
HCL OneDB 2.0.1

Getting Started

ii

Contents
Chapter 1. Getting Started.. 3

Introduction to HCL OneDB™...3
What's new in HCL OneDB™ 2.0.1...................................3
HCL OneDB Editions.. 4
Installing HCL OneDB™ ...4
Migrating to HCL OneDB™ 2.0.0.0.................................. 5

Naming conversion for HCL OneDB™..................... 6
HCL OneDB™ Explore..8

Getting started with HCL OneDB™ Explore............. 9
Data Replication...25

Physical and logical replication.............................25
Enterprise Replication (ER)....................................26
High availability cluster..28
Shared Disk (SD) secondary..................................30
High-Availability Data Replication (HDR).............. 32
Remote Standalone (RS) secondary..................... 35
Connection Manager..37
Ifxclone..39

REST API...44
Starting the OneDB REST API................................44
Using the OneDB Rest API.....................................45

Using MongoDB Applications....................................... 50
Starting the HCL OneDB™ Wire Listener for
MongoDB.. 50
Using the OneDB Wire Listener for MongoDB...... 51

OneDB Client Software Development Kit (CSDK).........52
OneDB Client SDK (CSDK) installation and
configuration...53
ConnectTest Demo – Client-Server connectivity
testing..61
Sample ESQL/C program to connect to OneDB
Server.. 66
C# sample program for.NET Core Provider to
demonstrate retrieval/RecordSet of data from
OneDB Server..67

Server administration (from the command-line)..........70
dbimport utility... 71
dbexport utility..73

Troubleshooting and Getting Help................................75
Index...77

Chapter 1. Getting Started
This document provides a brief tutorial to help you get familiar with HCL OneDB™ products.

Introduction to HCL OneDB™
HCL OneDB™ is a cloud native, high performance scalable database server that manages relational, object-relational, and

dimensional databases.

Its small footprint, scalability, and self-managing capabilities are suited to manage your data from small embedded data-

management solutions to enterprise scale solutions.

The HCL OneDB™ database server runs in container and has support for AIX, Linux and Windows.

HCL OneDB™ set of the products include:

• HCL OneDB™ Server

• HCL OneDB™ Client SDK

• HCL OneDB™ JDBC

• HCL OneDB™ APIs

• HCL OneDB™ Explore

What's new in HCL OneDB™ 2.0.1

This section includes information about the new, enhanced features in HCL OneDB™ 2.0.1.

What's new in HCL OneDB™ 2.0.1.3

• Flexnet is deprecated from HCL OneDB 2.0.1.3 onwards.

• OneDB Explore Swagger (API documentation) will be deprecated from the next release.

What's new in HCL OneDB™ 2.0.1.2

• Enhanced integration experience for HCL Commerce and HCL Unica customers using HCL OneDB.

• New Capabilities added in Helm Chart for better deployment experience of HCL OneDB in cloud native environment.

For more information, see Deploying HCL OneDB using Helm charts.

• Apache Log4j vulnerability issue is addressed in this release as the Log4j library used is upgraded to v2.17.1.

What's new in HCL OneDB™ 2.0.1.1

Apache Log4j vulnerability (December 2021) issue is addressed in this release as the Log4j library used is upgraded to v2.16.

3

https://github01.hclpnp.com/pages/neethas-u/Draft/cloud_out/cloudnative/c_cloudnative_charts.html

Getting Started

4

What's new in HCL OneDB™ 2.0.1.0

No new features have been added to HCL OneDB™ 2.0.1.0 release.

HCL OneDB Editions
HCL OneDB™ Server is available in two editions:

• HCL OneDB™ Enterprise Server

• HCL OneDB™ Standard Server

Both editions include the same features; however, OneDB Standard Server places limits on the number of CPU Virtual

Processors (Cores / CPUVPs) allowing a maximum of twenty four (24) per instance.

Note: There is a single edition of HCL OneDB Client SDK and HCL OneDB JDBC which will work with both Enterprise

and Standard editions of the Server.

Installing HCL OneDB™

About this task

You can install the HCL OneDB™ server by running the interactive installation application.

You can include options to the installation command if you run the command from the command line. For example, you can

change the name or location of the installation log file.

Prerequisites: A Compatible JRE must be available in your system PATH.

Note: For information about system requirements, see System requirements for HCL OneDB database server.

Downloading the product

Download the HCL OneDB™ software for your specific platform from the HCL License and Delivery portal

AIX, Linux

1. If necessary, extract the product files. For example, run the tar command:

tar xvf filename

Where filename is the name of the product tar file.

2. Run the following command:

onedb_install

https://hclsoftware.flexnetoperations.com/flexnet/operationsportal/logon.do

Chapter 1. Getting Started

a. If you run the install as root this will install a root-based installation

create a user and group informix used to configure HCL OneDB™ server .

HCL OneDB™ server processes will run with root privileges.

b. If you run the install as any other, then this user will be used to

configure HCL OneDB™ server.

HCL OneDB™ server processes will run with this users privileges.

Windows

1. Double-click the onedb_install.exe file.

This will run the installer as an administrator.

2. Select the setup method, for example, Typical, and follow the instructions in the installation application.

3. Complete the installation and exit the installation application.

4. Log files are created during the installation process. You can use the log files to troubleshoot installation errors.

5. If you created a database server during installation, the database server is configured, initialized, started, and ready

for client connections.

An environment file will be created in the installation folder.

onedb.ksh onedb.csh or onedb.cmd (name of the file depends on the server name either chosen or configured at

install time).

6. To see the connectivity information, look at the ${ONEDB_ SQLHOSTS} file or %ONEDB_ SQLHOSTS% file for

Windows.

7. To see the configuration information, look at the onconfig file ${ONEDB_HOME}/etc/${ONCONFIG} or the

%ONEDB_HOME%\etc\%ONCONFIG% (Windows).

8. You can customize the database server properties by setting configuration parameters in the onconfig file, setting

environment variables in your environment, and adding connectivity information to the sqlhosts file.

9. If you did not create a database server during installation, you must configure and initialize the database server.

Migrating to HCL OneDB™ 2.0.0.0

About this task

This topic describes the steps to migrate to HCL OneDB™ 2.0.0.0 from HCL Informix 14.10 or previous versions of HCL

OneDB™.

Before you start the migration procedure:

• Make sure that you have enough available space for the new server, your data, and any other network and data tools

that you use.

• Take a backup of the source (HCL Informix or previous versions of HCL OneDB).

5

Getting Started

6

1. Use onmode -kuy to bring down the source database server.

2. Install HCL OneDB 2.0.0.0. See Installing HCL OneDB on page 4.

3. Use the same onconfig and sqlhost files from the source database server.

4. Set environment variables for OneDB 2.0.0.0. See Setting environment variables.

◦ Set ONEDB_HOME to OneDB 2.0.0.0 directory.

◦ Set PATH as PATH ${ONEDB_HOME}/bin:${ONEDB_HOME}/extend/krakatoa/jre/bin:${PATH}.

◦ Set ONEDB_SERVER with the same value as that of INFORMIXSERVER in the source database server.

◦ Set ONEDB_SQLHOST with the same value as that of INFORMIXSQLHOST value in the source database

server.

◦ Set ONCONFIG with the same value as that of ONCONFIG value in the source database server.

5. Use oninit -vy to start OneDB 2.0.0.0 database server.

Naming Conversion for HCL OneDB™

With version HCL OneDB™ 2.0.0.0, naming of some environment variables, configuration parameters, file and path names are

changed.

Note: You have to use the new names when installing and using the HCL OneDB™ 2.0.0.0 database server as well as

HCL OneDB™ 2.0.0.0 database client products.

Table 1. UNIX/Linux environment variables and corresponding Windows registry entries:

Informix/OneDB Versions prior to 2.0.0.0 OneDB 2.0.0.0

INFORMIXASFDBG ONEDB_ASFDBG

INFORMIXASFDBG ONEDB_ASFDBG

INFORMIXBROWSER ONEDB_BROWSER

INFORMIXCMCONUNITNAME ONEDB_CMCONUNITNAME

INFORMIXCMNAME ONEDB_CMNAME

INFORMIXCOB ONEDB_COB

INFORMIXCOBDIR ONEDB_COBDIR

INFORMIXCOBSTORE ONEDB_COBSTORE

INFORMIXCOBTYPE ONEDB_COBTYPE

INFORMIXCONCSMCFG ONEDB_CONCSMCFG

INFORMIXCONRETRY ONEDB_CONNECT_RETRIES

INFORMIXCONTIME ONEDB_CONNECT_TIMEOUT

INFORMIXCPPMAP ONEDB_CPPMAP

INFORMIXC ONEDB_C

Chapter 1. Getting Started

Table 1. UNIX/Linux environment variables and corresponding Windows registry entries: (continued)

Informix/OneDB Versions prior to 2.0.0.0 OneDB 2.0.0.0

INFORMIXCP ONEDB_CP

INFORMIXCPP ONEDB_CPP

INFORMIXFAILOVERTIME ONEDB_FAILOVERTIME

INFORMIXFORTRAN ONEDB_FORTRAN

INFORMIXFORTYPE ONEDB_FORTYPE

INFORMIXKEYTAB ONEDB_KEYTAB

INFORMIXMEMSIZE ONEDB_MEMSIZE

INFORMIX_NOUNLOAD ONEDB_NOUNLOAD

INFORMIXNSF ONEDB_NSF

INFORMIX_NSF_SPINCOUNT ONEDB_NSF_SPINCOUNT

INFORMIXONGUARDNAME ONEDB_ONGUARDNAME

INFORMIXOPCACHE ONEDB_OPCACHE

INFORMIXOPTDB ONEDB_OPTDB

INFORMIXDIR ONEDB_HOME

INFORMIXQATERM ONEDB_QATERM

INFORMIXSERVER ONEDB_SERVER

INFORMIXSERVERNUM ONEDB_SERVERNUM

INFORMIXSHMBASE ONEDB_SHMBASE

INFORMIX_SLOW_CLEAR ONEDB_SLOW_CLEAR

INFORMIXSQLHOSTS ONEDB_SQLHOSTS

INFORMIXSTACKSIZE ONEDB_STACKSIZE

INFORMIXTERM ONEDB_TERM

INFORMIXTEST ONEDB_TEST

INFORMIXUNALIGNED ONEDB_UNALIGNED

Table 2. Configuration parameters

Informix OneDB

INFORMIXCONTIME CONNECT_TIMEOUT

7

Getting Started

8

Table 2. Configuration parameters (continued)

Informix OneDB

INFORMIXCONRETRY CONNECT_RETRIES

Table 3. SQL "SET ENVIRONMENT" session parameter names

Informix OneDB

INFORMIXCONTIME CONNECT_TIMEOUT

INFORMIXCONRETRY CONNECT_RETRIES

Note: INFORMIXCONTIME and INFORMIXCONRETRY are still supported for backward compatibility

Table 4. File and path names

Informix OneDB

$INFORMIXDIR/etc/informixdir-is-insecure $ONEDB_HOME/etc/installdir-is-insecure (script)

$INFORMIXDIR/etc/make-informixdir-secure $ONEDB_HOME/etc/fix-installdir-security (script)

$INFORMIXDIR/extend/krakatoa/informix.policy[.std] $ONEDB_HOME/extend/krakatoa/onedb.policy[.std]

$INFORMIXDIR/etc/informix.rc $ONEDB_HOME/etc/onedb.rc

~/.informix ~/.onedb

/etc/informix/... /etc/onedb/...

/usr/informix/... /usr/onedb/...

Table 5. JDBC connection URL string

Informix OneDB

jdbc:informix-sqli://... jdbc:onedb://...

HCL OneDB™ Explore

HCL OneDB™ Explore is a modern web console for visualizing, monitoring, and managing your HCL OneDB™ server instances.

It is purpose built for ease-of-use, scaling out, and optimizing DevOps needs. It provides critical performance management

capabilities, monitoring how key performance metrics are changing over time and tracking how efficiently HCL OneDB™

is running your workload even when you’ve stepped away from your screen. Its monitoring system feeds directly into a

customizable alerting system so you can be immediately alerted via email, Twilio, or PagerDuty whenever an issue occurs on

one of your HCL OneDB™ database server instances. HCL OneDB™ Explore is designed to be scalable to efficiently manage

and monitor as many HCL OneDB™ database server instances as you need. Moreover, it's a tool that can be shared by the

DBAs, the app developers, the ops engineers, and management and accessed from any desktop, laptop, or mobile device.

Chapter 1. Getting Started

HCL OneDB™ Explore is the centralized hub for graphical monitoring, alerting, and administration of your HCL OneDB™

database servers.

HCL OneDB™ Explore Server

The OneDB Explore server is a Java 8 based Jetty web server. The server is the heart of HCL OneDB™ Explore. It manages the

monitoring profiles for all instances, communicates with agents, handles all alerting activities, hosts the web UI, and provides

the REST services that the web UI depends on.

HCL OneDB™ Explore Agent

The HCL OneDB™ Explore agent is a lightweight Java 8 based monitoring agent. It should be installed on the host machine

for each HCL OneDB™ database server that you want monitored by HCL OneDB™ Explore. The agent runs alongside the

database server, gathering database statistics through JDBC connections to sysmaster. The HCL OneDB™ Explore agent

only needs read access to the database server. By running the agent directly on the HCL OneDB™ server host machine, the

agent is also able to gather and monitor OS statistics which can be just as critical in evaluating and tuning the HCL OneDB™

database server performance metrics.

Getting started with HCL OneDB™ Explore

About this task

This topic provides a brief tutorial to help you get started with HCL OneDB™ Explore.

Prerequisites

The following table lists the software prerequisites for HCL OneDB™ Explore:

Table 6. Prerequisites for HCL OneDB™ Explore

Software Required Version

HCL OneDB™ Database Server 1.0

Java 1.8

Starting the HCL OneDB™ Explore Server

This section walks you through the easiest way to start the HCL OneDB™ Explore server.

For more advanced topics, like configuring logging or starting HCL OneDB™ Explore Server from the command line, see

Starting the OneDB Explore Server .

1. Create a HCL OneDB™ Explore Server properties file.

required initial password for the admin user
initialAdminPassword=myPassword
optionally, uncomment these properties to have OneDB Explore encrypt its
 internal H2 database
#h2.encrypt.enable=true

9

Getting Started

10

#h2.encrypt.password=password

For more information see, HCL OneDB™ Explore Server Configuration.

2. Locate the start/stop script in the $ONEDB_HOME/explore directory and run the following command to start the

server.

OneDBExplore startServer=serverName where serverName is the name of your process for HCL OneDB™ Explore

Server.

3. In a web browser, go to http://localhost:8080 and login with your admin credentials.

4. From the main dashboard, click create server and/or create groups to add connection information to your OneDB

servers.

Starting the HCL OneDB™ Explore Server

About this task

This section walks you through the easiest way to start the HCL OneDB™ Explore server.

For more advanced topics, like configuring logging or starting HCL OneDB™ Explore Server from the command line, see

Starting the HCL OneDB™ Explore Server .

1. Create a HCL OneDB™ Explore Server properties file.

required initial password for the admin user
initialAdminPassword=myPassword
optionally, uncomment these properties to have OneDB Explore encrypt its
 internal H2 database
#h2.encrypt.enable=true
#h2.encrypt.password=password

For more information see, HCL OneDB™ Explore Server Configuration.

2. Locate the start/stop script in the $ONEDB_HOME/explore directory and run the following command to start the

server.

OneDBExplore startServer=serverName where serverName is the name of your process for HCL OneDB™ Explore

Server.

3. In a web browser, go to http://localhost:8080 and login with your admin credentials.

4. From the main dashboard, click create server and/or create groups to add connection information to your HCL

OneDB™ servers.

Starting the HCL OneDB™ Explore Agent

About this task

This section walks you through two ways to start the HCL OneDB™ Explore agent.

For more advanced topics, like configuring logging or starting HCL OneDB™ Explore Agent from the command line, see

Getting Started section in the HCL OneDB™ Explore Agent documentation.

Prerequisites

Chapter 1. Getting Started

1. Navigate to the HCL OneDB™ database server’s Setup > Agent page in UI and click on select button to choose

repository server. The The repository server is the database server that will store the monitoring data collected by the

agent is the database server that will store the monitoring data collected by the agent.

2. Choose any repository server from popup of which you want to choose the repository database.

3. Now select any database from the Select Database dropdown which you want to make it as a repository database

then click on save button. The repository database is where the monitored data will be stored.

Deploying and starting the HCL OneDB™ Explore agent automatically from the UI

About this task

Prerequisites

1. SSH must be installed on the database server’s host machine.

2. The onedb-explore-agent.jar file and the onedb-explore-server.jar file must be located in the same

directory.

Steps :

1. From the server’s Setup > Agent page, you can also try to deploy the agent with default configuration by clicking the

Deploy Agent button. If the automatic deployment is successful, you are done. Otherwise, proceed to the next step.

2. To configure agent deployment, click on the gear icon and provide the following information:

◦ Username: remote user which will own and run the agent.

◦ Password or Identity File/Passphrase: remote user’s passphrase or remote user’s identity file (e.g. private key)

and its optional passphrase.

◦ Remote directory: Directory to deploy the agent files to. This directory will be created if it does not exist.

3. If SSL is enabled, keystore configuration may be required as well. If keystore configuration is not provided, OneDB

Explore will try to generate and deploy a keystore for you.

◦ Keystore file: Location of an existing keystore on the remote machine (can be relative to the remote directory)

◦ Keystore password: Password used to access the existing keystore

◦ Keystore type: Existing keystore’s type. Default is JKS

4. Click Deploy Agent

5. Once the agent is ready, use the HCL OneDB™ Explore UI in your web browser to configure the monitoring profile and

alerts for this server.

Starting the OneDB Explore Agent with Start/Stop Script

About this task

This is an alternative step to the previous section to start the HCL OneDB™ Explore Agent.

1. Create a HCL OneDB™ Explore Agent properties file.

Sample properties file:
host and port of the OneDB Explore server
server.host=localhost

11

Getting Started

12

server.port=8080
The id of the OneDB database server as defined in OneDB Explore
onedbServer.id=1

Where onedbServer.id is the id of the HCL OneDB™ database server in HCL OneDB™ Explore. You can find the

server’s id on the server’s Setup page in the OneDB Explore UI. For more information, see HCL OneDB™ Explore Agent

Configuration .

2. Locate the start/stop script in the $ONEDB_HOME/explore directory and run the following command to start the

server. OneDBExplore startAgent=agentName where agentName is the name of your process for HCL OneDB™

Explore Agent.

3. At this point the agent is ready and running. Use the HCL OneDB™ Explore UI in your web browser to configure the

monitoring profile and alerts for this server.

Stopping the HCL OneDB™ Explore Server and Agent

1. To stop the HCL OneDB™ Explore Server, locate the start/stop script in the $ONEDB_HOME/explore directory and

run the following command to stop the server. OneDBExplore stop=serverName where serverName is the name for

your process for HCL OneDB™ Explore Server which you have used to start the OneDB Explore Server.

2. To stop the HCL OneDB™ Explore Agent, locate the server’s Setup > Agent page. If the agent is online, you can see

the “Shutdown agent” button in UI. To stop the agent you can click on this button and it will stop the agent running for

that server.

3. An alternative way to stop the HCL OneDB™ Agent is to use the start/stop script. You can only use this step to

stop the agent if you have started the agent by using the start/stop script. To stop the agent, locate the start/stop

script in the $ONEDB_HOME/explore directory and run the following command to stop the agent OneDBExplore

stop=agentName where agentName is the name for your process for HCL OneDB™ Explore Agent which you have

used to start the agent.

Manging Database using HCL OneDB™ Explore

You can use OneDB Explore to manage the database.

This section provides a detailed explanation on creating a new database, new table, adding a record and viewing it using

OneDB Explore.

Creating an OneDB Database using OneDB Explore

About this task

This topic provides the steps to create a new database using OneDB Explore.

Chapter 1. Getting Started

1. Login to OneDB Explore using admin credentials.

2. Click the Add Server button to enter the server information and credentials to establish the connection.

13

Getting Started

14

a. Click the Test Connection button to verify if the server is online and click Submit.

Chapter 1. Getting Started

b. If the server is already configured, select the server and proceed to next step.

3. Select Schema Manager from the left pane and existing databases will be displayed in the Select Database drop-

down list.

15

Getting Started

16

4. Click on … and select Create Database to create a new database.

5. Enter the details and then click Finish button to create the database.

Chapter 1. Getting Started

◦ Database name –Name of the new database. Must be a unique name.

◦ Dbspace – Storage space allocated to store all the data related to this new database. It lists down all the

available dbspaces in the server and the default is root dbspace.

Note: User can create a dbspace of required size using the Storage – Spaces option from the left

pane and click Create Space.

17

Getting Started

18

◦ Language and Locale – Select a language, the database uses to store the data and then select

the locale with the required code set to correctly interpret locale-sensitive data types (NCHAR and

NVARCHAR).

◦ Logging mode – Select one of the four options:

▪ Unbuffered logging – All transactions are written to disk which makes it slower but recommended.

▪ Buffered logging – Transactions can be used, and all logs are stored in buffer before written to disk.

▪ ANSI-compliant logging – It enables implicit transaction.

▪ No logging – Fast but not safe as transactions are not allowed.

◦ Character

Case

Results

Chapter 1. Getting Started

A new database is created, and select Info tab to view the

details.

Creating a table using OneDB Explore

About this task

This topic provides the steps to create a table.

19

Getting Started

20

1. Select the required database from the Select Database drop-down list and click on … to select the Create Table

option.

2. Enter a unique table name and select the table type from the drop-down list. Following is an example of Standard

table type.

3. Click Add Columns to add the columns for this table. Enter the column name and select datatype from the given list

and click Add. Enter the require details.

Chapter 1. Getting Started

4. Click Close and click Next.

5. You can choose the Primary key from the available column list and define Foreign Key and Unique Key as per the

requirement. Either click View SQL button to directly view the SQL query constructed with the default settings or click

Advance Table Options button.

21

Getting Started

22

6. You can modify the default table options in this page and click View Query & Create button.

Chapter 1. Getting Started

7. If the constructed query is as expected, click Create to create the table. Otherwise click Back to modify as per the

requirement.

Results

A new table is created, and select Info tab to view the

details.

23

Getting Started

24

Adding a record using OneDB Explore

About this task

This topic provides the steps to create a record.

1. Select the database from the Select Database drop-down list and select the table for which you want to add a record.

2. Select SQL Editor tab to execute the sql queries.

Chapter 1. Getting Started

Data Replication

HCL OneDB™ has built-in support for variety of business requirements related to fault tolerance, data replication, and

database scale-out using sharding technology.

Customers rely HCL OneDB™ replication technologies to meet each one of the below mentioned business requirements:

• For transactional database, businesses demand zero data loss, and less than one minute recovery time in case of

failure

• Businesses demand rolling application upgrade, and rolling server upgrade support – No planned downtime for

maintenance operations

• Businesses do require transactional databases to be protected from natural disasters, and human errors

• Businesses do require transactional databases to scale out quickly to handle spikes during special events

• For geographically distributed applications, businesses do require transactional database to be available even if

network goes down between datacenters

• For regulatory reasons, businesses do require certain data to be stored local to the country and still support

seamless access to the data for applications residing across geographic boundaries

Physical and logical replication

HCL OneDB™ replication technology is broadly classified into physical and logical replication.

With physical replication, logical log records get replicated to secondary server, and secondary server continuously

apply logical log records as if server is in crash recovery mode. Physical replication requires database storage, hardware

architecture, operating system and HCL OneDB™ server version to be same.

Logical replication does capture data from logical log records, but log records gets converted to a format understood by

SQL engine. Logical replication does support heterogeneous hardware and software. Customers can pick and choose which

tables to be replicated, and can replicate only few columns or few rows in a table.

HCL OneDB™ High Availability Data replication(HDR), Remote Standalone Secondary(RSS) and Shared Disk Secondary(SDS)

servers fall under physical replication category.

Enterprise replication(ER) and flexible grid technology fall under logical replication category.

HDR, and SDS technologies support zero data loss (RPO=0) configuration.

RSS supports asynchronous replication across wide area networks and ideal deployment option to protect transactional

database from natural disasters. RSS “delayed apply” configuration protects transactional database from human errors.

Shared disk technology(SDS) is ideal fit to scale-out transactional database to support spike in transactional volume during

special events.

From CAP theorem perspective, HCL OneDB™ physical replication technologies support CP configuration. In case of network

partitioning, secondary servers cannot accept write activity till new primary server was elected. With physical replication,

primary server is the designated write server for transactional data.

25

Getting Started

26

HCL OneDB™ Enterprise Replication technology supports AP configuration. In case of network partitioning, applications can

continue performing database write activity at all ER servers and ER rely on conflict resolution rules to resolve conflicting

updates. ER technologies supports near-zero downtime maintenance operations like rolling application and schema upgrade,

rolling server upgrade, and thus eliminate requirement for planned downtime for maintenance operations.

Enterprise Replication (ER)

Enterprise Replication (ER) technology, which is both flexible and powerful, allows businesses to replicate data from branch

offices to corporate office, replicate data from corporate office to branch offices, replicate data closer to customers.

ER works by you first defining the servers among which you would like data to be replicated. This creates a network topology

— of root, leaf, and non-root, non-leaf nodes — that will transfer the data. Each ER node may be a single server or a cluster

of servers, which this article further discusses below. All the interconnected nodes together are called an ER domain. The

domain does not define what data will be transferred, just the paths or routes along which the data will flow.

Next, you decide what data you would like to be replicated. This is defined by an SQL query involving a server, database, table,

and columns. The query acts as a filter whose output decides the data to replicate and proves to be a very flexible tool. If

you'd like an entire table to be replicated, your query would be SELECT * FROM If you'd like just the first three columns to

be replicated, your query would now be SELECT column1, column2, column3 FROM Or, if you'd like only certain rows to be

replicated, you just use a WHERE clause in your query. ER can replicate data with very broad or very fine filters. To help with

replication ER requires that the table have a primary key defined.

After the query is written, determine what nodes should participate in replicating the data. Let's say you want nodes A,

B, and C to all have the same data in their Employee table. So A, B, and C are your participants. ER can be configured so

that if data changes are made on any server, the other participants become updated too. This is called an update anywhere

scenario. What happens if you only want updates to flow from A, into both B and C, but back never to A? ER gives you the

flexibility to do these primary-target scenarios as well. In situations where data changes occur on more than one participant,

it may happen that a row changed on server B conflicts with a change occurring on server C. ER allows you to define rules

for automatically handling such conflicts. These include comparing timestamps, running a stored procedure, and ignoring

conflicts.

Now that you know the query, the participants, and the scenario, take all this information and use it to create something

called a replicate. Think of a replicate as a faucet that controls the flow of data from the query. The faucet can be turned on

or off, and you can have as many faucets as you want. Replicates can be grouped into sets, which make it easier for users to

control multiple replicates. Also, you can use templates to help you quickly create replicates for multiple tables. All this work

is done through the server utility cdr.

After a replicate has been created and started, how does the data actually get moved? Well, first of all, the replication

happens asynchronously. This means there may be a delay between data being committed on one node and it appears on

another node. And only committed data, of course, is replicated. ER works by reading the logical logs, testing if a log record

needs to be replicated, and finally sending that information to the appropriate participants.

A simple Example

Chapter 1. Getting Started

About this task

Let's set up a simple example of ER. We'll replicate the employees table of the "db1" database in an update-anywhere fashion

between server1 and server2. (The following steps assume the DBA user account is used.)

1. Prepare the SQLHOSTS files

The file for each server should contain an entry for both servers as well as two group definitions. Each group

represents an ER node:

grp1 group - - i=1 server1 onsoctcp host port g=grp1
grp2 group - - i=2 server2 onsoctcp host port g=grp2

2. Prepare the ER disk space

For each server, perform the following steps:

a. Edit the ONCONFIG to contain a smart blob space:

CDR_QDATA_SBSPACE sbs1

b. Start the server

c. Create a chunk for that smartblob space and add the space to the server. For example, on UNIX:

touch /onedb/chunks/sbs1_chunk1 chmod 660 /onedb/chunks/sbs1_chunk1
onspaces -c -S sbs1 -p /onedb/chunks/sbs1_chunk1 -s 100000 -o 0

3. Add the nodes to a new ER domain

On server1, execute the following command:

cdr define server --init grp1

On server2, execute the following command:

cdr define server --sync=grp1 --init grp2

These commands create an ER domain of two root nodes.

4. Prepare the table to replicate

On both server1 and server2, run the following SQL statements:

CREATE DATABSE db1 WITH LOG;
CREATE TABLE employees(id int primary key, ...);

5. Create the replicate

On server1, execute:

cdr define replicate --conflict=always r_employees \
"db1@grp1:informix.employees" "select * from employees" \
"db1@grp2:informix.employees" "select * from employees"

6. Start the replicate

On either server, run:

27

Getting Started

28

cdr start replicate r_employees

Now you're replicating data! An insert, update, or delete to a row on either server1 or server2 will soon appear on the

other server.

High availability cluster

In a cluster, you gain scale-out, high availability, disaster recovery, and load-balancing capabilities. This technology is built

right into the database and requires no additional hardware, software, or network infrastructure. In contrast to ER, in a

cluster, you cannot control the granularity of data replication; the entire server's data is always replicated. Cluster and ER

technologies, as this article shows later, can be used side by side.

A cluster consists of one primary server and a mix of three different types of secondary servers:

• Shared Disk (SD) secondary server

• High-Availability Data Replication (HDR) server

• Remote Standalone (RS) secondary server

Servers must be the same HCL OneDB™ version and run on the same operating system, hardware, and disk architecture.

Applicants can also insert, update, and delete data on secondary servers. Thus, all three secondary server types can be used

to increase the capacity of your primary as well as balance the load.

Table 1, below, compares the server types. Table 2 lists some common ONCONFIG settings.

Table 7. Overview of the characteristics of cluster server types

Primary SD secondary HDR RS secondary

Primary purpose Increased

capacity/scaleout

High availability/hot

standby

Disaster

recovery/remote

backup

Maximum number of

nodes per cluster

One No limit One No limit

Possible type changes

in one step

SD secondary, HDR,

standard

Primary Primary, RS secondary,

standard

HDR, standard

Supported isolation

levels

All
Dirty read, Committed

Read, Committed

Read, Last Committed

Dirty read Dirty read

Chapter 1. Getting Started

Table 8. ONCONFIG parameters common to cluster server types

Configuration parameter Server type Supported values Description

HA_ALIAS SD and RS secondary servers DBSERVERNAME or one of

the DBSERVERALIAS name.

Must be a network protocol.

Used to define the name by

which a secondary server

is known within a cluster.

Gives you flexibility to

use something other than

DBSERVERNAME.

LOG_INDEX_BUILDS Primary, HDR, and RS

secondary • 0- Disable index page

logging

• 1 - Enable index page

logging

While creating a new index

at primary server, Index

Page Logging (IPL) writes

index pages to logical log

file. Enabling index page

logging is required for RSS

nodes and optional for HDR

secondary server.

UPDATABLE_SECONDARY HDR, SD and RS secondary

servers

Primary Primary, RS secondary,

standard

Supported isolation levels All
• 0- Disable write

functionality at

secondary server

• >=1 - Enable write

functionality at

secondary server

Determines the number of

network connections used

between the primary and

secondary server to support

data updates.

TEMPTAB_NOLOG Primary, HDR, SD, and RS

secondary servers • 0- Create temporary

tables with logging

enabled by default

• 1 - Create temporary

tables without

logging.

Required to be set to 1 at

HDR, RSS, and SD secondary

servers. Controls the default

logging mode

for explicit temporary

tables created with CREATE

TEMP TABLE or SELECT

INTO TEMP statements.

Secondary servers must

not have logged temporary

tables.

29

Getting Started

30

Shared Disk (SD) secondary

SD secondary servers share disk space — except temporary dbspaces — with the primary server. This is typically done

through a network-based clustered file system. Adding a new SD secondary to a cluster is very easy and can be done in a few

seconds once the shared disk is prepared. Because SD secondary nodes leverage the primary's disks and can be brought up

easily and quickly, they are well-suited for scale-out scenarios. In SD secondary servers checkpoints are synchronized. This

means a checkpoint at the primary server completes only after the checkpoint at the SD server completes. SD secondary

supports committed read and committed read last committed isolation levels as well as dirty read. An SD secondary can

be promoted to a primary server with one single command: onmode -d make primary <name of SD server>. Because an SD

secondary server is so close to the primary (in other words, it shares the same disk), it is often the best type of server to

initially fail over to if the primary should encounter a problem.

Table 9. Important ONCONFIG parameters for the SD secondary

Configuration parameter Server type Supported values Description

SDS_ENABLE Primary, SD secondary
• 0- Disable SDS

functionality

• 1 -Enable SDS

functionality

Use this to allow SD

secondaries to be added to

the cluster

SDS_PAGING SD secondary <absolute path for paging

file1>,<absolute path for

paging file 2>

Two paging files must be

configured to bring up SDS

node

SDS_TEMPDBS SD secondary <dbspace_name>,<path>,<pa

gesiz in KB>,<offset in

KB>,<size in KB>

eTemporary dbspace

information for SD secondary

node. You can configure up

to 16 SDS_TEMPDBS entries.

Example:

SDS_TEMPDBS

sdstmpdbs1, /

work/dbspaces/

sdstmpdbs1,2,0,16000

SDS_TIMEOUT Primary >= 0 seconds
This configuration parameter

is used at the primary to

decide how long to wait

for an acknowledgement

from an SD server. If no

acknowledgement occurs,

Chapter 1. Getting Started

Table 9. Important ONCONFIG parameters for the SD secondary (continued)

Configuration parameter Server type Supported values Description

the primary acts to shut the

SD server down. The default

value is 20 seconds

Adding an SD secondary to a cluster

About this task

Let's take a standalone OneDB server and turn it into a cluster. First let's add an SD secondary server. (This scenario

assumes that the shared disk file system has already been set up and the DBA account is used.)

1. Prepare the SQLHOSTS file.

Make sure the SQHOSTS file at both the primary and SDS node has entries for the other server:

g_mach11 group - - i=10
 myprim ontlitcp primhost prim_port g=g_mach11
 sds1 ontlitcp sds1host sds1_port g=g_mach11

Note:

Note that the use of groups here is optional. However, we include it to prepare for an example below.

2. Set the primary as the owner of the shared disk.

On the primary, run:

onmode -d set SDS primary myprim

3. Configure the SD secondary.

a. ▪ Make sure these match the ONCONFIG of the primary: ROOTNAME, ROOTPATH, ROOTOFFSET, ROOTSIZE, PHYSDBS,

PHYSFILE, LOGFILES, and LOGSIZE.

b. Set SDS_ENABLE to 1.

c. Configure SDS_PAGING and SDS_TEMPDBS.

For example:

SDS_ENABLE 1
SDS_PAGING /onedb/sds/dbspaces/page_1,/onedb/sds/dbspaces/page_2
SDS_TEMPDBS sdstmpdbs1,/onedb/sds/dbspaces/sdstmpdbs1,2,0,16000
UPDATABLE_SECONDARY 1
TEMPTAB_NOLOG 1

4. Start the SD secondary using:

oninit

Result

31

Getting Started

32

The SD secondary is now up and running! You can check the cluster status using the onstat -g sds command at both

the primary and secondary servers. Here's what our cluster looks like:

Figure 1. The cluster: Primary and one SD secondary

High-Availability Data Replication (HDR)

HDR consists of a pair of servers — the primary and the HDR secondary — and supports both synchronous and

asynchronous replication modes. In synchronous mode, transactions on the primary server will not commit until it receives

an acknowledgement from the HDR secondary server. Thus, the HDR secondary is immediately ready to take the place of

the primary server — what is called a "hot" standby. In asynchronous mode, only checkpoints are synchronized between the

primary and HDR secondary. One characteristic of HDR is that it uses a half-duplex communication protocol and thus is

sensitive to network latency. This is not the case for SD and RS secondary servers.

Table 1, below, compares the server types. Table 2 lists some common ONCONFIG settings.

Table 10. Important ONCONFIG parameters for the HDR server

Configuration

parameter

Server type Supported Values Description

DRAUTO Primary, HDR server
1. - Manual

2. - Automatic

failover

ultimatelyretain

ing server types

3. - Automatic

failover

ultimatelyrever

Controls how the

primary and HDR

secondary behave in a

failure scenario.

Chapter 1. Getting Started

Table 10. Important ONCONFIG parameters for the HDR server (continued)

Configuration

parameter

Server type Supported Values Description

sing server

types

4. - Have the

Connection

Manager

Arbitrator control the

failover

DRIDXAUTO Primary, HDR server
1. - Disable

automatic

index repair

2. - Enable

automatic

index repair

Automatically repair

an index, if the HDR

secondary server

detects a corruption.

DRINTERVAL Primary
-1 - Operate in

synchronous mode

> 0 - Operate in

asynchronous mode

The maximum

interval, in seconds,

between flushing of

the highavailability

data-replication buffer.

HDR_TXN_SCOPE Primary
ASYNC - Commits are

not synced

NEAR_SYNC - The

committed transaction

has been sent to the

HDR secondary but not

yet applied.

FULL_SYNC - The

transaction has been

sent and applied on

the HDR secondary.

Defines transactional

synchronization in

the HDR primary

when DRINTERVAL

is turned off. The

default is NEAR_SYNC.

To enable

HDR_TXN_SCOPE

behavior DRINTERVAL

config parameter value

must be set to 0.

DRLOSTFOUND Primary, HDR server <path for lost and

found file>

The path for the

HDR lost-andfound

33

Getting Started

34

Table 10. Important ONCONFIG parameters for the HDR server (continued)

Configuration

parameter

Server type Supported Values Description

transaction file. This

file is created during a

failover and contains

the transactions

committed on the

primary but not the

HDR server.

DRTIMEOUT Primary
>= 0 seconds

Default value = 30

seconds

The time, in seconds,

before a network

timeout occurs. Used

by DRAUTO to detect

failover.

Adding an HDR server to a cluster

About this task

Let's add an HDR secondary node to our cluster

1. Prepare the SQLHOSTS files

Update the SQLHOSTS file at primary. and at both SDS and HDR secondary servers:

g_mach11 group - - i=10
 myprim ontlitcp primhost prim_port g=g_mach11
 hdr ontlitcp hdrhost hdr_port g=g_mach11
 sds1 ontlitcp sds1host sds1_port g=g_mach11

2. Configure the ONCONFIG files

In order for HDR to work, certain ONCONFIG parameters must be exactly the same on both the primary and secondary.

In many cases, this means they cannot be changed while either server is running. These parameters include DRAUTO,

DRINTERVAL, DRTIMEOUT, settings related to the root dbspace, settings related to logical logs, and more. To ensure these

settings match, one technique is to copy the onconfig of the primary to the secondary, and then modify the few things

that must be different, such as DBSERVERNAME. You should plan for these settings before bringing the primary up. This

example just uses the defaults.

3. Register the HDR secondary server with the primary

On the primary, run:

onmode -d primary hdr

4. Prepare the HDR secondary server's disk

Chapter 1. Getting Started

The storage used on the HDR secondary must match that of the primary (for example, number of dbspaces, number

of chunks, chunk sizes, pathnames, and offsets). Since this example uses the backup to restore the HDR secondary

server, it is only necessary that the chunk files exist and have the proper permissions.

5. Restore the backup on the HDR secondary server

On the HDR server, perform a physical restore of the level 0 backup:

ontape -p
 Three questions will be asked. Answer as shown below:
 Continue restore? (y/n) y
 Do you want to back up the logs? (y/n) n
 Restore a level 1 archive (y/n) n

6. Bring the HDR secondary server into online mode

After the restore is complete, the HDR secondary will be in recovery mode. Run the following command:

onmode -d secondary myprim

Result

HDR secondary is up and running! Run onstat -g driat the primary and HDR secondary to check HDR status. Our

cluster now looks like this:

Figure 2. The cluster: Primary and one SD secondary

Remote Standalone (RS) secondary

The primary purpose of the RS secondary server is to provide a disaster recovery solution. As in HDR, the primary server

sends all its logical log records to the RS secondary server continuously, except now only in an asynchronous manner. Unlike

HDR, the communication occurs using a full duplex protocol. Thus, the RS secondary is less sensitive to network latency and

can more easily reside in a distant geography. One characteristic of an RS secondary is that unlike in SD and HDR servers, the

primary server doesn't synchronize checkpoints with an RS secondary. Thus, it is not immediately ready to take the place of

35

Getting Started

36

the primary; it must be changed into an HDR server first. Should multiple failures in a cluster occur, however, an RS node can

prevent your database from being entirely unavailable.

Table 11. Important ONCONFIG parameters for the RS secondary

Configurat

ion

parameter

Ser

ver

type

Supported

values

Description

LOG_INDE

X_BUILDS

Pri

m

ary

1. -

Disable

index

page

logging

2. - Enable

index

page

logging

While creating a new index at primary server, Index Page Logging(IPL) writes index

pages to logical log file. Index page logging must be enabled at primary server to add

RS server to a cluster.

Adding an RS secondary to a cluster

About this task

Let us add an RS node to our cluster.

1. Prepare the SQLHOSTS files

All servers in the cluster must have SQLHOSTS entries for all others.

g_mach11 group - - i=10 myprim ontlitcp
 primhost prim_port g=g_mach11 hdr ontlitcp hdrhost hdr_port
 g=g_mach11 sds1 ontlitcp sds1host
 sds1_port g=g_mach11 rss1 ontlitcp
 rss1host rss1_port g=g_mach11

2. On the primary, enable index page logging

onmode -wf LOG_INDEX_BUILDS=1

3. On the primary, register the new RS secondary

onmode -d add RSS rss1

4. Bring the RS secondary into online mode

onmode -d RSS myprim

Result

Chapter 1. Getting Started

Now RSS node is up and running! Run the onstat -g rss command to check RSS node status at both primary and

RSS nodes. Now our cluster looks like this:

Figure 3. The cluster: Primary and one SD secondary

Connection Manager

Connection manager is one of the distinguished technologies in HCL OneDB™. With connection manager, customers

can configure applications to connect to a service level agreement (SLA) defined by the business logic rather than to a

specific host and port number of a transactional database. For example, OLTP applications can be configured to connect

to primary server, and reporting application can be configured to connect to secondary server. Application connectivity can

be configured based on geography as well. This logical separation of application connectivity from database cluster allows

transactional database to failover transparently, and support zero-downtime maintenance operations like rolling application

and server upgrades.

Avoiding split brain situation during automated failovers

In physical replication scenario where there is a designated write server for transactional data, split brain situation is one

of major nightmare for DBAs in case of network partitioning. Connection manager helps avoid this problem by monitoring

activity at both primary and secondary servers, and failover primary server role only when majority servers agree that primary

server isn’t reachable. Automated failover configuration with connection manager helps with reduced recovery time objective

(RTO less than 1 minute), and avoid split brain situation.

Connection manager configuration

37

Getting Started

38

In this example, we will configure two connection managers to monitor HDR cluster, and support client connection routing

and automated failover functionality.

We will configure OLTP SLA group to redirect clients to current primary server and REPORT SLA group to redirect reporting

applications to HDR secondary server.

SQLHOSTS file for the OneDB Primary + HDR cluster:

$ cat $ONEDB_ SQLHOSTS
g_cluster group - -
primary server connection details:
primary onsoctcp pri_machine pri_port g=g_cluster
#HDR server connection details
hdr onsoctcp hdr_machine hdr_port g=g_cluster

Configuration file for first connection manager (cm1):

$cat $ONEDB_HOME/etc/cm1.cfg
NAME cm1
LOGFILE /opt/onedb/cm1.log
CLUSTER my_cluster1
{
 ONEDB_SERVER pri,hdr
 SLA oltp1 DBSERVERS=primary
 SLA report1 DBSERVERS=HDR,primary
 FOC ORDER=ENABLED TIMEOUT=5 PRIORITY=1
 CMALARMPROGRAM $ONEDB_HOME/etc/cmalarmprogram.sh
}

SQLHOSTS file for cm1 connection manager

$ cat $ONEDB_ SQLHOSTS
primary server connection details:
primary onsoctcp pri_machine pri_port
#HDR server connection details
hdr onsoctcp hdr_machine hdr_port
#host and port number details SLAs
oltp1 onsoctcp cm1_machine cm1_port1
report1 onsoctcp cm1_machine cm1_port1

Command to start connection manager

$ oncmsm -c $ONEDB_HOME/etc/cm1.cfg

Check connection manager log /opt/onedb/cm1.log file to verify connection manager started correctly. Also verify

connection manager status from primary and HDR servers using onstat command ‘onstat -g cmsm’.

Configuration file for second connection manager (cm2)

$cat $ONEDB_HOME/etc/cm2.cfg
NAME cm2
LOGFILE /opt/onedb/cm2.log
CLUSTER my_cluster2
{

Chapter 1. Getting Started

 ONEDB_SERVER pri,hdr
 SLA oltp2 DBSERVERS=primary
 SLA report2 DBSERVERS=HDR,primary
 FOC ORDER=ENABLED TIMEOUT=5 PRIORITY=2
 CMALARMPROGRAM $ONEDB_HOME/etc/cmalarmprogram.sh
}

SQLHOSTS file for cm2 connection manager

$ cat $ONEDB_ SQLHOSTS
primary server connection details:
primary onsoctcp pri_machine pri_port
#HDR server connection details
hdr onsoctcp hdr_machine hdr_port
#host and port number details SLAs
oltp2 onsoctcp cm2_machine cm2_port1
report2 onsoctcp cm2_machine cm2_port1

Command to start cm2 connection manager

$ oncmsm -c $ONEDB_HOME/etc/cm2.cfg

Check connection manager log /opt/onedb/cm2.log file to verify connection manager started correctly. Also verify

connection manager status from primary and HDR servers using onstat command ‘onstat -g cmsm’.

SQLHOSTS file for client applications

$ cat $ONEDB_ SQLHOSTS
oltp SLA group
oltp group - - c=1
oltp1 onsoctcp cm1_machine cm1_port1 g=oltp
oltp2 onsoctcp cm2_machine cm2_port2 g=oltp
report SLA group
report group - - c=1
report1 onsoctcp cm1_machine cm1_port1 g=report
report2 onsoctcp cm2_machine cm2_port2 g=report

Applications connecting to “oltp” group gets redirected to primary server in the high availability cluster, and applications

connecting to “report” group gets redirected to secondary server, and if secondary server isn’t reachable then “report”

applications gets redirected to primary server.

Ifxclone

Ifxclone perform a clone copy of the source database server instance to target server. Target server can be

1. Standard stand-alone server

2. Remote Standalone Server (RSS)

3. High-Availability Data Replication (HDR) server

4. ER and Flexible Grid participating server

Cloning OneDB server

39

Getting Started

40

About this task

In this topic, let’s explore steps required to clone OneDB server to setup HDR secondary.

Prerequisites

1. HARDWARE:

A second machine with:

◦ Sufficient storage capacity to match the storage allocated on the original machine

◦ Adequate memory and processing capacity to handle your workload in event of the primary server failing, or

needing to be shutdown

2. SOFTWARE:

◦ Install the same version of OneDB software on the second machine as the original machine

◦ Install all User-defined types, user-defined routines, and DataBlade modules that are installed on the original/

primary machine (They do not need to be registered on the secondary server)

3. Customized Scripts:

◦ alarmprogram.sh

◦ evidence.sh

4. Ownership and Permission of storage paths:

◦ Owner and group should match the primary server (informix:informix)

◦ Directories containing cooked files must have 770 permissions

Common Setup (From Source Server)

Some changes and files will be the same on both servers. We will make the changes to the files on “host1” (our “server1”

machine), and then “ifxclone” will copy them to the new target host (host2). We are avoiding naming our systems “primary”

and “secondary” because these are roles that can switch between the servers over time, and perhaps for long periods of

time.

Trusted Server Connection

The primary server must trust the connection from the new database server. We need mutual trust when the roles of the two

servers reverse. While you can do this at the OS level, we will assume you want this trust limited to the database service. This

can be done by creating a file you identify in the ONCONFIG file’s REMOTE_SERVER_CFG parameter in the $ONEDB_HOME/

etc directory. For this example, will create a file named "trusted.hosts" in the "$ONEDB_HOME/etc" directory. This also allows

HCL OneDB tools to update the trust information later.

Create an empty “trusted.hosts” file, and set the file permissions to limit write access to the instance
owner(informix) and group (informix):

cp /dev/null $ONEDB_HOME/etc/trusted.hosts

chmod 640 $ONEDB_HOME/etc/trusted.hosts

Now configure the server to use the new file:

Chapter 1. Getting Started

$ onmode -wf REMOTE_SERVER_CFG=trusted.hosts

Enable “ifxclone” and the “sysadmin:admin” function to setup the connectivity information on all servers in the cluster (for

now it is just one).

$ onmode -wf CDR_AUTO_DISCOVER=1

You can manually edit the file the first time, but we will execute the “admin” SQL function in the “sysadmin” database using

dbaccess to update the REMOTE_SERVER_CFG on all servers in the cluster (I am also adding our current server as trusted so

either server can initiate a connection to the other, and this trust information will eventually be copied to our new server too):

execute function sysadmin:admin('cdr add trustedhost', 'host2 informix, host1 informix');

HDR ONCONFIG Changes

Disable temp table logging, and enable snapshot copy to be made by the “ifxclone” command:

$ onmode -wf TEMPTAB_NOLOG=1

$ onmode -wf ENABLE_SNAPSHOT_COPY=1

NOTE:

1. The TEMPTAB_NOLOG setting is only really required on the secondary. However, when the roles are reversed,

leaving this enabled would affect applications that depend on rollback on TEMP Tables. So, either plan to correct

immediately after making a new primary or be consistent and don’t rely on TEMP Table transactions.

2. If you are going to setup an RSS server instead of HDR secondary, we need to enable the logging of index builds. This

causes all index creation operations to go through the logs (hope you have automatic log backups configured):

$ onmode -wf LOG_INDEX_BUILDS=1

ONEDB_ SQLHOSTS

The “ifxclone” command will attempt to add the new server to the ONEDB_ SQLHOSTS file, and if it already exists will not

properly modify the file to define a server group the way we want. If you already have the entry for the new server we should

delete it, or comment it out for now:

Database

server1 onsoctcp host1 9088

server2 onsoctcp host2 9088

Database Logging Mode

Only databases using logging will be replicated. Databases using buffered logging can lose transactions if the log has not

been flushed to disk and the server fails. This same window of vulnerability extends to the replica as well. If all databases

are logging, or you don’t need the non-logging databases to be replicated, you can move on to the next step. You can verify

41

Getting Started

42

the list of the non-logging databases, and those that are using buffered logging by running the following query against the

“sysmaster” database table “sysdatabases” using “dbaccess”:

select name, is_buff_log from sysmaster:sysdatabases where is_logging = 0 or is_buff_log = 1;

Notes:

• Stop the secondary servers

• Change the logging mode and take a Level 0 backup

• Restore the secondary from backup (or re-clone)

With Data Replication (DR) you should create all new Databases with some form of logging (ANSI, Unbuffered, or Buffered).

Chunk Path/Device Information

While we are still on server1, you should collect the path information for the chunks since these paths need to exist on the

new server. You can collect this with the “onstat -d” command. We will discuss the output during setup of server2.

TARGET SETUP

Most, if not all, of the new server configuration can be handled by “ifxclone”:

1. Copies the REMOTE_SERVER_CFG trusted host information

2. Copies the ONCONFIG: Due to the number of configuration parameters that need to be the same, it is probably

easiest to let “ifxclone” copy the ONCONFIG from the original server. Otherwise you need to verify each of the

ONCONFIG parameters which must be identical (listed in the Administrators Reference) have been correctly set. If

needed you can have “ifxclone” override some settings using the “-c” option.

3. Setup the source and local ONEDB_ SQLHOSTS file

The “ifxclone” command cannot setup the symlinks to raw devices, or chunkfiles if they are in directories that do not exist.

Create Needed Directories and Symlinks to Raw Devices

All dbspace chunk paths used on the primary must be the same on our new server. You will need to create the matching

symlinks to the corresponding physical devices. For cooked files, the “ifxclone” can create the missing chunk files

automatically, even for the root dbspace, but it will not create the parent directories. The parent directories for those paths

must already exist for “ifxclone” to successfully create the chunk files.

You can find the paths in the “onstat -d” output from “server1”. For this example, “onstat -d” produced the following output,

showing that the chunk paths are all under the “/chunkdir” directory:

Then, for each of those paths, make sure the parent directories exist with adequate permissions. The above example only

needs the “/chunkdir” directory to exist. It also must have the ownership, and permissions, so you will need to do these

operations as root/administrator:

$ mkdir /chunkdir

Chapter 1. Getting Started

$ chown informix:informix /chunkdir

$ chmod 770 /chunkdir

Under those directories you can manually create the needed raw device symlinks (need permission of 660, same as any

cooked files you choose to create manually.)

If the list of chunks is long, you can collect the paths via the following command on “server1”, and use the output to create a

script to handle the above steps for creating the required parent directories:

$ onstat -d | awk '$NF ~ /\// { print $NF; }'

Run “ifxclone”:

The “ifxclone” will make “server1” a primary, perform “fake” backup of “server1”, and restore it to “server2” as a new HDR

secondary. All changes to logged spaces on “server1” will be continually applied to “server2”. The “ifxclone” will add the

secondary to the ONEDB_ SQLHOSTS file on the “source” server, and copy the “source” server’s ONCONFIG information to the

target:

$ ifxclone --source=server1 --sourceIP=host1 --sourcePort=9088 \

--target=server2 --targetIP=host2 --targetPort=9088 \

--trusted \

--createchunkfile \

--disposition=HDR \

--autoconf

Check the Progress

To monitor the Data Replication Information and message log, run the following (Ctrl-C to break out):

$ onstat -g dri -m -r 1

The server state at the top of each output burst should change from “Initialization”, to “Fast Recovery”, then eventually to

“Read-Only (Sec)”, and show it is paired with server1 and the Data Replication state is “on”:

Server Failed to Initialize?

If the server failed to initialize, check the message log for errors. Correct any missing “paths”, or permissions on the

filesystem, or any other changes needed to the ONCONFIG file. Then rerun the “ifxclone” command, but you must add “--

useLocal” so you don’t overwrite any changes you fixed in the local ONCONFIG.

ONEDB_ SQLHOSTS is Updated

43

Getting Started

44

The “autoconf” option added a “group” to the server ONEDB_ SQLHOSTS file, and assigned each server in the group using the

“g=” option. The group name is the name of the source server but with “g_” prepended. The ONEDB_ SQLHOSTS file from our

example contains three lines now:

g_server1 group - -i=1

server1 onsoctcp host1 9088 g=g_server1

server2 onsoctcp host2 9088 g=g_server1

Verify Backup Device Configuration

Verify the ONCONFIG LTAPEDEV and TAPEDEV values (copied from server1 to server2) exist and have the correct

permissions (RWX for owner and group) on the new server. This will ensure that any automatic and manual backups run as

intended. If you need to change them on the secondary later, you can use “onmode -wf” command while the server is running

to update the value.

Copying the alarmprogram.sh ensures that the same automatic log backup configuration is used on server2. In the event

server2 becomes the primary, the log backups are already configured for operation.

REST API

The OneDB REST API

HCL OneDB provides a REST API for easy access to your data from any HTTP client. You can use REST to query your OneDB

database server and get the query results back in an easy-to-use JSON format. The REST interface also supports inserts,

updates, deletes, and creating new tables and databases for relational data, for TimeSeries data, and for JSON/BSON

document collections.

Starting the OneDB REST API

About this task

The OneDB REST API is a Java-based mid-tier gateway server that will process HTTP requests from clients. The OneDB REST

API is provided as an executable JAR file in the HCL OneDB™ APIs package.

Table 12. Prerequisites for starting the OneDB

REST API:

Java 11

A OneDB server instance that is up and running

To start the OneDB REST API :

Chapter 1. Getting Started

1. Create a REST configuration file.

Sample yaml configuration file:

REST port number
port: 8080

List of database servers that the REST API can connect to
onedb.servers:
 -
 alias: server1
 host: host1.mycompany.com
 port: 9088
 -
 alias: server2
 host: host2.mycompany.com
 port: 9088

Optional, but recommended, properties to enable HTTPS
tls.enable: true
tls.keystore.type: pkcs12
tls.keystore.file: rest-keystore.pkcs12
tls.keystore.password: myPassword

Optional, but recommended, property to enable anti-CSRF tokens
security.csrf.token.enable: true

The onedb.servers property is required. This specifies the alias, host, and port number for the databases servers that

HTTP clients will be able to access through the REST API.

Important: In addition to onedb.servers, it is recommended that you configure the TLS (HTTPS) and anti-

CSRF configuration properties in order to secure your REST API when running it in a production environment.

See the Securing the REST API topic for more information on how to properly secure your REST API server.

The REST API uses HTTP Basic Authentication. The REST server will connect to the OneDB database server through

JDBC using the provided user and password credentials provided by the HTTP client.

2. Start the REST listener using Java 11 or higher

java -jar onedb-rest.jar -config rest-config.yaml

where rest-config.yaml is the name of your REST configuration file.

Using the OneDB Rest API

Once the REST API server is started, you can use any HTTP client to access your data through REST. Authenticate using

HTTP Basic Authentication and a user and password known on the HCL OneDB™ database server. Here are some examples

to get you started.

The following examples assume the REST API is running on the localhost at port 8080 and that you have a server alias called

server1 in your REST configuration file.

Example 1: Get the list of databases on the server

45

Getting Started

46

GET http://localhost:8080/api/servers/server1/databases

Response:

[
 "db1",
 "db2",
 "stores_demo"
]

Example 2: Get the list of tables in the “stores_demo” database

GET http://localhost:8080/api/servers/server1/databases/stores_demo/tables

Response:

[

 "call_type",
 "catalog",
 "classes",
 "cust_calls",
 "customer",
 ...
]

Example 3: Query for all rows in the “customer” table

POST http://localhost:8080/api/servers/server1/databases/stores_demo/tables/customer/query

Response:

{
 "results": [
 {
 "customer_num": 101,
 "fname": "Ludwig",
 "lname": "Pauli",
 "company": "All Sports Supplies",
 "address1": "213 Erstwild Court",
 "address2": null,
 "city": "Sunnyvale",
 "state": "CA",
 "zipcode": "94086",
 "phone": "408-789-8075"
 },
 ...
],
 "hasMore": false,
 "responseTime": 31
}

Example 4: Query for all rows in the “customer” table, sorting by “customer_num” and only including certain fields in the

result

POST http://localhost:8080/api/servers/server1/databases/stores_demo/tables/customer/query

Chapter 1. Getting Started

Request body:

{
 "fields": ["customer_num", "lname", "state"],
 "orderBy": [{ "key": "customer_num", "direction": "asc"}]
}

Response:

{
 "results": [
 {
 "customer_num": 101,
 "lname": "Pauli",
 "state": "CA"
 },
 {
 "customer_num": 102,
 "lname": "Sadler",
 "state": "CA"
 },
 {
 "customer_num": 103,
 "lname": "Currie",
 "state": "CA"
 },
 ...
],
 "hasMore": false,
 "responseTime": 514
}

Example 5: Query the “customer” table with query condition

POST http://localhost:8080/api/servers/server1/databases/stores_demo/tables/customer/query

Request body:

{
 "fields": ["customer_num", "fname", "lname", "city", "state"],
 "filter": {
 "op": "and",
 "filters": [
 { "key": "state", "op": "=", "value": "CA"},
 { "key": "customer_num", "op": ">=", "value": 110 }
]
 }
}

Response:

{
 "results": [
 {
 "customer_num": 110,
 "fname": "Roy",
 "lname": "Jaeger",
 "city": "Redwood City",

47

Getting Started

48

 "state": "CA"
 },
 {
 "customer_num": 111,
 "fname": "Frances",
 "lname": "Keyes",
 "city": "Sunnyvale",
 "state": "CA"
 },
 {
 "customer_num": 112,
 "fname": "Margaret",
 "lname": "Lawson",
 "city": "Los Altos",
 "state": "CA"
 },
 {
 "customer_num": 113,
 "fname": "Lana",
 "lname": "Beatty",
 "city": "Menlo Park",
 "state": "CA"
 },
 ...
],
 "hasMore": false,
 "responseTime": 35
}

Example 6: Insert one row into a table or JSON collection

POST http://localhost:8080/api/servers/server1/databases/mydb/collections/people/insert

Request body:

{ "firstName": "John", "lastName": "Doe", "age": 31 }

Response:

{
 "n": 1,
 "responseTime": 65
}

Example 7: Insert multiple rows into a table or JSON collection

POST http://localhost:8080/api/servers/server1/databases/mydb/collections/people/load

Request body:

{
 "data": [
 {"firstName": "Jane", "lastName": "Doe", "age": 28},
 {"firstName": "Joseph", "lastName": "Doe", "age": 32}
]
}

Response:

Chapter 1. Getting Started

{
 "n": 2,
 "responseTime": 72
}

Example 8: Update one or more rows or documents in a table or JSON collection

POST http://localhost:8080/api/servers/server1/databases/mydb/collections/people/update

Request body:

{
 "filter": { "key": "firstName", "op": "=", "value": "John" },
 "updates": {
 "age": 32
 }
}

Response:

{
 "n": 1,
 "responseTime": 44
}

Example 9: Delete one or more rows or documents in a table or JSON collection based on a query condition

POST http://localhost:8080/api/servers/server1/databases/mydb/collections/people/delete

Request body:

{
 "filter": { "key": "age", "op": "eq", "value": 32 }
}

Response:

{
 "n": 1,
 "responseTime": 44
}

Example 10: Run a SQL query directly through REST

POST http://localhost:8080/api/servers/server1/databases/stores_demo/sql

Request body:

{
 "sql": "select count(*) as count from customer"
}

Response:

{
 "results": [

49

Getting Started

50

 {
 "count": 28
 }
],
 "hasMore": false,
 "responseTime": 363
}

Example 11: Run a SQL query with host variables through REST

POST http://localhost:8080/api/servers/server1/databases/stores_demo/sql

Request body:

{
 "sql": "select count(*) as count from customer where state = ? and customer_num > ?",
 "hostVariables": ["CA", 110]
}

Response:

[
 {
 "count": 8
 }
]

You can find the full OneDB REST API syntax and many more examples here or you can access the REST API's OpenAPI

documentation directly from your REST API server at http://localhost:8080/openapi.

Using MongoDB Applications

The OneDB Wire Listener for MongoDB

HCL OneDB™ provides a wire listener that implements the MongoDB protocol. The HCL OneDB™ wire listener is a java-based

mid-tier gateway server that enables communication between MongoDB clients and the HCL OneDB™ database server. This

allows you to connect MongoDB applications and MongoDB client drivers directly to your HCL OneDB™ database server and

communicate with HCL OneDB™ as if it was a MongoDB server. You can use MongoDB clients to interact with HCL OneDB™’s

JSON/BSON collections or with relational data.

Starting the HCL OneDB™ Wire Listener for MongoDB

About this task

Starting the OneDB Wire Listener for MongoDB

The HCL OneDB™ Mongo interface is part of the HCL OneDB™ wire listener. The HCL OneDB™ wire listener comes with the

HCL OneDB™ APIs package.

../../oneDB/master/json/ids_json_004.dita

Chapter 1. Getting Started

Table 13. Prerequisites for starting the

OneDB Wire Listener:

Java 1.8

A OneDB server that is up and running

To start the OneDB Wire Listener for MongoDB:

1. Create a listener properties file

Sample properties file:

url=jdbc:onedb://localhost:9088/sysmaster;USER=informix;PASSWORD=password
listener.hostName=*
listener.port=27017
listener.type=mongo
mongo.api.version=3.6
security.sql.passthrough=true

The wire listener configuration file on page property is the JDBC url to connect to your OneDB database server.

The listener.hostName property determines the network adapter or interface that the wire listener binds the server

socket to (a value of * directs the wire listener to bind to all interfaces or addresses). The listener.port property

specifies the port number to listen on for incoming connections from clients.

The mongo.api.version sets your MongoDB API compatibility level. The default MongoDB compatibility level is

version 3.6, but any of the following versions are supported: 3.0, 3.2, 3.4, 3.6, 4.0, and 4.2.

Thesecurity.sql.passthrough is optional, but by setting it to true, you enable support for issuing SQL statements

directly through the wire listener.

There are also authentication options that can be specified in the properties file, which you will want to configure

once you get beyond the testing stage. See User authentication with the wire listener for more details on

authentication options.

2. Start the listener using java.

java -jar onedb-wire-listener.jar -config mongo.properties -logfile wire_listener_mongo.log -start

Using the OneDB Wire Listener for MongoDB

About this task

Once the OneDB Wire Listener for MongoDB is started, you can use any MongoDB client or application to access your OneDB

data through MongoDB queries and commands.

For example, you can connect the MongoDB shell to the wire listener and run interactive MongoDB commands against the

OneDB database as shown in the screenshot below.

51

../json/ids_json_006.html
../json/ids_json_006.html
../json/ids_json_006.html
../json/ids_json_006.html

Getting Started

52

You can find the full documentation on OneDB’s Mongo support here: MongoDB API and commands.

OneDB Client Software Development Kit (CSDK)

OneDB Client Software Development Kit (CSDK), is set of connectivity APIs for OneDB database server. All applications

written using, C, C++, C#, Visual Studio, MS Access, MS Excel, .NET, MSDTC, etc., requires one or more of these APIs to

communicate with OneDB Server. This Getting Started guide will demonstrate how to make use of OneDB CSDK in such

application scenarios. This session will cover installation, configuration and sample programs using various CSDK APIs

(i.e. .NET Core Provider, ODBC and ESQL/C). ODBC and ESQL/C is shipped on all platforms, .NET Core is available on

Windows and Linux platforms.

Sections in this document:

Chapter 1. Getting Started

• Installing OneDB Client SDK (CSDK).

• Checking your CSDK version.

• Testing your OneDB Server connection.

• Creating an ODBC Data Source Name (DSN).

• Writing a C program using ESQL/C.

• Writing a C# program using .NET Core Provider.

This document assumes that you are running on Windows. You may need to adjust (e.g. change PATH formats) for other

platforms.

Following are expected to be pre-installed to run the sample programs.

• OneDB Server must be installed and online.

• Microsoft Visual Studio 2017 is used in this document.

• .NET Core SDK/Runtime 3.1.302 is used in this document.

OneDB Client SDK (CSDK) installation and configuration

About this task

Following steps are based on the assumption that you already have OneDB CSDK installer with you.

1. Once you extract the installer, you will see file “installclientsdk.exe” file.

2. Double click in the installclientsdk.exe file to start the installation. Depending on the privilege level of your machine

for the given user, you may have to run installclientsdk.exe as “Run as administrator”.

3. Click “Next”.

53

Getting Started

54

4. Review the license Information. Choose “I accept…” radio button and press “Next” to proceed.

Chapter 1. Getting Started

5. In the next window (below), provide the folder location to be installed and press “Next”

55

Getting Started

56

6. In the next window (below), press “Next”, and install all APIs of CSDK.

Chapter 1. Getting Started

7. Click Install

57

Getting Started

58

8. Click on “Done” as it prompts for successful installation.

Chapter 1. Getting Started

9. Post successful installation, you can go to “Start Program/Windows Symbol” at the bottom left corner of your

computer and you can browse to see below list under “HCL OneDB Client SDK 1.0” menu.

10. In the above step click on “Setnet”, Setnet is utility to set OneDB Client environment variables and OneDB Server

configuration details. Once you invoke “Setnet”, Go to “Server Information” tab and provide required information for

your OneDB Server instance as mentioned below. Click on “Make Default Server” followed by “Apply” and “OK”. Check

the version of OneDB Client SDK installed using “esql -V” & "esql -version"

11. Using the “System Environment” of Windows, you should set environment variables:

59

Getting Started

60

◦ ONEDB_HOME (PATH where OneDB CSDK is installed)

◦ ONEDB_SERVER (OneDB Server instance name)

◦ ONEDB_ SQLHOSTS (OneDB Server connection end point information)

◦ PATH (add %ONEDB_HOME%\bin)

12. Once above environment variables are set, Open the command prompt of Visual Studio 2017 (or later) and cross

verify the environment set by running “set INFORMIX” command. Followed by “which esql” (this output will ensure

Chapter 1. Getting Started

PATH is correctly set). Followed by “esql -V” and “esql -version” commands. These commands output provides the

version information of OneDB Client SDK. Refer below command prompt for the commands executed and its results.

ConnectTest Demo – Client-Server connectivity testing

About this task

This topic provides steps for Client-Server connectivity testing.

1. Go to “Start Program/Windows Symbol” at the bottom left corner of your computer, from “HCL OneDB Client SDK 1.0”

drop-down select “ConnectTest Demo”. Using Setnet we have already configured OneDB Server details.

2. Your sever name should be listed under “Server” drop down (in the below image its onedb_6), select the same and fill

the “User name” and Password” fields.

3. Select the “Database” from the drop-down list, at this time, internally ConnectTest Demo program will connect to

OneDB Server and get all the database names to be displayed.

4. Choose one of your databases or if you have not created one already, choose the “sysmaster” from the list.

SELECT * FROM systables

If you choose your own database, accordingly you need to use the table name in the SELECT query. Once you enter all

the details, click on “Execute”, you should see the result of your SELECT query in the Query Result window.

61

Getting Started

62

5. Create ODBC Data Source Name (DSN) and test the connection.

6. Run the “ODBC Data Source (64-bit)” utility which is typically located at %windir%\system32\odbcad32.exe

location. Click on “New”, select “HCL OneDB ODBC DRIVER” and click on “Finish”.

Chapter 1. Getting Started

7. Provide “Data Source Name” and “Description” information and click on next tab i.e. “Connection”.

63

Getting Started

64

8. Select “Server Name” from the drop-down list (in the below image onedb_6), provide “User Id” and “Password” details

and click on drop-down list of “Database Name”, all your database should be listed here, which the one which is of

your importance. Click on “Apply and Test Connection”. It should display the success message as mentioned below.

Chapter 1. Getting Started

9. Click OK.

65

Getting Started

66

10. You can click on “OK” and close the window or feel free to visit other tabs as mentioned below for your reference.

These are default values.

Sample ESQL/C program to connect to OneDB Server

Open “VS2017 Command Prompt” (or later version) window. You can use any text editor to use the below sample ESQL/C

code, name it “esql_connect.ec “ and save the file. Run “esql esql-connect.ec” command, it will generate esql-connect.exe

executable file. Run this executable file. You should get the SUCCESS message. Refer below image for more information.

#include <stdio.h>
#include <windows.h>
main()
{
printf("\n Sample ESQL Connect Program.\n");
EXEC SQL connect to 'sysmaster';
if (SQLCODE == 0)
printf(" Connected Successfully to 'sysmaster' database\n");
else
{
printf(" Connection error !!\n");
exit(-1);
}

Chapter 1. Getting Started

EXEC SQL disconnect current;
printf(" Sample Program over.\n");
}

C# sample program for.NET Core Provider to demonstrate retrieval/RecordSet of data
from OneDB Server

Open “VS2017 Command Prompt” (or later version) window. Below is the sample C# program to use OneDB .NET Core

Provider.

It connects to “sysmaster” database and selects few records from “systables” table. You need to change the connection

string in IfxConnection() call which suits your OneDB Server environment. This program uses .NET Core SDK v3.1.302

version.

You can use any text editor to use the below sample C# code, name it “dotnet-code-connect.cs “ and save the file. In the

below image, you can refer the project file used, you need to have your own similar project file to suit your environment (i.e.

location for files) and all dependent assemblies i.e. System.Security.Permissions, Microsoft.Win32.Registry etc installed

(may be from www.nuget.org).

• In the command prompt run “dotnet build”.

• It will create the binaries for the sample program.

• You can run the binary “dotnet <name of the DLL created in the ‘dotnet build’ phase>”

• The program will display the data and number of records it fetched from the database on its successful execution.

• You can refer below image for actual outputs in the environment where its executed.

67

http://www.nuget.org

Getting Started

68

using System;
using System.Data;
using Informix.Net.Core;
class TestClass
{
static void Main(string[] args)
{
IfxConnection conn = null;
int rows = 0;
String value = "";
Console.WriteLine("OneDB .NET Core Provider test");
conn = new IfxConnection("Server=onedb_6;User ID=informix;password=xxxx;Database=sysmaster;");
conn.Open();
IfxCommand Selcmd = conn.CreateCommand();
Selcmd.CommandText = "select tabname from systables where tabid<5;";
Selcmd.CommandType = CommandType.Text;
Selcmd.Connection = conn;
IfxDataReader DReader = Selcmd.ExecuteReader();
while (DReader.Read())
{
rows++;
value = DReader[0].ToString();
Console.WriteLine("Value: " + value);
}
Console.WriteLine("Number of Rows Retrieved: " + rows);
DReader.Close();
conn.Close();
conn.Dispose();
}
}

Chapter 1. Getting Started

You can refer more demo/sample programs from %ONEDB_HOME%/demo folder of your OneDB Client SDK installation.

69

Getting Started

70

Server administration (from the command-line)
HCL OneDB includes utilities and applications that you can use to perform administrative tasks and capture information

about configuration and performance.

onstat : Use this command to take snapshots of different conditions on your database server,

• Monitor users (onstat -u),

• transactions (onstat -x),

• Locks (onstat -k),

• Logical logs (onstat -l),

• Dbspaces & chunks (onstat -d),

• View configuration (onstat -c) and many more.

onmode: Use this command to take different actions over the database server like:

• Shutdown the server (onmode -ky),

• Create a checkpoint (onmode -c),

• Advance to next logical log (onmode -l),

• Dynamically change some configuration parameters (onmode -wm|wf) ,

• Put server in administration mode (onmode -j),

• Block/unblock the server (onmode -c block|unblock),

• Start up or remove virtual processors of a specific class (onmode -p +# class),

• Dynamic listen thread control (onmode -P [start|stop|restart] <servername>),

• Kill a specific session (onmode -z <sesid>) and many more.

onspaces: Use this command to manage storage spaces. HCL OneDB stores data in disks chunks that belongs to DBspaces,

BLOBspaces, SBLOBspaces, temporary DBspaces. Use this command to:

• Add a chunk to DBspace / BLOBspace / SBLOBspace (onspaces -a <spacename>…..),

• Create DBspace / BLOBspace / SBLOBspace / PLOGspace (onspaces -c -d <spacename>….),

• Drop an empty chunk / DBspace / BLOBspace / SBLOBspace (onspaces -d <spacename>…) and many more.

onparams: Use this command to manage logical logs , physical log and buffer pools. You can:

• Add a logical log (onparams -a -d <dbspace>…),

• Add a buffer pool (onparams -b -g size …),

• Move the physical log to a different location / size (onparams -p -s <size> -d <dbspace>…) and many more.

oncheck: Use this command to check specific disk structures for inconsistencies, repair inconsistent index structures, and

display information about disk structures. You can check:

• Reserved pages (oncheck -pr / cr),

• System catalogs (oncheck -pc / cc),

Chapter 1. Getting Started

• Chunk free list (oncheck -pe / ce),

• Data pages (oncheck -cd / cD),

• Index pages (oncheck -ci / cI) and many more.

onaudit: Use this command to configure auditing on the database server.

dbschema: Use this command to create a file with SQL commands to create table(s) / view(s) / database.

dbexport / dbimport: Use these commands unload / load a database from text files with included dbschema.

dbaccess: Use this command to get a a user interface for entering, running, and debugging Structured Query Language (SQL)

statements and Stored Procedure Language (SPL) routines.

finderr: Use this command to look up a specific error code and display the corresponding error text.

dbimport utility

The dbimport command imports previously exported data into another database.

Syntax

 .----------.
 V |
>>-dbimport----+------+-+--| Input-File Location |-------------->
 +- -c--+
 +- -D--+
 +- -nv-+
 +- -q--+
 '- -X--'

 (2)
>--| Create Options |------+-----------+--database-------------><
 +- -V-------+
 '- -version-'

Element Purpose

-c Completes importing data even

when certain nonfatal errors occur.

-D Specifies a default extent size of 16 KB for the first and

subsequent extents during the import operation, if the extent

sizes are not specified in the CREATE TABLE statement.

-nv While the dbimport -nv command is running,

tables with foreign-key constraints that

ALTER TABLE ADD CONSTRAINT creates in

enabled or filtering mode are not checked for

violations, as if NOVALIDATE has been specified.

71

Getting Started

72

Element Purpose

-q Suppresses the display of error messages, warnings,

and generated SQL data-definition statements.

-V Displays the software version number and the serial number.

-version Extends the -V option to display additional information about

the build operating system, build number, and build date.

-X Recognizes HEX binary data in character fields.

database Declares the name of the database to create.

dbimport input-file location options

The input-file location specifies the location of the database.exp directory, which contains the files that the dbimport utility

imports.

|-+---+--|
 +- -i--directory--+
 '- -t--device--+-------------------------------+--+-------------+-'
 '- -b--blocksize-- -s--tapesize-' '- -f--pathname-'

Element Purpose

-b blocksize
Specifies, in kilobytes, the block size of the tape device.

If you are importing from tape, you must use the same

block size that you used to export the database.

If you do not use the -b option, the default block size is 1.

-f pathname Specifies where dbimport can find

the schema file to use as input to create the

database when the data files are read from the tape.

-i directory Specifies the complete path name on disk of the

database.exp directory, which holds the

input data files and schema file that dbimport

uses to create and load the new database. The

directory name must be same as the database name.

-s tapesize Specifies, in kilobytes, the

amount of data that you can store on the tape.

-t device Specifies the path name of the tape

device that holds the input files.

Chapter 1. Getting Started

dbimport create options

The dbimport utility supports options for creating a database, specifying a dbspace for that database, defining logging

options, and optionally, specifying ANSI/ISO-compliance or NLS case-insensitivity (or both) as properties of the database.

|--+--------------+--+-----------------------+--+------+--------|
 '- -d--dbspace-' '- -l--+-+----------+-+-' '- -ci-'
 | '-buffered-' |
 '- -ansi-------'

Element Purpose

-ansi Creates an ANSI/ISO-compliant database

in which the ANSI/ISO rules for transaction

logging are enabled. Otherwise, the database

uses explicit transactions by default.

-ci Specifies the NLS case-insensitive property.

Otherwise, the database is case-sensitive by default.

-d dbspace Specifies the dbspace where the database is created..

-l Establishes unbuffered transaction logging for the imported

database. If the -l flag is omitted, the database is unlogged.

-l buffered Establishes the buffered transaction logging for

the imported database. If -l is included but buffered

is omitted, the database uses unbuffered logging.

dbexport utility

The dbexport command unloads a database into text files that you can later import into another database. The command

also creates a schema file.

Remember: You must have DBA privileges or log in as user informix to export a database.

Syntax

>>-dbexport--->

 .---.
 V |
>--+---+---+-+--database-+-><
 | +- -c ---------------------------------------+ |
 | +- -d---+ |
 | +- -no-data-tables--tablenames------------------+ |
 | +- -no-data-tables-accessmethods--accessmethods-+ |
 | +- -nw--+ |
 | +- -q---+ |
 | | | |
 | +-| Destination Options |-----------------------+ |

73

Getting Started

74

 | +- -ss--+ |
 | +- -si--+ |
 | '- -X---' |
 '-+-----------+---'
 +- -V-------+
 '- -version-'

Element Purpose

-c
Makes dbexport complete exporting unless a fatal error

occurs.

-d
Makes dbexport export simple-large-object descriptors only,

not simple-large-object data.

-q
Suppresses the display of error messages, warnings, and

generated SQL data-definition statements.

-ss

Generates database server-specific information for all tables

in the specified database.

This option specifies initial and next-extent sizes,

fragmentation information if the table is fragmented, the

locking mode, the dbspace for a table, the blobspace for any

simple large objects, and the dbspace for any smart large

objects.

-si

Excludes the generation of index storage clauses for non-

fragmented tables.

Note: The -si option is available only with the -ss

option.

-X Recognizes HEX binary data in character fields.

-no-data-tables

Prevents data from being exported for the specified tables.

Only the definitions of the specified tables are exported.

Accepts a comma-separated list of names of tables for which

data will not be exported.

-no-data-tables-accessmethods Prevents data from being unloaded using the specified

access methods.

Chapter 1. Getting Started

Element Purpose

Accepts a comma-separated list of names of access

methods. Tables using those access methods are not

unloaded.

-nw
Generates the SQL for creating a database without the

specification of an owner.

-V Displays the software version number and the serial number.

-version
Extends the -V option to display additional information about

the build operating system, build number, and build date.

database Specifies the name of the database that you want to export.

Destination Options

|--+---+--|
 +- -o--directory--+
 '- -t--device-- -b--blocksize-- -s--tapesize--+---------------+-'
 '- -f--pathname-'

Element Purpose

-b blocksize Specifies, in kilobytes, the block size of the tape device.

-f pathname Specifies the name of the path where you want the schema

file to be stored, if you are storing the data files on tape.

-o directory Specifies the directory on the disk in which dbexport

creates the database.exp directory. This

directory holds the data files and the schema

file that dbexport creates for the database.

-s tapesize Specifies, in kilobytes, the

amount of data that you can store on the tape.

-t device Specifies the path name of the tape device where you

want the text files and, possibly, the schema file stored.

When you write to disk, dbexport creates a subdirectory, database.exp, in the directory that the -o option specifies. The

dbexport utility creates a file with the .unl extension for each table in the database. The schema file is written to the file

database.sql. The .unl and .sql files are in the database.exp directory.

Troubleshooting and Getting Help

Occasionally, a series of event causes the database server to return unexpected error codes or behaviour.

75

Getting Started

76

HCL OneDB provides tools to gather useful information for the support team to troubleshoot and provide a solution. Some

useful utilities are:

ifxcollect: This utility gathers pertinent onstats information for support engineer to diagnose specific problems such as:

performance, connection failures, Enterprise Replication issues, Assert Failures, etc. It also provides option for uploading the

gathered information to a support FTP site.

Output files that ifxcollect commands generate are in the $OneDB Installationdir/isa/data directory.

The type of data that is collected per category and subcategory is in predefined XML files in the $OneDB Installationdir/isa/

directory. These XML files can be modified to add or remove specific commands.

onmode -I : Use this onmode option to instruct the database server to perform the diagnostics collection procedures and

generate an Assert Failure for support engineers analysis. To use onmode -I when you encounter an error number, supply the

iserrno and an optional session ID.

Output files that onmode -I generates are in the location indicated by the DUMPDIR onconfig parameter, depending on the

DUMPSHMEM onconfig setting you might also get a shared memory dump. Please consult with a support engineer on this

command use and mentioned settings.

onmode -Y or SET EXPLAIN ON : You can use this onmode utility to dynamically set the explain output or SET EXPLAIN

output to study the query plans of an application. The output of the SET EXPLAIN statement shows decisions that the query

optimizer makes. It shows whether parallel scans are used, index scan(s), sequential scan(s), the maximum number of

threads required to answer the query, and the type of join used for the query.

Other troubleshooting options are available, you might get instructed by a support engineer to activate any of these options

in order to get additional information on the unexpected behaviour. On any case please provide us with a detailed information

on the unexpected behaviour you are experiencing and get help from our support team.

For opening a support ticket visit the HCL support portal (https://www.hcltech.com/software/support)

https://www.hcltech.com/software/support

Index
C

conversion Informix 5

77

	Getting Started
	Contents
	Chapter 1. Getting Started
	Introduction to HCL OneDB™
	What's new in HCL OneDB™ 2.0.1
	What's new in HCL OneDB™ 2.0.1.3
	What's new in HCL OneDB™ 2.0.1.2
	What's new in HCL OneDB™ 2.0.1.1
	What's new in HCL OneDB™ 2.0.1.0

	HCL OneDB Editions
	Installing HCL OneDB™
	Downloading the product
	AIX, Linux
	Windows

	Migrating to HCL OneDB™ 2.0.0.0
	Naming conversion for HCL OneDB™

	HCL OneDB™ Explore
	HCL OneDB™ Explore Server
	HCL OneDB™ Explore Agent
	Getting started with HCL OneDB™ Explore
	Starting the HCL OneDB™ Explore Server
	Starting the HCL OneDB™ Explore Agent
	Deploying and starting the HCL OneDB™ Explore agent automatically from the UI
	Starting the OneDB Explore Agent with Start/Stop Script

	Stopping the HCL OneDB™ Explore Server and Agent
	Manging Database using HCL OneDB™ Explore
	Creating an OneDB Database using OneDB Explore
	Creating a table using OneDB Explore
	Adding a record using OneDB Explore

	Data Replication
	Physical and logical replication
	Enterprise Replication (ER)
	A simple Example

	High availability cluster
	Shared Disk (SD) secondary
	Adding an SD secondary to a cluster

	High-Availability Data Replication (HDR)
	Adding an HDR server to a cluster

	Remote Standalone (RS) secondary
	Adding an RS secondary to a cluster

	Connection Manager
	Avoiding split brain situation during automated failovers
	Connection manager configuration
	SQLHOSTS file for the OneDB Primary + HDR cluster:
	Configuration file for first connection manager (cm1):
	SQLHOSTS file for cm1 connection manager
	Command to start connection manager
	Configuration file for second connection manager (cm2)
	SQLHOSTS file for cm2 connection manager
	Command to start cm2 connection manager
	SQLHOSTS file for client applications

	Ifxclone
	Cloning OneDB server
	Common Setup (From Source Server)
	Create an empty “trusted.hosts” file, and set the file permissions to limit write access to the instance owner(informix) and group (informix):
	HDR ONCONFIG Changes
	TARGET SETUP
	Run “ifxclone”:

	REST API
	Starting the OneDB REST API
	Using the OneDB Rest API

	Using MongoDB Applications
	Starting the HCL OneDB™ Wire Listener for MongoDB
	Using the OneDB Wire Listener for MongoDB

	OneDB Client Software Development Kit (CSDK)
	OneDB Client SDK (CSDK) installation and configuration
	ConnectTest Demo – Client-Server connectivity testing
	Sample ESQL/C program to connect to OneDB Server
	C# sample program for.NET Core Provider to demonstrate retrieval/RecordSet of data from OneDB Server

	Server administration (from the command-line)
	dbimport utility
	Syntax
	dbimport input-file location options
	dbimport create options

	dbexport utility
	Syntax
	Destination Options

	Troubleshooting and Getting Help

	Index

