	SQLData examples

	The Struct interface
	Struct examples

	The ClassGenerator utility
	Simple named row example
	Nested named row example

	Type cache information
	Smart large object data types
	Smart large objects in the database server
	Smart large objects in a client application
	Creating smart large objects
	Create an IfxLobDescriptor object
	Create an IfxLocator object
	Create an IfxSmartBlob object
	Inserting a smart large object into a column

	Accessing smart large objects

	Perform operations on smart large objects
	Open a smart large object
	Position within a smart large object
	Read data from a smart large object
	Write data to a smart large object
	Truncate a smart large object
	Measure a smart large object
	Close and release a smart large object
	Convert IfxLocator to a hexadecimal string

	Work with storage characteristics
	System-specified storage characteristics
	Obtain information about storage characteristics
	Example of setting sbspace characteristics

	Work with disk-storage information
	Work with logging, last-access time, and data integrity
	Logging
	Last-access time
	Data integrity

	Changing the storage characteristics
	Set create flags

	Work with status characteristics
	Work with locks
	Byte-range locking

	Cache large objects
	Avoid errors transferring large objects
	Smart large object examples
	Create a smart large object
	Insert data into a smart large object
	Retrieve data from a smart large object

	Work with opaque types
	The IfmxUDTSQLInput interface
	Read data
	Position in the data stream
	Set or obtain data attributes

	The IfmxUDTSQLOutput interface
	Map opaque data types
	Type cache information
	Unsupported methods
	Creating opaque types and UDRs
	Overview of creating opaque types and UDRs
	Preparing to create opaque types and UDRs
	Creating opaque types
	Creating an opaque type from an existing Java™ class
	Creating an opaque type without an existing Java™ class

	Creating a UDR
	Requirements for the Java™ class
	SQL names
	Specify characteristics for an opaque type
	Specify field count
	Specify additional field characteristics
	Specify length
	Specify alignment
	Alignment values
	Specify SQL names
	Specify the Java™ class name
	Specifying Java™ source file retention

	Creating the JAR and class files
	Create the .class and .java files
	Create the .jar file

	Send the class definition to the database server
	Specify deployment descriptor actions
	Specify a JAR file temporary path

	Creating an opaque type from existing code
	The setXXXCast() methods
	The setSupportUDR() and setUDR() methods

	Remove opaque types and JAR files
	Create UDRs
	Remove UDRs and JAR files
	Remove overloaded UDRs

	Obtain information about opaque types and UDRs
	The getXXX() methods in the UDTMetaData class
	The getXXX() methods in the UDRMetaData class

	Execute in a transaction

	Examples
	Class definition
	Insert data
	Retrieve data
	Smart large objects within an opaque type
	Create an opaque type from an existing Java™ class with UDTManager
	Create an opaque type using default support functions
	The opaque type

	Create an opaque type using support functions you supply
	The opaque type

	Create an opaque type without an existing Java™ class
	Create UDRs with UDRManager

	Globalization and date formats
	Support for Java™ and globalization
	Support for HCL OneDB™ GLS variables
	Support for DATE end-user formats
	The GL_DATE variable
	The DBDATE variable (deprecated)
	The DBCENTURY variable

	Precedence rules for end-user formats
	Support for code-set conversion
	Unicode to database code set
	Unicode to client code set
	Connect to a database with non-ASCII characters
	Code-set conversion for TEXT and CLOB data types
	Convert with the IFX_CODESETLOB environment variable
	Convert with Java™ methods

	Code-set conversion for BLOB and BYTE data types

	User-defined locales
	Connect with the NEWLOCALE and NEWCODESET properties
	Connect with the NEWNLSMAP property

	Support for globalized error messages

	Smart trigger feature
	Detach trigger

	Tuning and troubleshooting
	Debug your JDBC API program
	JDBC Tracing Using Logging
	SQLIDEBUG

	Manage performance
	Manage the fetch buffer size
	Manage memory for large objects
	Reduce network traffic
	Bulk inserts
	Statement Caching
	Enabling Statement Caching
	Explicitly Statement Caching
	Disabling Caching for a single Statement
	Example

	A connection pool
	Deploying a ConnectionPoolDataSource object
	Tune the Connection Pool Manager
	High-Availability Data Replication with connection pooling
	Clean pooled connections
	Manage connections

	Avoid application hanging problems (HP-UX only)

	Appendixes
	Sample code files
	Summary of available examples
	Examples in the demo directory
	Examples in the basic directory
	Examples in the bson directory
	Examples in the clob-blob directory
	Examples in the udt-distinct directory
	Examples in the complex-types directory
	Examples in the proxy directory
	Examples in the connection-pool directory
	Examples in the xml directory
	Examples in the hdr directory

	Examples in the tools directory
	Examples in the udtudrmgr directory

	DataSource extensions
	Read and write properties
	Get and set standard properties

	Mapping data types
	Data type mapping between HCL OneDB™ and JDBC data types
	Data type mapping between extended types and Java™ and JDBC types
	Data type mapping between C opaque types and Java™

	Data type mapping for PreparedStatement.setXXX() extensions
	The mapping extensions
	The extensions for opaque types
	The setBindColType() methods
	The setBindColIfxType() methods
	The clearBindColType() method
	Prebinding example

	Other mapping extensions

	The IfxTypes class
	Extension summary
	Nonextended data types
	Numeric JDBC API data types
	Character and chronological JDBC API data types

	HCL OneDB™ extended data types

	Data type mapping for ResultSet.getXXX() methods
	Nonextended data types
	Numeric JDBC API data types
	Character and chronological JDBC API data types

	HCL OneDB™ extended data types

	Data type mapping for UDT manager and UDR manager
	Mapping for casts
	Mapping for field types
	Field lengths and date-time data

	Convert internal HCL OneDB™ data types
	The IfxToJavaType class
	The convertDateToDays() method
	Method signature
	Input parameter

	The convertDaysToDate() method
	Method signature
	Input parameter

	The IfxToJavaChar() method
	Method signature
	Input parameters

	The IfxToJavaDate() method
	Method signature
	Input parameters

	The IfxToJavaDateTime() method
	Method signature
	Input parameters

	The IfxToDateTimeUnloadString() method
	Method signature
	Input parameters

	The IfxToJavaDecimal() method
	Method signature
	Input parameters

	The IfxToJavaDouble() method
	Method signature
	Input parameters

	The IfxToJavaInt() method
	Method signature
	Input parameters

	The IfxToJavaInterval() method
	Method signature
	Input parameters

	The IfxToJavaLongBigInt() method
	Method signature
	Input parameters

	The IfxToJavaLongInt() method
	Method signature
	Input parameters

	The IfxToJavaReal() method
	Method signature
	Input parameters

	The IfxToJavaSmallInt() method
	Method signature
	Input parameters

	The rleapyear() method
	Method signature

	The widenByte() method
	Method signature

	Error messages
	-79700
	-79702
	-79703
	-79704
	-79705
	-79706
	-79707
	-79708
	-79709
	-79710
	-79711
	-79712
	-79713
	-79714
	-79715
	-79716
	-79717
	-79718
	-79719
	-79720
	-79721
	-79722
	-79723
	-79724
	-79725
	-79726
	-79727
	-79728
	-79729
	-79730
	-79731
	-79732
	-79733
	-79734
	-79735
	-79736
	-79737
	-79738
	-79739
	-79740
	-79741
	-79742
	-79744
	-79745
	-79746
	-79747
	-79748
	-79749
	-79750
	-79755
	-79756
	-79757
	-79758
	-79759
	-79760
	-79761
	-79762
	-79764
	-79765
	-79766
	-79767
	-79768
	-79769
	-79770
	-79771
	-79772
	-79774
	-79775
	-79776
	-79777
	-79778
	-79780
	-79781
	-79782
	-79783
	-79784
	-79785
	-79786
	-79788
	-79789
	-79790
	-79792
	-79793
	-79794
	-79795
	-79796
	-79797
	-79798
	-79799
	-79800
	-79801
	-79802
	-79803
	-79804
	-79805
	-79806
	-79807
	-79808
	-79809
	-79811
	-79812
	-79814
	-79815
	-79816
	-79817
	-79818
	-79819
	-79820
	-79821
	-79822
	-79823
	-79824
	-79825
	-79826
	-79827
	-79828
	-79829
	-79830
	-79831
	-79834
	-79836
	-79837
	-79838
	-79839
	-79840
	-79842
	-79843
	-79844
	-79845
	-79846
	-79847
	-79848
	-79849
	-79850
	-79851
	-79852
	-79853
	-79854
	-79855
	-79856
	-79857
	-79858
	-79859
	-79860
	-79861
	-79862
	-79863
	-79864
	-79865
	-79868
	-79877
	-79878
	-79879
	-79880
	-79881

	Index

