
HCL OneDB 2.0.1

OneDB Database Extensions User's Guide

ii

Contents
Chapter 1. Database Extensions User's Guide................... 3

Large object management.. 3
About Large Object Locator.................................... 4
Large Object Locator data types............................. 6
Large Object Locator functions...............................9
Large Object Locator example code..................... 34
Large Object Locator error handling..................... 44

MQ Messaging... 46
About MQ messaging.. 46
MQ messaging tables..54
MQ messaging functions...................................... 57
MQ messaging configuration parameters.......... 104
MQ messaging error handling.............................105
Sample MQ messaging code.............................. 108

Binary data types... 109
Binary data types overview..................................110
Store and index binary data.................................110
Binary data type functions...................................113

Basic Text Search.. 117
Preparing for basic text searching......................118
Basic text search queries.................................... 133
Basic text search JSON index parameters......... 143
Basic Text Search XML index parameters..........154
Basic text search analyzers.................................166
Basic text search functions.................................180
Basic text search performance........................... 191
Basic text search error codes............................. 194

Hierarchical data type... 201
The node data type for querying hierarchical
data..201
Node data type functions.................................... 202

SQL Packages Extension.. 214
DBMS_ALERT package.. 214
DBMS_LOB package.. 217
DBMS_OUTPUT package..................................... 224
DBMS_RANDOM package....................................227
UTL_FILE package..229

Regex pattern matching.. 233
Requirements and Restrictions........................... 234
Metacharacters.. 235
Regex Routines...241

Index...255

Chapter 1. Database Extensions User's Guide
The HCL OneDB™ Database Extensions User's Guide explains how to use the database extensions that come with HCL

OneDB™: Large Object Locator, MQ messaging, binary data types, basic text search, node data type, HCL OneDB™ web

feature service for Geospatial Data, and SQL packages.

The topics contain the following information:

• The Large Object Locator extension manages large object data that is stored outside the database so that you can

create a single consistent interface to large objects.

• The MQ messaging extension provides an interface to the HCL OneDB™ MQ (WMQ) messaging products. WMQ

provides an infrastructure for distributed, asynchronous communication of data in a distributed, heterogeneous

environment.

• The binary data types extension provides data types so that you can store binary-encoded strings, which can be

indexed for quick retrieval.

• The basic text search extension provides a customizable index so that you can search words and phrases that are

stored in a column of a table.

• The node data type extension gives you the ability to represent hierarchical data within the relational database.

• The SQL packages extension provides SPL routines that you can use in an application that is compatible with other

database servers. For example, the packages include large object handling, alert and message management, and

random number generation.

This publication is for application developers and database administrators who want to use the built-in extensions that are

provided in HCL OneDB™ for storing, querying, and manipulating data.

Large object management
The Large Object Locator extension enables you to create a single consistent interface to large objects. It extends the

concept of large objects to include data stored outside the database.

stores large object data (data that exceeds a length of 255 bytes or contains non-ASCII characters) in columns in the

database. You can access this data using standard SQL statements. The server also provides functions for copying data

between large object columns and files. See HCL OneDB™ Guide to SQL: Syntax and HCL OneDB™ Guide to SQL: Tutorial for

more information.

With Large Object Locator you create a reference to a large object and store the reference as a row in the database. The

object itself can reside outside the database: for example, on a file system (or it could be a BLOB or CLOB type column in the

database). The reference identifies the type, or access protocol, of the object and points to its storage location. For example,

you could identify an object as a file and provide a path name to it or identify it as a binary or character smart large object

stored in the database. Smart large objects are a category of large objects that include CLOB and BLOB data types, which

store text and images. Smart large objects are stored and retrieved in pieces, and have database properties such as crash

recovery and transaction rollback.

3

OneDB Database Extensions User's Guide

4

You access a large object by passing its reference to a Large Object Locator function. For example, to open a large object

for reading or writing, you pass the object's reference to the lld_open() function. This function uses the reference to find

the location of the object and to identify its type. Based on the type, it calls the appropriate underlying function to open the

object. For example, if the object is stored on a UNIX™ file system, lld_open() calls a UNIX™ function to open the object.

Important: In theory, you could use Large Object Locator to reference any type of large object in any storage location.

In practice, access protocols must be built into Large Object Locator for each type of supported object. Because

support for new types can be added at any time, be sure to read the release notes accompanying this publication—

not the publication itself—to see the types of large objects Large Object Locator currently supports.

About Large Object Locator
Large Object Locator is implemented through two data types and a set of functions

The Large Object Locator data types are lld_locator and lld_lob.

You use the lld_locator type to identify the access protocol for a large object and to point to its location. This type is a row

type, stored as a row in the database. You can insert, select, delete, and update instances of lld_locator rows in the database

using standard SQL INSERT, SELECT, DELETE, and UPDATE statements.

You can also pass an lld_locator row to various Large Object Locator functions. For example, to create, delete, or copy a large

object, and to open a large object for reading or writing, you pass an lld_locator row to the appropriate Large Object Locator

function. See The lld_locator data type on page 6 for a detailed description of this data type.

The lld_lob type enables Large Object Locator to reference smart large objects, which are stored as BLOB or CLOB data in the

database. The lld_lob type is identical to the BLOB and CLOB types except that, in addition to pointing to the data, it tracks

whether the underlying smart large object contains binary or character data.

See The lld_lob data type on page 8 for a complete description of this data type.

Large Object Locator provides a set of functions similar to UNIX™ I/O functions for manipulating large objects. You use the

same functions regardless of how or where the underlying large object is stored.

The Large Object Locator functions can be divided into four main categories:

Basic functions

Creating, opening, closing, deleting, and reading from and writing to large objects.

Client functions

Creating, opening, and deleting client files and for copying large objects to and from client files. After you open

a client file, you can use the basic functions to read from and write to the file.

Utility functions

Raising errors and converting errors to their SQL state equivalents.

Chapter 1. Database Extensions User's Guide

Smart large object functions

Copying smart large objects to files and to other smart large objects

There are three interfaces to the Large Object Locator functions:

• An API library

• An ESQL/C library

• An SQL interface

All Large Object Locator functions are implemented as API library functions. You can call Large Object Locator functions

from user-defined routines within an application you build.

All Large Object Locator functions, except lld_error_raise(), are implemented as ESQL/C functions. You can use the Large

Object Locator functions to build ESQL/C applications.

A limited set of the Large Object Locator functions are implemented as user-defined routines that you can execute within

SQL statements. See SQL interface on page 10 for a list of the Large Object Locator functions that you can execute

directly in SQL statements.

Large Object Locator functions on page 9, describes all the Large Object Locator functions and the three interfaces in

detail.

Large object requirements
To implement the Large Object Locator, the Scheduler must be running and the database must conform to requirements.

Certain limitations are inherent in using large objects with a database, because the objects themselves, except for smart

large objects, are not stored in the database and are not subject to direct control by the server. Two specific areas of concern

are transaction rollback and concurrency control.

Database server requirements

The HCL OneDB™ database server has the following requirements:

• Non-logged databases are not supported.

• ANSI databases are not supported.

• The Scheduler must be running.

If you attempt to create a Large Object Locator data type or run a Large Object Locator function in an unlogged or ANSI

database, a message that DataBlade registration failed is printed in the online message log. If the Scheduler is not

running the first time that you create a Large Object Locator data type or run a Large Object Locator function, a message that

the data type is not found or the routine cannot be resolved is returned.

Transaction rollback

Because large objects, other than smart large objects, are stored outside the database, any changes to them take place

outside the server's control and cannot be rolled back if a transaction is aborted. For example, when you execute lld_create(),

5

OneDB Database Extensions User's Guide

6

it calls an operating system routine to create the large object itself. If you roll back the transaction containing the call to

lld_create(), the server has no way of deleting the object that you have just created.

Therefore, you are responsible for cleaning up any resources you have allocated if an error occurs. For example, if you create

a large object and the transaction in which you create it is aborted, you should delete the object you have created. Likewise, if

you have opened a large object and the transaction is aborted (or is committed), you should close the large object.

Concurrency control

Large Object Locator provides no direct way of controlling concurrent access to large objects. If you open a large object

for writing, it is possible to have two separate processes or users simultaneously alter the large object. You must provide a

means, such as locking a row, to guarantee that multiple users cannot access a large object simultaneously for writing.

Large Object Locator data types

This chapter describes the Large Object Locator data types, lld_locator and lld_lob.

The lld_locator data type

The lld_locator data type identifies a large object. It specifies the kind of large object and provides a pointer to its location.

lld_locator is a row type and is defined as follows:

create row type informix.lld_locator
 {
 lo_protocol char(18
 lo_pointer informix.lld_lob0
 lo_location informix.lvarchar
 }

lo_protocol

Identifies the kind of large object.

lo_pointer

A pointer to a smart large object, or is NULL if the large object is any kind of large object other than a smart large

object.

lo_location

A pointer to the large object, if it is not a smart large object. Set to NULL if it is a smart large object.

In the lo_protocol field, specify the kind of large object to create. The kind of large object you specify determines the values

of the other two fields:

• If you specify a smart large object:

◦ use the lo_pointer field to point to it.

◦ specify NULL for the lo_location field.

• If you specify any other kind of large object:

◦ specify NULL for the lo_pointer field.

◦ use the lo_location field to point to it.

Chapter 1. Database Extensions User's Guide

The lo_pointer field uses the lld_lob data type, which is defined by Large Object Locator. This data type allows you to point to

a smart large object and specify whether it is of type BLOB or type CLOB. For more information, see The lld_lob data type on

page 8.

The lo_location field uses an lvarchar data type, which is a varying-length character type.

The following table lists the current protocols and summarizes the values for the other fields based on the protocol that you

specify. Be sure to check the release notes shipped with this publication to see if Large Object Locator supports additional

protocols not listed here.

Tip: Although the lld_locator type is not currently extensible, it might become so later. To avoid future name space

collisions, the protocols established by Large Object Locator all have an IFX prefix.

Table 1. Fields of lld_locator data type

lo_protocol lo_pointer lo_location Description

IFX_BLOB Pointer to a smart large object NULL Smart large object

IFX_CLOB Pointer to a smart large object NULL Smart large object

IFX_FILE NULL pathname File accessible on server

Important: The lo_protocol field is not case-sensitive. It is shown in uppercase letters for display purposes only.

The lld_locator type is an instance of a row type. You can insert a row into the database using an SQL INSERT statement, or

you can obtain a row by calling the DataBlade® API mi_row_create() function. See the HCL OneDB™ ESQL/C Programmer's

Manual for information about row types. See the HCL OneDB™ DataBlade® API Programmer's Guide for information about the

mi_row_create() function.

To reference an existing large object, you can insert an lld_locator row directly into a table in the database.

To create a large object, and a reference to it, you can call the lld_create() function and pass an lld_locator row.

You can pass an lld_locator type to these Large Object Locator functions, described in Large Object Locator functions on

page 9:

• The lld_copy() function on page 12

• The lld_create() function on page 14

• The lld_delete() function on page 16

• The lld_open() function on page 17

• The lld_from_client() function on page 26

• The lld_to_client() function on page 30

7

OneDB Database Extensions User's Guide

8

The lld_lob data type

The lld_lob data type is a user-defined type. You can use it to specify the location of a smart large object and to specify

whether the object contains binary or character data.

The lld_lob data type is defined for use with the API as follows:

typedef struct
 {
 MI_LO_HANDLE lo;
 mi_integer type;
 } lld_lob_t;

It is defined for ESQL/C as follows:

typedef struct
 {
 ifx_lo_t lo;
 int type;
 } lld_lob_t;

lo

A pointer to the location of the smart large object.

type

The type of the object. For an object containing binary data, set type to LLD_BLOB; for an object containing

character data, set type to LLD_CLOB.

The lld_lob type is equivalent to the CLOB or BLOB type in that it points to the location of a smart large object. In addition,

it specifies whether the object contains binary or character data. You can pass the lld_lob type as the lo_pointer field of an

lld_locator row. You should set the lld_lob_t.type field to LLD_BLOB for binary data and to LLD_CLOB for character data.

See The lld_lob type on page 34 for example code that uses the lld_lob type.

LOB Locator provides explicit casts from:

• a CLOB type to an lld_lob type.

• a BLOB type to an lld_lob type.

• an lld_lob type to the appropriate BLOB or CLOB type.

Tip: If you attempt to cast an lld_lob type containing binary data into a CLOB type or an lld_lob type containing

character data into a BLOB type, Large Object Locator returns an error message.

You can pass an lld_lob type to these functions, described in Large Object Locator functions on page 9:

• The LOCopy function on page 32

• The LOToFile function on page 33

• The LLD_LobType function on page 34

Chapter 1. Database Extensions User's Guide

Note that LOCopy and LOToFile functions are overloaded versions of built-in server functions. The only difference is that you

pass an lld_lob to the Large Object Locator versions of these functions and a BLOB or CLOB type to the built-in versions.

Large Object Locator functions

This chapter briefly describes the three interfaces to Large Object Locator and describes in detail all the Large Object Locator

functions.

Interfaces

Large Object Locator functions are available through three interfaces:

• An API library

• An ESQL/C library

• An SQL interface

If the syntax for a function depends on the interface, each syntax appears under a separate subheading. Because there are

few differences between parameters and usage in the different interfaces, there is a single parameter description and one

“Usage,” “Return,” and “Related topics” section for each function. Where there are differences between the interfaces, these

differences are described.

The naming convention for the SQL interface is different from that for the ESQL/C and API interfaces. For example, the SQL

client copy function is called LLD_ToClient(), whereas the API and ESQL/C client copy functions are called lld_to_client(). This

publication uses the API and ESQL/C naming convention unless referring specifically to an SQL function.

API library

All Large Object Locator functions except the smart large object functions are implemented as API functions defined in

header and library files (lldsapi.h and lldsapi.a).

You can call the Large Object Locator API functions from your own user-defined routines. You execute Large Object Locator

API functions just as you do functions provided by the HCL® OneDB® DataBlade® API. See the HCL OneDB™ DataBlade®

API Programmer's Guide for more information.

See The API interface on page 40 for an example of a user-defined routine that calls Large Object Locator API functions

to copy part of a large object to another large object.

ESQL/C library

All Large Object Locator functions except lld_error_raise() and the smart large object functions are implemented as ESQL/C

functions, defined in header and library files (lldesql.h and lldesql.so).

Wherever possible, the ESQL/C versions of the Large Object Locator functions avoid server interaction by directly accessing

the underlying large object.

9

OneDB Database Extensions User's Guide

10

See the HCL OneDB™ ESQL/C Programmer's Manual for more information about using the ESQL/C interface to execute Large

Object Locator functions.

SQL interface

The following Large Object Locator functions are implemented as user-defined routines that you can execute within SQL

statements:

• LLD_LobType()

• LLD_Create()

• LLD_Delete()

• LLD_Copy()

• LLD_FromClient()

• LLD_ToClient()

• LOCopy()

• LOToFile()

See the following three-volume set for further information about the HCL OneDB™ SQL interface:

• HCL OneDB™ Guide to SQL: Reference

• HCL OneDB™ Guide to SQL: Syntax

• HCL OneDB™ Guide to SQL: Tutorial

Working with large objects

This section describes functions that allow you to:

• create large objects.

• open, close, and delete large objects.

• return and change the current position within a large object.

• read from and write to large objects.

• copy a large object.

Generally, you use the functions described in this section in the following order.

1. You use lld_create() to create a large object. It returns a pointer to an lld_locator row that points to the large object.

If the large object already exists, you can insert an lld_locator row into a table in the database to point to the object

without calling lld_create().

2. You can pass the lld_locator type to the lld_open() function to open the large object you created. This function returns

an LLD_IO structure that you can pass to various Large Object Locator functions to manipulate data in the open

object (see Step 3 on page 11).

You can also pass the lld_locator type to the lld_copy(), lld_from_client(), or lld_to_client() functions to copy the large

object.

Chapter 1. Database Extensions User's Guide

3. After you open a large object, you can pass the LLD_IO structure to:

lld_tell()

Returns the current position within the large object.

lld_seek()

Changes the current position within the object.

lld_read()

Reads from large object.

lld_write()

Writes to the large object.

lld_close()

Closes an object. You should close a large object if the transaction in which you open it is aborted or

committed.

Tip: To delete a large object, you can pass the lld_locator row to lld_delete() any time after you create it. For example,

if the transaction in which you created the object is aborted and the object is not a smart large object, you should

delete the object because the server's rollback on the transaction cannot delete an object outside the database.

The functions within this section are presented in alphabetical order, not in the order in which you might use them.

The lld_close() function

This function closes the specified large object.

Syntax

API

mi_integer lld_close (conn, io, error)
 MI_CONNECTION* conn;
 LLD_IO* io;
 mi_integer* error;

ESQL/C

int lld_close (LLD_IO* io, int* error);

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C version of this function, you must already be

connected to a server.

io

A pointer to an LLD_IO structure created with a previous call to the lld_open() function.

11

OneDB Database Extensions User's Guide

12

error

An output parameter in which the function returns an error code.

Usage
The lld_close() function closes the open large object and frees the memory allocated for the LLD_IO structure, which you

cannot use again after this call.

Return codes

For an API function, returns MI_OK if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if it fails.

Context
The lld_open() function on page 17

The lld_copy() function

This function copies the specified large object.

Syntax

API

MI_ROW* lld_copy(conn, src, dest, error);
 MI_CONNECTION* conn,
 MI_ROW* src,
 MI_ROW* dest,
 mi_integer* error

ESQL/C

ifx_collection_t* lld_copy (src, dest, error);
 EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER ROW src;
 PARAMETER ROW dest;
 EXEC SQL END DECLARE SECTION;
 int* error;

SQL

CREATE FUNCTION LLD_Copy (src LLD_Locator, dest LLD_Locator)
 RETURNS LLD_Locator;

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() function. This

parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already be

connected to a server.

src

A pointer to the lld_locator row, identifying the source object.

Chapter 1. Database Extensions User's Guide

dest

A pointer to an lld_locator row, identifying the destination object. If the destination object itself does not exist, it

is created.

error

An output parameter in which the function returns an error code. The SQL version of this function does not

have an error parameter.

Usage

This function copies an existing large object.

If the destination object exists, pass a pointer to its lld_locator row as the dest parameter.

If the destination object does not exist, pass an lld_locator row with the following values as the dest parameter to lld_copy():

In the lo_protocol field, specify the type of large object to create.

If you are copying to any type of large object other than a smart large object:

• specify NULL for the lo_pointer field.

• point to the location of the new object in the lo_location field.

The lld_copy() function creates the type of large object that you specify, copies the source object to it, and returns the row

you passed, unaltered.

If you are copying to a smart large object, specify NULL for the lo_pointer and lo_location fields of the lld_locator row that you

pass as the dest parameter. The lld_copy() function returns an lld_locator row with a pointer to the new smart large object in

the lo_pointer field.

The server deletes a new smart large object at the end of a transaction if there are no disk references to it and if it is closed.

Therefore, after copying to a newly created smart large object, either open it or insert it into a table.

If lld_copy() creates a new smart large object, it uses system defaults for required storage parameters such as sbspace. If

you want to override these parameters, you can use the server large object interface to create the smart large object and

specify the parameters you want in an MI_LO_SPEC structure. You can then call lld_copy() and set the lo_pointer field of the

lld_locator row to point to the new smart large object.

Likewise, if protocols are added to Large Object Locator for new types of large objects, these objects might require creation

attributes or parameters for which Large Object Locator supplies predefined default values. As with smart large objects, you

can create the object with lld_copy() and accept the default values, or you can use the creation routines specific to the new

protocol and supply your own attributes and parameters. After you create the object, you can call lld_copy() and pass it an

lld_locator row that points to the new object.

13

OneDB Database Extensions User's Guide

14

Return codes

On success, this function returns a pointer to an lld_locator row, specifying the location of the copy of the large object. If

the destination object already exists, lld_copy() returns a pointer to the unaltered lld_locator row you passed in the dest

parameter. If the destination object does not already exist, lld_copy() returns a pointer to an lld_locator row, pointing to the

new object it creates.

On failure, this function returns NULL.

Context

The lld_from_client() function on page 26

The lld_to_client() function on page 30

The lld_create() function

This function creates a new large object with the protocol and location you specify.

Syntax

API

MI_ROW* lld_create(conn, lob, error)
 MI_CONNECTION* conn
 MI_ROW* lob;
 mi_integer* error;

ESQL/C

ifx_collection_t* lld_create (lob, error);
 EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER ROW lob;
 EXEC SQL END DECLARE SECTION;
 int* error;

SQL

CREATE FUNCTION LLD_Create (lob LLD_Locator)
 RETURNS LLD_Locator;

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

lob

A pointer to an lld_locator row, identifying the object to create.

error

An output parameter in which the function returns an error code. The SQL version of this function does not

have an error parameter.

Chapter 1. Database Extensions User's Guide

Usage

You pass an lld_locator row, with the following values, as the lob parameter to lld_create():

In the lo_protocol field, specify the type of large object to create.

For any type of large object other than a smart large object:

• specify NULL for the lo_pointer field.

• point to the location of the new object in the lo_location field.

The lld_create() function returns the row you passed, unaltered.

If you are creating a smart large object, specify NULL for the lo_pointer and lo_location fields of the lld_locator row. The

lld_create() function returns an lld_locator row with a pointer to the new smart large object in the lo_pointer field.

The server deletes a new smart large object at the end of a transaction if there are no disk references to it and if it is closed.

Therefore, after creating a smart large object, either open it or insert it into a table.

Large Object Locator does not directly support transaction rollback, except for smart large objects. Therefore, if the

transaction in which you call lld_create() is aborted, you should call lld_delete() to delete the object and reclaim any allocated

resources.

See Large object requirements on page 5 for more information.

When you create a smart large object, lld_create() uses system defaults for required storage parameters such as sbspace.

If you want to override these parameters, you can use the server large object interface to create the smart large object and

specify the parameters you want in an MI_LO_SPEC structure. You can then call lld_create() and set the lo_pointer field of the

lld_locator row to point to the new smart large object.

Likewise, if protocols are added to Large Object Locator for new types of large objects, these objects might require creation

attributes or parameters for which Large Object Locator supplies predefined default values. As with smart large objects, you

can create the object with lld_create() and accept the default values, or you can use the creation routines specific to the new

protocol and supply your own attributes and parameters. After you create the object, you can call lld_create() and pass it an

lld_locator row that points to the new object.

Return codes

On success, this function returns a pointer to an lld_locator row specifying the location of the new large object. For a smart

large object, lld_create() returns a pointer to the location of the new object in the lo_pointer field of the lld_locator row. For all

other objects, it returns a pointer to the unaltered lld_locator row you passed in the lob parameter.

The lld_open function can use the lld_locator row that lld_create() returns.

On failure, this function returns NULL.

15

OneDB Database Extensions User's Guide

16

Context

The lld_delete() function on page 16

The lld_open() function on page 17

The lld_delete() function

This function deletes the specified large object.

Syntax

API

mi_integer lld_delete(conn, lob, error)
 MI_CONNECTION* conn;
 LLD_Locator lob;
 mi_integer* error;

ESQL/C

int lld_delete (lob, error);
EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER ROW lob;
EXEC SQL END DECLARE SECTION;
 int* error;

SQL

CREATE FUNCTION LLD_Delete (lob LLD_Locator)
 RETURNS BOOLEAN;

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

lob

A pointer to an lld_locator row, identifying the object to delete.

error

An output parameter in which the function returns an error code. The SQL version of this function does not

have an error parameter.

Usage

For large objects other than smart large objects, this function deletes the large object itself, not just the lld_locator row

referencing it. For smart large objects, this function does nothing.

To delete a smart large object, delete all references to it, including the lld_locator row referencing it.

Chapter 1. Database Extensions User's Guide

Return codes

For an API function, returns MI_OK if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function fails.

The lld_open() function

This function opens the specified large object.

Syntax

API

LLD_IO* lld_open(conn, lob, flags, error)
 MI_CONNECTION* conn;
 MI_ROW* lob;
 mi_integer flags,
 mi_integer* error);

ESQL/C

LLD_IO* lld_open(lob, flags, error);
 EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER ROW lob;
 EXEC SQL END DECLARE SECTION;
 int flags;int* error;

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

lob

A pointer to an lld_locator row, identifying the object to delete.

flags

A set of flags that you can set to specify attributes of the large object after it is opened. The flags are as

follows:

LLD_RDONLY

Opens the large object for reading only. You cannot use the lld_write function to write to the

specified large object when this flag is set.

LLD_WRONLY

Opens the large object for writing only. You cannot use the lld_read() function to read from the

specified large object when this flag is set.

LLD_RDWR

Opens the large object for both reading and writing.

17

OneDB Database Extensions User's Guide

18

LLD_TRUNC

Clears the contents of the large object after opening.

LLD_APPEND

Seeks to the end of the large object for writing. When the object is opened, the file pointer is

positioned at the beginning of the object. If you have opened the object for reading or reading and

writing, you can seek anywhere in the file and read. However, any time you call lld_write() to write

to the object, the pointer moves to the end of the object to guarantee that you do not overwrite

any data.

LLD_SEQ

Opens the large object for sequential access only. You cannot use the lld_seek() function with the

specified large object when this flag is set.

error

An output parameter in which the function returns an error code.

Usage

In the lob parameter, you pass an lld_locator row to identify the large object to open. In the lo_protocol field of this row, you

specify the type of the large object to open. The lld_open() function calls an appropriate open routine based on the type you

specify. For example, for a file, lld_open() uses an operating system file function to open the file, whereas, for a smart large

object, it calls the server's mi_lo_open() routine.

Large Object Locator does not directly support two fundamental database features, transaction rollback and concurrency

control. Therefore, if the transaction in which you call lld_open() is aborted, you should call lld_close() to close the object and

reclaim any allocated resources.

Your application should also provide some means, such as locking a row, to guarantee that multiple users cannot write to a

large object simultaneously.

See Large object requirements on page 5 for more information about transaction rollback and concurrency control.

Return codes

On success, this function returns a pointer to an LLD_IO structure it allocates. The LLD_IO structure is private, and you should

not directly access it or modify its contents. Instead, you can pass the LLD_IO structure's pointer to Large Object Locator

routines such as lld_write(), lld_read(), and so on, that access open large objects.

A large object remains open until you explicitly close it with the lld_close() function. Therefore, if you encounter error

conditions after opening a large object, you are responsible for reclaiming resources by closing it.

On failure, this function returns NULL.

Context

The lld_close() function on page 11

Chapter 1. Database Extensions User's Guide

The lld_create() function on page 14

The lld_read() function on page 19

The lld_seek() function on page 20

The lld_tell() function on page 21

The lld_write() function on page 22

The lld_read() function

This function reads from a large object, starting at the current position.

Syntax

API

mi_integer lld_read (io, buffer, bytes, error)

LLD_IO* io,
void* buffer,
mi_integer bytes,
mi_integer* error);

ESQL/C

int lld_read (LLD_IO* io,
 void* buffer, int bytes,
 int* error);

io

A pointer to an LLD_IO structure created with a previous call to the lld_open() function.

buffer

A pointer to a buffer into which to read the data. The buffer must be at least as large as the number of bytes

specified in the bytes parameter.

bytes

The number of bytes to read.

error

An output parameter in which the function returns an error code.

Usage

Before calling this function, you must open the large object with a call to lld_open() and set the LLD_RDONLY or LLD_RDWR

flag. The lld_read() function begins reading from the current position. By default, when you open a large object, the current

position is the beginning of the object. You can call lld_seek() to change the current position.

19

OneDB Database Extensions User's Guide

20

Return codes

On success, the lld_read() function returns the number of bytes that it has read from the large object.

On failure, for an API function, it returns MI_ERROR; for an ESQL/C function, it returns -1.

Context

The lld_open() function on page 17

The lld_seek() function on page 20

The lld_tell() function on page 21

The lld_seek() function

This function sets the position for the next read or write operation to or from a large object that is open for reading or writing.

Syntax

API

mi_integer lld_seek(conn, io, offset, whence, new_offset, error)
 MI_CONNECTION* conn
 LLD_IO* io;
 mi_int8* offset;
 mi_integer whence;
 mi_int8* new_offset;
 mi_integer* error;

ESQL/C

int lld_seek(io,offset, whence, new_offset, error)
 LLD_IO* io;
EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER int8* offset;
EXEC SQL END DECLARE SECTION;
EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER int8* new_offset;
EXEC SQL END DECLARE SECTION;
 int whence;
 int* error;

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

io

A pointer to an LLD_IO structure created with a previous call to the lld_open() function.

Chapter 1. Database Extensions User's Guide

offset

A pointer to the offset. It describes where to seek in the object. Its value depends on the value of the whence

parameter.

• If whence is LLD_SEEK_SET, the offset is measured relative to the beginning of the object.

• If whence is LLD_SEEK_CUR, the offset is relative to the current position in the object.

• If whence is LLD_SEEK_END, the offset is relative to the end of the file.

whence

Determines how the offset is interpreted.

new_offset

A pointer to an int8 that you allocate. The function returns the new offset in this int8.

error

An output parameter in which the function returns an error code.

Usage

Before calling this function, you must open the large object with a call to lld_open().

Although this function takes an 8-byte offset, this offset is converted to the appropriate size for the underlying large object

storage system. For example, if the large object is stored in a 32-bit file system, the 8-byte offset is converted to a 4-byte

offset, and any attempt to seek past 4 GB generates an error.

Return codes

For an API function, returns MI_OK if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function fails.

Context

The lld_open() function on page 17

The lld_read() function on page 19

The lld_tell() function on page 21

The lld_write() function on page 22

The lld_tell() function

This function returns the offset for the next read or write operation on an open large object.

Syntax

API

21

OneDB Database Extensions User's Guide

22

mi_integer lld_tell(conn, io, offset, error)
 MI_CONNECTION* conn;
 LLD_IO* io,
 mi_int8* offset;
 mi_integer* error;

ESQL/C

int lld_tell (io, offset, error);
 LLD_IO* io;
EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER int8* offset;
EXEC SQL END DECLARE SECTION;
 int* error;

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

io

A pointer to an LLD_IO structure created with a previous call to the lld_open() function.

offset

A pointer to an int8 that you allocate. The function returns the offset in this int8.

error

An output parameter in which the function returns an error code.

Usage
Before calling this function, you must open the large object with a call to lld_open().

Return codes

For an API function, returns MI_OK if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function fails.

Context

The lld_open() function on page 17

The lld_read() function on page 19

The lld_seek() function on page 20

The lld_write() function on page 22

The lld_write() function

This function writes data to an open large object, starting at the current position.

Chapter 1. Database Extensions User's Guide

Syntax

API

mi_integer lld_write (conn, io, buffer, bytes, error)
 MI_CONNECTION* conn;
 LLD_IO* io;
 void* buffer;
 mi_integer bytes;
 mi_integer* error;

ESQL/C

int lld_write (LLD_IO* io, void* buffer,
 int bytes, int* error);

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

io

A pointer to an LLD_IO structure created with a previous call to the lld_open() function.

buffer

A pointer to a buffer from which to write the data. The buffer must be at least as large as the number of bytes

specified in the bytes parameter.

bytes

The number of bytes to write.

error

An output parameter in which the function returns an error code.

Usage

Before calling this function, you must open the large object with a call to lld_open() and set the LLD_WRONLY or LLD_RDWR

flag. The lld_write() function begins writing from the current position. By default, when you open a large object, the current

position is the beginning of the object. You can call lld_seek() to change the current position.

If you want to append data to the object, specify the LLD_APPEND flag when you open the object to set the current position

to the end of the object. If you have done so and have opened the object for reading and writing, you can still use lld_seek

to move around in the object and read from different places. However, as soon as you begin to write, the current position is

moved to the end of the object to guarantee that you do not overwrite any existing data.

Return codes

On success, the lld_write() function returns the number of bytes that it has written.

On failure, for an API function it returns MI_ERROR; for an ESQL/C function, it returns -1.

23

OneDB Database Extensions User's Guide

24

Context

The lld_open() function on page 17

The lld_seek() function on page 20

The lld_tell() function on page 21

Client file support

This section describes the Large Object Locator functions that provide client file support. These functions allow you to

create, open, and delete client files and to copy large objects to and from client files.

The client functions make it easier to code user-defined routines that input or output data. These user-defined routines, in

many cases, operate on large objects. They also input data from or output data to client files. Developers can create two

versions of a user-defined routine: one for client files, which calls lld_open_client(), and one for large objects, which calls

lld_open(). After the large object or client file is open, you can use any of the Large Object Locator functions that operate

on open objects, such as lld_read(), lld_seek(), and so on. Thus, the remaining code of the user-defined function can be the

same for both versions.

You should use the Large Object Locator client functions with care. You can only access client files if you are using the client

machine on which the files are stored. If you change client machines, you can no longer access files stored on the original

client machine. Thus, an application that stores client file names in the database might find at a later date that the files are

inaccessible.

The lld_create_client() function

This function creates a new client file.

Syntax

API

mi_integer lld_create_client(conn, path, error);
 MI_CONNECTION* conn
 mi_string* path;
 mi_integer* error;

ESQL/C

int lld_create_client (char* path, int* error);

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

path

A pointer to the path name of the client file.

Chapter 1. Database Extensions User's Guide

error

An output parameter in which the function returns an error code.

Usage

This function creates a file on your client machine. Use the lld_open_client() function to open the file for reading or writing

and pass it the same pathname as you passed to lld_create_client().

Large Object Locator does not directly support transaction rollback, except for smart large objects. Therefore, if the

transaction in which you call lld_create_client() is aborted, you should call lld_delete_client() to delete the object and reclaim

any allocated resources.

See Large object requirements on page 5 for more information.

Return codes

For an API function, returns MI_OK if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function fails.

Context
The lld_delete_client() function on page 25

The lld_delete_client() function

This function deletes the specified client file.

Syntax

API

mi_integer lld_delete_client(conn, path, error)
 MI_CONNECTION* conn;
 mi_string* path;
 mi_integer* error;

ESQL/C

int lld_delete_client (char* path,int* error);

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

path

A pointer to the path name of the client file.

error

An output parameter in which the function returns an error code.

25

OneDB Database Extensions User's Guide

26

Usage
This function deletes the specified client file and reclaims any allocated resources.

Return codes

For an API function, returns MI_OK if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function fails.

Context
The lld_create_client() function on page 24

The lld_from_client() function

This function copies a client file to a large object.

Syntax

API

MI_ROW* lld_from_client(conn, src, dest, error);
 MI_CONNECTION* conn,
 mi_string* src,
 MI_ROW* dest,
 mi_integer* error

ESQL/C

ifx_collection_t* lld_from_client (src, dest, error);
 char* src;
 EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER ROW dest;
 EXEC SQL END DECLARE SECTION;
 int* error;

SQL

CREATE FUNCTION LLD_FromClient(src LVARCHAR,
 dest LLD_Locator)
 RETURNS LLD_Locator;

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

src

A pointer to the source path name.

dest

A pointer to the destination lld_locator row. If the destination object itself does not exist, it is created.

Chapter 1. Database Extensions User's Guide

error

An output parameter in which the function returns an error code. The SQL version of this function does not

have an error parameter.

Usage

This function copies an existing large object.

If the destination object exists, pass a pointer to its lld_locator row as the dest parameter.

If the destination object does not exist, pass an lld_locator row with the following values as the dest parameter to

lld_from_client().

In the lo_protocol field, specify the type of large object to create.

If you are copying to any type of large object other than a smart large object:

• specify NULL for the lo_pointer field.

• point to the location of the new object in the lo_location field.

The lld_from_client() function creates the type of large object that you specify, copies the source file to it, and returns the row

you passed, unaltered.

If you are copying to a smart large object, specify NULL for the lo_pointer and lo_location fields of the lld_locator row that you

pass as the dest parameter. The lld_from_client() function returns an lld_locator row with a pointer to the new smart large

object in the lo_pointer field.

The server deletes a new smart large object at the end of a transaction if there are no disk references to it and if it is closed.

Therefore, after you copy to a newly created smart large object, either open it or insert it into a table.

If lld_from_client() creates a new smart large object, it uses system defaults for required storage parameters such as

sbspace. If you want to override these parameters, you can use the server large object interface to create the smart large

object and specify the parameters you want in an MI_LO_SPEC structure. You can then call lld_from_client() and set the

lo_pointer field of the lld_locator row to point to the new smart large object.

Likewise, if protocols are added to Large Object Locator for new types of large objects, these objects might require creation

attributes or parameters for which Large Object Locator supplies predefined default values. As with smart large objects, you

can create the object with lld_from_client() and accept the default values, or you can use the creation routines specific to the

new protocol and supply your own attributes and parameters. After you create the object, you can call lld_from_client() and

pass it an lld_locator row that points to the new object.

Return codes

On success, returns a pointer to an lld_locator row that specifies the location of the copy of the large object. If the

destination object already exists, lld_from_client() returns a pointer to the unaltered lld_locator row that you created and

27

OneDB Database Extensions User's Guide

28

passed in the dest parameter. If the destination object does not already exist, lld_from_client() returns an lld_locator row that

points to the new object it creates.

On failure, this function returns NULL.

Context

The lld_create_client() function on page 24

The lld_open_client() function on page 28

The lld_open_client() function

This function opens a client file.

Syntax

API

LLD_IO* lld_open_client(conn, path, flags, error);
 MI_CONNECTION* conn
 mi_string* path;
 mi_integer flags;
 mi_integer* error;

ESQL/C

LLD_IO* lld_open_client(MI_CONNECTION* conn,mi_string* path,
mi_integer flags,mi_integer* error);

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

path

A pointer to the path name of the client file.

flags

A set of flags that you can set to specify attributes of the large object after it is opened. The flags are as

follows:

LLD_RDONLY

Opens the client file for reading only. You cannot use the lld_write function to write to the

specified client file when this flag is set.

LLD_WRONLY

Opens the client file for writing only. You cannot use the lld_read() function to read from the

specified client file when this flag is set.

Chapter 1. Database Extensions User's Guide

LLD_RDWR

Opens the client file for both reading and writing.

LLD_TRUNC

Clears the contents of the client file after opening.

LLD_APPEND

Seeks to the end of the large object for writing. When the object is opened, the file pointer is

positioned at the beginning of the object. If you have opened the object for reading or reading and

writing, you can seek anywhere in the file and read. However, any time you call lld_write() to write

to the object, the pointer moves to the end of the object to guarantee that you do not overwrite

any data.

LLD_SEQ

Opens the client file for sequential access only. You cannot use the lld_seek() function with the

specified client file when this flag is set.

error

An output parameter in which the function returns an error code.

Usage

This function opens an existing client file. After the file is open, you can use any of the Large Object Locator functions, such

as lld_read(), lld_write(), and so on, that operate on open large objects.

Large Object Locator does not directly support two fundamental database features, transaction rollback and concurrency

control. Therefore, if the transaction in which you call lld_open_client() is aborted, you should call lld_close() to close the

object and reclaim any allocated resources.

Your application should also provide some means, such as locking a row, to guarantee that multiple users cannot write to a

large object simultaneously.

See Large object requirements on page 5 for more information about transaction rollback and concurrency control.

Return codes

On success, this function returns a pointer to an LLD_IO structure that it allocates. The LLD_IO structure is private, and you

should not directly access it or modify its contents. Instead, you should pass its pointer to Large Object Locator routines

such as lld_write(), lld_read(), and so on, that access open client files.

A client file remains open until you explicitly close it with the lld_close() function. Therefore, if you encounter error conditions

after opening a client file, you are responsible for reclaiming resources by closing it.

On failure, this function returns NULL.

29

OneDB Database Extensions User's Guide

30

Context

The lld_close() function on page 11

The lld_read() function on page 19

The lld_seek() function on page 20

The lld_tell() function on page 21

The lld_write() function on page 22

The lld_create_client() function on page 24

The lld_to_client() function

This function copies a large object to a client file.

Syntax

API

MI_ROW* lld_to_client(conn, src, dest, error);
 MI_CONNECTION* conn,
 MI_ROW* src,
 mi_string* dest,
 mi_integer* error

ESQL/C

ifx_collection_t* lld_to_client (src, dest, error);
 EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER ROW src;
 EXEC SQL END DECLARE SECTION;
 char* dest;
 int* error;

SQL

LLD_ToClient (src LLD_Locator, dest LVARCHAR)
 RETURNS BOOLEAN;

conn

The connection descriptor established by a previous call to the mi_open() or mi_server_connect() functions.

This parameter is for the API interface only. In the ESQL/C and SQL versions of this function, you must already

be connected to a server.

src

A pointer to the lld_locator row that identifies the source large object.

dest

A pointer to the destination path name. If the destination file does not exist, it is created.

Chapter 1. Database Extensions User's Guide

error

An error code. The SQL version of this function does not have an error parameter.

Usage
This function copies an existing large object to a client file. It creates the client file if it does not already exist.

Return codes

For an API function, returns MI_OK if the function succeeds and MI_ERROR if it fails.

For an ESQL/C function, returns 0 if the function succeeds and -1 if the function fails.

Context
The lld_open_client() function on page 28

Error utility functions

The two functions described in this section allow you to raise error exceptions and convert error codes to their SQL state

equivalent.

The lld_error_raise() function

This function generates an exception for the specified error.

Syntax

API

mi_integer lld_error_raise (error);
 mi_integer error

error

An error code that you specify.

Usage
This function calls the server mi_db_error_raise function to generate an exception for the specified Large Object Locator

error.

Return codes

On success, this function does not return a value unless the exception is handled by a callback function. If the exception is

handled by the callback and control returns to lld_error_raise(), it returns MI_ERROR.

On failure, it also returns MI_ERROR.

The lld_sqlstate() function

This function translates integer error codes into their corresponding SQL states.

31

OneDB Database Extensions User's Guide

32

Syntax

API

mi_string* lld_sqlstate (error);
 mi_integer error

ESQL/C

int* lld_sqlstate (int error);

error

An error code.

Return codes

On success, this function returns the SQL state value corresponding to the error code. On failure, returns NULL.

Important: This function returns a pointer to a constant, not to an allocated memory location.

Smart large object functions

The functions described in this section allow you to copy a smart large object to a file and to copy a smart large object to

another smart large object. There is also a function that tells you whether the data in an lld_lob column is binary or character

data.

The LOCopy function

This function creates a copy of a smart large object.

Syntax

SQL

CREATE FUNCTION LOCopy (lob LLD_Lob)
 RETURNS LLD_Lob ;

CREATE FUNCTION LOCopy (lob, LLD_Lob, table_name, CHAR(18),
column_name, CHAR(18))
 RETURNS LLD_Lob;
;

lob

A pointer to the smart large object to copy.

table_name

A table name. This parameter is optional.

column_name

A column name. This parameter is optional.

Chapter 1. Database Extensions User's Guide

Usage

This function is an overloaded version of the LOCopy built-in server function. This function is identical to the built-in version

of the function, except the first parameter is an lld_lob type rather than a BLOB or CLOB type.

The table_name and column_name parameters are optional. If you specify a table_name and column_name, LOCopy uses the

storage characteristics from the specified column_name for the new smart large object that it creates.

If you omit table_name and column_name, LOCopy creates a smart large object with system-specified storage defaults.

See the description of the LOCopy function in the HCL OneDB™ Guide to SQL: Syntax for complete information about this

function.

Return codes
This function returns a pointer to the new lld_lob value.

Context
LOCopy in the HCL OneDB™ Guide to SQL: Syntax.

The LOToFile function

Copies a smart large object to a file.

Syntax

SQL

CREATE FUNCTION LOToFile(lob LLD_Lob, pathname LVARCHAR,
file_dest CHAR(6)
 RETURNS LVARCHAR;

lob

A pointer to the smart large object.

pathname

A directory path and name of the file to create.

file_dest

The computer on which the file resides. Specify either server or client.

Usage

This function is an overloaded version of the LOToFile built-in server function. This function is identical to the built-in version

of the function, except the first parameter is an lld_lob type rather than a BLOB or CLOB type.

See the description of the LOToFile function in the HCL OneDB™ Guide to SQL: Syntax for complete information about this

function.

33

OneDB Database Extensions User's Guide

34

Return codes
This function returns the value of the new file name.

Context
LOToFile in the HCL OneDB™ Guide to SQL: Syntax.

The LLD_LobType function

Returns the type of data in an lld_lob column.

Syntax

SQL

CREATE FUNCTION LLD_LobType(lob LLD_Lob)
 RETURNS CHAR(4);

lob

A pointer to the smart large object

Usage
An lld_lob column can contain either binary or character data. You pass an lld_lob type to the LLD_LobType function to

determine the type of data that the column contains.

Return codes
This function returns blob if the specified lld_lob contains binary data and clob if it contains character data.

Large Object Locator example code

This chapter provides example code that shows how to use some of the Large Object Locator functions together. It shows

how to use all three of the Large Object Locator interfaces: SQL, server, and ESQL/C.

The SQL interface

The examples in this section show how to use the SQL interface to Large Object Locator.

The lld_lob type

The lld_lob is a user-defined type that you can use to specify the location of a smart large object and to specify whether the

object contains binary or character data. The following subsections show how to use the lld_lob data type.

Implicit lld_lob casts

This section shows how to insert binary and character data into an lld_lob type column of a table. The following example

makes use of implicit casts from BLOB and CLOB types to the lld_lob type.

Chapter 1. Database Extensions User's Guide

Figure 1. Implicit lld_lob casts

create table slobs (key int primary key, slo lld_lob);

--Insert binary and text large objects into an lld_lob field
--Implicitly cast from blob/clob to lld_lob
insert into slobs values (1, filetoblob ('logo.gif', 'client'));

insert into slobs values (2, filetoclob ('quote1.txt', 'client'));

select * from slobs;

key 1
slo blob:00608460a6b7c8d900000002000000030000000200000018000000000001000000608
 460736c6f000010029a2a6c92070000000000006c000af0cdd900000080006082500af0c9d
 e

key 2
slo clob:00608460a6b7c8d900000002000000030000000300000019000000000001000000608
 460736c6f000010029a2a6c930d0000000000006c000af0cdd900000016000000010af0c9d
 e

The slobs table, created in this example, contains the slo column, which is of type lld_lob. The first INSERT statement uses

the filetoblob function to copy a binary large object to a smart large object. There exists an implicit cast from a BLOB type to

an lld_lob type, so the INSERT statement can insert the BLOB type large object into an lld_lob type column.

Likewise, there is an implicit cast from a CLOB type to an lld_lob type, so the second INSERT statement can insert a CLOB

type large object into the slo column of the slobs table.

The SELECT statement returns the lld_lob types that identify the two smart large objects stored in the slobs table.

The slo column for key 1 contains an instance of an lld_lob type that identifies the data as BLOB data and contains a

hexadecimal number that points to the location of the data.

The slo column for key 2 identifies the data as CLOB data and contains a hexadecimal number that points to the location of

the data.

Explicit lld_lob casts

The example in the following figure shows how to select large objects of type BLOB and CLOB from a table and how to copy

them to a file.

This example uses the slobs table created in Figure 1: Implicit lld_lob casts on page 35.

35

OneDB Database Extensions User's Guide

36

Figure 2. Explicit lld_lob casts

--Explicitly cast from lld_lob to blob/clob
select slo::blob from slobs where key = 1;

(expression) <SBlob Data>

select slo::clob from slobs where key = 2;

(expression)
Ask not what your country can do for you,
but what you can do for your country.

The first SELECT statement retrieves the data in the slo column associated with key 1 and casts it as BLOB type data. The

second SELECT statement retrieves the data in the slo column associated with key 2 and casts it as CLOB type data.

The LLD_LobType function

The following example shows how to use the LLD_LobType function to obtain the type of data—BLOB or CLOB—that an

lld_lob column contains.

The slobs table in this example is the same one created in Figure 1: Implicit lld_lob casts on page 35. That example

created the table and inserted a BLOB type large object for key 1 and a CLOB type large object for key 2.

Figure 3. The LLD_LobType function

-- LLD_LobType UDR
select key, lld_lobtype(slo) from slobs;

 key (expression)

 1 blob
 2 clob

select slo::clob from slobs where lld_lobtype(slo) = 'clob';

(expression)
Ask not what your country can do for you,
but what you can do for your country.

The first SELECT statement returns:

1 blob
2 clob

indicating that the data associated with key 1 is of type BLOB and the data associated with key 2 is of type CLOB.

The second SELECT statement uses LLD_LobType to retrieve the columns containing CLOB type data. The second SELECT

statement casts the slo column (which is of type lld_lob) to retrieve CLOB type data.

Chapter 1. Database Extensions User's Guide

The lld_locator type

The lld_locator type defines a large object. It identifies the type of large object and points to its location. It contains three

fields:

lo_protocol

Identifies the kind of large object.

lo_pointer

A pointer to a smart large object or is NULL if the large object is any kind of large object other than a smart large

object.

lo_location

A pointer to the large object, if it is not a smart large object. Set to NULL if it is a smart large object.

The examples in this section show how to:

Insert an lld_locator row into a table

The following example creates a table with an lld_locator row and shows how to insert a large object into the row.

Figure 4. Insert an lld_locator row into a table

--Create lobs table
create table lobs (key int primary key, lo lld_locator);

-- Create an lld_locator for an existing server file
insert into lobs
 values (1, "row('ifx_file',null,'/tmp/quote1.txt')");

The INSERT statement inserts an instance of an lld_locator row into the lobs table. The protocol in the first field, IFX_FILE,

identifies the large object as a server file. The second field, lo_pointer, is used to point to a smart large object. Because the

object is a server file, this field is NULL. The third field identifies the server file as quote1.txt.

Create a smart large object

The following example creates a smart large object containing CLOB type data. The lld_create function in figure creates a

smart large object. The first parameter to lld_create uses the IFX_CLOB protocol to specify CLOB as the type of object to

create. The other two arguments are NULL.

The lld_create function creates the CLOB type large object and returns an lld_locator row that identifies it.

The insert statement inserts in the lobs table the lld_locator row returned by lld_create.

Figure 5. Using lld_create

--Create a new clob using lld_create
insert into lobs
 values (2, lld_create ("row('ifx_clob',null,null)"::lld_locator));

37

OneDB Database Extensions User's Guide

38

Copy a client file to a large object

The following example uses the lobs table created in Figure 5: Using lld_create on page 37.

In the example, the lld_fromclient function in the first SELECT statement, copies the client file, quote2.txt, to an lld_locator

row in the lobs table.

Figure 6. Copy a client file to a large object

-- Copy a client file to an lld_locator
select lld_fromclient ('quote2.txt', lo) from lobs where key = 2;

(expression) ROW('IFX_CLOB ','clob:ffffffffa6b7c8d9000000020000000300
 0000090000001a0000000000010000000000000ad3c3dc000000000b06eec8000
 00000005c4e6000607fdc000000000000000000000000',NULL)

select lo.lo_pointer::clob from lobs where key = 2;

(expression)
To be or not to be,
that is the question.

The lld_fromclient function returns a pointer to the lld_locator row that identifies the data copied from the large object. The

first SELECT statement returns this lld_locator row.

The next SELECT statement selects the lo_pointer field of the lld_locator row, lo.lo_pointer, and casts it to CLOB type data.

The result is the data itself.

Copy a large object to a large object

The following example uses the lobs table created in Figure 4: Insert an lld_locator row into a table on page 37.

The lld_copy function in the example copies large object data from one lld_locator type row to another.

Figure 7. Copy a large object to a large object

-- Copy an lld_locator to an lld_locator
select lld_copy (S.lo, D.lo) from lobs S, lobs D where S.key = 1 and D.key = 2;

(expression) ROW('IFX_CLOB ','clob:ffffffffa6b7c8d9000000020000000300
 0000090000001a0000000000010000000000000ad3c3dc000000000b06eec8000
 00000005c4e6000607fdc000000000000000000000000',NULL)

select lo.lo_pointer::clob from lobs where key = 2;

(expression)
Ask not what your country can do for you,
but what you can do for your country.

Chapter 1. Database Extensions User's Guide

The second SELECT statement casts lo.lo_pointer to a CLOB type to display the data in the column.

Copy large object data to a client file

The following example uses the lobs table created in Figure 4: Insert an lld_locator row into a table on page 37. The

lld_toclient function in Copy large object data to a client file on page 39 copies large object data to the output.txt

client file. This function returns t when the function succeeds. The SELECT statement returns t, or true, indicating that the

function returned successfully.

Figure 8. Copy large object data to a client file

-- Copy an lld_locator to a client file
select lld_toclient (lo, 'output.txt') from lobs where key = 2;

(expression)

 t

Create and delete a server file

The following example shows how to create a server file and then delete it.

The lld_copy function copies a large object to another large object. The lld_locator rows for the source and destination

objects use the IFX_FILE protocol to specify a server file as the type of large object. The lld_copy function returns an

lld_locator row that identifies the copy of the large object.

The INSERT statement inserts this row into the lobs table using 3 as the key.

Figure 9. Create and delete a server file

-- Create and delete a new server file
insert into lobs
 values (3, lld_copy (
 "row('ifx_file',null,'/tmp/quote2.txt')"::lld_locator,
 "row('ifx_file',null,'/tmp/tmp3')"::lld_locator));

select lo from lobs where key = 3;

lo ROW('IFX_FILE ',NULL,'/tmp/tmp3')

select lld_delete (lo) from lobs where key = 3;

(expression)

 t

delete from lobs where key = 3;

The first SELECT statement returns the lld_locator row identifying the large object.

39

OneDB Database Extensions User's Guide

40

The lld_delete function deletes the large object itself. The DELETE statement deletes the lld_locator row that referenced the

large object.

The API interface

This section contains one example that shows how to use the Large Object Locator functions to create a user-defined

routine. This routine copies part of a large object to another large object.

Create the lld_copy_subset function

The example shows the code for the lld_copy_subset user-defined routine. This routine copies a portion of a large object and

appends it to another large object.

Chapter 1. Database Extensions User's Guide

/* LLD SAPI interface example */

#include <mi.h>
#include <lldsapi.h>

/* append a (small) subset of a large object to another large object */

MI_ROW*
lld_copy_subset (MI_ROW* src, /* source LLD_Locator */
 MI_ROW* dest, /* destination LLD_Locator */
 mi_int8* offset, /* offset to begin copy at */
 mi_integer nbytes, /* number of bytes to copy */
 MI_FPARAM* fp)
{
 MI_ROW* new_dest; /* return value */
 MI_CONNECTION* conn; /* database server connection */
 mi_string* buffer; /* I/O buffer */
 LLD_IO* io; /* open large object descriptor */
 mi_int8 new_offset; /* offset after seek */
 mi_integer bytes_read; /* actual number of bytes copied */
 mi_integer error; /* error argument */
 mi_integer _error; /* extra error argument */
 mi_boolean created_dest; /* did we create the dest large object? */

 /* initialize variables */
 new_dest = NULL;
 conn = NULL;
 buffer = NULL;
 io = NULL;
 error = LLD_E_OK;
 created_dest = MI_FALSE;

 /* open a connection to the database server */
 conn = mi_open (NULL, NULL, NULL);
 if (conn == NULL)
 goto bad;

 /* allocate memory for I/O */
 buffer = mi_alloc (nbytes);
 if (buffer == NULL)
 goto bad;

 /* read from the source large object */
 io = lld_open (conn, src, LLD_RDONLY, &error);
 if (error != LLD_E_OK)
 goto bad;

 lld_seek (conn, io, offset, LLD_SEEK_SET, &new_offset, &error);
 if (error != LLD_E_OK)
 goto bad;

41

OneDB Database Extensions User's Guide

42

Figure 10. The lld_copy_subset function

 bytes_read = lld_read (conn, io, buffer, nbytes, &error);
 if (error != LLD_E_OK)
 goto bad;

 lld_close (conn, io, &error);
 if (error != LLD_E_OK)
 goto bad;

 /* write to the destination large object */
 new_dest = lld_create (conn, dest, &error);
 if (error == LLD_E_OK)
 created_dest = MI_TRUE;
 else if (error != LLD_E_EXISTS)
 goto bad;

 io = lld_open (conn, new_dest, LLD_WRONLY | LLD_APPEND | LLD_SEQ, &error);
 if (error != LLD_E_OK)
 goto bad;

 lld_write (conn, io, buffer, bytes_read, &error);
 if (error != LLD_E_OK)
 goto bad;

 lld_close (conn, io, &error);
 if (error != LLD_E_OK)
 goto bad;

 /* free memory */
 mi_free (buffer);

 /* close the database server connection */
 mi_close (conn);

 return new_dest;

 /* error clean up */
bad:
 if (io != NULL)
 lld_close (conn, io, &_error);
 if (created_dest)
 lld_delete (conn, new_dest, &_error);
 if (buffer != NULL)
 mi_free (buffer);
 if (conn != NULL)
 mi_close (conn);
 lld_error_raise (conn, error);
 mi_fp_setreturnisnull (fp, 0, MI_TRUE);
 return NULL;
}

The lld_copy_subset function defines four parameters:

• A source large object (lld_locator type)

• A destination large object (lld_locator type)

Chapter 1. Database Extensions User's Guide

• The byte offset to begin copying

• The number of bytes to copy

It returns an lld_locator, identifying the object being appended.

The mi_open function opens a connection to the database. A buffer is allocated for I/O.

The following Large Object Locator functions are called for the source object:

lld_open

OpenS the source object

lld_seek

Seeks to the specified byte offset in the object

lld_read

Reads the specified number of bytes from the object

lld_close

Closes the object

The following Large Object Locator functions are called for the destination object:

• lld_open, to open the destination object

• lld_write, to write the bytes read from the source into the destination object

• lld_close, to close the destination object

The mi_close function closes the database connection.

This function also contains error-handling code. If the database connection cannot be made, if memory cannot be allocated,

or if any of the Large Object Locator functions returns an error, the error code is invoked.

The error code handling code (bad) does one or more of the following actions, if necessary:

• Closes the source file

• Deletes the destination file

• Frees the buffer

• Closes the database connection

• Raises an error

You should establish a callback for exceptions (this example code, in the interest of simplicity and clarity, does not do so).

See the HCL OneDB™ DataBlade® API Programmer's Guide for more information.

The lld_copy_subset routine

The following example shows how to use the lld_copy_subset user-defined routine defined in the previous section.

43

OneDB Database Extensions User's Guide

44

Figure 11. The lld_copy_subset routine

-- Using the lld_copy_subset function

create function lld_copy_subset (lld_locator, lld_locator, int8, int)
 returns lld_locator
 external name '/tmp/sapidemo.so'
 language c;

insert into lobs
 values (5, lld_copy_subset (
 "row('ifx_file',null,'/tmp/quote3.txt')"::lld_locator,
 "row('ifx_clob',null,null)"::lld_locator, 20, 70));

select lo from lobs where key = 5;
select lo.lo_pointer::clob from lobs where key = 5;

The lld_copy_subset function copies 70 bytes, beginning at offset 20 from the quote3.txt file, and appends them to a

CLOB object. The INSERT statement inserts this data into the lobs table.

The first SELECT statement returns the lld_locator that identifies the newly copied CLOB data. The second SELECT statement

returns the data itself.

Large Object Locator error handling

This chapter describes how to handle errors when calling Large Object Locator functions. It also lists and describes specific

Large Object Locator errors.

There are two methods by which Large Object Locator returns errors to you:

• Through the error argument of a Large Object Locator function

• Through an exception

Both the API and ESQL/C versions of Large Object Locator functions use the error argument. Exceptions are returned only to

the API functions.

Large Object Locator errors

All Large Object Locator functions use the return value to indicate failure. Functions that return a pointer return NULL in the

event of failure. Functions that return an integer return -1.

Large Object Locator functions also provide an error code argument that you can test for specific errors. You can pass this

error code to lld_error_raise()—which calls mi_db_error_raise if necessary to generate an MI_EXCEPTION—and propagate the

error up the calling chain.

For ESQL/C functions, the LLD_E_SQL error indicates that an SQL error occurred. You can check the SQLSTATE variable to

determine the nature of the error.

Chapter 1. Database Extensions User's Guide

When an error occurs, Large Object Locator functions attempt to reclaim any outstanding resources. You should close any

open large objects and delete any objects you have created that have not been inserted into a table.

A user-defined routine that directly or indirectly calls a Large Object Locator function (API version) can register a callback

function. If this function catches and handles an exception and returns control to the Large Object Locator function, Large

Object Locator returns the LLD_E_EXCEPTION error. You can handle this error as you would any other: close open objects

and delete objects not inserted in a table.

Error handling exceptions

You should register a callback function to catch exceptions generated by underlying DataBlade® API functions called by

Large Object Locator functions. For example, if you call lld_read() to open a smart large object, Large Object Locator calls

the DataBlade® API mi_lo_read() function. If this function returns an error and generates an exception, you must catch the

exception and close the object you have open for reading.

Use the mi_register_callback() function to register your callback function. The callback function should track all open large

objects, and in the event of an exception, close them. You can track open large objects by creating a data structure with

pointers to LLD_IO structures, the structure that the lld_open() function returns when it opens an object. Use the lld_close()

function to close open large objects.

Error codes

This section lists and describes the Large Object Locator error codes.

Error code SQL state Description

LLD_E_INTERNAL ULLD0 Internal Large Object Locator error. If you receive this error, call HCL® OneDB®

Technical Support.

LLD_E_OK N.A. No error.

LLD_E_EXCEPTION N.A. MI_EXCEPTION raised and handled. Applies to API only.

LLD_E_SQL N.A. SQL error code in SQLSTATE/SQLCODE. Applies to ESQL/C interface only.

LLD_E_ERRNO ULLD1 OS (UNIX/POSIX)

LLD_E_ROW ULLD2 Passed an invalid MI_ROW type. The type should be lld_locator. This is an API

error only.

LLD_E_PROTOCOL ULLD3 Passed an invalid or unsupported lo_protocol value.

LLD_E_LOCATION ULLD4 Passed an invalid lo_location value.

LLD_E_EXISTS ULLD5 Attempted to (re)create an existing large object.

LLD_E_NOTEXIST ULLD6 Attempted to open a nonexistent large object.

LLD_E_FLAGS ULLD7 Used invalid flag combination when opening a large object.

LLD_E_LLDIO ULLD8 Passed a corrupted LLD_IO structure.

45

OneDB Database Extensions User's Guide

46

Error code SQL state Description

LLD_E_RDONLY ULLD9 Attempted to write to a large object that is open for read-only access.

LLD_E_WRONLY ULLDA Attempted to read from a large object that is open for write-only access.

LLD_E_SEQ ULLDB Attempted to seek in a large object that is open for sequential access only.

LLD_E_WHENCE ULLDC Invalid whence (seek) value.

LLD_E_OFFSET ULLDD Attempted to seek to an invalid offset.

N.A. ULLDO Specified an invalid lld_lob input string.

N.A. ULLDP Specified an invalid lld_lob type.

N.A. ULLDQ Attempted an invalid cast of an lld_lobtype into a BLOB or CLOB type.

N.A. ULLDR Used an invalid import file specification with the lld_lob type.

MQ Messaging
(WMQ) messaging products provide an infrastructure for distributed, asynchronous communication of data in a distributed,

heterogeneous environment. The WMQ message queue allows you to easily exchange information across platforms.

The MQ extension provides the functionality to exchange messages between databases and WMQ message queues.

You can replicate MQ messages with all types of high-availability clusters. If a secondary server in a cluster is read-only, the

non-WMQ data cannot be updated from that server, however the WMQ message data can be updated.

About MQ messaging
You can use either functions or tables to communicate between a database server application and the queue.

Applications can send and receive messages from local or remote queue managers that reside anywhere in the network and

participate in a transaction. There is no limit to the number of queue managers that can participate in a transaction.

WMQ platform requirements are independent of your database server platform requirements. For more information about

respective platform requirements, see the WMQ documentation and your machine notes.

Prepare to use MQ messaging
Before you can use MQ messaging, you must install and configure (WMQ) and configure your database server for use with

WMQ.

The database server comes with a server-based messaging library and a client-based messaging library. The server-based

messaging library is default option.

To use MQ messaging, you perform these tasks:

Chapter 1. Database Extensions User's Guide

1. Decide whether to use the server-based MQ messaging or client-based messaging library.

2. Install WMQ HCL OneDB™ and set up the queue manager, queues, and channels.

When you use the server-based messaging library, the database server connects to the queue manager that resides

on the same computer. Therefore, you must install HCL OneDB™ and the WMQ Server on the same computer.

When you use the client-based messaging library, the database server uses a network protocol to connect to the

queue manager anywhere on the network. You must install the database server and the WMQ Client on the same

computer. You can install the WMQ server on the same computer or on different computers on the network. If you

plan to use local queue managers, you must install the database server and WMQ on the same computer. See

WebSphere® MQ documentation for installation details.

3. Verify that MQ messaging is working correctly.

4. Use MQ functions or tables in your application.

If you configure your system to use both server-based and client-based MQ messaging on your database server, you can

switch between the two methods of messaging. You cannot use both methods at the same time on a database server

instance

Install and configure WMQ
You must install and configure before using MQ messaging.

Information about how to install WMQ is included in the WMQ product documentation.

A WMQ queue manager is a system program that provides queuing services to applications. It provides an application

programming interface for programs to access messages on the queues managed by a WMQ message broker. Applications

can send and receive messages to and from a queue.

As necessary, you need to complete the following WMQ queue configuration:

• Create a queue manager.

• Create a queue.

• Create a subscriber queue.

For instructions on how to create a queue manager, a queue, and a subscriber queue, see the platform-specific

documentation received with your WMQ product.

Prepare your database server for MQ messaging
You must prepare your HCL OneDB™ database for MQ messaging.

To prepare for MQ messaging, add user informix to the mqm group and restart the database server. Only members of the

mqm group are authorized to access to WMQ queues. For more information, see the platform-specific documentation for

WMQ.

47

OneDB Database Extensions User's Guide

48

The mq virtual processor is created automatically the first time you access an MQ messaging table or run an MQ messaging

function.

The HCL OneDB™ database server has the following additional requirements:

• Non-logged databases are not supported.

• ANSI databases are not supported.

• The Scheduler must be running.

If you attempt to run an MQ messaging function in an unlogged or ANSI database, a message that DataBlade registration

failed is printed in the online message log. If the Scheduler is not running the first time that you access an MQ messaging

table or run an MQ messaging function, a message that the table cannot be found or the routine cannot be resolved is

returned.

Sample code for setting up queue managers, queues, and channels
After you install either the (WMQ) server or both the WMQ server and client, you can set up the queue manager, queues, and

channels.

You must only set up channels if you plan to use a WMQ client-based library. For information about channels, see your

documentation.

The following example shows how to set up the queue manager, queues, and channels:

1. Create queue manager lqm1, using-q to specify the default queue manager:

crtmqm -q lqm1

2. Start the queue manager:

strmqm lqm1

3. Start the publish/subscribe service:

strmqbrk -m lqm1

4. Stop the queue manager:

endmqm -w lqm1

5. Delete the queue manager:

dltmqm lqm1

6. Start the TCP listener on port 1414 for queue manager lqm1:

runmqlsr -t tcp -m lqm1 -p 1414 &

7. Run the following commands in runmqsc lqm1:

DEFINE CHANNEL(QM1CH) CHLTYPE(SVRCONN) TRPTYPE(TCP) +
DESCR('Server connection to WMQ client') REPLACE

DEFINE CHANNEL(QM1CH) CHLTYPE(CLNTCONN) TRPTYPE(TCP) +
CONNAME('hostname(1414)') +

Chapter 1. Database Extensions User's Guide

DESCR('WebSphere MQ client connection to server 1') +
QMNAME('lqm1') REPLACE

8. Create database server-related queues by running the following command:

runmqsc lqm1 < $ONEDB_HOME/extend/mqblade.2.0/idsdefault.tst

9. Copy AMQCLCHL.TAB to the WMQ default location.

Sample code for setting up the server for use with WMQ
After you install either the IBMWebSphere MQ (WMQ) server or both the WMQ server and client, you can set up the database

server for use with WMQ.

The following example shows how to set up the database server for MQ:

1. Open DB-Access and the stores_demo database.

2. Run the following commands:

-- Service for most operations

INSERT INTO mqiservice
 (servicename, queuemanager, queuename)
 VALUES ('lser.qm1', 'lqm1', 'IDS.DEFAULT.QUEUE');

-- Service for publishing

INSERT INTO mqiservice
 (servicename, queuemanager, queuename)
 VALUES ('lpubser.qm1', 'lqm1', 'SYSTEM.BROKER.DEFAULT.STREAM');

-- service for subscribing
INSERT INTO mqiservice
 (servicename, queuemanager, queuename, mqchllib, mqchltab)
 VALUES ('lsubser.qm1', 'lqm1', 'SYSTEM.BROKER.CONTROL.QUEUE');

-- service for receiving subscribe message
INSERT INTO mqiservice
 (servicename, queuemanager, queuename, mqchllib, mqchltab)
VALUES ('lrecsubser.qm1', 'lqm1',
 'IDS.DEFAULT.SUBSCRIBER.RECEIVER.QUEUE');

-- subscriber information
INSERT INTO mqipubsub
 (pubsubname, servicebroker, receiver,psstream,pubsubtype)
 VALUES ('lsub.qm1', 'lsubser.qm1', 'lrecsubser.qm1',
 'SYSTEM.BROKER.DEFAULT.STREAM', 'Subscriber');

-- publisher information
INSERT INTO mqipubsub
 (pubsubname, servicebroker, receiver,psstream, pubsubtype)
 VALUES ('lpub.qm1', 'lpubser.qm1', '', '', 'Publisher');

49

OneDB Database Extensions User's Guide

50

Switch between server-based and client-based messaging
If you are set up to use both server-based and client-based MQ messaging on your database server, you can switch between

the two methods of messaging. Server-based messaging is the default method.

The commands you use for switching to server-based messaging and switching to client-based messaging, which are

described in the subtopics below, differ slightly.

Switching from server-based to client-based messaging
You can switch from server-based messaging, the default method for messaging, to client-based messaging.

Before you begin

Prerequisites:

• When you switch to client-based messaging, the database server and (WMQ) must be installed on the same

computer.

• On Windows™, you must have the MKS Toolkit to run the chown command.

About this task

To switch to server-based messaging:

1. Bring down the database server.

2. Run this command: cd $ONEDB_HOME/extend/mqblade.2.0

3. Run this command: rm idsmq.bld

4. Run either of the following commands:

Choose from:

◦ cp idsmqc.bld idsmq.bld

◦ ln –s idsmqc.bld idsmq.bld

Note that these commands differ slightly from the commands used to switch to server-based messaging.

5. Run this command: chown Informix:Informix idsmq.bld

6. Run this command: chmod –w idsmq.bld

7. Start the database server.

Switching from client-based to server-based messaging
If you previously switched to client-based messaging, you can switch back to server-based messaging.

Before you begin

Prerequisites:

• When you switch to server-based messaging, the database server and (WMQ) can be present on the same computer

or on a different computer on the network.

• On Windows™, you must have the MKS Toolkit to run the chown command.

Chapter 1. Database Extensions User's Guide

About this task

To switch from client-based messaging to server-based messaging:

1. Bring down the database server.

2. Run this command: cd $ONEDB_HOME/extend/mqblade.2.0

3. Run this command: rm idsmq.bld

4. Run either of the following commands:

Choose from:

◦ cp idsmqs.bld idsmq.bld

◦ ln –s idsmqs.bld idsmq.bld

Note that these commands differ slightly from the commands used to switch to client-based messaging.

5. Run this command: chown Informix:Informix idsmq.bld

6. Run this command: chmod –w idsmq.bld

7. Start the database server.

Verification
After completely the necessary configuration, verify that MQ messaging is working correctly.

MQ functions must be used within a transaction. For functions that use the EXECUTE statement, you must explicitly start the

transaction with a BEGIN WORK statement. For functions that use the SELECT, UPDATE, DELETE, or INSERT statements, you

do not need to use a BEGIN WORK statement.

For more information about all of the functions used below, see MQ messaging functions on page 57.

Insert data into a queue
The service IDS.DEFAULT.SERVICE specifies the IDS.DEFAULT.QUEUE. Before inserting data into the queue, you should check

the size of the queue.

After inserting the data, you should check the queue to confirm that the data was added.

BEGIN WORK;

EXECUTE FUNCTION MQSend('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY', 'hello queue');

(expression) 1
1 row(s) retrieved.

COMMIT WORK;

Read an entry from a queue
The MQRead() function reads a message from the queue but does not remove it.

After reading the message, the queue has not been changed:

BEGIN WORK;

51

OneDB Database Extensions User's Guide

52

EXECUTE FUNCTION MQRead('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY');

(expression) hello queue

1 row(s) retrieved.

COMMIT WORK;

The following example reads a message from the queue and inserts it into a database table:

INSERT into msgtable values (MQRead('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY'));

1 row(s) inserted.

SELECT * from msgtable;

msg hello queue

1 row(s) retrieved.

COMMIT WORK;

Receive an entry from a queue
The MQReceive() function removes the message from the queue.

The following example shows the removal of message from the queue:

BEGIN WORK;

EXECUTE FUNCTION MQReceive('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY');

(expression) hello queue

1 row(s) retrieved.

COMMIT WORK;

Publish and subscribe to a queue
Publishing and subscribing to a queue is an effective way of exchanging information between multiple users.

MQ messaging interacts directly with the WMQ Publish/Subscribe component. The component allows a message to be sent

to multiple subscribers based on a topic. Users subscribe to a topic, and when a publisher inserts a message with that topic

into the queue, the WMQ broker routes the messages to all of the queues of each specified subscriber. Then, the subscriber

retrieves the message from the queue.

Subscribe to a queue
To subscribe to a queue, use the MQSubscribe() function.

The following example shows how a database application subscribes to a queue to receive messages for a topic named

“Weather”:

Chapter 1. Database Extensions User's Guide

 --- before subscribe
 Topic: MQ/TIMESERIES.QUEUE.MANAGER /StreamSupport
 Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
 Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
 Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*

BEGIN WORK;

EXECUTE FUNCTION MQSubscribe('AMT.SAMPLE.SUBSCRIBER', 'AMT.SAMPLE.PUB.SUB.POLICY',
'Weather');

(expression) 1

1 row(s) retrieved.

 --- after subscribe
 Topic: MQ/TIMESERIES.QUEUE.MANAGER /StreamSupport
 Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
 Topic: Weather
 Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
 Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*

COMMIT WORK;

Unsubscribe from a queue
To unsubscribe from a queue, use the MQUnsubscribe() function.

For example, specify:

BEGIN WORK;

EXECUTE FUNCTION MQUnsubscribe('AMT.SAMPLE.SUBSCRIBER', 'AMT.SAMPLE.PUB.SUB.POLICY',
'Weather');(

expression) 1

1 row(s) retrieved.
 Topic: MQ/TIMESERIES.QUEUE.MANAGER /StreamSupport
 Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
 Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*
 Topic: MQ/S/TIMESERIES.QUEUE.MANAGER /Subscribers/Identities/*

COMMIT WORK;

Publish to a queue
To publish to a queue, use the MQPublish() function.

For example, specify:

BEGIN WORK;

EXECUTE FUNCTION MQPublish('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY', 'Weather');

(expression) 1

53

OneDB Database Extensions User's Guide

54

COMMIT WORK;

MQ messaging tables
You use Virtual-Table Interface (VTI) access method to access WMQ queues using table semantics.

VTI binds tables to WMQ queues, creating transparent access to WMQ objects and enabling users to access the queue as if

it were a table. For more information about VTI, see the HCL OneDB™ Virtual-Table Interface Programmer's Guide.

Schema mapping
When a table is bound to a WMQ queue, the schema is mapped directly to WMQ objects.

The following table shows the mapping of schema to WMQ objects.

Table 2. Schema mapping to WMQ objects

Name Type Description

msg lvarchar(maxMessage) The message being sent or received. The default size is 4,000; the

limit is 32,628.

correlid varchar(24) The correlation ID, which can be used as a qualifier

topic varchar(40) The topic used with publisher or subscriber, which can be used as a

qualifier

qname varchar(48) The name of the queue

msgid varchar(12) The message ID

msgformat varchar(8) The message format

General table behavior
WMQ metadata tables operate in specified ways.

For every table created, the following applies:

• The PUBLIC group is limited to SELECT privileges. Only the database administrator and the table creator have INSERT

privileges.

• When a function is first invoked in each user session, WMQ metadata tables are read and their values are cached

in the PER_SESSION memory. The cache is not refreshed until the session closes or the database is closed and

reopened.

Create and bind a table
Use the MQCreateVtiReceive() function to create a table and bind it to a queue.

Chapter 1. Database Extensions User's Guide

The following example creates a table named vtimq, and binds it to the queue defined by service IDS.DEFAULT.SERVICE and

policy IDS.DEFAULT.POLICY.

BEGIN WORK;

EXECUTE FUNCTION MQICreateVtiReceive ("VtiMQ",
 "IDS.DEFAULT.SERVICE", "IDS.DEFAULT.POLICY");

Using a SELECT statement on a table created with MQCreateVtiReceive(), results in a message is received from the table,

which is the equivalent of calling the MQReceive() function on the queue. For both functions, the messages selected are

removed from the queue.

To browse the messages on the queue without removing the messages from the queue, use the MQCreateVtiRead()

function. In the following example, MQCreateVtiRead() binds the table vtimq to a queue:

BEGIN WORK;

EXECUTE FUNCTION MQCreateVtiRead (vtimq, read-service, policy, maxMessage)

For complete information about the MQCreateVtiRead() or MQCreateVtiReceive() functions, see MQ messaging functions on

page 57.

Use INSERT and SELECT
After a table is bound to a queue, use INSERT to insert items into the WMQ queue, and SELECT to retrieve WMQ messages.

Using the example with table vtimq above, the following example inserts a message into the msg column of VtiMQ and into

the queue described by IDS.DEFAULT.SERVICE service and policy IDS.DEFAULT.POLICY:

INSERT into VtiMQ (msg) values ('PUT on queue with SQL INSERT');
1 row(s) inserted.

Use a SELECT statement to display the message:

SELECT * from VtiMQ;
msg PUT on queue with SQL INSERT
correlid
topic
qname IDS.DEFAULT.QUEUE
msgid AMQ
msgformat MQSTR

Retrieve the queue element
Use the MQRead() function to retrieve the queue element.

For example:

BEGIN WORK;

EXECUTE FUNCTION MQRead('IDS.DEFAULT.SERVICE', 'IDS.DEFAULT.POLICY');
(expression) PUT on queue with SQL INSERT
1 row(s) retrieved.
COMMIT WORK

55

OneDB Database Extensions User's Guide

56

Special considerations
Binding a table to a queue creates a useful interface between the queue and the database. However, due to the inherent

limitations of a queue, not all database functionality can be used.

When a message is fetched from a queue, the default database processing is to dequeue, or remove, it. Every time a queue

is read by the database, the data within the queue changes. This behavior differs from a standard read by a database, in

which the data does not change. Supplying only a mapping that enables users to browse, where reading does not remove

the queue, eliminates a major queue functionality. Enabling both processing models provides more options and requires

corresponding responsibility.

By default, the top element is removed when a message is fetched from a queue. WMQ allows messages to be retrieved

based upon a correlid. A correlid is a correlation identifier that can be used as a key, for example, to correlate a response

message to a request message. If the correlid of the message matches the correlid of a request, the message is returned. If

the VTI table is qualified with the correlid column, the correlid qualifier is passed into the WMQ request to fetch a value.

In the following example, a queue has three messages and only the second message contains a correlid, which is named

'fred'. The following statement removes all three messages from the queue and places them in a table named flounder:

INSERT into flounder (deQueuedMsg) values (SELECT msg from vtimq);

When execution completes, no messages remain on the queue and three new rows appear in the flounder table.

The following example qualifies the vtimq table:

INSERT into flounder (deQueuedMsg) values (SELECT msg from vtimq where
correlid = 'fred');

The above statement creates two groups of messages:

• Messages that failed the correlid = 'fred' qualification

• Messages that passed the correlid = 'fred' qualification. The one message that passed the qualification is located in

the flounder table.

Statements including qualifiers other than equality (=) or NULL return an error. Statements including NULL return unexpected

results.

Table errors
Tables that are mapped to WMQ can generate non-database errors if the underlying WMQ request fails.

In the example below, a VTI mapping was established using a bad service definition, and the error was not recognized until a

SELECT statement was executed against the table.

BEGIN WORK;
EXECUTE FUNCTION MQCreateVtiReceive('vtiTable',"BAD.SERVICE");
SELECT * from vtitable;

(MQ015) - FUNCTION:MqiGetServicePolicy, SERVICE:BAD.SERVICE,
POLICY:IDS.DEFAULT.POLICY ::
BAD.SERVICE is not present in the database "informix".MQISERVICE table.

Chapter 1. Database Extensions User's Guide

Error in line 1
Near character position 23

MQ messaging functions
MQ messaging functions to enable applications to exchange data directly between the application and WebSphere® MQ.

All MQ messaging functions are created with a stack size of 64K. These MQ messaging functions can be executed within

SQL statements and should have an explicit or implicit transactional context.

All MQ messaging functions or MQ messaging-based VTI tables can be invoked only on local (sub-ordinator) servers.

Using MQ messaging functions or MQ messaging-based VTI tables on a remote server will return an error. MQ messaging

functions cannot be used when HCL OneDB™is participating as a resource manager in an externally-managed global XA

transaction.

MQ messaging functions use the "informix".mqi* service and policy tables to provide default values if the optional policy and

service parameters are not specified.

Service and policy tables
MQ messaging functions use three service and policy tables.

Most of the MQ messaging functions have an optional policy and service parameter. If the parameter is not passed, the

default value is used. The following table lists the default values for these parameters.

Table 3. Default policy and service values

Type Name Resources Status

Service IDS.DEFAULT.SERVICE IDS.DEFAULT.QUEUE created

Service IDS.DEFAULT.SUBSCRIBER SYSTEM.BROKER.CONTROL.QUEUE system

default

Service IDS.DEFAULT.PUBLISHER SYSTEM.BROKER.DEFAULT.STREAM system

default

Service IDS.DEFAULT.SUBSCRIBER.RECEIVER IDS.DEFAULT.SUBSCRIBER.RECEIVER.QUEUE created

Policy IDS.DEFAULT.POLICY connection name :default queuemanager system

default

Publisher IDS.DEFAULT.PUBLISHER sender:IDS.DEFAULT.PUBLISHER system

default

Subscriber IDS.DEFAULT.SUBSCRIBER sender:IDS.DEFAULT.SUBSCRIBER receiver:

IDS.DEFAULT.SUBSCRIBER.RECEIVER

system

default

Each service definition includes a queue specification. The service can be mapped any queue. For testing purposes, you can

create the following queues using the script idsdefault.tst:

57

OneDB Database Extensions User's Guide

58

• IDS.DEFAULT.QUEUE queue for the IDS.DEFAULT.SERVICE

• IDS.DEFAULT.SUBSCRIBER.RECIVER.QUEUE queue for the IDS.DEFAULT.SUBSCRIBER

The script idsdefault.tst is located in the MQBLADE directory. Use the runmqsc utility to execute commands in

idsdefault.tst.

If the QueueManager is not a default queue manager, you must update the queuemanager column of the

informix.mqiservice table by updating servicename to IDS.DEFAULT.SERVICE, IDS.DEFAULT.PUBLISHER,

IDS.DEFAULT.SUBSCRIBER and IDS.DEFAULT.SUBSCRIBER.RECEIVER.

During registration, the following default values are inserted into the "informix".mqi* tables:

 INSERT INTO ""informix"".mqiservice(servicename, queuemanager, queuename)
 VALUES('IDS.DEFAULT.SERVICE', '', 'IDS.DEFAULT.QUEUE');

 INSERT INTO ""informix"".mqiservice(servicename, queuemanager, queuename)
 VALUES('IDS.DEFAULT.PUBLISHER', '', 'SYSTEM.BROKER.DEFAULT.STREAM');

 INSERT INTO ""informix"".mqiservice(servicename, queuemanager, queuename)
 VALUES('IDS.DEFAULT.SUBSCRIBER', '', 'SYSTEM.BROKER.CONTROL.QUEUE');

 INSERT INTO ""informix"".mqiservice(servicename, queuemanager, queuename)
 VALUES('IDS.DEFAULT.SUBSCRIBER.RECEIVER', '',
 'IDS.DEFAULT.SUBSCRIBER.RECEIVER.QUEUE');

 INSERT INTO ""informix"".mqipubsub(pubsubname, servicebroker, receiver,
 psstream, pubsubtype)
 VALUES('IDS.DEFAULT.SUBSCRIBER', 'IDS.DEFAULT.SUBSCRIBER',
 'IDS.DEFAULT.SUBSCRIBER.RECEIVER',
 'SYSTEM.BROKER.DEFAULT.STREAM', 'Subscriber');

 INSERT INTO ""informix"".mqipubsub(pubsubname, servicebroker, receiver,
 psstream, pubsubtype)
 VALUES('IDS.DEFAULT.PUBLISHER', 'IDS.DEFAULT.PUBLISHER', '', '',
 'Publisher');

 INSERT INTO ""informix"".mqipolicy(policyname)
 VALUES('IDS.DEFAULT.POLICY');

 INSERT INTO ""informix"".mqipolicy(policyname)
 VALUES('IDS.DEFAULT.PUB.SUB.POLICY');

The "informix".mqiservice table
The "informix".mqiservice table contains the service definitions for service point (sender/receiver) attributes.

The "informix".mqiservice table has the following schema:

CREATE TABLE "informix".mqiservice
 servicename LVARCHAR(256),
 queuemanager VARCHAR(48) NOT NULL,
 queuename VARCHAR(48) NOT NULL,
 defaultformat VARCHAR(8) default ' ',
 ccsid VARCHAR(6) default ' ',
 mqconnname lvarchar(264) default '',

Chapter 1. Database Extensions User's Guide

 mqchannelname varchar(20) default 'SYSTEM.DEF.SVRCONN',
 mqxpt INTEGER DEFAULT 2 CHECK (mqxpt >= 0 AND mqxpt <= 6),
 mqchllib lvarchar(512) default '',
 mqchltab lvarchar(512) default '',
 mqserver lvarchar(512) default '',
 PRIMARY KEY (servicename));

The attributes are defined as follows:

servicename

The service name used in the MQ functions.

queuemanager

The queue manager service provider.

queuename

The queue name to send the message to or receive the message from.

defaultformat

Defines the default format.

ccsid

The coded character set identifier of the destination application.

mqconnname

The MQ connection name. This value, which is present only when the client-based messaging library is used,

enables the client application to connect to multiple server queue managers simultaneously.

mqchannelname

The MQ channel name. This value, which is present only when the client-based messaging library is used,

enables the client application to connect to multiple server queue managers simultaneously.

mqxpt

The MQ transport type attribute. This value, which is present only when the client-based messaging library is

used, enables the client application to connect to multiple server queue managers simultaneously.

mqchllib

The MQCHLLIB environment variable of WMQ. This value, which is present only when the client-based

messaging library is used, specifies the directory path to the file containing the client channel definition table.

mqchltab

The MQCHLTAB environment variable of WMQ. This value, which is present only when the client-based

messaging library is used, specifies the name of the file containing the client channel definition table

mqserver

The MQSERVER environment variable of WMQ. This value, which is present only when the client-based

messaging library is used, defines a channel and specifies the location of the WebSphere® MQ server and the

communication method that is used.

59

OneDB Database Extensions User's Guide

60

An application can specify the mqchannelname, mqxpt, and mqconnname attributes of a channel at run time. This enables the

client application to connect to multiple server queue managers simultaneously. If these values are present, they take

precedence over other values. For more information, see information about using the MQCNO structure on an MQCONNX

call in the documentation.

Whenever each service is connected to WMQ, the service uses environment variables in the following order:

1. MQCNO values

2. Variables in the service

3. Variables in the instance

4. WMQ default values

The "informix".mqipubsub table
The "informix".mqipubsub table contains publisher definitions.

The "informix".mqipubsub table has the policy definitions for the following attributes:

• Distribution list

• Receive

• Subscriber

• Publisher

The "informix".mqipubsub table has the following schema:

CREATE TABLE "informix".mqipubsub
 pubsubname LVARCHAR(256) NOT NULL UNIQUE,
 servicebroker LVARCHAR(256),
 receiver LVARCHAR(256) default ' ',
 psstream LVARCHAR(256) default ' ',
 pubsubtype VARCHAR(20) CHECK (pubsubtype IN ('Publisher', 'Subscriber')),
FOREIGN KEY (servicebroker) REFERENCES "informix".mqiservice(servicename));

The attributes are defined as follows:

pubsubname

is the name of the publish/subscribe service.

servicebroker

The service name of the publish/subscribe service.

receiver

The queue on which to receive messages after subscription.

psstream

The stream coordinating the publish/subscribe service.

pubsubtype

The service type.

Chapter 1. Database Extensions User's Guide

The "informix".mqipolicy table
The "informix".mqipolicy table contains policy definitions.

The "informix".mqipolicy table has the policy definitions for the following attributes:

• General

• Publish

• Receive

• Reply

• Send

• Subscribe

The "informix".mqipolicy table has the following schema:

CREATE TABLE "informix".mqipolicy
 policyname VARCHAR(128) NOT NULL,
 messagetype CHAR(1) DEFAULT 'D' CHECK (messagetype IN ('D', 'R')),
 messagecontext CHAR(1) DEFAULT 'Q' CHECK (messagecontext IN
 ('Q','P','A','N')),
 snd_priority CHAR(1) DEFAULT 'T' CHECK (snd_priority IN
 ('0','1','2','3','4', '5','6','7','8','9', 'T')),
 snd_persistence CHAR(1) DEFAULT 'T' CHECK (snd_persistence IN
 ('Y','N','T')),
 snd_expiry INTEGER DEFAULT -1 CHECK (snd_expiry > 0 OR snd_expiry
 = -1),
 snd_retrycount INTEGER DEFAULT 0 CHECK (snd_retrycount >= 0),
 snd_retry_intrvl INTEGER DEFAULT 1000 CHECK (snd_retry_intrvl >= 0),
 snd_newcorrelid CHAR(1) DEFAULT 'N' CHECK (snd_newcorrelid IN ('Y','N')),
 snd_resp_correlid CHAR(1) DEFAULT 'M' CHECK (snd_resp_correlid IN ('M','C')),
 snd_xcption_action CHAR(1) DEFAULT 'Q' CHECK (snd_xcption_action IN
 ('Q','D')),
 snd_report_data CHAR(1) DEFAULT 'R' CHECK (snd_report_data IN
 ('R','D','F')),
 snd_rt_exception CHAR(1) DEFAULT 'N' CHECK (snd_rt_exception IN ('Y','N')),
 snd_rt_coa CHAR(1) DEFAULT 'N', CHECK (snd_rt_coa IN ('Y','N')),
 snd_rt_cod CHAR(1) DEFAULT 'N' CHECK (snd_rt_cod IN ('Y','N')),
 snd_rt_expiry CHAR(1) DEFAULT 'N' CHECK (snd_rt_expiry IN ('Y','N')),
 reply_q VARCHAR(48) DEFAULT 'SAME AS INPUT_Q',
 reply_qmgr VARCHAR(48) DEFAULT 'SAME AS INPUT_QMGR',
 rcv_truncatedmsg CHAR(1) DEFAULT 'N' CHECK (rcv_truncatedmsg IN ('Y','N')),
 rcv_convert CHAR(1) DEFAULT 'Y' CHECK (rcv_convert IN ('Y','N')),
 rcv_poisonmsg CHAR(1) DEFAULT 'N' CHECK (rcv_poisonmsg IN ('Y','N')),
 rcv_openshared CHAR(1) DEFAULT 'Q' CHECK (rcv_openshared IN
 ('Y','N','Q')),
 rcv_wait_intrvl INTEGER DEFAULT 0 CHECK (rcv_wait_intrvl >= -1),
 pub_suppressreg CHAR(1) DEFAULT 'Y' CHECK (pub_suppressreg IN ('Y','N')),
 pub_anonymous CHAR(1) DEFAULT 'N' CHECK (pub_anonymous IN ('Y','N')),
 pub_publocal CHAR(1) DEFAULT 'N' CHECK (pub_publocal IN ('Y','N')),
 pub_direct CHAR(1) DEFAULT 'N' CHECK (pub_direct IN ('Y','N')),
 pub_correlasid CHAR(1) DEFAULT 'N' CHECK (pub_correlasid IN ('Y','N')),
 pub_retain CHAR(1) DEFAULT 'N' CHECK (pub_retain IN ('Y','N')),
 pub_othersonly CHAR(1) DEFAULT 'N' CHECK (pub_othersonly IN ('Y','N')),
 sub_anonymous CHAR(1) DEFAULT 'N' CHECK (sub_anonymous IN ('Y','N')),
 sub_sublocal CHAR(1) DEFAULT 'N' CHECK (sub_sublocal IN ('Y','N')),

61

OneDB Database Extensions User's Guide

62

 sub_newpubsonly CHAR(1) DEFAULT 'N' CHECK (sub_newpubsonly IN ('Y','N')),
 sub_pubonreqonly CHAR(1) DEFAULT 'N' CHECK (sub_pubonreqonly IN ('Y','N')),
 sub_correlasid CHAR(1) DEFAULT 'N' CHECK (sub_correlasid IN ('Y','N')),
 sub_informifret CHAR(1) DEFAULT 'Y' CHECK (sub_informifret IN ('Y','N')),
 sub_unsuball CHAR(1) DEFAULT 'N' CHECK (sub_unsuball IN ('Y','N')),
 syncpoint CHAR(1) DEFAULT 'Y' CHECK (syncpoint IN ('Y','N'))
 PRIMARY KEY (policyname));

The attributes are defined as follows:

policyname

The name of the policy.

messagetype

The type of message.

messagecontext

Defines how the message context is set in messages sent by the application:

• The default is Set By Queue Manager (the queue manager sets the context).

• If set to Pass Identity, the identity of the request message is passed to any output messages.

• If set to Pass All, all the context of the request message is passed to any output messages.

• If set to No Context, no context is passed.

snd_priority

The priority set in the message, where 0 is the lowest priority and 9 is the highest. When set to As Transport,

the value from the queue definition is used. You must deselect As Transport before you can set a priority value.

snd_persistence

The persistence set in the message, where Yes is persistent and No is not persistent. When set to As Transport,

the value from the underlying queue definition is used.

snd_expiry

A period of time (in tenths of a second) after which the message will not be delivered.

snd_retrycount

The number of times a send will be retried if the return code gives a temporary error. Retry is attempted under

the following conditions: Queue full, Queue disabled for put, Queue in use.

snd_retry_intrvl

The interval (in milliseconds) between each retry.

snd_newcorrelid

Whether each message is sent with a new correlation ID (except for response messages, where this is set to

the Message ID or Correl ID of the request message).

Chapter 1. Database Extensions User's Guide

snd_resp_correlid

The ID set in the Correl ID of a response or report message. This is set to either the Message ID or the Correl ID

of the request message, as specified.

snd_xcption_action

The action when a message cannot be delivered. When set to DLQ, the message is sent to the dead-letter queue.

When set to Discard, the message is discarded.

snd_report_data

The amount of data included in a report message, where Report specifies no data, With Data specifies the first

100 bytes, and With Full Data specifies all data.

snd_rt_exception

Whether Exception reports are required.

snd_rt_coa

Whether Confirm on Arrival reports are required.

snd_rt_cod

Whether Confirm on Delivery reports are required.

snd_rt_expiry

Whether Expiry reports are required.

reply_q

The name of the reply queue.

reply_qmgr

The name of the reply Queue Manager.

rcv_truncatedmsg

Whether truncated messages are accepted.

rcv_convert

Whether the message is code page converted by the message transport when received.

rcv_poisonmsg

Whether poison message handling is enabled. Sometimes, a badly formatted message arrives on a queue.

Such a message might make the receiving application fail and back out the receipt of the message. In this

situation, such a message might be received, and then returned to the queue repeatedly.

rcv_openshared

Whether the queue is opened as a shared queue.

rcv_wait_intrvl

A period of time (in milliseconds) that the receive waits for a message to be available.

63

OneDB Database Extensions User's Guide

64

pub_suppressreg

Whether implicit registration of the publisher is suppressed. (This attribute is ignored for WebSphere® MQ

Integrator Version 2.)

pub_anonymous

Whether the publisher registers anonymously.

pub_publocal

Whether the publication is only sent to subscribers that are local to the broker.

pub_direct

Whether the publisher should accept direct requests from subscribers.

pub_correlasid

Whether the Correl ID is used by the broker as part of the publisher's identity.

pub_retain

Whether the publication is retained by the broker.

pub_othersonly

Whether the publication is not sent to the publisher if it has subscribed to the same topic (used for conference-

type applications).

sub_anonymous

Whether the subscriber registers anonymously.

sub_sublocal

Whether the subscriber is sent publications that were published with the Publish Locally option, at the local

broker only.

sub_newpubsonly

Whether the subscriber is not sent existing retained publications when it registers.

sub_pubonreqonly

Whether the subscriber is not sent retained publications, unless it requests them by using Request Update.

sub_correlasid

The broker as part of the subscriber's identity.

sub_informifret

Whether the broker informs the subscriber if a publication is retained.

sub_unsuball

Whether all topics for this subscriber are to be deregistered.

syncpoint

Whether the operation occurred within a syncpoint.

Chapter 1. Database Extensions User's Guide

MQCreateVtiRead() function
The MQCreateVtiRead() function creates a table and maps it to a queue managed by WMQ.

Syntax
MQCREATEVTIREAD(table_name [,service_name [,policy_name [,maxMessage]]])

table_name

Required parameter. Specifies the name of the table to be created. The queue pointed to by the service_name

parameter is mapped to this table.

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.POLICY is used as the policy. The maximum size of policy_name is

48 bytes.

maxMessage

Optional parameter. Specifies the maximum length of the message to be sent or received. The default value is

4000; the maximum allowable size is 32628.

Usage

The MQCreateVtiRead() function creates a table bound to a queue specified by service_name, using the quality of service

policy defined in policy_name. Selecting from the table created by this function returns all the committed messages in

the queue, but does not remove the messages from the queue. If no messages are available to be returned, the SELECT

statement returns no rows. An insert to the bound table puts a message into the queue.

The table created has the following schema and uses the "informix".mq access method:

create table table_name (
 msg lvarchar(maxMessage),
 correlid varchar(24),
 topic varchar(40),
 qname varchar(48),
 msgid varchar(12),
 msgformat varchar(8));
 using "informix".mq (SERVICE = service_name,
 POLICY = policy_name,
 ACCESS = "READ");

The mapping for a table bound to a queue requires translation of operation. Actions on specific columns within the table are

translated into specific operations within the queue, as outlined here:

65

OneDB Database Extensions User's Guide

66

• An insert operation inserts the following into the mapped table column:

◦ msg. The message text that will be inserted onto the queue. If msg is NULL, MQ functions send a zero-length

message to the queue.

◦ correlid. The message will be sent with the specified correlation identifier.

• A select operation maps these in the following way to a WMQ queue:

◦ msg. The message is retrieved from the queue

◦ correlid. Within the WHERE clause, is the value passed to the queue manager to qualify messages (the

correlation identifier). The only operator that should be used when qualifying is equals (=).

The following table describes how the arguments for the MQCreateVtiRead() function are interpreted.

Table 4. MQCreateVtiRead() argument interpretation

Usage Argument interpretation

MQCreateVtiRead(arg1) arg1 = table_name

MQCreateVtiRead(arg1, arg2) arg1 = table_name

arg2 = service_name

MQCreateVtiRead(arg1, arg2, arg3) arg1 = table_name

arg2 = service_name

arg3 = policy_name

MQCreateVtiRead(arg1, arg2, arg3, arg4) arg1 = table_name

arg2 = service_name

arg3 = policy_name

arg4 = maxMessage

Return codes

't'

The operation was successful.

'f'

The operation was unsuccessful.

Example

Create a table called VtiReadTest using the default service name and policy name:

begin;
EXECUTE FUNCTION MQCreateVtiRead('VtiReadTest');
commit;

Chapter 1. Database Extensions User's Guide

Insert a message into the queue:

INSERT INTO VtiReadTest(msg) values ('QMessage');

Read a message from the queue:

select * from VtiReadTest;

MQCreateVtiReceive() function
The MQCreateVtiReceive() function creates a table and maps it to a queue managed by WMQ.

Syntax
MQCREATEVTIRECEIVE (table_name [,service_name [,policy_name [,maxMessage]]])

table_name

Required parameter. Specifies the name of the table to be created. The queue pointed to by the service_name

parameter is mapped to this table.

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.POLICY is used as the policy. The maximum size of policy_name is

48 bytes.

maxMessage

Optional parameter. Specifies the maximum length of the message to be sent or received. The default value is

4000; the maximum allowable size is 32628.

Usage

The MQCreateVtiReceive() function creates a table_name bound to a queue specified by service_name, using the quality

of service policy defined in policy_name. Selecting from this table returns all the available messages in the queue and also

removes the messages from the queue. If no messages are available to be returned, the no rows are returned. An insert into

the bound table puts messages in the queue.

The table created has the following schema and uses the "informix".mq access method:

create table table_name (
 msg lvarchar(maxMessage),
 correlid varchar(24),
 topic varchar(40),
 qname varchar(48),
 msgid varchar(12),
 msgformat varchar(8));
 using "informix".mq (SERVICE = service_name,

67

OneDB Database Extensions User's Guide

68

 POLICY = policy_name,
 ACCESS = "RECEIVE");

The mapping between a table bound to a queue requires translation of operation. Actions on specific columns within the

table are translated into specific operations within the queue, as outlined here:

• An insert operation maps the following columns to the MQ manager:

◦ msg. The text that will be inserted onto the queue. If msg is NULL, MQ functions send a zero-length message

to the queue.

◦ correlid. The key recognized by queue manager to get messages from the queue

• A select operation maps the following columns to the MQ manager:

◦ msg. The message is removed from the queue.

◦ correlid. Within the WHERE clause, is the value passed to the queue manager to qualify messages (the

correlation identifier). The only operator that should be used when qualifying is equals (=).

The following table describes how the arguments for the MQCreateVtiReceive() function are interpreted.

Table 5. MQCreateVtiReceive() argument interpretation

Usage Argument interpretation

MQCreateVtiReceive(arg1) arg1 = table_name

MQCreateVtiReceive(arg1, arg2) arg1 = table_name

arg2 = service_name

MQCreateVtiReceive(arg1, arg2, arg3) arg1 = table_name

arg2 = service_name

arg3 = policy_name

MQCreateVtiReceive(arg1, arg2, arg3, arg4) arg1 = table_name

arg2 = service_name

arg3 = policy_name

arg4 = maxMessage

Return codes

't'

The operation was successful.

'f'

The operation was unsuccessful.

Chapter 1. Database Extensions User's Guide

Example

Create the table VtiReceiveTest using the default service name and policy name:

begin;
EXECUTE FUNCTION MQCreateVtiRead('VtiReceiveTest');
commit;

Insert a message to the queue:

INSERT INTO VtiReceiveTest(msg) values ('QMessage');

Read a message from the queue:

select * from VtiReceiveTest;

Attempting to read the queue a second time results in returning no rows because the table was created using the

MQCreateVtiReceive() function, which removes entries as they are read.

MQCreateVtiWrite() function
The MQCreateVtiWrite() function creates a write-only VTI table and maps it to a queue that manages.

Syntax
MQCreateVtiWrite (table_name [,service_name [,policy_name [,maxMessage]]])

table_name

Required parameter. Specifies the name of the table to be created. The queue pointed to by the service_name

parameter is mapped to this table.

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.POLICY is used as the policy. The maximum size of policy_name is

48 bytes.

maxMessage

Optional parameter. Specifies the maximum length of the message to be sent or received. The default value is

4000; the maximum allowable size is 32628. If the value is -1, the message is a CLOB data type. If the value is -2,

the message is a BLOB data type.

Usage

You can perform only an insert operation on this table. You cannot perform a select operation on this table.

The following table describes how the arguments for the MQCreateVtiWrite() function are interpreted.

69

OneDB Database Extensions User's Guide

70

Table 6. MQCreateVtiWrite() argument interpretation

Usage Argument interpretation

MQCreateVtiWrite(arg1) arg1 = table_name

MQCreateVtiWrite(arg1, arg2) arg1 = table_name

arg2 = service_name

MQCreateVtiWrite(arg1, arg2, arg3) arg1 = table_name

arg2 = service_name

arg3 = policy_name

MQCreateVtiWrite(arg1, arg2, arg3, arg4) arg1 = table_name

arg2 = service_name

arg3 = policy_name

arg4 = maxMessage

Example

The following example creates a table named qm0vti for service lser.qm1.

execute function MQCreateVtiRead("qm0vti", "lser.qm1");

MQHasMessage() function
The MQHasMessage() function checks if a message is available from the WMQ.

Syntax
MQHasMessage([service_name [,policy_name [,correl_id]]])

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.POLICY is used as the policy. The maximum size of policy_name is

48 bytes.

Chapter 1. Database Extensions User's Guide

correl_id

Optional parameter. A string containing a correlation identifier to be associated with this message. The

correl_id is often specified in request and reply scenarios to associate requests with replies. The maximum size

of correl_id is 24 bytes. If not specified, no correlation ID is added to the message.

Usage

You can simulate event processing by using this function and other MQ functions to write custom procedures and run them

inside the Scheduler at specified intervals.

The following table describes how the arguments for the MQHasMessage() function are interpreted.

Table 7. MQHasMessage() argument interpretation

Usage Argument interpretation

MQHasMessage() No arguments

MQHasMessage(arg1) arg1 = service_name

MQHasMessage(arg1, arg2) arg1 = service_name

arg2 = policy_name

MQHasMessage(arg1, arg2, arg3) arg1 = service_name

arg2 = policy_name

arg3 = correl_id

Return codes

1

One message or more than one message is present.

0

No Messages are available.

Error

The operation was unsuccessful.

Example

This following example reads the message with the following parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• correl_id: "TESTS"

71

OneDB Database Extensions User's Guide

72

begin;
EXECUTE FUNCTION MQHasMessage('MYSERVICE','MYPOLICY', 'TESTS');
commit;

MQInquire() function
The MQInquire() function, which is the same as the MQINQ() function of , queries attributes of the queue. The MQInquire() is

the interface between your SQL and .

Syntax
MQInquire([service_name,] selector)

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

selector

An integer or character attribute selectors number or string, such as MQCA_* or MQIA_* values that

exist in WMQ product documentation or header files. Examples of string values are MQIA_Q_TYPE or

MQIA_CURRENT_Q_DEPTH.

Usage

The following table describes how the arguments for the MQInquire() function are interpreted.

Table 8. MQInquire() argument interpretation

Usage Argument interpretation

MQInquire(arg1) arg1 = selector (number or string)

MQInquire(arg1, arg2) arg1 = service_name

arg2 = (number or string)

You can use the MQINQ() selectors of the .

Return codes

A string of LVARCHAR type

The operation was successful.

NULL

No Messages are available.

Error

The operation was unsuccessful.

Chapter 1. Database Extensions User's Guide

Examples

The following example shows an integer selector for a queue type:

execute function MQInquire(‘IDS.DEFAULT.SERVICE',20); -- Queue Type

The following example shows a character attribute selector for a queue type:

execute function MQInquire('MQIA_Q_TYPE');

The following example shows a string selector for queue depth:

execute function MQInquire(‘IDS.DEFAULT.SERVICE',3);

The following example shows a character attribute selector for queue depth:

execute function MQInquire(‘IDS.DEFAULT.SERVICE','
 MQIA_CURRENT_Q_DEPTH');

MQPublish() function
The MQPublish() function publishes a message on one or more topics to a queue managed by WMQ.

Syntax

MQPUBLISH([publisher_name, [policy_name,]] msg_data [,topic] [,correl_id]) (explicit id)

publisher_name

Optional parameter. Refers to the value in the pubsubname column of the "informix".mqipubsub table. If

publisher_name is not specified, IDS.DEFAULT.PUBLISHER is used as the publisher. The maximum length of

publisher_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.PUB.SUB.POLICY is used as the policy. The maximum size of

policy_name is 48 bytes.

msg_data

Required parameter. A string containing the data to be sent by WMQ. The maximum size of the string is defined

by the LVARCHAR data type. If msg_data is NULL, it sends a zero-length message to the queue.

topic

Optional parameter. A string containing the topic for the message publication. The maximum size of a topic

is 40 bytes. Multiple topics can be specified in one string (up to 40 characters long). Each topic must be

separated by a colon. For example, "t1:t2:the third topic" indicates that the message is associated with all three

topics: t1, t2, and the third topic. If no topic is specified, none are associated with the message.

73

OneDB Database Extensions User's Guide

74

correl_id

Optional parameter. A string containing a correlation identifier to be associated with this message. The

correl_id is often specified in request and reply scenarios to associate requests with replies. The maximum size

of correl_id is 24 bytes. If not specified, no correlation ID is added to the message.

Usage

The MQPublish() function publishes data to WMQ. It requires the installation of the WMQ Publish/Subscribe component of

WMQ, and that the Message Broker is running.

The MQPublish() function publishes the data contained in msg_data to the WMQ publisher specified in publisher_name, using

the quality of service policy defined by policy_name.

The following table describes how the arguments for the MQPublish() function are interpreted.

Table 9. MQPublish() argument interpretation

Usage Argument interpretation

MQPublish(arg1) arg1 = msg_data

MQPublish(arg1, arg2) arg1 = msg_data

arg2 = topic

MQPublish(arg1, arg2, arg3) arg1 = publisher_name

arg2 = msg_data

arg3 = topic

MQPublish(arg1, arg2, arg3, arg4) arg1 = publisher_name

arg2 = policy_name

arg3 = msg_data

arg4 = topic

MQPublish(arg1, arg2, arg3, arg4, arg5) arg1 = publisher_name

arg2 = policy_name

arg3 = msg_data

arg4 = topic

arg5 = correl_id

Chapter 1. Database Extensions User's Guide

Return codes

1

The operation was successful.

Error

The operation was unsuccessful.

Examples

Example 1

begin;
EXECUTE FUNCTION MQPublish('Testing 123');
commit:

This example publishes the message with the following parameters:

• publisher_name: default publisher

• policy_name: default policy

• msg_data: "Testing 123"

• topic: None

• correl_id: None

Example 2

begin;
EXECUTE FUNCTION MQPublish
('MYPUBLISHER','Testing 345','TESTTOPIC');
commit;

This example publishes the message with the following parameters:

• publisher_name: "MYPUBLISHER"

• policy_name: default policy

• msg_data: "Testing 345"

• topic: "TESTTOPIC"

• correl_id: None

Example 3

begin;
EXECUTE FUNCTION MQPublish('MYPUBLISHER',
'MYPOLICY','Testing 678','TESTTOPIC','TEST1');
commit;

This example publishes the message with the following parameters:

75

OneDB Database Extensions User's Guide

76

• publisher_name: "MYPUBLISHER"

• policy_name: "MYPOLICY"

• msg_data: "Testing 678"

• topic: "TESTTOPIC"

• correl_id: "TEST1"

Example 4

begin;
EXECUTE FUNCTION MQPublish('Testing 901','TESTS');
commit;

This example publishes the message with the following parameters:

• publisher_name: default publisher

• policy_name: default policy

• msg_data: "Testing 901"

• topic: "TESTS"

• correl_id: None

Example 5

begin;
EXECUTE FUNCTION MQPublish('SEND.MESSAGE',
'emergency', 'CODE BLUE', 'expedite');
commit;

This example publishes the message with the following parameters:

• publisher_name: "SEND.MESSAGE"

• policy_name: "emergency"

• msg_data: "CODE BLUE"

• topic: "expedite"

• correl_id: None

Example 6

The following table contains sample rows and columns in the "informix".mqipubsub table.

Sample row pubsubname column receiver column pubsubtype column

Sample row 1 'IDS.DEFAULT.

PUBLISHER'

' ' 'Publisher'

Sample row 2 'IDS.DEFAULT.

SUBSCRIBER'

'IDS.DEFAULT.

SUBSCRIBER.RECEIVER'

'Subscriber'

Chapter 1. Database Extensions User's Guide

begin;
 EXECUTE FUNCTION
 MQSubscribe('IDS.DEFAULT.SUBSCRIBER',
 'IDS.DEFAULT.PUB.SUB.POLICY', 'Weather');
commit;

This statement demonstrates a subscriber registering an interest in messages containing the topic “Weather,”

with the following parameters:

• subscriber_name: "IDS.DEFAULT.SUBSCRIBER"

• policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

• topic: "Weather"

begin;
 EXECUTE FUNCTION MQPublish
 ('IDS.DEFAULT.PUBLISHER',
 'IDS.DEFAULT.PUB.SUB.POLICY', 'Rain', 'Weather');
commit;

This statement publishes the message with the following parameters:

• publisher_name: "IDS.DEFAULT.PUBLISHER"

• policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

• msg_data: "Rain"

• topic: "Weather"

• correl_id: None

begin;
 EXECUTE FUNCTION MQReceive
 ('IDS.DEFAULT.SUBSCRIBER.RECEIVER',
 'IDS.DEFAULT.PUB.SUB.POLICY');
commit;

This statement receives the message with the following parameters (it returns "Rain"):

• service_name: "IDS.DEFAULT.SUBSCRIBER.RECEIVER"

• policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

MQPublishClob() function
The MQPublishClob() function publishes CLOB data on one or more topics to a queue managed by WMQ.

Syntax

MQPUBLISHCLOB([publisher_name, [policy_name,]] clob_data [,topic] [,correl_id]) (explicit id)

publisher_name

Optional parameter. Refers to the value in the pubsubname column of the "informix".mqipubsub table. If

publisher_name is not specified, IDS.DEFAULT.PUBLISHER is used as the publisher. The maximum length of

publisher_name is 48 bytes.

77

OneDB Database Extensions User's Guide

78

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.PUB.SUB.POLICY is used as the policy. The maximum size of

policy_name is 48 bytes.

clob_data

Required parameter. The CLOB data to be sent to WMQ. Even though the CLOB data size can be up to 4 TB,

the maximum size of the message is limited by what Websphere MQ supports. If clob_data is NULL, it sends a

zero-length message to the queue.

topic

Optional parameter. A string containing the topic for the message publication. The maximum size of a topic

is 40 bytes. Multiple topics can be specified in one string (up to 40 characters long). Each topic must be

separated by a colon. For example, "t1:t2:the third topic" indicates that the message is associated with all three

topics: t1, t2, and the third topic. If no topic is specified, none are associated with the message.

correl_id

Optional parameter. A string containing a correlation identifier to be associated with this message. The

correl_id is often specified in request and reply scenarios to associate requests with replies. The maximum size

of correl_id is 24 bytes. If not specified, no correlation ID is added to the message.

Usage

The MQPublishClob() function publishes data to WMQ. It requires the installation of the WMQ Publish/Subscribe component

of WMQ, and that the Message Broker is running.

The MQPublishClob() function publishes the data contained in clob_data to the WMQ publisher specified in publisher_name,

using the quality of service policy defined by policy_name.

The following table describes how the arguments for the MQPublishClob() function are interpreted.

Table 10. MQPublishClob() argument interpretation

Usage Argument interpretation

MQPublishClob(arg1) arg1 = clob_data

MQPublishClob(arg1, arg2) arg1 = clob_data

arg2 = topic

MQPublishClob(arg1, arg2, arg3) arg1 = publisher_name

arg2 = clob_data

arg3 = topic

MQPublishClob(arg1, arg2, arg3, arg4) arg1 = publisher_name

Chapter 1. Database Extensions User's Guide

Table 10. MQPublishClob() argument interpretation (continued)

Usage Argument interpretation

arg2 = policy_name

arg3 = clob_data

arg4 = topic

MQPublishClob(arg1, arg2, arg3, arg4, arg5) arg1 = publisher_name

arg2 = policy_name

arg3 = clob_data

arg4 = topic

arg5 = correl_id

Return codes

1

The operation was successful.

Error

The operation was unsuccessful.

Examples

Example 1

begin;
EXECUTE FUNCTION MQPublishClob(filetoclob("/work/mydata",
"client");
commit:

This example publishes the message with the following parameters:

• publisher_name: default publisher

• policy_name: default policy

• clob_data: filetoclob("/work/mydata", "client")

• topic: None

• correl_id: None

Example 2

begin;
EXECUTE FUNCTION MQPublishClob('MYPUBLISHER',
filetoclob("/work/mydata", "client"),'TESTTOPIC');
commit;

79

OneDB Database Extensions User's Guide

80

This example publishes the message with the following parameters:

• publisher_name: "MYPUBLISHER"

• policy_name: default policy

• clob_data: filetoclob("/work/mydata", "client")

• topic: "TESTTOPIC"

• correl_id: None

Example 3

begin;
EXECUTE FUNCTION MQPublishClob('MYPUBLISHER',
'MYPOLICY',filetoclob("/work/mydata",
"client"),'TESTTOPIC','TEST1');commit;

This example publishes the message with the following parameters:

• publisher_name: "MYPUBLISHER"

• policy_name: "MYPOLICY"

• clob_data: filetoclob("/work/mydata", "client")

• topic: "TESTTOPIC"

• correl_id: "TEST1"

Example 4

begin;
EXECUTE FUNCTION MQPublishClob
(filetoclob("/work/mydata", "client"),'TESTS');
commit;

This example publishes the message with the following parameters:

• publisher_name: default publisher

• policy_name: default policy

• clob_data: filetoclob("/work/mydata", "client")

• topic: "TESTS"

• correl_id: None

Example 5

begin;
EXECUTE FUNCTION MQPublishClob('SEND.MESSAGE',
 'emergency', filetoclob("/work/mydata", "client")
 'expedite');commit;

This example publishes the message with the following parameters:

Chapter 1. Database Extensions User's Guide

• publisher_name: "SEND.MESSAGE"

• policy_name: "emergency"

• clob_data: filetoclob("/work/mydata", "client")

• topic: "expedite"

• correl_id: None

Example 6

The following table contains sample rows and columns in the "informix".mqipubsub table.

Sample row pubsubname column receiver column pubsubtype column

Sample row 1
'IDS.DEFAULT.

PUBLISHER'

' ' 'Publisher'

Sample row 2
'IDS.DEFAULT.

SUBSCRIBER'

'IDS.DEFAULT.

SUBSCRIBER.RECEIVER'

'Subscriber'

begin;
 EXECUTE FUNCTION
 MQSubscribe('IDS.DEFAULT.SUBSCRIBER',
 'IDS.DEFAULT.PUB.SUB.POLICY', 'Weather');
commit;

This statement demonstrates a subscriber registering an interest in messages containing the topic "Weather,"

with the following parameters:

• subscriber_name: "IDS.DEFAULT.SUBSCRIBER"

• policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

• topic: "Weather"

begin;
 EXECUTE FUNCTION MQPublishClob('IDS.DEFAULT.PUBLISHER',
 'IDS.DEFAULT.PUB.SUB.POLICY',
 filetoclob("/work/mydata",
 "client"), 'Weather');commit;

This statement publishes the message with the following parameters:

• publisher_name: "IDS.DEFAULT.PUBLISHER"

• policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

• clob_data: filetoclob("/work/mydata", "client")

• topic: "Weather"

• correl_id: None

81

OneDB Database Extensions User's Guide

82

begin;
 EXECUTE FUNCTION MQReceiveClob('IDS.DEFAULT.SUBSCRIBER.RECEIVER',
 'IDS.DEFAULT.PUB.SUB.POLICY');
commit;

This statement receives the message with the following parameters:

• service_name: "IDS.DEFAULT.SUBSCRIBER.RECEIVER"

• policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

MQRead() function
The MQRead() function returns a message from WMQ without removing the message from the queue.

Syntax
MQREAD([service_name [,policy_name [,correl_id]]])

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.POLICY is used as the policy. The maximum size of policy_name is

48 bytes.

correl_id

Optional parameter. A string containing a correlation identifier to be associated with this message. The

correl_id is often specified in request and reply scenarios to associate requests with replies. The maximum size

of correl_id is 24 bytes. If not specified, no correlation ID is added to the message.

Usage

The MQRead() function returns a message from the WMQ queue specified by service_name, using the quality of service

policy defined in policy_name. This function does not remove the message from the queue associated with service_name. If

correl_id is specified, then the first message with a matching correlation ID is returned. If correl_id is not specified, then the

message at the head of the queue is returned. The result of the function is a string of type LVARCHAR. If no messages are

returned, this function returns NULL. This function only reads committed messages.

The following table describes how the arguments for the MQRead() function are interpreted.

Table 11. MQRead() argument interpretation

Usage Argument interpretation

MQRead() No arguments

Chapter 1. Database Extensions User's Guide

Table 11. MQRead() argument interpretation (continued)

Usage Argument interpretation

MQRead(arg1) arg1 = service_name

MQRead(arg1, arg2) arg1 = service_name

arg2 = policy_name

MQRead(arg1, arg2, arg3) arg1 = service_name

arg2 = policy_name

arg3 = correl_id

Return codes

A string of type LVARCHAR

The operation was successful.

NULL

No Messages are available.

Error

The operation was unsuccessful.

Examples

Example 1

begin;
EXECUTE FUNCTION MQRead();
commit;

Alternatively, the following syntax can be used:

insert into my_order_table VALUES(MQRead());

This example reads the message at the head of the queue with the following parameters:

• service_name: default service name

• policy_name: default policy name

• correl_id: None

Example 2

begin;
EXECUTE FUNCTION MQRead('MYSERVICE');
rollback;

Alternatively, the following syntax can be used:

83

OneDB Database Extensions User's Guide

84

insert into my_order_table VALUES(MQRead('MYSERVICE'));

This example reads the message at the head of the queue with the following parameters:

• service_name: "MYSERVICE"

• policy_name: default policy name

• correl_id: None

Example 3

begin;
EXECUTE FUNCTION MQRead('MYSERVICE','MYPOLICY');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table VALUES(MQRead('MYSERVICE', 'MYPOLICY'));

This example reads the message at the head of the queue with the following parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• correl_id: None

Example 4

begin;
EXECUTE FUNCTION MQRead('MYSERVICE','MYPOLICY', 'TESTS');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table VALUES(MQRead('MYSERVICE', 'MYPOLICY', 'TESTS'));

This example reads the message at the head of the queue with the following parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• correl_id: "TESTS"

MQReadClob() function
The MQReadClob() function returns a message as a CLOB from WMQ without removing the message from the queue.

Syntax
MQREADCLOB([service_name [,policy_name [,correl_id]]])

Chapter 1. Database Extensions User's Guide

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.POLICY is used as the policy. The maximum size of policy_name is

48 bytes.

correl_id

Optional parameter. A string containing a correlation identifier to be associated with this message. The

correl_id is often specified in request and reply scenarios to associate requests with replies. The maximum size

of correl_id is 24 bytes. If not specified, no correlation ID is added to the message.

Usage

The MQReadClob() function returns a message as a CLOB from the WMQ location specified by service_name, using the

quality-of-service policy defined in policy_name. This function does not remove the message from the queue associated with

service_name. If correl_id is specified, then the first message with a matching correlation ID is returned. If correl_id is not

specified, then the message at the head of the queue is returned. The result of this function is a CLOB type. If no messages

are available to be returned, this function returns NULL. This function only reads committed messages.

The following table describes how the arguments for the MQReadClob() function are interpreted.

Table 12. MQReadClob() argument interpretation

Usage Argument interpretation

MQReadClob() No arguments

MQReadClob(arg1) arg1 = service_name

MQReadClob(arg1, arg2) arg1 = service_name

arg2 = policy_name

MQReadClob(arg1, arg2, arg3) arg1 = service_name

arg2 = policy_name

arg3 = correl_id

Return codes

The contents of the message as a CLOB

The operation was successful. If no messages are available, the result is NULL.

85

OneDB Database Extensions User's Guide

86

Error

The operation was unsuccessful.

Example

Example 1

begin;
EXECUTE FUNCTION MQReadClob();
commit;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col) VALUES(MQReadClob());

This example reads the content of the message as a CLOB at the head of the queue into the CLOB with the following

parameters:

• service_name: default service name

• policy_name: default policy name

• correl_id: None

Example 2

begin;
EXECUTE FUNCTION MQReadClob('MYSERVICE');
rollback;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
 VALUES(MQReadClob('MYSERVICE'));

This example reads the content of the message as a CLOB at the head of the queue into the CLOB with the following

parameters:

• service_name: "MYSERVICE"

• policy_name: default policy name

• correl_id: None

Example 3

begin;
EXECUTE FUNCTION MQReadClob('MYSERVICE','MYPOLICY');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
 VALUES(MQReadClob('MYSERVICE', 'MYPOLICY'));

This example reads the content of the message as a CLOB at the head of the queue into the CLOB with the following

parameters:

Chapter 1. Database Extensions User's Guide

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• correl_id: None

Example 4

begin;
EXECUTE FUNCTION MQReadClob('MYSERVICE','MYPOLICY', 'TESTS');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
 VALUES(MQReadClob('MYSERVICE', 'MYPOLICY', 'TESTS'));

This example reads the content of the message as a CLOB at the head of the queue into the CLOB with the following

parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• correl_id: "TESTS"

MQReceive() function
The MQReceive() function returns a message from the WMQ queue and removes the message from the queue.

Syntax
MQRECEIVE([service_name [,policy_name [,correl_id]]])

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.POLICY is used as the policy. The maximum size of policy_name is

48 bytes.

correl_id

Optional parameter. A string containing a correlation identifier to be associated with this message. The

correl_id is often specified in request and reply scenarios to associate requests with replies. The maximum size

of correl_id is 24 bytes. If not specified, no correlation ID is added to the message.

Usage

The MQReceive() function returns a message from the WMQ location specified by service_name, using the quality of

service policy policy_name. This function removes the message from the queue associated with service_name. If correl_id

87

OneDB Database Extensions User's Guide

88

is specified, then the first message with a matching correlation identifier is returned. If correl_id is not specified, then the

message at the head of the queue is returned. The result of the function is a string LVARCHAR type. If no messages are

available to be returned, the function returns NULL.

The following table describes how the arguments for the MQReceive() function are interpreted.

Table 13. MQReceive() argument interpretation

Usage Argument interpretation

MQReceive() No arguments

MQReceive(arg1) arg1 = service_name

MQReceive(arg1, arg2) arg1 = service_name

arg2 = policy_name

MQReceive(arg1, arg2, arg3) arg1 = service_name

arg2 = policy_name

arg3 = correl_id

Return codes

A string of LVARCHAR type

The operation was successful.

NULL

No messages are available.

Error

The operation was unsuccessful.

Examples

Example 1

begin;
EXECUTE FUNCTION MQReceive();
commit;

Alternatively, the following syntax can be used:

insert into my_order_table VALUES(MQReceive());

This example receives the message at the head of the queue with the following parameters:

Chapter 1. Database Extensions User's Guide

• service_name: default service name

• policy_name: default policy name

• correl_id: none

Example 2

begin;
EXECUTE FUNCTION MQReceive('MYSERVICE');
rollback;

Alternatively, the following syntax can be used:

insert into my_order_table VALUES(MQReceive('MYSERVICE'));

This example receives the message at the head of the queue with the following parameters:

• service_name: "MYSERVICE"

• policy_name: default policy name

• correl_id: none

Example 3

begin;
EXECUTE FUNCTION MQReceive('MYSERVICE','MYPOLICY');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table VALUES(MQReceive('MYSERVICE', 'MYPOLICY'));

This example receives the message at the head of the queue with the following parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• correl_id: none

Example 4

begin;
EXECUTE FUNCTION MQReceive('MYSERVICE','MYPOLICY','1234');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table VALUES(MQReceive('MYSERVICE', 'MYPOLICY', '1234'));

This example receives the message at the head of the queue with the following parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• correl_id: "1234"

89

OneDB Database Extensions User's Guide

90

MQReceiveClob() function
The MQReceiveClob() function retrieves a message as a CLOB from the WMQ queue and removes the message from the

queue.

Syntax
MQRECEIVECLOB([service_name [,policy_name [,correl_id]]])

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.POLICY is used as the policy. The maximum size of policy_name is

48 bytes.

correl_id

Optional parameter. A string containing a correlation identifier to be associated with this message. The

correl_id is often specified in request and reply scenarios to associate requests with replies. The maximum size

of correl_id is 24 bytes. If not specified, no correlation ID is added to the message.

Usage

The MQReceiveClob() function returns a message as a CLOB from the WMQ location specified by service_name, using the

quality-of-service policy policy_name. This function removes the message from the queue associated with service_name.

If correl_id is specified, then the first message with a matching correlation identifier is returned. If correl_id is not specified,

then the message at the head of the queue is returned. The result of the function is a CLOB. If messages are not available to

be returned, the function returns NULL.

The following table describes how the arguments for the MQReceiveClob() function are interpreted.

Table 14. MQReceiveClob() argument interpretation

Usage Argument interpretation

MQReceiveClob() No arguments

MQReceiveClob(arg1) arg1 = service_name

MQReceiveClob(arg1, arg2) arg1 = service_name

arg2 = policy_name

MQReceiveClob(arg1, arg2, arg3) arg1 = service_name

arg2 = policy_name

Chapter 1. Database Extensions User's Guide

Table 14. MQReceiveClob() argument interpretation (continued)

Usage Argument interpretation

arg3 = correl_id

Return codes

The contents of the message as a CLOB

The operation was successful. If no messages are available, the result is NULL.

Error

The operation was unsuccessful.

Examples

Example 1

begin;
EXECUTE FUNCTION MQReceiveClob();
commit;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col) VALUES(MQReceiveClob());

This example receives the content of the message as a CLOB at the head of the queue into the CLOB with the following

parameters:

• service_name: default service name

• policy_name: default policy name

• correl_id: none

Example 2

begin;
EXECUTE FUNCTION MQReceiveClob('MYSERVICE');
rollback;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
 VALUES(MQReceiveClob('MYSERVICE'));

This example receives the content of the message as a CLOB at the head of the queue into the CLOB with the following

parameters:

• service_name: "MYSERVICE"

• policy_name: default policy name

• correl_id: none

91

OneDB Database Extensions User's Guide

92

Example 3

begin;
EXECUTE FUNCTION MQReceiveClob('MYSERVICE', 'MYPOLICY');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
 VALUES(MQReceiveClob('MYSERVICE', 'MYPOLICY'));

This example receives the content of the message as a CLOB at the head of the queue into the CLOB with the following

parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• correl_id: none

Example 4

begin;
EXECUTE FUNCTION MQReceiveClob('MYSERVICE', 'MYPOLICY', 'TESTS');
commit;

Alternatively, the following syntax can be used:

insert into my_order_table(clob_col)
 VALUES(MQReceiveClob('MYSERVICE', 'MYPOLICY', 'TESTS'));

This example receives the content of the message as a CLOB at the head of the queue into the CLOB with the following

parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• correl_id: "TESTS"

MQSend() function
The MQSend() function puts the message into the WMQ queue.

Syntax

MQSEND([service_name, [policy_name,]] msg_data [,correl_id]) (explicit id)

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

Chapter 1. Database Extensions User's Guide

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.POLICY is used as the policy. The maximum size of policy_name is

48 bytes.

msg_data

Required parameter. A string containing the data to be sent by WMQ. The maximum size of the string is defined

by the LVARCHAR data type. If msg_data is NULL, it sends a zero-length message to the queue.

correl_id

Optional parameter. A string containing a correlation identifier to be associated with this message. The

correl_id is often specified in request and reply scenarios to associate requests with replies. The maximum size

of correl_id is 24 bytes. If not specified, no correlation ID is added to the message.

Usage

The MQSend() function puts the data contained in msg_data into the WMQ location specified by service_name, using the

quality of policy name defined by policy_name. If correl_id is specified, then the message is sent with a correlation identifier.

If correl_id is not specified, then no correlation ID is sent with the message.

The following table describes how the arguments for the MQSend() function are interpreted.

Table 15. MQSend() argument interpretation

Usage Argument interpretation

MQSend(arg1) arg1 = msg_data

MQSend(arg1, arg2) arg1 = service_name

arg2 = msg_data

MQSend(arg1, arg2, arg3) arg1 = service_name

arg2 = policy_name

arg3 = msg_data

MQSend(arg1, arg2, arg3, arg4) arg1 = service_name

arg2 = policy_name

arg3 = msg_data

arg4 = correl_id

93

OneDB Database Extensions User's Guide

94

Return codes

1

The operation was successful.

0 or Error

The operation was unsuccessful.

Examples

Example 1

EXECUTE FUNCTION MQSend('Testing 123')

This example sends the message to the WMQ with the following parameters:

• service_name: default service name

• policy_name: default policy

• msg_data: "Testing 123"

• correl_id: none

Example 2

begin;
EXECUTE FUNCTION MQSend('MYSERVICE','Testing 901');
commit;

This example sends the message to the WMQ with the following parameters:

• service_name: "MYSERVICE"

• policy_name: default policy

• msg_data: "Testing 901"

• correl_id: none

Example 3

begin;
EXECUTE FUNCTION MQSend('MYSERVICE','MYPOLICY','Testing 345');
commit;

This example sends the message to the WMQ with the following parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• msg_data: "Testing 345"

• correl_id: none

Example 4

Chapter 1. Database Extensions User's Guide

begin;
EXECUTE FUNCTION MQSend('MYSERVICE','MYPOLICY','Testing 678','TEST3');
commit;

This example sends the message to the WMQ with the following parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• msg_data: "Testing 678"

• correl_id: "TEST3"

MQSendClob() function
The MQSendClob() function puts the CLOB data into the WMQ queue.

Syntax

MQSENDCLOB([service_name, [policy_name,]] clob_data [,correl_id]) (explicit id)

service_name

Optional parameter. Refers to the value in the servicename column of the "informix".mqiservice table.

If service_name is not specified, IDS.DEFAULT.SERVICE is used as the service. The maximum size of

service_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.POLICY is used as the policy. The maximum size of policy_name is

48 bytes.

clob_data

Required parameter. The CLOB data to be sent to WMQ. Even though the CLOB data size can be up to 4 TB,

the maximum size of the message is limited by what Websphere MQ supports. If clob_data is NULL, it sends a

zero-length message to the queue.

correl_id

Optional parameter. A string containing a correlation identifier to be associated with this message. The

correl_id is often specified in request and reply scenarios to associate requests with replies. The maximum size

of correl_id is 24 bytes. If not specified, no correlation ID is added to the message.

Usage

The MQSendClob() function puts the data contained in clob_data to the WMQ queue specified by service_name, using the

quality of service policy defined by policy_name. If correl_id is specified, then the message is sent with a correlation identifier.

If correl_id is not specified, then no correlation ID is sent with the message.

The following table describes how the arguments for the MQSendClob() function are interpreted.

95

OneDB Database Extensions User's Guide

96

Table 16. MQSendClob() argument interpretation

Usage Argument interpretation

MQSendClob(arg1) arg1 = clob_data

MQSendClob(arg1, arg2) arg1 = service_name

arg2 = clob_data

MQSendClob(arg1, arg2, arg3) arg1 = service_name

arg2 = policy_name

arg3 = clob_data

MQSendClob(arg1, arg2, arg3, arg4) arg1 = service_name

arg2 = policy_name

arg3 = clob_data

arg4 = correl_id

Return codes

1

The operation was successful.

0 or Error

The operation was unsuccessful.

Examples

Example 1

begin;
EXECUTE FUNCTION MQSendClob(filetoclob("/work/mydata", "client"));
commit;

This example sends a CLOB to the WMQ with the following parameters:

• service_name: default service name

• policy_name: default policy

• clob_data: filetoclob("/work/mydata", "client")

• correl_id: none

Example 2

Chapter 1. Database Extensions User's Guide

begin;
EXECUTE FUNCTION MQSendClob('MYSERVICE', filetoclob("/work/mydata", "client"));
commit;

This example sends a CLOB to the WMQ with the following parameters:

• service_name: "MYSERVICE"

• policy_name: default policy

• msg_data: filetoclob("/work/mydata", "client")

• correl_id: none

Example 3

begin;
EXECUTE FUNCTION MQSendClob('MYSERVICE', 'MYPOLICY',
filetoclob("/work/mydata", "client"));
commit;

This example sends a CLOB to the WMQ with the following parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• msg_data: filetoclob("/work/mydata", "client")

• correl_id: none

Example 4

begin;
EXECUTE FUNCTION MQSendClob('MYSERVICE', 'MYPOLICY',
filetoclob("/work/mydata", "client"), 'TEST3');
commit;

This example sends a CLOB to the WMQ with the following parameters:

• service_name: "MYSERVICE"

• policy_name: "MYPOLICY"

• msg_data: filetoclob("/work/mydata", "client")

• correl_id: "TEST3"

MQSubscribe() function
The MQSubscribe() function is used to register interest in WMQ messages published on one or more topics.

Syntax
MQSUBSCRIBE([subscriber_name, [policy_name,]] topic)

97

OneDB Database Extensions User's Guide

98

subscriber_name

Optional parameter. Refers to the value in the pubsubname column of the "informix".mqiservice table. If

subscriber_name is not specified, IDS.DEFAULT.SUBSCRIBER is used as the subscriber. The maximum size of

subscriber_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.PUB.SUB.POLICY is used as the policy. The maximum size of

policy_name is 48 bytes.

topic

Required parameter. A string containing the topic for the message publication. The maximum size of a topic

is 40 bytes. Multiple topics can be specified in one string (up to 40 characters long). Each topic must be

separated by a colon. For example, "t1:t2:the third topic" indicates that the message is associated with all three

topics: t1, t2, and the third topic. If no topic is specified, none are associated with the message.

Usage

The MQSubscribe() function is used to register interest in WMQ messages published on a specified topic. The

subscriber_name specifies a logical destination for messages that match the specified topic. Messages published on the

topic are placed on the queue referred by the service pointed to by the receiver column for the subscriber (subscriber_name

parameter). These messages can be read or received through subsequent calls to the MQRead() and MQReceive() functions

on the receiver service.

This function requires the installation of the WMQ Publish/Subscribe Component of WMQ and that the Message Broker must

be running.

The following table describes how the arguments for the MQSubscribe() function are interpreted.

Table 17. MQSubscribe() argument interpretation

Usage Argument interpretation

MQSubscribe(arg1) arg1 = topic

MQSubscribe(arg1, arg2) arg1 = service_name

arg2 = topic

MQSubscribe(arg1, arg2, arg3) arg1 = service_name

arg2 = policy_name

arg3 = topic

Chapter 1. Database Extensions User's Guide

Return codes

1

The operation was successful.

Error

The operation was unsuccessful.

Examples

Example 1

The following table contains sample rows and columns in the "informix".mqipubsub table.

Sample rows pubsubname column receiver column pubsubtype column

Sample row 1
'IDS.DEFAULT.

PUBLISHER'

'' 'Publisher'

Sample row 2
'IDS.DEFAULT.

SUBSCRIBER'

'IDS.DEFAULT.

SUBSCRIBER.RECEIVER'

'Subscriber'

begin;
EXECUTE FUNCTION MQSubscribe('IDS.DEFAULT.SUBSCRIBER',
 'IDS.DEFAULT.PUB.SUB.POLICY', 'Weather');
commit;

This statement demonstrates a subscriber registering an interest in messages containing the topic "Weather"

with the following parameters:

• subscriber_name: "IDS.DEFAULT.SUBSCRIBER"

• policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

• topic: "Weather"

begin;
EXECUTE FUNCTION MQPublish('IDS.DEFAULT.PUBLISHER',
'IDS.DEFAULT.PUB.SUB.POLICY', 'Rain', 'Weather');
commit;

This statement publishes the message with the following parameters:

• publisher_name: "IDS.DEFAULT.PUBLISHER"

• policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

• msg_data: "Rain"

• topic: "Weather"

• correl_id: none

99

OneDB Database Extensions User's Guide

100

begin;
EXECUTE FUNCTION MQReceive('IDS.DEFAULT.SUBSCRIBER.RECEIVER',
'IDS.DEFAULT.PUB.SUB.POLICY');
commit;

This statement receives the message with the following parameters (it returns "Rain"):

• service_name: "IDS.DEFAULT.SUBSCRIBER.RECEIVER"

• policy_name: "IDS.DEFAULT.PUB.SUB.POLICY"

Example 2

begin;
EXECUTE FUNCTION MQSubscribe('Weather');
commit;

This example demonstrates a subscriber registering an interest in messages containing the topics "Weather"

with the following parameters:

• subscriber_name: default subscriber

• policy_name: default policy

• topic: "Weather"

Example 3

begin;
EXECUTE FUNCTION MQSubscribe('PORTFOLIO-UPDATES',
 'BASIC-POLICY', 'Stocks:Bonds');
commit;

This example demonstrates a subscriber registering an interest in messages containing the topics "Stocks" and

"Bonds" with the following parameters:

• subscriber_name: "PORTFOLIO-UPDATES"

• policy_name: "BASIC-POLICY"

• topic: "Stocks", "Bonds"

MQTrace() function
The MQTrace() procedure specifies the level of tracing and the location to which the trace file is written.

Syntax
MQTRACE(trace_level, trace_file)

trace_level

Required parameter. Integer value specifying the trace level, currently only a value of greater than 50 results in

output.

Chapter 1. Database Extensions User's Guide

trace_file

Required parameter. The full path and name of the file to which trace information is appended. The file must be

writable by user informix.

To enable tracing, you must first create a trace class by inserting a record into the systemtraceclasses system catalog:

insert into informix.systraceclasses(name) values ('idsmq')

For more details regarding tracing, see the HCL OneDB™ Guide to SQL: Reference.

Example

Enable tracing at a level of 50 with an output file of /tmp/trace.log:

EXECUTE PROCEDURE MQTrace(50, '/tmp/trace.log');

Execute a request:

begin;
EXECUTE FUNCTION MQSend('IDS');
commit;

Look at the trace output:

14:19:38 Trace ON level : 50
14:19:47 >>ENTER : mqSend<<
14:19:47 status:corrid is null
14:19:47 >>ENTER : MqOpen<<
14:19:47 status:MqOpen @ build_get_mq_cache()
14:19:47 >>ENTER : build_get_mq_cache<<
14:19:47 status:build_get_mq_cache @ mi_get_database_info()
14:19:47 status:build_get_mq_cache @ build_mq_service_cache()
14:19:47 >>ENTER : build_mq_service_cache<<
14:19:47 <<EXIT : build_mq_service_cache>>
14:19:47 status:build_get_mq_cache @ build_mq_policy_cache()
14:19:47 >>ENTER : build_mq_policy_cache<<
14:19:47 <<EXIT : build_mq_policy_cache>>
14:19:47 status:build_get_mq_cache @ build_mq_pubsub_cache()
14:19:47 >>ENTER : build_mq_pubsub_cache<<
14:19:47 <<EXIT : build_mq_pubsub_cache>>
14:19:47 <<EXIT : build_get_mq_cache>>
14:19:47 status:MqOpen @ MqiGetServicePolicy()
14:19:47 >>ENTER : MqiGetServicePolicy<<
14:19:47 <<EXIT : MqiGetServicePolicy>>
14:19:47 MQI:MqOpen @ MQCONNX()
14:19:47 status:MqOpen @ MqXadsRegister()
14:19:47 >>ENTER : MqXadsRegister<<
14:19:47 status:MqXadsRegister @ ax_reg()
14:19:47 <<EXIT : MqXadsRegister>>
14:19:47 status:MqOpen @ MqGetMqiContext()
14:19:47 >>ENTER : MqGetMqiContext<<
14:19:47 MQI:MqGetMqiContext @ MQOPEN()
14:19:47 <<EXIT : MqGetMqiContext>>
14:19:47 <<EXIT : MqOpen>>
14:19:47 >>ENTER : MqTransmit<<
14:19:47 >>ENTER : MqBuildMQPMO<<
14:19:47 <<EXIT : MqBuildMQPMO>>

101

OneDB Database Extensions User's Guide

102

14:19:47 >>ENTER : MqBuildMQMDSend<<
14:19:47 <<EXIT : MqBuildMQMDSend>>
14:19:47 MQI:MqTransmit @ MQPUT()
14:19:47 <<EXIT : MqTransmit>>
14:19:47 <<EXIT : mqSend>>
14:19:47 >>ENTER : MqEndTran<<
14:19:47 MQI:MqEndTran @ MQCMIT()
14:19:47 status:MqEndTran @ MqShut()
14:19:47 >>ENTER : MqShut<<
14:19:47 status:MqEndTran @ MQDISC
14:19:47 <<EXIT : MqEndTran>>:

MQUnsubscribe() function
The MQUnsubscribe() function is used to unregister interest in WMQ messages published on one or more topics.

Syntax
MQUNSUBSCRIBE([subscriber_name, [policy_name,]] topic)

subscriber_name

Optional parameter. Refers to the value in the pubsubname column of the "informix".mqiservice table. If

subscriber_name is not specified, IDS.DEFAULT.SUBSCRIBER is used as the subscriber. The maximum size of

subscriber_name is 48 bytes.

policy_name

Optional parameter. Refers to the value in the policyname column of the "informix".mqipolicy table. If

policy_name is not specified, IDS.DEFAULT.PUB.SUB.POLICY is used as the policy. The maximum size of

policy_name is 48 bytes.

topic

Required parameter. A string containing the topic for the message publication. The maximum size of a topic

is 40 bytes. Multiple topics can be specified in one string (up to 40 characters long). Each topic must be

separated by a colon. For example, "t1:t2:the third topic" indicates that the message is associated with all three

topics: t1, t2, and the third topic. If no topic is specified, none are associated with the message.

Usage

The MQUnsubscribe() function is used to unregister interest in WMQ messages subscription on a specified topic. The

subscriber_name specifies a logical destination for messages that match the specified topic.

This function requires the installation of the WMQ Publish/Subscribe Component of WMQ and that the Message Broker must

be running.

The following table describes how the arguments for the MQUnsubscribe() function are interpreted.

Chapter 1. Database Extensions User's Guide

Table 18. MQUnsubscribe() argument interpretation

Usage Argument interpretation

MQUnsubscribe(arg1) arg1 = topic

MQUnsubscribe(arg1, arg2) arg1 = service_name

arg2 = topic

MQUnsubscribe(arg1, arg2, arg3) arg1 = service_name

arg2 = policy_name

arg3 = topic

Return codes

1

The operation was successful.

Error

The operation was unsuccessful.

Examples

Example 1

begin;
EXECUTE FUNCTION MQUnsubscribe('Weather');
commit;

This example demonstrates unsubscribing an interest in messages containing the topic "Weather" with the following

parameters:

• subscriber_name: default subscriber

• policy_name: default policy

• topic: "Weather"

Example 2

begin;
EXECUTE FUNCTION MQUnsubscribe('PORTFOLIO-UPDATES','BASIC-POLICY',
 'Stocks:Bonds');
commit;

This example demonstrates unsubscribing an interest in messages containing the topics "Stocks" and "Bonds" with the

following parameters:

103

OneDB Database Extensions User's Guide

104

• subscriber_name: "PORTFOLIO-UPDATES"

• policy_name: "BASIC-POLICY"

• topic: "Stocks", "Bonds"

MQVersion() function
The MQVersion() function returns version information.

The MQVersion() function returns the version of the MQ messaging extension.

Syntax
MQVersion()

Example

Show the version:

EXECUTE FUNCTION MQVersion();
OutPut of the MQVersion() function: MQBLADE 2.0 on 29-MAR-2005

MQ messaging configuration parameters
When you use MQ messaging over a network, you must set several database server configuration parameters,

These configuration parameters correspond to (WMQ) environment variables.

MQSERVER configuration parameter
Use the MQSERVER configuration parameter to define a channel, specify the location and specify the communication

method to be used.

onconfig.std value

none

range of values

ChannelName/TransportType/ConnectionName

takes effect

When the database server is stopped and restarted

Usage

You must set this configuration parameter when you use MQ messaging over a network. The configuration parameter

contains the same information as the same as the WMQ MQSERVER environment variable.

The connection name must be a fully qualified network name.

The connection and channel names cannot include contain the forward slash ("�) character, because it is used to separate

the channel name, transport type, and connection name.

Chapter 1. Database Extensions User's Guide

MQCHLLIB configuration parameter
Use the MQCHLLIB configuration parameter to specify the path to the directory containing the client channel definition table.

onconfig.std value

none

range of values

complete path name

takes effect

When the database server is stopped and restarted

Usage

You must set this configuration parameter when you use MQ messaging over a network.

For example, if the path is /var/mqm, specify:

MQCHLLIB /var/mqm

MQCHLTAB configuration parameter
Use the MQCHLTAB configuration parameter to specify the name of the client channel definition table.

onconfig.std value

none

range of values

String for the file name

takes effect

When the database server is stopped and restarted

Usage

You must set this configuration parameter when you use MQ messaging over a network.

The default file name in the WMQ MQCHLTAB environment variable is AMQCLCHL.TAB.

For example, if the name of the client channel definition table that you are using is CCD1, specify:

MQCHLTAB CCD1.TAB

MQ messaging error handling
This topic describes MQ messaging error codes.

105

OneDB Database Extensions User's Guide

106

SQL State Description

MQ000 Memory allocation failure in %FUNC%.

MQPOL MQOPEN Policy : %POLICY%

MQSES MQOPEN Session : %SESSION%

MQRCV Read %BYTES% from the queue.

MQNMS No data read/received, queue empty.

MQSUB Subscribing to %SUBSCRIBE%.

MQVNV VTI Table definition parameter NAME:%NAME% VALUE:%VALUE%.

MQNPL VTI No policy defined for table mapped to MQ. Must define table with policy attribute.

MQNSV VTI No service defined for table mapped to MQ. Must define table with service attribute.

MQNAC VTI No access defined for table mapped to MQ. Must define table with access attribute.

MQBAC VTI Invalid Access specification FOUND:%VALUE%, possible values%VALONE% or %VALTWO%.

MQVCN VTI Qualified : Column 'correlid' cannot be qualified with NULL.

MQVTB Table missing required 'message' column. Message column is bound to the queue, it is mandatory.

MQVSP VTI mapped Queue did not include the POLICY and SESSION columns.

MQVIA VTI table definition invalid access type (%VALUE%), valid access types are %READ% or %RECEIVE%.

MQVMS VTI mapped queue missing SERVICE specification.

MQVMA VTI mapped QUEUE creation did not include ACCESS definition.

MQVMP VTI mapped QUEUE creation did not include POLICY specification.

MQVQC VTI queue mapping, Column '%COLUMN%' must be qualified with a constant.

MQVQN VTI queue mapping, Column '%COLUMN%' cannot be qualified with NULL.

MQVQE VTI queue mapping, Column '%COLUMN%' can only use equality operator.

MQVQF VTI queue mapping, column '%COLUMN%' - failed to fetch field.

MQSUN Invalid selector '%IDX%' found, path not possible.

MQERX Extended error : '%FUNC%', code:%CODE% explain: %EXPLAIN%, refer to MQSeries® publication for further

description.

MQGEN %FUNC% encountered error %ERR% with accompanying message : %MSG%

MQTNL Topic cannot be NULL.

MQCNL Internal error encountered NULL context.

MQNLM Cannot send NULL message.

Chapter 1. Database Extensions User's Guide

SQL State Description

MQVNQ MQSeries® underlying qualification system does not support negation.

MQVDQ Qualifications cannot bridge between MQSeries® and database.

MQEDN MQ Transport error, service '%NAME%' underlying queue manager may not be activated.

MQEPL Policy '%POLICY%' could not be found in the repository.

MQRLN Error during read, expected %EXPECT%, received:%READ%.

MQELO Error attempting to fetch CLOB, function:%NAME% returned %CODE%.

MQRDA MQ Transport error, service '%NAME%' underlying transpost layer not enabled to receive requests

MQSDA MQ Transport error, service '%NAME%' underlying transpost layer not enabled to send requests

MQVQM MQSeries® : Cannot have multiple qualifies for the same column (%COLUMN%).

MQRFQ Retrieved entries from queue, at least one entry failed qualification - data lost.

MQQCI Qualification column invalid, only can qualify on 'topic' and 'correlid'.

MQGER MQ Error : %MSG%

MQGVT MQ VTI Error : %MSG%

MQZCO Correlation value found to be zero length, invalid value for MQSeries®.

MQVTN Must supply name of VTI table.

MQ018 FUNCTION:%NAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: The specified (sender, receiver, distribution

list, publisher, or subscriber) service was not found, so the request was not carried out.

MQ020 FUNCTION:%NAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: The specified policy was not found, so the

request was not carried out.

MQT40 Topic exceeded forty character maximum.

MQINX Input too large, maximum:%len% found:%txt%

MQITM Invalid table 'msg' column size %len%, valid range (1-%max%)

MQEXT AMRC_TRANPORT_ERR, fetched secondary error at:%NAME%, MQI error :%ERR%

MQXAR Xadatasource (%XADS%) registration error : FUNCTION: %FUNCTION%, RETURN VALUE: %VALUE%

MQ010 FUNCTION:%NAME%: Unable to obtain database information.

MQ011 FUNCTION:%NAME%: Error while querying table:%TABNAME%

MQ012 FUNCTION:%NAME%: Unexpected NULL value while querying the table:%TABNAME%

MQ013 FUNCTION:%NAME%: Unexpected return value from mi function while querying table:%TABNAME%

MQ014 FUNCTION:%NAME%: Unexpected failure opening mi connection while querying table:%TABNAME%

107

OneDB Database Extensions User's Guide

108

SQL State Description

MQMQI FUNCTION:%FNAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: MQI Error generated by %MQINAME% with

CompCode=%CCODE%, Reason=%REASON%.

MQ015 FUNCTION:%FNAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: %NAME% is not present in the database

%TABNAME% table.

MQ016 FUNCTION:%FNAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: Connection to Multiple QueueManagers

are not allowed in the same transaction.

MQ019 FUNCTION:%FNAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: Internal Error. not able to switch to the

virtual processor where the MQCONNX() is invoked.

MQ017 FUNCTION:%FNAME%, SERVICE:%SERVICE%, POLICY:%POLICY% :: Internal Error. The Virtual processor class

not the same as ""MQ""

Sample MQ messaging code
This topic contains sample SQL statements that you can run in the stores_demo database, using DB-Access.

The sample statements are for one queue manager. However, you can use multiple queue managers.

begin;

select MQSEND ('lser.qm1', 'IDS.DEFAULT.POLICY',
 TRIM(fname) || ' ' || TRIM(lname) || '|'
 || TRIM(company) || ', ' || TRIM(address1) || ', '
 || TRIM(NVL(address2,"")) || ', ' || TRIM(city) || ', '
 || state || ', ' || zipcode || '|' || TRIM(phone) || '|' ,
 state)
 from customer;

select MQSEND ('lser.qm1', 'IDS.DEFAULT.POLICY',
 stock_num || '|' || manu_code || '|' || TRIM(description)
 || '|' || unit_price || '|' || unit
 || '|' || TRIM(unit_descr) || '|' ,
 manu_code)
 from stock;
commit;

select first 3 MQREAD('lser.qm1') from systables;
begin;
execute function MQREAD('lser.qm1','IDS.DEFAULT.POLICY','AZ');
rollback;

begin;
execute function MQREAD ('lser.qm1');
execute function MQREAD ('lser.qm1');
execute function MQRECEIVE ('lser.qm1');
execute function MQRECEIVE ('lser.qm1');
rollback;

begin;

Chapter 1. Database Extensions User's Guide

select first 5 MQREAD ('lser.qm1') from systables;
select first 5 MQREAD ('lser.qm1') from systables;
select first 1 MQRECEIVE ('lser.qm1','IDS.DEFAULT.POLICY','AZ')
 from systables;
select first 1 MQRECEIVE ('lser.qm1','IDS.DEFAULT.POLICY','HSK')
 from systables;
rollback;

begin;
select first 5 MQREAD ('lser.qm1') from systables;
select first 5 MQREAD ('lser.qm1') from systables;
select first 1 MQRECEIVE ('lser.qm1','IDS.DEFAULT.POLICY','AZ')
 from systables;
select first 1 MQRECEIVE ('lser.qm1','IDS.DEFAULT.POLICY','HSK')
 from systables;
commit;

execute function mqinquire('lser.qm1',20);
execute function mqinquire('lser.qm1',"MQIA_Q_TYPE");
execute function mqinquire('lser.qm1',3);
execute function mqinquire('lser.qm1',"MQIA_CURRENT_Q_DEPTH");
execute function mqhasmessage('lser.qm1');
execute function mqhasmessage('lser.qm1','IDS.DEFAULT.POLICY','CA');
execute function mqhasmessage('lser.qm1','IDS.DEFAULT.POLICY','XY');

execute function MQCreateVtiRead("qm0vti", "lser.qm1");
execute function MQCreateVtiReceive("qm0vtir", "lser.qm1");
execute function MQCreateVtiWrite("qm0vtiw", "lser.qm1");
execute function MQCreateVtiReceive("qm1vti", "lser.qm1");

insert into qm0vtiw(msg) values ("Informix Dynamic Server");
begin;

select skip 10 first 5 * from qm0vtir;
select * from qm1vti;
insert into qm1vti(msg) values ("Informix Dynamic Server");
select * from qm1vti;
commit;

Binary data types
The binary18 and binaryvar data types allow you to store binary-encoded strings, which can be indexed for quick retrieval.

You can use string manipulation functions to validate the data types and bitwise operation functions that allow you to

perform bitwise logical AND, OR, XOR comparisons or apply a bitwise logical NOT to a string.

Because the binary data types are unstructured types, they can store many different types of information, for example, IP

addresses, MAC addresses, or device identification numbers from RFID tags. The binary data types can also store encrypted

data in binary format, which saves disk space. Instead of storing an IP address like xxx.xxx.xxx.xxx as a CHAR(15) data type,

you can store it as a binaryvar data type, which uses only 6 bytes.

109

OneDB Database Extensions User's Guide

110

Binary data types overview
To implement binary data types, the Scheduler must be running and the database must conform to requirements. The

binary18 and binaryvar data types have certain restrictions due to the nature of binary data.

The Scheduler must be running in the database server. If the Scheduler is not running when you create a binary data type, a

message that the data type is not found is returned.

The database that contains the binary data types must meet the following requirements:

• The database must be logged.

• The database must not be defined as an ANSI database.

If you attempt to create a binary data type in an unlogged or ANSI database, the message DataBlade registration failed is

printed in the online message log.

Binary data type can be used in the following situations:

• The binary data types are allowed in Enterprise Replication.

• Casts to and from the LVARCHAR data type are allowed as are implicit casts between the binary18 and binaryvar data

types.

• The aggregate functions COUNT DISTINCT(), DISTINCT(), MAX(), and MIN() are supported.

Binary data types have the following limitations:

• The only arithmetic operations that are supported are the bitwise operators: bit_and(), bit_or(), bit_xor(), and

bit_complement().

• The LIKE and MATCHES conditions are not supported.

Store and index binary data

This chapter describes the binary data types and how to insert and index binary data.

Binary data types

You can store and index binary data by using the binaryvar and binary18 data types.

The binaryvar data type

The binaryvar data type is a variable-length opaque type with a maximum length of 255 bytes.

The binary18 data type

The binary18 data type is a fixed-length opaque data type that holds 18 bytes. Input strings shorter than 18 bytes are right-

padded with zeros (00). Strings longer than 18 bytes are truncated.

Chapter 1. Database Extensions User's Guide

The binary18 data type has the advantage of not having its length stored as part of the byte stream. When inserting data

into the binaryvar data type, the first byte must be the length of the byte array. The binary18 data type does not have this

restriction.

ASCII representation of binary data types

Binary data types are input using a 2-digit ASCII representation of the characters in the hexadecimal range of 0-9, A-F. The

characters A-F are not case-sensitive and you can add a leading 0x prefix to the string. You must enter an even number of

bytes up to the maximum number of encoded bytes permitted, otherwise an error is generated. For example, 36 bytes are

input to represent the binary18 data type. No spaces or other separators are supported.

Each 2-byte increment of the input string is stored as a single byte. For example, the 2-byte ASCII representation of "AB" in

hexadecimal notation is divided into blocks of four binary characters, where 1010 1011 equals one byte.

Binary data type examples

Example 1: binaryvar data type

The following code stores the binary string of 0123456789 on disk:

CREATE TABLE bindata_test (int_col integer, bin_col binaryvar)

INSERT INTO bindata_test values (1, '30313233343536373839')
INSERT INTO bindata_test values (2, '0X30313233343536373839')

Example 2: binary18 data type

The following code inserts the string IBMCORPORATION2006:

CREATE TABLE bindata_test (int_col integer, bin_col binary18)

INSERT INTO bindata_test values (1,'49424d434f52504f524154494f4e32303036')
INSERT INTO bindata_test values (2,'0x49424d434f52504f524154494f3e32303036')

Insert binary data

You can use one of two methods to insert binary data with the binary data types: an SQL INSERT statement that uses the

ASCII representation of the binary data type or an SQL INSERT statement from a Java™ or C program that treats the column

as a byte stream. For example, given the following table:

CREATE TABLE network_table (
mac_address binaryvar NOT NULL,
device_name varchar(128),
device_location varchar(128),
device_ip_address binaryvar,
date_purchased date,
last_serviced date)

Using an SQL INSERT statement that uses the ASCII representation of the binaryvar or binary18 column:

INSERT INTO network_table VALUES ('000012DF4F6C', 'Network Router 1',
'Basement', 'C0A80042', '01/01/2001', '01/01/2006');

111

OneDB Database Extensions User's Guide

112

Using an SQL INSERT statement from a Java™ program that treats the column as a byte stream, such as the JDBC setBytes()

method:

String binsqlstmt = "INSERT INTO network_table (mac_address, device_name,
device_location, device_ip_address) VALUES (?, ?, ?, ?);
PreparedStatement stmt = null;
byte[] maddr = new byte[6];
byte[] ipaddr = new byte[4];
try
{
 stmt = conn.prepareStatement(binsqlstmt);
 maddr[0] = 0;
 maddr[1] = 0;
 maddr[2] = 18;
 maddr[3] = -33;
 maddr[4] = 79;
 maddr[5] = 108;
 stmt.setBytes(1, maddr);
 stmt.setString(2, "Network Router 1");
 stmt.setString(3, "Basement");
 ipaddr[0] = -64;
 ipaddr[1] = -88;
 ipaddr[2] = 0;
 ipaddr[3] = 66;
 stmt.setBytes(4,ipaddr);
 stmt.executeUpdate();
 stmt.close()
}
catch
{
 System.out.println("Exception: " + e);
 e.printStackTrace(System.out);
 throw e;
}

Index binary data

The binaryvar and binary18 data types support indexing using the B-tree access method for single-column indexes and

composite indexes. Nested-loop join operations are also supported.

For example, given the following table:

CREATE TABLE network_table (
mac_address binaryvar NOT NULL,
device_name varchar(128),
device_location varchar(128),
device_ip_address binaryvar,
date_purchased date,
last_serviced date)

The following statement can be used to create the index:

CREATE UNIQUE INDEX netmac_pk ON network_table (mac_address) USING btree;

Chapter 1. Database Extensions User's Guide

Binary data type functions

This chapter describes functions for the binary data types and provides detailed information about each function's syntax

and usage.

Bitwise operation functions

These functions perform bitwise operations on binary18 or binaryvar fields. The expressions can be either binary18 or

binaryvar columns or they can be expressions that have been implicitly or explicitly cast to either the binary18 or the

binaryvar data type.

The return type for all of these functions is either the binary18 or the binaryvar data type.

The bit_and() function

The bit_and() function performs a bitwise logical AND operation on two binary data type columns.

Syntax

bit_and(column1, column2)

column1, column2

Two input binary data type columns.

Usage
If the columns are different lengths, the return value is the same length as the longer input parameter with the logical AND

operation performed up to the length of the shorter parameter.

Return codes

The function returns the value of the bitwise logical AND operation.

If either parameter is NULL, the return value is also NULL.

Example

In the following example, the value of binaryvar_col1 is '00086000'.

SELECT bit_and(binaryvar_col1, '0003C000'::binaryvar) FROM table WHERE x = 1
expression

00004000

The bit_complement() function

The bit_complement() function performs a logical NOT, or one's complement on a single binary data type column.

Syntax

bit_complement(column)

113

OneDB Database Extensions User's Guide

114

column

The input binary data type column.

Usage
The function changes each binary digit to its complement. Each 0 becomes a 1 and each 1 becomes a 0.

Return codes
The function returns the value of the bitwise logical NOT operation.

Example
In the following example the value of binaryvarcol1 is '00086000':

SELECT bit_complement(binaryvar_col1) FROM table WHERE x = 1
expression

FFF79FFF

The bit_or() function

The bit_or() function performs a bitwise logical OR on two binary data type columns.

Syntax

bit_or(column1, column2)

column1, column2

Two input binary data type columns.

Usage
If the columns are of different length, the return value is the same length as the longer input parameter, with the OR operation

performed up to the length of the shorter parameter. The remainder of the return value is the unprocessed data in the longer

string.

Return codes

The function returns the value of the bitwise logical OR operation.

If either parameter is NULL, the return value is also NULL.

Example
In the following example, the value binaryvarcol1 is '00006000':

SELECT bit_or(binaryvar_col1, '00080000'::binaryvar) FROM table WHERE x = 1
expression

00086000

The bit_xor() function

The bit_xor() function performs a bitwise logical XOR on two binary data type columns.

Chapter 1. Database Extensions User's Guide

Syntax
bit_xor(column1, column2)

column1, column2

Two input binary data type columns.

Usage
If the columns are of different lengths, the return value is the same length as the longer input parameter, with the XOR

operation performed up to the length of the shorter parameter. The remainder of the return value is the unprocessed data in

the longer parameter.

Return codes

The function returns the value of the bitwise logical XOR operation.

If either parameter is NULL, the return value is also NULL.

Example
In the following example, the value of binaryvarcol1 is '00086000':

SELECT bit_xor(binaryvar_col1, '00004000'::binaryvar) FROM table WHERE x = 1'
expression

00082000

Support functions for binary data types

Supporting functions for binary data types include the SQL LENGTH() and OCTET_LENGTH() functions that allow you to

determine the length of a column. The bdttrace() function is used to trace events related to using binary data types.

The bdtrelease() function

The bdtrelease() function provides the version number of the binary data types.

Syntax

bdtrelease(void)

Usage
Use the bdtrelease() function when directed to do so by the HCL Software support representative.

Return codes
This function returns the name and version number of the binary data types.

The bdttrace() function

The bdttrace() function specifies the location where the trace file is written.

115

OneDB Database Extensions User's Guide

116

Syntax
bdttrace(filename)

filename

The full path and name of the file to which trace information is appended. The file must be writable by user

informix. If no file name is provided, a standard session_id.trc file is placed in the $ONEDB_HOME/tmp

directory. If the file already exists, the trace information is appended to the file.

Usage

Use the bdttrace() function to troubleshoot events related to binary data types.

To enable tracing, create a trace class by inserting a record into the systemtraceclasses system catalog:

insert into informix.systraceclasses(name) values ('binaryUDT')

For more details regarding tracing, see the HCL OneDB™ Guide to SQL: Reference.

Example

bdttrace(tracefile)

The LENGTH() function

Use the LENGTH() SQL function to determine if the string is from a binaryvar or a binary18 column. The LENGTH() function

returns the number of bytes in a column.

Syntax

LENGTH(column)

column

The binary data type column.

Usage

This function returns the length of the column in bytes as an integer. For the binary18 data type, the function always returns

18.

For binary data types, the SQL LENGTH() and OCTET_LENGTH() functions return the same value. For more information about

length functions, see the HCL OneDB™ Guide to SQL: Reference.

Example

SELECT length(binaryvar_col) FROM table WHERE binaryvar_col = '0A010204'
expression

 4

Chapter 1. Database Extensions User's Guide

The OCTET_LENGTH() function

Use the OCTET_LENGTH() SQL function to determine if the string is from a binaryvar or a binary18 column. The

OCTET_LENGTH() function returns the number of octets (bytes).

Syntax
OCTET_LENGTH(column)

column

The binary data type column.

Usage

This function returns the length of the column in bytes as an integer. For the binary18 data type, the function always returns

18.

For binary data types, the SQL LENGTH() and OCTET_LENGTH() functions return the same value. For more information about

length functions, see the HCL OneDB™ Guide to SQL: Reference.

Example

SELECT octet_length(binaryvar_col) FROM table WHERE binaryvar_col = '93FB'
expression

 2

Basic Text Search
You can perform basic text searching for words and phrases in a document repository stored in a column of a table.

In traditional relational database systems, you must use a LIKE or MATCHES condition to search for text data and use

the database server to perform the search. HCL OneDB™ uses the open source CLucene text search package to perform

basic text searches. This text search package and its associated functions, known as the text search engine, is specifically

designed to perform fast retrieval and automatic indexing of text data. The text search engine runs in virtual processors that

are controlled by the database server.

To perform basic text searches, you create a bts index on one or more text columns and then use the bts_contains() search

predicate function to query the text data.

You can configure how to index the text data by specifying an analyzer. Each analyzer uses different criteria to index the data.

By default the Standard analyzer is used.

You can specify synonyms for data that has multiple words for the same information, for example, proper names with

multiple spellings. You can use canonical mapping to create a static list of synonyms. You can create a thesaurus with

synonyms that you can update dynamically.

To search for words and phrases you use a predicate called bts_contains() that instructs the database server to call the text

search engine to perform the search.

117

OneDB Database Extensions User's Guide

118

For example, to search for the string century in the column brands in the table products you use the following statement:

SELECT id FROM products
WHERE bts_contains(brands, 'century');

The search predicate takes a variety of arguments to make the search more detailed than one using a LIKE condition. Search

strategies include single and multiple character wildcard searches, fuzzy and proximity searches, AND, OR and NOT Boolean

operations, range options, and term-boosting.

If you store XML, JSON, or BSON documents, you can create customized structured indexes so that you can search

columns by XML tags, attributes, and paths, or JSON fields, values, and paths. Customize the index with XML or JSON index

parameters.

You can search for unstructured text or, if you use XML index parameters, you can search columns with XML documents by

tags, attributes, or XML paths.

You can use basic text search functions to perform maintenance tasks, such as compacting the bts index and obtaining the

list of indexed field names.

Preparing for basic text searching
Before you can perform basic text searching, you must prepare the server environment and create the bts index. Review the

requirements and restrictions.

About this task

To prepare for basic text searching, complete these tasks:

1. Create a default sbspace.

2. Optional: Create an sbspace for the bts index.

3. Optional: Create a space for temporary data.

4. Create the bts index.

What to do next

Basic text search functions run in a BTS virtual processor, which means that only one query or other type of index

operation runs at a time in each virtual processor. When you create a bts index, the BTS virtual processor class is created

automatically.

Basic text search requirements and restrictions
When you plan how to configure basic text searching, you must understand the requirements and restrictions.

Database server requirement

The Scheduler must be running in the database server. If the Scheduler is not running when you create a bts

index, a message that the access method is not found is returned.

Chapter 1. Database Extensions User's Guide

Database requirements

The database that contains the bts index must be logged and must not be an ANSI database. If you attempt to

create a bts index in an unlogged or ANSI database, the message DataBlade registration failed is printed in

the database server message log.

Data type support

To use basic text searching, you must store the text data in a column of data type BLOB, BSON, CHAR, CLOB,

JSON, LVARCHAR, NCHAR, NVARCHAR, or VARCHAR.

To use basic text searching, you must store the text data in a column of data type BLOB, CHAR, CLOB,

LVARCHAR, NCHAR, NVARCHAR, or VARCHAR.

Although you can store searchable text in a column of the BLOB data type, you cannot create a basic text

search index on binary data. BLOB data type columns must contain text.

Locales and languages support

Basic text search queries can use most multi-byte character sets and global language support, including UTF-8,

and can use ideographic languages such as Chinese, Korean, and Japanese if you specify the CJK analyzer.

Important: If you use UTF-8 character encoding, including the Chinese GB18030-2000 code set, you

must set the GL_USEGLU environment variable before you create the database.

JSON or BSON documents must be in a database with a UTF-8 locale.

High availability support

You can run basic text search queries on primary and all types of secondary servers in high-availability clusters.

Index characteristics restrictions

The following characteristics are not supported for bts indexes:

• Fill factors

• Index clustering

• Unique indexes

Indexed document restrictions

If your documents are over 32 KB, store them in columns of type BLOB or CLOB.

The size of a document that you want to index is limited by the amount of available virtual memory on your

machine. For example, if you have 1 GB of available virtual memory, you can only index documents that are

smaller than 1 GB.

Query restrictions

You cannot include basic text search queries in distributed queries or parallel database queries.

119

OneDB Database Extensions User's Guide

120

Creating a default sbspace
A default sbspace must exist before you create a bts index. The database server sets up internal directories for basic text

searching in a default sbspace.

About this task

The database server also stores bts indexes in the default sbspace unless you explicitly specify another sbspace when you

create the index. Be sure the default sbspace is large enough to hold all of these objects. Monitor the size of the default

sbspace and increase its size when necessary.

If you do not explicitly create a default sbspace and set the SBSPACENAME configuration parameter in the onconfig file

before you create a bts index, the database server creates a default sbspace automatically before running the CREATE INDEX

statement, according to the following criteria in this order:

• If storage provisioning is configured, the default sbspace is created in the designated storage pool.

• If the root dbspace was created in a directory, the default sbspace is created in the same directory and could use the

same files system as the root dbspace.

• If the root dbspace is a raw device in the /dev directory, the default sbspace is created in the $ONEDB_HOME/tmp

directory.

The sbspace for bts index must have buffering enabled. Buffering is enabled by default when you create an sbspace. You

can use various methods to create an sbspace, including the onspaces utility, the SQL administration API task() function with

the create sbspace argument, or through storage provisioning, if you have configured a storage pool.

To create the default sbspace:

1. Set the SBSPACENAME configuration parameter in the configuration file to the name of your default sbspace.

Example

The following example sets the name of the default sbspace to sbsp1:

SBSPACENAME sbsp1

2. Restart the database server.

3. Create the sbspace.

Example

The following example creates an sbspace called sbsp1 in the file c:\IFMXDATA\sbspace by using the onspaces

utility:

onspaces -c -S sbsp1 -p c:\IFMXDATA\sbspace -o 0 -s 100000

Creating a space for the bts index
Each bts index is stored in one or more sbspaces. You can create a dedicated sbspace to store your bts index and then

specify that sbspace name when you create the bts index. For backwards compatibility, you can continue to store bts

indexes in extspaces.

Chapter 1. Database Extensions User's Guide

About this task

If you do not create a separate sbspace for your bts indexes, the database server stores bts indexes in the default sbspace.

In general, the sbspace for a bts index should be at least the size of the data being indexed. A highly optimized index might

take up to three times the size of the data being indexed.

The sbspace for bts index must have buffering enabled. Buffering is enabled by default when you create an sbspace. You

can use various methods to create an sbspace, including the onspaces utility, the SQL administration API task() function with

the create sbspace argument, or through storage provisioning, if you have configured a storage pool.

To create an sbspace, use the onspaces utility. For example:

onspaces -c -S bts_sbspace -o 0 -s 100000 -p /dev/sbspace

To create an extspace:

1. Create a directory for the index.

2. Create the extspace by using the onspaces utility.

Example

The following example creates a directory and an extspace:

mkdir bts_extspace_directory
onspaces -c -x bts_extspace -l "/bts_extspace_directory"

Creating a space for temporary data
Basic text searching creates temporary data while processing bts indexes. You can create a separate space for temporary

data and specify it when you create the bts index.

Before you begin

For best performance, the space should be a temporary sbspace since data and metadata for temporary files are not logged.

However, you can also use an sbspace or an extspace.

If you do not specify a separate space for temporary data when you create the bts index with the tempspace index

parameter, the database server stores temporary data in one of the following locations, according to the criteria in the

following order:

• The sbspace specified in the CREATE INDEX statement.

• A temporary sbspace that is specified by the SBSPACETEMP configuration parameter. The temporary sbspace with

the most free space is used. If no temporary sbspaces are listed, the sbspace with the most free space is used.

• If the SBSPACETEMP configuration parameter is not set and you have a storage pool that is set up, a temporary

sbspace is created and the SBSPACETEMP configuration parameter is set dynamically in the onconfig file.

• The sbspace specified by the SBSPACENAME configuration parameter.

About this task

121

OneDB Database Extensions User's Guide

122

To create a temporary sbspace, use the onspaces utility with the -t option. (Do not include the -Df "LOGGING=ON" option.)

Example

For example:

onspaces -c -S temp_sbspace -t -o 0 -s 50000 -p /dev/temp_sbspace

What to do next

Alternatively, you could create a temporary sbspace through storage provisioning, if you have configured a storage pool.

Creating a bts index
You create a bts index by using the bts access method and specifying index parameters and other options.

About this task

Before you create a bts index, plan which index parameters and other options you want to use.

To create a bts index:

1. Complete prerequisite tasks that are necessary for the index parameters that you plan to include for the index. For

example, many index parameters use tables or files that you must create before you create the index.

2. Create an index by specifying the bts access method.

bts access method syntax
The bts access method is a secondary access method to create indexes that support basic text search queries.

Instead of using the bts access method to create a bts index, you can run the HCL OneDB™ JSON createTextIndex command.

Use the same syntax for bts index parameters for both methods.

Syntax
CREATE INDEXindex_nameONtable_name (column_nameop_class) USING bts [(<bts index parameters>)] [{ INspace_name |

FRAGMENT BY EXPRESSION (expression)INspace_name [REMAINDER INspace_name] }] ;

bts index parameters

“ { | <analyzer index parameter>(explicit id) | <canonical_map index parameter>(explicit id) |

delete= { "deferred" | "immediate" } (explicit id) | field_token_max="number_tokens"(explicit id) |

max_clause_count="max_clauses"(explicit id) | query_default_field=" { field | * } "(explicit id) |

query_default_operator= { "OR" | "AND" } | query_log= { "no" | "yes" } (explicit id) | <stopwords index

parameter>
(explicit id) | tempspace=tempspace_name(explicit id) | <thesaurus index parameters>(explicit id)

| <xact_memory index parameter>(explicit id) | xact_ramdirectory=" { no | yes } " (explicit id) | { <XML index

parameters>
(explicit id) | <JSON index parameters>(explicit id) } } ”

analyzer%250Aindex%20parameter
canonical_map%20index%20parameter
XML%20index%20parameters
XML%20index%20parameters
JSON%250Aindex%20parameters

Chapter 1. Database Extensions User's Guide

Element Description

column_name The name of the column in the table that contains the text documents to search.

expression The expression that defines an index fragment. The expression must return a Boolean

value. The expression can contain only columns from the current table and data values

from only a single row. The expression cannot include the following elements:

• Subqueries

• Aggregates are not allowed. T

• The built-in CURRENT, DATE, SYSDATE, and TODAY functions

• The bts_contains() search predicate

For more information about expressions, see Expression on page .

field The name of the field to set as the default field in basic text search queries instead of

the contents field.

index_name The name of the bts index.

max_clauses The maximum number of clauses in a basic text search query. Default is 1024.

number_tokens The maximum number of tokens to index for each document. Default is 10 000.

Maximum is 2 000 000 000.

op_class The operator class for the data type that is specified in the column_name element.

space_name The name of the sbspace or extspace in which to store the bts index.

table_name The name of the table for which you are creating the index.

tempspace_name The name of the space in which to store temporary files.

Usage

Include a comma between index parameters.

You must create a bts index for each text column that you plan to search. You can either create a separate bts index for

each text column, or create a composite index on multiple text columns in a table by including multiple column and operator

class pairs. You cannot create a composite index that includes a JSON or BSON column. If you want to index each column

separately, include the query_default_field="*" index parameter.

You cannot alter the characteristics of a bts index after you create it. Instead, you must drop the index and re-create it.

When you create a bts index, you specify the operator class that is defined for the data type of the column that is indexed. An

operator class is a set of functions that the database server associates with the bts access method to optimize queries and

build indexes. Each of the data types that support a bts index has a corresponding operator class. The following table lists

each data type and its corresponding operator class.

123

../sqs/ids_sqs_1425.html#ids_sqs_1425
../sqs/ids_sqs_1425.html#ids_sqs_1425
../sqs/ids_sqs_1425.html#ids_sqs_1425
../sqs/ids_sqs_1425.html#ids_sqs_1425

OneDB Database Extensions User's Guide

124

Table 19. Data types and the

corresponding operator classes

Data type Operator class

BLOB bts_blob_ops

BSON bts_bson_ops

CHAR bts_char_ops

CLOB bts_clob_ops

JSON bts_json_ops

LVARCHAR bts_lvarchar_ops

NCHAR bts_nchar_ops

NVARC

HAR

bts_nvarchar_

ops

VARCHAR bts_varchar_ops

Examples

Example 1: Create a bts index and store it in an sbspace

For example, suppose that your search data is contained in a column that is named brands, of data type CHAR,

in a products table. To create a bts index that is named desc_idx in the sbspace sbsp1, use the following

syntax:

CREATE INDEX desc_idx ON products (brands bts_char_ops)
 USING bts IN sbsp1;

Example 2: Create a fragmented bts index

The following example stores the bts_idx index in three sbspaces by fragmenting the index according to an

expression:

CREATE INDEX bts_idx ON bts_tab(col2 bts_char_ops) USING bts
 FRAGMENT BY EXPRESSION
 (col1 <= 1000000) IN bts_sbspace00,
 (col1 > 1000000 and col1 <= 2000000)
 IN bts_sbspace01,
 REMAINDER IN bts_sbspace36;

delete index parameter
The delete index parameter controls the optimizing, or compacting, of the index. Optimizing the index removes index

information for deleted documents and releases disk space. You can optimize the bts index manually, which is the default

mode, or automatically.

Chapter 1. Database Extensions User's Guide

Optimize the index manually

When you create a bts index, the default mode for deleting rows is deferred (delete="deferred"). A delete operation on a row

in a table marks the row as deleted in the bts index. The disk space can be reclaimed as more documents are added to the

index. Queries that are run against bts columns do not return the deleted documents.

To release disk space that is occupied by the deleted documents in the index, use the oncheck utility in the format:

oncheck -ci -y db_name:table_name#index_name

Alternatively, you can use the bts_index_compact() function to release disk space for the rows marked for deletion. The

difference between the two methods is that the bts_index_compact() function requires that you know the directory path to

the bts index, whereas the oncheck utility requires that you know the database name, table name, and the index name. Both

methods have the same result.

Delete operations are faster in the deferred mode. The deferred deletion mode is best for large indexes that are updated

frequently.

Optimize the index automatically

You can override the deferred deletion mode by creating the bts index with the delete="immediate" parameter. In the

immediate deletion mode, index information for deleted documents is physically removed from the index after every delete

operation. This mode frees up space in the index immediately. However, the immediate deletion mode rewrites the index

each time an index entry is deleted, which slows down delete operations and makes the index unusable during the delete

operation.

field_token_max index parameter
If you have large documents, you can increase the maximum number of tokens that are indexed by setting the

field_token_max index parameter to a positive integer up to 2 000 000 000. By default, 10 000 tokens are indexed in a

document. If the average word has 5 characters, approximately 50-60 KB of the document is indexed.

Example

Example

For example, the following statement creates a bts index that creates up to 500 000 tokens per document:

CREATE INDEX books_bts ON books(book_data bts_lvarchar_ops)
USING bts(field_token_max="500000") IN bts_sbspace;

max_clause_count index parameter
You can increase the maximum number of query results by setting the max_clause_count index parameter to a value greater

than the default value of 1024.

Basic text queries fail when the maximum number of results is exceeded. If a query results in more than the maximum

number of results, you receive the following error:

(BTSB0) - bts clucene error: Too Many Clauses

125

OneDB Database Extensions User's Guide

126

This error can occur during a wildcard or fuzzy search.

The limit of results controls virtual memory usage. Queries with large result sets can result in slower performance and the

allocation of more virtual segments. You can monitor the number of virtual segments with the onstat -g seg command.

Example

Example

The following statement creates a bts index with a maximum number of 4000 query results:

CREATE INDEX bts_idx ON bts_tab(text bts_char_ops)
USING bts (max_clause_count="4000")
IN sbspace1;

query_default_field index parameter
Set the query_default_field index parameter to a column name to override the default field for basic text search queries from

the contents field. Set the query_default_field index parameter to * to separately index each column in a composite index.

You do not need to specify the default field in a basic text search query. If you have a structured index on JSON or XML data,

you can change the default field to one of the indexed field names or tags.

You do not need to specify the default field in a basic text search query. If you have a structured index on XML data, you can

change the default field to one of the indexed tags.

You can create a composite bts index on multiple text columns. By default, columns are concatenated and indexed as a

single string in the contents field. Regardless of which column name you specify in the query, the matching text from all

the indexed columns is returned. You can use the query_default_field="*" index parameter to index each column separately

so that you can query by column name, which becomes the index field name. When you use the query_default_field="*"

index parameter, only the matching text from the column name that you specify in the query is returned. You query multiple

columns by including their field names in the format fieldname:string.

You cannot create a composite index on JSON or BSON columns.

If you combine the query_default_field="*" index parameter with the xmltags index parameter, the composite index is created

on only the XML columns.

Example

Examples: Create composite indexes

The following examples use a table with the following structure:

CREATE TABLE address(
 fname char(32),
 lname char(32),
 address1 varchar(64),
 address2 varchar(64),
 city char(32),
 province char(32),

Chapter 1. Database Extensions User's Guide

 country char(32),
 postalcode char(10)
);

You can create a composite bts index on multiple columns in the address table by using the following statement, which

matches each column data type with its corresponding operator class:

CREATE INDEX bts_idx ON address(
 fname bts_char_ops,
 lname bts_char_ops,
 address1 bts_varchar_ops,
 address2 bts_varchar_ops,
 city bts_char_ops,
 province bts_char_ops,
 country bts_char_ops,
 postalcode bts_char_ops) USING bts;

The resulting composite index concatenates all the columns into the contents field. The following two queries would produce

the same results because the text is not indexed by column name:

SELECT * FROM address WHERE bts_contains(fname, 'john');
SELECT * FROM address WHERE bts_contains(address1, 'john');

Alternatively, you can create a composite bts index and specify that each column is indexed separately by including the

query_default_field="*" index parameter:

CREATE INDEX bts_idx ON address(
 fname bts_char_ops,
 lname bts_char_ops,
 address1 bts_varchar_ops,
 address2 bts_varchar_ops,
 city bts_char_ops,
 province bts_char_ops,
 country bts_char_ops,
 postalcode bts_char_ops) USING bts (query_default_field="*");

The resulting composite index includes the column name with the indexed text. The following two queries would produce

different results:

SELECT * FROM address WHERE bts_contains(fname, 'john');
SELECT * FROM address WHERE bts_contains(address1, 'john');

The first query finds matches for john in the fname column and the second query finds matches for john in the address1

column.

The following example searches for a row that contains specific text in two of its columns:

SELECT * FROM address WHERE bts_contains(fname, 'john AND city:nipigon');

This query returns the rows that contain both john in the fname column and nipigon in the city column.

query_log index parameter
You can determine the frequency of queries that are run against a bts index by logging queries.

127

OneDB Database Extensions User's Guide

128

About this task

When tracking is enabled, each query that is run against the bts index produces a log record in the $ONEDB_HOME/tmp/

bts_query.log file. Each log record has five fields, which are separated by pipe characters (|):

query time stamp|index name|partn|query|number of rows|

The fields are described in the following table.

Table 20. Query tracking fields

Field name Data type Description

query time

stamp

DATETIME YEAR TO

FRACTION

The time when the query was run.

index name LVARCHAR The name of the index.

partn INTEGER The identifying code of the physical location of the fragment in which the

index is located.

query LVARCHAR The syntax of the query.

number of

rows

INTEGER The number of rows that are returned by the query.

You can view the log records by loading them into a table and then querying the table.

This example shows how to track queries.

1. Create the bts index with tracking enabled:

Example

CREATE INDEX bts_idx ON products (brands bts_char_ops)
 USING bts (query_log="yes") IN sbsp1;

2. Create a table to hold the log records:

Example

CREATE TABLE bts_query_log_data(
 qwhen DATETIME YEAR TO FRACTION,
 idx_name LVARCHAR,
 partn INTEGER,
 query LVARCHAR,
 rows INTEGER);

3. Load the log records into the log table:

Example

LOAD FROM '$ONEDB_HOME/tmp/bts_query.log' INSERT INTO bts_query_log_data;

4. Query the log table to view the log records:

Example

Chapter 1. Database Extensions User's Guide

SELECT ids_name,query,rows FROM bts_query_log_data;

idx_name bts_idx
query melville
rows 14

idx_name bts_idx
query dickens
rows 29

idx_name bts_idx
query austen
rows 3

3 row(s) retrieved.

stopwords index parameter
When you specify a customized stopword list, it replaces the default stopword list. You create a customized stopword list

with the stopwords index parameter when you create the bts index.

stopwords index parameter

“ stopwords=" { ([field:] [word]) | file:directory/filename | table:table.column } " ”

Element Description

column The name of the column that contains stopwords.

directory The path for the stopwords file.

field The XML tag, path, or the column name that is indexed.

filename The name of the file that contains stopwords.

table The name of the table that contains stopwords.

word The term to use as a stopword. Stopwords must be lowercase.

Usage

You can create a stopword list for all fields or customized stopword lists for specific fields. Any words that are listed before

any field names become the default stopword list, which is used for all fields not explicitly listed. All words that are listed

after a field name and before the next field name are stopwords for the preceding field only. If a field is listed without any

words following it, that field does not have a stopword list.

You can specify the list of stopwords in a table column or in a file. The file or table must be readable by the user who is

creating the index. Separate the field name and stopword pairs in the file or table by commas, white spaces, new lines, or a

129

OneDB Database Extensions User's Guide

130

combination of those separators. The file or table becomes read-only when the index is created. If you want to add or change

stopword assignments, you must drop and re-create the index.

Examples

Example 1: Input stopwords as inline comma-separated words

Inline comma-separated words are useful when you have only a few stopwords. The following example

prevents searching the words "am,", "be," and "are":

stopwords="(am,be,are)"

The following example shows how to create a bts index with an inline comma-separated customized stopword

list:

CREATE INDEX books_bts ON books(book_data bts_lvarchar_ops)
USING bts(stopwords="(am,be,are)") IN bts_sbspace;

Example 2: Input stopwords from a file or a table column

The following example shows the contents of a stopword file where stopwords are separated by commas,

white spaces, and new lines:

avec, et
mais pour

The following example shows how to create a bts index with a customized stopword list in a file:

CREATE INDEX books_bts ON books(book_data bts_lvarchar_ops)
USING bts(stopwords="file:/docs/stopwords.txt") IN bts_sbspace;

The following example shows how to create a bts index with a customized stopword list in a table column:

CREATE INDEX books_bts ON books(book_data bts_lvarchar_ops)
USING bts(stopwords="table:mytable.mycolumn") IN bts_sbspace;

Example 3: Create stopword lists for specific fields

The following example creates a stopword list of am, be, and are for all fields except the fields author and title,

which have their own stopwords, and the field edition, which does not have any stopwords.

CREATE INDEX books_bts ON books(book_data bts_lvarchar_ops)
USING bts(stopwords=
 "(am,be,are,
 author:mrs,mr,ms,
 title:the,an,a,or,
 edition:)"
)
IN bts_sbspace;

thesaurus index parameters
You can create a thesaurus so that basic text searches return synonyms as well as exact matches of specified words. A

thesaurus is useful if your text data has multiple words for the same information.

Chapter 1. Database Extensions User's Guide

thesaurus index parameters

“ { thesaurus=" yes" | thesaurus_index ="thesaurus_index" } ”

Element Description

thesaurus_index The name of the bts index that is created on the thesaurus table.

Usage

People's names is an example of the type of data that can benefit from a thesaurus. Because people can have nicknames,

multiple names for the same person might exist in the database. If you define a thesaurus for common nicknames, your

basic text queries can return more accurate results. Synonyms are not used in a query if the query includes the following

term modifiers: wildcard, fuzzy, proximity, or range query.

When you include a thesaurus in your bts index definition, basic text queries include all synonyms for specific search terms.

For example, if you define mark, marc, marcus, and marco as synonyms, when you query for any one of these names the

query is rewritten to include all of them:

'(mark OR marc OR marcus OR marco)'

To create a thesaurus:

1. Create the thesaurus table with a text column for the synonym data. You can use any of the data types that are

supported by the bts index.

2. Add the synonym data to the thesaurus table. Each value for the synonym data column is a list of words that you

want to be treated as synonyms. You can create synonyms for only single words. You cannot create synonyms for

phrases.

3. Create a bts index on the thesaurus table. Include the thesaurus="yes" parameter.

When you create the bts index on the table that contains the text data, follow these rules:

• Specify the synonym data column as the column to index.

• Include the thesaurus_index="thesaurus_index" parameter, specifying the thesaurus index that you created.

• Set the query_default_operator index parameter to "OR" or omit the parameter.

You can dynamically update your thesaurus without rebuilding the basic text search index by updating the thesaurus table.

Example

Example

Suppose that you create a table called mytbl with the following statements:

CREATE TABLE mytbl(name char(30));
INSERT INTO mytbl(name) VALUES('mark');

131

OneDB Database Extensions User's Guide

132

INSERT INTO mytbl(name) VALUES('elizabeth');
INSERT INTO mytbl(name) VALUES('marco');
INSERT INTO mytbl(name) VALUES('beth');

You create a thesaurus table named mythesaurus and add synonym data to it:

CREATE TABLE mythesaurus(synonyms lvarchar);
INSERT INTO mythesaurus(synonyms)
 VALUES('elizabeth liz beth eliza leisal betty liza');
INSERT INTO mythesaurus(synonyms)
 VALUES('mark marc marcus marco');

You create a bts index on the thesaurus table:

CREATE INDEX mythesaurus_index
ON mythesaurus(synonyms bts_lvarchar_ops)
USING bts(thesaurus="yes");

You create a bts index that uses the thesaurus on the table mytbl:

CREATE INDEX name_index
ON mytbl(name bts_char_ops)
USING bts(thesaurus_index="mythesaurus_index");

Now when you search for the name elizabeth, the query returns both the exact match and the synonym beth:

SELECT * FROM mytbl WHERE bts_contains(name, 'elizabeth');

name
elizabeth
beth
2 row(s) retrieved.

When you search for both marcus or liza, the query returns four synonyms but no exact matches:

SELECT * FROM mytbl WHERE bts_contains(name, 'marcus or liza');

name
mark
marco
elizabeth
beth
4 row(s) retrieved.

xact_memory index parameter
You can set a limit on the amount of memory that is used by basic text search operations. Restricting memory usage

is useful if you have a low memory configuration. By default, the memory limit is set by the value of the SHMTOTAL

configuration parameter.

xact_memory index parameter

“ xact_memory= { memory_size [{ K | M | G }] | unlimited } ”

Chapter 1. Database Extensions User's Guide

Element Description

memory_size A positive integer that represents the maximum amount of memory for bts index

operations.

The default unit is bytes. To specify a different multiple of bytes, include one of the

following letters at the end of the number:

• K = Kilobytes

• M = Megabytes

• G = Gigabytes

For example, 5G sets the maximum memory usage to 5 gigabytes.

Usage

If any bts index operation requires more memory than the value of the xact_memory index parameter, the operation fails.

If the xact_memory index parameter is set to unlimited or is not included in the index, the memory limit is set by the value of

the SHMTOTAL configuration parameter.

Example

Example

For example, the following statement creates a bts index that limits the amount of memory for basic text search transactions

to 5 GB:

CREATE INDEX books_bts ON books(book_data bts_lvarchar_ops)
USING bts(xact_memory=5G) IN bts_sbspace;

xact_ramdirectory index parameter
By default, you build a bts index in a temporary sbspace. You can build a bts index faster in RAM than in a temporary

sbspace.

Include the xact_ramdirectory="yes" in the bts index to build the index in memory. However, when building the index in

memory uses too much memory, the build is switched to the temporary sbspace. The maximum amount of memory that is

allowed for an index build is approximately one third of the value of that is specified by the xact_memory index parameter or

the SHMTOTAL configuration parameter, whichever is more restrictive.

Basic text search queries
You run basic text search queries with the bts_contains() search predicate.

You can run many types of basic text searches, such as word, phrase, Boolean, proximity, and fuzzy. You include the

bts_contains() search predicate in the FROM clause of your query. Before you can run a search, you must create a bts index

on the column you want to search.

133

OneDB Database Extensions User's Guide

134

Basic text search queries are not case-sensitive.

Searching on multiple columns

To run a basic text search query on multiple columns, you can create a composite bts index on those columns. If you include

the query_default_field="*" index parameter, each column is indexed separately and you can run queries like the following

query:

SELECT * FROM address WHERE bts_contains(fname, 'john AND city:nipigon');

Alternatively, you can create a different bts index on each column. However, you cannot use the SQL Boolean predicates AND,

OR, and NOT between multiple bts_contains() search predicates in the same predicate clause. For example, the expression,

bts_contains(fname, 'john') AND bts_contains(lname, 'smith') is not supported. To query on multiple bts indexes, use

a UNION operator to join multiple SELECT statements that each include a different column in the bts_contains() search

predicate.

Including the INDEX optimizer directive to force index scans

If you receive BTS22 errors from your queries, the optimizer might not be running the bts_contains() search predicate as an

index scan. To force the optimizer to run the bts_contains() search predicate as an index scan, include the INDEX optimizer

directive in your query. For example, the following query includes the INDEX optimizer directive for the bts_idx index on the

address table:

SELECT INDEX(address bts_idx) * FROM address
 WHERE bts_contains(fname, 'john AND city:nipigon');

Basic Text Search query syntax
Use the bts_contains() search predicate to run basic text search queries.

You can also run a basic text search query with the HCL OneDB™ JSON $ifxtext query operator. Use the same syntax for the

search criteria for both methods.

bts_contains() Search Predicate

“ bts_contains(column, ' <Search criteria>' ”

“ [,score # REAL] ”

“) ”

Search criteria

“ [<Index field>: (explicit id)] query_string ”

Index%20field

Chapter 1. Database Extensions User's Guide

column

The column to be searched. It must be a single column for which a bts index is defined.

query_string

The search string. The search string includes the following elements:

Query term

Required. One or more words that you want to search for.

Query term modifiers

Optional. You can modify query terms to run wildcard, fuzzy, proximity, and range searches. You

can boost the importance of a query term relative to other terms.

Boolean operators

Optional. You can include Boolean operators to combine query terms in logical combinations.

If an index has multiple fields because it is a structured or a composite index, you can include an index field

name to modify the search string.

score # REAL

Optional argument that is used to pass a statement local variable (SLV) to the text search engine. The search

engine uses this variable to record the document score it assigns to each row in the results. The score value is

a REAL number between 0.0 and 100.0 inclusive that indicates the relevance of each document to the search

criteria, compared to that of other indexed records. The higher the document score value, the more closely the

document matches the criteria.

The following example shows a search for the word standard in the column brands in a table called products.

SELECT id FROM products
WHERE bts_contains(brands, 'standard');

You can use an SLV as a filtering mechanism and to sort the results by score. The following example returns documents that

contain the word standard from the column brands in a table that is called products if the document score value is greater

than 70. The results are ordered in descending order by score.

SELECT id FROM products
WHERE bts_contains(brands, 'standard', score # REAL)
AND score > 70.0;
ORDER BY score DESC;

Basic Text Search query terms
Query terms are words or phrases.

A word is a single word, such as Hello. A phrase is a group of words that are enclosed in double quotation marks, such as

"Hello World". Multiple words or phrases can be combined with Boolean operators to form complex queries.

This example searches for the word Coastal:

bts_contains(column, 'Coastal')

135

OneDB Database Extensions User's Guide

136

This example searches for the phrase "Black and Orange":

bts_contains(column, ' "Black and Orange" ')

White space and punctuation characters are ignored. Terms within angle brackets (< >) are not interpreted as tagged HTML

or XML text unless you are using XML index parameters. Letter case is not considered in query terms. Words are indexed in

lowercase according to the DB_LOCALE environment variable setting. All three of the following search predicate examples

search for the term orange8 in unstructured text:

bts_contains(column, ' Orange8 ')

bts_contains(column, ' <oranGe8> ')

bts_contains(column, ' "<Orange8>" ')

Grouping words and phrases

You can group words and phrases in parentheses to form more complex queries by including Boolean operators. For

example, to search for words UNIX or Windows and the phrase operating system, you can use this search predicate:

bts_contains(column, ' (UNIX OR Windows) AND "operating system" ')

This search returns results that must contain the phrase operating system, and either the word UNIX or the word Windows.

You can also group words and phrases in field data:

bts_contains(column, ' os:(UNIX AND "Windows XP") ')

In that case, the search results must contain the word UNIX and the phrase Windows XP in the os field.

Escaping special characters

You can use the special characters that are part of basic text search query syntax in searches by using the backslash (\) as

an escape character before the special character.

The following characters are Basic Text Search special characters: + - && || ! () { } [] ^ " ~ * ? : \

For example, to search for the phrase (7+1), use the following search predicate:

bts_contains(column, ' \(7\+1\) ')

Basic text search index fields
The bts index indexes searchable data in fields. When you index unstructured text, each value is indexed in a default field

called contents. You do not need to specify the default field in the bts_contains() search predicate. When you create an index

that has multiple fields because it is a structured or a composite index, you might need to include a field name to modify the

search string in the bts_contains() search predicate.

Chapter 1. Database Extensions User's Guide

Index fields

“ { [JSONpath .] | / XMLpath / | [XMLnamespace \:] } fieldname ”

fieldname

The name of the field that is indexed.

JSONpath

If the json_path_processing index parameter is enabled, you can include the path before the field name.

Separate each part of the path with a period.

XMLpath

If the xml_path_processing index parameter is enabled, you can include the path before the field name.

Separate each part of the path with a forward slash.

XMLnamespace

If the include_namespaces index parameter is enabled, you can include an XML namespace before the field

name. Escape the colon in the namespace with a back slash.

If you create a composite index on multiple columns, by default the text from the indexed columns is concatenated into

one string and indexed in the contents field. To index the text in each column included in the index under a field of the same

name, include the query_default_field="*" index parameter in the index definition. When you query on a composite index that

has multiple fields, you must specify the field name in the bts_contains() search predicate.

Searches on structured JSON or XML indexes

When you index structured text by setting XML or JSON index parameters, the names for the XML tags or JSON field names

are indexed in separate fields and you must specify those fields in the bts_contains() search predicate.

If you specify a list of XML tags or JSON field names to be indexed with the xmltags or json_names index parameter, the

default field is the first field in the field list. You must specify the field name for any other field in the bts_contains() search

predicate. However, you can override the default field by setting the query_default_field index parameter to a specific field

name to use as the default field.

If you enable the all_xmltags or all_json_names index parameter, there is no default field. You must specify each field name

in the bts_contains() search predicate.

Searches on structured XML indexes

When you index structured text by setting XML index parameters, the names for the XML tags or paths are indexed in

separate fields and you must specify those fields in the bts_contains() search predicate. If you specify a list of XML tags to

be indexed with the xmltags index parameter, the default field is the first tag or path in the field list. You must specify the field

name for any other field in the bts_contains() search predicate. If you enable the all_xmltags index parameter, there is no

default field. You must specify each field name in the bts_contains() search predicate.

137

OneDB Database Extensions User's Guide

138

To search text within a field, specify the field name followed by a colon (:) and the query term in the format fieldname:string.

Example

Examples: JSON or BSON documents

For these examples, the following JSON document is indexed as field name-value pairs with paths by enabling the

all_json_names and json_path_processing index parameters:

{ “person” : {
 “givenname” : “Jim”
}

For example, to search the given name field, you can use either of the following search predicates:

bts_contains(column, ' givenname:Jim ')

bts_contains(column, ' givenname:"Jim" ')

To search for a field that includes a path, include a period between the field name elements. For example, to search the

person:given name field, you can use the following search predicate:

bts_contains(column, ' person.givenname:"Jim" ')

Example

Examples: XML documents

For example, if the XML data is indexed in a field that is called fruit, you can use the following search predicates:

bts_contains(column, ' fruit:Orange ')

bts_contains(column, ' fruit:"Orange Juice" ')

If the XML data is indexed in a field that contains the path /fruit/citrus, you can use the following search predicate:

bts_contains(column, ' /fruit/citrus:"Orange Juice" ')

If you enable the include_namespaces index parameter, you must escape the colon (:) in namespaces with a backslash (\).

For example, if you are using the fruit namespace:

bts_contains(column, ' fruit\:citrus:Orange ')

Basic Text Search query term modifiers

You can modify query terms to perform more complex searches.

If you are searching fielded data, you can use query term modifiers only on the query terms, not on the field names.

Wildcard searches
You can use wildcards in basic text search queries on single terms. You cannot use wildcards in searches on phrases.

Chapter 1. Database Extensions User's Guide

To perform a single-character wildcard search, use a question mark (?) in the search term. The single-character wildcard

search looks for terms that match with the single character replaced. For example, to search for the terms text and test, use

te?t in the search predicate:

bts_contains(column, 'te?t')

You can use a single wildcard character (?) as the first character of the search term.

Multiple-character wildcard searches

Multiple-character wildcard searches look for zero or more characters.

To perform a multiple-character wildcard search, use an asterisk (*) in the search term. For example, to search for geo,

geography, and geology, use geo* in the search predicate:

bts_contains(column, 'geo*')

The multiple-character wildcard search can also be in the middle of a term. For example, the search term c*r will match

contour, crater, color, and any other words that start with the letter c and end with the letter r:

bts_contains(column, 'c*r')

You cannot use a multiple wildcard character (*) as the first character of the search term.

If the number of indexed tokens that match your wildcard query exceed 1024, you receive the following error:

(BTSB0) - bts clucene error: Too Many Clauses

To solve this problem, you can make the query more restrictive or you can recreate the bts index with the max_clause_count

index parameter set to a number greater than 1024.

Fuzzy searches
A fuzzy search searches for text that matches a term closely instead of exactly. Fuzzy searches help you find relevant results

even when the search terms are misspelled.

To perform a fuzzy search, append a tilde (~) at the end of the search term. For example the search term bank~ will return

rows that contain tank, benk or banks.

bts_contains(column, 'bank~')

You can use an optional parameter after the tilde in a fuzzy search to specify the degree of similarity. The value can be

between 0 and 1, with a value closer to 1 requiring the highest degree of similarity. The default degree of similarity is 0.5,

which means that words with a degree of similarity greater than 0.5 are included in the search.

The degree of similarity between a search term and a word in the index is determined by using the following formula:

similarity = 1 - (edit_distance / min (len(term), len(word)))

The edit distance between the search term and the indexed word is calculated by using the Levenshtein Distance, or Edit

Distance algorithm. The min() function returns the minimum of the two values of the len() functions, which return the length

139

OneDB Database Extensions User's Guide

140

of the search term and the indexed word. The following table shows the values used to calculate similarity and the resulting

similarity between the search term "tone" and various indexed words.

Table 21. Sample set of comparisons

T

erm Length of term Word

Length

of word

Edit dis

tance Similarity

tone 4 tone 4 0 1.00

tone 4 ton 3 1 0.67

tone 4 tune 4 1 0.75

tone 4 tones 4 1 0.75

tone 4 once 4 2 0.50

tone 4 tan 3 2 0.33

tone 4 two 3 3 0.00

tone 4 terrible 8 6 -0.50

tone 4 fundamental 11 9 -1.25

For example, the following query searches for words with the default degree of similarity of greater than 0.50 to the search

term tone:

bts_contains(text, 'tone~')

This query returns rows that contain these words: tone, ton, tune, and tones. Rows that contain the word onceare not included

because the degree of similarity for once is exactly 0.50, not greater than 0.50. The following query would include the rows

that contain the word once:

bts_contains(text, 'tone~0.49')

Tip: Test the behavior of specifying the degree of similarity with your data before you rely on it in your application.

If the number of indexed tokens that match your fuzzy query exceed 1024, you receive the following error:

(BTSB0) - bts clucene error: Too Many Clauses

To solve this problem, you can make the query more restrictive or you can recreate the bts index with the max_clause_count

index parameter set to a number greater than 1024.

Proximity searches
You can specify the number of nonsearch words that can occur between search terms in a proximity search.

To perform a proximity search, enclose the search terms within double quotation marks and append a tilde (~) followed by

the number of nonsearch words allowed. For example, to search for the terms curb and lake within 8 words of each other

within a document, use the following search predicate:

Chapter 1. Database Extensions User's Guide

bts_contains(column, ' "curb lake"~8 ')

Range searches
With a range search, you match terms that are between the lower and upper bounds specified by the query. Range searches

can be inclusive or exclusive of the upper and lower bounds. Sorting is in lexicographical order (also known as dictionary

order or alphabetic order).

Lexicographical order does not give the expected results to numeric data unless all numbers have the same number of

digits. If necessary, add zeros to the beginning of numbers to provide the necessary number of digits.

Range searches use the keyword TO to separate search terms. By default, the word "to" is a stopword and is not an indexed

term. If you are using a stopword list that does not include the word "to" or you are not using a stopword list, omit the word

TO from the range query.

Inclusive range searches

Use brackets ([]) in the search predicate to specify an inclusive search. The syntax is [searchterm1 TO searchterm2].

The following search predicate finds all terms between apple and orange, including the terms apple and orange:

bts_contains(column, ' [apple TO orange] ')

This example finds all terms between 20063105 and 20072401, including 20063105 and 20072401:

bts_contains(column, ' [20063105 TO 20072401] ')

Exclusive range searches

Use braces ({ }) in the search predicate to specify an exclusive search. The syntax is {searchterm1 TO searchterm2}.

The following search predicate finds all terms between Beethoven and Mozart, excluding the terms Beethoven and Mozart:

bts_contains(column, ' {Beethoven TO Mozart} ')

This example finds all terms between 65 and 89, excluding 65 and 89:

bts_contains(column, ' {65 TO 89} ')

Boost a term
Boosting a term assigns more relevance to a word or phrase.

By default, all terms have equal value when the relevance score of a matching document is computed. Boosting a term raises

the score of a document that contains it above the score of documents that do not. The search results are the same, but

when sorted in descending order by score, documents containing the boosted term appear higher in the results.

To boost a term, use the caret symbol (^) followed by a number for the boost factor after the term that you want to appear

more relevant. By default the boost factor is 1. It must be a positive number, but it can be less than one: for example .3 or .5.

141

OneDB Database Extensions User's Guide

142

For example, if your search terms are Windows and UNIX as in the search predicate bts_contains(column, ' Windows UNIX '),

you can boost the term Windows by a factor of 4:

bts_contains(column, ' Windows^4 UNIX ')

This example boosts the phrase road bike over the phrase mountain bike by a factor of 2:

bts_contains(column, ' "road bike"^2 "mountain bike" ')

You can also boost more than one term in a query. This example would return rows with the term lake before documents

with the term land, before documents with the term air.

bts_contains(column, ' lake^20 land^10 air ')

Tip: Test the behavior of boosting a term with your data before you rely on it in your application.

Boolean operators
Boolean operators combine terms in logical combinations. You can use the operators AND, OR, and NOT, or their equivalent

special characters, in the bts_contains() search predicate.

By default, the OR operator is assumed if you do not supply a Boolean operator between two terms. However, you change the

default operator to AND by setting the query_default_operator to AND when you create a bts index. For more information,

see bts access method syntax on page 122.

The Boolean operators are not case-sensitive.

AND operator
The AND operator matches documents where both terms exist anywhere in the text of a single document.

You can also use two adjacent ampersands (&&) instead of AND.

If the query_default_operator index parameter is set to AND, the AND operator is assumed if you do not specify a Boolean

operator between two terms.

The following search predicates search for documents that contain both the word UNIX and the phrase operating system:

bts_contains(column, ' UNIX AND "operating system" ')

bts_contains(column, ' UNIX && "operating system" ')

The following search predicates search XML data for documents that contain both the word travel in the book field and the

word stewart in the author field:

bts_contains(column, ' book:travel AND author:stewart ')

bts_contains(column, ' book:travel && author:stewart ')

The following search predicate searches for documents that contain both the word travel in the book field and the phrase

john stewart in the author field:

bts_contains(column, ' book:travel AND author:"john stewart" ')

Chapter 1. Database Extensions User's Guide

OR operator

The OR Boolean operator is the default conjunction operator. If no Boolean operator appears between two terms, the OR

operator is assumed, unless the query_default_operator index parameter is set to AND. In that case, you must specify the OR

operator, or use two adjacent vertical bars (||) to represent the OR operator.

The following search predicates find documents that contain either the term UNIX or the term Windows:

bts_contains(column, ' UNIX Windows ')

bts_contains(column, ' UNIX OR Windows ')

bts_contains(column, ' UNIX || Windows ')

NOT operator
Use the NOT Boolean operator in combination with the AND operator (or its equivalent symbols) when you want to search for

documents that do not contain a specified term or phrase.

The NOT operator can also be denoted with an exclamation point (!) or with a minus sign (-).

The following search predicates find documents that contain the term UNIX, but not the term Windows:

bts_contains(column, ' UNIX AND NOT Windows ')

bts_contains(column, ' UNIX AND !Windows ')

bts_contains(column, ' +UNIX -Windows ')

The minus sign (-) can be used with the plus sign (+), but not with the AND operator.

Basic text search JSON index parameters
You can include JSON index parameters when you create a bts index to control how JSON and BSON columns are indexed.

By default, all field names and values are indexed as unstructured text in the contents field. Use JSON index parameters to

control the following aspects of the bts index:

• Whether to index the documents as field name-value pairs so that you can search for text by field. Enable the

all_json_names index parameter to index all field names. Set the json_names index parameters to index specific field

names. You have the following choices to further refine how field name-value pairs are indexed:

◦ Whether to include JSON or BSON object paths in field name-value pairs so that you can search based on the

field hierarchy in the document. Enable the json_path_processing index parameter to index paths.

◦ Whether to index the position of values in arrays so that you can search specific positions in arrays. Enable

the json_array_processing index parameter to index the position of arrays.

◦ Whether to index as both field name-value pairs and unstructured text so that you have the flexibility to search

a specific field or all fields. Enable the include_contents index parameter to include an unstructured index of

field names and values.

143

OneDB Database Extensions User's Guide

144

• Whether an unstructured index contains only values and no field names so that you do not receive field names in

search results. Enable the only_json_values index parameter to limit the unstructured index to values.

• Whether to ignore format errors for JSON or BSON documents. Enable the ignore_json_format_errors index

parameter to ignore incorrectly formatted documents.

Requirements and restrictions

The JSON or BSON documents must be in a UTF-8 locale.

Any XML values in a JSON or BSON document are indexed as unstructured text.

The following parts of JSON or BSON documents are indexed by a bts index:

• JSON string values, or the corresponding BSON element code 0x2.

• JSON number values, which are converted to string representations: 4-byte integers, 8-byte integers, and 8-byte

floating points, or the corresponding BSON element codes: \x01, \x09, \x10, \x11, and \x12.

• JSON TimeStamp and Coordinated Universal Time Datetime values, which are converted to string representations

The following parts of JSON or BSON documents are not indexed:

• JSON Boolean true, Boolean false, and null values

• The BSON element codes: 0x05, 0x06, 0x07, 0x08, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0xFF, and 0x7F.

• Any name-value pair that has a zero-length field name

• Fields that contain numbers

You cannot create a composite index on a JSON or BSON column.

Example document

The examples for indexing JSON and BSON documents are based on the following JSON document, which is assumed to be

in the docs column of the json_tab table:

{ "person" : {
 "givenname" : "Jim",
 "surname" : "Flynn",
 "age" : 29,
 "cars" : ["dodge", "olds"],
 "parents":[
 { "givenname" : "Slim",
 "surname" : "Flynn" },
 { "givenname" : "Lynn",
 "surname" : "Kim" }
]
}

The bts index on a JSON or BSON document is based on a tree representation of the document. You need to understand the

tree representation if you include paths or array positions in the field name-value pairs of a structured index. The example

JSON document has the following tree representation:

Chapter 1. Database Extensions User's Guide

 "person".
 "givenname" : "Jim"
 "surname” : "Flynn"
 "age" : "29",
 "cars".
 "0" : "dodge"
 "1" : "olds"
 "parents".
 "0".
 "givenname" : "Slim"
 "surname" : "Flynn"
 "1".
 "givenname" : "Lynn"
 "surname" : "Kim"

JSON index parameters syntax
You can use JSON index parameters to index the contents of JSON and BSON columns as structured or unstructured text, or

both.

Include JSON index parameters in the bts index definition when you create the bts index. See bts access method syntax

on page 122. You can also create a bts index on a BSON column by running the HCL OneDB™ JSON createTextIndex

command. Both methods requires the same syntax for JSON and other bts index parameters.

You can index JSON or BSON documents as structured or unstructured text.

JSON index parameters for structured text

“ { <The json_names index parameter> (explicit id) | all_json_names= { "yes" | "no" } (explicit id) } ”

“ [, include_contents = { "yes" | "no" } (explicit id) [, only_json_values = { "yes" | "no" } (explicit id)]] ”

“ [, json_path_processing = { "yes" | "no" } (explicit id)] ”

“ [, json_array_processing= { "yes" | "no" } (explicit id)] ”

“ [, ignore_json_format_errors= { "yes" | "no" } (explicit id)] ”

JSON index parameters for unstructured text

“ [only_json_values= { "yes" | "no" } (explicit id)] ”

“ [, json_array_processing= { "yes" | "no" } (explicit id)] ”

“ [, ignore_json_format_errors= { "yes" | "no" } (explicit id)] ”

145

OneDB Database Extensions User's Guide

146

Usage

If you do not include any JSON index parameters when you create a bts index on a JSON or BSON column, both the field

names and the values are indexed together as unstructured text.

Include a comma between parameters.

Example

Example

The following statement creates a bts index without JSON index parameters on the example JSON docs column:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts;

The resulting index contains the following unstructured text that is based on the tree representation of the document in the

contents field:

contents: person givenname jim surname flynn age 29 cars dodge olds parents
givenname slim surname flynn givenname lynn surname kim

all_json_names index parameter
Enable the all_json_names index parameter to index JSON or BSON documents as field name-value pairs instead of as

unstructured text.

All the field names in the documents in the column are indexed as fields in the bts index. When you query on the JSON or

BSON column, you must specify the field name to search in the bts_contains() search predicate.

You can include the json_path_processing and json_array_processing index parameters to add the paths and array positions

to the field names.

To view the fields that you indexed, run the bts_index_fields() function.

Example

Example: Index all field name-value pairs

The following statement creates a bts index with the all_json_names index parameter enabled on the example JSON docs

column:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(all_json_names="yes");

The resulting index contains the following field name-value pairs:

givenname: jim
surname: flynn
givenname: slim
surname: flynn

Chapter 1. Database Extensions User's Guide

age: 29
cars: dodge
cars: olds
givenname: lynn
surname: kim

You can specify the following fields in the search predicate: givenname, surname, age, and cars.

ignore_json_format_errors index parameter
Enable the ignore_json_format_errors index parameter to skip inserting incorrectly formatted JSON or BSON documents

and continue processing the SQL statement. By default, if you attempt to insert a JSON or BSON document that contains a

format error, such as a missing brace or bracket, the entire SQL statement fails.

When you create a bts index or have an existing bts index and you insert JSON or BSON documents, the database server

checks the formatting of the documents. When you enable the ignore_json_format_errors index parameter, incorrectly

formatted documents are not inserted, but the rest of the statement continues processing. Any skipped documents result in

messages in the online message log.

Example

Example

The following statement creates a bts index with the ignore_json_format_errors index parameter enabled on the example

JSON docs column:

create index bts_idx
 on json_tab (docs bts_json_ops)
 using bts(ignore_json_format_errors="yes");

include_contents index parameter
Enable the include_contents index parameter to index JSON or BSON documents as unstructured text as well as indexing the

documents as field name-value pairs.

You can enable the include_contents index parameter if the all_json_names parameter is enabled or the json_names

parameter is specified.

By default, both field names and values are indexed in the contents field. If you enable the only_json_values index parameter,

only the values are indexed in the contents field.

Example

Example: Index all fields as field name-value pairs and unstructured text

The following statement creates a bts index with the all_json_names and include_contents index parameters enabled on the

example JSON docs column:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(

147

OneDB Database Extensions User's Guide

148

 all_json_names="yes",
 include_contents="yes");

The resulting index contains the following 9 field name-value pairs, and the field names and values as unstructured text in the

contents field:

givenname: jim
givenname: slim
givenname: lynn
age: 29
cars: dodge
cars: olds
surname: flynn
surname: flynn
surname: kim
contents: person givenname jim surname flynn age 29 cars dodge olds
parents givenname slim surname flynn givenname lynn surname kim

Example

Example: Index specified field name-value pairs, paths, and values as unstructured text

The following statement creates a bts index with the json_names, json_path_processing, only_json_values, and

include_contents index parameters enabled on the example JSON docs column:

create index bts_idx
 on json_tab (docs bts_json_ops)
 using bts(
 json_names="(person.givenname,parents.surname)",
 json_path_processing="yes",
 include_contents="yes",
 only_json_values="yes");

The resulting index contains four fields: three field name-value pairs with paths and the unstructured text in the contents

field:

person.givenname: jim
parents.surname: flynn
parents.surname: kim
contents: jim flynn 29 dodge olds slim flynn lynn kim

json_array_processing index parameter
Enable the json_array_processing index parameter to index the array positions of values in JSON or BSON documents as

field names.

Array positions are numbers, starting with 0, which represent the position of the value in the array. For example, the array

"cars" : ["dodge", "olds"] has two positions:

"cars".
 "0" : "dodge"
 "1" : "olds"

Chapter 1. Database Extensions User's Guide

In this example, the field name for dodge is 0 and the field name for olds is 1. Field names that are only numbers cannot be

queried, and are therefore not indexed. If you index field name-value pairs and array positions, but not paths, then field name-

value pairs in arrays are not indexed, because the field names are numbers.

Indexing the array positions is most useful when you also index field name-value pairs and paths. Array positions in a field

name that includes a path are indexed because the field name contains more than just a number. For example, the field

names with paths from the example array are cars.0 and cars.1.

When array and path processing are both enabled, the paths specified in the json_names index parameter must include array

positions.

Example

Example: Index array positions

The following statement creates a bts index with the json_array_processing index parameter enabled on the example JSON

docs column:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(
 json_array_processing="yes");

The resulting index indexes the following unstructured text that contains the values and the array positions in the document

in the contents field:

contents: person givenname jim surname flynn age 29 cars 0 dodge 1 olds
parents 0 givenname slim surname flynn 1 givenname lynn surname kim

In this example, indexing the array positions does not provide meaningful index entries because the position numbers are not

differentiated from other values. If you query for the number 1, you do not know if the number is a value or an array position.

Array positions are meaningful only in the context of field names and paths.

Example

Example: Index all field name-value pairs, paths, and array positions

The following statement creates a bts index with the all_json_names, json_path_processing, and json_array_processing index

parameters enabled on the example JSON docs column:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(
 all_json_names="yes",
 json_path_processing="yes",
 json_array_processing="yes");

The resulting index contains the following field name-value pairs that contain paths and array positions:

person.givenname: jim
person.surname: flynn
person.age: 29
person.cars.0: dodge

149

OneDB Database Extensions User's Guide

150

person.cars.1: olds
person.parents.0.givenname: slim
person.parents.0.surname: flynn
person.parents.1.givenname: lynn
person.parents.1.surname: kim

Example

Example: Index specified field name-value pairs, paths, and array positions

The following statement creates a bts index with the json_names, json_path_processing, and json_array_processing index

parameters enabled on the example JSON docs column:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(
 json_names="(person.givenname,parents.1.surname)",
 json_path_processing="yes",
 json_array_processing="yes");

The array position is required. If you specify parents.surname instead of parents.1.surname, this example results in an error.

The resulting index contains the following field name-value pairs that contain paths and array positions:

person.givenname: jim
parents.1.surname: kim

Example

Example: Index all field name-value pairs and array positions

The following statement creates a bts index with the all_json_names and json_array_processing index parameters enabled

on the example JSON docs column:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(
 all_json_names="yes",
 json_array_processing="yes");

The resulting index contains the following field name-value pairs and array positions:

givenname: jim
givenname: slim
givenname: lynn
age: 29
surname: flynn
surname: flynn
surname: kim

The following field name-value pairs are not indexed because the field names are numbers:

0: dodge
1: olds

Chapter 1. Database Extensions User's Guide

json_names index parameter
Enable the indexing of specific field name-value pairs in JSON or BSON documents with the json_names index parameter.

The input for the field names for the json_names index parameter can be a comma-separated list of names, an external file,

or a table column.

The json_names index parameter

“ json_names=" { (field) | file:directory/filename | table:table.column } " ”

Table 22. Elements for the json_names index parameter

Elem

ent Description

col

umn

The column that contains the field names to index. Separate field names by commas, white spaces, or new-line

characters.

direc

tory

The location of the file that contains field names to index.

field The field name to index.

filen

ame

The name of the file that contains field names to index. Must be readable by the user who creates the index.

Separate field names by commas, white spaces, or new-line characters.

table The name of the table with the column that contains the field names to index. Must be readable by the user who

creates the index.

The field names that you specify are indexed as fields in the bts index. The values in the fields can be searched. When you

query on the JSON or BSON column, you must specify the field name to search in the bts_contains() search predicate. In

searches, the default field is the first tag or path in the field list. The bts index does not check whether the fields exist in the

column, which means that you can specify fields that you will add to the column after you create the index.

If you enable the json_path_processing index parameter, the field name can include relative or full paths. If you enable the

json_array_processing index parameter, the field name can include array positions.

If you want to add new field names to the index, you must drop the index, update the field name list, and then re-create the

index.

To view the fields that you indexed, run the bts_index_fields() function.

Example

151

OneDB Database Extensions User's Guide

152

Example: Index one field name-value pair

The following statement creates a bts index with the json_names index parameter set to a single field name on the example

JSON docs column:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(json_names="surname");

The resulting index contains the following field name-value pairs:

surname: flynn
surname: flynn
surname: kim

You must specify the surname field in the search predicate.

Example

Example: Index field name-value pairs from a file

The following statement creates a bts index with the json_names index parameter set to a file that is named

jsonfield.txt:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(json_names="file:/jsonfield.txt");

Example

Example: Index field name-value pairs from a column

The following statement creates a bts index with the json_names index parameter set to a column that is named jsonnames

in the json_ref table:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(json_names="table:json_ref.jsonnames");

json_path_processing index parameter
Enable the json_path_processing index parameter to include paths as part of the field names in field-value pairs from JSON

or BSON documents.

You can enable the json_path_processing index parameter if you enable the indexing of field name-value pairs with either one

of the following index parameters:

• The json_names index parameter: In the list of fields to index, you can specify relative paths or full paths. For

example, if the full path is person.parents.surname, you can specify the relative path parents.surname.

• The all_json_names index parameter: Full paths are indexed for all fields.

If you add the json_array_processing index parameter, the paths include array positions, for example: person.cars.0.

Chapter 1. Database Extensions User's Guide

Example

Example: Index all field name-value pairs and paths

The following statement creates a bts index with the all_json_names and json_path_processing index parameters enabled on

the example JSON docs column:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(
 all_json_names="yes",
 json_path_processing="yes");

The resulting index contains the following field name-value pairs that include paths:

person.givenname: jim
person.surname: flynn
person.age: 29
person.cars: dodge
person.cars: car
person.parents.givenname: slim
person.parents.surname: flynn
person.parents.givenname: lynn
person.parents.surname: kim

Example

Example: Index specified field name-value pairs and paths

The following statement creates a bts index with the json_names and json_path_processing index parameters on the

example JSON docs column:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(
 json_names="(parents.surname,
 person.givenname)",
 json_path_processing="yes");

The parents.surname path is a relative path instead of the full path, person.parents.surname.

The resulting index contains the following field name-value pairs that include paths:

person.givenname: jim
parents.surname: flynn
parents.surname: kim

only_json_values index parameter
Enable the only_json_values index parameter to index only the values in the JSON or BSON documents as unstructured text.

The field names are not indexed.

You can index both field name-value pairs and values, but not field names, as unstructured text. The json_names or

all_json_names index parameter enables the indexing of field name-value pairs. The include_contents index parameter

153

OneDB Database Extensions User's Guide

154

enables the indexing of field names and values as unstructured text. Add the only_json_values index parameter to modify the

behavior of the include_contents index parameter to omit field names from the contents field.

Example

Example: Index values as unstructured text

The following statement creates a bts index with the only_json_values index parameter enabled on the example JSON docs

column:

create index bts_idx
 on json_tab (docs bts_json_ops)
 using bts(only_json_values="yes");

The resulting index indexes the following unstructured text that contains only the values in the document in the contents

field:

contents: jim flynn 29 dodge olds slim flynn lynn

Example

Example: Index all field name-value pairs and values as unstructured text

The following statement creates a bts index with the all_json_names, only_json_values, and include_contents index

parameters enabled on the example JSON docs column:

create index bts_idx
 on json_tab (docs bts_json_ops)
 using bts(
 all_json_names="yes",
 include_contents="yes",
 only_json_values="yes");

The resulting index contains the following 9 field name-value pairs and the values as unstructured text in the contents field:

givenname: jim
givenname: slim
givenname: lynn
age: 29
cars: dodge
cars: olds
surname: flynn
surname: flynn
surname: kim
contents: jim flynn 29 dodge olds slim flynn lynn kim

Basic Text Search XML index parameters

This chapter describes the XML index parameters for basic text search and provides detailed examples about each

parameter's usage.

Chapter 1. Database Extensions User's Guide

XML index parameters syntax
You can use XML index parameters to index XML tag and attribute values in separate fields either by tag name, attribute

name, or by path.

When you do not use XML index parameters, XML documents are indexed as unstructured text. The XML tags, attributes, and

values are included in searches and are indexed together in the contents field.

Any JSON or BSON documents in an XML document are indexed as unstructured text.

Include XML index parameters in the bts index definition when you create the bts index. See bts access method syntax on

page 122.

XML Index Parameters

“ { xmltags=" { (field) | file:directory/filename | table:table.column } " (explicit id) | { | all_xmltags= { "no" | [

"yes"] } (explicit id) | all_xmlattrs= { "no" | ["yes"] } (explicit id) } } ”

“ [{ | include_contents= { "no" | ["yes"] } (explicit id) | xmlpath_processing= { "no" | ["yes"] } (explicit

id) | strip_xmltags= { "no" | ["yes"] } (explicit id) | include_namespaces= { "no" | ["yes"] } (explicit id) |

include_subtag_text= { "no" | ["yes"] } (explicit id) }] ”

Table 23. Options for XML index parameters

Ele

ment Description

column The column that contains tags to index.

direct

ory

The location of the file that contains tags to index.

field The XML tag or path to index. The field values can be full or relative XML paths if used with the

xmlpath_processing parameter.

filen

ame

The name of the file that contains tags to index.

table The name of the table that contains the column with tags to index.

Example

Example

For example, you have the following XML fragment:

155

OneDB Database Extensions User's Guide

156

<skipper>Captain Black</skipper>

You can create a bts index for searching the text within the <skipper> </skipper> tags:

CREATE INDEX boats_bts ON boats(xml_data bts_lvarchar_ops)
USING bts(xmltags="(skipper)") IN bts_sbspace;

To search for a skipper's name that contains the word "Black," use the bts search predicate:

bts_contains(xml_data, 'skipper:black')

The xmltags index parameter

Use the xmltags parameter to specify which XML tags or XML paths are searchable in a column.

The XML tags or paths that you specify become the field names in the bts index. The text values within fields can be

searched. In searches, the default field is the first tag or path in the field list. The Basic Text Search module does not check if

the tags exist in the column, which means that you can specify fields for tags that you will add to the column after you have

created the index.

The input for the field names for the xmltags parameter can be one of three forms:

• inline comma-separated values

• an external file

• a table column

Input as inline comma-separated field names

Inline comma-separated field names are useful when you have only a few fields to index. For example,

xmltags="(field1,field2,field3)" where fieldn specifies the tag or path to index.

If the xmltags parameter is enabled, you can specify paths for the xmltags values. For example

xmltags="(/text/book/title,/text/book/author,/text/book/date)"

XML tags are case-sensitive. When you use the inline comma-separated field names for input, the field names are

transformed to lowercase characters. If the field names are uppercase or mixed case, use an external file or a table column

for input instead.

Input from a file or a table column

Input from an external file has the format: xmltags="file:/directory/filename"

Input from a table column has the format: xmltags="table:table.column"

The file or table that contains the field names must be readable by the user creating the index. The file or table is read only

when the index is created. If you want to add new field names to the index, you must drop and re-create the index. The field

names in the file or table column can be separated by commas, white spaces, newlines, or a combination.

Following is an example of how field names can appear in the file or the table column:

Chapter 1. Database Extensions User's Guide

title, author
date ISBN

If the xmlpath_processing parameter is enabled, you can specify paths or combination of paths and individual field names in

the file or the table column:

/text/book/title
author

For information about using XML paths, see The xmlpath_processing index parameter on page 160.

If you want to index all the XML tags in a column, see The all_xmltags index parameter on page 158.

To view the fields that you have indexed, use the bts_index_fields() function. See bts_index_fields() function on page 181.

Example: Index specific XML tags

You can use the xmltags parameter to index-specific fields so that you can restrict your searches by XML tag names.

Given the table:

EXECUTE PROCEDURE IFX_ALLOW_NEWLINE('t');

 CREATE TABLE boats(docid integer, xml_data lvarchar(4096));
 INSERT INTO boats values(1, '
 <boat>
 <skipper>Captain Jack</skipper>
 <boatname>Black Pearl</boatname>
 </boat> ');
 INSERT INTO boats values(2, '
 <boat>
 <skipper>Captain Black</skipper>
 <boatname>The Queen Anne's Revenge</boatname>
 </boat> ');

To create a bts index for the skipper and boatname tags:

CREATE INDEX boats_bts ON boats(xml_data bts_lvarchar_ops)
USING bts(xmltags="(skipper,boatname)") IN bts_sbspace;

The index will contain the following fields:

For the row where docid = 1, the fields are:

skipper:Captain Jack
boatname:Black Pearl

For the row where docid = 2, the fields are:

skipper:Captain Black
boatname:The Queen Anne's Revenge

To search for the skipper with the name " Black", the SELECT statement is:

SELECT xml_data FROM boats WHERE bts_contains(xml_data, 'skipper:black');

157

OneDB Database Extensions User's Guide

158

The search will return docid 2 because the skipper field for that row contains the word "black." For docid = 1, the boatname

field also contains the word "black," but it is not returned because the search was only for the skipper field.

The all_xmltags index parameter

Use the all_xmltags parameter to enable searches on all the XML tags or paths in a column.

All the XML tags are indexed as fields in the bts index. If you use the xmlpath_processing parameter, full paths are indexed.

The text value within fields can be searched. The attributes of XML tags are not indexed in a field unless you use the

all_xmlattrs index parameter.

For information about using paths, see The xmlpath_processing index parameter on page 160.

If you want to index only specific tags in a column, use the xmltags parameter. See The xmltags index parameter on

page 156.

To view the fields that you have indexed, use the bts_index_fields() function. See bts_index_fields() function on page 181.

Example: Index all XML tags

You can use the all_xmltags parameter to index all of the tags in a column.

Given the XML fragment:

<book>
 <title>Graph Theory</title>
 <author>Stewart</author>
 <date edition="second">January 14, 2006</date>
</book>

To create an index for all the XML tags, use the SQL statement:

CREATE INDEX book_bts ON books(xml_data bts_lvarchar_ops)
USING bts(all_xmltags="yes") IN bts_sbspace;

The index will contain three fields that can be searched:

title:graph theory
author:stewart
date:january 14, 2006

The top level <book></book> tags are not indexed because they do not contain text values. The edition attribute is also not

indexed.

If you enable path processing with the xmlpath_processing parameter, you can index the full paths:

CREATE INDEX book_bts ON books(xml_data bts_lvarchar_ops)
USING bts(all_xmltags="yes",xmlpath_processing=”yes”) IN bts_sbspace;

The index will contain three fields with full paths that can be searched:

/book/title:graph theory
/book/author:stewart
/book/date:january 14, 2006

Chapter 1. Database Extensions User's Guide

The all_xmlattrs index parameter

Use the all_xmlattrs parameter to search on XML attributes in a document repository stored in a column of a table. This

parameter enables searches on all attributes that are contained in the XML tags or paths in a column that contains an XML

document.

Specify an attribute using the syntax @attrname, where attrname is the name of the attribute.

All the XML attributes are indexed as fields in the bts index. If you use the xmlpath_processing parameter, full paths are

indexed. The text value within fields can be searched. The tags of XML tags are not indexed in a field unless you use the

all_xmltags index parameter.

To view the fields that you have indexed, use the bts_index_fields() function. See bts_index_fields() function on page 181.

Examples: Index XML attributes

These examples are based on the following three rows of data:

<boat><name reg="hmc">titanic</name></boat>

<airplane callsign="qofz">kittyhawk</airplane>

<boat><name reg="CAN">Spirit of Canada</name></boat>

Example 1: Compare all_xmltags and all_xmlattrs

The following CREATE INDEX statement uses the all_xmltags parameter:

CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)
 USING bts(all_xmltags="yes") IN bts_sbspace1 ;

The index has these fields representing the type of tag:

airplane
name

By contrast, the following CREATE INDEX statement uses the all_xmlattrs parameter instead of the all_xmltags parameter:

CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)
 USING bts(all_xmlattrs="yes") IN bts_sbspace1 ;

The index has these fields representing the attributes of the tags:

@callsign
@reg

Example 2: Combine all_xmlattrs and all_xmltags

The following CREATE INDEX statement uses both the all_xmlattrs and the all_xmltags parameters:

CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)
 USING bts(all_xmlattrs="yes",
 all_xmltags="yes") IN bts_sbspace1 ;

The index has these fields representing both the types of tags and the tag attributes:

159

OneDB Database Extensions User's Guide

160

@callsign
@reg
airplane
name

Example 3: Combine all_xmlattrs, all_xmltags, and xmlpath_processing

The following CREATE INDEX statement uses the all_xmlattrs, the all_xmltags, and the xmlpath_processing parameters:

CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)
 USING bts(xmlpath_processing="yes",
 all_xmlattrs="yes",
 all_xmltags="yes") IN bts_sbspace1 ;

The index has these fields, representing the full paths of the tags and attributes:

/airplane
/airplane@callsign
/boat/name
/boat/name@reg

Example 4: Comparing all_xmltags to all_xmlattrs along with xmlpath_processing

The following CREATE INDEX statement uses the all_xmltags parameter with the xmlpath_processing parameter:

CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)
 USING bts(xmlpath_processing="yes",
 all_xmltags="yes") IN bts_sbspace1 ;

The index has these fields, representing the paths of the tags:

/airplane
/boat/name

The following CREATE INDEX statement uses the all_xmlattrs parameter with the xmlpath_processing parameter:

CREATE INDEX bts_idx ON bts_100_tab(col2 bts_nvarchar_ops)
 USING bts(xmlpath_processing="yes",
 all_xmlattrs="yes") IN bts_sbspace1 ;

The index has these fields, representing the paths of the attributes:

/airplane@callsign
/boat/name@reg

The xmlpath_processing index parameter

Use the xmlpath_processing parameter to enable searches based on XML paths.

The xmlpath_processing parameter requires that you specify tags with the xmltags parameter or that you enable the

all_xmltags or all_xlmattrs parameter.

When you enable xmlpath_processing, all the tags within the path are searched. Tags that are not within the path cannot be

searched. If xmlpath_processing is not enabled only individual tags can be searched.

Chapter 1. Database Extensions User's Guide

Full paths and relative paths in path processing

The XML path can be either a full path or a relative path.

Full paths

Full paths begins with a slash (/). If you use the all_xmltags parameter with xmlpath_processing, all of the full paths are

indexed. You can index specific full or relative paths when you use the xmltags parameter.

Given the XML fragment:

<text>
<book>
 <title>Graph Theory</title>
 <author>Stewart</author>
 <date>January 14, 2006</date>
</book>
<text>

The following full XML paths can be processed with the xmlpath_processing parameter:

/text/book/title
/text/book/author
/text/book/date

Tip: If you have indexed a full path, include the initial slash (/) in the search predicate. For example:

bts_contains("/text/book/author:stewart")

Relative paths

Relative paths begin with text. You can specify one or more relative or full paths with the xmltags parameter.

Based on the preceding XML fragment, each of the following relative XML paths can be processed with the

xmlpath_processing parameter:

text/book/title
text/book/author
text/book/date
book/title
book/author
book/date
title
author
date

The field is created from the first matching path for the values specified with the xmltags parameter.

You can create an index for the book/title and the title fields:

CREATE INDEX books_bts ON books(xml_data bts_lvarchar_ops)
using bts(xmltags="(book/title,title)",xmlpath_processing=”yes”)
IN bts_sbspace;

161

OneDB Database Extensions User's Guide

162

In that case, the index will contain only the first matching field, book/title. It will not contain a title field:

book/title:Graph Theory

To view the fields that you have indexed, use the bts_index_fields() function. See bts_index_fields() function on page 181.

Example: Index XML paths

Use XML path processing to restrict searches by paths.

Given the XML fragment:

<boat>
 <skipper>Captain Black</skipper>
 <boatname>The Queen Anne's Revenge</boatname>
 <alternate>
 <skipper>Captain Blue Beard</skipper>
 </alternate>
</boat>

Following are the possible XML paths and text values:

/boat/skipper:Captain Black
/boat/boathame:The Queen Anne's Revenge
/boat/alterate/skipper:Captain Blue Beard

To create an index for boat/skipper and skipper, use the statement:

CREATE INDEX boats_bts ON boats(xml_data bts_lvarchar_ops)
using bts(xmltags="(boat/skipper,skipper)",xmlpath_processing=”yes”)
IN bts_sbspace;

Each path is compared to the values specified by the xmltags parameter. The index then creates fields for the entire first

matching path found for each xmltags value. In this example, the first path matches boat/skipper. The third path matches

skipper. The index will contain two fields that can be searched:

/boat/skipper:Captain Black
/boat/alterate/skipper:Captain Blue Beard

The include_contents index parameter

Use the include_contents parameter to add the contents field to the index.

The include_contents parameter must be used with either the xmltags parameter specified or with the all_xmltags or

all_xmlattrs parameter enabled.

When you do not use XML index parameters, XML documents are indexed as unstructured text in the contents field. When

you specify the xmltags parameter or you enable the all_xmltags parameter, you can add the contents field to the index by

enabling the include_contents parameter. This allows you to search the unstructured text in the contents field in addition to

fields containing the tag or attribute text.

To view the fields that you have indexed, use the bts_index_fields() function. See bts_index_fields() function on page 181.

Chapter 1. Database Extensions User's Guide

Example: Index XML tag values and XML tag names

Use the include_contents parameter to search both XML tag values and XML tag names.

Given the XML fragment:

<book>
 <title>Graph Theory</title>
 <author>Stewart</author>
 <date>January 14, 2006</date>
</book>

To create a bts index for all the tags as well as the XML tags in their unstructured form, use the statement:

CREATE INDEX book_bts ON books(xml_data bts_lvarchar_ops)
USING bts(all_xmltags="yes",include_contents="yes")
IN bts_sbspace;

The index will have four fields; one for each of the XML tags and one for the contents field:

title:graph theory
author:stewart
date:january 14, 2006
contents:<book> <title>Graph Theory</title> <author>Stewart</author>
 <date>January 14, 2006</date> </book>

The strip_xmltags index parameter

Use the strip_xmltags parameter to add the untagged values to the contents field in the index. Attribute values are also

removed.

Unlike other XML index parameters, you can use the strip_xmltags parameter in a CREATE INDEX statement without

specifying the xmltags parameter or enabling the all_xmltags parameter. In this case, the contents field is created

automatically.

However, if you specify the xmltags parameter or if you enable the all_xmltags parameter, you must also enable the

include_contents parameter.

To view the fields that you have indexed, use the bts_index_fields() function. See bts_index_fields() function on page 181.

Example: Index XML tag values in a separate field

Given the XML fragment:

<book>
 <title>Graph Theory</title>
 <author>Stewart</author>
 <date>January 14, 2006</date>
</book>

To create an index with the untagged values only, use the statement:

CREATE INDEX books_bts ON books(xml_data bts_lvarchar_ops)
USING bts(strip_xmltags="yes") IN bts_sbspace;

163

OneDB Database Extensions User's Guide

164

The index will contain a single contents field:

contents:Graph Theory Stewart January 14, 2006

To create an index that has XML tag fields as well as a field for the untagged values, use the statement:

CREATE INDEX book_bts ON books(xml_data bts_lvarchar_ops)
USING bts(all_xmltags="yes",include_contents="yes",strip_xmltags="yes")
IN bts_sbspace;

The index will contain XML tag fields as well as the untagged values in the contents field:

title:graph theory
author:stewart
date:january 14, 2006
contents:Graph Theory Stewart January 14, 2006

The include_namespaces index parameter

Use the include_namespaces parameter to index XML tags that include namespaces in the qualified namespace format

prefix:localpart. For example:

<book:title></book:title>

The include_namespaces parameter must be used with either the xmltags parameter specified or with the all_xmltags

parameter enabled.

When you enable the include_namespaces parameter and the data includes the namespace in the indexed tags, you must

use the namespace prefix in your queries and escape each colon (:) with a backslash (\).

For example, to search for the text Smith, in the field customer:name:, use the format:

bts_contains("/customer\:name:Smith")

To view the fields that you have indexed, use the bts_index_fields() function. See bts_index_fields() function on page 181.

Example: Index namespaces in XML data

The following XML fragment contains the namespace book:title:

<book>
<book:title>Graph Theory</book:title>
<author>Stewart</author>
<date>January 14, 2006</date>
</book>

You can create a bts index with the include_namespaces parameter disabled as in the statement:

CREATE INDEX books_bts ON books(xml_data bts_lvarchar_ops)
USING bts(all_xmltags="yes",include_namespaces="no",xmlpath_processing="yes")
IN bts_sbspace;

In that case, the namespace prefix book: is ignored. The index will have the following fields.

Chapter 1. Database Extensions User's Guide

/book/title:graph theory
/book/author:stewart
/book/date:january 14, 2006

Also, you can create a bts index with the include_namespaces parameter enabled, as in the statement:

CREATE INDEX books_bts ON books(xml_data bts_lvarchar_ops)
USING bts(all_xmltags="yes",include_namespaces="yes",xmlpath_processing="yes")
IN bts_sbspace;

In that case, the tag with the namespace book:title is the first field. The index has the following fields:

/book/book:title:graph theory
/book/author:stewart
/book/date:january 14, 2006

To search the field /book/book:title: for the text theory, use the search predicate:

bts_contains("/book/book\:title:theory")

When you specify tags with the xmltags parameter, you can index the tags with and without namespaces in different

combinations using the include_namespaces parameter. For example, given the XML fragments:

<bsns:bookstore>
 <title> Marine Buyers' Guide </title>
 <bns2:title> Boat Catalog </bns2:title>
 </bsns:bookstore>

<bsns:bookstore>
 <bns1:title> Toy Catalog </bns1:title>
 <bns2:title> Wish Book </bns2:title>
 </bsns:bookstore>

To index only the title tag, use the format:

CREATE INDEX bookstore_bts ON bookstores(xml_data bts_lvarchar_ops)
USING bts(xmltag="(title)",include_namespaces="yes)
IN bts_sbspace;

Even though the include_namespaces parameter is enabled, the index will contain only one field because the fields

bns1:title and bns2:title do not match the specified tag title.

If you want to index a namespace, include the namespace prefix in the specified tags. For example if you use the format:

CREATE INDEX bookstore_bts ON bookstores(xml_data bts_lvarchar_ops)
USING bts(xmltag="(title,bns1:title)",include_namespaces="yes)
IN bts_sbspace;

The index will contain the fields:

title: Marine Buyers' Guide
bns1:title: Toy Catalog

The include_subtag_text index parameter

Use the include_subtag_text parameter to index XML tags and subtags as one string. The include_subtag_text parameter is

useful when you want to index text that has been formatted with bold or italic <i></i> tags.

165

OneDB Database Extensions User's Guide

166

Use the include_subtag_text parameter with either the xmltags parameter specified or with the all_xmltags parameter

enabled.

To view the fields that you have indexed, use the bts_index_fields() function. See bts_index_fields() function on page 181.

Example: Index subtags in XML data

You can use the include_subtag_text parameter to include the text within formatting tags in the indexed data.

Given the XML fragment:

<comment>
this
<bold> highlighted </bold>
text is very
<italic>
<bold>important</bold>
</italic>
to me
</comment>

If you create a bts index with the include_subtag_text parameter disabled:

CREATE INDEX comments_bts ON mylog(comment_data bts_lvarchar_ops)
USING bts(xmltags="(comment)",include_subtag_text="no") IN bts_sbspace;

The index will have three separate comment fields:

comment:this
comment:text is very
comment:to me

If you create a bts index with the include_subtag_text parameter enabled:

CREATE INDEX comments_bts ON mylog(comment_data bts_lvarchar_ops)
USING bts(xmltags="(comment)",include_subtag_text="yes") IN bts_sbspace;

All of the text is indexed in a single comment field:

comment:this highlighted text is very important to me

Basic text search analyzers
A text analyzer prescribes how text is indexed.

A text analyzer converts input text into tokens that are indexed.

Analyzers differ in the ways that they process the following text attributes:

• Letter case

• Stopwords

• Chinese, Japanese, and Korean characters

• Numbers and non-alphabetic characters

• White spaces

Chapter 1. Database Extensions User's Guide

• Word stems

• Word pronunciation

If your needs are different than any of the basic text search analyzers, you can create a user-defined analyzer.

analyzer index parameter
When you create a bts index, you can include the analyzer index parameter to set the default analyzer and any specific

analyzers for specific fields.

The analyzer index parameter

“ analyzer=" ”

“ { [field:] analyzer | ([field:] analyzer) | file: directory/filename | table:table. column } ”

“ " ”

Table 24. Options for the analyzer index parameter

Element Description

analyzer The name of the analyzer. Possible values:

• standard: Default. Processes alphabetic characters, special characters, and

numbers with stopwords.

• alnum: Processes strings of numbers and characters into tokens.

• alnum+characters: Includes the specified characters in tokens. List

characters without spaces. The maximum length of the character list is 128

bytes.

• cjk: Processes Chinese, Japanese, and Korean text. Ignores surrogates.

• cjk.ws: Processes Chinese, Japanese, and Korean text. Processes

surrogates.

• esoundex: Processes text into pronunciation codes.

• keyword: Processes input text as a single token and adds trailing white

spaces as necessary for fixed-length data type columns.

• keyword.rt: Processes input text as a single token and removes trailing white

spaces.

• simple: Processes alphabetic characters only. Ignores stopword lists.

• snowball: Processes text into stem words.

• snowball.language: Processes text into stem words in the specified language.

• soundex: Processes text into pronunciation codes.

• stopword: Processes alphabetic characters only, except stopwords.

167

OneDB Database Extensions User's Guide

168

Table 24. Options for the analyzer index parameter (continued)

Element Description

• udr.function_name: Creates tokens according to the specified user-defined

analyzer.

• whitespace: Creates tokens that are based on white space only.

column The name of the column that contains analyzer assignments.

directory The path for the analyzer assignments file.

field The XML tag, path, or the column name that is indexed.

filename The name of the file that contains analyzer assignments.

table The name of the table that contains analyzer assignments.

Usage

To use the same analyzer for all fields or columns that are indexed when you create the bts index, include the analyzer name

without a field name. To use more than one analyzer, enclose multiple analyzer and field pairs in parentheses. To use one

analyzer for most fields but other analyzers for specific fields, list the first analyzer without a field and the other analyzers

with fields. The first analyzer is used for all fields except the ones that are explicitly listed with analyzer assignments.

You can specify the list of analyzers by field in a table column or in a file. The file or table must be readable by the user who

creates the index. Separate the field name and analyzer pairs in the file or table by commas, white spaces, new lines, or a

combination of those separators. The file or table becomes read-only when the index is created. If you want to add or change

analyzer assignments, you must drop and re-create the index.

Examples

The following example creates a bts index on one column and uses the CJK analyzer:

CREATE INDEX desc_idx ON products (brands bts_char_ops)
 USING bts (analyzer="cjk") IN sbsp1;

The following example creates a bts index on two XML fields and uses a different analyzer for each field:

CREATE INDEX boats_bts
ON boats(xml_data bts_lvarchar_ops)
USING bts
(
xmltags="(skipper,boatname)" ,
analyzer="(skipper:soundex,boatname:snowball)"
)
IN bts_sbspace;

Analyzer support for query and index options
The basic text search analyzer that you specify affects whether you can use stopwords or a thesaurus when you create an

index and which query term modifiers you can use when you query text.

Chapter 1. Database Extensions User's Guide

The following table shows which analyzers support query term modifiers, lowercase processing, stopwords, and a thesaurus.

Table 25. Analyzers and query term modifiers and index parameters

Analyzer Word Phrase Wildcard Fuzzy Proximity Range Boolean Lowercase Stopwords Thesaurus

Alnum yes yes yes yes yes yes yes yes yes yes

CJK yes yes 1 1 1 1 yes yes yes yes

eSoundex yes yes 2 2 no no yes yes yes no

Keyword yes yes yes yes yes no yes no no no

Simple yes yes yes yes yes yes yes yes no yes

Soundex yes yes 2 2 no no yes yes yes no

Snowball 3 3 4 4 4 3 yes yes yes yes

Standard yes yes yes yes yes yes yes yes yes yes

Stopword yes yes yes yes yes yes yes yes yes yes

User-defi

ned analyzer

yes 5 5 5 5 5 yes yes yes yes

Whitespace yes yes yes yes yes yes yes no no yes

1 = ISO Latin characters are supported.

2 = Must use the Soundex or eSoundex codes in the search terms.

3 = Depends on the stem word.

4 = The patterns must be on the stem word. The operation works on the stem word.

5 = Depends on the user-defined analyzer code.

Alnum analyzer
The Alnum analyzer is useful if you want to index words that contain numbers and other characters.

The Alnum analyzer processes text in the following ways:

• Indexes numbers as part of the word.

• Does not index stopwords.

• Converts alphabetic characters to lowercase.

• Treats as white space all non-alphanumeric characters unless the characters are included in the characters list. Non-

alphanumeric characters include: #, %, $, @, &, :, ', (,) , -, _, \, and /.

Include a list of characters to index as part of words by using the alnum+characters syntax. List characters without spaces.

The maximum length of the character list is 128 bytes.

Example

169

OneDB Database Extensions User's Guide

170

Examples

In these examples, the input string is shown on the first line and the resulting tokens are shown on the second line, each

surrounded by square brackets.

In the following example, words that contain both numbers and letters are indexed together and special characters are

treated as white spaces:

1002A 3234 abc123 xyz-abc lmn_opq
[1002a] [3234] [abc123] [xyz] [abc] [lmn] [opq]

In the following example, the analyzer index parameter is set to alnum+_-. The hyphen and underscore characters are

indexed as part of words:

1002A 3234 abc123 xyz-abc lmn_opq
[1002a] [3234] [abc123] [xyz-abc] [lmn_opq]

CJK analyzer
The CJK analyzer processes Chinese, Japanese, and Korean characters into tokens that are indexed.

The CJK analyzer processes text characters in the following ways:

• Transforms the character sets to UTC-4. Half-width and full-width forms are converted so that they have equivalent

characters. For example, fullwidth_digit_zero and digit_zero are treated as the same character.

• Indexes Chinese, Japanese, and Korean characters in overlapping pairs.

• Indexes Latin alphabetic, numeric, and the special characters _, +, and #.

• Stopwords are not indexed.

• Does not process supplementary code points if the analyzer name is cjk,

• Processes supplementary code points as surrogate pairs if the analyzer name is cjk.ws,

Example

Examples

In the following example, the first line shows the input string, in which C1, C2, C3 and C4 represent Chinese, Japanese, or

Korean characters. The second line shows the resulting tokens, each surrounded by square brackets:

sailC1C2C3C4boat
[sail] [C1C2] [C2C3] [C3C4] [boat]

eSoundex analyzer
The eSoundex, or Extended Soundex, analyzer uses the Soundex algorithm to convert words into codes based on the English

pronunciation of their consonants.

Vowel sounds are not included unless the vowel is the first letter of the word. The eSoundex analyzer is the similar to the

Soundex analyzer except that it allows fewer or greater than four characters in its codes, depending on the length of the

word. The eSoundex analyzer is useful if you want to search text based on how words sound. Because the text is converted

to codes, you cannot perform proximity and range searches or specify a thesaurus.

Chapter 1. Database Extensions User's Guide

The eSoundex analyzer processes text characters in the following ways:

• Stopwords are not indexed.

• Numbers and special characters are ignored.

• The colon (:) character is treated as a whitespace, so that characters on either side of it are considered separate

words.

Example

Examples

In these examples, the input string is shown on the first line and the resulting tokens are shown on the second line, each

surrounded by square brackets.

In the following example, the words "the" are not converted to tokens because they are stopwords and the rest of the words

are converted to eSoundex codes that begin with the first letter of the word:

The Quick Brown Fox Jumped Over The Lazy Dog
[q2] [b65] [f2] [j513] [o16] [l2] [d2]

In the following example, the colon is treated as a whitespace and the backslash is ignored:

c:/informix
[c] [i51652]

In the following example, the ampersand is ignored:

XY&Z Corporation
[x2] [c61635]

In the following example, the e-mail address is considered one word:

xyz@example.com
[x2251425]

In the following example, numbers are ignored:

1abc 12abc abc1 abc12
[a12] [a12] [a12] [a12]

In the following examples, three words with the same stem word have different codes:

accept
[a213]
acceptable
[a21314]
acceptance
[a21352]

Keyword analyzer
The Keyword analyzer converts input text into a single token without alteration.

171

OneDB Database Extensions User's Guide

172

The Keyword analyzer is useful if you want to index single words exactly as they are, however, any type of input text is

indexed. You cannot search a range or specify a thesaurus on text indexed by the Keyword analyzer.

The Keyword analyzer processes text characters in the following ways:

• Stopword lists are ignored. All words are indexed.

• Alphabetic characters are not converted to lowercase.

• Numeric and special characters are indexed.

• White spaces are indexed. Queries for text that includes white spaces must escape each white space by a backslash

(\) character.

• If the analyzer name is keyword.rt, removes trailing white spaces during indexing and querying.

• If the analyzer name is keyword, indexes trailing white spaces.

◦ For indexed columns that have fixed-length data types, the keyword analyzer adds white spaces as necessary

to reach the column length. For example, if the text column is of type CHAR(6) and a string has three

characters, abc, the string is indexed with three trailing white spaces, regardless of whether the string included

one or more trailing white spaces: abc . Queries require the correct number of escaped trailing white spaces:

for example, abc\ \ \ .

◦ For indexed columns that have variable-length data types, any trailing white spaces that are included in the

string are indexed. For example, if the text column is of type LVARCHAR, the string abc with one trailing white

space is indexed as a different token from the string abc with two trailing white spaces. Queries require the

correct number of escaped trailing white spaces: for example, abc\ or abc\ \ .

Example

Examples

In these examples, the input string is shown on the first line and the resulting tokens are shown on the second line, each

surrounded by square brackets. The following examples show that the entire input string is preserved exactly as is:

The Quick Brown Fox Jumped Over The Lazy Dog
[The Quick Brown Fox Jumped Over The Lazy Dog]

-12 -.345 -898.2 -56. -
[-12 -.345 -898.2 -56. -]

XY&Z Corporation
[XY&Z Corporation]

xyz@example.com
[xyz@example.com]

The following query string searches for the string The Quick Brown Fox Jumped Over The Lazy Dog:

'The\ Quick\ Brown\ Fox\ Jumped\ Over\ The\ Lazy\ Dog'

Simple analyzer
The Simple analyzer converts text to tokens that contain only alphabetic characters.

Chapter 1. Database Extensions User's Guide

The Simple analyzer is useful if you want to index every word and ignore non-alphabetical characters.

The Simple analyzer processes text characters in the following ways:

• Each word is processed into a separate token.

• Alphabetic characters are converted to lowercase.

• Numeric and special characters are treated as white spaces.

• Stopword lists are ignored. All words are indexed.

Because the Simple analyzer does not support stopwords, omit the word TO from range queries.

Example

Examples

In these examples, the input string is shown on the first line and the resulting tokens are shown on the second line, each

surrounded by square brackets.

In the following example, every word is converted to a lowercase token:

The Quick Brown Fox Jumped Over The Lazy Dog
[the][quick][brown][fox] [jumped] [over] [the] [lazy] [dog]

In the following example, the @ symbol and period are treated as white spaces:

xyz@example.com
[xyz] [example] [com]

In the following example, numbers are not included in the tokens:

1abc 12abc abc1 abc12
[abc] [abc] [abc] [abc]

Soundex analyzer
The Soundex analyzer uses the Soundex algorithm to convert words into four-character codes based on the English

pronunciation of their consonants.

Vowel sounds are not included unless the vowel is the first letter of the word. Additional sounds beyond the first four

phonetic sounds are ignored. If a word has fewer than four phonetic sounds, zeros are used to complete the four-character

codes. The Soundex analyzer is the similar to the eSoundex analyzer except that it uses four characters in its codes,

regardless of the length of the word. The Soundex analyzer is useful if you want to search text based on how the beginnings

of words sound. Because the text is converted to codes, you cannot perform proximity and range searches or specify a

thesaurus.

The Soundex analyzer processes text characters in the following ways:

173

OneDB Database Extensions User's Guide

174

• Stopwords are not indexed.

• Numbers and special characters are ignored.

• The colon (:) character is treated as a whitespace, so that characters on either side of it are considered separate

words.

Example

Examples

In these examples, the input string is shown on the first line and the resulting tokens are shown on the second line, each

surrounded by square brackets. All codes consist of four characters.

In the following example, the words "the" are not converted to tokens because they are stopwords and the rest of the words

are converted to Soundex codes that begin with the first letter of the word:

The Quick Brown Fox Jumped Over The Lazy Dog
[q200] [b650] [f200] [j513] [o160] [l200] [d200]

In the following example, the colon is treated as a whitespace and the backslash is ignored:

c:/informix
[c000] [i516]

In the following example, the ampersand is ignored:

XY&Z Corporation
[x200] [c616]

In the following example, the e-mail address is considered one word:

xyz@example.com
[x225]

In the following example, numbers are ignored:

1abc 12abc abc1 abc12
[a120] [a120] [a120] [a120]

In the following examples, three words with the same stem word have the same code:

accept
[a213]
acceptable
[a213]
acceptance
[a213]

Snowball analyzer
The Snowball analyzer converts words into language and code set specific stem words.

The Snowball analyzer is similar to the Standard analyzer except that is converts words to stem words.

The Snowball analyzer processes text characters in the following ways:

Chapter 1. Database Extensions User's Guide

• Converts words to stem word tokens.

• Stopwords are not indexed.

• Converts alphabetical characters to lower case.

• Ignores colons, #, %, $, parentheses, and slashes.

• Indexes underscores, hyphens, @, and & symbols when they are part of words or numbers.

• Separately indexes numbers and words if numbers appear at the beginning of a word.

• Indexes numbers as part of the word if they are within or at the end of the word.

• Indexes apostrophes if they are in the middle of a word, but removes them if they are at the beginning or end of a

word.

• Ignores an apostrophe followed by the letter s at the end of a word.

By default, the Snowball analyzer uses the language and code set that is specified by the DB_LOCALE environment variable.

You can specify a different language for the Snowball analyzer by appending the language name or synonym to the Snowball

analyzer name in the CREATE INDEX statement: snowball.language.

• Danish, da, dan

• Dutch, nl nld, dut

• English, en, eng

• Porter, por (the original English stemmer)

• Finnish, fi, fin

• French, fr, fra, fre

• German, de, deu, ger

• Italian, it, ita

• Norwegian, no, nor

• Portuguese, pt

• Spanish, es, esl, spa

• Swedish, sv, swe

The Snowball analyzer supports the 8859-1 code set.

Example

Examples

In these examples, the input string is shown on the first line and the resulting tokens are shown on the second line, each

surrounded by square brackets. These examples use the English language, specified by the analyzer="snowball.en" index

parameter. For examples of how the Snowball analyzer uses word stemming in languages other than English, see the

Snowball web site at http://snowball.tartarus.org.

In the following example, stopwords are removed, the words are converted to lower case, and the word "lazy" is converted to

its stem word:

The Quick Brown Fox Jumped Over The Lazy Dog
[quick] [brown] [fox] [jump] [over] [lazi] [dog]

175

http://snowball.tartarus.org

OneDB Database Extensions User's Guide

176

In the following example, the apostrophe at the beginning of a word and the apostrophe followed by an s are ignored, but the

apostrophe in the middle of a word is indexed:

Prequ'ile Mark's 'cause
[prequ'ile] [mark] [cause]

In the following example, the colon and backslash are ignored:

c:/informix
[c] [informix]

In the following example, the ampersand is indexed as part of the company name:

XY&Z Corporation
[xy&z] [corpor]

In the following example, the e-mail address is indexed as is:

xyz@example.com
[xyz@example.com]

In the following example, the three different words are indexed with the same stem word:

accept
[accept]

acceptable
[accept]

acceptance
[accept]

Standard analyzer
The Standard analyzer removes stopwords and indexes words, numbers, and some special characters. The Standard

analyzer is the default analyzer.

The Standard analyzer processes text characters in the following ways:

• Stopwords are not indexed.

• Converts alphabetical characters to lower case.

• Ignores colons, #, %, $, parentheses, hyphens, and slashes.

• Indexes underscores, @, and & symbols when they are part of words or numbers.

• Separately indexes number and words if numbers appear at the beginning of a word.

• Indexes numbers as part of the word if they are within or at the end of the word.

• Indexes apostrophes if they are in the middle of a word, but removes them if they are at the beginning or end of a

word.

• Ignores an apostrophe followed by the letter s at the end of a word.

Example

Chapter 1. Database Extensions User's Guide

Examples

In these examples, the input string is shown on the first line and the resulting tokens are shown on the second line, each

surrounded by square brackets.

In the following example, stopwords are removed and the words are converted to lower case:

The Quick Brown Fox Jumped Over The Lazy Dog
[quick] [brown] [fox] [jumped] [over] [lazy] [dog]

In the following example, the apostrophe at the beginning of a word and the apostrophe followed by an s are ignored, but the

apostrophe in the middle of a word is indexed:

Prequ'ile Mark's 'cause
[prequ'ile] [mark] [cause]

In the following example, the colon and backslash are ignored:

c:/informix
[c] [informix]

In the following example, the ampersand is indexed as part of the company name:

XY&Z Corporation
[xy&z] [corporation]

In the following example, the e-mail address is indexed as is:

xyz@example.com
[xyz@example.com]

In the following example, numbers at the beginning of the words are separated into different tokens, while numbers at the

end of words are included in a single token:

1abc 12abc abc1 abc12
[1] [abc] [12] [abc] [abc1] [abc12]

Stopword analyzer
The Stopword analyzer removes stopwords and converts text to tokens that contain only alphabetic characters.

The Stopword analyzer is useful if you want to remove stopwords and ignore non-alphabetical characters.

The Stopword analyzer processes text characters in the following ways:

• Each word is processed into a separate token.

• Alphabetic characters are converted to lowercase.

• Numeric and special characters are treated as white spaces.

• Stopwords are not indexed.

Example

177

OneDB Database Extensions User's Guide

178

Examples

In these examples, the input string is shown on the first line and the resulting tokens are shown on the second line, each

surrounded by square brackets.

In the following example, stopwords are removed and the letters are converted to lowercase:

The Quick Brown Fox Jumped Over The Lazy Dog
[quick] [brown] [fox] [jumped] [over] [lazy] [dog]

In the following example, the @ symbol and period are treated as white spaces:

xyz@example.com
[xyz] [example] [com]

In the following example, numbers are not included in the tokens:

1abc 12abc abc1 abc12
[abc] [abc] [abc] [abc]

User-defined analyzer
A user-defined analyzer processes text into tokens according to a user-defined function.

You can write a user-defined function to process text into tokens according to your needs. Use udr.function_name as the

analyzer name with the analyzer option when you create a basic text search index.

Example

Examples

The following function, which is written in C, processes alphabetical and numeric characters into tokens and ignores all

special characters except underscore (_):

/*ARGSUSED*/
UDREXPORT
mi_lvarchar* tokenize_alnum(
 mi_lvarchar* string,
 MI_FPARAM* fparam)
{
 mi_integer status = MI_OK;
 mi_lvarchar* rtn = NULL;
 gl_mchar_t* src = NULL;
 gl_mchar_t* tgt = NULL;
 mi_integer token = 0;
 gl_mchar_t* s;
 gl_mchar_t* r;

 ifx_gl_init();
 if (((src = (gl_mchar_t*)mi_lvarchar_to_string(string)) == NULL) ||
 ((tgt = (gl_mchar_t*)mi_alloc((strlen(src)*4)+1)) == NULL)) {
 status = MI_ERROR;
 goto cleanup;
 }
 s = src;
 r = tgt;

Chapter 1. Database Extensions User's Guide

 while ((s != NULL) && (*s != '\0')) {
 if ((ifx_gl_ismalnum(s, IFX_GL_NO_LIMIT)) || (*s == '_')) {
 if (!token) {
 if (r != tgt) *r++ = ' ';
 *r++ = '[';
 token = 1;
 }
 ifx_gl_mbsncpy(r, s, IFX_GL_NULL, 1);
 r = ifx_gl_mbsnext(r, IFX_GL_NO_LIMIT);
 }
 else {
 if (token) {
 *r++ = ']';
 token = 0;
 }
 }
 s = ifx_gl_mbsnext(s, IFX_GL_NO_LIMIT);
 }
 if (token) *r++ = ']';
 *r = '\0';
 if ((rtn = mi_string_to_lvarchar((char*)tgt)) == NULL) {
 status = MI_ERROR;
 goto cleanup;
 }
cleanup:
 if ((status != MI_OK) &&
 (rtn != NULL)) {
 mi_var_free(rtn);
 rtn = NULL;
 }
 if (tgt != NULL) mi_free(tgt);
 if (src != NULL) mi_free(src);
 if (rtn == NULL) mi_fp_setreturnisnull(fparam, 0, MI_TRUE);
 return rtn;
}

The following statement registers the function so that the database server can use it:

CREATE FUNCTION tokenize_alnum (lvarchar)
 RETURNS lvarchar
 WITH (NOT VARIANT)
 EXTERNAL NAME "$ONEDB_HOME/extend/myblade/myblade.bld(tokenize_alnum)"
 LANGUAGE C;

When an index is created with the analyzer="udr.tokenize_alnum" option, the following example shows that no special

characters except the underscore are indexed:

quick! #$%&^^$## Brown fox under_score
[quick] [Brown] [fox] [under_score]

Whitespace analyzer
The Whitespace analyzer processes characters into tokens based on whitespaces. All characters between whitespaces are

indexed without alteration.

The Whitespace analyzer processes text characters in the following ways:

179

OneDB Database Extensions User's Guide

180

• Stopword lists are ignored. All words are indexed.

• Does not change letter case.

• Indexes numbers and special characters.

Because the Whitespace analyzer does not support stopwords, omit the word TO from range queries.

Example

Examples

In the following examples, the input text is shown on the first line and the resulting indexed tokens, which are surrounded by

square brackets, are shown on the second line.

In the following example, all words are indexed exactly as they are:

The Quick Brown Fox Jumped Over The Lazy Dog
[The] [Quick] [Brown][Fox] [Jumped][Over] [The] [Lazy] [Dog]

In the following example, all numbers and special characters are indexed:

-12 -.345 -898.2 -56. –
[-12] [-.345] [-898.2] [-56.] [-]

In the following example, the e-mail address is indexed as one token:

xyz@example.com
[xyz@example.com]

Basic text search functions
You can use basic text search functions to provide information about bts indexes, compact bts indexes, and configure

tracing.

bts_index_compact() function
The bts_index_compact() function deletes all documents from the bts index that are marked as deleted.

Syntax
bts_index_compact('index_name ')

index_name

The name of the bts index for which you want to delete rows.

Usage

Use the bts_index_compact() function to delete documents from a bts index that was created with the default deletion mode

parameter of delete="deferred". The bts_index_compact() function releases space in the index by immediately deleting the

rows marked as deleted. The index is unavailable while it is rewritten. Optionally, you can include the index storage space

path and file name, the database name, and the owner name in addition to the index name, separated by forward slash (/)

characters.

Chapter 1. Database Extensions User's Guide

Documents marked as deleted can also be deleted with the oncheck utility. For oncheck syntax and information about

optimizing the bts index, see delete index parameter on page 124.

Return codes

t

The operation was successful.

f

The operation was unsuccessful.

Example

The following example compacts the bts index desc_idx:

EXECUTE FUNCTION bts_index_compact('desc_idx');

bts_index_fields() function
The bts_index_fields() function returns the list of indexed field names in the bts index.

Syntax
bts_index_fields(' index_name')

index_name

The name of the bts index.

Usage

Use the bts_index_fields() function to identify searchable fields in the bts index. Optionally, you can include the index storage

space path and file name, the database name, and the owner name in addition to the index name, which is separated by

forward slash (/) characters.

The bts_index_fields() function returns one default field that is called contents unless any of the following conditions are

true:

• The index is a composite index that has each column that is indexed separately because the index definition includes

the query_default_field="*" index parameter. The bts_index_fields() function returns the names of the indexed

columns.

• The index contains XML tags because the index definition includes the all_xmltags or xmltags index parameter. The

bts_index_fields() function returns the indexed tags. If the include_contents index parameter is included in the index

definition, the bts_index_fields() function also returns the contents field.

• The index contains JSON field name-value pairs because the index definition includes the all_json_names or

json_names index parameter. The bts_index_fields() function returns the indexed field names. If the include_contents

index parameter is included in the index definition, the bts_index_fields() function also returns the contents field.

181

OneDB Database Extensions User's Guide

182

When you specify tags with the xmltags parameter, the bts_index_fields() function returns only field names for tags that

exist in the indexed column. However, if later you add a row that contains the specified tag name, the field name for that tag

appears in the output.

The bts_index_fields() function returns the field names in alphabetical order.

Example

Example: Unstructured index

The following statement creates an unstructured index:

CREATE INDEX desc_idx ON products (brands bts_char_ops)
 USING bts IN sbsp1;

The bts_index_fields() function returns the default field: contents.

Examples: Structured indexes on an XML document

These examples are based on the following XML fragment:

<boat>
 <skipper>Captain Jack</skipper>
 <boatname>Black Pearl</boatname>
</boat>

The following statement indexes the specified XML tags:

CREATE INDEX boats_bts ON boats(xml_data bts_lvarchar_ops)
USING bts(xmltags="(skipper,boatname,crew)") IN bts_sbspace;

The bts_index_fields() function returns the following field names:

boatname
skipper

The field name for the tag crew is not returned because it does not exist in the XML fragment example.

The following statement indexes all tags and paths:

CREATE INDEX boats_bts ON boats(xml_data bts_lvarchar_ops)
USING bts(all_xmltags="yes",xmlpath_processing="yes")
IN bts_sbspace;

The bts_index_fields() function returns field names that include full paths:

/boat/boatname
/boat/skipper

The following statement indexes all tags and includes the contents field:

CREATE INDEX boats_bts ON boats(xml_data bts_lvarchar_ops)
USING bts(all_xmltags="yes",include_contents="yes")
IN bts_sbspace;

The bts_index_fields() function returns the following fields:

Chapter 1. Database Extensions User's Guide

boatname
contents
skipper

Example

Examples: Structured indexes on a JSON document

These examples are based on the following JSON document:

{ "person" : {
 "givenname" : "Jim",
 "surname" : "Flynn",
 "age" : 29,
 "cars" : ["dodge", "olds"],
 "parents":[
 { "givenname" : "Slim",
 "surname" : "Flynn",
 "surname" : "Kim" }
]
}

The following statement indexes all field name-value pairs:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(all_json_names="yes");

The bts_index_fields() function returns the following fields:

age
cars
givenname
surname

The following statement indexes all field name-value pairs and includes the contents field:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(all_json_names="yes",
 include_contents="yes");

The bts_index_fields() function returns the following fields:

age
cars
contents
givenname
surname

The following statement indexes a single field:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(json_names="surname");

The bts_index_fields() function returns the following field:

183

OneDB Database Extensions User's Guide

184

surname

The following statement indexes the specified field names and paths:

CREATE INDEX bts_idx
 ON json_tab (docs bts_json_ops)
 USING bts(
 json_names="(parents.surname,
 person.givenname)",
 json_path_processing="yes"
);

The bts_index_fields() function returns the following fields:

person.given name
parents.surname

bts_release() function
The bts_release() function provides the internal release version number of the basic text search engine.

Syntax
bts_release()

Usage
Use the bts_release() function if HCL Software Support asks you for the basic text search version number.

Return codes
This function returns the name and release version number of the basic text search engine.

Example
Example output:

BTS 3.00 Compiled on Wed Jan 19 11:25:52 CDT 2011

bts_tracefile() function
The bts_tracefile() function specifies the location where the trace file is written. Use this function together with the

bts_tracelevel() function to trace basic text search-related events.

Syntax
bts_tracefile(filename)

filename

The full path and name of the file to which trace information is appended. The file must be writable by user

informix. If no file name is provided, a standard session_id.trc file is placed in the $ONEDB_HOME/tmp

directory.

Usage

Use the bts_tracefile() function to troubleshoot events related to the basic text searches.

Chapter 1. Database Extensions User's Guide

For the syntax for bts_tracelevel(), see bts_tracelevel() function on page 185.

For more details about tracing, see the HCL OneDB™ Guide to SQL: Reference.

Example
The following example specifies a trace log named bts_select.log in the /tmp directory:

EXECUTE FUNCTION bts_tracefile('/tmp/bts_select.log');

bts_tracelevel() function
The bts_tracelevel() function sets the level of tracing. Use this function together with the bts_tracefile() function to trace

basic text search-related events.

Syntax
bts_tracelevel(level)

level

The level of tracing output:

1

UDR entry points.

10

UDR entry points and lower-level calls.

20

Trace information and small events.

100

Memory resource tracing (very verbose).

If you enter a value from 1-9, it is treated as level 1, a value between 10 and 19 is treated as level 10, a value between 20 and

99 is treated as level 20. A value greater than or equal to 100 is treated as level 100.

Usage

Use the bts_tracelevel() function to troubleshoot events related to the basic text search extension.

For the syntax for bts_tracefile(), see bts_tracefile() function on page 184.

For more details about tracing, see the HCL OneDB™ Guide to SQL: Reference.

Example

The following example specifies a trace file, sets the trace level to 20, and then performs a SELECT statement, which

generates a tracing log:

185

OneDB Database Extensions User's Guide

186

EXECUTE FUNCTION bts_tracefile('/tmp/bts_select.log');
EXECUTE FUNCTION bts_tracelevel(20);
SELECT * FROM vessels WHERE bts_contains(xml_info, 'boatname:black');

The following might be the contents of the tracing log for trace level 20. The number 32 is the trace session number.

==

Tracing session: 32 on 03/26/2009

09:21:11 BTS[32] bts_tracelevel_set: exit (level = 20, status = 0)
09:21:11 BTS[32] bts_am_cost: entry
09:21:11 BTS[32] bts_am_cost: exit (status = 0, cost = 0.500000)
09:21:11 BTS[32] bts_am_open: entry
09:21:11 BTS[32] bts_init: entry
09:21:11 BTS[32] bts_lock_try: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_try: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: entry (bts_cl_init_value = 0)
09:21:11 BTS[32] bts_cl_init_restore: entry
09:21:11 BTS[32] bts_cl_init_setup: entry
09:21:11 BTS[32] bts_cl_init_setup: exit (status = 0)
09:21:11 BTS[32] bts_cl_init_restore: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: exit (bts_cl_init_value = 1, status = 0)
09:21:11 BTS[32] bts_gls_init: entry
09:21:11 BTS[32] bts_gls_init: exit (status = 0)
09:21:11 BTS[32] bts_evp_check: entry
09:21:11 BTS[32] bts_evp_check: exit (status = 0)
09:21:11 BTS[32] bts_auto_trace: (skipped)
09:21:11 BTS[32] bts_init: exit (status = 0)
09:21:11 BTS[32] bts_am_spacename: entry
09:21:11 BTS[32] bts_am_spacename: exit (spacename = 'bts_sbspace1', status = 0)
09:21:11 BTS[32] bts_am_space: entry
09:21:11 BTS[32] bts_am_sbspace: entry
09:21:11 BTS[32] bts_am_sbspace: exit (rtn = '/ashworth/vessels_bts/1048885', status = 0)
09:21:11 BTS[32] bts_am_space: exit (rtn = '/ashworth/vessels_bts/1048885', status = 0)
09:21:11 BTS[32] bts_hdr_check: entry
09:21:11 BTS[32] bts_hdr_check: (hdr_status mask = 00000000)
09:21:11 BTS[32] bts_hdr_check: exit (status = 0)
09:21:11 BTS[32] bts_lock_try: entry (name = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_lock_try: exit (status = 0)
09:21:11 BTS[32] bts_am_params_read: entry
09:21:11 BTS[32] bts_am_params_canonical_maps_setup: entry
09:21:11 BTS[32] bts_am_params_canonical_maps_setup: (expand = 1)
09:21:11 BTS[32] bts_am_params_canonical_maps_setup: exit (status = 0)
09:21:11 BTS[32] bts_am_params_read: exit (status = 0)
09:21:11 BTS[32] bts_lock_release: entry (name = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_am_open: (open set_size 256)
09:21:11 BTS[32] bts_xact_register: entry
09:21:11 BTS[32] bts_xact_register: (XACT: named_memory(BTS_XACT_20))
09:21:11 BTS[32] bts_xact_register: (new savepoint: 1-1 (first))

Chapter 1. Database Extensions User's Guide

09:21:11 BTS[32] bts_xact_register: (register savepoint callback)
09:21:11 BTS[32] bts_xact_register: (register end_stmt callback)
09:21:11 BTS[32] bts_xact_register: (register end_xact callback)
09:21:11 BTS[32] bts_xact_register: (register post_xact callback)
09:21:11 BTS[32] bts_xact_register: exit (status = 0)
09:21:11 BTS[32] bts_xact_log_params: entry
09:21:11 BTS[32] bts_xact_init_bxt: exit (status = 0)
09:21:11 BTS[32] bts_am_params_copy: exit (status = 0)
09:21:11 BTS[32] bts_xact_log_params: (XACT: sbspace(bts_sbspace1))
09:21:11 BTS[32] bts_xact_log_params: (XACT: space_type(1))
09:21:11 BTS[32] bts_xact_log_params: exit (status = 0)
09:21:11 BTS[32] bts_fini: entry (errcode = 0)
09:21:11 BTS[32] bts_cl_fini: entry (bts_cl_init_value = 1)
09:21:11 BTS[32] bts_cl_init_clear: entry
09:21:11 BTS[32] bts_cl_init_clear: exit (status = 0)
09:21:11 BTS[32] bts_cl_fini: exit (bts_cl_init_value = 0, status = 0)
09:21:11 BTS[32] bts_lock_release: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_fini: exit (status = 0)
09:21:11 BTS[32] bts_am_open: exit (status = 0)
09:21:11 BTS[32] bts_am_beginscan: entry
09:21:11 BTS[32] bts_am_userdata_get: entry
09:21:11 BTS[32] bts_am_spacename: entry
09:21:11 BTS[32] bts_am_spacename: exit (spacename = 'bts_sbspace1', status = 0)
09:21:11 BTS[32] bts_am_userdata_get: (target = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_am_userdata_get: exit (status = 0)
09:21:11 BTS[32] bts_am_beginscan: (target = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_am_literal: entry
09:21:11 BTS[32] bts_am_literal_size: entry
09:21:11 BTS[32] bts_am_literal_size: exit (status = 0)
09:21:11 BTS[32] bts_am_literal_cat: entry
09:21:11 BTS[32] bts_am_literal_cat: exit (status = 0)
09:21:11 BTS[32] bts_am_literal: (literal is 'boatname:black')
09:21:11 BTS[32] bts_am_literal: exit (status = 0)
09:21:11 BTS[32] bts_am_beginscan: (literal = 'boatname:black')
09:21:11 BTS[32] bts_am_beginscan: (rows = 256, score needed = 'no')
09:21:11 BTS[32] bts_am_beginscan: exit (status = 0)
09:21:11 BTS[32] bts_am_getnext: entry
09:21:11 BTS[32] bts_init: entry
09:21:11 BTS[32] bts_lock_try: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_try: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: entry (bts_cl_init_value = 0)
09:21:11 BTS[32] bts_cl_init_restore: entry
09:21:11 BTS[32] bts_cl_init_restore: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: exit (bts_cl_init_value = 1, status = 0)
09:21:11 BTS[32] bts_gls_init: entry
09:21:11 BTS[32] bts_gls_init: exit (status = 0)
09:21:11 BTS[32] bts_evp_check: entry

187

OneDB Database Extensions User's Guide

188

09:21:11 BTS[32] bts_evp_check: exit (status = 0)
09:21:11 BTS[32] bts_auto_trace: (skipped)
09:21:11 BTS[32] bts_init: exit (status = 0)
09:21:11 BTS[32] bts_lock_try: entry (name = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_lock_try: exit (status = 0)
09:21:11 BTS[32] bts_cl_query: entry
09:21:11 BTS[32] bts_cl_query_setup: entry
09:21:11 BTS[32] bts_xact_get_cl_cb: entry
09:21:11 BTS[32] bts_xact_get_cl_cb: exit (status = 0)
09:21:11 BTS[32] bts_cl_query_parse: entry
09:21:11 BTS[32] bts_cl_query_dump: entry
09:21:11 BTS[32] bts_cl_query_dump: (max clause count = 1024)
09:21:11 BTS[32] bts_cl_query_dump: (query default operator = '0' (or))
09:21:11 BTS[32] bts_cl_query_dump: (query = 'boatname:black')
09:21:11 BTS[32] bts_cl_query_dump: (keyfield = 'boatname')
09:21:11 BTS[32] bts_cl_query_dump: exit (status = 0)
09:21:11 BTS[32] bts_cl_query_parse: exit (status = 0)
09:21:11 BTS[32] bts_cl_query_setup: exit (status = 0)
09:21:11 BTS[32] bts_cl_query_parse: entry
09:21:11 BTS[32] bts_cl_query_parse: exit (status = 0)
09:21:11 BTS[32] bts_cl_query: exit (status = 0)
09:21:11 BTS[32] bts_am_getnext: (return 0 (0) fragid = 1048884, rowid = 257)
09:21:11 BTS[32] bts_lock_release: entry (name = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_fini: entry (errcode = 0)
09:21:11 BTS[32] bts_cl_fini: entry (bts_cl_init_value = 1)
09:21:11 BTS[32] bts_cl_init_clear: entry
09:21:11 BTS[32] bts_cl_init_clear: exit (status = 0)
09:21:11 BTS[32] bts_cl_fini: exit (bts_cl_init_value = 0, status = 0)
09:21:11 BTS[32] bts_lock_release: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_fini: exit (status = 0)
09:21:11 BTS[32] bts_am_getnext: exit (status = 1)
09:21:11 BTS[32] bts_am_getnext: entry
09:21:11 BTS[32] bts_init: entry
09:21:11 BTS[32] bts_lock_try: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_try: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: entry (bts_cl_init_value = 0)
09:21:11 BTS[32] bts_cl_init_restore: entry
09:21:11 BTS[32] bts_cl_init_restore: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: exit (bts_cl_init_value = 1, status = 0)
09:21:11 BTS[32] bts_gls_init: entry
09:21:11 BTS[32] bts_gls_init: exit (status = 0)
09:21:11 BTS[32] bts_evp_check: entry
09:21:11 BTS[32] bts_evp_check: exit (status = 0)
09:21:11 BTS[32] bts_auto_trace: (skipped)
09:21:11 BTS[32] bts_init: exit (status = 0)
09:21:11 BTS[32] bts_lock_try: entry (name = '/ashworth/vessels_bts/1048885')

Chapter 1. Database Extensions User's Guide

09:21:11 BTS[32] bts_lock_try: exit (status = 0)
09:21:11 BTS[32] bts_cl_query: entry
09:21:11 BTS[32] bts_cl_query_next: entry
09:21:11 BTS[32] bts_cl_query_parse: entry
09:21:11 BTS[32] bts_cl_query_parse: exit (status = 0)
09:21:11 BTS[32] bts_cl_query_next: exit (status = 0)
09:21:11 BTS[32] bts_cl_query_parse: entry
09:21:11 BTS[32] bts_cl_query_parse: exit (status = 0)
09:21:11 BTS[32] bts_cl_query: exit (status = 0)
09:21:11 BTS[32] bts_lock_release: entry (name = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_fini: entry (errcode = 0)
09:21:11 BTS[32] bts_cl_fini: entry (bts_cl_init_value = 1)
09:21:11 BTS[32] bts_cl_init_clear: entry
09:21:11 BTS[32] bts_cl_init_clear: exit (status = 0)
09:21:11 BTS[32] bts_cl_fini: exit (bts_cl_init_value = 0, status = 0)
09:21:11 BTS[32] bts_lock_release: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_fini: exit (status = 0)
09:21:11 BTS[32] bts_am_getnext: exit (status = 0)
09:21:11 BTS[32] bts_xact_end_stmt: entry
09:21:11 BTS[32] bts_xact_bxh_init: entry
09:21:11 BTS[32] bts_xact_bxh_init: (XACT: named_memory(BTS_XACT_20))
09:21:11 BTS[32] bts_xact_bxh_init: exit (status = 0, bxh = 0x53661ce8)
09:21:11 BTS[32] bts_init: entry
09:21:11 BTS[32] bts_lock_try: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_try: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: entry (bts_cl_init_value = 0)
09:21:11 BTS[32] bts_cl_init_restore: entry
09:21:11 BTS[32] bts_cl_init_restore: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: exit (bts_cl_init_value = 1, status = 0)
09:21:11 BTS[32] bts_gls_init: entry
09:21:11 BTS[32] bts_gls_init: exit (status = 0)
09:21:11 BTS[32] bts_evp_check: entry
09:21:11 BTS[32] bts_evp_check: exit (status = 0)
09:21:11 BTS[32] bts_auto_trace: (skipped)
09:21:11 BTS[32] bts_init: exit (status = 0)
09:21:11 BTS[32] bts_xact_end_stmt: (procesing current_stmt: 1)
09:21:11 BTS[32] bts_xact_process: entry
09:21:11 BTS[32] bts_xact_process: (process: NORMAL_END)
09:21:11 BTS[32] bts_xact_process: (process end_stmt: 1)
09:21:11 BTS[32] bts_xact_process: (current savepoint is 1-1)
09:21:11 BTS[32] bts_lock_try: entry (name = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_lock_try: exit (status = 0)
09:21:11 BTS[32] bts_lock_release: entry (name = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_xact_process: exit (status = 0)
09:21:11 BTS[32] bts_xact_end_stmt: (new stmt: 2)

189

OneDB Database Extensions User's Guide

190

09:21:11 BTS[32] bts_fini: entry (errcode = 0)
09:21:11 BTS[32] bts_cl_fini: entry (bts_cl_init_value = 1)
09:21:11 BTS[32] bts_cl_init_clear: entry
09:21:11 BTS[32] bts_cl_init_clear: exit (status = 0)
09:21:11 BTS[32] bts_cl_fini: exit (bts_cl_init_value = 0, status = 0)
09:21:11 BTS[32] bts_lock_release: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_fini: exit (status = 0)
09:21:11 BTS[32] bts_xact_end_stmt: exit (status = 0, state = 0)
09:21:11 BTS[32] bts_am_endscan: entry
09:21:11 BTS[32] bts_init: entry
09:21:11 BTS[32] bts_lock_try: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_try: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: entry (bts_cl_init_value = 0)
09:21:11 BTS[32] bts_cl_init_restore: entry
09:21:11 BTS[32] bts_cl_init_restore: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: exit (bts_cl_init_value = 1, status = 0)
09:21:11 BTS[32] bts_gls_init: entry
09:21:11 BTS[32] bts_gls_init: exit (status = 0)
09:21:11 BTS[32] bts_evp_check: entry
09:21:11 BTS[32] bts_evp_check: exit (status = 0)
09:21:11 BTS[32] bts_auto_trace: (skipped)
09:21:11 BTS[32] bts_init: exit (status = 0)
09:21:11 BTS[32] bts_lock_try: entry (name = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_lock_try: exit (status = 0)
09:21:11 BTS[32] bts_cl_query_end: entry
09:21:11 BTS[32] bts_cl_query_parse: entry
09:21:11 BTS[32] bts_cl_query_parse: exit (status = 0)
09:21:11 BTS[32] bts_cl_query_end: exit (status = 0)
09:21:11 BTS[32] bts_lock_release: entry (name = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_fini: entry (errcode = 0)
09:21:11 BTS[32] bts_cl_fini: entry (bts_cl_init_value = 1)
09:21:11 BTS[32] bts_cl_init_clear: entry
09:21:11 BTS[32] bts_cl_init_clear: exit (status = 0)
09:21:11 BTS[32] bts_cl_fini: exit (bts_cl_init_value = 0, status = 0)
09:21:11 BTS[32] bts_lock_release: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_fini: exit (status = 0)
09:21:11 BTS[32] bts_am_endscan: exit (status = 0)
09:21:11 BTS[32] bts_am_close: entry
09:21:11 BTS[32] bts_init: entry
09:21:11 BTS[32] bts_lock_try: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_try: exit (status = 0)

Chapter 1. Database Extensions User's Guide

09:21:11 BTS[32] bts_cl_init: entry (bts_cl_init_value = 0)
09:21:11 BTS[32] bts_cl_init_restore: entry
09:21:11 BTS[32] bts_cl_init_restore: exit (status = 0)
09:21:11 BTS[32] bts_cl_init: exit (bts_cl_init_value = 1, status = 0)
09:21:11 BTS[32] bts_gls_init: entry
09:21:11 BTS[32] bts_gls_init: exit (status = 0)
09:21:11 BTS[32] bts_evp_check: entry
09:21:11 BTS[32] bts_evp_check: exit (status = 0)
09:21:11 BTS[32] bts_auto_trace: (skipped)
09:21:11 BTS[32] bts_init: exit (status = 0)
09:21:11 BTS[32] bts_am_spacename: entry
09:21:11 BTS[32] bts_am_spacename: exit (spacename = 'bts_sbspace1', status = 0)
09:21:11 BTS[32] bts_am_userdata: (target = '/ashworth/vessels_bts/1048885')
09:21:11 BTS[32] bts_am_userdata_free: entry
09:21:11 BTS[32] bts_fini: entry (errcode = 0)
09:21:11 BTS[32] bts_cl_fini: entry (bts_cl_init_value = 1)
09:21:11 BTS[32] bts_cl_init_clear: entry
09:21:11 BTS[32] bts_cl_init_clear: exit (status = 0)
09:21:11 BTS[32] bts_cl_fini: exit (bts_cl_init_value = 0, status = 0)
09:21:11 BTS[32] bts_lock_release: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: entry (name = 'EVP')
09:21:11 BTS[32] bts_lock_name: exit (lock name: 'BTS_LOCK-EVP', status = 0)
09:21:11 BTS[32] bts_lock_release: exit (status = 0)
09:21:11 BTS[32] bts_fini: exit (status = 0)
09:21:11 BTS[32] bts_am_close: exit (status = 0)
09:21:11 BTS[32] bts_xact_end_xact: entry
09:21:11 BTS[32] bts_xact_bxh_init: entry
09:21:11 BTS[32] bts_xact_bxh_init: (XACT: named_memory(BTS_XACT_20))
09:21:11 BTS[32] bts_xact_bxh_init: (XACT: mi_named_get(BTS_XACT_20) failed: 2)
09:21:11 BTS[32] bts_xact_bxh_init: (XACT: mi_named_get(BTS_XACT_20) failure ignored)
09:21:11 BTS[32] bts_xact_bxh_init: exit (status = 0, bxh = 0x00000000)
09:21:11 BTS[32] bts_xact_end_xact: exit (status = 0, state = -1)
09:21:11 FSE Entry bts_inFseXactCallback end_xact
09:21:11 FSE Exit bts_inFseXactCallback end_xact
09:21:11 BTS[32] bts_xact_post_xact: entry
09:21:11 BTS[32] bts_xact_bxh_init: entry
09:21:11 BTS[32] bts_xact_bxh_init: (XACT: named_memory(BTS_XACT_20))
09:21:11 BTS[32] bts_xact_bxh_init: (XACT: mi_named_get(BTS_XACT_20) failed: 2)
09:21:11 BTS[32] bts_xact_bxh_init: (XACT: mi_named_get(BTS_XACT_20) failure ignored)
09:21:11 BTS[32] bts_xact_bxh_init: exit (status = 0, bxh = 0x00000000)
09:21:11 BTS[32] bts_xact_post_xact: exit (status = 0, state = -1)
09:21:11 FSE Entry bts_inFseXactCallback post_xact
09:21:11 FSE Exit bts_inFseXactCallback post_xact

Basic text search performance
The performance of basic text search queries depends on the bts index, disk space, configuration parameters, and BTS

virtual processors.

When you create a bts index, include the following index parameters to improve the performance of basic test search

queries:

191

OneDB Database Extensions User's Guide

192

• Set the delete index parameter to remove index information for deleted documents and release disk space. You can

optimize the index manually or automatically after every delete operation.

• Set the query_default_field=* index parameter to create a composite index. When you run a basic text search query,

the text from all the columns is searched in the contents field as if it was one string. This method can result in better

query performance than using a UNION clause to combine the results of multiple queries on multiple bts indexes.

Include the following index parameters to improve the performance of building the bts index:

• Set the tempspace index parameter to the name of a temporary sbspace. Building the index in a temporary sbspace

is faster than building the index in an sbspace that logs transactions.

• Set the xact_ramdirectory=yes index parameter to build the bts index in memory. Building the index in memory can be

faster than building the index in a temporary sbspace.

The bts index is in an sbspace. If you defined multiple BTS virtual processors, each one can simultaneously process a

different transaction. However, when a transaction that contains INSERT, DELETE, or UPDATE statements that affect the bts

index is being committed, the transaction acquires an exclusive lock on the bts index. Any other concurrent transaction waits

for up to 15 minutes for the lock to be released.

The bts index works in READ COMMITTED isolation level regardless of the isolation level that is set in the database server.

The READ COMMITTED isolation level provides access only to rows that are committed. Uncommitted rows from other

concurrent transactions are not accessible.

Disk space for the bts index
The size of the external bts index depends on the number of documents being indexed as well as the number of words and

the number of unique words in those documents.

If you receive an I/O error such as (BTSA1) - bts clucene error: IO error: File IO Write error, check the online log. The

probable cause is insufficient disk space. If this happens, drop the bts index with a DROP INDEX statement and recreate it on

a disk with enough disk space.

To prevent running out of space for the bts index, create a dedicated sbspace for the bts index and a separate sbspace for

temporary data. A separate sbspace for temporary data might also improve the speed of creating and updating the bts index.

See Preparing for basic text searching on page 118 for the procedure to create a bts index. See the HCL OneDB™ Guide to

SQL: Syntax for instructions for the DROP INDEX statement.

Adding BTS virtual processors to run multiple queries simultaneously
You can increase the number of basic text search queries or other index operations that can run at the same time by adding

additional BTS virtual processors.

About this task

Each Basic Text Search function, including bts_contains(), runs in a BTS virtual processor without yielding. If basic text

search queries are slow because multiple users are running queries at the same time, you can add more BTS virtual

processors so that queries run simultaneously, each in their own virtual processor.

Chapter 1. Database Extensions User's Guide

To dynamically add BTS virtual processors for the current database server session:

Run the onmode -p command, specifying the number of virtual processors to add and the BTS virtual processor class. For

example, the following command adds three BTS virtual processors: onmode -p 3 bts

Example

Alternatively, you can use the SQL administration API task() or admin() function with the onmode and p arguments to add

BTS virtual processors.

To permanently increase the number of BTS virtual processors, set the value of the VPCLASS bts configuration parameter in

the onconfig file and then restart the database server. If the onconfig file contains an existing entry for the VPCLASS bts

configuration parameter, update that entry; otherwise, add a new entry for the VPCLASS bts configuration parameter.

For more information about the onmode utility or the SQL administration API, see the HCL OneDB™ Administrator's Reference,

Tune configuration parameters for basic text searching
You can optimize the performance of basic text searches by tuning certain configuration parameters.

AUTO_READAHEAD

The AUTO_READAHEAD configuration parameter enables automatic read-ahead. Pages that are brought into

the bufferpool cache during sequential scans of data records can improve the performance of a query when

the server detects that the query is encountering I/O.

BUFFERPOOL

The BUFFERPOOL configuration parameter defines a buffer pool for pages that correspond to each unique

page size that is used by your dbspaces. You can specify information about the buffer pool, including its size,

the number of LRU queues in the buffer pool, the number of buffers in the buffer pool, and minimum and

maximum percentages of modified pages in the LRU queues.

RESIDENT

The RESIDENT configuration parameter specifies whether the resident portion of shared memory remains

resident in operating system physical memory. If your operating system supports forced residency, you can

improve the performance of searches by specifying that the resident portion of shared memory is not swapped

to disk. Set the RESIDENT configuration parameter to 1 (on).

VPCLASS

You can add the noage option to the VPCLASS configuration parameter setting for the BTS virtual processor.

The noage option improves performance by disabling priority aging by the operating system. The BTS virtual

processor that is created automatically does not include the noage option.

PRELOAD_DLL_FILE

You can add the BTS shared library, bts.bld, to a PRELOAD_DLL_FILE configuration parameter setting to

preload the BTS shared library when the server starts instead of loading the library the first time you run a BTS

function or create a bts index. For example, add the following line to your onconfig file:

PRELOAD_DLL_FILE $ONEDB_HOME/extend/bts.version/bts.bld

193

OneDB Database Extensions User's Guide

194

The version is the specific version number for the extension. Run the bts_release() function to find the correct

version number. The version number of the BTS extension can change in any fix pack or release. After you

upgrade, you must update the value of the PRELOAD_DLL_FILE configuration parameter if the version number

of the BTS extension changed.

Important: Do not preload the bts_cl.bld file or the BTS extension does not operate properly.

Basic text search error codes
Basic text searching has specific error messages.

The following table lists error codes for basic text searching.

SQLstate Description

BTS01 bts error, assertion failed. File %FILE%, line %LINE%

BTS02 bts internal error. File %FILE%, line %LINE%

BTS03 bts error - could not set trace level to %PARAM1% for trace class %PARAM2%

BTS04 bts error - could not set trace output file to %PARAM1%

BTS05 bts error - unique index not supported

BTS06 bts error - cluster index not supported

BTS08 bts error - cannot query the table %TABLENAME%

BTS09 bts error - BTS index only supports extspaces and sbspaces

BTS10 bts error - cannot get connection descriptor

BTS11 bts error - extspace not specified

BTS12 bts error - cannot determine index owner

BTS13 bts error - cannot determine index name

BTS14 bts error - cannot create directory %PARAM1%

BTS15 bts error - current vpclass (%VPCLASS%) is not specified as noyield

BTS16 bts error - too many virtual processors running (%NUMVPS%) for the current vpclass (%VPCLASS%), 1 is the

maximum

BTS17 bts error - out of memory

BTS18 bts error - SQL Boolean expression are not supported with bts_contains

BTS19 bts error - cannot query with a null value

BTS20 bts error - invalid value for index delete parameter: %PARAM1% should be either immediate or deferred

Chapter 1. Database Extensions User's Guide

SQLstate Description

BTS21 bts error - unsupported type: %PARAM1%

BTS22 bts error - bts_contains requires an index on the search column

BTS23 bts error - cannot register end-of-transaction-callback

BTS24 bts error - invalid value for %PARAM1% parameter: %PARAM2% should be an integer value greater than 0

BTS25 bts error - CLOB or BLOB is too large, must be less than or equal to 2,147,483,647 bytes

BTS26 bts error - clob or blob is too large, must be less than or equal to 2,147,483,647

BTS27 bts error - BTS indexes in external spaces only permitted on primary or standard servers

BTS28 bts error - invalid value for the %PARAM1% parameter: %PARAM2% should be "unlimited" or an integer value

greater than 0

BTS29 bts error - invalid value for the %PARAM1% parameter: %PARAM2% should be either "and" or "or"

BTS30 bts error - invalid value for the PARAM1% parameter: %PARAM2% should be either yes or no

BTS31 bts error - invalid value for the %PARAM1% parameter: %PARAM2% should be either yes, yes_with_tag or no

BTS32 bts error - invalid value for the %PARAM1% parameter: %PARAM2% should be either yes,

yes_with_database_name or no

BTS33 bts error - incorrect value for the %PARAM1% parameter: %PARAM2% should be either yes,

yes_with_positions, yes_with_offsets or no

BTS34 bts error - uppercase characters are not allowed in stopwords

BTS35 bts internal error - mi_open() failed. File %FILE%, line %LINE%

BTS36 bts internal error - mi_lo_open() failed. File %FILE%, line %LINE%

BTS37 bts internal error - mi_lo_seek() failed. File %FILE%, line %LINE%

BTS38 bts internal error - mi_lo_read() failed. File %FILE%, line %LINE%

BTS39 bts internal error - ifx_int8toasc() failed. File %FILE%, line %LINE%

BTS40 bts internal error - mi_lo_spec_init() failed. File %FILE%, line %LINE%

BTS41 bts internal error - mi_lo_create() failed. File %FILE%, line %LINE%

BTS42 bts internal error - mi_lo_increfcount() failed. File %FILE%, line %LINE%

BTS43 bts internal error - ifx_int8cvlong() failed. File %FILE%, line %LINE%

BTS44 bts internal error - mi_lo_write() failed. File %FILE%, line %LINE%

BTS45 bts error - cannot open file %FILENAME%

BTS46 bts error - cannot create file %FILENAME%

195

OneDB Database Extensions User's Guide

196

SQLstate Description

BTS47 bts error - xml syntax error

BTS48 bts error - invalid hex specification: \x%PARAM1%%PARAM2%

BTS49 bts error - the GLS character name '%PARAM1%' is not found

BTS50 bts error - if either xmltags is specified or all_xmltags is enabled, then include_contents must be enabled if

strip_xmltags is enabled

BTS51 bts error - xmlpath_processing cannot be enabled unless either xmltags is specified or all_xmltags is enabled.

BTS52 bts error – parameter %PARAM1% and %PARAM2% parameters are mutually exclusive

BTS53 bts error - invalid value for the %PARAM1% parameter: %PARAM2% should be a lower value

BTS54 bts error - cannot write to file %FILENAME%

BTS55 bts error - cannot read from file %FILENAME%

BTS56 bts error - bad magic number on file %FILENAME%

BTS57 bts error - the specified table (%TABLENAME%) is not in the database

BTS58 bts error - column (%COLUMNNAME%) not found in specified table (%TABLENAME%)

BTS59 bts error - column (%COLUMNNAME%) in specified table (%TABLENAME%) is not of type char, varchar, nchar,

nvarchar or lvarchar

BTS60 bts error - cannot acquire exclusive lock for %PARAM1%

BTS61 bts error - cannot acquire read lock for %PARAM1%

BTS62 bts error - cannot acquire write lock for %PARAM1%

BTS63 bts error - parameter %PARAM1% is not implemented yet"

BTS64 bts error - %PARAM1% contains a '/' character which indicates an xmlpath however xmlpath_processing is not

enabled. Either remove the '/' in the xmltag or enable xmlpath_processing"

BTS65 bts error - invalid value for tempspace parameter: %PARAM1% should be an existing extspace or sbspace

BTS66 bts error - the include_contents cannot be enabled unless the xmltags, all_xmltags, json_names or

all_json_names parameter is enabledbts error - include_contents cannot be enabled unless either xmltags is

specified or all_xmltags is enabled

BTS67 bts error - include_namespaces cannot be enabled unless either xmltags is specified or all_xmltags is enabled

BTS68 bts error - include_subtag_text cannot be enabled unless either xmltags is specified or all_xmltags is enabled

BTS69 bts error - %PARAM1% only works with on one bts virtual processor

BTS70 bts internal error - mi_lo_specset_sbspace() failed. File %FILE%, line %LINE%

BTS71 bts internal error - mi_lo_stat() failed. File %FILE%, line %LINE%

Chapter 1. Database Extensions User's Guide

SQLstate Description

BTS72 bts internal error - mi_lo_stat_cspec() failed. File %FILE%, line %LINE%

BTS73 bts error - sbspace %PARAM1% is not logged

BTS74 bts error - sbspace for FSE is not set

BTS75 bts error - SBSPACENAME not set in onconfig file

BTS76 bts error - transaction uses too much memory. Perform smaller transactions or increase the value of the

xact_memory parameter on the index

BTS77 bts error - invalid value for xact_memory: %PARAM1% should be either unlimited or the maximum amount of

memory (between 1 and %PARAM2% kilobytes)

BTS78 bts error - SQL create index and drop index are not supported on updatable secondary nodes

BTS79 bts error - not implemented yet

BTS80 bts error - database must be logged

BTS81 bts error - not in a transaction

BTS82 bts error - xpath syntax error

BTS83 bts internal error - mi_file_seek failed. File %FILE%, line %LINE%

BTS84 bts internal error - mi_lo_decrefcount failed. File %FILE%, line %LINE%

BTS85 bts internal error - mi_lo_from_string failed. File %FILE%, line %LINE%

BTS86 bts internal error - mi_lo_release() failed. File %FILE%, line %LINE%

BTS87 bts internal error - mi_lo_to_string failed. File %FILE%, line %LINE%

BTS88 bts error - no lo handle found in file %PARAM1%

BTS89 bts error - valid lo handle found in file %PARAM1%

BTS90 bts error - CLucene index exists and is locked

BTS91 bts error - CLucene index exists

BTS92 bts error - CLucene index does not exist

BTS93 bts error - the parameter %PARAM1% should be in the form of name="value"

BTS94 bts error - missing a double quotation mark: ". The parameter %PARAM1% should be in the form of

name="value"

BTS95 bts error - missing the closing parenthesis:). The parameter %PARAM1% should be in the form of

name="(values)"

BTS96 bts error - missing a double quotation mark: ". The parameter %PARAM1% should be in the form of

name="(values)"

197

OneDB Database Extensions User's Guide

198

SQLstate Description

BTS97 bts error - missing a comma (,) between parameters

BTS98 bts error - duplicate parameters, %PARAM1%, were specified

BTS99 bts clucene error: Unknown error: %PARAM1%

BTSA1 bts clucene error: IO error: %PARAM1%

BTSA2 bts clucene error: Null pointer error: %PARAM1%

BTSA3 bts clucene error: Runtime error: %PARAM1%

BTSA4 bts clucene error: Illegal argument: %PARAM1%

BTSA5 bts clucene error: Parse error: %PARAM1%

BTSA6 bts clucene error: Token manager error: %PARAM1%

BTSA7 bts clucene error: Unsupported operation: %PARAM1%

BTSA8 bts clucene error: Invalid state: %PARAM1%

BTSA9 bts clucene error: Index out of bounds: %PARAM1%

BTSB0 bts clucene error: Too Many Clauses: %PARAM1%

BTSB1 bts clucene error: RAM Transaction error: %PARAM1%

BTSB2 bts clucene error: Invalid Cast: %PARAM1%

BTSC0 GLS Error: An attempt to create a locale with incompatible code sets has occurred

BTSC1 GLS Error: Bad format found in the codeset registry file

BTSC2 GLS Error: Either locale or code set conversion specifiers, i.e., GLS or NLS environment variables, is incorrect,

or the codeset name registry file could not be found

BTSC3 GLS Error: Not enough memory to allocate a new locale object or a new codeset conversion object

BTSC4 GLS Error: The locale contains characters that are wider than the library allows

BTSC5 GLS Error: The locale object version is not compatible with the current library

BTSC6 GLS Error: The locale or codeset conversion file could not be found, is not readable, or has the wrong format

BTSC7 GLS Error: Unknown %PARAM1%

BTSC8 bts internal error - mi_lo_stat_size() failed. File %FILE%, line %LINE%

BTSC9 bts internal error - biginttoasc() failed. File %FILE%, line %LINE%

BTSD0 bts error - invalid canonical map[%PARAM1%]: zero length original character string

BTSD1 bts error - invalid canonical map[%PARAM1%]: %PARAM2% is an uppercase character. Uppercase characters

are not allowed in canonical maps

Chapter 1. Database Extensions User's Guide

SQLstate Description

BTSD2 bts error - invalid canonical map[%PARAM1%]: missing %PARAM2% in mapped characters specification

BTSD3 bts error - invalid canonical map[%PARAM1%]: missing %PARAM2% in original characters specification

BTSD4 bts error - invalid canonical map[%PARAM1%]: missing : in mapped characters specification

BTSD5 bts error - invalid canonical map[%PARAM1%]: missing] in alternates of original characters specification

BTSD6 bts error - invalid canonical map[%PARAM1%]: spaces found in original character string at %PARAM2%

BTSD7 bts error - invalid canonical map[%PARAM1%]: trailing characters found

BTSD8 bts error - missing the closing parenthesis,), in a string that has an opening parenthesis: (

BTSD9 bts error - missing the column name in table:%PARAM1%. Use the form table:table_name.column_name

BTSE0 bts error - parameter %PARAM1% is not updatable

BTSE1 bts error - unknown parameter name: %PARAM1%

BTSE2 bts error - recursive params parameter

BTSE3 bts error - invalid value for the %PARAM1% parameter: %PARAM2% is too long

BTSE4 bts error - invalid flag for the create_mode parameter: %PARAM1%

BTSE5 bts error - invalid value for the create_mode parameter: %PARAM1% should be a hexadecimal number

BTSE6 bts error - %PARAM1% encoding is not supported for %PARAM2%

BTSE7 bts error - UDR analyzer function %PARAM1% not found

BTSE8 bts error - UDR analyzer function id not found for %PARAM1%

BTSE9 bts error - default analyzer already set

BTSF0 bts error - empty stopwords field specification

BTSF1 bts error - invalid analyzer value: %PARAM1%

BTSF2 bts error - invalid value for the analyzer parameter: %PARAM1%

BTSF3 bts error - no analyzer specified for field: %PARAM1%

BTSF4 bts error - no field name in field:analyzer specification: %PARAM1%

BTSF5 bts error - the field %PARAM1% appears multiple times in the stopwords list

BTSF6 bts error - a stopwords list cannot be specified for the analyzer: %PARAM1%

BTSF7 bts error - too many colons found in stopwords field specification

BTSF8 bts error - too many colons found in field:analyzer specification: %PARAM1%

BTSF9 bts error - there is no snowball stemmer language specified after the period

199

OneDB Database Extensions User's Guide

200

SQLstate Description

BTSG0 bts error - there is no snowball stemmer language support for the $DB_LOCALE setting: %PARAM1%

BTSG1 bts error - there is no snowball stemmer language support for the specified language: %PARAM1%

BTSG2 bts error - internal index length %PARAM1% is too long. The maximum is %PARAM2%

BTSG3 bts error - bts_lock_setup: cannot get vp lock pointer

BTSG4 bts error - bts_lock_setup: vp is not locked

BTSG5 bts error - bts_lock_setup: vp is not locked by the current transaction

BTSG6 bts error - not (-) operator may not be specified in thesaurus

BTSG7 bts error - and (+) operator may not be specified in thesaurus

BTSG8 bts error - cannot determine index owner of thesaurus index %PARAM1%

BTSG9 bts error - cannot lock thesaurus index %PARAM1%

BTSH0 bts error - cannot read thesaurus index parameters for %PARAM1%

BTSH1 bts error - the index %PARAM1% does not have the thesaurus parameter set

BTSH2 bts error - thesaurus index cannot be fragmented

BTSH3 bts error - invalid term found in thesaurus. Only word terms should be specified

BTSH4 bts error - the %PARAM1% attribute must be specified

BTSH5 bts error - the text or file attribute must be specified

BTSH6 bts error - the copy_temp attribute can only be specified on an index in an sbspace

BTSH7 bts error - the field is not in the document

BTSH8 bts error - the directory cannot contain a bts index

BTSH9 bts error - the ID is out of bounds

BTSI0 bts error - must be a DBSA to use parameter %PARM1%

BTSI1 bts error - cannot cast json value to bson value: %MSG%

BTSI2 bts error - bson or json types cannot be used in a composite index

BTSI3 bts error - the json_path_processing parameter cannot be enabled unless the json_names parameter is

specified or the all_json_names parameter is enabled

BTSI4 bts error - the only_json_values parameter requires that the include_contents is enabled when json_names is

specified or all_json_names is enabled

BTSI5 bts error - bson format error decoding type %TYPE% (%SIZE% bytes) at byte %POS% of %MAX% total bytes

Chapter 1. Database Extensions User's Guide

SQLstate Description

BTSI6 bts error - the total number of expected bytes recorded in the bson value, %LEN%, exceeds the actual length

of the bson value, %MAX% bytes

BTSI7 bts error - bson format error: %BYTES% bytes of the bson value after the end-of-value mark were not

processed

BTSI8 bts error - the json_names, all_json_names, only_json_values, or ignore_json_format_errors parameter can be

specified only with bson or json types

BTSI9 bts error - bson or json types cannot be used when xmltags is specified or all_xmltags is enabled

BTSJ0 bts error - json format error at %POS%: extra characters following right brace (})

BTSJ1 bts error - json format error at %POS%: missing right square bracket (])

BTSJ2 bts error - json format error at %POS%: invalid number

BTSJ3 bts error - json format error at %POS%: missing colon (:) separator between name and value

BTSJ4 bts error - json format error at %POS%: missing document

BTSJ5 bts error - json format error at %POS%: missing left brace ({)

BTSJ6 bts error - json format error at %POS%: missing name

BTSJ7 bts error - json format error at %POS%: missing right brace (})

BTSJ8 bts error - json format error at %POS%: missing value

BTSJ9 bts error - json format error at %POS%: missing double quote (") in string

Hierarchical data type
The node data type helps to resolve a difficult relational database problem–transitive closure.

This transitive closure problem is endemic to data management problems, and not particularly well addressed by the

relational model. The same basic problem is found modeling organizational hierarchies, networks, manufacturing and

process control databases.

You can use the node data type to improve query performance for many recursive queries. Using the node data type can also

ease the burden of transitive dependency in the relational database model. Transitive dependency occurs when a non-key

attribute is dependent on another non-key attribute. This relationship frequently has multiple levels of attribute dependency.

The problem usually is seen when you model organizational hierarchies, networks, and databases for manufacturing and

process control.

The node data type for querying hierarchical data
The node data type is an opaque type of variable length up to 256 characters.

201

OneDB Database Extensions User's Guide

202

The Scheduler must be running in the database server. If the Scheduler is not running when you create a node data type, a

message that the data type is not found is returned.

The database that contains the node data types must meet the following requirements:

• The database must be logged.

• The database must not be defined as an ANSI database.

If you attempt to create a node data type in an unlogged or ANSI database, the message DataBlade registration failed is

printed in the database server message log.

Operations involving Enterprise Replication are supported.

Deep copy and LIKE matching statements are not supported.

Troubleshooting the node data type
Error message specific to the node data type have the prefix UND. You can enable tracing on the node data type to diagnose

problems.

You might receive the following errors:

Error Description

UNDE1: Invalid input string. A node is invalid. Nodes cannot end in 0.

UNDE2: Illegal character found in input string. An argument contains an illegal character. Nodes can contain only

numeric characters.

UNDE3: Third input parameter is not descendant of first

input parameter.

The third argument of a Graft function is not a descendant of the

first argument.

UNDE4: Index to node element should be greater than

or equal to 1.

A problem exists with the node indexing.

To enable tracing, create a trace class by inserting a record into the systemtraceclasses system catalog:

INSERT INTO informix.systraceclasses(name) VALUES ('Node');

For more details regarding tracing, see the HCL OneDB™ Guide to SQL: Reference.

Node data type functions
Use these functions in queries involving the node data type.

Ancestors() function

The Ancestors() function is an iterator function that returns ancestor nodes. The Ancestors function recursively calls itself

with the output from IsAncestor.

Chapter 1. Database Extensions User's Guide

Syntax
Ancestors(node)

node

The node for which you want to find all ancestor nodes.

Example
EXECUTE FUNCTION ancestors('1.2.3.4.5.6.7.8.9');

This function returns the following eight rows as ancestor nodes:

1.2.3.4.5.6.7.8
1.2.3.4.5.6.7
1.2.3.4.5.6
1.2.3.4.5
1.2.3.4
1.2.3
1.2
1.0

Compare() function

The Compare() function compares two node types to determine if they are the same.

Returns: -1, 0, or 1.

-1

The first argument is less than the second.

0

The arguments are equal.

1

The first argument is greater than the second.

Syntax

compare(node1, node2)

node1

The first node to compare.

node2

The node to which the first argument is compared

Example

CREATE TABLE nodetab1 (col1 node);
INSERT INTO nodetab1 VALUES ('1.0');
INSERT INTO nodetab1 VALUES ('2.0');

SELECT n1.col1, n2.col1, Compare (n1.col1, n2.col1)

203

OneDB Database Extensions User's Guide

204

FROM nodetab1 n1, nodetab1 n2;

col1 1.0
col1 1.0
(expression) 0

col1 2.0
col1 1.0
(expression) 1

col1 1.0
col1 2.0
(expression) -1

Depth() function

The Depth() function returns the number of levels in the specified node.

Returns: integer

Syntax

Depth(node)

node

The node for which you want to determine depth.

Examples

Example 1

EXECUTE FUNCTION DEPTH('1.22.3');

Returns: 3

Example 2

EXECUTE FUNCTION DEPTH('6.5.4.3.2.1');

Returns: 6

GetMember() function

The GetMember() function returns information about a node level, returns integer. The GetMember() function returns

specific parts of the node argument. The second argument specifies the level you want returned. A NULL is returned if no

corresponding level exists.

Returns: integer or NULL

Syntax

GetMember(node, integer)

node

Chapter 1. Database Extensions User's Guide

integer

Example
CREATE TABLE nodetab1 (col1 node);
INSERT INTO nodetab1 VALUES ('1.0');
INSERT INTO nodetab1 VALUES ('1.1.1');
INSERT INTO nodetab1 VALUES ('1.1.2');
INSERT INTO nodetab1 VALUES ('1.1.2.1');
INSERT INTO nodetab1 VALUES ('2.0');

SELECT col1, GetMember(col1, 3)
FROM nodetab1;

col1 1.0
(expression)

col1 1.1.1
(expression) 1

col1 1.1.2
(expression) 2

col1 1.1.2.1
(expression) 2

col1 2.0
(expression)

GetParent() function

The GetParent() function returns the parent of a node. If the node does not have a parent NULL is returned.

Returns: node or NULL

Syntax
GetParent(node)

node

The child node whose parent you want to determine.

Example

CREATE TABLE nodetab1 (col1 node);
INSERT INTO nodetab1 VALUES ('1.0');
INSERT INTO nodetab1 VALUES ('1.1.1');
INSERT INTO nodetab1 VALUES ('1.1.2');
INSERT INTO nodetab1 VALUES ('1.1.2.1');
INSERT INTO nodetab1 VALUES ('2.0');

SELECT col1, GetParent(col1)
FROM nodetab1;

col1 1.0

205

OneDB Database Extensions User's Guide

206

(expression)

col1 1.1.1
(expression) 1.1

col1 1.1.2
(expression) 1.1

col1 1.1.2.1
(expression) 1.1.2

col1 2.0
(expression)

GreaterThanOrEqual() function

The GreaterThanOrEqual() function compares two nodes to determine if the first is greater or equal to the second.

Implements the comparison operator and can be used in SQL statements either using the function name or the

corresponding symbol.

Returns: Boolean

Syntax

GreaterThanOrEqual(node1, node2)

node1

The node that you are will compare against.

node2

The node that you are checking to see if it is greater than or equal to node1.

Examples

Example 1

SELECT *
FROM tablename
WHERE GreaterThanOrEqual(nodecolumn, “1.4");

Example 2

SELECT *
FROM tablename
WHERE nodecolumn >= “1.4";

This example is the same as Example 1, except a greater than or equal sign is used in place of the function name.

Increment() function

The Increment() function determines the next node at the same level. You can also increase the level of a node by one at a

specified level.

Chapter 1. Database Extensions User's Guide

Returns: node

Syntax
Increment(node, integer)

node

The starting node to increment from.

integer

The node member to increment. If you do not specify this argument, the next node at the same level as node1

is returned.

Examples

Example 1

EXECUTE FUNCTION Increment('1.2.3');
(expression) 1.2.4

This example uses only one argument. The result shows the next node at the same level.

Example 2

EXECUTE FUNCTION Increment('1.2.3', 3);
(expression) 1.2.4

This example increments the member in position three, whose value is 3.

Example 3

EXECUTE FUNCTION Increment('1.2.3', 1);
(expression) 2.0

This example increments the first node member.

IsAncestor() function

The IsAncestor() function lets you determine if a specific node is an ancestor of another. This function is the opposite of

IsDescendant().

Returns: Boolean

Syntax

IsAncestornode1, node2)

node1

The parent node for which you want to find an ancestor.

node2

The node that you want to determine whether it is an ancestor of node1.

207

OneDB Database Extensions User's Guide

208

Examples

Example 1

CREATE TABLE nodetab1 (col1 node);
INSERT INTO nodetab1 VALUES ('1.0');
INSERT INTO nodetab1 VALUES ('1.1');
INSERT INTO nodetab1 VALUES ('1.1.1');

SELECT n1.col1, n2.col1, IsAncestor (n1.col1, n2.col1)
FROM nodetab1 n1, nodetab1 n2;

col1 1.0
col1 1.1
(expression) t

col1 1.0
col1 1.1.1
(expression) t

col1 1.1
col1 1.1.1
(expression) t

col1 1.1.1
col1 1.1
(expression) f

Example 2

SELECT col1
FROM nodetab1 n1
WHERE isAncestor(col1, '1.1.2');

col1 1.0

col1 1.1

IsChild() function

The IsChild() function determines whether a node is a child of another node. This is the opposite of IsParent().

Returns: Boolean

Syntax

IsChild(node1, node2)

node1

The node that you want to determine whether it is a child of node2.

node2

The parent node for which you want to find a child.

Chapter 1. Database Extensions User's Guide

Example
CREATE TABLE nodetab1 (col1 node);
INSERT INTO nodetab1 VALUES ('1.0');
INSERT INTO nodetab1 VALUES ('1.1');
INSERT INTO nodetab1 VALUES ('1.1.1');

SELECT n1.col1, n2.col1, IsChild (n1.col1, n2.col1)
FROM nodetab1 n1, nodetab1 n2;

col1 1.1
col1 1.0
(expression) t

col1 1.1.1
col1 1.0
(expression) f

col1 1.0
col1 1.1
(expression) f

col1 1.1
col1 1.1
(expression) f

col1 1.1.1
col1 1.1
(expression) t

col1 1.0
col1 1.1.1
(expression) f

IsDescendant() function

The IsDescendant() function lets you determine if a specific node is a descendant of another. This function is the opposite

of IsAncestor().

Returns: Boolean

Syntax

IsDescendant(node1, node2)

node1

The node that you want to determine whether it is a descendant of node1.

node2

The parent node for which you want to find a descendant.

Example
CREATE TABLE nodetab1 (col1 node);
INSERT INTO nodetab1 VALUES ('1.0');

209

OneDB Database Extensions User's Guide

210

INSERT INTO nodetab1 VALUES ('1.1');
INSERT INTO nodetab1 VALUES ('1.1.1');

SELECT n1.col1, n2.col1, IsDescendant (n1.col1, n2.col1)
FROM nodetab1 n1, nodetab1 n2;

col1 1.0
col1 1.0
(expression) f

col1 1.1
col1 1.0
(expression) t

col1 1.1.1
col1 1.0
(expression) t

col1 1.0
col1 1.1
(expression) f

IsParent() function

The IsParent() function lets you determine if a specific node is a parent of another. This function is the opposite of IsChild().

Returns: Boolean

Syntax

IsParent(node1, node2)

node1

The node that you want to determine whether it is a parent of node2.

node2

The descendant node for which you want to find a parent.

Example

CREATE TABLE nodetab1 (col1 node);
INSERT INTO nodetab1 VALUES ('1.0');
INSERT INTO nodetab1 VALUES ('1.1');
INSERT INTO nodetab1 VALUES ('1.1.1');

SELECT n1.col1, n2.col1, IsParent (n1.col1, n2.col1)
FROM nodetab1 n1, nodetab1 n2;

col1 1.0
col1 1.1
(expression) t

col1 1.1
col1 1.1.1
(expression) t

Chapter 1. Database Extensions User's Guide

col1 1.0
col1 1.1.1
(expression) f

Length() Node function

The Length() function returns the number of levels in the specified node and is equivalent to the Depth() function. This is the

name of the function that was included in Node Version 1.0 and supported for continuity.

Returns: integer

Syntax
Length(node::node)

node

The node for which you want to determine depth, which is how many levels are in the node.

Example

execute function length('1.22.3'::node);
(expression) 3

LessThan() function

The LessThan() function compares two nodes to determine which is less. Implements the comparison operator and can be

used in SQL statements either using the function name or the corresponding symbol.

Returns: Boolean

Syntax

LessThan(node1, node2)

node1

The node that you are will compare against.

node2

The node that you are checking to see if it is less than node1.

Examples

Example 1

SELECT * FROM tablename WHERE LessThan(nodecolumn, '1.4');

The following list includes nodes that are less than 1.4:

1. 0.4

2. 1.3

211

OneDB Database Extensions User's Guide

212

3. 1.3.66

4. 1.1.1.1

The following list includes nodes that are greater than 1.4:

1. 1.4.1.1

2. 1.5

3. 2.0

Example 2

SELECT * FROM tablename WHERE nodecolumn < '1.4';

LessThanOrEqual() function

The LessThanOrEqual() function compares two nodes to determine if the first is less or equal to the second. Implements the

comparison operator and can be used in SQL statements either using the function name or the corresponding symbol.

Returns: Boolean

Syntax

LessThanOrEqual(node1, node2)

node1

The node that you are will compare against.

node2

The node that you are checking to see if it is less than or equal to node1.

Examples

Example 1

SELECT * FROM tablename
WHERE LessThanOrEqual(nodecolumn, '1.4');

This example searches the values in the node column of the table to find the node with the value 1.4.

Example 2

SELECT * FROM tablename
WHERE nodecolumn <= '1.4';

This example is the equivalent to the first, but uses symbols instead of the function name.

NewLevel() function

The NewLevel() function creates a new node level. This function simply returns a new node value under the argument node.

This function is independent of table values. The function does not check for duplication.

Chapter 1. Database Extensions User's Guide

Returns: node

Syntax
NewLevel(node)

node

The node under which a new node is created

Example
EXECUTE FUNCTION NewLevel ('1.2.3');
(expression) 1.2.3.1

NodeRelease() function

The NodeRelease() function reports the release and version information of the node data type. This function takes no

arguments.

Returns: string

Syntax

NodeRelease()

node

NotEqual() function

The NotEqual() function compares two nodes to determine whether they are not equal. Implements the comparison operator

and can be used in SQL statements either using the function name or the corresponding symbol. The opposite function is

Equal().

Returns: Boolean

Syntax

NotEqual(node1, node2)

node1

The node against which you will test for inequality.

node2

The node that you will compare to the first to test for inequality.

Examples

Example 1

SELECT * FROM tablename WHERE NotEqual(nodecolumn, '1.4');

Example 2

213

OneDB Database Extensions User's Guide

214

SELECT * FROM tablename WHERE nodecolumn != '1.4';

This example is the same as Example 1, except a not equal sign is used in place of the function name.

SQL Packages Extension
The SQL packages extension provides SPL routines that you can use in an application that is compatible with database

servers other than HCL OneDB™.

The SQL packages extension is a built-in extension in the extend/excompat directory of your installation. You must

manually register the extension using the instructions in the HCL OneDB™ DataBlade® Module Installation and Registration

Guide.

The database that contains the SQL packages extension must meet the following requirements or the extension is not

registered:

• The database must be logged.

• The database must not be defined as an ANSI database.

The following modules are included in the SQL packages extension:

• DBMS_ALERT

• DBMS_LOB

• DBMS_OUTPUT

• DBMS_RANDOM

• UTL_FILE

DBMS_ALERT package
The DBMS_ALERT package provides a set of procedures for registering for alerts, sending alerts, and receiving alerts.

Alerts are stored in the DBMS_ALERT_EVENTS, DBMS_ALERT_REGISTERED, and DBMS_ALERT_SIGNALED tables which are

created in your database when you register the package.

The DBMS_ALERT package includes the following system-defined routines.

Table 26. System-defined routines available in the DBMS_ALERT package

Routine name Description

REGISTER procedure on

page 215

Registers the current session to receive a specified alert.

REMOVE procedure on

page 215

Removes registration for a specified alert.

REMOVEALL procedure

on page 215

Removes registration for all alerts.

Chapter 1. Database Extensions User's Guide

Table 26. System-defined routines available in the DBMS_ALERT package (continued)

Routine name Description

SIGNAL procedure on

page 216

Signals the occurrence of a specified alert.

SET_DEFAULTS

procedure on page 216

Sets the polling interval for the WAITONE and WAITANY

procedures.

WAITANY procedure on

page 216

Waits for any registered alert to occur.

WAITONE procedure on

page 217

Waits for a specified alert to occur.

Usage notes

The procedures in the DBMS_ALERT package are useful when you want to send an alert for a specific event. For example,

you might want to send an alert when a trigger is activated as the result of changes to one or more tables.

REGISTER procedure
The REGISTER procedure registers the current session to receive a specified alert.

Syntax
DBMS_ALERT.REGISTER(name)

Procedure parameters

name

An input argument of type VARCHAR(128) that specifies the name of the alert.

REMOVE procedure
The REMOVE procedure removes registration from the current session for a specified alert.

Syntax
DBMS_ALERT.REMOVE(name)

Procedure parameters

name

An input argument of type VARCHAR(128) that specifies the name of the alert.

REMOVEALL procedure
The REMOVEALL procedure removes registration from the current session for all alerts.

215

OneDB Database Extensions User's Guide

216

Syntax
DBMS_ALERT.REMOVEALL

SET_DEFAULTS
The SET_DEFAULTS procedure sets the polling interval that is used by the WAITONE and WAITANY procedures.

Syntax
DBMS_ALERT.SET_DEFAULTS(sensitivity)

Procedure parameters

sensitivity

An input argument of type INTEGER that specifies an interval in seconds for the WAITONE and WAITANY

procedures to check for signals. If a value is not specified, then the interval is 1 second by default.

SIGNAL procedure
The SIGNAL procedure signals the occurrence of a specified alert. The signal includes a message that is passed with the

alert. The message is distributed to the listeners (processes that have registered for the alert) when the SIGNAL call is

issued.

Syntax
DBMS_ALERT.SIGNAL(name,message)

Procedure parameters

name

An input argument of type VARCHAR(128) that specifies the name of the alert.

message

An input argument of type VARCHAR(32672) that specifies the information to pass with this alert. This

message can be returned by the WAITANY or WAITONE procedures when an alert occurs.

WAITANY procedure
The WAITANY procedure waits for any registered alerts to occur.

Syntax
DBMS_ALERT.WAITANY(name,message,status,timeout)

Procedure parameters

name

An output argument of type VARCHAR(128) that contains the name of the alert.

Chapter 1. Database Extensions User's Guide

message

An output argument of type VARCHAR(32672) that contains the message sent by the SIGNAL procedure.

status

An output argument of type INTEGER that contains the status code returned by the procedure. The following

values are possible

0

An alert occurred.

1

A timeout occurred.

timeout

An input argument of type INTEGER that specifies the amount of time in seconds to wait for an alert.

WAITONE procedure
The WAITONE procedure waits for a specified alert to occur.

Syntax
DBMS_ALERT.WAITONE(name,message,status,timeout)

Procedure parameters

name

An input argument of type VARCHAR(128) that specifies the name of the alert.

message

An output argument of type VARCHAR(32672) that contains the message sent by the SIGNAL procedure.

status

An output argument of type INTEGER that contains the status code returned by the procedure. The following

values are possible

0

An alert occurred.

1

A timeout occurred.

timeout

An input argument of type INTEGER that specifies the amount of time in seconds to wait for the specified alert.

DBMS_LOB package
The DBMS_LOB package provides the capability to operate on large objects.

217

OneDB Database Extensions User's Guide

218

In the following sections describing the individual procedures and functions, lengths and offsets are measured in bytes if the

large objects are BLOBs. Lengths and offsets are measured in characters if the large objects are CLOBs.

The DBMS_LOB package supports LOB data up to 10M bytes.

The DBMS_LOB package includes the following routines.

Table 27. System-defined routines available in the DBMS_LOB package

Routine Name Description

APPEND procedure

on page 219

Appends one large object to another.

COMPARE function

on page 219

Compares two large objects.

COPY procedure on

page 220

Copies one large object to another.

ERASE procedure on

page 221

Erases a large object.

GETLENGTH function

on page 221

Gets the length of the large object.

INSTR function on

page 222

Gets the position of the nth occurrence of a pattern in the large object starting at offset.

READ procedure on

page 222

Reads a large object.

SUBSTR function on

page 223

Gets part of a large object.

TRIM procedure on

page 223

Trims a large object to the specified length.

WRITE procedure on

page 224

Writes data to a large object.

In partitioned database environments, you will receive an error if you execute any of the following routines inside a WHERE

clause of a SELECT statement:

• dbms_lob.compare

• dbms_lob.get_storage_limit

• dbms_lob.get_length

• dbms_lob.instr

• dbms_lob.isopen

• dbms_lob.substr

Chapter 1. Database Extensions User's Guide

The following table lists the public variables available in the package.

Table 28. DBMS_LOB public

variables

Public

variables Data type

Va

lue

lob_readonly INTEGER 0

lob_readwrite INTEGER 1

APPEND procedures
The APPEND procedures provide the capability to append one large object to another.

Note: Both large objects must be of the same type.

Syntax
APPEND_BLOB(dest_lob,src_lob)

APPEND_CLOB(dest_lob,src_lob)

Parameters

dest_lob

An input or output argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator for the

destination object. Must be the same data type as src_lob.

src_lob

An input argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator for the source

object. Must be the same data type as dest_lob.

COMPARE function
The COMPARE function performs an exact byte-by-byte comparison of two large objects for a given length at given offsets.

The function returns:

• Zero if both large objects are exactly the same for the specified length for the specified offsets

• Non-zero if the objects are not the same

• Null if amount, offset_1, or offset_2 are less than zero.

The large objects being compared must be the same data type.

Syntax
COMPARE(lob_1, lob_2 [,amount [,offset_1 [,offset_2]]])

219

OneDB Database Extensions User's Guide

220

Parameters

lob_1

An input argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator of the first large

object to be compared. Must be the same data type as lob_2.

lob_2

An input argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator of the second large

object to be compared. Must be the same data type as lob_1.

amount

An optional input argument of type INTEGER. If the data type of the large objects is BLOB, then the comparison

is made for amount bytes. If the data type of the large objects is CLOB, then the comparison is made for

amount characters. The default is the maximum size of a large object.

offset_1

An optional input argument of type INTEGER that specifies the position within the first large object to begin the

comparison. The first byte (or character) is offset 1. The default is 1.

offset_2

An optional input argument of type INTEGER that specifies the position within the second large object to begin

the comparison. The first byte (or character) is offset 1. The default is 1.

COPY procedures
The COPY procedures provide the capability to copy one large object to another.

The source and destination large objects must be the same data type.

Syntax
COPY_BLOB(dest_lob,src_lob,amount [,dest_offset [,src_offset]])

COPY_CLOB(dest_lob,src_lob,amount [,dest_offset [,src_offset]])

Parameters

dest_lob

An input or output argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator of the

large object to which src_lob is to be copied. Must be the same data type as src_lob.

src_lob

An input argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator of the large object

from which dest_lob is to be copied. Must be the same data type as dest_lob.

amount

An input argument of type INTEGER that specifies the number of bytes or characters of src_lob to be copied.

Chapter 1. Database Extensions User's Guide

dest_offset

An optional input argument of type INTEGER that specifies the position in the destination large object where

writing of the source large object should begin. The first position is offset 1. The default is 1.

src_offset

An optional input argument of type INTEGER that specifies the position in the source large object where

copying to the destination large object should begin. The first position is offset 1. The default is 1.

ERASE procedures
The ERASE procedures provide the capability to erase a portion of a large object.

To erase a large object means to replace the specified portion with zero-byte fillers for BLOBs or with spaces for CLOBs. The

actual size of the large object is not altered.

Syntax
ERASE_BLOB(lob_loc,amount [,offset])

ERASE_CLOB(lob_loc,amount [,offset])

Parameters

lob_loc

An input or output argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator of the

large object to be erased.

amount

An input or output argument of type INTEGER that specifies the number of bytes or characters to be erased.

offset

An optional input argument of type INTEGER that specifies the position in the large object where erasing is to

begin. The first byte or character is at position 1. The default is 1.

GETLENGTH function
The GETLENGTH function returns the length of a large object.

The function returns an INTEGER value that reflects the length of the large object in bytes (for a BLOB) or characters (for a

CLOB).

Syntax
GETLENGTH(lob_loc)

221

OneDB Database Extensions User's Guide

222

Parameters

lob_loc

An input argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator of the large object

whose length is to be obtained.

INSTR function
The INSTR function returns the location of the nth occurrence of a specified pattern within a large object.

The function returns an INTEGER value of the position within the large object where the pattern appears for the nth time, as

specified by nth. This value starts from the position given by offset.

Syntax
INSTR(lob_loc, pattern [,offset [,nth]])

Parameters

lob_loc

An input argument of type BLOB or CLOB that specifies the large object locator of the large object in which to

search for the pattern.

pattern

An input argument of type BLOB(32767) or VARCHAR(32672) that specifies the pattern of bytes or characters

to match against the large object.

pattern must be BLOB if lob_loc is a BLOB; and pattern must be VARCHAR if lob_loc is a CLOB.

offset

An optional input argument of type INTEGER that specifies the position within lob_loc to start searching for the

pattern. The first byte or character is at position 1. The default value is 1.

nth

An optional argument of type INTEGER that specifies the number of times to search for the pattern, starting at

the position given by offset. The default value is 1.

READ procedures
The READ procedures provide the capability to read a portion of a large object into a buffer.

Syntax
READ_BLOB(lob_loc,amount,offset,buffer)

READ_CLOB(lob_loc,amount,offset,buffer)

Chapter 1. Database Extensions User's Guide

Parameters

lob_loc

An input argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator of the large object

to be read.

amount

An input or output argument of type INTEGER that specifies the number of bytes or characters to read.

offset

An input argument of type INTEGER that specifies the position to begin reading. The first byte or character is at

position 1.

buffer

An output argument of type BLOB(32762) or VARCHAR(32672) that specifies the variable to receive the large

object. If lob_loc is a BLOB, then buffer must be BLOB. If lob_loc is a CLOB, then buffer must be VARCHAR.

SUBSTR function
The SUBSTR function provides the capability to return a portion of a large object.

The function returns a BLOB(32767) (for a BLOB) or VARCHAR (for a CLOB) value for the returned portion of the large object

read by the function.

Syntax
SUBSTR(lob_loc [,amount [,offset]])

Parameters

lob_loc

An input argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator of the large object

to be read.

amount

An optional input argument of type INTEGER that specifies the number of bytes or characters to be returned.

The default value is 32,767.

offset

An optional input argument of type INTEGER that specifies the position within the large object to begin

returning data. The first byte or character is at position 1. The default value is 1.

TRIM procedures
The TRIM procedures provide the capability to truncate a large object to the specified length.

Syntax
TRIM_BLOB(lob_loc,newlen)

223

OneDB Database Extensions User's Guide

224

TRIM_CLOB(lob_loc,newlen)

Parameters

lob_loc

An input or output argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator of the

large object to be trimmed.

newlen

An input argument of type INTEGER that specifies the new number of bytes or characters to which the large

object is to be trimmed.

WRITE procedures
The WRITE procedures provide the capability to write data into a large object.

Any existing data in the large object at the specified offset for the given length is overwritten by data given in the buffer.

Syntax
WRITE_BLOB(lob_loc,amount,offset,buffer)

WRITE_CLOB(lob_loc,amount,offset,buffer)

Parameters

lob_loc

An input or output argument of type BLOB(10M) or CLOB(10M) that specifies the large object locator of the

large object to be written.

amount

An input argument of type INTEGER that specifies the number of bytes or characters in buffer to be written to

the large object.

offset

An input argument of type INTEGER that specifies the offset in bytes or characters from the beginning of the

large object for the write operation to begin. The start value of the large object is 1.

buffer

An input argument of type BLOB(32767) or VARCHAR(32672) that contains the data to be written to the large

object. If lob_loc is a BLOB, then buffer must be BLOB. If lob_loc is a CLOB, then buffer must be VARCHAR.

DBMS_OUTPUT package
The DBMS_OUTPUT package provides a set of procedures for putting messages (lines of text) in a message buffer and

getting messages from the message buffer. These procedures are useful during application debugging when you need to

write messages to standard output.

The DBMS_OUTPUT package includes the following system-defined routines.

Chapter 1. Database Extensions User's Guide

Table 29. System-defined routines available in the DBMS_OUTPUT package

Routine name Description

DISABLE procedure

on page 225

Disables the message buffer.

ENABLE procedure

on page 225

Enables the message buffer.

GET_LINE procedure

on page 226

Gets a line of text from the message buffer.

GET_LINES

procedure on

page 226

Gets one or more lines of text from the message buffer and places the text into a

collection.

NEW_LINE procedure

on page 227

Puts an end-of-line character sequence in the message buffer.

PUT procedure on

page 227

Puts a string that includes no end-of-line character sequence in the message buffer.

PUT_LINE procedure

on page 227

Puts a single line that includes an end-of-line character sequence in the message buffer.

Use the command line processor (CLP) command SET SERVEROUTPUT ON to redirect the output to standard output.

DISABLE and ENABLE procedures are not supported inside autonomous procedures.

An autonomous procedure is a procedure that, when called, executes inside a new transaction independent of the original

transaction.

DISABLE procedure
The DISABLE procedure disables the message buffer.

After this procedure runs, any messages that are in the message buffer are discarded. Calls to the PUT, PUT_LINE, or

NEW_LINE procedures are ignored, and no error is returned to the sender.

Syntax
DBMS_OUTPUT.DISABLE

ENABLE procedure
The ENABLE procedure enables the message buffer. During a single session, applications can put messages in the message

buffer and get messages from the message buffer.

Syntax
DBMS_OUTPUT.ENABLE(buffer_size)

225

OneDB Database Extensions User's Guide

226

Procedure parameters

buffer_size

An input argument of type INTEGER that specifies the maximum length of the message buffer in bytes. If you

specify a value of less than 2000 for buffer_size, the buffer size is set to 2000. If the value is NULL, then the

default buffer size is 20000.

GET_LINE procedure
The GET_LINE procedure gets a line of text from the message buffer. The text must be terminated by an end-of-line character

sequence.

Syntax
DBMS_OUTPUT.GET_LINE(line ,status)

Procedure parameters

line

An output argument of type VARCHAR(32672) that returns a line of text from the message buffer.

status

An output argument of type INTEGER that indicates whether a line was returned from the message buffer:

• 0 indicates that a line was returned

• 1 indicates that there was no line to return

GET_LINES procedure
The GET_LINES procedure gets one or more lines of text from the message buffer and stores the text in a collection. Each

line of text must be terminated by an end-of-line character sequence.

Syntax
DBMS_OUTPUT.GET_LINES(lines ,numlines)

Procedure parameters

lines

An output argument of type DBMS_OUTPUT.CHARARR that returns the lines of text from the message buffer.

The type DBMS_OUTPUT.CHARARR is internally defined as a VARCHAR(32672) ARRAY[2147483647] array.

numlines

An input and output argument of type INTEGER. When used as input, specifies the number of lines to retrieve

from the message buffer. When used as output, indicates the actual number of lines that were retrieved from

the message buffer. If the output value of numlines is less than the input value, then there are no more lines

remaining in the message buffer.

Chapter 1. Database Extensions User's Guide

NEW_LINE procedure
The NEW_LINE procedure puts an end-of-line character sequence in the message buffer.

Syntax
DBMS_OUTPUT.NEW_LINE

PUT procedure
The PUT procedure puts a string in the message buffer. No end-of-line character sequence is written at the end of the string.

Syntax
DBMS_OUTPUT.PUT(item)

Procedure parameters

item

An input argument of type VARCHAR(32672) that specifies the text to write to the message buffer.

PUT_LINE procedure
The PUT_LINE procedure puts a single line that includes an end-of-line character sequence in the message buffer.

Syntax
DBMS_OUTPUT.PUT_LINE(item)

Procedure parameters

item

An input argument of type VARCHAR(32672) that specifies the text to write to the message buffer.

DBMS_RANDOM package
The DBMS_RANDOM package provides a mechanism for generating random numbers. Use the INITIALIZE procedure to set

the seed value, which is used by the random number generator to generate the numbers.

After enough repetitions, it is possible that some of the generated values will repeat. To reduce the possibility of repeating

values, periodically change the seed value by using the SEED procedure.

The DBMS_RANDOM package includes the following system-defined routines and types.

Table 30. System-defined routines available in the DBMS_RANDOM package

Routine name Description

INITIALIZE procedure

on page 228

Initializes the package with the specified integer seed value.

Optional.

227

OneDB Database Extensions User's Guide

228

Table 30. System-defined routines available in the DBMS_RANDOM package (continued)

Routine name Description

SEED procedure on

page 228

Resets the seed with the specified integer value.

RANDOM function on

page 228

Uses the existing seed value to return a random integer.

TERMINATE

procedure on

page 229

Terminates the package by resetting the seed value to 0. Optional.

INITIALIZE procedure
The INITIALIZE procedure initializes the system package with the specified integer seed value and is optional.

Syntax
DBMS_RANDOM_INITIALIZE ()

Example

This example:

execute procedure dbms_random_initialize (17809465);

Returns this output:

Routine executed.

SEED procedure
The SEED procedure resets the seed with the specified integer value.

Syntax
DBMS_RANDOM_SEED ()

Example

This example:

execute procedure dbms_random_seed (-45902345);

Returns this output:

Routine executed.

RANDOM function
The RANDOM function uses the seed value to return a random integer.

Syntax
DBMS_RANDOM_RANDOM ()

Chapter 1. Database Extensions User's Guide

Example

This example:

insert into random_test VALUES (0, dbms_random_random());

Returns this output:

1 row(s) inserted.

TERMINATE procedure
The TERMINATE procedure terminates the use of the system package by resetting the seed value to 0 and is optional.

Syntax
DBMS_RANDOM_TERMINATE ()

Example

This example:

execute procedure dbms_random_terminate ();

Returns this output:

Routine executed.

UTL_FILE package
The UTL_FILE package provides a set of routines for reading from and writing to files on the database server file system.

The UTL_FILE system package includes the following system-defined routines and types.

Table 31. System-defined routines available in the UTL_FILE package

Routine name Description

FCLOSE procedure on

page 231

Closes a specified file.

FCLOSE_ALL

procedure on

page 231

Closes all open files.

FFLUSH procedure on

page 231

Flushes unwritten data to a file.

FOPEN function on

page 231

Opens a file.

GET_LINE procedure

on page 232

Gets a line from a file.

229

OneDB Database Extensions User's Guide

230

Table 31. System-defined routines available in the UTL_FILE package

(continued)

Routine name Description

NEW_LINE procedure

on page 232

Writes an end-of-line character sequence to a

file.

PUT procedure on

page 233

Writes a string to a file.

The following list describes all of the named conditions that an application can receive.

Table 32. Named conditions for an application

Condit

ion Name Description

access_denied Access to the file is denied by the operating system.

charsetmisma

tch

A file was opened using FOPEN_NCHAR, but later I/O operations used non-CHAR functions such as PUTF

or GET_LINE.

delete_failed Unable to delete file.

file_open File is already open.

internal_error Unhandled internal error in the UTL_FILE system package.

invalid_filehan

dle

File handle does not exist.

invalid_filen

ame

A file with the specified name does not exist in the path.

invalid_maxline

size

The MAX_LINESIZE value for FOPEN is invalid. It must be 1 - 32672.

invalid_mode The open_mode argument in FOPEN is invalid.

invalid_offset The ABSOLUTE_OFFSET argument for FSEEK is invalid. It must be greater than 0 and less than the total

number of bytes in the file.

invalid_operat

ion

File could not be opened or operated on as requested.

invalid_path The specified path does not exist or is not visible to the database.

read_error Unable to read the file.

rename_failed Unable to rename the file.

write_error Unable to write to the file.

Chapter 1. Database Extensions User's Guide

FCLOSE procedure
The FCLOSE procedure closes a specified file.

Syntax
UTL_FILE.FCLOSE(file)

Procedure parameters

file

An input or output argument of type UTL_FILE.FILE_TYPE that contains the file handle. When the file is closed,

this value is set to 0.

FCLOSE_ALL procedure
The FCLOSE_ALL procedure closes all open files. The procedure runs successfully even if there are no open files to close.

Syntax
UTL_FILE.FCLOSE_ALL

FFLUSH procedure
The FFLUSH procedure forces unwritten data in the write buffer to be written to a file.

Syntax
UTL_FILE.FFLUSH(file)

Procedure parameters

file

An input argument of type UTL_FILE.FILE_TYPE that contains the file handle.

FOPEN function
The FOPEN function opens a file for I/O.

Syntax
UTL_FILE.FOPEN(location,filename,open_mode [,max_linesize])

Return value

This function returns a value of type UTL_FILE.FILE_TYPE that indicates the file handle of the opened file.

Function parameters

location

An input argument of type VARCHAR(128) that specifies the alias of the directory that contains the file.

231

OneDB Database Extensions User's Guide

232

filename

An input argument of type VARCHAR(255) that specifies the name of the file.

open_mode

An input argument of type VARCHAR(10) that specifies the mode in which the file is opened:

a

Append to file

r

Read from file

w

Write to file

max_linesize

An optional input argument of type INTEGER that specifies the maximum size of a line in characters. The

default value is 1024 bytes. In read mode, an exception is thrown if an attempt is made to read a line that

exceeds max_linesize. In write and append modes, an exception is thrown if an attempt is made to write a line

that exceeds max_linesize. End-of-line characters do not count toward the line size.

GET_LINE procedure
The GET_LINE procedure gets a line of text from a specified file. The line of text does not include the end-of-line terminator.

When there are no more lines to read, the procedure throws a NO_DATA_FOUND exception.

Syntax
UTL_FILE.GET_LINE(file, buffer)

Procedure parameters

file

An input argument of type UTL_FILE.FILE_TYPE that contains the file handle of the opened file.

buffer

An output argument of type VARCHAR(32672) that contains a line of text from the file.

NEW_LINE procedure
The NEW_LINE procedure writes an end-of-line character sequence to a specified file.

Syntax
UTL_FILE.NEW_LINE(file [,lines])

Chapter 1. Database Extensions User's Guide

Procedure parameters

file

An input argument of type UTL_FILE.FILE_TYPE that contains the file handle.

lines

An optional input argument of type INTEGER that specifies the number of end-of-line character sequences to

write to the file. The default is 1.

PUT procedure
The PUT procedure writes a string to a specified file. No end-of-line character sequence is written at the end of the string.

Syntax
UTL_FILE.PUT(file, buffer)

Procedure parameters

file

An input argument of type UTL_FILE.FILE_TYPE that contains the file handle.

buffer

An input argument of type VARCHAR(32672) that specifies the text to write to the file.

Regex pattern matching
Regular expressions combine literal characters and metacharaters to define the search and replace criteria. You run the

functions from the HCL OneDB™ Regex extension to find matches to strings, replace strings, and split strings into substrings.

The HCL OneDB™ Regex extension supports extended regular expressions, based on the POSIX 1003.2 standard, and basic

regular expressions

You can specify case-sensitive or case-insensitive searching.

You can search single-byte character sets or UTF-8 character sets.

Henry Spencer's regular expression library

The Informix® Regex pattern matching utilizes Henry Spencer's regular expression library. Use of this library requires the

following notice:

Copyright 1992, 1993, 1994, 1997 Henry Spencer. All rights reserved. This software is not subject to any license of the

American Telephone and Telegraph Company or of the Regents of the University of California.

Permission is not granted to anyone to use this software for any purpose on any computer system, and to alter it and

redistribute it, subject to the following restrictions:

233

OneDB Database Extensions User's Guide

234

1. The author is not responsible for the consequences of use of this software, no matter how awful, even if they arise from

flaws in it.

2. The origin of this software must not be misrepresented, either by explicit claim or by omission. Since few users ever read

sources, credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be misrepresented as being the original software. Since

few users ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

Requirements and Restrictions
You must understand the following requirements and restrictions before you run regex pattern matching searches.

Regex support

You can use either basic or extended regular expressions, with case sensitivity or case insensitivity. Neither

type of expression allows searching for a null character.

Extended regular expressions support more search and replace options than basic regular expressions.

Database server requirement

The Scheduler must be running in the database server. If the Scheduler is not running when you run regex

functions, a message that the function is not found is returned.

You must have a default sbspace if you want to return a CLOB value when you replace strings.

Database requirements

The database where the regex functions are run must be logged and must not be an ANSI database. If you

attempt to use a regex function in an unlogged or ANSI database, the message DataBlade registration failed

is printed in the database server message log.

Data type support

To use regex pattern matching, you must provide the text data as a CHAR, LVARCHAR, NCHAR, NVARCHAR,

VARCHAR, or CLOB data type.

If you want to replace text in a CLOB value with the regex_replace() function, you must have a default sbspace.

Locales and languages support

Regex queries can use single-byte character locales and UTF-8 based locales.

Important: If you use UTF-8 character encoding, including the Chinese GB18030-2000 code set, you

must set the GL_USEGLU environment variable before you create the database.

Query restrictions

Regex functions do not inherently use any database indexes.

Chapter 1. Database Extensions User's Guide

Metacharacters
A metacharacter is a character that has a special meaning during pattern processing. You use metacharacters in regular

expressions to define the search criteria and any text manipulations.

Search string metacharacters are different from replacement string metacharacters.

Search string metacharacters

The following table lists metacharacters for extended regular expression searches.

If you use basic regular expressions, not all metacharacters are supported. The function of the backslash character is

reversed. You must include a backslash character before all metacharacters.

Table 33. Search string metacharacters

Metacharacter Action

^ Beginning of line

$ End of line

| Or

Not applicable to basic regular expressions.

[abc] Match any character enclosed in the brackets

[^abc] Match any character not enclosed in the brackets

[a-z] Match the range of characters specified by the hyphen

[:cclass:] Use the character list that is specified by cclass:

• alnum = Uppercase and lowercase alphabetic

characters and numbers: [A-Za-z0-9]

• alpha = Uppercase and lowercase alphabetic

characters: [A-Za-z]

• blank = Whitespace and tab characters

• cntrl = Control characters

• digit = Numbers: [0-9]

• graph = Visible characters (the alnum class plus the

punct class)

• lower = Lowercase alphabetic characters: [a-z]

• print = Printable characters (the graph class plus

whitespace)

• punct = Punctuation

marks: !"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~

235

OneDB Database Extensions User's Guide

236

Table 33. Search string metacharacters (continued)

Metacharacter Action

• space = Whitespace characters: tab, newline,

carriage-return, form-feed, and vertical-tab

• upper = Uppercase alphabetic characters: [A-Z]

• xdigit = Hexadecimal characters: [0-9a-fA-F]

These classes are valid for single-byte character sets.

[=cname=] Substitute the character name that is specified by cname

with the corresponding character code.

For a list of character names, see Regex character names on

page 237.

. Match any single character.

() Group the regular expression within the parentheses.

? Match zero or one of the preceding expression.

Not applicable to basic regular expressions.

* Match zero, one, or many of the preceding expression.

+ Match one or many of the preceding expression.

Not applicable to basic regular expressions.

\ Use the literal meaning of the metacharacter.

For basic regular expressions, treat the next character as a

metacharacter.

Replacement string metacharacters

The following table lists metacharacters for extended regular expression searches.

If you use basic regular expressions, not all metacharacters are supported. The function of the backslash character is

reversed. You must include a backslash character before all metacharacters.

Table 34. Replacement string metacharacters

Metacharacter Action

& Reference the entire matched text for string substitution.

Chapter 1. Database Extensions User's Guide

Table 34. Replacement string metacharacters (continued)

Metacharacter Action

For example, the statement execute function

regex_replace('abcdefg', '[af]', '.&.') replaces 'a' with

'.a.' and 'f' with '.f.' to return: '.a.bcde.f.g'.

\n Reference the subgroup n within the matched text, where n

is an integer 0-9.

\0 and & have identical actions.

\1 - \9 substitute the corresponding subgroup.

For example, the statement execute function

regex_replace('abcdefg', '[af]', '.\0.') replaces 'a'

with '.a.' and 'f' with '.f.' to return: '.a.bcde.f.g'.

For example, the statement execute function

regex_replace('abcdefg', '([af])([bg])',

'.p1-\1.p2-\2.') replaces 'ab' with '.p1-a.p2-b' and 'fg'

with '.p1-f.p2-g.' to return: '.p1-a.p2-b.cde.p1-f.p2-g.'.

Not applicable to basic regular expressions.

\ Use the literal meaning of the metacharacter, for example,

\& escapes the Ampersand symbol and \\ escapes the

backslash.

For basic regular expressions, treat the next character as a

metacharacter.

Regex character names
You can search for character codes by specifying the character name in a regex search.

You must use the syntax [=cname=], where cname is a character name. The character code is determined in the following

order:

1. If the character name exists in the current locale, the corresponding character code is used.

2. If the character name is one byte, the name is used as the code.

3. If the character name is listed in the following table, the corresponding character code is used.

4. Otherwise, the character name was not found, and an error is returned.

237

OneDB Database Extensions User's Guide

238

Table 35. Character names for regex searches

Name Code

soh 01 = Start of heading

stx 02 = Start of text

etx 03 = End of text

eot 04 = End of transmission

enq 05 = Enquiry

ack 06 = Acknowledgment

bel 07 = Bell

alert 07 (BEL) = Bell

bs 08 = Backspace

backspace 08 = Backspace

ht 09 = Horizontal tab

tab 09 (HT) = Horizontal tab

lf 0A = Line feed

newline 0A (LF) = Line feed

vt 0B = Vertical tab

vertical-tab 0B (VT) = Vertical tab

ff 0C (FF) = Form feed

form-feed 0C (FF) = Form feed

cr 0D (CR) = Carriage return

carriage-return 0D (CR) = Carriage return

so 0E = Shift Out/X-On

si 0F = Shift In/X-Off

dle 10 = Data line escape

dc1 11 = Device control 1

dc2 12 = Device control 2

dc3 13 = Device control 3

dc4 14 = Device control 4

nak 15 = Negative acknowledgment

Chapter 1. Database Extensions User's Guide

Table 35. Character names for regex searches (continued)

Name Code

syn 16 = Synchronous idle

etb 17 = End of transmit block

can 18 = Cancel

em 19 = End of medium

sub 1A = Substitute

esc 1B = Escape

is4 1C (FS) = File separator

fs 1C = File separator

is3 1D (GS) = Group separator

gs 1D (GS) = Group separator

is2 1E (RS) = Record separator

rs 1E (RS) = Record separator

is1 1F (US) = Unit separator

us 1F (US) = Unit separator

space ' '

exclamation-mark '!'

quotation-mark '"'

number-sign '#'

dollar-sign '$'

percent-sign '%'

ampersand '&'

apostrophe '\'

left-parenthesis '('

right-parenthesis ')'

asterisk '*'

plus-sign '+'

comma ,

hyphen '-'

239

OneDB Database Extensions User's Guide

240

Table 35. Character names for regex searches (continued)

Name Code

hyphen-minus -

period '.'

full-stop '.'

Slash /

solidus '/'

Zero 0

one '1'

two '2'

Three 3

four 4

Five 5

six '6'

Seven 7

Eight 8

Nine 9

Colon :

semicolon ';'

less-than-sign '<'

equals-sign '='

greater-than-sign '>'

question-mark ?

commercial-at @

left-square-bracket '['

backslash \

reverse-solidus \

right-square-bracket]

circumflex ^'

circumflex-accent ^'

Chapter 1. Database Extensions User's Guide

Table 35. Character names for regex searches (continued)

Name Code

underscore _'

low-line _'

grave-accent `

left-brace '{'

left-curly-bracket '{'

vertical-line '|'

right-brace '}'

right-curly-bracket '}'

Tilde ~

del 7F = Delete

Regex Routines
You can use regex routines to search for patterns, manipulate text strings, and configure tracing.

Example data

Some examples for the regex functions use the tongue_twisters table:

create table
 tongue_twisters (id
 int, twister lvarchar);

The tongue_twisters table contains the following data:

select id, twister
from tongue_twisters
order by id;

id 246
twister Sally sells sea shells by the sea shore. But if Sally sells sea
 shells by the sea shore then where are the sea shells Sally sells?

id 278
twister Peter Piper picked a peck of pickled peppers. A peck of pickled
 peppers Peter Piper picked. Peter Piper picked a peck of pickled
 peppers, Where's the peck of pickled peppers Peter Piper picked?

id 286
twister If two witches would watch two watches, which witch would watch
 which watch?

id 301
twister Fuzzy Wuzzy was a bear, Fuzzy Wuzzy had no hair, Fuzzy Wuzzy

241

OneDB Database Extensions User's Guide

242

 wasn't very fuzzy, was he?

id 306
twister I slit a sheet, a sheet I slit, and on that slitted sheet I sit.

id 313
twister Betty bought some bitter butter and it made her batter bitter, so
 Betty bought some better butter to make her bitter batter better.

id 335
twister How much wood could a woodchuck chuck if a woodchuck could chuck
 wood? A woodchuck could chuck as much wood as a woodchuck would
 chuck if a woodchuck could chuck wood.

id 361
twister She sells seashells on the seashore. The seashells she sells are
 seashore seashells.

regex_match function
The regex_match function returns indicates whether a source string matches the regular expression.

Syntax

regex_match(
 str lvarchar,
 re lvarchar,
 copts integer DEFAULT 1)
returns boolean

regex_match(
 str clob,
 re lvarchar,
 copts_string lvarchar)
returns boolean

Parameters

str

The string to search. Can be of type CHAR, NCHAR, VARCHAR, NVARCHAR, LVARCHAR or CLOB. A null value is

treated as an empty string.

re

The regular expression. Can be of type CHAR, NCHAR, VARCHAR, NVARCHAR, or LVARCHAR. Cannot be null.

copts (Optional)

The type of regex search:

• 0 = Basic regex

• 1 = Default. Extended POSIX regex

Chapter 1. Database Extensions User's Guide

• 2 = Basic regex and ignore case

• 3 = Extended POSIX regex and ignore case

copts_string (Optional)

The type of regex search:

• basic = Basic regex

• extended = Default. Extended POSIX regex

• basic,icase = Basic regex and ignore case

• extended,icase = Extended POSIX regex and ignore case

• basic,rtrim = Basic regex with rtrim

• extended,rtrim = Extended POSIX regex with rtrim

• basic,icase,rtrim = Basic regex and ignore case with rtrim

• extended,icase,rtrim = Extended POSIX regex and ignore case with rtrim

Description

Use the regex_match function to determine if the source string matches the regular expression.

Returns

t = The source string matches the regular expression.

f = The source string does not match the regular expression.

An exception = An error occurred.

Example

The following statement tests whether the word "module", "Module", or "DataBlade" occurs in the string:

execute function regex_match
('Regex module' , '[Mm]odule|DataBlade');
(expression) t

In the following example, the regular expression 'wo[ou]l?d' matches the word "wood" and the word "would":

select id, twister
from tongue_twisters
where regex_match(twister, 'wo[ou]l?d');

id 286
twister If two witches would watch two watches, which witch
 would watch which watch?
id 335
twister How much wood could a woodchuck chuck if a
 woodchuck could chuck wood? A woodchuck
 could chuck as much wood as a woodchuck would
 chuck if a woodchuck could chuck wood.

243

OneDB Database Extensions User's Guide

244

regex_replace function
The regex_replace function replaces a string that matches a regular expression.

Syntax

regex_replace(
 str lvarchar,
 re lvarchar,
 rep lvarchar,
 limit integer DEFAULT 0,
 copts integer DEFAULT 1)
returns lvarchar

regex_replace(
 str clob,
 re lvarchar,
 rep lvarchar,
 limit integer DEFAULT 0,
 copts_string lvarchar)
returns clob

Parameters

str

The string to search. Can be of type CHAR, NCHAR, VARCHAR, NVARCHAR, LVARCHAR, or CLOB. A null value is

treated as an empty string.

re

The regular expression. Can be of type CHAR, NCHAR, VARCHAR, NVARCHAR, or LVARCHAR. Cannot be null.

rep

The string to replace. Can be of type CHAR, NCHAR, VARCHAR, NVARCHAR, or LVARCHAR. See topic on

Metacharacters on page 235 for metacharacter handling. Cannot be null.

limit (Optional)

0 = Default. All matches are returned.

Positive integer = The maximum number of matches to return.

copts (Optional)

The type of regex search:

• 0 = Basic regex

• 1 = Default. Extended POSIX regex

• 2 = Basic regex and ignore case

• 3 = Extended POSIX regex and ignore case

copts_string (Optional)

The type of regex search:

Chapter 1. Database Extensions User's Guide

• basic = Basic regex

• extended = Default. Extended POSIX regex

• basic,icase = Basic regex and ignore case

• extended,icase = Extended POSIX regex and ignore case

• basic,rtrim = Basic regex with rtrim

• extended,rtrim = Extended POSIX regex with rtrim

• basic,icase,rtrim = Basic regex and ignore case with rtrim

• extended,icase,rtrim = Extended POSIX regex and ignore case with rtrim

Description

Use the regex_replace function to replace text in a string. You can run the regex_replace function in an EXECUTE FUNCTION

statement or in an SQL query, such as a SELECT statement.

Returns

A single value that is the input string with all substrings, up to the limit value, that match the input regular expression pattern

replaced as specified by the replacement pattern.

An exception is returned if an error occurred.

Example

In this example, you want to have a web-based search engine that returns search matches in bold using the "and" HTML tags.

Furthermore, you want to make the entire word bold in which the match was found. The regular expression in the example

below looks for a word in which "she" or "She" occurs, then replaces the matched text with itself (&), enclosed by "and" HTML

tags:

execute function regex_replace (
 'She sells seashells on the seashore. The seashells she sells are seashore
 seashells.',
 '(|^)[A-Za-z]*[Ss]he[a-z]*[.,$]',
 '&');

(expression) She sells seashells on the seashore. The
seashells she sells are seashore seashells.

The result displayed on a web page looks like this:

She sells seashells on the seashore. The seashells she sells are seashore
seashells.

You can restrict the number of matches replaced by using the optional integer argument:

execute function regex_replace(
 'She sells seashells on the seashore. The seashells she sells are
 seashore seashells.',
 '(|^)[A-Za-z]*[Ss]he[a-z]*[.,$]',
 '&',
 3);

The result displayed on a web page looks like this, with only three replacements:

245

OneDB Database Extensions User's Guide

246

She sells seashells on the seashore. The seashells she sells are seashore
seashells.

The following example runs the regex_replace function in a SELECT statement:

select id,
 regex_replace(twister, '(|^)[A-Za-z]*[Ss]he[a-z]*[.,$]',
 '&')
from tongue_twisters
where regex_match(twister, '[Ss]he');
id 246
(expression) Sally sells sea shells by the sea shore. But
 if Sally sells sea shells by the sea shore then
 where are the sea shells Sally sells?
id 306
(expression) I slit a sheet, a sheet I slit, and
 on that slitted sheet I sit.
id 361
(expression) She sells seashells on the seashore.
 The seashells she sells are seashore
 seashells.

The following statement reference four subgroups within the matched text:

execute function regex_replace (
 'swap me all around',
 '(.*) (.*) (.*) (.*)',
 '\4 \3 \2 \1'
);
(expression) around all me swap
1 row(s) retrieved.
execute function regex_replace ('swap me', '(.*) (.*)', '&: \2 \1');
(expression) swap me: me swap
1 row(s) retrieved.

regex_extract function
The regex_extract function returns a list of strings that match a regular expression from the source string.

Syntax

regex_extract(
 str lvarchar,
 re lvarchar,
 limit integer DEFAULT 0,
 copts integer DEFAULT 1)
returns lvarchar

regex_extract(
 str clob,
 re lvarchar,
 limit integer DEFAULT 0,
 copts_string lvarchar)
returns lvarchar

Chapter 1. Database Extensions User's Guide

Parameters

str

The string to search. Can be of type CHAR, NCHAR, VARCHAR, NVARCHAR, LVARCHAR, or CLOB. A null value is

treated as an empty string.

re

The regular expression. Can be of type CHAR, NCHAR, VARCHAR, NVARCHAR, or LVARCHAR. Cannot be null.

limit (Optional)

0 = Default. All matches are returned.

Positive integer = The maximum number of matches to return.

copts (Optional)

The type of regex search:

• 0 = Basic regex

• 1 = Default. Extended POSIX regex

• 2 = Basic regex and ignore case

• 3 = Extended POSIX regex and ignore case

copts_string (Optional)

The type of regex search:

• basic = Basic regex

• extended = Default. Extended POSIX regex

• basic,icase = Basic regex and ignore case

• extended,icase = Extended POSIX regex and ignore case

• basic,rtrim = Basic regex with rtrim

• extended,rtrim = Extended POSIX regex with rtrim

• basic,icase,rtrim = Basic regex and ignore case with rtrim

• extended,icase,rtrim = Extended POSIX regex and ignore case with rtrim

Description

Use the regex_extract function iteratively return each substring that matches a regular expression. You can limit the number

of substrings returned.

Returns

A set of text values that match the input regular expression pattern.

No rows found = A 0-length match, for example, a newline character.

An exception = An error occurred.

247

OneDB Database Extensions User's Guide

248

Example: Find a pattern within words

In this example, you want to find the patterns "would" and "wood":

How much wood could a
woodchuck chuck if a woodchuck could chuck wood?
A woodchuck could chuck as much wood as a woodchuck would chuck
if a woodchuck could chuck wood.

The following regular expression matches both the word "wood" and the word "would":

wo[ou]l?d

When you use this regular expression, the regex_extract function shows that the two words occur ten times in the string, but

does not provide the entire word in which the pattern is found:

execute function
regex_extract(
 'How much wood could a woodchuck chuck if a woodchuck could chuck wood?
 A woodchuck could chuck as much wood as a woodchuck would chuck
 if a woodchuck could chuck wood.',
 'wo[ou]l?d'
);
(expression) wood
(expression) wood
(expression) wood
(expression) wood
(expression) wood
(expression) wood
(expression) wood
(expression) would
(expression) wood
(expression) wood
10 row(s) retrieved.

Example: Return the pattern plus the rest of the word

You can expand the regular expression to include the entire word. Start by specifying that more lowercase characters can

follow the primary subexpression:

wo[ou]l?d[a-z]*

Next, add that the word ends with a space or a punctuation character. For completeness, you can specify more punctuation

characters than the ones that occur in the text.

Note: If a hyphen appears as the first character in a character class, it means a literal hyphen, not a range of values.

wo[ou]l?d[a-z]*[- .?!:;]

When you run the regex_extract function with this expression, the function returns the whole words in which the pattern

occurs:

execute function
regex_extract(
 'How much wood could a woodchuck chuck if a woodchuck could chuck wood?

Chapter 1. Database Extensions User's Guide

 A woodchuck could chuck as much wood as a woodchuck would chuck
 if a woodchuck could chuck wood.',
 'wo[ou]l?d[a-z]*[- .?!:;]'
);
(expression) wood
(expression) woodchuck
(expression) woodchuck
(expression) wood?
(expression) woodchuck
(expression) wood
(expression) woodchuck
(expression) would
(expression) woodchuck
(expression) wood.
10 row(s) retrieved.

In the following example, you limit the results to the first two:

execute function
regex_extract(
 'How much wood could a woodchuck chuck if a woodchuck could chuck wood?
 A woodchuck could chuck as much wood as a woodchuck would chuck
 if a woodchuck could chuck wood.',
 'wo[ou]l?d[a-z]*[- .?!:;]',
 2
);
(expression) wood
(expression) woodchuck
2 row(s) retrieved.

Example: Return the pattern plus the beginning of the word

You can include the beginning of the word in the regular expression. The beginning of a word can be a space or the beginning

of the line, (|^), followed by upper or lowercase letters:

(|^)[A-Za-z]*

In this example, you want to find all instances of the string "tter" in the following text:

Betty bought some bitter
butter and it made her batter bitter,
so Betty bought some better
butter to make her bitter batter better.

The following statement returns the pattern plus the beginnings of the words:

execute function
regex_extract(
 'Betty bought some bitter butter and it made her batter bitter,
 so Betty bought some better butter to make her bitter batter better.',
 '(|^)[A-Za-z]*tter'
);
(expression) bitter
(expression) butter
(expression) batter
(expression) bitter
(expression) better
(expression) butter

249

OneDB Database Extensions User's Guide

250

(expression) bitter
(expression) batter
(expression) better
9 row(s) retrieved.

Example: A match with 0 length

If the regular expression results in a 0-length match, the query returns the message "No rows found." For example, although

the regex_match function returns t for a match on a begin-line character ("^"), the regex_extract function returns no rows

because a search of "^" matches a string that has a length of 0:

execute function regex_match('Hello world', '^');
(expression) t
 1 row(s) retrieved.
execute function regex_extract('Hello world', '^');
 No rows found.

regex_split function
The regex_split function splits a string into substrings, using the match character as the delimiter.

Syntax

regex_split(
 str lvarchar,
 re lvarchar,
 limit integer DEFAULT 0,
 copts integer DEFAULT 1)
returns lvarchar

regex_split(
 str clob,
 re lvarchar,
 limit integer DEFAULT 0,
 copts_string lvarchar)
returns lvarchar

Parameters

str

The string to search. Can be of type CHAR, NCHAR, VARCHAR, NVARCHAR, LVARCHAR, or CLOB. A null value is

treated as an empty string.

re

The regular expression. Can be of type CHAR, NCHAR, VARCHAR, NVARCHAR, or LVARCHAR. Cannot be null.

limit (Optional)

0 = Default. All matches are returned.

Positive integer = The maximum number of matches to return.

copts (Optional)

The type of regex search:

Chapter 1. Database Extensions User's Guide

• 0 = Basic regex

• 1 = Default. Extended POSIX regex

• 2 = Basic regex and ignore case

• 3 = Extended POSIX regex and ignore case

copts_string (Optional)

The type of regex search:

• basic = Basic regex

• extended = Default. Extended POSIX regex

• basic,icase = Basic regex and ignore case

• extended,icase = Extended POSIX regex and ignore case

• basic,rtrim = Basic regex with rtrim

• extended,rtrim = Extended POSIX regex with rtrim

• basic,icase,rtrim = Basic regex and ignore case with rtrim

• extended,icase,rtrim = Extended POSIX regex and ignore case with rtrim

Description

Use the regex_split function to split a string into substrings.

The regex_split function and the regex_extract function perform the complete opposite actions of each other.

Returns

A set of text values.

No rows found = The delimiter specified in the regular expression matches the entire source string.

An exception = An error occurred.

Example: Compare the regex_extract and regex_split functions

You are looking for the pattern "ick" and any characters that precede it:

(|^)[A-Za-z]*ick

The regex_extract function returns each substring that matches the regular expression:

execute function
 regex_extract(
 'Jack be nimble, Jack be quick, Jack jump over the candlestick.',
 '(|^)[A-Za-z]*ick'
);
(expression) quick
(expression) candlestick
2 row(s) retrieved.

The regex_split function splits the string into substrings, using the regular expression as the delimiter:

251

OneDB Database Extensions User's Guide

252

execute function
 regex_split(
 'Jack be nimble, Jack be quick, Jack jump over the candlestick.',
 '(|^)[A-Za-z]*ick');
(expression) Jack be nimble, Jack be
(expression) , Jack jump over the
(expression) .
3 row(s) retrieved.

Example: Split a string into separate words

The following example splits the string up into its separate words, using a space as the delimiter:

execute function
 regex_split(
 'Jack be nimble, Jack be quick, Jack jump over the candlestick.',
 ' ');
(expression) Jack
(expression) be
(expression) nimble,
(expression) Jack
(expression) be
(expression) quick,
(expression) Jack
(expression) jump
(expression) over
(expression) the
(expression) candlestick.
11 row(s) retrieved.

The following example limits the number of substrings into which the source string is split to 5:

execute function
 regex_split(
 'Jack be nimble, Jack be quick, Jack jump over the candlestick.',
 ' ',
 5);
(expression) Jack
(expression) be
(expression) nimble,
(expression) Jack
(expression) be quick, Jack jump over the candlestick.
5 row(s) retrieved.

Example: The regular expression matches the entire source string

In the following example, the delimiter specified in the regular expression matches the entire source string and returns "No

rows found.":

execute function regex_split('Hello world', 'Hello world');
No rows found.

regex_set_trace procedure
The regex_set_trace() procedure enables the output of debug messages.

Chapter 1. Database Extensions User's Guide

Syntax

regex_set_trace(
 filename lvarchar,
 level integer)

Parameters

filename

The file name for the trace entries. The file must be accessible to the database server.

level

The trace level: 10, 20, 30, or 100. Higher values return more details.

Description

The regex_set_trace() procedure enables the output of debug messages.

Example

The following statement enables tracing:

Execute procedure regex_set_trace(‘/tmp/rx.log’, 20);

regex_release function
The regex_release function provides the internal release version number of the regex extension.

Syntax

regex_release()
returns lvarchar

Parameters

None

Description

Run the regex_release function if HCL Software Support asks for the internal release number.

Returns

The internal release version number.

An exception = An error occurred.

Example

execute function regex_release();
(expression) ifxregex release 1.00 (Build 184)
 Compiled on Sat Jul 2 08:25:49 CDT 2016 with:

253

OneDB Database Extensions User's Guide

254

 IBM Informix Dynamic Server Version 12.10.FC8
 glslib-6.00.UC8

Index
Special Characters

"informix".mqipolicy table 61
"informix".mqipubsub table 60
"informix".mqiservice table 58

A
Access method

bts 122
all_json_names index parameter 146
all_xmlattrs Basic Text Search index
parameter 159
all_xmltags Basic Text Search index
parameter 158
Alnum analyzer 169
Analyzers

basic text searching 167
Ancestors() function

defined 202
API interface 9

using 40, 40
APPEND procedure 219
ASCII representation

in the Binary DataBlade module 111
AUTO_READAHEAD configuration
parameter 193

B
Basic text search

all_json_names index parameter 146
Alnum analyzer 169
analyzers 167
building the index in RAM 133
CJK analyzer 170
composite index 126
creating an index 122
eSoundex analyzer 170
ignore_json_format_errors index
parameter 147
include_contents index parameter 147
json_array_processing index parameter 148
json_names index parameter 151
json_path_processing index parameter 152
Keyword analyzer 171
limiting memory use 132
maximum query results 125
maximum tokens 125
only_json_values index parameter 153
Simple analyzer 172
Snowball analyzer 174
Soundex analyzer 173
Standard analyzer 176
Stopword analyzer 177
stopwords 129
thesaurus 130
User-defined analyzer 178
Whitespace analyzer 179

Basic Text Search
Boolean operators 142
boosting a term 141
default sbspace 120
error codes listed 194
escaping special search characters 135
fuzzy searches 139
Grouping words and phrases 135
obtaining a score value 134
overview 117
preparation steps 118
proximity searches 140

query terms 135
range searches 141
requirements 118
restrictions 118
setting SBSPACENAME 120
supported data types 118
transactions 191
wildcard searches 138

Basic Text Search DataBlade module
index 122

Basic Text Search fields 136
Basic Text Search index parameters

all_xmlattrs 159
all_xmltags 158
include_contents 162
include_namespaces 164
include_subtag_text 165
strip_xmltags 163
xmlpath_processing 160
xmltags 156

Basic text search JSON index parameters
syntax 145

Basic Text Search queries
restrictions 133

Basic Text Search XML index parameters
overview 154
syntax 155

basic text searching
analyzers 166

Basic text searching
JSON index parameters 143

bdtrelease() function 115
bdttrace() function 115
Binary data

determining for lld_lob data type 36
indexing 112
inserting 111
inserting into table 34
specifying with lld_lob data type 8

Binary data types
overview 109
restrictions 110

Binary DataBlade module
ASCII representation 111

binary18 data type 109, 110
binaryvar data type 109, 110
bit_and() function 113
bit_complement() function 113
bit_or() function 114
bit_xor() function 114
Bitwise functions 113
BLOB data type

casting to lld_lob data type 8
explicitly 35
implicitly 34

Boolean operators
Basic Text Search 142

Boosting a term
Basic Text Search 141

BSON documents
basic text search index 143

bts
access method 122
operator classes 122
virtual processors 192

bts index
creating 122
deletion mode 124

directory location 120
optimize 124
restrictions 118

bts_blob_ops operator class 122
bts_bson_ops operator class 122
bts_char_ops operator class 122
bts_clob_ops operator class 122
bts_contains() search predicate

syntax 134
bts_index_compact() function 180
bts_index_fields() function 181
bts_json_ops operator class 122
bts_longlvarchar_ops operator class 122
bts_lvarchar_ops operator class 122
bts_release() function 184
bts_tracefile() function 184
bts_tracelevel() function 185
bts_varchar_ops operator class 122
BUFFERPOOL configuration parameter 193

C
Callback function

registering 45
Casting

BLOB data type to lld_lob data type 8
explicitly 35
implicitly 34

CLOB data type to lld_lob data type 8
explicitly 35
implicitly 34

lld_lob data type to BLOB and CLOB data
types 8, 34, 35

Character data
determining for lld_lob data type 36
inserting into table 34
specifying with lld_lob data type 8

Chinese text search 170
CJK analyzer 170
Client files

copying
to a large object 26, 30
to a large object, example 34, 38, 39

creating 24
deleting 25
functions 24
opening 28

CLOB data type
casting to lld_lob data type 8

explicitly 35
implicitly 34

COMPARE function 219
Compare() function

defined 203
Composite index

basic text searching 126
Concurrent access, how to limit 5
Configuration parameters

MQCHLLIB 105, 105
MQSERVER 104

Conventions
functions, naming 9

COPY procedure 220

D
Data types

binary18 110
binaryvar 110
lld_lob

255

casting to BLOB and CLOB data types 8,
34, 35
defined 8
determining type of data 34, 36
introduced 4
using 34, 36
using to insert binary and character data
into table 34

lld_locator
defined 6
introduced 4
using 37, 39
using to insert row into table 37
using to reference smart large object,
example 37

DBMS_LOB module
APPEND procedures 219
COMPARE function 219
COPY procedures 220
ERASE procedures 221
GETLENGTH function 221
INSTR function 222
READ procedures 222
SUBSTR function 223
TRIM procedures 223
WRITE procedures 224

DBMS_LOB package
overview 217

DBMS_OUTPUT package 224
DBMS_RANDOM package 227
Default table values

MQ 57
Deletion modes

bts index 124
Depth() function

defined 204
Disk space

for the bts index 192

E
ENABLE procedure 225
ERASE procedure 221
Error code

argument 44
Error codes

MQ 105
Errors

callback functions, registering for 45
codes listed 45
codes listed, Basic Text Search 194
error code argument for 44
exceptions, generating for 31
exceptions, handling for 45
handling

example of 40
functions for 31
MQ 105
SQL 44

status of, and function return value 44
translating to SQL states 31

Escaping special search characters
Basic Text Search 135

eSoundex analyzer 170
ESQL/C

interface 9
Exceptions

generating 31
handling 45

F
FCLOSE procedure 231
FCLOSE_ALL procedure 231

FFLUSH procedure 231
Fields

in Basic Text Search 136
Files

client. 33
copying smart large objects to 33
creating, example 39
deleting, example 39

FOPEN function 231
functions

FOPEN 231
RANDOM 228

Functions
Ancestors() 202
basic large object 10
bdtrelease() 115
bdttrace() 115
bit_and() 113
bit_complement() 113
bit_or() 114
bit_xor() 114
bitwise 113
bts_index_compact() 180
bts_index_fields() 181
bts_release() 184
bts_tracefile() 184
bts_tracelevel() 185
client file support 24
Compare() 203
Depth() 204
error code argument 44
error utility 31
GetMember() 204
GetParent() 205
GreaterThanOrEqual() 206
Increment() 206
introduced 4
IsAncestor() 207
IsChild() 208
IsDescendant() 209
IsParent() 210
Length() 211
LENGTH() 116
LessThan() 211
LessThanOrEqual() 212
lld_close() 11

using 40, 40
lld_copy() 12

using 38, 39
lld_create 14, 37
lld_create_client() 24
lld_delete_client() 25
lld_delete() 16
lld_error_raise() 31
lld_from_client() 26

using 38
LLD_LobType 34, 36
lld_open_client 28
lld_open() 17

using 40, 40
lld_read() 19, 40, 40
lld_sqlstate 31
lld_tell() 21
lld_to_client() 30, 39
lld_write() 22, 40, 40
LOCopy 32
LOToFile 33
MQCreateVtiRead() 65
MQCreateVtiReceive() 67
MQCreateVtiWrite() 69
MQHasMessage() 70

MQInquire() 72
MQPublish() 73
MQPublishClob() 77
MQRead() 82
MQReadClob() 84
MQReceive() 87
MQReceiveClob() 90
MQSend() 92
MQSendClob() 95
MQSubscribe() 97
MQTrace() 100
MQUnsubscribe() 102
MQVersion() 104
naming conventions 9
NewLevel() 212
NodeRelease() 213
NotEqual() 213
OCTET_LENGTH() 117
return value and error status 44
smart large object copy 32

Fuzzy searches
Basic Text Search 139

G
GET_LINE procedure 226

files 232
GET_LINES procedure 226
GETLENGTH function 221
GetMember() function

defined 204
GetParent() function

defined 205
GreaterThanOrEqual() function

defined 206
Grouping words and phrases

Basic Text Search 135

H
HCL OneDB

configuring for MQ 47
Hexadecimal representation

in the Binary DataBlade module 111

I
ignore_json_format_errors index
parameter 147
include_contents Basic Text Search index
parameter 162
include_contents index parameter 147
include_namespaces Basic Text Search index
parameter 164
include_subtag_text Basic Text Search index
parameter 165
Increment() function

defined 206
Indexing binary data 112
INITIALIZE procedure 228
Inserting binary data 111
INSTR function 222
Interfaces 9

API 9
using 40, 40

ESQL/C 9
naming conventions 9
SQL 10

using 34, 39
IsAncestor() function

defined 207
IsChild() function

defined 208
IsDescendant() function

defined 209

256

IsParent() function
defined 210

J
Japanaese text search 170
JSON documents

basic text search index 143
JSON index parameters 143

syntax for basic text search 145
json_array_processing index parameter 148
json_names index parameter 151
json_path_processing index parameter 152

K
Keyword analyzer 171
Korean text search 170

L
Large Object Locator 3

functions 4
Large objects

accessing 3
basic functions for 10
closing 11
copying

client files to 26
function for 12
to client files 30
to large objects, example 38

copying to client files, example 39
creating 14
defined 3, 3
deleting 16
limiting concurrent access 5
offset

returning for 21
opening 17
protocols, listed 6
reading from 19
referencing 6
setting read and write position in 20
tracking open 45
writing to 22

Length() function
defined 211

LENGTH() function 116
LessThan() function

defined 211
LessThanOrEqual() function

defined 212
Libraries

API 9
ESQL/C 9
SQL 10

lld_close() function 11
using 40, 40

lld_copy() function 12
using 38, 39

lld_create_client() function 24
lld_create() function 14

using 37
lld_delete_client() function 25
lld_delete() function 16
lld_error_raise() function 31
lld_from_client() function 26

using 38
lld_lob data type

casting to BLOB and CLOB data types 8, 34
explicitly 35

defined 8
determining type of data in 34, 36
inserting binary data into table 34

inserting character data into table 34
introduced 4
using 34, 36

LLD_LobType function 34
using 36

lld_locator data type
defined 6
inserting a row into a table 37
introduced 4
referencing a smart large object 37
using 37, 39

lld_open_client() function 28
lld_open() function 17

using 40, 40
lld_read() function 19

using 40, 40
lld_sqlstate() function 31
lld_tell() function 21
lld_to_client() function 30

using 39
lld_write() function 22

using 40, 40
LOCopy function 32
LOToFile function 33

M
Messages

receiving from a queue 47
sending to a queue 47

Messaging
WMQ
 46

MQ
configuration parameters 104
configuring 47
configuring the server for 49, 108
default table values 57
error codes 105
error handling 105
functions 46

binding a table 54
creating a table 54
retrieving a queue element 55

installing
WMQ
 47
MQ

communications 46
preparing 46
publishing to queue 52
subscribing to queue 52
tables 46
verifying functionality 51

MQ DataBlade
functions

MQCreateVtiRead() 65
MQCreateVtiReceive() 67
MQCreateVtiWrite() 69
MQHasMessage() 70
MQInquire() 72
MQPublish() 73
MQPublishClob() 77
MQRead() 82
MQReadClob() 84
MQReceive() 87
MQReceiveClob() 90
MQSend() 92
MQSendClob() 95
MQSubscribe() 97
MQTrace() 100
MQUnsubscribe() 102

MQVersion() 104
overview 57

inserting data into queue 51
publishing to queue 53
reading entry from queue 51
receiving entry from queue 52
unsubscribing from queue 53

MQ messaging
server based 50, 50, 50
switching between server and client 50, 50,
50

mq virtual processor class 47
MQCHLLIB configuration parameter 105
MQCHLTAB configuration parameter 105
MQCreateVtiRead() function

defined 65
MQCreateVtiReceive() function

defined 67
MQCreateVtiWrite() function

defined 69
MQHasMessage() function

defined 70
MQInquire() function

defined 72
mqm group 47
MQPublish() function

defined 73
MQPublishClob() function

defined 77
MQRead() function

defined 82
MQReadClob() function

defined 84
MQReceive() function

defined 87
MQReceiveClob() function

defined 90
MQSend() function

defined 92
MQSendClob() function

defined 95
MQSERVER configuration parameter 104
MQSubscribe() function

defined 97
MQTrace() function

defined 100
MQUnsubscribe() function

defined 102
MQVersion() function

defined 104

N
Name service cache 104
Naming conventions 9
NEW_LINE procedure 227, 232
NewLevel() function

defined 212
Node data type

functions
Ancestors() 202
Compare() 203
Depth() 204
GetMember() 204
GetParent() 205
GreaterThanOrEqual() 206
Increment() 206
IsAncestor() 207
IsChild() 208
IsDescendant() 209
IsParent() 210
Length() 211

257

LessThan() 211
LessThanOrEqual() 212
NewLevel() 212
NodeRelease() 213
NotEqual() 213

NodeRelease() function
defined 213

NotEqual() function
defined 213

O
Obtaining a score value

Basic Text Search 134
OCTET_LENGTH() function 117
Offset

in large objects
returning 21

only_json_values index parameter 153
Operator classes

for bts 122
Optimizing

bts index 124

P
package

DBMS_LOB 217
DBMS_RANDOM 227
UTL_FILE 229

packages
DBMS_OUTPUT 224

PRELOAD_DLL_FILE configuration
parameter 193
procedures

ENABLE 225
FCLOSE 231
FCLOSE_ALL 231
FFLUSH 231
GET_LINE 226, 232
GET_LINES 226
INITIALIZE 228
NEW_LINE 227, 232
PUT 227, 233
PUT_LINE 227
SEED 228
SET_DEFAULTS 216
SIGNAL 216
TERMINATE 229
WAITANY 216
WAITONE 217

Protocol
list, for large objects 6

Proximity searches
Basic Text Search 140

PUT procedure
put partial line in message buffer 227
write string to file 233

PUT_LINE procedure
put complete line in message buffer 227

Q
Queries

Basic Text Search 133
Query results, maximum number 125
Query syntax

Basic Text Search 134
Query terms

Basic Text Search 135

R
RANDOM function 228
Range searches

Basic Text Search 141

READ COMMITTED
with Basic Text Search 191

READ procedure 222
Regex

regex_extract function 246
regex_match function 242
regex_release function 253
regex_replace function 244
regex_set_trace procedure 252
regex_split function 250

regex_extract function 246
regex_match function 242
regex_release function 253
regex_replace function 244
regex_set_trace procedure 252
regex_split function 250
Requirements

Basic Text Search 118
RESIDENT configuration parameter 193
Resources

cleaning up 5
Restrictions

Basic Text Search 118
Basic Text Search queries 133
bts index 118

Rollback
limits on with
Large Object Locator
 5

S
sbspace

for bts index 120
SBSPACENAME configuration parameter

setting for Basic Text Search 120
Schema mapping to WMQ objects 54
Score value

Basic Text Search 134
Search predicate

bts_contains() 134
Secondary access method

bts 122
SEED procedure 228
SET_DEFAULTS procedure 216
SIGNAL procedure 216
Simple analyzer 172
Smart large objects

copying to a file 33
copying to a smart large object 32
creating, example 37
functions for copying 32
referencing with lld_lob data type 8
referencing, example 34

Snowball analyzer 174
Soundex analyzer 173
SQL

errors 44
interface 10

using 34, 39
states, translating from error codes 31

SQL Packages Extension 214
Standard analyzer 176
Stopword analyzer 177
stopwords 129
strip_xmltags Basic Text Search index
parameter 163
SUBSTR scalar function

details 223
Supported data types

Basic Text Search 118
Syntax

bts_contains() 134
for basic text search JSON index
parameters 145
for Basic Text Search XML index
parameters 155

T
Table values

default
MQ 57

TERMINATE procedure 229
thesaurus 130
Tokens

maximum indexed 125
Transaction rollback

limits on with
Large Object Locator
 5

Transactions
with Basic Text Search 191

TRIM procedure 223
Types. 4

U
User-defined analyzer 178
User-defined routines

calling API functions from 9
example 40, 43

UTL_FILE package 229

V
Virtual-Table Interface

accessing WMQ queues 54
VP

bts 192
VPCLASS configuration parameter 193
VTI

accessing WMQ queues 54

W
WAITANY procedure 216
WAITONE procedure 217
Whitespace analyzer 179
Wildcard searches

Basic Text Search 138
WMQ

messages
SELECT 55

messaging 46
metadata table behavior 54
objects

schema mapping to 54
product documentation 47
queues

accessing 54
configuring 47
INSERTitems into 55
mapping to tables 54

setting up 48, 49, 108
tables mapped to

generating errors 56
WRITE procedure 224

X
XML index parameters

syntax for Basic Text Search 155
xmlpath_processing Basic Text Search index
parameter 160
xmltags Basic Text Search index
parameter 156

258

	OneDB Database Extensions User's Guide
	Contents
	Chapter 1. Database Extensions User's Guide
	Large object management
	About Large Object Locator
	Large object requirements
	Database server requirements
	Transaction rollback
	Concurrency control

	Large Object Locator data types
	The lld_locator data type
	The lld_lob data type

	Large Object Locator functions
	Interfaces
	API library
	ESQL/C library
	SQL interface

	Working with large objects
	The lld_close() function
	Syntax
	Usage
	Return codes
	Context

	The lld_copy() function
	Syntax
	Usage
	Return codes
	Context

	The lld_create() function
	Syntax
	Usage
	Return codes
	Context

	The lld_delete() function
	Syntax
	Usage
	Return codes

	The lld_open() function
	Syntax
	Usage
	Return codes
	Context

	The lld_read() function
	Syntax
	Usage
	Return codes
	Context

	The lld_seek() function
	Syntax
	Usage
	Return codes
	Context

	The lld_tell() function
	Syntax
	Usage
	Return codes
	Context

	The lld_write() function
	Syntax
	Usage
	Return codes
	Context

	Client file support
	The lld_create_client() function
	Syntax
	Usage
	Return codes
	Context

	The lld_delete_client() function
	Syntax
	Usage
	Return codes
	Context

	The lld_from_client() function
	Syntax
	Usage
	Return codes
	Context

	The lld_open_client() function
	Syntax
	Usage
	Return codes
	Context

	The lld_to_client() function
	Syntax
	Usage
	Return codes
	Context

	Error utility functions
	The lld_error_raise() function
	Syntax
	Usage
	Return codes

	The lld_sqlstate() function
	Syntax
	Return codes

	Smart large object functions
	The LOCopy function
	Syntax
	Usage
	Return codes
	Context

	The LOToFile function
	Syntax
	Usage
	Return codes
	Context

	The LLD_LobType function
	Syntax
	Usage
	Return codes

	Large Object Locator example code
	The SQL interface
	The lld_lob type
	Implicit lld_lob casts
	Explicit lld_lob casts
	The LLD_LobType function

	The lld_locator type
	Insert an lld_locator row into a table
	Create a smart large object
	Copy a client file to a large object
	Copy a large object to a large object
	Copy large object data to a client file
	Create and delete a server file

	The API interface
	Create the lld_copy_subset function
	The lld_copy_subset routine

	Large Object Locator error handling
	Large Object Locator errors
	Error handling exceptions
	Error codes

	MQ Messaging
	About MQ messaging
	Prepare to use MQ messaging
	Install and configure WMQ
	Prepare your database server for MQ messaging
	Sample code for setting up queue managers, queues, and channels
	Sample code for setting up the server for use with WMQ
	Switch between server-based and client-based messaging
	Switching from server-based to client-based messaging
	Switching from client-based to server-based messaging

	Verification
	Insert data into a queue
	Read an entry from a queue
	Receive an entry from a queue
	Publish and subscribe to a queue
	Subscribe to a queue
	Unsubscribe from a queue
	Publish to a queue

	MQ messaging tables
	Schema mapping
	General table behavior
	Create and bind a table
	Use INSERT and SELECT
	Retrieve the queue element
	Special considerations
	Table errors

	MQ messaging functions
	Service and policy tables
	The "informix".mqiservice table
	The "informix".mqipubsub table
	The "informix".mqipolicy table

	MQCreateVtiRead() function
	Syntax
	Usage
	Return codes
	Example

	MQCreateVtiReceive() function
	Syntax
	Usage
	Return codes
	Example

	MQCreateVtiWrite() function
	Syntax
	Usage
	Example

	MQHasMessage() function
	Syntax
	Usage
	Return codes
	Example

	MQInquire() function
	Syntax
	Usage
	Return codes
	Examples

	MQPublish() function
	Syntax
	Usage
	Return codes
	Examples

	MQPublishClob() function
	Syntax
	Usage
	Return codes
	Examples

	MQRead() function
	Syntax
	Usage
	Return codes
	Examples

	MQReadClob() function
	Syntax
	Usage
	Return codes
	Example

	MQReceive() function
	Syntax
	Usage
	Return codes
	Examples

	MQReceiveClob() function
	Syntax
	Usage
	Return codes
	Examples

	MQSend() function
	Syntax
	Usage
	Return codes
	Examples

	MQSendClob() function
	Syntax
	Usage
	Return codes
	Examples

	MQSubscribe() function
	Syntax
	Usage
	Return codes
	Examples

	MQTrace() function
	Syntax
	Example

	MQUnsubscribe() function
	Syntax
	Usage
	Return codes
	Examples

	MQVersion() function
	Syntax
	Example

	MQ messaging configuration parameters
	MQSERVER configuration parameter
	Usage

	MQCHLLIB configuration parameter
	Usage

	MQCHLTAB configuration parameter
	Usage

	MQ messaging error handling
	Sample MQ messaging code

	Binary data types
	Binary data types overview
	Store and index binary data
	Binary data types
	The binaryvar data type
	The binary18 data type
	ASCII representation of binary data types
	Binary data type examples
	Example 1: binaryvar data type
	Example 2: binary18 data type

	Insert binary data
	Index binary data

	Binary data type functions
	Bitwise operation functions
	The bit_and() function
	Syntax
	Usage
	Return codes
	Example

	The bit_complement() function
	Syntax
	Usage
	Return codes
	Example

	The bit_or() function
	Syntax
	Usage
	Return codes
	Example

	The bit_xor() function
	Syntax
	Usage
	Return codes
	Example

	Support functions for binary data types
	The bdtrelease() function
	Syntax
	Usage
	Return codes

	The bdttrace() function
	Syntax
	Usage
	Example

	The LENGTH() function
	Syntax
	Usage
	Example

	The OCTET_LENGTH() function
	Syntax
	Usage
	Example

	Basic Text Search
	Preparing for basic text searching
	Basic text search requirements and restrictions
	Creating a default sbspace
	Creating a space for the bts index
	Creating a space for temporary data
	Creating a bts index
	bts access method syntax
	Syntax

	bts index parameters
	Usage
	Examples
	delete index parameter
	Optimize the index manually
	Optimize the index automatically

	field_token_max index parameter
	Example
	max_clause_count index parameter
	Example
	query_default_field index parameter
	Examples: Create composite indexes
	query_log index parameter
	stopwords index parameter

	stopwords index parameter
	Usage
	Examples
	thesaurus index parameters

	thesaurus index parameters
	Usage
	Example
	xact_memory index parameter

	xact_memory index parameter
	Usage
	Example
	xact_ramdirectory index parameter

	Basic text search queries
	Searching on multiple columns
	Including the INDEX optimizer directive to force index scans
	Basic Text Search query syntax
	bts_contains() Search Predicate
	Search criteria
	Basic Text Search query terms
	Grouping words and phrases
	Escaping special characters

	Basic text search index fields
	Index fields
	Searches on structured JSON or XML indexes
	Searches on structured XML indexes
	Examples: JSON or BSON documents
	Examples: XML documents

	Basic Text Search query term modifiers
	Wildcard searches
	Multiple-character wildcard searches

	Fuzzy searches
	Proximity searches
	Range searches
	Inclusive range searches
	Exclusive range searches

	Boost a term

	Boolean operators
	AND operator
	OR operator
	NOT operator

	Basic text search JSON index parameters
	Requirements and restrictions
	Example document
	JSON index parameters syntax
	JSON index parameters for structured text
	JSON index parameters for unstructured text
	Usage
	Example

	all_json_names index parameter
	Example: Index all field name-value pairs

	ignore_json_format_errors index parameter
	Example

	include_contents index parameter
	Example: Index all fields as field name-value pairs and unstructured text
	Example: Index specified field name-value pairs, paths, and values as unstructured text

	json_array_processing index parameter
	Example: Index array positions
	Example: Index all field name-value pairs, paths, and array positions
	Example: Index specified field name-value pairs, paths, and array positions
	Example: Index all field name-value pairs and array positions

	json_names index parameter
	The json_names index parameter
	Example: Index one field name-value pair
	Example: Index field name-value pairs from a file
	Example: Index field name-value pairs from a column

	json_path_processing index parameter
	Example: Index all field name-value pairs and paths
	Example: Index specified field name-value pairs and paths

	only_json_values index parameter
	Example: Index values as unstructured text
	Example: Index all field name-value pairs and values as unstructured text

	Basic Text Search XML index parameters
	XML index parameters syntax
	XML Index Parameters
	Example

	The xmltags index parameter
	Input as inline comma-separated field names
	Input from a file or a table column
	Example: Index specific XML tags

	The all_xmltags index parameter
	Example: Index all XML tags

	The all_xmlattrs index parameter
	Examples: Index XML attributes
	Example 1: Compare all_xmltags and all_xmlattrs
	Example 2: Combine all_xmlattrs and all_xmltags
	Example 3: Combine all_xmlattrs, all_xmltags, and xmlpath_processing
	Example 4: Comparing all_xmltags to all_xmlattrs along with xmlpath_processing

	The xmlpath_processing index parameter
	Full paths and relative paths in path processing
	Full paths
	Relative paths

	Example: Index XML paths

	The include_contents index parameter
	Example: Index XML tag values and XML tag names

	The strip_xmltags index parameter
	Example: Index XML tag values in a separate field

	The include_namespaces index parameter
	Example: Index namespaces in XML data

	The include_subtag_text index parameter
	Example: Index subtags in XML data

	Basic text search analyzers
	analyzer index parameter
	The analyzer index parameter
	Usage
	Examples

	Analyzer support for query and index options
	Alnum analyzer
	Examples

	CJK analyzer
	Examples

	eSoundex analyzer
	Examples

	Keyword analyzer
	Examples

	Simple analyzer
	Examples

	Soundex analyzer
	Examples

	Snowball analyzer
	Examples

	Standard analyzer
	Examples

	Stopword analyzer
	Examples

	User-defined analyzer
	Examples

	Whitespace analyzer
	Examples

	Basic text search functions
	bts_index_compact() function
	Syntax
	Usage
	Return codes
	Example

	bts_index_fields() function
	Syntax
	Usage
	Example: Unstructured index
	Examples: Structured indexes on an XML document
	Examples: Structured indexes on a JSON document

	bts_release() function
	Syntax
	Usage
	Return codes
	Example

	bts_tracefile() function
	Syntax
	Usage
	Example

	bts_tracelevel() function
	Syntax
	Usage
	Example

	Basic text search performance
	Disk space for the bts index
	Adding BTS virtual processors to run multiple queries simultaneously
	Tune configuration parameters for basic text searching

	Basic text search error codes

	Hierarchical data type
	The node data type for querying hierarchical data
	Troubleshooting the node data type

	Node data type functions
	Ancestors() function
	Syntax
	Example

	Compare() function
	Syntax
	Example

	Depth() function
	Syntax
	Examples

	GetMember() function
	Syntax
	Example

	GetParent() function
	Syntax
	Example

	GreaterThanOrEqual() function
	Syntax
	Examples

	Increment() function
	Syntax
	Examples

	IsAncestor() function
	Syntax
	Examples

	IsChild() function
	Syntax
	Example

	IsDescendant() function
	Syntax
	Example

	IsParent() function
	Syntax
	Example

	Length() Node function
	Syntax
	Example

	LessThan() function
	Syntax
	Examples

	LessThanOrEqual() function
	Syntax
	Examples

	NewLevel() function
	Syntax
	Example

	NodeRelease() function
	Syntax

	NotEqual() function
	Syntax
	Examples

	SQL Packages Extension
	DBMS_ALERT package
	Usage notes
	REGISTER procedure
	Syntax
	Procedure parameters

	REMOVE procedure
	Syntax
	Procedure parameters

	REMOVEALL procedure
	Syntax

	SET_DEFAULTS procedure
	Syntax
	Procedure parameters

	SIGNAL procedure
	Syntax
	Procedure parameters

	WAITANY procedure
	Syntax
	Procedure parameters

	WAITONE procedure
	Syntax
	Procedure parameters

	DBMS_LOB package
	APPEND procedures
	Syntax
	Parameters

	COMPARE function
	Syntax
	Parameters

	COPY procedures
	Syntax
	Parameters

	ERASE procedures
	Syntax
	Parameters

	GETLENGTH function
	Syntax
	Parameters

	INSTR function
	Syntax
	Parameters

	READ procedures
	Syntax
	Parameters

	SUBSTR function
	Syntax
	Parameters

	TRIM procedures
	Syntax
	Parameters

	WRITE procedures
	Syntax
	Parameters

	DBMS_OUTPUT package
	DISABLE procedure
	Syntax

	ENABLE procedure
	Syntax
	Procedure parameters

	GET_LINE procedure
	Syntax
	Procedure parameters

	GET_LINES procedure
	Syntax
	Procedure parameters

	NEW_LINE procedure
	Syntax

	PUT procedure
	Syntax
	Procedure parameters

	PUT_LINE procedure
	Syntax
	Procedure parameters

	DBMS_RANDOM package
	INITIALIZE procedure
	Syntax

	SEED procedure
	Syntax

	RANDOM function
	Syntax

	TERMINATE procedure
	Syntax

	UTL_FILE package
	FCLOSE procedure
	Syntax
	Procedure parameters

	FCLOSE_ALL procedure
	Syntax

	FFLUSH procedure
	Syntax
	Procedure parameters

	FOPEN function
	Syntax
	Return value
	Function parameters

	GET_LINE procedure
	Syntax
	Procedure parameters

	NEW_LINE procedure
	Syntax
	Procedure parameters

	PUT procedure
	Syntax
	Procedure parameters

	Regex pattern matching
	Henry Spencer's regular expression library
	Requirements and Restrictions
	Metacharacters
	Search string metacharacters
	Replacement string metacharacters
	Regex character names

	Regex Routines
	Example data
	regex_match function
	Syntax
	Parameters
	Description
	Returns
	Example

	regex_replace function
	Syntax
	Parameters
	Description
	Returns
	Example

	regex_extract function
	Syntax
	Parameters
	Description
	Returns
	Example: Find a pattern within words
	Example: Return the pattern plus the rest of the word
	Example: Return the pattern plus the beginning of the word
	Example: A match with 0 length

	regex_split function
	Syntax
	Parameters
	Description
	Returns
	Example: Compare the regex_extract and regex_split functions
	Example: Split a string into separate words
	Example: The regular expression matches the entire source string

	regex_set_trace procedure
	Syntax
	Parameters
	Description
	Example

	regex_release function
	Syntax
	Parameters
	Description
	Returns
	Example

	Index

