<L

HCL Informix 15.0.0

HCL Informix ODBC Driver Programmer's Manual

Contents

Chapter 1. Informix® ODBC Driver Guide....................
Overview of HCL Informix® ODBC Driver................
What is HCL Informix® ODBC Driver?.............
ODBC component OVerview............ccoeeeeueeneennne
HCL Informix® ODBC Driver with the DMR......
HCL Informix® ODBC Driver components.......

The HCL Informix® ODBC Driver APLI...............
Connection pooling.........ccccceeeeievieneiieieienns
Global Language Support.......c.cccccceeveieiennnne.
X/Open standard interface..........cccceceevevennnnee.
External authentication.............cccceeeieniieennnns
Bypass ODBC parsing......c..ccceceeveeneeniesieneenne

BufferLength in character for

SQLGetDiagRecW.........cooiiiiiieieeeeee

Informix® and ISAM error descriptions in

SQLGetDIiagReC.........ccviiieiecieeeececee e

Improved performance for single-threaded

applications..........coccveveviiiiecee e

Partially supported and unsupported ODBC

fEATUMES. ..o
Configure data SOUrCEeS.........cccoevveevieiieeeieieiee
Configure a DSN on UNIX™........ccooviiiiiine
Configuring a DSN in Windows™......................

Connection string keywords that make a

CONNECTION...c.cviiiieiiiiiciecrecereeeeeeeene
DSN migration t00l.........ccccoeviieieiiieieieieee
Data types....ccieiieieeeeee e
Data types.....coooieeeiieeieeeee e
SQL data types.....ccecvvveveeirieieieeieteeee e
C data types.....ccccveverieeeieee e
Report standard ODBC types.........ccccoecveuvenenee.
Convert data........c.cceeeeneinnciccce
Smart large objects........ccceeveirerieiieeeee e
Data structures for smart large objects...........
Storage of smart large objects..........cccceeueneene
Example of creating a smart large object........
Transfer smart-large-object data......................
Access a smart large object...........ccceeeuenenne.
Retrieve the status of a smart large object......

Read or write a smart large object to or from a
11O

Rows and collections...........ccoeevviiiiiiicieiciee

Allocating and binding a row or collection

DUFFEI ...

Example of creating a row and a list on the

ClIENT e
Modify a row or collection............cccceververennne.

........ 3

Retrieve information about a row or

COlIECHION. ...
Client functions
Call a client function.........ccccooeeeeiiennineee 151
Functions for smart large objects...........c.c......... 153
Functions for rows and collections..................... 172
Application tracking in ODBC...........ccccoeevevievieniiiienens 180
Application tracking in ODBC..........cccceeueueeee.
Improve application performance..........c..cccccoeueune.... 180
Error checking during data transfer.................... 180
Enable delimited identifiers in ODBC.................. 181
Connection level optimizations..............cccoc....... 182
Optimizing query execution...........ccccceeeverueeneee. 182
Insert multiple rows........cccooieeieiicceeecceeeee 182
Automatically freeing a cursor............cccceeueenee. 183
Delay execution of the SQL PREPARE
statement..... ..o 184
Set the fetch array size for simple-large-object
AtA. e 184
The SPL output parameter feature...................... 186
OUT and INOUT parameters...........cccevverrrueencnne 186
Asynchronous execution..............cccccveeveeveeveeninnn. 189
Update data with positioned updates and
eletes. ..o 189
BIGINT and BIGSERIAL data types...................... 191
Message transfer optimization.......................... 191
Error MeSSages.....ccveviieiienieeieiieeeeeee e 193
Diagnostic SQLSTATE values...........ccccoeuveneenene. 193
Map SQLSTATE values to Informix® error
MNESSAUES. .cneieutietieitietienteesteeseeesteeseeesaeesieeseeesneeas 194
Map Informix® error messages to SQLSTATE
ValUBS.....oeiiiieee e 207
SQLParamOptions (core and level two only)...... 233
UNICOE.....ociiieiicieeiieee e 244
Overview of Unicode.........ccccecevirierieinenieieeene 244
Unicode in an ODBC application......................... 245
Unicode in an ODBC application......................... 246
UNICOE......ciiiiiieiieiee e
ODBC Smart trigger........ccoveiieeiienieieeie e 247
... 261

ids_odbc_client_label.dita
ids_odbc_client_label.dita
ids_odbc_client_label.dita
ids_odbc_client_label.dita
ids_odbc_299.dita
ids_odbc_299.dita
ids_odbc_299.dita
ids_odbc_299.dita

Chapter 1. Informix® ODBC Driver Guide

The Informix® ODBC Driver Programmer's Manual serves as a user guide and reference for HCL Informix® ODBC Driver,

which is the Informix® implementation of the Microsoft™ Open Database Connectivity (ODBC) interface, Version 3.0.

These topics explain how to use the HCL Informix® ODBC Driver application programming interface (API) to access the

Informix® database and interact with the Informix® database server.
These topics are written for C programmers who use HCL Informix® ODBC Driver to access Informix® databases.

These topics assume that you have the following background:

- A working knowledge of your computer, your operating system, and the utilities that your operating system provides
- Some experience working with relational or object-relational databases, or exposure to relational database concepts
« C programming language

For information about software compatibility, see the Informix® Client SDK release notes.

Overview of HCL Informix® ODBC Driver

These topics introduce the HCL Informix® ODBC Driver and describe its advantages and architecture. The topics also

describe conformance, isolation and lock levels, libraries, and environment variables.

What is HCL Informix® ODBC Driver?

Open Database Connectivity (ODBC) is a specification for a database application programming interface (API).

Microsoft™ ODBC, Version 3.0, is based on the Call Level Interface specifications from X/Open and the International
Standards Organization/International Electromechanical Commission (ISO/IEC). ODBC supports SQL statements with a

library of C functions. An application calls these functions to implement ODBC functionality.

ODBC applications enable you to perform the following operations:

- Connect to and disconnect from data sources

« Retrieve information about data sources

« Retrieve information about HCL Informix® ODBC Driver

- Set and retrieve HCL Informix® ODBC Driver options

« Prepare and send SQL statements

« Retrieve SQL results and process the results dynamically

« Retrieve information about SQL results and process the information dynamically

ODBC lets you allocate storage for results before or after the results are available. This feature lets you determine the results

and the action to take without the limitations that predefined data structures impose.

ODBC does not require a preprocessor to compile an application program.

HCL Informix® ODBC Driver features

HCL Informix® ODBC Driver implements the Microsoft™ Open Database Connectivity (ODBC), Version 3.0 standard.

The HCL Informix® ODBC Driver product also provides the following features and functionality:

« Data Source Name (DSN) migration
- Driver Manager Replacement Module, which supports compatibility between ODBC 2.x applications and the ODBC
driver, version 3.0.
« Microsoft™ Transaction Server (MTS), which is an environment that lets you develop, run, and manage scalable,
component-based Internet and intranet server applications. MTS performs the following tasks:
> Manages system resources, including processes, threads, and database connections, so that your application
can scale to many simultaneous users
> Manages server component creation, execution, and deletion
o Automatically initiates and controls transactions to make your application reliable
> Implements security so that unauthorized users cannot access your application
> Provides tools for configuration, management, and deployment

! Important: If you want to use distributed transactions managed by MTS with the HCL Informix®
ODBC Driver, you must have connection pooling enabled.

» Extended data types, including rows and collections

« Long identifiers

« Limited support of bookmarks

» GLS data types

« Extensive error detection

« Unicode support

« XA support

« Internet Protocol Version 6 support for internet protocols of 128 bits. (For more information, see HCL® Informix®

Administrator's Guide.)

Support for extended data types

HCL Informix® ODBC Driver supports the extended data types.

HCL Informix® ODBC Driver supports the following extended data types:

« Collection (LIST, MULTISET, SET)

« DISTINCT

« OPAQUE (fixed, unnamed)

» Row (named, unnamed)

» Smart large object (BLOB, CLOB)

« Client functions to support some of the extended data types

Chapter 1. Informix® ODBC Driver Guide

Support for GLS data types

HCL Informix® ODBC Driver supports the GLS data types.

HCL Informix® ODBC Driver supports the following GLS data types:

* NCHAR
* NVARCHAR

Extended error detection

HCL Informix® ODBC Driver detects the XA types of errors.

Additional values for some ODBC function arguments

HCL Informix® ODBC Driver supports additional values for some ODBC function arguments.

These additional values for some ODBC function arguments include:

- fDescType values for SQLColAttributes
o SQL_INFX_ATTR_FLAGS
> SQL_INFX_ATTR_EXTENDED_TYPE_ALIGNMENT
> SQL_INFX_ATTR_EXTENDED_TYPE_CODE
o SQL_INFX_ATTR_EXTENDED_TYPE_NAME
> SQL_INFX_ATTR_EXTENDED_TYPE_OWNER
> SQL_INFX_ATTR_SOURCE_TYPE_CODE
- finfoType return value for SQLGetInfo
o SQL_INFX_LO_PTR_LENGTH
> SQL_INFX_LO_SPEC_LENGTH
* SQL_INFX_LO_STAT_LENGTH
- fOption value for SQLGetConnectOption and SQLSetConnectOption: SQL_INFX_OPT_LONGID
« fOption value for SQLGetConnectOption and SQLSetConnectOption: SQL_ATTR_ENLIST_IN_DTC

ODBC component overview
ODBC with the HCL Informix® ODBC Driver includes several components.

ODBC with the HCL Informix® ODBC Driver can include the following components:

 Driver manager

An application can link to a driver manager, which links to the driver specified by the data source. The driver manager
also checks parameters and transitions. On most UNIX™ platforms, the ODBC Driver Manager can be purchased from
a third-party vendor.

On Microsoft™ Windows™ platforms, the ODBC Driver Manager is a part of the 0S.

* HCL Informix® ODBC Driver

The driver provides an interface to Informix® database server. Applications can use the driver in the following
configurations:

> to link to the ODBC driver manager

> to link to the Driver Manager Replacement & the driver

> to link to the driver directly

« Data sources

The driver provides access to the following data sources:
» database management systems (DBMS), including a database server
o databases
> operating systems and network software required for accessing the database

HCL Informix® ODBC Driver with a driver manager

There is software architecture when a driver manager is included in the system.

The following figure shows the software architecture when a driver manager is included in the system. In such a system, the
driver and driver manager act like a single unit that processes function calls.

Figure 1. HCL Informix® ODBC Driver with a driver manager
Server

/” BMinormixdatasouce
-~ N

DEMS (including

database server)

el
Client Datal

il

ODEC Operaling system and
\ network software /
. Driver IBM Informix
1BM Informix data source
/F DBMS (including —\‘
R database server)
—

[t

i

Operating system and
network softwa

- v
- /

@

Chapter 1. Informix® ODBC Driver Guide

HCL Informix® ODBC Driver without a driver manager (UNIX™)

There is software architecture when a driver manager is not included in the system.

The following figure shows an application that uses HCL Informix® ODBC Driver without a driver manager. In this case, the
application must link to the HCL Informix® ODBC Driver library.

Figure 2. HCL Informix® ODBC Driver without a driver manager
Server

/— IBM Infiormix data source \
"\

DBMS (including
w database server)

b

ki

~

Database

|

Client

Application 4

Operating systemn and
network software

IBM Informix :: o J
ODBC Driver
|BM Infiormix data source

L 4

4)

DBMS (including

:
|
:

Database

a0

Operating system and
network software

. /
- v

=

HCL Informix® ODBC Driver with the DMR

HCL Informix® ODBC Driver includes a Driver Manager Replacement (DMR) library. The DMR replaces the driver manager on

platforms where no driver manager is available.

The following figure shows an ODBC configuration with the DMR.

Figure 3. Architecture of the driver manager replacement module
ODBC 2.x/3.% IBM Informix ODBC Driver IBM Informix
Applicafion Manager Replacement Module| ™| ODBC Driver Data Source

Applications that are linked directly to the ODBC Version 4.10 driver and the DMR do not require the ODBC Driver Manager.

In addition to supporting ODBC Version 4.10 features, the DMR supports compatibility between ODBC 2.x applications and
Version 3.00 of the HCL Informix® ODBC Driver. To be compatible with ODBC 2.x applications, the application must link to
Version 3.00 of HCL Informix® ODBC Driver through the DMR or through the ODBC Version 4.10 driver manager.

You cannot use the HCL® Informix® DMR to connect to non-Informix® data sources. The DMR does not support connection
pooling. The DMR does not map between Unicode and ANSI APlIs.

HCL Informix® ODBC Driver components

HCL Informix® ODBC Driver includes the four components.

HCL Informix® ODBC Driver includes the following components:

Environment variables
There are four environment variables that you must set for the driver.
The following list describes environment variables that you must set for the driver. For more information about environment
variables, see the HCL® Informix® Guide to SQL: Reference.
INFORMIXDIR
Full path of the directory where the HCL Informix® Client Software Development Kit is installed.
On Windows™ platforms, INFORMIXDIR is a registry setting rather than an environment variable. It is set during
installation.
PATH

Directories that are searched for executable programs. Your PATH setting must include the path to your
$1 NFORM XDI R/ bi n directory.

DBCENTURY (optional)

Controls the setting of year values. DBCENTURY affects a client program when a user issues a statement that

contains a date or datetime string that specifies only the last two digits of the year. For example:

insert into datetable (datecol) values ("01/01/01");
The database server stores the date specified in this statement as either 01-01-1901 or 01-01-2001, depending
on the DBCENTURY value on the client.
GL_DATE (optional)

GL_DATE controls the interpretation of dates. For example, you can specify whether the date format is rm dd-

yyyy Oryyyy- nm dd.

Set environment variables on UNIX™

If you set the environment variables at the command line, you must reset them whenever you log on to your system. If you
set the environment variables in a file, they are set automatically when you log on to your system.

Chapter 1. Informix® ODBC Driver Guide

HCL Informix® ODBC Driver provides a sample setup file called set up. odbc in $I NFORM XDI R/ et c. You can use this file
to set environment variables for the driver. The following list describes the environment variables that are in set up. odbc.

INFORMIXDIR
Full path of the directory where HCL Informix® Client Software Development Kit is installed.
INFORMIXSQLHOSTS

This value is optional. It specifies the directory that contains sql host s. By default, sql host s isin
$I NFORM XDI R/ et c. Set INFORMIXSQLHOSTS if you want sql host s to be in a different directory.

ODBCINI

This value is optional. You can use it to specify an alternative location for the odbc. i ni file. The default
location is your home directory.

Set environment variables in Windows™

If you set the environment variables at the command line, you must reset them whenever you log in to your Windows™

environment. If you set them in the Windows™ registry, however, they are set automatically when you log in.

HCL Informix® ODBC Driver stores environment variables in the following location in the Windows™ registry:
\HKEY_CURRENT_USERS\Software\Informix\Environment

In a Windows™ environment you must use set net 32. exe, or a tool that updates the registry correctly, to set environment

variables that HCL Informix® dynamic link libraries (DLLs), such asi cl i t 09b. dlI | , use. The Setnet utility can only be used

to set Informix® environment variables.

You can use environment variables as required by your development environment. For example, the compiler needs to know
where to find the include files. To specify the location of the include files, set the environment variable INFORMIXDIR (or

some other environment variable) and then set the include path to | NFORM XDI R\i ncl\cl i .

The options for setting environment variables have the following precedence:

1. Setnet utility
2. Command line
3. Windows™ registry

Header files

You can use the sqgl . h and sql ext . h header files, which are part of the Microsoft™ compiler, to run HCL Informix® ODBC

Driver.

To run Informix® extensions, include the i nf xcl i . h file, which is installed in | NFORM XDI R/ i ncl / cl i . This file defines
HCL Informix® ODBC Driver constants and types, and provides function prototypes for the HCL Informix® ODBC Driver

functions. If you include the i nf xcl i . h file, it automatically includes the sql . h and sql ext . h files.

The sqgl . h and sql ext . h header files contain definitions of the C data types.

Include the xa. h header file in XA ODBC applications. ODBC applications on Windows™ require the HCL Informix® Client
Software Development Kit to compile. Existing applications that use the ODBC driver might need to include the location of
the Client SDK in the PATH environment variable before they are recompiled.

Data types
A column of data stored on a data source has an SQL data type.
HCL Informix® ODBC Driver maps Informix®-specific SQL data types to ODBC SQL data types, which are defined in the

ODBC SQL grammar. (The driver returns these mappings through SQLGetTypelnfo. It also uses the ODBC SQL data types to
describe the data types of columns and parameters in SQLColAttributes and SQLDescribeCol).

Each SQL data type corresponds to an ODBC C data type. By default, the driver assumes that the C data type of a storage
location corresponds to the SQL data type of the column or parameter to which the location is bound. If the C data type of

a storage location is not the default C data type, the application can specify the correct C data type with the TargetType
argument for SQLBindCol, the fCType argument for SQLGetData, and the ValueType argument in SQLBindParameter. Before
the driver returns data from the data source, it converts the data to the specified C data type. Before the driver sends data to
the data source, it converts the data from the specified C data type to the SQL data type.

The Informix® data type names differ from the Microsoft™ ODBC data type names. For information about these differences,
see the appendix about data types in the IBM® Informix® ODBC Driver Programmer's Manual.

Libraries

There is an installation procedure that installs libraries for UNIX™ and Windows™.

UNIX™
The installation procedure installs the following libraries into | NFORM XDl R/ | i b/ cl i . In each data source specification
section in the odbc. i ni file, set the driver value indicating the full path to one of the following library file names.
libifcli.aorlibcli.a
Static version for single (nonthreaded) library
libifclilba.so oriclislba.so
Shared version for single (nonthreaded) library
libthcli.a
Static version for multithreaded library
l'ibthclilba.soor iclitlba.so
Shared version for multithreaded library
I'i bi fdnr15a.so oridnrslba. so

Shared library for DMR (thread safe)

10

Chapter 1. Informix® ODBC Driver Guide

If you do not use a driver manager, your application needs to link to either the static or the shared version of the HCL

Informix® ODBC Driver libraries.

The following compile command links an application to the thread-safe version of the HCL Informix® ODBC Driver libraries:

cCc ... —LSINFORMIXDIR/lib/cli -1lifdmr - 1lthcli

Windows™

The installation procedure installs the following libraries into | NFORM XDI R\ | i b.
iclit09b.lib
Enables linking directly to the driver without the use of a driver manager
iregtO7b.lib

Allows linking directly toi r egt 07b. dl |

The following compile command links an application to the thread-safe version of the HCL Informix® ODBC Driver libraries:

cl ... -LSINFORMIXDIR/1lib/cli iclite9b.1lib

If you use a driver manager, you must link your application to the driver manager library only, as the following example

shows:

cl odbc32.1ib

The HCL Informix® ODBC Driver API

An application uses the HCL Informix® ODBC Driver API to make a connection to a data source, send SQL statements to a

data source, process result data dynamically, and terminate a connection.

The driver enables your application to perform the following steps:

1. Connect to the data source.

You can connect to the data source through a DSN connection, or you can use DSN-less connection strings. Specify

the data-source name and any additional information needed to complete the connection.

2. Process one or more SQL statements:
a. Place the SQL text string in a buffer. If the statement includes parameter markers, set the parameter values.

. If the statement returns a result set, either assign a cursor name for the statement or let the driver assign one.

b

c. Either prepare the statement or submit it for immediate execution.

d. If the statement creates a result set, you can inquire about the attributes of the result set, such as the number
of columns and the name and type of a specific column. For each column in the result set, assign storage and
fetch the results.

e. If the statement causes an error, retrieve error information from the driver and take the appropriate action.

3. End any transaction by committing it or rolling it back.
4. Terminate the connection when the application finishes interacting with the data source.

11

Every HCL Informix® ODBC Driver function name starts with the prefix SQL. Each function accepts one or more arguments.

Arguments are defined as input (to the driver) or output (from the driver).

The following figure shows the basic function calls that an application makes even though an application generally calls

other functions also.
Figure 4. Sample listing of function calls that the HCL Informix® ODBC Driver application makes

SQLAllocHandlie
(SOL_HANDLE_ENV)

> SQLAllocHandle
(SQL_HAMDLE_DBC)

——» SOLConnect

SQLAllocHandle

(SOL HANDLE_STMT) & |

Process SOL statements 44—

!

Receive results

!

SOLFreaStmt

CLOSE option

SOLFreeHandle
{(SQL_HAMDLE_STMT)

SOLDisconnect
|
I
SOLFreeHandle
(SQL_HANDLE_DEBC)
I
|
SOLFreeHandle
(SQL_HANDLE_ENV)

Environment, connection, and statement handles

When an application requests it, the driver and the driver manager allocate storage for information about the environment,

each connection, and each SQL statement.

The driver returns a handle for each of these allocations to the application, which uses one or more handles in each call to a

function.

The HCL Informix® ODBC Driver API uses the following types of handles:

12

Chapter 1. Informix® ODBC Driver Guide

Environment handles

Environment handles identify memory storage for global information, including the valid connection handles
and the current active connection handle. The environment handle is an henv variable type. An application uses

one environment handle. It must request this handle before it connects to a data source.
Connection handles

Connection handles identify memory storage for information about particular connections. A connection
handle is an hdbc variable type. An application must request a connection handle before it connects to a data
source. Each connection handle is associated with the environment handle. However, the environment handle

can be associated with multiple connection handles.
Statement handles

Statement handles identify memory storage for information about SQL statements. A statement handle is an
hstmt variable type. An application must request a statement handle before it submits SQL requests. Each
statement handle is associated with exactly one connection handle. However, each connection handle can be

associated with multiple statement handles.

Buffers

An application passes data to the driver in an input buffer. The driver returns data to the application in an output buffer.

The application must allocate memory for both input and output buffers. If the application uses the buffer to retrieve string

data, the buffer must contain space for the null termination byte.

Some functions accept pointers to buffers that are used later by other functions. The application must ensure that these
pointers remain valid until all applicable functions have used them. For example, the argument rgbValue in SQLBindCol
points to an output buffer where SQLFetch returns the data for a column.

Input buffers

An application passes the address and length of an input buffer to the driver.

The length of the buffer must be one of the following values:

« A length greater than or equal to zero

This value is the actual length of the data in the input buffer. For character data, a length of zero indicates that the
data is an empty (zero length) string. A length of zero is different from a null pointer. If the application specifies the
length of character data, the character data does not need to be null-terminated.

* SQL_NTS

This value specifies that a character data value is null-terminated.

+ SQL_NULL_DATA

This value tells the driver to ignore the value in the input buffer and use a NULL data value instead. It is valid only

when the input buffer provides the value of a parameter in an SQL statement.

13

For character data that contains embedded null characters, the operation of HCL Informix® ODBC Driver functions is
undefined; for maximum interoperability, it is better not to use them. Informix® database servers treat null characters as end-

of-string markers or as indicators that no more data exists.

Unless it is prohibited in a function description, the address of an input buffer can be a null pointer. In such cases, the value

of the corresponding buffer-length argument is ignored.

Output buffers

An application passes arguments to the driver so that the driver can return data in an output buffer.

These arguments are:

« The address of the output buffer, to which the driver returns the data

Unless it is prohibited in a function description, the address of an output buffer can be a null pointer. In such cases,

the driver does not return anything in the buffer and, in the absence of other errors, returns SQL_SUCCESS.

If necessary, the driver converts data before returning it. The driver always null-terminates character data before

returning it.

« The length of the buffer
The driver ignores this value if the returned data has a fixed length in C, as with an integer, real number, or date
structure.

« The address of a variable in which the driver returns the length of the data (the length buffer)
The returned length of the data is SQL_NULL_DATA if the data is a null value in a result set. Otherwise, the returned
length of the data is the number of bytes of data that are available to return. If the driver converts the data, the

returned length of the data is the number of bytes that remain after the conversion; for character data, it does not

include the null-termination byte that the driver adds.

If the output buffer is too small, the driver attempts to truncate the data. If the truncation does not cause a loss of significant
data, the driver returns the truncated data in the output buffer, returns the length of the available data (as opposed to the
length of the truncated data) in the length buffer, and returns SQL_SUCCESS_WITH_INFO. If the truncation causes a loss of
significant data, the driver leaves the output and length buffers untouched and returns SQL_ERROR. The application calls

SQLGetDiagRec to retrieve information about the truncation or the error.

SQLGetInfo argument implementation

HCL Informix® implements the SQLGetInfo arguments for HCL Informix® ODBC Driver.

The following table describes the HCL Informix® implementation of SQLGetInfo arguments for HCL Informix® ODBC Driver.

14

Chapter 1. Informix® ODBC Driver Guide

Argument name

Informix® implementation

SQL_ACTIVE_ENVIRONMENTS

HCL® Informix® driver does not have a limit on number of

active environments. Zero is always returned.

SQL_AGGREGATE_FUNCTIONS

HCL® Informix® driver returns all aggregate functions that the

database server supports.

SQL_ASYNC_MODE

HCL® Informix® driver returns SQL_AM_NONE.

SQL_ATTR_METADATA_ID

Supported for GetInfo and Putinfo

SQL_BATCH_ROW_COUNT

HCL® Informix® driver returns bitmask zero.

SQL_BATCH_SUPPORT

HCL® Informix® driver returns bitmask zero.

SQL_CA1_POS_DELETE

Operation arguments supported in a call to SQLSetPos

SQL_CA1_POS_POSITION

Operation arguments supported in a call to SQLSetPos

SQL_CA1_POS_REFRESH

Operation arguments supported in a call to SQLSetPos

SQL_CA1_POS_UPDATE

Operation arguments supported in a call to SQLSetPos

SQL_CA1_POSITIONED_DELETE

A DELETE WHERE CURRENT OF SQL statement is supported
when the cursor is a forward-only cursor. (An SQL-92
entry-level-conforming driver always return this option as

supported.)

SQL_CA1_POSITIONED_UPDATE

An UPDATE WHERE CURRENT OF SQL statement is
supported when the cursor is a static-only cursor. (An SQL-92
entry-level-conforming driver always return this option as
supported.)

SQL_CAT1_LOCK_NO_CHANGE

A LockType argument of SQL_LOCK_NO_CHANGE is supported
in a call to SQLSetPos when the cursor is a static-only cursor.

SQL_CA1_SELECT_FOR_UPDATE

A SELECT FOR UPDATE SQL statement is supported
when the cursor is a forward-only cursor. (An SQL-92
entry-level-conforming driver always return this option as

supported.)

SQL_CATALOG_NAME

HCL® Informix® driver returns 'Y’

SQL_COLLATION_SEQ

returns InfoValuePtr (unmodified)

SQL_DDL_INDEX

Returns bitmask SQL_DL_CREATE_INDEX |
SQL_DL_DROP_INDEX

SQL_DESCRIBE_PARAMETER

Returns 'N'; parameters cannot be described. (This is because

the latest Informix® database servers support function

15

Argument name

Informix® implementation

overloading such that multiple functions with the same name

can accept different parameter types.)

SQL_DIAG_DYNAMIC_FUNCTION

Returns empty string

SQL_DROP_TABLE

Returns bitmask SQL_DT_DROP_TABLE | SQL_DT_CASCADE |
SQL_DT_RESTRICT

SQL_DROP_VIEW

Returns bitmask SQL_DV_DROP_TABLE | SQL_DV_CASCADE |
SQL_DV_RESTRICT

SQL_INDEX_KEYWORDS_

SQL_LLK_ASC | SQL_LK_DESC

16

SQL_INSERT_STATEMENT

Returns bitmask SQL_IS_INSERT_LITERALS | SQL_
INSERT_SEARCHED | SQL_IS_SELECT_INTO

SQL_MAX_DRIVER_CONNECTIONS

Returns zero

SQL_MAX_IDENTIFIER_LEN

Returns different values, depending on database server
capability

SQL_ODBC_INTERFACE_CONFORMANCE

Returns SQL_OIC_CORE

SQL_PARAM_ARRAY_ROW_COUNTS

Returns SQL_PARC_NO_BATCH

SQL_PARAM_ARRAY_SELECTS

Returns SQL_PAS_NO_SELECT

SQL_SQL_CONFORMANCE

Returns SQL_OSC_CORE

SQL_SQL92_FOREIGN_KEY_DELETE_RULE

Returns bitmask zero

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE

Returns bitmask zero

SQL_SQL92_GRANT

Returns bitmask zero

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS

Returns bitmask zero

SQL_SQL92_PREDICATES

Returns bitmask zero

SQL_SQL92_RELATIONAL_JOIN_OPERATORS

Returns bitmask zero

SQL_SQL92_REVOKE

SQL_SR_CASCADE | SQL_SR_RESTRICT

SQL_SQL92_ROW_VALUE_CONSTRUCTOR

Returns bitmask zero

SQL_SQL92_STRING_FUNCTIONS

Returns bitmask zero

SQL_SQL92_VALUE_EXPRESSIONS

Returns bitmask zero

SQL_STANDARD_CLI_CONFORMANCE

Returns bitmask SQL_SCC_XOPEN_CLI_VERSIONT |
SQL_SCC_IS092_CLlI

SQL_STATIC_CURSOR_ATTRIBUTES1

Scrollable only

Chapter 1. Informix® ODBC Driver Guide

Argument name Informix® implementation
SQL_STATIC_CURSOR_ATTRIBUTES2 Scrollable only
SQL_XOPEN_CLI_YEAR Returns string 1995

Connection pooling

Starting CSDK 4.50.xC2 onwards, Informix ODBC driver also supports Connection Pooling capabilities. One may decide to
use either Connection Pooling capabilities provided by ODBC Driver Manager or newly added capabilities in Informix ODBC

Driver

The main advantage of connection pooling will be for the applications (including open source drivers) directly using the
Informix ODBC driver (not via ODBC Driver Manager) and wants to optimize the connection resource in highly OLTP nature of

applications where number of connections opened and closed are in large numbers.

Note: Driver Manager and Driver's connection pooling feature cannot be used together. Application should use only

one of the features.

You can find the header file infxcli.h,which is located under $| NFORM XDI R/ i ncl / cl i directory. The file has the following

additional macros:

#define SQL_INFX_ATTR_CP_TIMEOUT 2292
#define SQL_INFX_ATTR_CONNECTION_POOLING 2293
#define SQL_INFX_ATTR_CP_MATCH 2294
#define SQL_INFX_ATTR_CP_TOTAL_CONNECTIONS 2295
#define SQL_INFX_ATTR_CP_TOTAL_ACTIVE 2296
#define SQL_INFX_ATTR_CP_TOTAL_IDLE 2297

/* Connection pooling value parameters x*/

#define SQL_INFX_CP_STRICT_MATCH 1
#define SQL_INFX_CP_RELAXED_MATCH 2
#define SQL_INFX_CP_OFF 1
#define SQL_INFX_CP_ON 2

Enabling/Disabling connection pooling

There are two ways to enable/disable the connection pooling in ODBC:

= On Unix/Linux, user could use following attributes in odbc.ini file:
- Set 0 to disable, 1 to enable. By default its disabled(0).

InformixPooling=0

> Timeout for the connection in seconds range 5 to 60000. Default 60. Beyond range will be reset to default

value without any error/warning.

InformixCPTimeout=10

17

> Set 0 for strict match and 1 for relaxed match. By default, it is strict match(0). In strict match, more number
of parameters are compared to find out the match from the available connection from the pool. It is
recommended to use “strict match".

InformixCPMatch=0

+ On Unix/Linux or Windows, user can also set/get above values programatically using SQLSetEnvAttr/SQLGetEnvAttr
APIs.

By default, its connection pooling is disabled, "InformixPooling=0" or SQL_INFX_ATTR_CONNECTION_POOLING set to
SQL_INFX_CP_OFF.

Note: APIs used in program will have higher precendence over odbc.ini. For example: In odbc.ini file, pooling is
disabled but in the application using SQLSetEnvAttr(SQL_INFX_ATTR_CONNECTION_POOLING), if user enables
the pooling, then application will take higher precedence. Similarly other way around. Also for Timeout and Match

parameters.

The connection timing will be guided by Timeout parameter value (5 to 60000 seconds) set in "InformixCPTimeout"

parameter of odbc.ini file and/or SQLSetEnvAttr(SQL_INFX_ATTR_CP_TIMEOUT) value in the program. However this value
is not guaranteed to be exact. Whenever the user calls SQLDisonnect() at that point of time, all the "not in use" connection
will be iterated and whichever connections timeout has elapsed (difference between time of disconnect to current time), if
this difference time is more than the timeout set by the user then such connections will be physically disconnected and all

resources will be freed.

If connection pooling is enabled in odbc.ini, then it will be across all applications of ODBC. However, one can always
change(enable/disable) at each ODBC Environment (SQLAllocHanle(ENV)) scope. For example:lf it is enabled in the

odbc.ini file and application has two Environments (SQLAllocHandle(ENV1 and ENV2)), then user can disable in one of the
Environments by using SQLSetEnvAttr(SQL_INFX_ATTR_CONNECTION_POOLING = DISABLED), the other Environment will be
enabled from the effect of odbc.ini file. Hence, pooling object is managed at each Environment level.

The simple parameter comparisons across parameters (STRICT vs RELAX mode) is used to decide the pooling strategy.
Depending on the mode used, all parameters must exactly match in order to hand over the available connection to the newly

asked connection request.

You can use SQLGetEnvAttr (SQL_INFX_ATTR_CONNECTION_POOLING / SQL_INFX_ATTR_CP_TIMEQOUT /
SQL_INFX_ATTR_CP_MATCH) to list the values being set and if pooling is not enabled, you will get default parameters values
or values (MODE and TIMEOUT) mentioned in the odbc.ini file.

The default value of SQL_INFX_ATTR_CP_TIMEOUT is 60 seconds, range is 5 to 60000 seconds, beyond this range, it will be
reset to 60 seconds.

To track the number of connections using ODBC API, use SQLGetEnvAttr() APl with below parameters:

SQLGetEnvAttr (SQL_INFX_ATTR_CP_TOTAL_CONNECTIONS) => This will return total number of connections.

At any point of time, this will be equal to "Active +
Idle" number of connections.
SQLGetEnvAttr (SQL_INFX_ATTR_CP_TOTAL_ACTIVE) => This will return connection count which are currently in use.

18

Chapter 1. Informix® ODBC Driver Guide

SQLGetEnvAttr (SQL_INFX_ATTR_CP_TOTAL_IDLE) => This will return connection count which are currently idle (not
in use)and
ready to be assigned for matching incoming connection
requests.The idle number of connections
are actually connected to the database server.

Note: If connection pooling is not enabled and calling these APIs would return default/unknown value -1 for each of
the parameters.

Sample Output

Total connections = -1, active = -1, idle = -1
*%% Connection pooling enabled **x

**x%x Connection pooling set to STRICT mode **x*
% Connection pooling timeout set to 10 seconds
Connected, label = connStrIn

Total connections = 1, active = 1, idle = 0

Disconnected, label = connStrIn

Total connections = 1, active = 0, idle = 1
Connected, label = connStrIn

Total connections = 1, active = 1, idle = 0
Disconnected, label = connStrIn

Total connections = 1, active = 0, idle = 1
Connected, label = connStrInl

Total connections = 2, active idle = 1

]
=

Connected, label = connStrIn

Total connections = 2, active = 2, idle = 0

Disconnected, label = connStrIn

Total connections = 2, active = 1, idle = 1

Connected, label = connStrInl

Total connections = 3, active = 2, idle = 1

Disconnected, label = connStrInl

Total connections = 3, active = 1, idle = 2

Press enter to Exit, you may run 'userid informix onstat -g ses' to

see number of connections still opened due to connection pooling effect :

Statement handle freed successfully

Disconnected, label = connStrInl

Total connections = 3, active = 0, idle = 3

Environment handle freed successfully

Press enter to Exit, you may run 'userid informix onstat -g ses' to see
there should be no connection, all connections must have closed by now :
sh-3.23%

/***

* Licensed Materials - Property of HCL Technologies
*

* "Restricted Materials of HCL"

*

* HCL Informix ODBC Application

Copyright HCL 2019 All rights reserved.

Title: ConnectionPooling.c

* % X o ok

19

Description: Connection Pooling Sample ODBC Program

Author : User 1

Compile/link options on Linux/Unix

gcc -g —c -fsigned-char -DNO_WIN32 -0 -ISINFORMIXDIR/1incl/cli ConnectionPooling.c

gcc -g -o ConnectionPooling ConnectionPooling.o -L$INFORMIXDIR/lib/cli -L$INFORMIXDIR/lib/esql -1lthcli
-lifdmr -lifgls -lifglx -lm -lnsl

Kk A AR AR AR AR A A Ak A A A A A ARk A A A A Ak A A Ak kA A kA A Ak kA Ak kA hkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkkkhkhkkkkhkhkkxk

x/

L I

*

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32x/

#define __REENTRANT
#include <signal.h>
#ifdef NO_WIN32
#include <sys/wait.h>
#include <pthread.h>
#endif

#include <time.h>

#include <infxcli.h>

#define ERRMSG_LEN 200
#define NAMELEN 300
#define NUM_OF_INSTANCE 2

SQLHDBC hdbco;

SQLHDBC hdbc1;

SQLHDBC hdbc2;

SQLHDBC hdbc3;

SQLHDBC hdbc4;

SQLHENV henv;

SQLHSTMT hstmt;

SQLCHAR connStrIn[NAMELEN];
SQLCHAR connStrInl[NAMELEN];
short totalConn=0, totalActive=0, totalIdle=0;
SQLCHAR connStrOut [NAMELEN] ;

SQLSMALLINT connStrOutLen;

SQLINTEGER checkError (SQLRETURN rc,
SQLSMALLINT handleType,
SQLHANDLE handle,
SQLCHARx errmsg)
{
SQLRETURN retcode = SQL_SUCCESS;
SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;

SQLCHAR errMsg[ERRMSG_LENT;

q

Chapter 1. Informix® ODBC Driver Guide

SQLSMALLINT textLengthPtr;

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
{
while (retcode != SQL_NO_DATA)
{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState, &nativeError, errMsg, ERRMSG_LEN,
&textLengthPtr);

if (retcode == SQL_INVALID_HANDLE)

{
fprintf (stderr, "CheckError function was called with an invalid handle!!\n");
return 1;
}
if ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError, sqlState, errMsg);
errNum++;

fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */

3

else
return 0; /* no errors to report *x/

nt GetConnectionPoolingAttributes()

{
SQLRETURN rc = SQL_SUCCESS;
rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_CONNECTIONS , (void *) &totalConn, SQL_NTS, NULL);
if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Connection pooling Total Connections failed \nExiting!!");
exit (-1);
}
rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_ACTIVE , (void *) &totalActive, SQL_NTS, NULL);
if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Connection pooling Total Active failed \nExiting!!");
exit (-1);
}
rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_IDLE , (void %) &totalIdle, SQL_NTS, NULL);
if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Connection pooling Total Idle failed \nExiting!!");
exit (-1);
}
printf("\nTotal connections = %d, active = %d, idle = %d",totalConn,totalActive, totalIldle);
return 0;
}

21

void SetConnectionString()
{
memset (connStrIn, 0, sizeof(connStriIn));
memset (connStrInl, 0, sizeof(connStrInl));
#ifdef NO_WIN32
//sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC DRIVER};

HOST=X.X.x.x3;SERVER=01_informix1210_2;SERVICE=8573;PROTOCOL=onsoctcp;DATABASE=sysadmin;UID=informix;PWD=xxxXxx
")
sprintf((char *) connStrIn, "DSN=SmartTrigger");
sprintf((char *) connStrInl, "DSN=odbc_demo");
#else
//sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC DRIVER};HOST=x.x.x.Xx;SERVER=0l_informix1210_1;
SERVICE=20195;PROTOCOL=0onsoctcp;DATABASE=sysadmin;UID=informix;PWD=xxxxx") ;
sprintf((char x) connStrIn, "DSN=SmartTrigger");
sprintf((char *)connStrInl, "DSN=odbc_demo");
#endif
return;

int Connect(SQLHDBC *hdbc, SQLCHAR connStrIn[], SQLCHAR label[])
{

SQLRETURN rc = SQL_SUCCESS;

SQLHDBC tmpHdbc = NULL;

/* Allocate the connection handle */

rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &tmpHdbc);

if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR x) "Error(main) in Step 2 -- Connection Handle
Allocation failed\nExiting!!"))

exit (-1);

//printf("\nConnection handle BEFORE connection = %p", tmpHdbc);

/* Establish the database connection x/

rc = SQLDriverConnect (tmpHdbc, NULL, connStrIn, SQL_NTS, connStrOut, NAMELEN, &connStrOutLen,
SQL_DRIVER_NOPROMPT) ;

if (checkError (rc, SQL_HANDLE_DBC, tmpHdbc, (SQLCHAR *) "Error(main) in Step 3 -- SQLDriverConnect
failed\nExiting!!"))

exit (-1);
printf("\nConnected, label = %s", label);
//printf("\nConnection handle AFTER connection = %p", tmpHdbc);

*hdbc = tmpHdbc;

return rc;

int DisconnectAndFree(SQLHDBC *hdbc, SQLCHAR labell[])
{
SQLRETURN rc = SQL_SUCCESS;
SQLHDBC tmphdbc = *hdbc;
/* Disconnect from the data source x/
rc = SQLDisconnect (tmphdbc);
printf("\nDisconnected, label = %s", label);

/* Free the environment handle and the database connection handle */
rc = SQLFreeHandle (SQL_HANDLE_DBC, tmphdbc);

//printf("\nDatabase handle freed successfully");

return rc;

Chapter 1. Informix® ODBC Driver Guide

}
int main (long argc,
charx argv[])

{
/* Miscellaneous variables x/
SQLRETURN rc = 0;
BOOL poolEnabled = 0;
BOOL cpMode = 0;
SQLINTEGER timeOut = -1;

/* Allocate the Environment handle x/

rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

if (rc != SQL_SUCCESS)

{
fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
exit (-1);

/* Set the ODBC version to 3.0 x/
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
failed\nExiting!!"))
exit (-1);

GetConnectionPoolingAttributes();

//rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (SQLPOINTER) SQL_INFX_CP_OFF, 0);

rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (SQLPOINTER) SQL_INFX_CP_ON, 0);
if (rc != SQL_SUCCESS)
{

fprintf (stdout, "Connection pooling call failed \nExiting!!");

exit (-1);

rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (void *) &poolEnabled, SQL_NTS, NULL);

if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Connection pooling call failed \nExiting!!");
exit (-1);
}
if(SQL_INFX_CP_OFF == poolEnabled)
printf("\nx** Connection pooling disabled x*x*");
else if(SQL_INFX_CP_ON == poolEnabled)
printf("\nx** Connection pooling enabled *x*xx*");
else
printf("\n***x What's going with Connection pooling!!!");

/*
rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH, (SQLPOINTER)SQL_INFX_CP_RELAXED_MATCH, 0);
//rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH, (SQLPOINTER)SQL_INFX_CP_STRICT_MATCH, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
failed\nExiting!!"))
exit (-1);
x/
rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH , (void *) &cpMode, SQL_NTS, NULL);
if (rc != SQL_SUCCESS)
{

23

24

*/

fprintf (stdout, "Connection pooling call failed \nExiting!!");

exit (-1);
}
if(SQL_INFX_CP_RELAXED_MATCH == cpMode)

printf("\n***x Connection pooling set to RELAX mode x*xx");

else if(SQL_INFX_CP_STRICT_MATCH == cpMode)

printf("\n*x**x Connection pooling set to STRICT mode **x*");

rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_TIMEOUT, (SQLPOINTER)5, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
failed\nExiting!!"))

exit (-1);

rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TIMEOUT , (void *) &timeOut, SQL_NTS, NULL);

if (rc != SQL_SUCCESS)
{

fprintf (stdout, "Connection pooling call failed \nExiting!!");

exit (-1);
}

printf("\n***x Connection pooling timeout set to %d seconds", timeOut);

SetConnectionString();

Connect (&hdbc@®, connStrIn, "connStrIn");
GetConnectionPoolingAttributes();
DisconnectAndFree(&hdbcO, "connStrIn");
GetConnectionPoolingAttributes();

SetConnectionString();

Connect (&hdbcl, connStrIn, "connStrIn");
GetConnectionPoolingAttributes();
DisconnectAndFree(&hdbcl, "connStrIn");
GetConnectionPoolingAttributes();

SetConnectionString();

Connect(&hdbc2, connStrInl, "connStrInl");
GetConnectionPoolingAttributes();

rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc2, &hstmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc2, (SQLCHAR *)

Allocation failed\nExiting!!"))

exit (-1);

SetConnectionString();

Connect (&hdbc3, connStrIn, "connStrIn");
GetConnectionPoolingAttributes();
DisconnectAndFree(&hdbc3, "connStrIn");
GetConnectionPoolingAttributes();

SetConnectionString();

Connect (&hdbc4, connStrInl, "connStrInl");
GetConnectionPoolingAttributes();
DisconnectAndFree(&hdbc4, "connStrInl");
GetConnectionPoolingAttributes();

"Error(main) in Step 4 -- Statement Handle

printf("\nPress enter to Exit, you may run 'userid informix onstat -g ses' to see
number of connections still opened due to connection pooling effect : ");

char c = getchar();

Chapter 1. Informix® ODBC Driver Guide

Exit:
/* Close the statement handle x/
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle */
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

printf("\nStatement handle freed successfully");

DisconnectAndFree (&hdbc2, "connStrInl");
GetConnectionPoolingAttributes();

SQLFreeHandle (SQL_HANDLE_ENV, henv);
printf("\nEnvironment handle freed successfully");

printf("\nPress enter to Exit, you may run 'userid informix onstat -g ses' to see there
should be no connection, all connections must have closed by now : ");

c = getchar();

return (rc);

Tuning the Connection Pool Manager

Starting CSDK 4.50.xC4 onwards, Informix ODBC driver supports new Connection Pool Manager properties:

» MinPoolSize: The purpose of MinPoolSize is to open as many number of connections during first request of

connection.

For example, if MinPoolSize=5, this will open total 5 connections when the first connection request is made. In case,
the connection count goes down due to connection Pool Time Out expiry, and if the same connection request comes
again and there is no matching idle connection available, it will open MinPoolSize number of connections again.

» MaxConnLimit: The purpose of MaxConnLimit/MaxConnectionLimit is to restrict number of connections to the value

set by this parameter.

For example, if MaxConnLimit=20, before opening new connection, this value will be checked, if it exceeds the
opened number of connections, then error will be reported. MaxConnLimit will ensure, applications higher limit to
open physical connections to the database is restricted.

You can use the following methods to set MinPoolSize and MaxConnLimit parameters in ODBC applications:

Setting up MaxConnLimit:

« Use SQLSetEnvAttr/SQLSetConnectAttr(SQL_INFX_ATTR_MAX_CONN_LIMIT).

This parameter allows you to specify the maximum number of simultaneous physical connections that the

DataSource object can have with the server.

The range for SQL_INFX_ATTR_MAX_CONN_LIMIT is 5 to 2000. If you try to set beyond these values, it will be reset

to 5 without any error or warning.

25

« On Unix, use odbc.ini file.

« In application, use connection string : "DSN=MyDSN; MaxConnLimit=20".
Setting up MinPoolSize

« Use SQLSetConnectAttr(SQL_INFX_ATTR_MIN_CONN_POOL_SIZE).
This parameter allows you to specify the minimum number of connections to maintain in the pool.

The range for SQL_INFX_ATTR_MAX_CONN_LIMIT is 2 to 1000. If you try to set beyond these values, it will be reset

to 2 without any error or warning.

« On Unix, use odbc.ini file.
« In application, use connection string : "DSN=MyDSN; MinPoolSize=10".

Note: SQL_INFX_ATTR_MIN_CONN_POOL_SIZE and SQL_INFX_ATTR_MAX_CONN_LIMIT definition is located in
$INFORM XDI R/incl/cli/infxcli.h file.

Note: These parameters are used only when Pooling is enabled. As there is no default value, you need to specify the
value in your application.

Sample code for MinPoolSize and MaxConnLimit usage

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32x/

#define __REENTRANT
#include <signal.h>
#ifdef NO_WIN32
#include <sys/wait.h>
#include <pthread.h>
#endif

#include <time.h>

#include <infxcli.h>

#define ERRMSG_LEN 200
#define NAMELEN 300
SQLHDBC hdbco;
SQLHDBC hdbcl;
SQLHDBC hdbc2;
SQLHDBC hdbc3;

SQLHDBC hdbc4;

Chapter 1. Informix® ODBC Driver Guide

SQLHENV henv;
SQLHSTMT hstmt;
SQLCHAR connStrIn[NAMELEN];
SQLCHAR connStrInl[NAMELEN];
short totalConn=0, totalActive=0, totalIdle=0, mxConnPoolSize=0;
SQLCHAR connStrout [NAMELEN] ;
SQLSMALLINT connStrOutLen;
SQLINTEGER checkError (SQLRETURN rc,
SQLSMALLINT handleType,
SQLHANDLE handle,
SQLCHAR* errmsg)
{
SQLRETURN retcode = SQL_SUCCESS;
SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN];
SQLSMALLINT textLengthPtr;

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
{
while (retcode != SQL_NO_DATA)

{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState, &nativeError, errMsg, ERRMSG_LEN,

&textLengthPtr);

if (retcode == SQL_INVALID_HANDLE)

{
fprintf (stderr, "CheckError function was called with an invalid handle!!\n");
return 1;
}
if ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError, sqlState, errMsg);
errNum++;

fprintf (stderr, "%s\n", errmsg);

return 1; /* all errors on this handle have been reported */
}
else

return 0; /* no errors to report x/

int GetConnectionPoolingAttributes()

{
SQLRETURN rc = SQL_SUCCESS;

rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_MAX_CONN_LIMIT , (void *) &mxConnPoolSize, SQL_NTS, NULL);
if (rc != SQL_SUCCESS)
{

fprintf (stdout, "Connection pooling Total Connections failed \nExiting!!");

exit (-1);

27

28

}
rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_CONNECTIONS , (void *) &totalConn, SQL_NTS, NULL);
if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Connection pooling Total Connections failed \nExiting!!");
exit (-1);
}
rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_ACTIVE , (void *) &totalActive, SQL_NTS, NULL);
if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Connection pooling Total Active failed \nExiting!!");
exit (-1);
}
rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_IDLE , (void x) &totalIdle, SQL_NTS, NULL);
if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Connection pooling Total Idle failed \nExiting!!");
exit (-1);

printf("\nMaxConnLimit = %d, Total = %d, active = %d, idle = %d",mxConnPoolSize, totalConn,totalActive,
totalIldle);

return 0;

}

void SetConnectionString()
{
memset (connStrIn, 0, sizeof(connStrIn));
memset (connStrInl, 0, sizeof(connStriInl));

#ifdef NO_WIN32

//sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC
DRIVER};HOST=x.Xx.X.X;SERVER=01_informix1210_2;SERVICE=8573;PROTOCOL=onsoctcp;DATABASE=sysadmin;MinPoolSize=8;M
axConnLimit=9;UID=1informix;PWD=xxxx") ;

//sprintf((char *) connStrIn, "DSN=SmartTrigger");

//sprintf((char *) connStrInl, "DSN=odbc_demo");

sprintf((char *) connStrIn, "DSN=SmartTrigger;MinPoolSize=4;MaxConnLimit=9");

sprintf((char *) connStrInl, "DSN=odbc_demo;MinPoolSize=4;MaxConnLimit=9");
#else

//sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC
DRIVER} ;HOST=x.x.x.X;SERVER=01_informix1210_2;SERVICE=8573;PROTOCOL=0onsoctcp ;DATABASE=sysadmin;MinPoolSize=8;M
axConnLimit=9;UID=informix;PWD=xxxx") ;

//sprintf((char *) connStrIn, "DSN=SmartTrigger");

//sprintf((char *)connStrInl, "DSN=odbc_demo");

sprintf((char x) connStrIn, "DSN=SmartTrigger;MinPoolSize=4;MaxConnLimit=9");

sprintf((char *)connStrInl, "DSN=odbc_demo;MinPoolSize=4;MaxConnLimit=9");
#endif

return;

int Connect(SQLHDBC *hdbc, SQLCHAR connStrIn[], SQLCHAR label[])
{

SQLRETURN rc = SQL_SUCCESS;

SQLHDBC tmpHdbc = NULL;

unsigned int *setPoolSize=100;

unsigned int getPoolSize=0;

unsigned int getMinPoolSize=0;

/* Allocate the connection handle x/

Chapter 1. Informix® ODBC Driver Guide

rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &tmpHdbc);

if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR x) "Error(Connect) in Step 1 -- Connection Handle
Allocation failed\nExiting!!"))
exit (-1);

//*setPoolSize = 100;

//rc = SQLSetConnectAttr (tmpHdbc, SQL_INFX_ATTR_MAX_CONN_LIMIT, (unsigned int *x)&setPoolSize, 2);

//rc = SQLSetConnectAttr (tmpHdbc, SQL_INFX_ATTR_MAX_CONN_LIMIT, (unsigned 1int *)setPoolSize, 2);

rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_MAX_CONN_LIMIT, (unsigned 1int *)setPoolSize, SQL_IS_UINTEGER);

if (checkError (rc, SQL_HANDLE_DBC, tmpHdbc, (SQLCHAR *) "Error(Connect) 1in Step 2 -- SQLSetConnectAttr
failed\nExiting!!"))

exit (-1);
//printf("\nSet Max Pool Size using SQLSetConnectAttr() call = %d", setPoolSize);

//printf("\nConnection handle BEFORE connection = %p", tmpHdbc);
/* Establish the database connection x/

rc = SQLDriverConnect (tmpHdbc, NULL, connStrIn, SQL_NTS, connStrOut, NAMELEN, &connStrOutLen,
SQL_DRIVER_NOPROMPT) ;

if (checkError (rc, SQL_HANDLE_DBC, tmpHdbc, (SQLCHAR *) "Error(Connect) 1in Step 3 -- SQLDriverConnect
failed\nExiting!!"))
exit (-1);
printf("\nConnected, label = %s", label);

rc = SQLGetConnectAttr (tmpHdbc, SQL_INFX_ATTR_MAX_CONN_LIMIT, (void *)&getPoolSize, 4, NULL);
if (checkError (rc, SQL_HANDLE_DBC, tmpHdbc, (SQLCHAR %) "Error(Connect) 1in Step 2 --
SQLGetConnectAttr (MAX) failed\nExiting!!"))
exit (-1);
//printf("\nGot Max Pool Size using SQLGetConnectAttr() call = %d", getPoolSize);

rc = SQLGetConnectAttr (tmpHdbc, SQL_INFX_ATTR_MIN_CONN_POOL_SIZE, (void *)&getMinPoolSize, 4, NULL);
if (checkError (rc, SQL_HANDLE_DBC, tmpHdbc, (SQLCHAR *) "Error(Connect) 1in Step 2 --
SQLGetConnectAttr (MIN) failed\nExiting!!"))
exit (-1);
//printf("\nGot Min Pool Size using SQLGetConnectAttr() call = %d", getMinPoolSize);
//printf("\nConnection handle AFTER connection = %p", tmpHdbc);

*hdbc = tmpHdbc;

return rc;

int DisconnectAndFree(SQLHDBC *hdbc, SQLCHAR label[])

{
SQLRETURN rc = SQL_SUCCESS;
SQLHDBC tmphdbc = xhdbc;
/* Disconnect from the data source x*/
rc = SQLDisconnect (tmphdbc);
printf("\nDisconnected, label = %s", label);
/* Free the environment handle and the database connection handle */
rc = SQLFreeHandle (SQL_HANDLE_DBC, tmphdbc);
//printf("\nDatabase handle freed successfully");
return rc;

}

29

30

int main (long argc,

charx argv([])
{
/* Miscellaneous variables x/
SQLRETURN rc = 0;
BOOL poolEnabled = 0;
BOOL cpMode = 0;
SQLINTEGER timeOut = -1;

/* Allocate the Environment handle x/

rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

if (rc != SQL_SUCCESS)

{
fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
exit (-1);

/* Set the ODBC version to 3.0 x/
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR x) "Error(main) in Step 1 -- SQLSetEnvAttr
failed\nExiting!!"))
exit (-1);

GetConnectionPoolingAttributes();

//rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (SQLPOINTER) SQL_INFX_CP_OFF, 0);

rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (SQLPOINTER) SQL_INFX_CP_ON, 0);
if (rc != SQL_SUCCESS)
{

fprintf (stdout, "Connection pooling call failed \nExiting!!");

exit (-1);

rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (void *) &poolEnabled, SQL_NTS, NULL);

if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Connection pooling call failed \nExiting!!");
exit (-1);
}
if (SQL_INFX_CP_OFF == poolEnabled)
printf("\n*** Connection pooling disabled **x*");
else if(SQL_INFX_CP_ON == poolEnabled)
printf("\n*** Connection pooling enabled *x*x*");
else
printf("\n***x What's going with Connection pooling!!!");

/*
rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH, (SQLPOINTER)SQL_INFX_CP_RELAXED_MATCH, 0);
//rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH, (SQLPOINTER)SQL_INFX_CP_STRICT_MATCH, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR x) "Error(main) in Step 1 -- SQLSetEnvAttr
failed\nExiting!!"))
exit (-1);
x/
rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH , (void *) &cpMode, SQL_NTS, NULL);
if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Connection pooling call failed \nExiting!!");
exit (-1);

Chapter 1. Informix® ODBC Driver Guide

}
if(SQL_INFX_CP_RELAXED_MATCH == cpMode)

printf("\nx** Connection pooling set to RELAX mode **x");
else if(SQL_INFX_CP_STRICT_MATCH == cpMode)

printf("\n***x Connection pooling set to STRICT mode *x*x*");

rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_TIMEOUT, (SQLPOINTER)5, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
failed\nExiting!!"))
exit (-1);

rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TIMEOUT , (void %) &timeOut, SQL_NTS, NULL);
if (rc != SQL_SUCCESS)
{
fprintf (stdout, "Connection pooling call failed \nExiting!!");
exit (-1);
}

printf("\n***x Connection pooling timeout set to %d seconds", timeOut);

SetConnectionString();

Connect (&hdbc@®, connStrIn, "1. connStrIn");
GetConnectionPoolingAttributes();
DisconnectAndFree(&hdbcO, "1. connStrIn");
GetConnectionPoolingAttributes();

SetConnectionString();

Connect (&hdbcl, connStrIn, "2. connStrIn");
GetConnectionPoolingAttributes();
DisconnectAndFree(&hdbcl, "2. connStrIn");
GetConnectionPoolingAttributes();

SetConnectionString();
Connect (&hdbc2, connStrInl, "3. connStrInl");
GetConnectionPoolingAttributes();

rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc2, &hstmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc2, (SQLCHAR %) "Error(main) in Step 4 -- Statement Handle
Allocation failed\nExiting!!"))
exit (-1);

SetConnectionString();

Connect (&hdbc3, connStrIn, "4. connStrIn");

GetConnectionPoolingAttributes();
fflush(stdout);

DisconnectAndFree(&hdbc3, "4. connStrIn");

GetConnectionPoolingAttributes();

SetConnectionString();

Connect (&hdbc4, connStrInl, "5. connStrInl");
GetConnectionPoolingAttributes();
DisconnectAndFree(&hdbc4, "5. connStrInl");
GetConnectionPoolingAttributes();

printf("\nPress enter to Exit, you may run 'userid informix onstat -g ses' to see number of connections
still opened due to connection pooling effect : ");
char c¢ = getchar();

Exit:
/* Close the statement handle */
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle */
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
printf("\nStatement handle freed successfully");

DisconnectAndFree(&hdbc2, "3. connStrInl");
GetConnectionPoolingAttributes();

printf("\nBefore SQLFreeHandle(HENV)");

SQLFreeHandle (SQL_HANDLE_ENV, henv);

printf("\nEnvironment handle freed successfully");

printf("\nPress enter to Exit, you may run 'userid informix onstat -g ses' to see there should be no
connection, all connections must have closed by now : ");

c = getchar();

return (rc);

Global Language Support

HCL Informix® products can support many languages, cultures, and code sets. Global Language Support (GLS) provides

support for all language- and culture-specific information.

The following table describes how to set the GLS options depending on your platform.

Platform How to set GLS options

UNIX™ Specify the GLS options in the odbc. i ni file.

Windo Specify the GLS options in the HCL Informix® ODBC Driver DSN

ws™ Setup dialog box.

The following table describes the GLS options for HCL Informix® ODBC Driver.

GLS o
ption Description

Client Description:
locale Locale and code set that the application runs in
Format:

locale.codeset@modifier
odbc. i ni field for UNIX™:

CLIENT_LOCALE
Default value for UNIX™:

en_us.8859-1

32

Chapter 1. Informix® ODBC Driver Guide

GLS o
ption Description
Default value for Windows™:
en_us.1252
! Important: The setting of the CLIENT_LOCALE environment variable in the operating system environment
and in Setnet32 are ignored by HCL Informix® ODBC Driver. To change the client locale, you must use this
GLS option.
Datab Description:
ase Locale and code set that the database was created in
locale
Format:
locale.codeset@modifier
odbc. i ni field for UNIX™:
DB_LOCALE
Default value for UNIX™:
en_us.8859-1
Default value for Windows™:
en_us.1252
! Important: The setting of the DB_LOCALE environment variable in the operating system environment and in
Setnet32 are ignored by HCL Informix® ODBC Driver. To change the database locale, you must use this GLS
option.
Trans Description:
lation Performs the code set conversion
libr
Format:
ary

Path to the file for the library. The translation DLL must follow the ODBC standard for translation
libraries. For more information, see the IBM® Informix® ODBC Driver Programmer's Manual.

odbc. i ni field for UNIX™:

TRANSLATIONDLL
Default value for UNIX™:

$I NFORM XDI R/ 1 i b/ esql /i go4a304. xx where xx is platform-specific extension for shared library
Default value for Windows™:

i go4n304. dl |

33

GLS o

ption Description
Trans Description:
lation Option for a non-HCL® Informix® translation library
opt
. Format:
ion
Determined by the vendor
odbc. i ni field for UNIX™:
TRANSLATION_OPTION
Default value for Windows™:
Determined by the vendor
® Restriction: Do not set this option for the HCL Informix® translation library. The HCL Informix® translation
library determines the translation option based on the client locale and database locale values.
VMB Description:
chara Varying multibyte character length reporting option that specifies how to set pcbValue when rgbValue
cter

34

(the output area) is not large enough for the code-set-converted data. The possible values are:

Estimate

HCL Informix® ODBC Driver makes a worst-case estimate of the storage space needed

to return the data.

Exact

HCL Informix® ODBC Driver writes the code-set-converted data to disk until all the data
is converted. Because this option can degrade performance, it is recommended that you

do not use this option unless your application does not work with Estimate.

When you use a multibyte code set (in which characters vary in length from 1 to 4 bytes) for either the
database or client locale, the length of a character string or simple large object (TEXT) in the database
locale does not indicate the length of the string after it is converted to the client locale.

Possible values for UNIX™:

0 = Estimate
1 = Exact

Possible values for Windows™:

Estimate

Exact

Chapter 1. Informix® ODBC Driver Guide

GLS o
ption Description

odbc. i ni field for UNIX™:
VMBCHARLENEXACT

Default value for UNIX™:
Estimate

Default value for Windows™:

Estimate

For more information about GLS and locales, see the HCL® Informix® GLS User's Guide.

X/0pen standard interface

In addition to the standard ODBC functions, the HCL Informix® ODBC Driver also supports the additional functions.

The following functions are supported by HCL Informix® ODBC Driver
_fninfx_xa_switch
Function for acquiring the xa_switch structure defined by IBM® Enterprise Records Manager
IFMX_SQLGetXaHenv
Function for obtaining the environment handle associated with an XA Connection
IFMX_SQLGetXaHdbc
Function for obtaining the database handle associated with an XA Connection
xa_open

Function takes an xa_info parameter. The HCL Informix® ODBC Driver uses this xa_info to establish a XA

connection

The format of xa_info is as follows:

<appilcationtoken>|<DSN name>

The application token is a unique number the application generates for each xa_open request. It must use the
same application token as parameter to IFMX_SQLGetXaHenv and IFMX_SQLGetXaHdbc to get the associated

environment and database handles.

External authentication

For HCL Informix® Version 10.0 and later, you can implement external authentication through the HCL Informix® ODBC

Driver.

There are two external authentication modules available to use with the HCL Informix® ODBC Driver. The Pluggable
Authentication Module (PAM), works on UNIX™ and Linux™ servers and the LDAP Authentication is supported on Microsoft™

Windows™ operating systems.

35

Pluggable Authentication Module (PAM) on UNIX™ and Linux™

You can use Pluggable Authentication Module (PAM) with the HCL Informix® ODBC Driver on the UNIX™ and Linux™

operating systems that support PAM.

PAM enables system administrators to implement different authentication mechanisms for different applications. For

example, the needs of a system like the UNIX™ login program might be different from an application that accesses sensitive

information from a database. PAM allows for many such scenarios in a single machine, because the authentication services

are attached at the application level.

LDAP Authentication on Windows™

You can use LDAP Authentication with the HCL Informix® ODBC Driver on Windows™ operating systems. LDAP

Authentication is similar to the Pluggable Authentication Module.

Use the LDAP Authentication Support module when you want to use an LDAP server to authenticate your system users. The

module contains source code that you can modify for your specific LDAP Authentication Support module. For information

about installing and customizing the LDAP Authentication Support module, see the HCL® Informix® Security Guide.

The SQLSetConnectAttr() function with authentication

Use the SQLSetConnectAttr() function to specify the callback function used by the server.

SQLSetConnectAttr() is also used to specify what parameters are used by the callback function. Parameter attributes are

passed back to the callback function exactly as they are specified to the driver.

The following attributes are Informix®-specific extensions to the ODBC standard:

Parameter Type Description
SQL_INFX_ATTR_PAM_FUNCTION void * A pointer to the callback function.
SQL_INFX_ATTR_PAM_RESPONSE_BUF void * A generic pointer to a buffer containing the

response to an authentication challenge.
SQL_INFX_ATTR_PAM_RESPONSE_LEN int The length of the response buffer in bytes.
SQL_INFX_ATTR_PAM_RESPONSE_LEN_PTR int * The address which stores the number of bytes in

the response.
SQL_INFX_ATTR_PAM_CHALLENGE_BUF void * A generic pointer to a buffer containing the

36

authentication challenge. The driver stores any
challenge received from the server into this buffer.
If the buffer is not large enough to contain the
challenge, the challenge is truncated. The callback
function can detect this challenge by comparing
the buffer length with the number of bytes in the

Chapter 1. Informix® ODBC Driver Guide

Parameter Type Description

challenge. It is up to the application developer to

detect this situation and handle it correctly.

SQL_INFX_ATTR_PAM_CHALLENGE_BUF_LEN int The length of the challenge buffer in bytes.
SQL_INFX_ATTR_PAM_CHALLENGE_LEN_PTR int * The address that stores the number of bytes in the
challenge.

The challenge and response buffer pointers can be null. If the authentication server requires the information that would be
stored in these buffers, a connection failure results due to an authentication failure. The challenge length information is
returned whether the connection is successful or not. If the message type does not require a response, the response buffer
might be null (default) or it might contain an empty string.

The attributes in the previous table can be set at any time and in any order. However, they are only valid for connections
established with subsequent calls to one of the driver's connect functions.

You can set the isolation level with the SQLSetConnectAttr() API by using one of the following connection attributes:

* SQL_TXN_READ_UNCOMMITTED = Read Uncommitted
* SQL_TXN_READ_COMMITTED = Read Committed

* SQL_TXN_SERIALIZABLE = Serializable

* SQL_TXN_REPEATABLE_READ = Repeatable Read

e SQL_TXN_LAST_COMMITTED = Last Committed

* SQL_TXN_TRANSACTION = Transaction

If you use the SQL_TXN_LAST_COMMITTED or SQL_TXN_TRANSACTION attributes with the SQLSetConnectAttr() API, then
your applications must link directly to the HCL Informix® ODBC Driver instead of to the ODBC Driver Manager. However, if the
attribute is specified in the odbc. i ni file or the Data Source Administrator, the application can be linked with ODBC Driver

Manager.

If you use the SQL_TXN_TRANSACTION attribute, then the isolation level set in the DTC application is propagated to the

server. This option should be used only in Windows™ DTC applications.

The default behavior of the ODBC driver is to trim blank characters from the end of VARCHAR column results. To preserve
trailing spaces, set the SQL_INFX_ATTR_LEAVE_TRAILING_SPACES attribute:

SQLSetConnectAttr(hdbc, SQL_INFX_ATTR_LEAVE_TRAILING_SPACES,
(SQLPOINTER)SQL_TRUE, SQL_IS_INTEGER);

To trim trailing spaces, change SQL_TRUE to SQL_FALSE.
The behavior is limited to the connection.

Connect functions

Any ODBC function which establishes a connection, SQLConnect(), SQLDriverConnect(), or SQLBrowseConnect(), can be
used with authentication modules.

37

38

Consider the following when using these functions.

The SQLConnect() function

The DriverCompletion parameter to the SQLConnect() function can take the following values

+ SQL_DRIVER_PROMPT

* SQL_DRIVER_COMPLETE

* SQL_DRIVER_COMPLETE_REQUIRED
* SQL_DRIVER_NOPROMPT

If an authentication challenge is expected, it is recommended that you use SQL_DRIVER_NOPROMPT. Using other values

might result in the user being presented with multiple requests for authentication information.

The SQLBrowseConnect() function

The SQLBrowseConnect() function is designed to be used iteratively where the driver provides guidance to the application
on how to complete the connection string and the application prompts the user for the required values. This can create
situations where the user is presented with multiple prompts between connection string completion and authentication.

Additionally, it is typical for the driver to present a choice of databases to the application as part of the connection
string completion process. However, the driver is not able to query the server for a list of databases until after the
user is authenticated. Depending on application logic, whether it provides a database name in the original connection
string, and whether a challenge is going to be received from the authentication server, it might not be possible to use

SQLBrowseConnect() when the server uses authentication.

Third-party applications or intermediate code

When using authentication, it is the responsibility of the application to handle any challenges that originate from the

authentication server.

To handle the challenges, the application programmer must be able to register a callback function with the driver. Because
there are no attributes defined in the ODBC standard that are used to accomplish this, the attributes used are HCL Informix®

extensions.

Many applications are written with ADO layer of Microsoft™ to abstract the ODBC calls from the developer. Most Visual Basic
applications are written with ADO objects. These applications and third-party applications in general are not aware of the
HCL Informix® extensions and are not able to handle an authentication challenge.

The ODBC Data Source Administrator on Windows™ also falls under the class of third-party applications. Not all features are
available when configuring a UNIX™ data source. For example, the Apply and Test Connection button and the User Server
Database Locale toggle does not work if a challenge is received because those features require the ability to connect to the

server.

Bypass ODBC parsing

You can bypass ODBC parsing by using several options.

Chapter 1. Informix® ODBC Driver Guide

Sometimes you might want to improve performance by bypassing ODBC parsing. Do not bypass ODBC parsing if these

conditions exist:

« You intend to use ODBC escape sequences in your query.
* You intend to call any catalog functions (for example, SQLColumns, SQLProcedureColumns, or SQLTables) after

running your SQL query.
You can bypass ODBC parsing in the following ways:

« Set SKIPPARSING to 1 in the connection string. The connection string is used in a SQLDriverConnect call. For
example:
connString="DB=xxx;UID=XXX;....;SKIPPARSING=1;"
« Include SQL_INFX_ATTR_SKIP_PARSING in a SQLSetConnectAttr call, for example:
SQLSetConnectAttr (hdbc, SQL_INFX_ATTR_SKIP_PARSING,

(SQLPOINTER)SQL_TRUE, SQL_IS_USMALLINT);

Use this call after the connection is completed. To restore ODBC parsing, change SQL_TRUE to SQL_FALSE. After
this value is enabled at the connection level, all statement handles that are allocated with the connection inherit this
property.

« In a SQLSetStmtAttr call, include SQL_TRUE. To restore ODBC parsing, change SQL_TRUE to SQL_FALSE.

SQLSetStmtAttr (hstmt, SQL_INFX_ATTR_SKIP_PARSING,
(SQLPOINTER)SQL_TRUE, SQL_IS_USMALLINT);

« On UNIX™ systems, in .odbc. i ni set ski PPARSI NG=1. To restore ODBC parsing, reset the value to Ski PPARSI NG=0.
The precedence of bypassing ODBC parsing is as follows:

« If ODBC parsing is bypassed or reset in the odbc. i ni file (on UNIX™ systems) and also in the application with the
SQLDriverConnect, SQLSetConnectAttr, or the SQLSetStmtAttr APIs, the API setting takes precedence.

- If ODBC parsing is bypassed or reset in the application with the SQLDriverConnect API and also in the
SQLSetConnectAttr or SQLSetStmtAttr APIs, the latter takes precedence.

BufferLength in character for SQLGetDiagRecW

The SQLGetDiagRecW API returns diagnostic information in the output buffer, where the BufferLength parameter is the
length of buffer allocated.

The default for BufferLength is the number of bytes allocated. After setting the
SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW attribute to TRUE, the BufferLength is treated as a specific number of
characters. As a Widechar API, one character=sizeof(SQLWCHAR) bytes.

Set the attribute in the following ways:

e SQLSetEnvAttr (henv, SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW,
(SQLPOINTER)SQL_TRUE, SQL_IS_UINTEGER);

39

40

* SQLSetConnectAttr (hdbc, SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW,
(SQLPOINTER)SQL_TRUE, SQL_IS_UINTEGER);

e SQLSetStmtAttr (hstmt, SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW,
(SQLPOINTER)SQL_TRUE, SQL_IS_UINTEGER);

* Set the LENGTHI NCHARFORDI AGRECW-1 in the connection string.

* On UNIX™ systems, in odbc. i ni set LENGTH NCHARFORDI AGRECW:L
The precedence of setting SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW is:

- Setting the SQLSetEnvAttr attribute reflects to the henv, hdbc, and hstmt handles.
* Resetting the hdbc and hstmt handles through
o Setting SQLSetConnectAttr
> Passing the attribute in connection string
> Enabling the Length in Chars for SQLGetDiagRecW option in the DSN
- If the hstmt handle is set or not set by the previously mentioned methods, setting SQLSetStmtAttr resets it.

Informix® and ISAM error descriptions in SQLGetDiagRec
The SQLGetDiagRec API returns diagnostic information in the output buffer, where the error description is for the HCL

Informix® error message.

When the HCL Informix® server encounters an error, it returns the Informix® error code and the associated error description.
There is an additional error code, the ISAM error code, which provides information that is necessary to understand the

circumstances that caused the Informix® error code.
If you do not set an attribute for the SQLSetConnectAttr API, the SQLGetDiagRec API returns the Informix® error message.

If you set the SQL_DIAG_ISAM_ERROR attribute for the SQLGetDiagField API, the SQLGetDiagField API returns the ISAM error

message.

If you set the SQL_INFX_ATTR_IDSISAMERRMSG attribute for the SQLSetConnectAttr API, the SQLGetDiagRec API returns
both the Informix® error message and the ISAM error message.
Set the SQL_INFX_ATTR_IDSISAMERRMSG attribute in the following way:

SQLSetConnectAttr (hdbc, SQL_INFX_ATTR_IDSISAMERRMSG,

(SQLPOINTER)SQL_TRUE, SQL_IS_UINTEGER);

Improved performance for single-threaded applications
You are likely to improve the performance of single-threaded applications by using the SINGLETHREADED connection
parameter. The value is off by default.
Do not use this parameter in an XA/MSDTC environment. You can set the SINGLETHREADED connection parameter in a
connection string as the following example shows:

DSN=xxx ;Uid=xxx;Pwd=xxx ; SINGLETHREADED=1;"

Chapter 1. Informix® ODBC Driver Guide

Partially supported and unsupported ODBC features

HCL Informix® ODBC Driver supports partial implementation of several ODBC features.

These ODBC features are

 Transaction processing
» ODBC cursors

» ODBC bookmarks

» SQLBulkOperations

Transaction processing

HCL Informix® ODBC Driver implementation of transaction isolation levels and transaction modes is slightly different from

the Microsoft™ ODBC implementation of these features.

The following topics describe the implementation of transaction isolation levels and transaction modes in HCL Informix®
ODBC Driver.

Transaction isolation levels
HCL Informix® ODBC Driver supports three transaction isolation levels for the Informix® database server.

The following table lists the transaction isolation levels that HCL Informix® ODBC Driver supports for the Informix®
database server.

Database servers Transaction isolation levels

HCL Informix®
* SQL_TXN_READ_COMMITTED

* SQL_TXN_READ_UNCOMMITTED
* SQL_TXN_SERIALIZABLE

The default transaction isolation level is SQL_TXN_READ_COMMITTED. To change the transaction isolation level, call
SQLSetConnectOption() with an fOption value of SQL_TXN_ISOLATION.

For more information about transaction isolation levels, see the SQL_DEFAULT_TXN_ISOLATION and
SQL_TXN_ISOLATION_OPTION descriptions in the IBM® Informix® ODBC Driver Programmer's Manual.

Changing the transaction mode
You can change the transaction mode from its default of auto-commit to manual commit.
About this task

To change the transaction mode to manual commit:

41

1. Enable transaction logging for your database server.

For information about transaction logging, see your HCL® Informix® Administrator's Guide.

2. Call SQLSetConnectOption() with SQL_AUTOCOMMIT set to SQL_AUTOCOMMIT_OFF.
ODBC cursors
HCL Informix® ODBC Driver supports static and forward cursors but not dynamic and keyset-driven cursors.
For more information about cursors, see the IBM® Informix® ODBC Driver Programmer's Manual.

ODBC bookmarks

A bookmark is a value that identifies a row of data.

HCL Informix® ODBC Driver supports bookmarks with SQLFetchScroll and SQLExtendedFetch and does not support them

with SQLBulkOperations.HCL Informix® ODBC Driver supports bookmarks to the following extent:

« Uses only variable length bookmarks.

» SQL_DESC_OCTET_LENGTH is set to 4 for bookmark columns.

« A bookmark is an integer that contains the row number within the row set, starting with 1.

« Bookmarks persist only if the cursor remains open.

» SQLFetchScroll, using SQL_FETCH_BOOKMARK for the fetch orientation argument, is fully supported.
« SQLBulkOperations does not update the bookmark column for SQL_ADD.

For more information about ODBC bookmarks, see the IBM® Informix® ODBC Driver Programmer's Manual.

SQLBulkOperations

HCL Informix® ODBC Driver supports only the SQL_ADD argument of SQLBulkOperations.

SQLDescribeParam

SQLDescribeParam is an ODBC API which returns metadata for the parameters of a query.

In earlier releases of the HCL Informix® ODBC Driver, the SQLDescribeParam API returned SQL_UNKNOWN if the API
was called to get information about an expression value or a parameter that was embedded inside another routine. This

restriction no longer applies to values of BOOLEAN, LVARCHAR, or of built-in non-opaque Informix® data types that are

returned by the following expressions in other UDRs:

- Binary arithmetic expressions
> Addition (+)
o Subtraction (-)
 Multiplication (*)
> Division (/)

« Relational operator expressions

42

Chapter 1. Informix® ODBC Driver Guide

o Lessthan (<)
o Less than or equal to (<=)
e Equalto (= ==)
- Greater than or equal to (>=)
o Greater than (>)
> Not equal to (<>, !=)
« The following string operations
» Concatenation (||)
o MATCHES
o LIKE
« BETWEEN ... AND conditional expressions

For example, if the column tab1.c1 is an INT data type, SQLDescribeParam() returns type int for the input host variable of the

following query:

select cl, c2 from tabl where ABS(cl) > ?;

The UDR from the other side of the expression can be a column expression or a built-in routine, but it cannot be a user-
defined routine. In earlier releases, the SQLDescribeParam API returns SQL_UNKNOWN for expression values and

parameters that are embedded in another procedure in the following cases:

« The value on the other side of the expression is a user-defined routine.
« Another operand of the same expression is a user-defined routine.
« The data type of any operand of the expression is not a BOOLEAN, LVARCHAR, or a built-in non-opaque data type.

Unsupported Microsoft™ ODBC driver features

HCL Informix® ODBC Driver does not support implementation of the certain Microsoft™ ODBC driver features.

The unsupported Microsoft™ ODBC driver features are:

» Asynchronous communication mode
« Concurrency checking
o SQL_CA2_OPT_ROWVER_CONCURRENCY
> SQL_CA2_OPT_VALUES_CONCURRENCY
« CONVERT scalar functions
« Cursor simulation features:
o SQL_CA2_CRC_APPROXIMATE
> SQL_CA2_CRC_EXACT
> SQL_CA2_SIMULATE_NON_UNIQUE
> SQL_CA2_SIMULATE_TRY_UNIQUE
o SQL_CA2_SIMULATES_UNIQUE
» Dynamic cursor attributes
* Installer DLL

43

Configure data sources

These topics explain how to configure a data source (DSN) on UNIX™ and Windows™ for HCL Informix® ODBC Driver.

After you install the driver, you must configure your DSN before you can connect to it.

Configure a DSN on UNIX™

The configuration files provide information, such as driver attributes, that the driver uses to connect to DSNs.

This section provides information about driver specifications and DSN specifications on UNIX™, and describes the following

DSN configuration files:

*sqgl hosts
e odbcinst.ini
e odbc. ini

To modify these files, use a text editor. The section also provides examples of driver and DSN specifications.

If you are enabling single-sign on (SS0), additional steps are in "Configuring ESQL/C and ODBC Drivers for SSO" in HCL®

Informix® Security Guide.

The odbcinst.ini file

The odbci nst . i ni file has entries for all the installed drivers on your computer.

Installed ODBC drivers use the odbci nst . i ni sample file, which is located in $| NFORM XDl R/ et ¢/ odbci nst. i ni . To
create your odbci nst . i ni file, copy the odbci nst . i ni sample file to your home directory as $HOVE/ . odbci nst . i ni
(note the added dot at the beginning of the file name). Update this file when you install a new driver or a new version of a
driver. The following table describes section items in the $HOVE/ . odbci nst . i ni file.

Section Description Status
ODBC drivers List of names of all the installed ODBC drivers Optional
ODBC driver specifications | List of driver attributes and values Optional
ODBC drivers

Use examples to obtain information about ODBC drivers.

The following example illustrates information about drivers:

[ODBC Drivers]
driver_namel=Installed
driver_name2=Installed

The following example illustrates information about installed drivers:

[ODBC Drivers]
HCL Informix ODBC DRIVER=Installed

44

Chapter 1. Informix® ODBC Driver Guide

Driver specifications

Each installed driver has a properties section under the name of the driver.

The following example illustrates a driver-specification format:

[driver namel]
Driver=driver_library_path
Setup=setup/driver_library_path
APILevel=api_level_supported
ConnectFunctions=connectfunctions
DriverODBCVer=odbc_version
FileUsage=file_usage
SQLLevel=sql_level

The following example illustrates information about driver specifications:

[HCL Informix ODBC DRIVER]
Driver=/vobs/tristarm/odbc/iclisl5a.so
Setup=/vobs/tristarm/odbc/iclis@9b.so
APILevel=1

ConnectFunctions=YYY
DriverODBCVer=03.50

FileUsage=0

SQLLevel=1

The following table describes the keywords that are in the driver-specification section.

Keywords Description Status
API Level ODBC interface conformance level that the driver supports Required
0=None
T=Level 1 supported
2=Level 2 supported
ConnectFunctions Three-character string that indicates whether the driver supports Required
SQLConnect, SQLDriverConnect, and SQLBrowseConnect
DriverODBCVer Character string with the version of ODBC that the driver supports Required
Driver Driver library path Required
FileUsage Number that indicates how a file-based driver directly treats filesina | Required
DSN
Setup Setup library Required
SQLLevel Number that indicates the SQL-92 grammar that the driver supports Required

For a detailed description of the Driver Specification section, see the IBM® Informix® ODBC Driver Programmer's Manual.

45

The odbc.ini file

The odbc. i ni file is a sample data-source configuration information file.

For the location of the odbc. i ni file, see the release notes. To create this file, copy odbc. i ni to your home directory as
$HOVE/ . odbc. i ni (note the added dot at the beginning of the file name). Every DSN to which your application connects
must have an entry in this file. The following table describes the sections in $HOVE/ . odbc. i ni .

Section Description Status

ODBC Data Sources This section lists the DSNs and associates them with the name of the | Required
driver. You need to provide this section only if you use an ODBC driver

manager from a third-party vendor.

Data Source Specification Each DSN listed in the ODBC Data Sources section has a Data-Source | Required

Specification section that describes the DSN.

ODBC This section lists ODBC tracing options. Optional

Follow these rules to include comments in the odbc. i ni file on UNIX™ systems:

« Begin a comment with a semicolon (;) or number sign (#) in the first position of the first line.
« If a comment includes multiple lines, you can begin following comment lines with a space or tab character (\t).

» You can include blank lines in comments.

ODBC Data Sources

Each entry in the ODBC Data Sources section lists a DSN and the driver name.

The data_source_name value is any name that you choose. It is like an envelope that contains all relevant connection

information about the DSN.

The following example illustrates an ODBC data-source format:

[ODBC Data Sources]
data_source_name=HCL Informix ODBC DRIVER

The following example defines two DSNs called Empinfo and CustInfo:

[ODBC Data Sources]
EmpInfo=HCL Informix ODBC DRIVER
CustInfo=HCL Informix ODBC DRIVER

Data-source specification

Each DSN in the data sources section has a data-source specification section.

The following example illustrates a data-source specification format:

[data_source_name]
Driver=driver_path
Description=data_source_description

46

Chapter 1. Informix® ODBC Driver Guide

Database=database_name
LogonID=user_id
pwd=user_password
Server=database_server
CLIENT_LOCALE=application_locale
DB_LOCALE=database_locale
TRANSLATIONDLL=translation_path
CURSORBEHAVIOR=cursor_behavior
DefaultUDTFetchType=default_UDT_Fetch_type
ENABLESCROLLABLECURSORS=enable_scroll_cursors
ENABLEINSERTCURSORS=enable_insert_cursors
OPTIMIZEAUTOCOMMIT=optimize_auto_commit
NEEDODBCTYPESONLY=need_odbc_types_only
OPTOFC=open_fetch_close_optimization
REPORTKEYSETCURSORS=report_keyset_cursors
FETCHBUFFERSIZE=fetchbuffer_size
DESCRIBEDECIMALFLOATPOINT=describe_decimal_as_float
USESERVERDBLOCALE=use_server_dblocale
DONOTUSELVARCHAR=do_not_use_Ilvarchar
REPORTCHARCOLASWIDECHARCOL=char_col_as_widechar_col
UPDATE_DESCRIBE=update_describe
[ODBC]

UNICODE=unicode_type
LENGTHINCHARFORDIAGRECW=bufferlength_as_number_of_characters
LEAVE_TRAILING_SPACES=leave_trailing_spaces

The following table describes the keywords that are in the data-source specification section and the order that they appear in

each section.

Keywords Description Status
data_source_name Data source specified in the Data Sources section Required
Driver Path for the driver Required

Set this value to the complete path name for the driver library.
For more information about the library directory and file names,

see the release notes.

Description Description of the DSN Optional

Configured for a single user or for system users.

Database Database to which the DSN connects by default Required
LogonID User identification or account name for access to the DSN Optional
pwd Password for access to the DSN Optional
Server HCL Informix® database server on which database_name is in | Required
CLIENT_LOCALE (GLS only) Client locale. Default value: en_us.8859-1 Optional

DB_LOCALE (GLS only) Database locale. Default value: en_us.8859-1 Optional

Keywords

Description

Status

TRANSLATIONDLL (GLS only)

DLL that performs code-set conversion; default value:
$I NFORM XDI R/ | i b/ esql /i g04a304. xx where xx
represents a platform-specific file extension

Optional

CURSORBEHAVIOR

Flag for cursor behavior when a commit or rollback transaction

is called.

Possible values are:

» O=close cursor

» 1=preserve cursor

Default value: 0

Optional

DefaultUDTFetchType

Default UDT fetch type.
Default value: SQL_C_BINARY

Possible values are:

+ SQL_C_BINARY
+ SQL_C_CHAR

Optional

ENABLESCROLLABLECURSORS

If this option is activated, the HCL Informix® ODBC Driver

supports only scrollable, static cursors.

Available only as a connection option:
SQL_INFX_ATTR_ENABLE_SCROLL_CRUSORS

or as a connection attribute string:

EnableScrollableCursors

Default value is: 0 (disabled)

Optional

48

ENABLEINSERTCURSORS

Reduces the number of network messages sent to and from
the server by buffering the inserted rows used with arrays of
parameters and insert statements. This option improves the

performance of bulk insert operations.

Available as both a connection and statement option:

SQL_INFX_ATTR_ENABLE_INSERT_CURSORS

or as a connection attribute string:

EnableInsertCursors

Default value is: 0

Optional

Chapter 1. Informix® ODBC Driver Guide

Keywords

Description

Status

OPTIMIZEAUTOCOMMIT

Defers automatic commit operations while cursors remain
open. This option can reduce database communication when

the application is using non-ANSI logging databases.

Available as a connection option:

SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT

or as a connection attribute string:

OptimizeAutoCommit

Default value is: 1 (enabled)

Optional

OPTOFC

Causes the driver to buffer the open, fetch, and close cursor
messages to the server. This option eliminates one or more
message cycles when you use SQLPrepare, SQLExecute, and
SQLFetch statements to fetch data with a cursor.

Only available as a connection option:

SQL_INFX_ATTR_OPTOFC

or as a connection attribute string:

OPTOFC

Default is: 0 (disabled)

Optional

REPORTKEYSETCURSORS

Causes the driver to report (through SQLGetInfo) that is
supports forward-only, static, and keyset-driver cursors

even though the driver only supports forward-only and static
cursors. This option is used to enable dynaset-type functions,
such as Microsoft™ Visual Basic, which require drivers that
support keyset-driven cursors.

Also available as connection option:

SQL_INFX_ATTR_REPORT_KEYSET_CURSORS

or as a connection attribute string:

ReportKeysetCursors

Default is: 0 (disabled)

Optional

FETCHBUFFERSIZE

Size of a fetch buffer in bytes.

Available as connection attribute string:

FETCHBUFFERSIZE

Optional

49

Keywords

Description

Status

The maximum size of the fetch buffer is 2 GB.

Default is: 32767

DESCRIBEDECIMALFLOATPOINT

Describes all floating-point decimal columns as:

* Float(SQL_REAL) or
« Float(SQL_DOUBLE)

A floating-point decimal column is a column that was created
without a scale, for example DECIMAL(12). Some prepackaged
applications such as Visual Basic cannot properly format
Decimal columns that do not have a fixed scale. To use these
applications, you must enable this option or redefine the

column with a fixed scale.

Enabling this option has the disadvantage that SQL_DECIMAL
is an exact numeric data type while SQL_REAL and
SQL_DOUBLE are approximate numeric data types.
SQL_DECIMAL with a precision of 8 or less are described as
SQL_REAL. With a precision greater than 8, it is described as
SQL_DOUBLE.

Available as connection attribute string:

DESCRIBEDECIMALFLOATPOINT

Default is: 0 (disabled)

Optional

50

USESERVERDBLOCALE

Users server database locale.

Available as a connection attribute string:

USERSERVERDBLOCALE

Default is: 0 (disabled)

Optional

DONOTUSELVARCHAR

If enabled, the SQLGetTypelnfo does not report LVARCHAR
as a supported type (DATA_TYPE) of SQL_VARCHAR. Some
applications use LVARCHAR instead of VARCHAR, even in
columns that are less than 256 bytes. The minimum number
of bytes transmitted for LVARCHAR is higher than VARCHAR.
Many LVARCHAR columns can result in the rowset size

exceeding the maximum.

Optional

Chapter 1. Informix® ODBC Driver Guide

Keywords

Description

Status

! Important: Enable this option only if your
SQL_VARCHAR columns are less than 256 bytes.

Available as a connection attribute string:

DONOTUSELVARCHAR

Default is: 0 (disabled)

REPORTCHARCOLASWIDECHARCOL

Causes SQLDescribeCol to report character columns as wide

character columns as follows:

» SQL_CHAR is reported as SQL_WCHAR

» SQL_VARCHAR is reported as SQL_WVARCHAR

* SQL_LONGVARCHAR is reported as
SQL_WLONGVARCHAR

Available as a connection attribute string:

REPORTCHARCOLASWIDECHARCOL

Default is: 0 (disabled)

Optional

UPDATE_DESCRIBE OR UPD_DESC

This is required particularly for BLOB/CLOB data types. If
enabled, server will send the description of these data types
which will be used by ODBC Driver. This option should only be
enabled when needed. It should not be turned on all the time as

that would cause more round trips between client and server.

Possible values are:

.0
.1

Default valueis: 0

Optional

UNICODE

Indicates the type of Unicode used by an application. This
attribute applies to UNIX™ applications only and is set in
the ODBC section of the odbc. i ni file. The following

considerations apply:

Required

51

Keywords Description

Status

« Applications on UNIX™ not linking to Data Direct ODBC
driver manager should set this to UCS-4

« Applications on IBM® AIX® with version lower than 5L
should set this attribute to UCS-2.

« Applications using Data Direct driver manager do not

need to set this attribute.

Default is: UTF-8

For more information about using Unicode in an ODBC
application, see Unicode on page 244.

LENGTHINCHARFORDIAGRECW
If enabled, the SQLGetDiagRecW API treats the BufferLength

parameter as the number of characters.
Default is: FALSE (disabled)

For more information about using the BufferLength parameter
seeBufferLength in character for SQLGetDiagRecW on
page 39.

LEAVE_TRAILING_SPACES If enabled, the driver preserves blank characters at the end of
VARCHAR column results.

Possible values are:

« 0 (trim trailing spaces)
+ 1 (preserve trailing spaces)

Default value is: 0

The following example shows the configuration for a DSN called Emplnfo:

[EmpInfo]

Driver=/informix/1lib/cli/iclis09b.so
Description=Demo data source

Database=odbc_demo

LogonID=admin

pwd=tiger

Server=ifmx_91

CLIENT_LOCALE=en_us.8859-1

DB_LOCALE=en_us.8859-1
TRANSLATIONDLL=/opt/informix/lib/esql/igo4a304.so

The following example shows the configuration for a DSN called Informix® 9:

[Informix9]
Driver=/work/informix/lib/cli/iclis09b.so

52

Chapter 1. Informix® ODBC Driver Guide

Description=Informix 9.x ODBC Driver
LogonID=userl

pwd=tigress4

Database=odbc_demo
ServerName=my_server

If you specify a null Logon! D or pwd, the following error occurs:

Insufficient connect information supplied

e Tip: You can establish a connection to a DSN with null values for Logoni D and pwd if the local Informix® database

server is on the same computer where the client is located. In this case, the current user is considered a trusted user.

A sample data source, with no Logonl D and pwd, where the server and client are on the same computer, might look like the
following example:

Driver=/work/informix/lib/cli/iclis09b.so
Description=Informix 9.x ODBC Driver
LogonID=

pwd=tiger

Database=odbc_demo

ServerName=1ifmx_server

Set the isolation level (UNIX™ only)

Set the isolation level in the odbc. i ni file by using the ISOLATIONLEVEL and SQL_TXN_LAST_COMMITTED keywords.

To specify the isolation level in the odbc. i ni file, use the following keyword and values:

* ISOLATIONLEVEL = level
* SQL_TXN_LAST_COMMITTED = last committed

where level is a number from 0 to 5:

« 0 = Automatically considers the default based on database type
+ 1 = Read Uncommitted

« 2 = Read Committed (default for non-ANSI databases)

« 3 = Repeatable Read (default for ANSI databases)

* 4 = Serializable

« 5 = Last Committed

If an application calls SQLSetConnectAttr with the SQL_ATTR_TXN_ISOLATION attribute and sets the value before
connecting, and later sets ISOLATIONLEVEL or ISOLVL in the connection string, the connection string is the final value to be
used.

The SQL_TXN_TRANSACTION isolation level is not supported on UNIX™ platforms.

ODBC section

The values in the ODBC section of odbc. i ni specify ODBC tracing options.

53

With tracing, you can find the log of calls made and also the return codes for each call. These options are set through the

Tracing tab of the ODBC Data Source Administrator dialog box on Windows™.

The following table describes the tracing options in the ODBC section:

Table 1. Tracing options for ODBC section of odbc. i ni

Option Details
TRACE=1 Tracing enabled
TRACE=0 Tracing disabled
TRACEFILE Set to where you want to driver to write the call logs.
TRACEDLL Always idmrs09a.so

The following example illustrates an ODBC section specification format:

[0ODBC]

TRACE=1
TRACEFILE=/WORK/ODBC/ODBC.LOG
TRACEDLL=1idmrs@9a.so
UNICODE=UCS-4

You must set the TRACEFILE to where you want the driver to write all of the call logs. Keep in mind that TRACE=1 means that
tracing is enabled. TRACE=0 disables tracing options.

Set the SODBCINI environment variable

Set the $ODBCINI environment variable to provide access to your DSN by system users

By default, HCL Informix® ODBC Driver uses configuration information found in the $HOVE/ . odbc. i ni file. If you
want to provide access to your DSN by system users, modify the path in the SODBCINI environment variable to point to
another configuration file that also contains the configuration information found in the $HOVE/ . odbc. i ni file. Then
change the configuration file permissions to allow read access for system users. Do not change the permissions to the
$HOME/ . odbc. i ni file.

In the following example, the configuration file name is myodbc. i ni :
setenv ODBCINI /work/myodbc.ini
The .netrc file

The . net r ¢ file contains data for logging in to a remote database server over the network.

Create the . net r c file in the home directory where the client computer initiates the connection. Set the . net r ¢ file
permissions for the user to deny read access by the group and others.

To connect to a remote database server, create entries in the . net r c file for the Logonl Dand pwd required to autoconnect to
the data source. To establish a connection to a remote data source, the ODBC driver first reads the Logonl D and pwd from the

54

Chapter 1. Informix® ODBC Driver Guide

data source entry in the SHOVE/ . odbc. i ni file. If the SHOVE/ . odbc. i ni file does not specify a Logon! D and pwd, the ODBC
driver searches the $HOVE/ . net r ¢ file.

For example, to allow an autologin to the computer called ray by using the login name | og8i n with password nypasswor d, your
. net r c file contains the following line:

machine ray login log8in password mypassword

For information about the . net r ¢ file, see the UNIX™ man pages.

Configuring a DSN in Windows™

In Windows™ environments, HCL Informix® ODBC Driver provides a GUI to configure DSNs.
About this task

To configure a DSN:

» Choose a procedure to modify your DSN:
Choose from:
o Choose the User DSN option to restrict access to one user.
> Choose the System DSN option to restrict access to system users.
> Choose the File DSN option to allow access to all users on a network.
- Enter DSN-configuration values to create a DSN, such as the data-source name, the database server name, and the

database locale.

What to do next

For a description of values, see the following two tables. Values are shown in the order that they appear in each section. You
can also use Microsoft™ ODBC, Version 2.5 or later, to configure a DSN.

0 Tip: To find out what DSN you have, click the About tab and read the contents of the Description text box.

! Important: To configure a DSN on the Windows™ 64-bit platform, you must use the 32-bit ODBC Data Source
Administrator:

C:\WINDOWS\SyswWOw64\odbcad32.exe

You must specify the user and password or the CSM setting for SSO.If you are enabling single-sign on (SS0), additional steps
are in "Configuring ESQL/C and ODBC Drivers for SSO" in HCL® Informix® Security Guide.

55

Note: Support for Communication Support Module (CSM) is removed starting Informix Server 14.10.xC9 . You should

use Transport Layer Security (TLS)/Secure Sockets Layer (SSL) instead.

Table 2. Required DSN values

Required values

Description

Data Source Name

DSN to access

This value is any name that you choose. Data Source Name is like an envelope that

contains all relevant connection information about the DSN.

Database Name

Name of the database to which the DSN connects by default

Host Name

Computer on which Server is in

Protocol

Protocol used to communicate with Server

After you have added a DSN, the menu will display the available choices.

Server Name

HCL® Informix® database server on which Database is in

Service

HCL® Informix® database server process that runs on your Host computer

Confirm the service name with your system administrator or database administrator.

Table 3. Optional DSN values

Optional values

Description

Client Locale

Default value: en_us.1252

Database Locale

Default value: en_us.1252

Description Any information, such as version number and service

Options General information, such as password settings
For more information about this value, see the sql host s information in your HCL®
Informix® Administrator's Guide.

Password Password for access to the DSN

Translation Library

Dynamic linked library (DLL) that performs code-set conversion; default value:
$I NFORM XDI R\ bi n\i g04n304. dI |

User ID

User identification or account name for access to the DSN

Translation Option

Option for a non-HCL® Informix® translation library

Varying multibyte character length reporting option that specifies how to set pcbValue
when rgbValue (the output area) is not large enough for the code-set-converted data

Chapter 1. Informix® ODBC Driver Guide

Table 3. Optional DSN values (continued)

Optional values Description

Possible values:

« O=Estimate

» T=Exact

Default value: 0

Cursor Behavior Flag for cursor behavior when a commit or rollback transaction is called

Possible values are:

« O=close cursor

» 1=preserve cursor

Default value: 0

After you complete these steps, you will connect to the DSN.

Configuring a new user DSN or system DSN

Access the ODBC Data Source Administrator dialog box to configure a new user DSN or system DSN.
About this task

To configure a new user DSN or system DSN:

1. Choose Start > Settings > Control Panel.
2. Double-click ODBC to open the ODBC Data Source Administrator dialog box.
Choose from:
> To configure a user DSN, go to step 3 on page 57.
> To configure a system DSN, click the System DSN tab and go to step 3 on page 57.

All subsequent steps are the same to configure either a user DSN or a system DSN.

3. Click Add.

The Create New Data Source dialog box opens.

4. Double-click HCL Informix ODBC driver on the Create New Data Source wizard.

The General page for the HCL Informix® ODBC Driver Setup dialog box opens.

5. Enter the values in the General page, as the following example shows:

Example

57

58

o Data Source Name: odbc33i nt

o Description: file DSN 3.81 on turbo

For a description of the values, see Table 2: Required DSN values on page 56 and Table 3: Optional DSN values on

page 56.

® Restriction: Do not click OK after you enter the values on this page. If you click OK before you enter all the

values, you get an error message.

6. Click the Connection tab to display the Connection page and enter the values, as the following example shows:
Example
> Server Name: ol _cl i pper (or use the menu to choose a server that is on the sglhosts registry. If you use the
menu, the ODBC application sets the Host Name, Service, Protocol, and Options values.)
o Host Name: cl i pper
o Service: t urbo
o Protocol: onsoct cp (or use the menu to choose a protocol)
o Options: csme(SPWDCSM

Note: Support for Communication Support Module (CSM) is removed starting Informix Server
14.10.xC9 . You should use Transport Layer Security (TLS)/Secure Sockets Layer (SSL) instead.

> Database Name: odbc_deno (or use the menu to find a database name)
o User ID: nynane

o Password: xxxxxxx

To save the values you chose and verify that your DSN connects successfully, click Apply & Test Connection.
An ODBC Message dialog box opens. The box tells you if your connection was successful or, if it was not, tells
you which Connection-tab value is incorrect.

7. Click the Environment tab to display the Environment page and enter the values, as the following example shows:
Example
o Client Locale: en_us. cP1252
o Database Locale: en_us. cP1252
o Use Server Database Locale: if check box is checked, database locale value is set to the server locale. If the
check box is cleared, the database locale is set to the default locale, en_us. cP1252.
o Translation Library: | NFORM XDI R\ | i b\ esql \ i g04n304. dI |
o Translation Option: 0
o Cursor Behavior: 0 - Cose
> VMB Character: 0 - Estimte
o Fetch Buffer Size: 4096
o |solation Level: 0 - Default will be considered, Read Conmitted (non-ANSI databases) or Repeatabl e Read
(ANSI dat abases)
8. Click the Advanced tab to display the Advanced page and click all applicable boxes.

Chapter 1. Informix® ODBC Driver Guide

Option

Description

Auto commit This option defers automatic commit operations while cursors remain open and can reduce

optimization

Open-Fet
ch-Close

optimization

Insert

cursors

Scrollable

cursor

Report
KeySet

cursors

database communication when the application is using non-ANSI logging databases. This option is
available only as a connection option:

SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT

or as a connection attribute string: "OptimizeAutoCommit"
The default is: 1 (enabled).

This option causes the driver to buffer the open, fetch, and close cursor messages to the server.
In addition, this option eliminates one or more message round trips when you use SQLPrepare,
SQLExecute, and SQLFetch statements to fetch data with a cursor. This option is available only as a

connection option:
SQL_INFX_ATTR_OPTOFC

or as a connection attribute string: "OPTOFC"
The default is: o (disabled).

This option reduces the number of network messages sent to and from the server by buffering
the inserted rows that are used with arrays of parameters and insert statements. This option can
greatly improve the performance of bulk insert operations, and is available as both connection and

statement options:

SQL_INFX_ATTR_ENABLE_INSERT_CURSORS.

or as a connection attribute string: "EnablelnsertCursors"
The default is: o (disabled).

If this option is activated, HCL Informix® ODBC Driver, Version 2.90 and later, supports only
scrollable, static cursors. This option is available only as a connection option:

SQL_INFX_ATTR_ENABLE_SCROLL_CURSORS

or as a connection attribute string: "EnableScrollableCursors”
The default is: 0 (disabled).

This option causes the driver to report (through SQLGetInfo) that it supports forward-only, static,

and keyset-driven cursor types, although the driver only supports forward-only and static cursors.
When you set this option, the driver enables dynaset-type functions, such as functions for Microsoft™
Visual Basic. These functions require drivers that support keyset-driven cursor types. This option is
also available as a connection attribute:

SQL_INFX_ATTR_REPORT_KEYSET_CURSORS

or as a connection attribute string: "ReportKeysetCursors"

59

60

Option

Description

Report
standard

ODBC types

only

Describe
decimal
floating
point as
SQL_REAL /
SQL_DouU
BLE

Do not use
LVARCHAR

The default is: o (disabled).
If you activate this feature, the driver causes SQLGetTypelnfo to map all occurrences of user-defined
types (UDTs) as follows:
Blob
SQL_LONGVARBINARY
Clob
SQL_LONGVARBINARY
Multiset
SQL_C_CHAR/SQL_C_BINARY
Set
SQL_C_CHAR/SQL_C_BINARY
List
SQL_C_CHAR/SQL_C_BINARY
Row
SQL_C_CHAR/SQL_C_BINARY
The driver maps multiset, set, row, and list data types to SQL_C_CHAR or SQL_C_BINARY, which is
the default UDT

FetchType to SQL_C_CHAR features.
The default is: o (disabled).

This option describes all floating-point decimal columns as Float (SQL_REAL or SQL_DOUBLE). A
floating-point decimal column is a column that was created without a scale, ex: DECIMAL(12). Some
prepackaged applications such as Visual Basic cannot properly format Decimal columns that do not
have a fixed scale. To use these applications you must enable this option or redefine the column with
a fixed scale.

There is a disadvantage to enabling this option however, SQL_DECIMAL is an exact numeric data
type while SQL_REAL and SQL_DOUBLE are approximate numeric data types. A SQL_DECIMAL with a
precision of 8 or less aree described as SQL_REAL, with a precision greater than 8 it is SQL_DOUBLE.

The default is: 0 (disabled).

Causes SQLGetTypelnfo to not report LVARCHAR as a supported type of DATA_TYPE of
SQL_VARCHAR.

Chapter 1. Informix® ODBC Driver Guide

Option Description

Some applications such as MS Access97 use LVARCHAR instead of VARCHAR even for columns
that are less than 256 bytes long. The minimum number of bytes transmitted for LVARCHAR is
higher than for VARCHAR and many LVARCHAR columns can result in the rowset size exceeding the
maximum. Enable this option only if your SQL_VARCHAR columns are less than 256 bytes in length.
The default is: 0 (disabled).

Report CHAR Causes SQLDescribeCol to report char columns as wide char columns. SQL_CHAR column is

columns as reported as SQL_WCHAR, SQL_VARCHAR as SQL_WVARCHAR and SQL_LONGVARCHAR column as

wide CHAR SQL_WLONGVARCHAR

columns
The default is: 0 (disabled).

Length in If enabled, the SQLGetDiagRecW API treats the BufferLength Parameter as the number of characters.

Chars for

SQLGetDiag The default is: FALSE (disabled).

RecW

Leave

Trailing If enabled, the driver preserves blank characters at the end of VARCHAR column results.

Spaces The default is: 0 (disabled).

Describe

input This is required particularly for BLOB/CLOB data types. If enabled, server will send the description

parameters of these data types which will be used by ODBC Driver. This option should only be enabled when

for SQL needed. It should not be turned on all the time as that would cause more round trips between client
and server.

statements

The default is: 0 (disabled).

9. To check your connection to the database server, click Test Connection.
10. Click OK to return to the ODBC Data Source Administrator dialog box and to update the DSN information in the

appropriate files.

Results

When your application connects to this DSN, the values that you entered are the default entries for the DSN connection.

Removing a DSN

Access the ODBC Data Source Administrator dialog box to remove a DSN.

About this task

To remove a DSN:

61

1. Follow steps 1 on page 57 and 2 on page 57 from Configuring a new user DSN or system DSN on page 57.
2. Click Remove in the ODBC Data Source Administrator dialog box.

The 32-bit ODBC Administrator dialog box opens.
3. Click Yes to remove the DSN and return to the ODBC Data Source Administrator dialog box.
Reconfiguring an existing DSN
Access the ODBC Data Source Administrator dialog box to reconfigure an exiting user DSN.
About this task

To reconfigure an existing DSN:

1. Follow steps 1 on page 57 and 2 on page 57 from Configuring a new user DSN or system DSN on page 57
2. Click Configure to display the HCL Informix® ODBC Driver Setup dialog box.

Enter the new configuration values in the corresponding text boxes and click OK to return to the ODBC Data Source

Administrator dialog box.

Results

After you complete these steps, you will connect to the DSN.

Configuring a file DSN

Access the ODBC Data Source Administrator dialog box to configure a file DSN.
About this task

To configure a file DSN:

1. Choose Start > Settings > Control Panel.
2. Double-click the ODBC icon to open the ODBC Data Source Administrator dialog box.
3. Click the File DSN tab to display the File DSN page.

Choose the File DSN option to allow access to the DSN to all users on a network. For a description of values, see
Table 2: Required DSN values on page 56 and Table 3: Optional DSN values on page 56.

4. Click Add.

The Create New Data Source wizard opens.

5. Select HCL Informix ODBC Driver from the driver list and click Next to display the Create New Data Source Setup
wizard, which contains a file data source text box.
6. If you know the name of the date source file, type the name into the text box, click Next to display the completed

Create New Data Source wizard, and go to step 9 on page 63

62

Chapter 1. Informix® ODBC Driver Guide

If you do not know the name of the file, click Browse to display the Save As dialog box and enter the values, as the
following example shows:

o File Name: Fi | e_DSN

o Save as type: ODBC Fil e Data Sources

Select a file name or type a file name in the File_name text box.

. Click Save to display the Create New Data Source wizard, which displays information about the data source name.

8. Click Next to display the completed Create New Data Source wizard.

10.

. Click Finish to display the HCL Informix® Connect dialog box.

For a description of the values, see Table 2: Required DSN values on page 56 and Table 3: Optional DSN values on
page 56. For Advanced tab values, see Configuring a new user DSN or system DSN on page 57.

Click OK to save the values and display the ODBC Data Source Administrator dialog box.

The name of the data file that you chose or typed in step 6 on page 62 is displayed in the text box.

Results

After you add or change DSN-configuration information, the driver updates the appropriate Windows™ registry to reflect the

specified values. To be compatible with other HCL® Informix® connectivity products, the driver stores the DSN-configuration

information in the Windows™ registry.

Creating logs of calls to the drivers

Access the Tracing page to create logs of calls to the drivers.

About this task

To create logs of calls to the drivers:

a A WON =

. Click the Tracing tab to display the Tracing page.

. Select Start Tracing Now to turn on tracing.

. To enter an existing log file, click Browse to display the Select ODBC Log File dialog box.

. Enter the file name in the File_name text box and click Save to return to the Tracing page.

. To select a custom trace dynamic link library (DLL), click Select DLL to display the Select a custom trace dll dialog

box, and enter the values, as the following example shows:
Example
o File name: t est 2_dsn

o Files of type: Dynamic link libraries(*.dll)

Choose a file or type a file name in the File_name text box.

6. Click Open to display the Tracing page.

. Click OK to save the changes.

63

Connection string keywords that make a connection

Use connection string keywords to make a connection with or without DSN and with the DRIVER keywords.

The following table lists the connection string keywords that can be used in making a connection:

Keyword

Short version

CLIENT_LOCALE
CONNECTDATABASE
CURSORBEHAVIOR

DATABASE

DB_LOCALE
DESCRIBEDECIMALFLOATPOINT
DESCRIPTION
DONOTUSELVARCHAR

DRIVER

DSN

ENABLEINSERTCURSORS
ENABLESCROLLABLECURSORS
EXCLUSIVE

FETCHBUFFERSIZE

FILEDSN

HOST

NEEDODBCTYPESONLY
OPTIMIZEAUTOCOMMIT
OPTIONS

OPTOFC

PWD
REPORTCHARCOLASWIDECHARCOL
REPORTKEYSETCURSORS
SAVEFILE

SERVER

SERVICE

CLOC

CONDB

CURB

DB

DLOC

DDFP

DESC

DNL

DRIVER

DSN

ICUR

SCUR

XCL

FBC

FILEDSN

HOST

ODTYP

OAC

OPT

OPTOFC

PWD

RCWC

RKC

SAVEFILE

SRVR

SERV

Chapter 1. Informix® ODBC Driver Guide

Keyword Short version
SINGLETHREADED SINGLETH
SKIPPARSING SKIPP
TRANSLATIONDLL TDLL
TRANSLATIONOPTION TOPT
uib uiD
UPDATE_DESCRIBE UPDDESC

DSN migration tool

You can use the DSN migration tool by creating a text file with an . i ni extension.

To use the DSN migration tool, dsnmi gr at e. exe, that accompanies HCL Informix® ODBC Driver, create a text file with the
extension . i ni ; and then type the names and values of the DSNs that you want to migrate or restore. The migration log file

is located in % NFORM XDI R r el ease\ dsnM gr . | og. The restore information is located in %4 NFORM XDI RA r el ease

\'dsnM gr . sav.

The following restrictions apply:

» A user DSN can be used or migrated only by the user who created that DSN.
« A system DSN can be used by all users of the system.
« A file DSN requires write privileges to the file.

Setting up and using the DSN migration tool

Set up and use the DSN migration tool with a text editor to create a text file.
About this task

To set up and use the DSN migration tool:

1. Open a text editor and create a text file with an . i ni extension.
2. Create a section in the file for each type of DSN (user, system, and file) to be modified.
3. On a separate line in each section, specify your DSNs by using the following format:

DSNname=drivername

drivername must be HCL | nf or i x CDBC DRI VER

4. Torundsnmi gr at e. exe, use the following command:
dsnMigrate -f filename

where filename is the name of the text file created in step 1 on page 65

65

DSN migration tool examples

The DSN migration tool examples illustrate various DSNs migrated to the HCL Informix® ODBC Driver.

In the following example a DSN named Test1 migrates to HCL | nf ormi x ODBC DRI VER, and a DSN named Test2 migrates to HcL

I nf or ni x ODBC DRI VER. Both DSNs are restricted to the user who created them.

[User DSN]
Testl=HCL Informix ODBC DRIVER
Test2=HCL Informix ODBC DRIVER

In the second example a DSN named Test3 migrates to HCL | nf orni x ODBC DRI VER, and a DSN named Test4 migrates to
its original DSN. Both DSNs can be used by all users of the system. The user who migrates these system DSNs must have

permission to modify ODBC system DSN registry entries.

[System DSN]
Test3=HCL Informix ODBC DRIVER
Test4=restore

In the third example, two file DSNs named test5.dsn and test6.dsn migrate to HCL | nf orni x ODBC DRI VER.

[File DSN]
C:\Program Files\ODBC\Data Sources\test5.dsn=HCL Informix ODBC DRIVER
C:\Program Files\ODBC\Data Sources\test6.dsn=IHCL Informix ODBC DRIVER

Data types

These topics contain information about the data types that are supported by HCL Informix® ODBC Driver.

Data types

HCL Informix® ODBC Driver supports five different data types.

The following table describes the data types that HCL Informix® ODBC Driver supports.

Data type Description Example

Informix® SQL data type Data types that your Informix® database server uses | CHAR(n)

Informix® ODBC Driver SQL data type Data types that correspond to the Informix® SQL data | SQL_CHAR

types
Standard C data type Data types that your C compiler defines unsigned char
Informix® ODBC Driver typedef Typedefs that correspond to the standard C data types | UCHAR
Informix® ODBC Driver C data type Data types that correspond to the standard C data SQL_C_CHAR
types

SQL data types

HCL Informix® database server uses SQL data types.

66

Chapter 1. Informix® ODBC Driver Guide

For detailed information about the HCL Informix® SQL data types, see HCL® Informix® Guide to SQL: Reference, HCL®
Informix® Guide to SQL: Tutorial, and HCL® Informix® User-Defined Routines and Data Types Developer's Guide.

Additional SQL data types for Informix®

Additional HCL Informix® SQL data types for Informix® have corresponding HCL Informix® ODBC Driver data types.

The following table lists the additional HCL Informix® SQL data types for Informix® and their corresponding HCL Informix®

ODBC Driver data types. To use the Informix® ODBC driver SQL data types for Informix®, include i nf xcl i . h.

Informix® SQL data type

Informix® ODBC driver SQL data type
(fSqlType)

Description

Collection (LIST, MULTISET, SET)

Any Informix® ODBC driver SQL data
type

Composite value that consists of one or
more elements, where each element has the

same data type.

DISTINCT Any Informix® ODBC driver SQL data UDT that is stored the same way as its
type source data type but has different casts and
functions
OPAQUE (fixed) SQL_INFX_UDT_FIXED Fixed-length UDT with an internal structure

that has the same size for all possible

values

OPAQUE (varying)

SQL_INFX_UDT_VARYING

Variable-length UDT with an internal
structure that can have a different size for
each different value

Row (Named row, unnamed row)

Any Informix® ODBC Driver SQL data
type

Composite value that consists of one or
more elements, where each element can

have a different data type.

Smart large object (BLOB or
CLOB)

SQL_IFMX_UDT_BLOB

SQL_IFMX_UDT_CLOB

Large object that is stored in an sbspace on
disk and is recoverable.

Precision, scale, length, and display size

The functions that get and set precision, scale, length, and display size for SQL values have size limitations for their input

arguments.

Therefore, these values are limited to the size of an SDWORD that has a maximum value of 2,147,483,647. The following

table describes these values.

67

68

Value Description for a numeric data type Description for a non-numeric data type

Precision Maximum number of digits. Either the maximum length or the specified

length.

Scale Maximum number of digits after the decimal point. | Not applicable.

For floating point values, the scale is undefined
because the number of digits to the right of the
decimal point is not fixed.

Length Maximum number of bytes that a function returns | Maximum number of bytes that a function
when a value is transferred to its default C data returns when a value is transferred to its
type. default C data type. The length does not

include the NULL termination byte.

Display size Maximum number of bytes needed to display data | Maximum number of bytes needed to display

in character form.

data in character form.

Standard SQL data types

View the values for the precision, scale, length, and display size for standard HCL Informix® ODBC Driver SQL data types.

The following table describes the precision, scale, length, and display size for the standard HCL Informix® ODBC Driver SQL

data types.

Informix® ODBC driver sql data | Description

type (fSqlType)

SQL_BIGINT

Precision

Scale

Length
8 bytes
Display size

20 digits. One digit is for the sign.

19. SQLBindParameter ignores the value of cbColDef for this data type.

0. SQLBindParameter ignores the value of ibScale for this data type.

SQL_BIT

Precision

Scale

Length

1 byte

1. SQLBindParameter ignores the value of cbColDef for this data type.

0. SQLBindParameter ignores the value of ibScale for this data type.

Chapter 1. Informix® ODBC Driver Guide

Informix® ODBC driver sql data
type (fSqlType)

Description

Display size

1 digit

SQL_CHAR

Precision
Same as the length
Scale
Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.
Length
The specified length. For example, the length of CHAR(10) is 10 bytes.
Display size

Same as the length.

SQL_DATE

Precision
10. SQLBindParameter ignores the value of chColDef for this data type.
Scale
Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.
Length
6 bytes
Display size

10 digits in the format yyyy- nm dd.

SQL_DECIMAL

Precision

The specified precision. For example, the precision of DECIMAL (12, 3) is
12.

Scale
The specified scale. For example, the scale of DECIMAL(12, 3) is 3.
Length

The specified precision plus 2. For example, the length of DECIMAL(12, 3)
is 14 bytes. The two additional bytes are used for the sign and the decimal

points because functions return this data type as a character string.
Display size

Same as the length.

69

Informix® ODBC driver sql data
type (fSqlType)

Description

SQL_DOUBLE

Precision
15. SQLBindParameter ignores the value of cbColDef for this data type.
Scale
Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.
Length
8 bytes
Display size

22 digits. The digits are for a sign, 15 numeric characters, a decimal point,

the letter E, another sign, and 2 more numeric characters.

SQL_INTEGER

Precision

10. SQLBindParameter ignores the value of cbColDef for this data type.
Scale

0. SQLBindParameter ignores the value of ibScale for this data type.
Length

4 bytes
Display size

11 digits. One digit is for the sign.

SQL_LONGVARBINARY

Precision
Same as the length.
Scale

Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.
Length

The maximum length. If a function cannot determine the maximum length, it
returns SQL_NO_TOTAL.

Display size

The maximum length times 2. If a function cannot determine the maximum
length, it returns SQL_NO_TOTAL.

SQL_LONGVARCHAR

70

Precision

Same as the length.

Chapter 1. Informix® ODBC Driver Guide

Informix® ODBC driver sql data
type (fSqlType)

Description

Scale

Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.
Length

The maximum length. If a function cannot determine the maximum length, it
returns SQL_NO_TOTAL.

Display size

Same as the length.

SQL_REAL

Precision
7. SQLBindParameter ignores the value of cbhColDef for this data type.
Scale
Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.
Length
4 bytes
Display size

13 digits. The digits are for a sign, 7 numeric characters, a decimal point,

the letter E, another sign, and 2 more numeric characters.

SQL_SMALLINT

Precision

5. SQLBindParameter ignores the value of cbColDef for this data type.
Scale

0. SQLBindParameter ignores the value of ibScale for this data type.
Length

2 bytes
Display size

6 digits. One digit is for the sign.

SQL_TIMESTAMP

Precision
8. SQLBindParameter ignores the value of cbColDef for this data type.
Scale

The number of digits in the FRACTION field.

71

Informix® ODBC driver sql data | Description
type (fSqlType)

Length
16 bytes
Display size

19 or more digits:

- If the scale of the time stamp is 0: 19 digits in the format yyyy- mm dd
hh: mm ss.

« If the scale of the time stamp exceeds 0: 20 digits plus digits for the
FRACTION field in the format yyyy- nm dd hh: nm ss. f. ..

SQL_VARCHAR Precision
Same as the length.
Scale
Not applicable. SQLBindParameter ignores the value of ibScale for this data
type.
Length
The specified length. For example, the length of VARCHAR(10) is 10 bytes.
Display size

Same as the length.

Additional SQL data types for Informix®

View the values for the precision, scale, length, and display size for additional HCL Informix® ODBC Driver SQL data types.

The following table describes the precision, scale, length, and display size for the HCL Informix® ODBC Driver SQL data types
for Informix®.

Informix® ODBC driver sql data Description
type (fSqlType)

SQL_IFMX_UDT_BLOB Precision

Variable value. To determine this value, call a function that returns the

precision for a column.
Scale

Not applicable. A function that returns the scale for a column returns -1

for this data type.

72

Chapter 1. Informix® ODBC Driver Guide

Informix® ODBC driver sql data
type (fSqlType)

Description

Length

Variable value. To determine this value, call a function that returns the

length for a column.
Display size

Variable value. To determine this value, call a function that returns the

display size for a column.

SQL_IFMX_UDT_CLOB

Precision

Variable value. To determine this value, call a function that returns the

precision for a column.
Scale

Not applicable. A function that returns the scale for a column returns -1
for this data type.

Length

Variable value. To determine this value, call a function that returns the

length for a column.
Display size

Variable value. To determine this value, call a function that returns the

display size for a column.

SQL_INFX_UDT_FIXED

Precision

Variable value. To determine this value, call a function that returns the

precision for a column.
Scale

Not applicable. A function that returns the scale for a column returns -1
for this data type.

Length

Variable value. To determine this value, call a function that returns the

length for a column.
Display size

Variable value. To determine this value, call a function that returns the
display size for a column.

SQL_INFX_UDT_VARYING

Precision

Variable value. To determine this value, call a function that returns the

precision for a column.

73

Informix® ODBC driver sql data

type (fSqlType)

Description

Scale

Length

Display size

for this data type.

length for a column.

display size for a column.

Not applicable. A function that returns the scale for a column returns -1

Variable value. To determine this value, call a function that returns the

Variable value. To determine this value, call a function that returns the

C data types

HCL Informix® ODBC Driver applications use C data types to store values that the application processes.

The following table describes the C data types that HCL Informix® ODBC Driver provides.

! Important: String arguments in Informix® ODBC driver functions are unsigned. Therefore, you need to cast a CString

object as an unsigned string before you use it as an argument in the Informix® ODBC driver function.

Value Informix® ODBC driver C data type | Informix® ODBC driver typedef |Standard C data type
(fCType)
Binary SQL_C_BINARY UCHAR FAR * unsigned char FAR *
Boolean SQL_C_BIT UCHAR unsigned char
Character SQL_C_CHAR UCHAR FAR * unsigned char FAR *
Wide Character SQL_C_WCHAR WCHAR FAR * wchar_t FAR *
Date SQL_C_DATE DATE_STRUCT struct
t agDATE_STRUCT{ SWORD year;
UWORD nont h; UWORD day; }
Interval SQL_C_INTERVAL_YEAR SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_MONTH

SQL_INTERVAL_STRUCT

C Interval Structure

SQL_C_INTERVAL_DAY

SQL_INTERVAL_STRUCT

C Interval Structure

SQL_C_INTERVAL_HOUR

SQL_INTERVAL_STRUCT

C Interval Structure

SQL_C_INTERVAL_MINUTE

SQL_INTERVAL_STRUCT

C Interval Structure

SQL_C_INTERVAL_SECOND

SQL_INTERVAL_STRUCT

C Interval Structure

Chapter 1. Informix® ODBC Driver Guide

Value Informix® ODBC driver C data type | Informix® ODBC driver typedef |Standard C data type
(fCType)
SQL_C_INTERVAL_YEAR SQL_INTERVAL_STRUCT C Interval Structure
_TO_MONTH
SQL_C_INTERVAL_DAY _TO_HOUR |SQL_INTERVAL_STRUCT C Interval Structure
SQL_C_INTERVAL_DAY_ SQL_INTERVAL_STRUCT C Interval Structure
TO_MINUTE
SQL_C_INTERVAL_DAY_ SQL_INTERVAL_STRUCT C Interval Structure
TO_SECOND
SQL_C_INTERVAL_HOUR SQL_INTERVAL_STRUCT C Interval Structure
_TO_MINUTE
SQL_C_INTERVAL_HOUR SQL_INTERVAL_STRUCT C Interval Structure
_TO_SECOND
SQL_C_INTERVAL_MINUTE SQL_INTERVAL_STRUCT C Interval Structure
_TO_SECOND

Numeric SQL_C_DOUBLE SDOUBLE signed double
SQL_C_FLOAT SFLOAT signed float
SQL_C_LONG SDWORD signed long int

SQL_C_NUMERIC

SQL_NUMERIC_STRUCT

struct tag

SQL_NUMERI C_STRUCT

{ SQLCHAR preci sion;
SQLSCHAR scal e; SQLCHAR
sign; SQLCHAR val [SQL_MAX_
NUVERI C LEN]; }SQL_NUMERI C_

STRUCT;
SQL_C_SHORT SWORD signed short int
SQL_C_SLONG SDWORD signed long int
SQL_C_SSHORT SWORD signed short int
SQL_C_STINYINT SCHAR signed char
SQL_C_TINYINT SCHAR signed char
SQL_C_ULONG UDWORD unsigned long int
SQL_C_USHORT UWORD unsigned short int
SQL_C_UTINYINT UCHAR unsigned char

75

Value Informix® ODBC driver C data type | Informix® ODBC driver typedef |Standard C data type
(fCType)

Time stamp SQL_C_TIMESTAMP TIMESTAMP_STRUCT struct tagTl MESTAMP_STRUCT
{ SWORD year; UWORD nonth
UWORD day; UWORD hour;
UWORD ni nut e; UWORD second

UDWORD fraction; }

C interval structure

Specify the C data type for the SQL interval data type by using a C interval structure.

The following structures specify the C data type for the SQL interval data type:

typedef struct tagSQL_INTERVAL_STRUCT

{

SQLINTERVAL dinterval_type;

SQLSMALLINT interval_sign;

union
{
SQL_YEAR_MONTH_STRUCT year_month;
SQL_DAY_SECOND_STRUCT day_second;
} dintval;

}SQLINTERVAL_STRUCT;

typedef enum
{
SQL_IS_YEAR=1,
SQL_IS_MONTH=2,
SQL_IS_DAY=3,
SQL_IS_HOUR=4,
SQL_IS_MINUTE=5,
SQL_IS_SECOND=6,
SQL_IS_YEAR_TO_MONTH=7,
SQL_IS_DAY_TO_HOUR=8,
SQL_TIS_DAY_TO_MINUTE=9,
SQL_IS_DAY_TO_SECOND=10,
SQL_IS_HOUR_TO_MINUTE=11,
SQL_IS_HOUR_TO_SECOND=12,
SQL_IS_MINUTE_TO_SECOND=13,
}SQLINTERVAL;

typedef struct tagSQL_YEAR_MONTH
{
SQLUINTEGER year;
SQLUINTEGER month;
}SQL_YEAR_MOHTH_STRUCT;

typedef struct tagSQL_DAY_SECOND
{
SQLUINTEGER day;
SQLUNINTEGER hour;
SQLUINTEGER minute;
SQLUINTEGER second;

76

Chapter 1. Informix® ODBC Driver Guide

SQLUINTEGER fraction;
}SQL_DAY_SECOND_STRUCT;

Transfer data

Among data sources that use the same DBMS, you can safely transfer data in the internal form that a DBMS uses.

For a particular piece of data, the SQL data types must be the same in the source and target data sources. The C data type is
SQL_C_BINARY.

When you call SQLFetch, SQLExtendedFetch, or SQLGetData to retrieve this data from a data source, HCL Informix® ODBC
Driver retrieves the data and transfers it, without conversion, to a storage location of type SQL_C_BINARY. When you call
SQLExecute, SQLExecDirect, or SQLPutData to send this data to a target data source, HCL Informix® ODBC Driver retrieves
the data from the storage location and transfers it, without conversion, to the target data source.

The binary representation of INT8, SERIAL8, and BIGSERIAL data types is an array of two unsigned long integers followed by
a short integer that indicates the sign field. The sign field is 1 for a positive value, - 1 for a negative value, or o for a null value.

! Important: Applications that transfer any data (except binary data) in this manner are not interoperable among
DBMSs.

Report standard ODBC types

HCL Informix® ODBC Driver supports existing applications that support standard ODBC data types only. Check the DSN
option Report Standard ODBC Types to turn on this behavior.

When an application sets this option, the driver sets the following behavior:

« Only Standard ODBC data types are reported for all the driver defined new data types.

+ The data type access method for smart-large-object (LO) data can be accessed as SQL_LONGVARCHAR and
SQL_LONGVARBINARY. In other words, SQL_LONGVARCHAR and SQL_LONGVARBINARY act like the simple large
objects, byte, and text.

 The defaultUDTfetchtype is set to SQL_C_CHAR.

However, you can control each of the preceding behaviors individually as a connection or a statement level option. Use the

following connection and statement level attributes:

* SQL_INFX_ATTR_ODBC_TYPES_ONLY
* SQL_INFX_ATTR_LO_AUTOMATIC
* SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE

Applications can use SQLSetConnectAttr and SQLSetStmtAttr to set and unset these values. (ODBC 2.x applications can use
SQLSetConnectOption and SQLSetStmtOption equivalently.)

77

78

SQL_INFX_ATTR_ODBC_TYPES_ONLY

Applications can set the SQL_INFX_ATTR_ODBC_TYPES_ONLY attribute to value SQL_TRUE or SQL_FALSE.

This attribute can be set and unset at connection and statement level. All the statements allocated under the same
connection inherit this value. Alternatively each statement can change this attribute. By default this attribute is set to
SQL_FALSE.

An application can change the value of this attribute by using SQLSetConnectAttr and SQLSetStmtAttr
(SQLSetConnectOption and SQLSetStmtOption in ODBC 2.x). Applications can retrieve the values set by using
SQLGetConnectAttr and SQLGetStmtAttr (SQLGetConnectOption and SQLGetStmtOption in ODBC 2.x).

This attribute cannot be set to SQL_TRUE when SQL_INFX_ATTR_LO_AUTOMATIC is set SQL_FALSE. An error message is
returned that reports the following message:

Attribute cannot be set. LoAutomatic should be ON to set this value

The application should first set the SQL_INFX_ATTR_LO_AUTOMATIC attribute to SQL_TRUE and then set the attribute
SQL_INFX_ATTR_ODBC_TYPES_ONLY to SQL_TRUE.

SQL_INFX_ATTR_LO_AUTOMATIC

Applications can set the SQL_INFX_ATTR_LO_AUTOMATIC attribute to value SQL_TRUE or SQL_FALSE.

This attribute can be set and unset at connection and statement level. All the statements allocated under the same
connection inherit this value. Alternatively each statement can change this attribute. By default this attribute is set to
SQL_FALSE.

An application can change the value of this attribute by using SQLSetConnectAttr and SQLSetStmtAttr
(SQLSetConnectOption and SQLSetStmtOption in ODBC 2.x). Applications can retrieve the values set by using
SQLGetConnectAttr and SQLGetStmtAttr (SQLGetConnectOption and SQLGetStmtOption in ODBC 2.x).

The attribute SQL_INFX_ATTR_LO_AUTOMATIC cannot be set to SQL_FALSE when SQL_INFX_ATTR_ODBC_TYPES_ONLY is

set to SQL_TRUE. An error message is returned that reports the following message:

Attribute cannot be set. ODBC types only should be OFF to set this value

Applications should first set the attribute SQL_INFX_ODBC_TYPES_ONLY to SQL_FALSE and then set the attribute
SQL_INFX_ATTR_LO_AUTOMATIC to SQL_FALSE.

Applications would like to set attribute SQL_INFX_ATTR_UPDATE_DESCRIBE (this option could also be enabled using DSN
and/or connection string. For more information, see Connection string keywords that make a connection on page 64)

using SQLSetConnectAttr() API. By enabling this option server will send the description of BLOB/CLOB data types which will
be used by ODBC Driver. This option should only be enabled when needed. It should not be enabled all the time, otherwise it

would cause more round trips between client and server.

Chapter 1. Informix® ODBC Driver Guide

SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE

Applications can set the SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE attribute to SQL_C_CHAR or SQL_C_BINARY to set
the default fetch type for UDTs.

The default value of this attribute is set depending on the following conditions:

« If the DSN setting for Report Standard ODBC Types is ON, the value of DefaultUDTFetchType is set to SQL_C_CHAR.

« If the DSN setting for Report Standard ODBC Types is OFF, the value of DefaultUDTFetchType is set to
SQL_C_BINARY.

- If a user has set a registry key, the value of DefaultUDTFetchType is set to the value in the registry provided Report
Standard ODBC Types is not set.

An application can change the value of this attribute by using SQLSetConnectAttr and SQLSetStmtAttr
(SQLSetConnectOption and SQLSetStmtOption in ODBC 2.x). Applications can retrieve the values set by using
SQLGetConnectAttr and SQLGetStmtAttr (SQLGetConnectOption and SQLGetStmtOption in ODBC 2.x).

Setting the Report Standard ODBC Types to ON always overrides DefaultUDTFetchType to SQL_C_CHAR.

Report wide character columns

HCL Informix® servers do not support wide character data types.

When an application sets the Report Char Columns as Wide Char Columns option, the driver sets the following behavior:

» SQLDescribeCol reports char columns as wide char columns

* SQL_CHAR column is reported as SQL_WCHAR

* SQL_VARCHAR column is reported as SQL_WVARCHAR

* SQL_LONGVARCHAR column is reported as SQL_WLONGVARCHAR
« The default is 0: (disabled)

After setting the Report Char Columns as Wide Char Columns option, calls to SQLBindParameter with SQL data types have
the following behavior:

* SQL_WCHAR is mapped to SQL_CHAR
* SQL_WVARCHAR is mapped to SQL_VARCHAR
* SQL_WLONGVARCHAR is mapped to SQL_LONGVARCHAR

DSN settings for report standard ODBC data types

For UNIX™ and Windows™, you can add the new DSN option NeedODBCTypesOnly.

For UNIX™, add a new DSN option NeedODBCTypesOnly under your DSN setting in your odbc. i ni file [default is 0]. For
example:
[Informix9]

Driver=/informix/1lib/cli/1libthcli.so
Description=HCL Informix ODBC Driver

79

NeedODBCTypesOnly=1

For Windows™, check this option under the Advanced tab of the ODBC Administration for HCL Informix® Driver DSN [default
is 0].

The following table shows how the Informix® data types map to the standard ODBC data types.

Table 4. Informix® and ODBC data type
mapping

Infor
mix® ODBC

Bigint SQL_BIGINT

Bigserial SQL_BIGINT

Blob SQL_LONGVARBINARY
Boolean SQL_BIT

Clob SQL_LONGVARCHAR
Int8 SQL_BIGINT

Lvarc SQL_VARCHAR
har

Serial8 SQL_BIGINT

Multiset SQL_C_CHAR or
SQL_C_BINARY

Set SQL_C_CHAR or
SQL_C_BINARY

List SQL_C_CHAR or
SQL_C_BINARY

Row SQL_C_CHAR or
SQL_C_BINARY

! Important:

80

Chapter 1. Informix® ODBC Driver Guide

- For multiset, set, row, and list data types, the data type is mapped to the defaultUDTFetchType attribute set
(SQL_C_CHAR or SQL_C_BINARY).

« To enable SQL_BIGINT to work correctly with SQLBindCol and SQLBindParameter, you must use
SQL_C_UBIGINT (which has a supported data range of 8 byte unsigned integer) and not SQL_C_LONG (which
has a supported data range of 4 byte integer).

Convert data

The word convert is used in this section in a broad sense; it includes the transfer of data from one storage location to

another without a conversion in data type.

Standard conversions

Standard conversions exist between the HCL Informix® SQL data types and the HCL Informix® ODBC Driver C data types.
Only Informix® can convert data to SQL_C_BIT.

The Informix® ODBC driver C data types, SQL_C_BINARY, SQL_C_CHAR, and SQL_C_WCHAR, support conversion between
all Informix® SQL data types listed in the following tables.

The following tables show the supported conversions between the Informix® SQL data types and the Informix® ODBC Driver
C data types.

Table 5. Supported conversions between Informix® SQL data types and ODBC Driver C data types

SQL data type ODBC driver C data types (target type)
SQL_C_BIT SQL_C_DATE SQL_C_DOUBLE SQL_C_FLOAT
BOOLEAN yes no no no
CHAR, CHARACTER |yes no yes yes
CHARACTER yes no yes yes
VARYING
DATE no yes no no
DATETIME no yes no no
DEC, DECIMAL yes no yes yes
DOUBLE PRECISION |no no yes yes
FLOAT no no yes yes
INT, INTEGER yes no yes yes

81

Table 5. Supported conversions between Informix® SQL data types and ODBC Driver C data types

(continued)

SQL data type ODBC driver C data types (target type)
SQL_C_BIT SQL_C_DATE SQL_C_DOUBLE SQL_C_FLOAT
INT8 no no no no
LVARCHAR yes yes no yes
MONEY no yes yes yes
NUMERIC no yes yes yes
REAL no yes yes yes
SERIAL no yes yes yes
SMALLFLOAT yes no yes yes
SMALLINT yes no yes yes
TEXT yes yes yes yes
VARCHAR yes yes yes yes
Table 6. Supported conversions between Informix® SQL data types and ODBC Driver C data types
SQL data type ODBC driver C data types (target type)
SQL_C_LONG SQL_C_NUMERIC SQL_C_SHORT SQL_C_SLONG
BIGINT yes yes no yes
BIGSERIAL yes yes yes yes
BYTE no no no no
CHAR, CHARACTER |yes yes yes yes
CHARACTER yes yes yes yes
VARYING
DEC, DECIMAL yes yes yes yes
DOUBLE yes yes yes yes
PRECISION
FLOAT yes yes yes yes

82

Chapter 1. Informix® ODBC Driver Guide

Table 6. Supported conversions between Informix® SQL data types and ODBC Driver C data types

(continued)

SQL data type ODBC driver C data types (target type)
SQL_C_LONG SQL_C_NUMERIC SQL_C_SHORT SQL_C_SLONG

INT, INTEGER yes yes yes yes
INT8 yes yes no yes
LVARCHAR yes no yes yes
MONEY yes yes yes yes
NUMERIC yes yes yes yes
REAL yes yes yes yes
SERIAL yes no yes yes
SERIAL8 yes yes yes yes
SMALLFLOAT yes yes yes yes
SMALLINT yes yes yes yes
TEXT yes yes yes yes
VARCHAR yes yes yes yes

Table 7. Supported conversions between Informix® SQL data types and ODBC Driver C data types

SQL data type ODBC driver C data types (target type)
SQL_C_SSHORT SQL_C_STINYINT SQL_C_TIMESTAMP
BIGINT yes no no
BIGSERIAL yes no no
CHAR, CHARACTER |yes yes no
CHARACTER yes yes no
VARYING
DATE no no yes
DATETIME no no yes
DEC, DECIMAL yes yes no

Table 7. Supported conversions between Informix® SQL data types and ODBC Driver C data types

(continued)

SQL data type ODBC driver C data types (target type)
SQL_C_SSHORT SQL_C_STINYINT SQL_C_TIMESTAMP

DOUBLE PRECISION |yes yes no
FLOAT yes yes no
INT, INTEGER yes yes no
INT8 yes no no
LVARCHAR yes yes yes
MONEY yes yes yes
NUMERIC yes yes yes
REAL yes yes yes
SERIAL yes yes yes
SERIAL8 yes no no
SMALLFLOAT yes yes no
SMALLINT yes yes no
TEXT yes yes yes
VARCHAR yes yes yes

The ODBC driver C data type SQL_C_ULONG supports conversion between all the SQL data types listed in the following table.

Table 8. Supported conversions between Informix® SQL data types and ODBC Driver C data types

SQL data type ODBC driver C data types (target type)
SQL_C_TINYINT SQL_C_USHORT SQL_C_UTINYINT
BIGINT no no no
BIGSERIAL no yes no
CHAR, CHARACTER |yes yes yes
CHARACTER yes yes yes
VARYING

84

Chapter 1. Informix® ODBC Driver Guide

Table 8. Supported conversions between Informix® SQL data types and ODBC Driver C data types

(continued)

SQL data type ODBC driver C data types (target type)
SQL_C_TINYINT SQL_C_USHORT SQL_C_UTINYINT

DEC, DECIMAL yes yes yes
DOUBLE PRECISION |yes yes yes
FLOAT yes yes yes
INT, INTEGER yes yes yes
INT8 no no no

LVARCHAR yes yes yes
MONEY yes yes yes
NUMERIC yes yes yes
REAL yes yes yes
SERIAL yes yes yes
SERIAL8 no yes no

SMALLFLOAT yes yes yes
SMALLINT yes yes yes
TEXT yes yes yes
VARCHAR yes yes yes

Additional conversions for GLS

There are supported conversions between the additional HCL Informix® SQL data types for GLS and the HCL Informix®
ODBC Driver C data types.

Only Informix® can convert data to SQL_C_BIT.

The Informix® NCHAR and NVARCHAR SQL data types support conversion between the following ODBC driver C data types
(fCType):

* SQL_C_BINARY
+ SQL_C_BIT

*+ SQL_C_CHAR

* SQL_C_DATE

* SQL_C_DOUBLE

86

* SQL_C_FLOAT

* SQL_C_LONG

+ SQL_C_SHORT

* SQL_C_SLONG

* SQL_C_SSHORT
* SQL_C_STINYINT
+ SQL_C_TIME STAMP
* SQL_C_TINYINT
* SQL_C_ULONG

* SQL_C_USHORT
* SQL_C_UTINYINT

Additional conversions for Informix®

There are supported conversions between the additional HCL Informix® SQL data types for Informix® and the HCL
Informix® ODBC Driver C data types.

The Informix® SQL data types, Collection, DISTINCT, Row, and Smart large object, support conversions between the
following Informix® ODBC driver C data types (fCType):

* SQL_C_BINARY

+ SQL_C_BIT

+ SQL_C_CHAR

+ SQL_C_DATE

+ SQL_C_DOUBLE

* SQL_C_FLOAT

+ SQL_C_LONG

* SQL_C_SHORT

* SQL_C_SLONG

* SQL_C_SSHORT
+ SQL_C_STINYINT
* SQL_C_TIMESTAMP
* SQL_C_TINYINT
* SQL_C_ULONG

+ SQL_C_USHORT
* SQL_C_UTINYINT

The Informix® SQL data type OPAQUE supports conversion between the SQL_C_BINARY and SQL_C_CHAR ODBC driver C
data types (fCType). Use SQL_C_CHAR to access an OPAQUE value in the external format as a string. Use SQL_C_BINARY to
access an OPAQUE value in the internal binary format.

Convert data from SQLto C

When you call SQLExtendedFetch, SQLFetch, or SQLGetData, HCL Informix® ODBC Driver retrieves data from a data source.

Chapter 1. Informix® ODBC Driver Guide

If necessary, HCL Informix® ODBC Driver converts the data from the source data type to the data type that the TargetType
argument in SQLBindCol or the fCType argument in SQLGetData specifies. Finally, HCL Informix® ODBC Driver stores the
data in the location pointed to by the rgbValue argument in SQLBindCol or SQLGetData.

The tables in the following sections describe how HCL Informix® ODBC Driver converts data that it retrieves from a data
source. For a given HCL Informix® ODBC Driver SQL data type, the first column of the table lists the legal input values of the
TargetType argument in SQLBindCol and the fCType argument in SQLGetData. The second column lists the outcomes of a
test, often by using the cbValueMax argument specified in SQLBindCol or SQLGetData, which HCL Informix® ODBC Driver
performs to determine whether it can convert the data. For each outcome, the third and fourth columns list the values of the
rgbValue and pcbValue arguments specified in SQLBindCol or SQLGetData after HCL Informix® ODBC Driver tries to convert
the data.

The last column lists the SQLSTATE returned for each outcome by SQLExtendedFetch, SQLFetch, or SQLGetData.

If the TargetType argument in SQLBindCol or the fCType argument in SQLGetData contains a value for the HCL

Informix® ODBC Driver C data type that is not shown in the table for a given HCL Informix® ODBC Driver SQL data type,
SQLExtendedFetch, SQLFetch, or SQLGetData returns SQLSTATE 07006 (Restricted data type attribute violation). If the
fCType argument or the TargetType argument contains a value that specifies a conversion from a driver-specific SQL data
type to the HCL Informix® ODBC Driver C data type and HCL Informix® ODBC Driver does not support this conversion, then
SQLExtendedFetch, SQLFetch, or SQLGetData returns SQLSTATE S1CO00 (Driver not capable).

Although the tables in this chapter do not show it, the pcbValue argument contains SQL_NULL_DATA when the SQL data
value is null. When HCL Informix® ODBC Driver converts SQL data to character C data, the character count returned in
pcbValue does not include the null-termination byte. If rgbValue is a null pointer, SQLBindCol or SQLGetData returns
SQLSTATE S1009 (Invalid argument value).

The following terms and conventions are used in the tables:

Length of data

The number of bytes of C data that are available to return in rgbValue, regardless of whether the data is

truncated before it returns to the application. For string data, this does not include the null-termination byte.
Display size

Total number of bytes that are needed to display the data in character format.
Words in italics

Represent function arguments or elements of the HCL Informix® ODBC Driver SQL grammar.

Default C data types
You can specify the SQL_C_DEFAULT for different functions so that HCL Informix® ODBC Driver uses the C data type.
If you specify SQL_C_DEFAULT for the TargetType argument in SQLBindCol, the fCType argument in SQLGetData, or the

ValueType argument in SQLBindParameter, HCL Informix® ODBC Driver uses the C data type of the output or input buffer for
the SQL data type of the column or parameter to which the buffer is bound.

87

88

Standard default C data types

There is default C data type for each HCL Informix® ODBC Driver SQL data type.

For each HCL Informix® ODBC Driver SQL data type, the following table shows the default C data type.

Informix® ODBC driver

Default Informix® ODBC

SQL data type (fSqiType) driver C data type (fCType)
SQL_BIGINT SQL_C_CHAR
SQL_BIT SQL_C_BITS
SQL_CHAR SQL_C_CHAR
SQL_DATE SQL_C_DATE
SQL_DECIMAL SQL_C_CHAR
SQL_DOUBLE SQL_C_DOUBLE
SQL_INTEGER SQL_C_SLONG
SQL_LONGVARBINARY SQL_C_BINARY
SQL_LONGVARCHAR SQL_C_CHAR

SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_TIMESTAMP

SQL_VARCHAR

SQL_C_NUMERIC
SQL_C_FLOAT
SQL_C_SSHORT
SQL_C_TIMESTAMP

SQL_C_CHARS

Additional default C data types for Informix®

There is default C data type for each additional HCL Informix® ODBC Driver SQL data type.

For each additional HCL Informix® ODBC Driver SQL data type for Informix®, the following table shows the default C data

type.

Inform
ix® ODBC
driver SQL
data type
(fSqlType)

Default Informix® ODBC driver C data type (fCType)

SQL_IFMX_U SQL_C_BINARY
DT_BLOB

Chapter 1. Informix® ODBC Driver Guide

Inform
ix® ODBC
driver SQL
data type
(fSqlType)

Default Informix® ODBC driver C data type (fCType)

SQL_IFMX_U
DT_CLOB

SQL_INFX_U
DT_FIXED

SQL_INFX_U
DT_VARYING

SQL_C_BINARY

This HCL Informix® ODBC Driver SQL data type does not have a default HCL Informix® ODBC Driver C data
type. Because this Informix® ODBC driver SQL data type can contain binary data or character data, you must
bind a variable for this Informix® ODBC driver SQL data type before you fetch a corresponding value. The
data type of the bound variable specifies the C data type for the value.

This HCL Informix® ODBC Driver SQL data type does not have a default HCL Informix® ODBC Driver C data
type. Because this Informix® ODBC Driver SQL data type can contain binary data or character data, you must
bind a variable for this Informix® ODBC Driver SQL data type before you fetch a corresponding value. The
data type of the bound variable specifies the C data type for the value.

SQL-to-C data conversion examples

The examples show how HCL Informix® ODBC Driver converts SQL data to C data.

The following table illustrates how HCL Informix® ODBC Driver converts SQL data to C data. \0 represents a null-termination
byte (\O represents a wide null termination character when the C data type is SQL_C_WCHAR). HCL Informix® ODBC Driver
always null-terminates SQL_C_CHAR and SQL_C_WCHAR data. For the combination of SQL_DATE and SQL_C_TIMESTAMP,

HCL Informix®

ODBC Driver stores the numbers that are in the rgbValue column in the fields of the TIMESTAMP_STRUCT

structure.

SQL data type SQL data C data type cbValueMax |rgbValue SQLSTATE

value

SQL_CHAR tigers SQL_C_CHAR 7 tigers\0 N/A
SQL_CHAR tigers SQL_C_CHAR 6 tiger\0 01004
SQL_CHAR tigers SQL_C_WCHAR 14 tigers\0 N/A
SQL_CHAR tigers SQL_C_WCHAR 12 tiger\0 01004
SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 N/A
SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 01004
SQL_DECIMAL 1234.56 SQL_C_CHAR 4 - 22003
SQL_DECIMAL 1234.56 SQL_C_WCHAR 16 1234.56\0 N/A

89

90

SQL data type SQL data C data type cbValueMax |rgbValue SQLSTATE
value
SQL_DECIMAL 1234.56 SQL_C_WCHAR 10 1234\0 01004
SQL_DECIMAL 1234.56 SQL_C_WCHAR 8 - 220023
SQL_DECIMAL 1234.56 SQL_C_FLOAT Ignored 1234.56 N/A
SQL_DECIMAL 1234.56 SQL_C_SSHORT Ignored 1234 01004
SQL_DECIMAL 1234.56 SQL_C_STINYINT Ignored - 22003
SQL_DOUBLE 1.2345678 SQL_C_DOUBLE Ignored 1.234567 N/A
SQL_DOUBLE 1.2345678 SQL_C_FLOAT Ignored 1.234567 N/A
SQL_DOUBLE 1.2345678 SQL_C_STINYINT Ignored 1 N/A
SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 [N/A
SQL_DATE 1992-12-31 SQL_C_CHAR 10 - 22003
SQL_DATE 1992-12-31 SQL_C_WCHAR 22 1992-12-31\0 [N/A
SQL_DATE 1992-12-31 SQL_C_WCHAR 20 - 22003
SQL_DATE 1992-12-31 SQL_C_TIMESTAMP Ignored 1992,12,31, N/A
0,0,0,0
SQL_TIMESTAMP 1992-12-31 SQL_C_CHAR 23 1992-12-31 N/A
23:45:55.12 23:45:55.12\0
SQL_TIMESTAMP 1992-12-31 SQL_C_CHAR 22 1992-12-31 01004
23:45:55.12 23:45:55.1\0
SQL_TIMESTAMP 1992-12-31 SQL_C_CHAR 18 - 22003
23:45:55.12
SQL_TIMESTAMP 1992-12-31 SQL_C_WCHAR 46 1992-12-31 N/A
23:45:55.12 23:45:55.12\0
SQL_TIMESTAMP 1992-12-31 SQL_C_WCHAR 44 1992-12-31 01004
23:45:55.12 23:45:55.1\0
SQL_TIMESTAMP 1992-12-31 SQL_C_WCHAR 36 - 22003

Chapter 1. Informix® ODBC Driver Guide

SQL data type SQL data C data type cbValueMax |rgbValue SQLSTATE

value

23:45:55.12

! Important: The size of a wide character (wchar_t) is platform dependent. The previous examples are applicable to

Windows™ where the size of wide characters is 2 bytes. On most UNIX™ platforms, wide characters are 4 bytes. On
IBM® AIX® versions lower than AIX5L, it is 2 bytes.

Convert data from C to SQL
When you call SQLExecute or SQLExecDirect, HCL Informix® ODBC Driver retrieves the data for parameters that are bound

with SQLBindParameter from storage locations in the application.

For data-at-execution parameters, call SQLPutData to send the parameter data. If necessary, HCL Informix® ODBC Driver
converts the data from the data type that the ValueType argument specifies in SQLBindParameter to the data type that
the fSqlType argument specifies in the SQLBindParameter. Finally, HCL Informix® ODBC Driver sends the data to the data

source.

If the rgbValue and pcbValue arguments specified in SQLBindParameter are both null pointers, then that function returns
SQLSTATE S1009 (Invalid argument value). To specify a null SQL data value, set the value that the pcbValue argument of
SQLBindParameter points to or the value of the cbValue argument to SQL_NULL_DATA. To specify that the value in rgbValue
is a null-terminated string, set these values to SQL_NTS.

The following terms are used in the tables:

Length of data

The number of bytes of SQL data that are available to send to the data source, regardless of whether the data is

truncated before it goes to the data source. For string data, this does not include the null-termination byte.
Column length and display size

Defined for each SQL data type in Precision, scale, length, and display size on page 67.
Number of digits

The number of characters that represent a number, including the minus sign, decimal point, and exponent (if
needed).

Words in italics

Represent elements of the HCL Informix® ODBC Driver SQL syntax.
C to SQL: Bit
The bit HCL Informix® ODBC Driver C data type is SQL_C_BIT.

The following table shows the HCL Informix® ODBC Driver SQL data types to which bit C data can be converted.

fSqiType

Test

SQLSTATE

SQL_BIGINT

SQL_DECIMAL

SQL_DOUBLE

SQL_INTEGER

SQL_REAL

SQL_SMALLINT

None

N/A

SQL_BIT

None

N/A

SQL_CHAR

SQL_LONGVARCHAR

SQL_VARCHAR

None

N/A

HCL Informix® ODBC Driver ignores the value that the pcbValue argument of SQLBindParameter points to and the value of

the cbValue argument of SQLPutData when it converts data from the Boolean C data type. HCL Informix® ODBC Driver uses

the size of rgbValue for the size of the Boolean C data type.

C-to-SQL data conversion examples

The examples show how HCL Informix® ODBC Driver converts C data to SQL data.

The following table illustrates how HCL Informix® ODBC Driver converts C data to SQL data. \0 represents a null-termination
byte. The null-termination byte is required only if the length of the data is SQL_NTS. For SQL_C_DATE, the numbers

that are in the C Data Value column are the numbers that are stored in the fields of the DATE_STRUCT structure. For
SQL_C_TIMESTAMP, the numbers that are in the C Data Value column are the numbers that are stored in the fields of the
TIMESTAMP_STRUCT structure.

C data type C data value |SQL data type Column length SQL data SQLSTATE
value

SQL_C_CHAR tigers\O SQL_CHAR 6 tigers N/A

SQL_C_CHAR tigers\0 SQL_CHAR 5 tiger 01004

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 8 1234.56 N/A

92

(In addition to bytes
for numbers, one byte

is required for a sign

Chapter 1. Informix® ODBC Driver Guide

C data type C data value |SQL data type Column length SQL data SQLSTATE
value
and another for the
decimal point.)
SQL_C_CHAR 1234.56\0 SQL_DECIMAL 7 1234.5 01004
(In addition to bytes
for numbers, one byte
is required for a sign
and another for the
decimal point.)
SQL_C_CHAR 1234.56\0 SQL_DECIMAL 4 - 22003
SQL_C_FLOAT 1234.56 SQL_FLOAT not applicable 1234.56 N/A
SQL_C_FLOAT 1234.56 SQL_INTEGER not applicable 1234 01004
SQL_C_FLOAT 1234.56 SQL_TINYINT not applicable - 22003
SQL_C_DATE 1992,12,31 SQL_CHAR 10 1992-12-31 N/A
SQL_C_DATE 1992,12,31 SQL_CHAR 9 - 22003
SQL_C_DATE 1992,12,31 SQL_TIMESTAMP not applicable 1992-12-31 [N/A
00:00:00.0
SQL_C_TIMESTAMP 1992,12,31, [SQL_CHAR 22 1992-12-31 [N/A
23,45,55, 23:45:55.12
120000000
SQL_C_TIMESTAMP 1992,12,31, |[SQL_CHAR 21 1992-12-31 [01004
23,45,55, 23:45:55.1
120000000
SQL_C_TIMESTAMP 1992,12,31, [SQL_CHAR 18 - 22003
23,45,55,
120000000

93

Smart large objects

These topics describe how to store, create, and access a smart large object; how to transfer smart-large-object data; how to
retrieve the status of a smart large object; and how to read or write a smart large object to or from a file.

The information in these topics apply only if your database server is .

A smart large object is a recoverable large object that is stored in an sbspace on disk. You can access a smart large object
with read, write, and seek operations similar to an operating-system file. The two data types for smart large objects are
character large object (CLOB) and binary large object (BLOB). A CLOB consists of text data and a BLOB consists of binary

data in an undifferentiated byte stream.

For more information about smart-large-object data types, see the HCL® Informix® Guide to SQL: Reference.
Data structures for smart large objects

Because a smart large object can be huge, has two alternatives to store the content of a smart large object.

Therefore, instead of storing the content of a smart large object in a database table, does the following:

« Stores the content of the smart large object in an sbspace
- Stores a pointer to the smart large object in the database table

Because a smart large object can be huge, the HCL Informix® ODBC Driver application cannot receive a smart large object
in a variable. Instead, the application sends or receives information about the smart large object in a data structure. The
following table describes the data structures that HCL Informix® ODBC Driver uses for smart large objects.

Data structure Name Description

lofd Smart-large-object file Provides access to a smart large object. Uses a file descriptor to access
descriptor smart-large-object data as if it were in an operating-system file.

loptr Smart-large-object pointer | Provides security information and a pointer to a smart large object. This
structure structure is the data that the database server stores in a database table

for a smart large object. Therefore, SQL statements such as INSERT and
SELECT accept a smart-large-object pointer structure as a value for a

column or a parameter that has a data type of smart large object.

lospec Smart-large-object Specifies the storage characteristics for a smart large object.

specification structure

lostat Smart-large-object status | Stores status information for a smart large object. Normally

structure you can fetch a user-defined data type (UDT) in either binary or
character representation. However, it is not possible to convert a
smart-large-object status structure to character representation.
Therefore, you need to use SQL_C_BINARY as the HCL Informix® ODBC
Driver C data type for lostat.

94

Chapter 1. Informix® ODBC Driver Guide

® Restriction: These data structures are opaque to HCL Informix® ODBC Driver applications and their internal
structures might change. Therefore, do not access the internal structures directly. Use the smart-large-object client
functions to manipulate the data structures.

The application is responsible for allocating space for these smart-large-object data structures.

Working with a smart-large-object data structure

You can use this procedure to work with a smart-large-object data structure. An example is included.
About this task

To work with a smart-large-object data structure:

1. Determine the size of the smart-large-object structure.
2. Use either a fixed size array or a dynamically allocated buffer that is at least the size of the data structure.

3. Free the array or buffer space when you are done with it.

Results

The following code example illustrates these steps:

rc = SQLGetInfo(hdbc, SQL_INFX_LO_SPEC_LENGTH, &lospec_size,
sizeof (lospec_size), NULL);
lospec_buffer = malloc(lospec_size);

free(lospec_buffer);

Storage of smart large objects

The smart-large-object specification structure stores the disk-storage information and create-time flags for a smart large

object.
Disk-storage information
Disk-storage information helps HCL Informix® determine how to store the smart large object most efficiently on disk.

The following table describes the types of disk-storage information and the corresponding client functions. For most
applications, it is recommended that you use the values for the disk-storage information that the database server

determines.
Disk-storage information | Description Client functions
Estimated size An estimate of the final size, in bytes, of the smart ifx_lo_specget_estbytes()

large object. The database server uses this value to
. . . ifx_lo_specset_estbytes()
determine the extents in which to store the smart

large object. This value provides optimization

information. If the value is grossly incorrect, it does

95

96

Disk-storage information

Description

Client functions

not cause incorrect behavior. However, it does mean
that the database server might not necessarily
choose optimal extent sizes for the smart large
object.

Maximum size

The maximum size, in bytes, for the smart large
object. The database server does not allow the smart

large object to grow beyond this size.

ifx_lo_specget_maxbytes()

ifx_lo_specset_maxbytes()

Allocation extent size

The allocation extent size is specified in kilobytes.
Optimally, the allocation extent is the single extent
in a chunk that holds all the data for the smart large

object.

The database server performs storage allocations for
smart large objects in increments of the allocation
extent size. It tries to allocate an allocation extent
as a single extent in a chunk. However, if no single
extent is large enough, the database server must use

multiple extents as necessary to satisfy the request.

ifx_lo_specget_extsz()

ifx_lo_specset_extsz()

Name of the sbspace

The name of the sbspace that contains the smart
large object. On this database server, an sbspace
name can be up to 128 characters long and must be

null terminated.

ifx_lo_specget_sbspace()

ifx_lo_specset_sbspace()

Create-time flags

Create-time flags tell HCL Informix® what options to assign to the smart large object.

The following table describes the create-time flags.

Type of indicator | Create-time flag

Description

Logging LO_LOG

Tells the database server to log changes to the

smart large object in the system log file.

Consider carefully whether to use the LO_LOG flag
value. The database server incurs considerable
overhead to log smart large objects. You must
also make sure that the system log file is large
enough to hold the value of the smart large object.

Chapter 1. Informix® ODBC Driver Guide

Type of indicator | Create-time flag

Description

For more information, see your HCL® Informix®

Administrator's Guide.

LO_NOLOG

Tells the database server to turn off logging for all
operations that involve the associated smart large
object.

Last access-time | LO_KEEP_LASTACCESS_TIME

Tells the database server to save the last access
time for the smart large object. This access time is
the time of the last read or write operation.

Consider carefully whether to use the
LO_KEEP_LASTACCESS_TIME flag value. The
database server incurs considerable overhead to

maintain last access times for smart large objects.

LO_NOKEEP_LASTACCESS_TIME

Tells the database server not to maintain the last

access time for the smart large object.

The ifx_lo_specset_flags() function sets the create-time flags to a new value. The ifx_lo_specget_flags() function retrieves

the current value of the create-time flag.

Logging indicators and the last access-time indicators are stored in the smart-large-object specification structure as a single

flag value. To set a flag from each group, use the C-language OR operator to mask the two flag values together. However,

masking mutually exclusive flags causes an error. If you do not specify a value for one of the flag groups, the database server

uses the inheritance hierarchy to determine this information.

Inheritance hierarchy

HCL Informix® uses an inheritance hierarchy to obtain storage characteristics.

The following figure shows the inheritance hierarchy for smart-large-object storage characteristics.

97

Figure 5. Inheritance hierarchy for storage characteristics

Database server storage characteristics
(systemn defaults and the ONCOMNFIG file)

shspace storage characteristics
|assignad when the database server creates the sbspace)

Column-level storage characternstics
(assigned with the CREATE TABLE stalement)

User-defined storage characteristics
(assigned from within an [BM Informix QDBC application)

Using system-specified storage characteristics
HCL Informix® uses one set of storage characteristics as the system-specified storage characteristics.
About this task

HCL Informix® uses one of the following sets of storage characteristics:

- If the sbspace in which the smart large object is stored specifies a value for a particular storage characteristic, the

database server uses the sbspace value as the system-specified storage characteristic.
The database administrator can use the onspaces utility to define storage characteristics for an sbspace.
- If the sbspace in which the smart large object is stored does not specify a value for a particular storage

characteristic, the database server uses the system default as the system-specified storage characteristic.

The database server defines the system defaults for storage characteristics internally. However, you can specify a
default sbspace name with the SBSPACENAME configuration parameter in the onconf i g file. Also, an application
call to ifx_lo_col_info() or ifx_lo_specset_sbspace() can supply the target sbspace in the smart-large-object

specification structure.

! Important: An error occurs if the SBSPACENAME configuration parameter is not specified and the smart-large-object

specification structure does not contain the name of the target sbspace.

It is recommended that you use the system-specified storage characteristics for the disk-storage information. For more

information about sbspaces and the description of the onspaces utility, see your HCL® Informix® Administrator's Guide.

To use system-specified storage characteristics for a new smart large object:

98

Chapter 1. Informix® ODBC Driver Guide

1. Call ifx_lo_def_create_spec() to allocate a smart-large-object specification structure and to initialize the structure to

null values.
2. Call ifx_lo_create() to create an instance of the smart large object.

Using column-level storage characteristics

The CREATE TABLE statement assigns storage characteristics to a database column.

About this task

The PUT clause of the CREATE TABLE statement specifies storage characteristics for a smart-large-object column. The

syscolattribs system catalog table stores the column-level storage characteristics.

To use column-level storage characteristics for a new smart-large-object instance:

1. Call ifx_lo_def_create_spec() to allocate a smart-large-object specification structure and initialize this structure to null

values.
2. Call ifx_lo_col_info() to retrieve the column-level storage characteristics and store them in the specified smart-large-

object specification structure.
3. Call ifx_lo_create() to create an instance of the smart large object.

User-defined storage characteristics

To specify user-defined storage characteristics, call an ifx_lo_specset_* function.

You can define a unique set of storage characteristics for a new smart large object, as follows:

- For a smart large object that will be stored in a column, you can override some storage characteristics for the column

when you create an instance of a smart large object.

If you do not override some or all of these characteristics, the smart large object uses the column-level storage

characteristics.

« You can specify a wider set of characteristics for a smart large object because a smart large object is not

constrained by table column properties.

If you do not override some or all of these characteristics, the smart large object inherits the system-specified

storage characteristics.

Example of creating a smart large object
The code example, | ocr eat e. ¢, shows how to create a smart large object.
You can find the | ocr eat e. c file in the %4 NFORM XDl R% deno/ cl i denp directory on UNIX™ platforms and in the

% NFORM XDl R% denp\ odbcdeno directory in Windows™ environments. You can also find instructions on how to build the

odbc_demo database in the same location.

/*

*k locreate.c

99

100

* %
**
* %
**
* %
*k
*)
* %
**
* %

**

x/

To create a smart large object

OBDC Functions:
SQLA1llocHandle
SQLBindParameter
SQLConnect
SQLFreeStmt
SQLGetInfo
SQLD1isconnect
SQLExecDirect

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <jo.h>
#include <windows.h>

#include <conio.h>
#tendif /*NO_WIN32x/

#include "infxcli.h"

#define BUFFER_LEN 12
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN
SQLSMALLINT ha
SQLHANDLE ha
char *e
{
SQLRETURN retcode = SQL
SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_L
SQLSMALLINT textlLengthPtr;

if ((rc != SQL_SUCCESS) && (rc
{

rc,
ndleType,
ndle,
rrmsg)

_SUCCESS;

EN];

!= SQL_SUCCESS_WITH_INFO))

while (retcode != SQL_NO_DATA)

{
retcode = SQLGetDiagRec (
&nativeError, errMsg,

if (retcode == SQL_INVALI
{
fprintf (stderr, "chec
invalid handle!!\n"
return 1;
}

handleType, handle, errNum, sqlState,
ERRMSG_LEN, &textLengthPtr);

D_HANDLE)

kError function was called with an

)5

Chapter 1. Informix® ODBC Driver Guide

if ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);

errNum++;

fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */

}
else
return 0; /* no errors to report *x/
}
int main (long argc,
char *argv([])
{

/* Declare variables

*/

/* Handles x/
SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Smart large object file descriptor */
long lofd;

long lofd_valsize = 0;

/* Smart large object pointer structure x/

charx loptr_buffer;
short loptr_size;
long loptr_valsize = 0;

/* Smart large object specification structure x/

charx lospec_buffer;
short lospec_size;
long lospec_valsize = 0;

/* Write buffer */

charx write_buffer;
short write_size;
long write_valsize = 0;

/* Miscellaneous variables x/
UCHAR dsn[20];/*name of the DSN used for connecting to the

databasex/
SQLRETURN rc = 0;
int in;
FILEx hfile;
charx lo_file_name = "advert.txt";
char colname[BUFFER_LEN] = "ditem.advert";
long colname_size = SQL_NTS;

101

long mode = LO_RDWR;
long cbMode = 0;

charx insertStmt = "INSERT INTO item VALUES (1005, 'Helmet', 235,
"Each', ?, '39.95')";

/* STEP 1. Get data source name from command line (or use default).

*% Allocate environment handle and set ODBC version.
** Allocate connection handle.

*% Establish the database connection.

** Allocate the statement handle.

*/

/* If (dsn is not explicitly passed in as arg) x/
if (argec != 2)

{
/* Use default dsn - odbc_demo x/
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char x)dsn, (char x)defDsn);
}
else
{
/* Use specified dsn x/
strcpy ((char x)dsn, (char x)argv[1]);
fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);
}

/* Allocate the Environment handle x/
rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (rc != SQL_SUCCESS)

fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
return (1);

/* Set the ODBC version to 3.5 x/
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!"))
return (1);

/* Allocate the connection handle x/
rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!"))
return (1);

/* Establish the database connection */
rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\n"))
return (1);

/* Allocate the statement handle */
rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

102

/*

/*

if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))
return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

STEP 2. Get the size of the smart large object specification

*% structure.

*k Allocate a buffer to hold the structure.

*% Create a default smart large object specification structure.
*k Reset the statement parameters.

*/

/* Get the size of a smart large object specification structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO_SPEC_LENGTH, &lospec_size,
sizeof(lospec_size), NULL);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 2 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object specification
structurex/
lospec_buffer = malloc (lospec_size);

/* Create a default smart large object specification structure x/
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
lospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter failed\n"))
goto Exit;
rc = SQLExecDirect (hstmt, "{call ifx_lo_def_create_spec(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...default smart large object specification
structure created\n");

STEP 3. Initialise the smart large object specification structure

* % with values for the database column where the smart large
** object is being inserted.

*% Reset the statement parameters.

*/

/* Initialise the smart large object specification structure */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
BUFFER_LEN, 0, colname, BUFFER_LEN, &colname_size);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --

Chapter 1. Informix® ODBC Driver Guide

103

SQLBindParameter failed (param 1)\n"))
goto Exit;

lospec_valsize = lospec_size;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
lospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_col_info(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLFreeStm failed\n"))
goto Exit;

fprintf(stdout, "STEP 3 done...smart large object specification
structure initialised\n");

/* STEP 4. Get the size of the smart large object pointer structure.
* % Allocate a buffer to hold the structure.
*/

/* Get the size of the smart large object pointer structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO_PTR_LENGTH, &loptr_size,
sizeof(loptr_size), NULL);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 4 --
SQLGetInfo failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object pointer structure
loptr_buffer = malloc (loptr_size);

fprintf (stdout, "STEP 4 done...smart large object pointer structure
allocated\n");

/* STEP 5. Create a new smart large object.
*% Reset the statement parameters.

*/

/* Create a new smart large object */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
lospec_size, &lospec_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

104

/*

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, (UDWORD)®, 0, &mode, sizeof(mode), &cbMode);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 5 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

loptr_valsize = loptr_size;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
loptr_size, &loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 3)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 4, SQL_PARAM_OUTPUT, SQL_C_SLONG,
SQL_INTEGER, (UDWORD)®0, 0, &lofd, sizeof(lofd), &lofd_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 4)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_create(?, 2, ?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 5 done...smart large object created\n");

STEP 6. Open the file containing data for the new smart large object.

* % Allocate a buffer to hold the smart large object data.

*% Read data from the input file into the smart large object.
*% data buffer

** Write data from the data buffer 1into the new smart large.
*% object.

*% Reset the statement parameters.

*/

/* Open the file containing data for the new smart large object x*/
hfile = open (lo_file_name, "rt");

/* sneaky way to get the size of the file %/

write_size = lseek (open (lo_file_name, "rt"), OL, SEEK_END);

/* Allocate a buffer to hold the smart large object data x/
write_buffer = malloc (write_size + 1);

/* Read smart large object data from file %/
read (hfile, write_buffer, write_size);

write_buffer[write_size] = '\0';
write_valsize = write_size;

Chapter 1. Informix® ODBC Driver Guide

105

/* Write data from the data buffer into the new smart large object x/
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
(UDWORD)write_size, 0, write_buffer, write_size, &write_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_write(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 6 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 6 done...data written to new smart large
object\n");

/* STEP 7. 1Insert the new smart large object into the database.
*% Reset the statement parameters.

*/

/* Insert the new smart large object into the database */
loptr_valsize = loptr_size;

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
loptr_size, &loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, insertStmt, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 7 done...smart large object inserted into the
database\n");

106

/*

/*

STEP 8. Close the smart large object.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 8 done...smart large object closed\n");

STEP 9. Free the allocated buffers.

*/

free (lospec_buffer);

free (loptr_buffer);

free (write_buffer);

fprintf (stdout, "STEP 9 done...smart large object buffers freed\n");

Exit:

/* CLEANUP: Close the statement handle

** Free the statement handle

** Disconnect from the datasource

*% Free the connection and environment handles
*% Exit

*/

/* Close the statement handle %/
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle x/
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source x/
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle */
SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
SQLFreeHandle (SQL_HANDLE_ENV, henv);

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
in = getchar ();
return (rc);

Chapter 1. Informix® ODBC Driver Guide

107

108

Transfer smart-large-object data

An INSERT or UPDATE statement does not perform the actual input of the smart-large-object data. It does, however, provide

a means for the application to identify which smart-large-object data to associate with the column.

A BLOB or CLOB column in a database table stores the smart-large-object pointer structure for a smart large object.
Therefore, when you store a BLOB or CLOB column, you provide a smart-large-object pointer structure for the columnin a
loptr variable to the INSERT or UPDATE statement.

The following figure shows how an application transfers the data of a smart large object to the database server.

Figure 6. Transfer smart-large-object data from client application to database server
|BM Informix ODBC Driver Application

1. Use client functions to create a
smari-large-object pointer structure,

2. Initialize the smart-large-object data through
the smart-large-object pointer struciure,

3. Execute INSERT or UPDATE statement to
assign the smart-arge-object pointer struciure
to a CLOB or BLOB column,

Dynamic Server

The smart large object that a smart-large-object pointer structure identifies exists if the smart-large-object pointer structure
exists. When you store a smart-large-object pointer structure in a database, the database server deallocates the smart large

object when appropriate.

If your application does not store the smart-large-object pointer structure for a new smart large object in the database, the
smart-large-object pointer structure is only valid to access the version of the smart large object that was current when the
pointer was passed to the application. If the smart large object is updated later, the pointer is invalid. The smart-large-object

pointer structures that you store in a row do not expire when the object version changes.

When you retrieve a row and then update a smart large object that is contained in that row, the database server exclusively
locks the row for the time that it updates the smart large object. Moreover, long updates for smart large objects (whether
logging is enabled and whether they are associated with a table row) create the potential for a long transaction condition if

the smart large object takes a long time to update or create.

The smart-large-object pointer structure, not the CLOB or BLOB data itself, is stored in a CLOB or BLOB column in the
database. Therefore, SQL statements such as INSERT and SELECT accept and return a smart-large-object pointer structure

as the column value for a smart-large-object column.

Access a smart large object

This section describes how to select, open, delete, modify, and close a smart large object by using either the standard ODBC

API or by using ifx_lo functions.

Chapter 1. Informix® ODBC Driver Guide

Smart-large-object automation

Instead of accessing smart large objects with the ifx_lo functions, you can access smart large objects by using the standard
ODBC API.

Operations supported when accessing smart large objects with the standard ODBC API include select, insert, update, and
delete for CLOB and BLOB data types. You cannot access BYTE and TEXT simple large objects in this way.

Set the access method using SQL_INFX_ATTR_LO_AUTOMATIC

You can use the SQL_INFX_ATTR_LO_AUTOMATIC attribute to tell the database server whether you will access smart large
objects by using the ODBC API or the ifx_lo functions.

If the application enables the SQL_INFX_ATTR_LO_AUTOMATIC attribute as a connection attribute, all statements for

that connection inherit the attribute value. To change this attribute value per statement, you have to set and reset it as a
statement attribute. If you enable this attribute for the statement, the application can access the smart large object by
using the standard ODBC way, as previously described. If you do not enable this attribute for the statement, the application
accesses smart large objects by using ifx_lo functions. The application cannot use the ifx_lo functions if this attribute is

enabled for the statement.

You can also enable the SQL_INFX_ATTR_LO_AUTOMATIC attribute by turning on the Report Standard ODBC Types option
under the Advanced tab of the ODBC Administration for HCL Informix® Driver DSN.

SQLDescribeCol for a CLOB data type column returns SQL_LONGVARCHAR for the DataPtrType. SQLDescribeCol for a
BLOB data type column returns SQL_LONGVARBINARY, if the SQL_INFX_ATTR_LO_AUTOMATIC attribute is enabled for that

statement.

SQLColAttributes for a CLOB data type column returns SQL_LONGVARCHAR for the Field Identifier of SQL_DESC_TYPE,
whereas for the BLOB data type column it returns SQL_LONGVARBINARY only if the SQL_INFX_ATTR_LO_AUTOMATIC
attribute is enabled for that statement.

Insert, update, and delete smart large objects using the ODBC API

When you insert, update, and delete either a CLOB or BLOB data type, the application binds the data type by using
SQLBindParameter with a C type.

When you insert, update, or delete a CLOB data type, the application binds the CLOB data type by using SQLBindParameter
with C type as SQL_C_CHAR and SQL type as SQL_LONGVARCHAR.

When you insert, update, or delete a BLOB data type, the application binds BLOB data type by using SQLBindParameter with C
type as SQL_C_BINARY and SQL type as SQL_LONGVARBINARY.

HCL Informix® ODBC Driver performs insertion of smart large objects in the following way:

« The driver sends a request to the database server to create a smart large object on the server side in the form of a
new file.
« The driver gets back the file descriptor (for example, lofd) of this file from the database server.

109

- The driver sends the preceding lofd file and the smart-large-object data that was bound by the application with
SQLBindParameter to the database server.
« The database server writes the data onto the file.

Select smart large objects using the ODBC API

When you select a CLOB data type, the application binds the C type of the column as SQL_C_CHAR. When you select a BLOB
data type, the C type is bound as SQL_C_BINARY.

HCL Informix® ODBC Driver selects smart large objects in the following way:

« The driver sends a request to the database server to open the smart large object as a file on the server side.

« The driver gets back the file descriptor (for example, lofd) of this file from the database server.

- The driver sends the preceding lofd and a read request to the database server to read the smart-large-object data
from the file.

« The database server reads the data from the corresponding file by using the preceding lofd and sends it to the driver.

« The driver writes the data to the buffer that was bound by the application with SQLBindParameter.

The ifx_lo functions

This section describes how to select, open, delete, modify, and close a smart large object by using ifx_lo functions.

Select a smart large object using ifx_lo functions

A SELECT statement does not perform the actual output for the smart-large-object data. It does, however, establish a means
for the application to identify a smart large object so that the application can then perform operations on the smart large
object.

The following figure shows how the database server transfers the data of a smart large object to the application.

Figure 7. Transferring smart-large-object data from database server to client application
Dynamic Server

1. Execute SELECT statement.
2. Obtain smart-large-cbject pointer structure.

3. Usa client functions to access data through the
smart-large-object pointer structure,

IBM Informix ODBC Driver Application

Open a smart large object using ifx_lo functions

When you open a smart large object, you obtain a smart-large-object file descriptor for the smart large object.

Chapter 1. Informix® ODBC Driver Guide

Through the smart-large-object file descriptor, you can access the data of a smart large object as if it were in an operating-

system file.

Access modes

When you open a smart large object, you specify the access mode for the data. The access mode determines which read and

write operations are valid on the open smart large object.

The following table describes the access modes that ifx_lo_open() and ifx_lo_create() support.

Access mode Purpose Constant
Read only Only read operations are valid on the data. LO_RDONLY
Dirty read Lets you read uncommitted data pages for the smart large LO_DIRTY_READ

object. You cannot write to a smart large object after you set the
mode to LO_DIRTY_READ. When you set this flag, you reset the
current transaction isolation mode to dirty read for this smart

large object.

Do not base updates on data that you obtain from a smart large

object in dirty-read mode.

Write only Only write operations are valid on the data. LO_WRONLY

Append Intended for use with LO_WRONLY or LO_RDWR. Sets the LO_APPEND
location pointer to the end of the object immediately before
each write. Appends any data you write to the end of the smart
large object. If LO_APPEND is used alone, the object is opened
for reading only.

Read/write Both read and write operations are valid on the data. LO_RDWR

Buffered access Uses standard database server buffer pool. LO_BUFFER

Lightweight I/0 Uses private buffers from the session pool of the database LO_NOBUFFER
server.

When you open a smart large object with LO_APPEND only, the database server opens the smart large object as read-only.

Seek operations and read operations move the file pointer. Write operations fail and do not move the file pointer.

You can mask the LO_APPEND flag with another access mode. In any of these OR combinations, the seek operation remains

unaffected. The following table shows the effect on the read and write operations that each of the OR combinations has.

111

OR operation

Read operations

Write operations

LO_RDONLY | LO_APPEND

Occur at the file position and then move
the file position to the end of the data
that has been read.

Fail and do not move the file position.

LO_WRONLY | LO_APPEND

Fail and do not move the file position.

Move the file position to the end of the
smart large object and then write the
data; file position is at the end of the data
after the write.

LO_RDWR | LO_LAPPEND

Occur at the file position and then move
the file position to the end of the data
that has been read.

Move the file position to the end of the
smart large object and then write the
data; file position is at the end of the data

after the write.

Lightweight 1/0

When the database server accesses smart large objects, it uses buffers from the buffer pool for buffered access. Unbuffered

access is called lightweight 1/0.

Lightweight 1/0 uses private buffers instead of the buffer pool to hold smart large objects. These private buffers are

allocated out of the database server session pool.

Lightweight I/0 allows you to bypass the overhead of the least recently used (LRU) queues that the database server uses to

manage the buffer pool. For more information about LRU queues, see your .

You can specify lightweight 1/0 by setting the flags parameter to LO_NOBUFFER when you create or open a smart large
object. To specify buffered access, which is the default, use the LO_BUFFER flag.

! Important: Keep in mind the following issues when you use lightweight 1/0:

« Close smart large objects with ifx_lo_close() when you finish with them to free memory allocated to the

private buffers.
« All open operations that use lightweight I/0 for a particular smart large object share the same private buffers.
Consequently, one operation can cause the pages in the buffer to be flushed while other operations expect

the object to be present in the buffer.

The database server imposes the following restrictions on switching from lightweight I/0 to buffered 1/0:

112

Chapter 1. Informix® ODBC Driver Guide

* You can use the ifx_lo_alter() function to switch a smart large object from lightweight I/0 (LO_NOBUFFER) to buffered
I/0 (LO_BUFFER) if the smart large object is not open. However, ifx_lo_alter() generates an error if you try to change a
smart large object that uses buffered I/0 to one that uses lightweight 1/0.

« Unless you first use ifx_lo_alter() to change the access mode to buffered access (LO_BUFFER), you can only open
a smart large object that was created with lightweight I/0 with the LO_NOBUFFER access-mode flag. If an open
operation specifies LO_BUFFER, the database server ignores the flag.

« You can open a smart large object that has been created with buffered access (LO_BUFFER) with the LO_NOBUFFER
flag only if you open the object in read-only mode. If you attempt to write to the object, the database server returns an
error. To write to the smart large object, you must close it and then reopen it with the LO_BUFFER flag and an access

flag that allows write operations.

You can use the database server utility onspaces to specify lightweight 1/0 for all smart large objects in an sbspace. For

more information about the onspaces utility, see your HCL® Informix® Administrator's Guide.

Smart-large-object locks

To prevent simultaneous access to smart-large-object data, the database server locks a smart large object when you open it.

Locks on smart large objects are different from row locks. If you retrieve a smart large object from a row, the database server
might hold a row lock as well as a smart-large-object lock. The database server locks smart large objects because many
columns can contain the same smart-large-object data.

To specify the lock mode of a smart large object, pass the access-mode flags, LO_RDONLY, LO_DIRTY_READ, LO_APPEND,
LO_WRONLY, LO_RDWR, and LO_TRUNC, to the ifx_lo_open() and ifx_lo_create() functions. When you specify LO_RDONLY, the
database server places a lock on the smart-large-object data. When you specify LO_DIRTY_READ, the database server does
not place a lock on the smart-large-object data. If you specify any other access-mode flag, the database server obtains an
update lock, which it promotes to an exclusive lock on first write or other update operation.

Share and update locks (read-only mode or write mode before an update operation occurs) are held until your application
takes one of the following actions:

* Closes the smart large object

« Commits the transaction or rolls it back

Exclusive locks are held until the end of a transaction even if you close the smart large object.

! Important: You lose the lock at the end of a transaction even if the smart large object remains open. When the
database server detects that a smart large object does not have an active lock, it places a new lock the next time

113

] that you access the smart large object. The lock that it places is based on the original open mode of the smart large

object.

Duration of an open operation on a smart large object

After you open a smart large object with the ifx_lo_create() function or the ifx_lo_open() function, it remains open until

certain events occurs.

A smart large object remains open until one of these events occur:

« The ifx_lo_close() function closes the smart large object.
* The session ends.

! Important: The end of the current transaction does not close a smart large object. It does, however, release any lock
on a smart large object.

Close smart large objects as soon as you finish with them. Leaving smart large objects open unnecessarily uses

system memory. Leaving many smart large objects open can eventually produce an out-of-memory condition.

Delete a smart large object

A smart large object cannot be deleted until certain conditions are met.

A smart large object is not deleted until both of the following conditions are met:

» The current transaction commits.

- The smart large object is closed, if the application opened the smart large object.
Modifying a smart large object
You can modify a smart large object by using either an UPDATE or INSERT statement.
About this task

To modify the data of a smart large object:

1. Read and write the data in the open smart large object.

2. Use an UPDATE or INSERT statement to store the smart-large-object pointer in the database.
Close a smart large object
After you finish modifying a smart large object, call ifx_lo_close() to deallocate the resources that are assigned to it.

When the resources are freed, you can reallocate them to other structures that your application needs. You can also

reallocate the smart-large-object file descriptor to other smart large objects.

114

Chapter 1. Informix® ODBC Driver Guide

Example of retrieving a smart large object from the database using ifx_lo functions

The code example, | osel ect . ¢, shows how to retrieve a smart large object from the database.

You can find the | osel ect . c file in the %4 NFORM XDI R¥% deno/ cl i denp directory on UNIX™ platforms and in the

% NFORM XDl R% denp\ odbcdeno directory on Windows™ platforms. You can also find instructions on how to build the

odbc_demo database in the same location.

/*
*%
*%
*%
*%
*%
*%
*x
*%
* %
*%

*k

x/

To

loselect.c

access a smart large object
SQLBindCol

SQLBindParameter

SQLConnect

SQLFetch

SQLFreeStmt

SQLGetInfo

SQLDisconnect

SQLExecDirect

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>

#include <conio.h>
#endif /*NO_WIN32x/

#include "infxcli.h"

#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
SQLSMALLINT handleType,
SQLHANDLE handle,
char *errmsg)

{

SQLRETURN retcode = SQL_SUCCESS;

SQLSMALLINT errNum = 1;

SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LENT;

SQLSMALLINT textlLengthPtr;

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))

{

while (retcode != SQL_NO_DATA)
{

115

116

retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

if (retcode == SQL_INVALID_HANDLE)

{
fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;
}
if ((retcode == SQL_SUCCESS) || (retcode ==

SQL_SUCCESS_WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);

errNum++;

fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */

}
else
return 0; /* no errors to report *x/
}
int main (long argc,
char *argv([])
{

/* Declare variables

*/

/* Handles x/

SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Smart large object file descriptor */
long lofd;

long lofd_valsize = 0;

/* Smart large object pointer structure x*/

charx loptr_buffer;
short loptr_size;
long loptr_valsize = 0;

/* Smart large object status structure *x/

charx lostat_buffer;
short lostat_size;
long lostat_valsize = 0;

/* Smart large object data */
charx lo_data;
long lo_data_valsize = 0;

/* Miscellaneous variables x/
UCHAR dsn[20]; /*name of the DSN used for connecting to the
databasex/

/*

SQLRETURN rc = 0;

int in;

charx selectStmt = "SELECT advert FROM item WHERE -ditem_num =
1004";

long mode = LO_RDONLY;

long lo_size;

long cbMode = 0, cbLoSize = 0;

STEP 1. Get data source name from command line (or use default)

** Allocate the environment handle and set ODBC version
*% Allocate the connection handle

*% Establish the database connection

*% Allocate the statement handle

*/

/* If(dsn is not explicitly passed in as arg) x/
if (argc != 2)

{
/* Use default dsn - odbc_demo */
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char *)dsn, (char *)defDsn);
}
else
{
/* Use specified dsn */
strcpy ((char *)dsn, (char *)argv[1l]);
fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);
}

/* Allocate the Environment handle x/
rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (rc != SQL_SUCCESS)

{
fprintf (stdout, "Environment Handle Allocation
failed\nExiting!!\n");
return (1);
}

/* Set the ODBC version to 3.5 x/
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!\n"))
return (1);

/* Allocate the connection handle x/
rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!\n"))
return (1);

/* Establish the database connection */

rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "'", SQL_NTS);

if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\nExiting!!"))

Chapter 1. Informix® ODBC Driver Guide

117

118

/*

return (1);
/* Allocate the statement handle */
rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))
return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

STEP 2. Select a smart-large object from the database

** -- the select statement executed 1is -
*% "SELECT advert FROM item WHERE item_num = 1004"
*/

/* Execute the select statement x/
rc = SQLExecDirect (hstmt, selectStmt, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...select statement executed...smart large
object retrieved from the databse\n");

STEP 3. Get the size of the smart large object pointer structure.

*% Allocate a buffer to hold the structure.

*% Get the smart large object pointer structure from the
** database.

*% Close the result set cursor.

*/

/* Get the size of the smart large object pointer structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO_PTR_LENGTH, &loptr_size,
sizeof (loptr_size),
NULL) ;
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 3 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object pointer structure *x/
loptr_buffer = malloc (loptr_size);

/* Bind the smart large object pointer structure buffer allocated to the
column in the result set & fetch it from the database */
rc = SQLBindCol (hstmt, 1, SQL_C_BINARY, loptr_buffer, loptr_size,
&loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindCol failed\n"))
goto Exit;

rc = SQLFetch (hstmt);

if (rc == SQL_NO_DATA_FOUND)

{
fprintf (stdout, "No Data Found\nExiting!!\n");
goto Exit;

/*

/*

if

/*
rc
if

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 -- SQLFetch
failed\n"))
goto Exit;

Close the result set cursor */

= SQLCloseCursor (hstmt);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 3 --
SQLCloseCursor failed\n"))

goto Exit;

fprintf (stdout, "STEP 3 done...smart large object pointer structure

fetched from the database\n");

STEP 4. Use the smart large object's pointer structure to open it

*k

* %

*/

rc

if

rc

if

rc

if

rc
if

/*
rc
if

and obtain the smart large object file descriptor.
Reset the statement parameters.

= SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd_valsize);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 4 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

= SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
loptr_size, &loptr_valsize);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 2)\n"))

goto Exit;

= SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &mode, sizeof(mode), &cbMode);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 4 --
SQLBindParameter failed (param 3)\n"))

goto Exit;

= SQLExecDirect (hstmt, "{? = call ifx_lo_open(?, ?)3}", SQL_NTS);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLExecDirect failed\n"))

goto Exit;

Reset the statement parameters */

= SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 4 --
SQLFreeStmt failed\n"))

goto Exit;

fprintf (stdout, "STEP 4 done...smart large object opened... file

descriptor obtained\n");

STEP 5. Get the size of the smart large object status structure.

* %

* %

* %

Allocate a buffer to hold the structure.
Get the smart large object status structure from the
database.

Chapter 1. Informix® ODBC Driver Guide

119

120

*% Reset the statement parameters.

*/

/* Get the size of the smart large object status structure x/
rc = SQLGetInfo (hdbc, SQL_INFX_LO_STAT_LENGTH, &lostat_size,
sizeof(lostat_size), NULL);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 5 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object status structure. *x/
lostat_buffer = malloc(lostat_size);

/* Get the smart large object status structure from the database. x/
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
lostat_size, &lostat_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLExecDiret failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 5 done...smart large object status structure
fetched from the database\n");

/* STEP 6. Use the smart large object's status structure to get the

* % size of the smart large object.
*k Reset the statement parameters.
*/

/* Use the smart large object status structure to get the size of the
smart large object */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
lostat_size, &lostat_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_LONG,

/*

if

rc
if

/*
rc
if

SQL_BIGINT, (UDWORD)O, 0, &lo_size, sizeof(lo_size), &cbLoSize);
(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

= SQLExecDirect (hstmt, "{call ifx_lo_stat_size(?, ?)3}", SQL_NTS);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 6 --
SQLExecDirect failed\n"))

goto Exit;

Reset the statement parameters */

= SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 6 —--
SQLFreeStmt failed\n"))

goto Exit;

fprintf (stdout, "STEP 6 done...smart large object size = %ld bytes\n",

lo_size);

STEP 7. Allocate a buffer to hold the smart large object's data.

* %
*k
* %

*k

*/

/*

lo_

/*

rc

if

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR,

Read the smart large object's data using its file descriptor.
Null-terminate the last byte of the smart large-object's data.
Print out the contents of the smart large object.

Reset the statement parameters.

Allocate a buffer to hold the smart large object's data chunks x/
data = malloc (lo_size + 1);

Read the smart large object's data */

= SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)0O, 0, &lofd, sizeof(lofd), &lofd_valsize);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 7 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

lo_size, 0, lo_data, lo_size, &lo_data_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed (param 2)\n"))
goto Exit;
rc = SQLExecDirect (hstmt, "{call ifx_lo_read(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLExecDirect failed\n"))
goto Exit;
/* Null-terminate the last byte of the smart large objects data %/
lo_data[lo_size] = '"\0';
/* Print the contents of the smart large object */
fprintf (stdout, "Smart large object contents are..... \n\n\n%s\n\n\n",

/*

rc

lo_data);

Reset the statement parameters */
= SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

Chapter 1. Informix® ODBC Driver Guide

121

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 7 done...smart large object read completely\n");

/* STEP 8. Close the smart large object.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)3}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 8 done...smart large object closed\n");
/* STEP 9. Free the allocated buffers.
*/
free (loptr_buffer);
free (lostat_buffer);
free (lo_data);
fprintf (stdout, "STEP 9 done...smart large object buffers freed\n");

Exit:

/* CLEANUP: Close the statement handle

* % Free the statement handle

*k Disconnect from the datasource

*% Free the connection and environment handles
*% Exit

x/

/* Close the statement handle x/
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle */
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source x/
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle x/
SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
SQLFreeHandle (SQL_HANDLE_ENV, henv);

122

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");

in = getchar ();
return (rc);

Retrieve the status of a smart large object

The status information of a smart large object has corresponding client functions.

Chapter 1. Informix® ODBC Driver Guide

The following table describes the status information and the corresponding client functions.

Disk-storage information

Description

Client functions

Last access time

The time, in seconds, that a smart large object was last
accessed.

This value is available only if the
LO_KEEP_LASTACCESS_TIME flag is set for the smart
large object.

ifx_lo_stat_atime()

Last time of status change

The time, in seconds, of the last status change for a

smart large object.

A change in status includes updates, changes in

ownership, and changes to the number of references.

ifx_lo_stat_ctime()

Last modification time

(seconds)

The time, in seconds, that a smart large object was last

modified.

ifx_lo_stat_mtime_sec()

Last modification time

(microseconds)

The microsecond component of the time of last

modification.

This value is only supported on platforms that provide

system time to microsecond granularity.

ifx_lo_stat_mtime_usec()

Reference count

A count of the number of references to a smart large

object.

ifx_lo_stat_refcnt()

Size

The size, in bytes, of a smart large object.

ifx_lo_stat_size()

The time values (such as last access time and last change time) might differ slightly from the system time. This difference is

due to the algorithm that the database server uses to obtain the time from the operating system.

Example of retrieving information about a smart large object

The code example, | oi nf 0. ¢, shows how to retrieve information about a smart large object.

123

You can find the | oi nf o. c file in the % NFORM XDI R% denvo/ cl i denp directory on UNIX™ platforms and in the
% NFORM XDl R% denp\ odbcdeno directory in Windows™ environments. You can also find instructions on how to build the
odbc_demo database in the same location.

/*

*% loinfo.c

**

**x To check the status of a smart large object
* %

*k OBDC Functions:

* % SQLBindCol

*% SQLBindParameter
* % SQLConnect

*k SQLFetch

*% SQLFreeStmt

* % SQLDisconnect

*% SQLExecDirect

x/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32x/

#include "infxcli.h"

#define BUFFER_LEN 20
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
SQLSMALLINT handleType,
SQLHANDLE handle,
char xerrmsg)
{
SQLRETURN retcode = SQL_SUCCESS;

SQLSMALLINT errNum = 1;

SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LENT];

SQLSMALLINT textLengthPtr;

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
{
while (retcode != SQL_NO_DATA)

{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

124

Chapter 1. Informix® ODBC Driver Guide

if (retcode == SQL_INVALID_HANDLE)

{
fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;
}
if ((retcode == SQL_SUCCESS) || (retcode ==

SQL_SUCCESS_WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);

errNum++;

fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */

}
else
return 0; /* no errors to report *x/
}
int main (long argc,
char *xargv([])
{

/* Declare variables

*/

/* Handles x/

SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;

/* Smart large object file descriptor */
long lofd;

long lofd_valsize = 0;

/* Smart large object specification structure x/

charx lospec_buffer;
short lospec_size;
long lospec_valsize = 0;

/* Smart large object status structure x/

charx lostat_buffer;
short lostat_size;
long lostat_valsize = 0;

/* Smart large object pointer structure x*/

charx loptr_buffer;
short loptr_size;
long loptr_valsize = 0;

/* Miscellaneous variables x/

UCHAR dsn[20]; /*name of the DSN used for connecting to the
databasex/

SQLRETURN rc = 0;

int in;

125

charx selectStmt = "SELECT advert FROM item WHERE -item_num =

1004";
long lo_size;
long mode = LO_RDONLY;
char sbspace_name[BUFFER_LEN];
long sbspace_name_size = SQL_NTS;
long cbMode = 0, cbLoSize = 0;

/* STEP 1. Get data source name from command line (or use default).

*% Allocate the environment handle and set ODBC version.
** Allocate the connection handle.

*% Establish the database connection.

*% Allocate the statement handle.

*/

/* If (dsn is not explicitly passed in as arg) x/
if (argec != 2)

{
/* Use default dsn - odbc_demo x/
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char *)dsn, (char *)defDsn);
}
else
{
/* Use specified dsn */
strcpy ((char x)dsn, (char x)argv[1]);
fprintf (stdout, "\nUsing specified DSN : %s\n'", dsn);
}

/* Allocate the Environment handle x/
rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (rc != SQL_SUCCESS)

{
fprintf (stdout, "Environment Handle Allocation
failed\nExiting!!\n");
return (1);
}

/* Set the ODBC version to 3.5 %/
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!\n"))
return (1);

/* Allocate the connection handle */
rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!\n"))
return (1);

/* Establish the database connection %/

126

/*

/*

rc = SQLConnect (hdbc, dsn, SQL_NTS, "'", SQL_NTS, "'", SQL_NTS);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\nExiting!!"))
return (1);

/* Allocate the statement handle */
rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))
return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

STEP 2. Select a smart-large object from the database.

** -- the select statement executed 1is -
* % "SELECT advert FROM +item WHERE item_num = 1004"
*/

/* Execute the select statement x/
rc = SQLExecDirect (hstmt, selectStmt, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...select statement executed...smart large
object retrieved from the databse\n");

STEP 3. Get the size of the smart large object pointer structure.

** Allocate a buffer to hold the structure.

* % Get the smart large object pointer structure from the database.
*% Close the result set cursor.

*/

/* Get the size of the smart large object pointer structure */
rc = SQLGetInfo (hdbc, SQL_INFX_LO_PTR_LENGTH, &loptr_size,
sizeof(loptr_size), NULL);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 3 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object pointer structure *x/
loptr_buffer = malloc (loptr_size);

/* Bind the smart large object pointer structure buffer allocated to the
column in the result set & fetch it from the database */
rc = SQLBindCol (hstmt, 1, SQL_C_BINARY, loptr_buffer, loptr_size,
&loptr_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindCol failed\n"))
goto Exit;

rc = SQLFetch (hstmt);
if (rc == SQL_NO_DATA_FOUND)
{
fprintf (stdout, "No Data Found\nExiting!!\n");

Chapter 1. Informix® ODBC Driver Guide

127

3
if

/*
rc
if

goto Exit;

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 -- SQLFetch

failed\n"))
goto Exit;

Close the result set cursor */

= SQLCloseCursor (hstmt);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 3 --
SQLCloseCursor failed\n"))

goto Exit;

fprintf (stdout, "STEP 3 done...smart large object pointer structure

fetched from the database\n");

/* STEP 4. Use the smart large object's pointer structure to open it

*k

* %

*/

rc

if

rc

if

rc

if

rc
if

/*
rc
if

and obtain the smart large object file descriptor.
Reset the statement parameters.

= SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®O, 0, &lofd, sizeof(lofd), &lofd_valsize);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

= SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
loptr_size, &loptr_valsize);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 2)\n"))

goto Exit;

= SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &mode, sizeof(mode), &cbMode);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 4 --
SQLBindParameter failed (param 3)\n"))

goto Exit;

= SQLExecDirect (hstmt, "{? = call -ifx_lo_open(?, ?)}", SQL_NTS);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLExecDirect failed\n"))

goto Exit;

Reset the statement parameters */

= SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 4 --
SQLFreeStmt failed\n"))

goto Exit;

fprintf (stdout, "STEP 4 done...smart large object opened... file

descriptor obtained\n");

/* STEP 5. Get the size of the smart large object status structure.

* %

128

Allocate a buffer to hold the structure.

Chapter 1. Informix® ODBC Driver Guide

*% Get the smart large object status structure from the database.
*% Reset the statement parameters.
*/

/* Get the size of the smart large object status structure x/
rc = SQLGetInfo (hdbc, SQL_INFX_LO_STAT_LENGTH, &lostat_size,
sizeof(lostat_size), NULL);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 5 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object status structure. *x/
lostat_buffer = malloc(lostat_size);

/* Get the smart large object status structure from the database. x/
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®0, 0, &lofd, sizeof(lofd), &lofd_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
lostat_size, &lostat_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 5 done...smart large object status structure
fetched from the database\n");

/* STEP 6. Use the smart large object's status structure to get the size

*% of the smart large object.

*% Reset the statement parameters.

* % You can use additional ifx_lo_stat_x() functions to get more
*% status information about the samrt large object.

* % You can also use it to retrieve the smart large object

* % specification structure and get further information about the
*% smart large objectusing it's specification structure.

*/

/* Use the smart large object status structure to get the size of the
smart large object. */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,

129

lostat_size, &lostat_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_BIGINT, (UDWORD)®, 0, &lo_size, sizeof(lo_size), &cbLoS1ize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat_size(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLExecDirect failed\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "LARGE OBJECT SIZE = %ld\n", lo_size);
fprintf (stdout, "STEP 6 done...smart large object size retrieved\n");

/* STEP 7. Get the size of the smart large object specification structure.

*% Allocate a buffer to hold the structure.

** Get the smart large object specification structure from the
** database.

*% Reset the statement parameters.

*/

/* Get the size of the smart large object specification structure x/
rc = SQLGetInfo (hdbc, SQL_INFX_LO_SPEC_LENGTH, &lospec_size,
sizeof(lospec_size), NULL);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 7 -- SQLGetInfo
failed\n"))
goto Exit;

/* Allocate a buffer to hold the smart large object specification
structure x/
lospec_buffer = malloc (lospec_size);

/* Get the smart large object specification structure from the
database x/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
lostat_size, &lostat_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
lospec_size, &lospec_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --

130

Chapter 1. Informix® ODBC Driver Guide

SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_stat_cspec(?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 7 done...smart large object status structure
fetched from the database\n");

/* STEP 8. Use the smart large object's specification structure to get

*% the sbspace name where the smart large object is stored.
* % Reset the statement parameters.
*/

/* Use the smart large object's specification structure to get the
sbspace name of the smart large object. %/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
lospec_size, &lospec_valsize);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed (param 1)\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR,
BUFFER_LEN, 0, sbspace_name, BUFFER_LEN, &sbspace_name_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_specget_sbspace(?, ?)}",
SQL_NTS) ;
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "LARGE OBJECT SBSPACE NAME = %s\n", sbspace_name);
fprintf (stdout, "STEP 8 done...large object sbspace name retrieved\n");

/* STEP 9. Close the smart large object.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, (UDWORD)®, 0, &lofd, sizeof(lofd), &lofd_valsize);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 9 --
SQLBindParameter failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 9 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 9 done...smart large object closed\n");

131

132

/* STEP 10.Free the allocated buffers.
*/
free (loptr_buffer);
free (lostat_buffer);

free (lospec_buffer);

fprintf (stdout, "STEP 10 done...smart large object buffers freed\n");

Exit:

/* CLEANUP: Close the statement handle.

*% Free the statement handle.

*% Disconnect from the datasource.

*% Free the connection and environment handles.
*% Exit.

*/

/* Close the statement handle %/
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle x/
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source x/
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle */
SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
SQLFreeHandle (SQL_HANDLE_ENV, henv);

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");

in = getchar ();
return (rc);

Read or write a smart large object to or from a file

You can use the SQL functions to read or write a smart large object to or from a file.

You can use the SQL functions FILETOBLOB() and FILETOCLOB() to transfer data from a file to a smart large object. The file

can be on a client computer or on a server computer.

You can use the SQL function LOTOFILE() to transfer data from a smart large object to a file. The file might be on a client
computer or on a server computer. LOTOFILE() accepts a smart-large-object pointer as a parameter. You can use the smart-
large-object pointer structure for this parameter.

For more information about these SQL functions, see the HCL® Informix® Guide to SQL: Syntax.

Chapter 1. Informix® ODBC Driver Guide

Rows and collections

Rows and collections are composite values that consist of one or more elements.
The information in these topics apply only if your database server is .

You can use the SELECT, UPDATE, INSERT, and DELETE statements to access an entire row or collection. However, these SQL
statements do not let you access an element that is in a row or collection. To access an element, you need to retrieve the row

or collection and then access the element from the local copy of the row or collection.

For more information about rows and collections, see the HCL® Informix® Guide to SQL: Reference, and HCL® Informix®

User-Defined Routines and Data Types Developer's Guide.

Allocating and binding a row or collection buffer
When you retrieve a row or collection, the database server puts the row or collection into a buffer that is local to your HCL

Informix® ODBC Driver application.

About this task
To allocate and bind a row or collection buffer:

1. Call ifx_rc_create() to allocate the buffer.

2. Call SQLBindCol() to bind the buffer handle to the database column.

3. Execute a SELECT statement to transfer the row or collection data to the local buffer.
4. Use the row or collection buffer.

5. Call ifx_rc_free() to deallocate the buffer.

Fixed-type buffers and unfixed-type buffers

There are several differences between fixed-type buffers and unfixed-type buffers.

The following table describes the differences between fixed-type buffers and unfixed-type buffers.

Buffer Description
Fixed type When you call ifx_rc_create() to create a row or collection buffer, you specify the following data
types for the buffer:

« The buffer data type (a row or one of the collection types)
« The data types of the elements that are in the row or collection

When you retrieve the row or collection, the database server compares the source and target

data types and converts data from one Informix® SQL data type to another as necessary.

You can modify the row or collection buffer before you retrieve data into the buffer.

Unfixed type When you call ifx_rc_create() to create a row or collection buffer, you specify only the buffer data

type (a row or a collection) and not the element types.

133

Buffer Description

When you retrieve the row or collection, the database server does not compare data types
because you did not specify the target data types. Instead, the row or collection buffer adopts the
data types of the source data.

You must initialize the row or collection buffer before you modify it. To initialize the buffer,

retrieve a row or collection into it.

The buffer type remains unfixed even when it contains data.

134

Buffers and memory allocation

When you retrieve data into a buffer that already contains a row or collection, HCL Informix® ODBC Driver does not reuse the
same buffer.

Instead, HCL Informix® ODBC Driver performs the following steps:

1. Creates a row or collection buffer.
2. Associates the new buffer with the given buffer handle.

3. Deallocates the original buffer.

SQL data

The database server calls cast functions to convert the data from the source HCL Informix® SQL data types to the target

Informix® SQL data types.

If the data types for a row or collection that are on a database server differ from the data types for a row or collection buffer
into which the data is retrieved, the database server calls cast functions to convert the data from the source HCL Informix®
SQL data types to the target Informix® SQL data types. The following table lists the provider of the cast functions for each

combination of source data type and target data type. Cast functions that a data type provides are located on the database

server.
Source data type Target data type Provider of cast functions
Built-in Built-in Database server
Built-in Extended Data type
Extended Built-in Data type
Extended Extended Data type

Performing a local fetch

HCL Informix® ODBC Driver performs a local fetch when you retrieve a row or collection from one location on the client
computer to another location on the client computer.

About this task

Chapter 1. Informix® ODBC Driver Guide

A local fetch has the following limits on SQL data conversion:

« HCL Informix® ODBC Driver cannot convert extended data types for which the cast functions are on a database
server.

» HCL Informix® ODBC Driver cannot convert data from one named row type to another. Only the database server can
perform this type of conversion.

« HCL Informix® ODBC Driver cannot convert SQL data types when retrieving an entire row or collection. Thus, HCL
Informix® ODBC Driver can perform a local fetch of an entire row or collection only if the internal structures for the

source and destination are the same or if the destination is an unfixed-type buffer.

For example, if you define a local collection as list (char(1) not null), the database server can put a list (int not null)
value from the database server into the local collection. During this operation, the database server converts each
integer into a string and constructs a new list to return to the client computer. You cannot perform this operation on

the client computer where you retrieve a local list of integers into a list of characters.

To perform a local fetch:

(o) NS N N S R S R

. Call ifx_rc_create() to allocate a row or collection buffer.

. Call SQLBindCol() to bind the buffer handle to the local row or collection.

. Execute a SELECT statement to transfer the row or collection data to the local buffer.

. For each element in the row or collection, call ifx_rc_fetch() to copy the value to the buffer.
. Use the row or collection buffer.

. Call ifx_rc_free() to deallocate the buffer.

Example of retrieving row and collection data from the database

The sample program, r csel ect . c, retrieves row and collection data from the database and displays it.

This example also illustrates the fact that the same client functions can use row and collection handles interchangeably.

You can find the r csel ect . c file in the %4 NFORM XDl R% deno/ cl i denp directory on UNIX™ and in the %4 NFORM XDI R

% denp\ odbcdeno directory in Windows™. You can also find instructions on how to build the odbc_demo database in the

same location.

/*
*%
*%
*%
*%
*x
*%
* %
*%
* %

*)

*/

rcselect.c

To access rows and collections

OBDC Functions:
SQLBindParameter
SQLConnect
SQLDisconnect
SQLExecDirect
SQLFetch
SQLFreeStmt

#include <stdio.h>
#include <stdlib.h>

135

#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32x%/

#include "infxcli.h"

#define BUFFER_LEN 25
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
SQLSMALLINT handleType,
SQLHANDLE handle,
char *xerrmsg)
{
SQLRETURN retcode = SQL_SUCCESS;

SQLSMALLINT errNum = 1;

SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN];

SQLSMALLINT textLengthPtr;

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))

{
while (retcode != SQL_NO_DATA)
{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);
if (retcode == SQL_INVALID_HANDLE)
{
fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;
}
if ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO))
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
sqlState, errMsg);
errNum++;
}
fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */
}
else
return 0; /* no errors to report *x/
}
/*

136

* %
**

* %

* %
*k
*)

* %

* %
**

x/

int

/*

Executes the given select statement and assumes the results will be
either rows or collections. The 'hrc' parameter may reference either
a row or a collection. Rows and collection handles may often be used
interchangeably.
Each row of the select statement will be fetched into the given row or
collection handle. Then each field of the row or collection will be
individually converted into a character buffer and displayed.
This function returns 0 if an error occurs, else returns 1
do_select (SQLHDBChdbc,
charx select_str,
HINFX_RChrc)
SQLHSTMT hRCStmt;
SQLHSTMT hSelectStmt;
SQLRETURN rc = 0;
short index, rownum;
short position = SQL_INFX_RC_ABSOLUTE;
short jump;
char fname [BUFFER_LEN];
char Tname[BUFFER_LEN];
char rc_data[BUFFER_LEN];
SQLINTEGER cbFname = 0, cbLname = 0, cbHrc = 0;
SQLINTEGERcbPosition = 0, cbJump = 0, cbRCData = 0;
STEP A. Allocate the statement handles for the select statement and
* % the statement used to retrieve the row/collection data.
*/

/* Allocate the statement handle */
rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hRCStmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step A -- Statement
Handle Allocation failed for row/collection
statement\nExiting!!"))
return 0;

/* Allocate the statement handle */
rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hSelectStmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step A -- Statement
Handle Allocation failed for select statement\nExiting!!"))
return 0;

fprintf (stdout, "STEP A done...statement handles allocated\n");

STEP B. Execute the select statement.
*% Bind the result set columns -
*% -- coll = fname

*% col2 = lname

* % col3 = row/collection data

Chapter 1. Informix® ODBC Driver Guide

137

x/

/* Execute the select statement %/
rc = SQLExecDirect (hSelectStmt, select_str, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
SQLExecDirect failed\n"))
return 0;

/* Bind the result set columns x/
rc = SQLBindCol (hSelectStmt, 1, SQL_C_CHAR, (SQLPOINTER)fname,
BUFFER_LEN, &cbFname);
if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
SQLBindCol failed for column 'fname'\n'"))
return 0;

rc = SQLBindCol (hSelectStmt, 2, SQL_C_CHAR, (SQLPOINTER)1lname,
BUFFER_LEN, &cbLname);
if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
SQLBindCol failed for column 'lname'\n"))
return 0;

rc = SQLBindCol (hSelectStmt, 3, SQL_C_BINARY, (SQLPOINTER)hrc,
sizeof (HINFX_RC), &cbHrc);
if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
SQLBindCol failed for row/collection column\n"))
return 0;

fprintf (stdout, "STEP B done...select statement executed and result set
columns bound\n");

/* STEP C. Retrieve the results.
*/

for (rownum = 1j;; rownum++)
{
rc = SQLFetch (hSelectStmt);
if (rc == SQL_NO_DATA_FOUND)
{
fprintf (stdout, "No data found...\n");
break;
}
else if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error 1in
Step C -- SQLFetch failed\n"))
return 0;

fprintf(stdout, "Retrieving row number %d:\n\tfname -- %s\n\tlname --
%s\n\tRow/Collection Data --\n", rownum, fname, lname);

/* For each row in the result set, display each field of the
retrieved row/collection *x/
for (index = 1;; tdndext+)
{
strcpy(rc_data, "<null>");

/* Each value 1in the local row/collection will be fetched into a

138

* character buffer and displayed using fprintf().
x/

rc = SQLBindParameter (hRCStmt, 1, SQL_PARAM_OUTPUT, SQL_C_CHAR,
SQL_CHAR, 0, 0, rc_data, BUFFER_LEN, &cbRCData);
if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
SQLBindParameter failed (param 1)\n"))
return 0;

rc = SQLBindParameter (hRCStmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_COLLECTION, sizeof(HINFX_RC), 0, hrc,
sizeof (HINFX_RC), &cbHrc);
if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
SQLBindParameter failed (param 2)\n"))
return 0;

rc = SQLBindParameter (hRCStmt, 3, SQL_PARAM_INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, O, &position, 0, &cbPosition);
if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
SQLBindParameter failed (param 3)\n"))
return 0;

jump = dindex;
rc = SQLBindParameter (hRCStmt, 4, SQL_PARAM_INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &jump, 0, &cbJump);
if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
SQLBindParameter failed (param 4)\n"))
return 0;

rc = SQLExecDirect(hRCStmt, "{ ? = call +ifx_rc_fetch(?, ?, ?)

SQL_NTS);
if (rc == SQL_NO_DATA_FOUND)
{
break;
}

else if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in
Step C -- SQLExecDirect failed\n"))
return 0;

/* Display retrieved row x/
fprintf(stdout, "\t\t%d: %s\n", index, rc_data);

fprintf (stdout, "STEP C done...results retrieved\n");

/* Free the statement handles x/
SQLFreeHandle (SQL_HANDLE_STMT, hSelectStmt);
SQLFreeHandle (SQL_HANDLE_STMT, hRCStmt);

return 1; /* no error */

This function allocates the row and collection buffers, passes
them to the do_select() function, along with an appropriate select
statement and then frees all allocated handles.

Chapter 1. Informix® ODBC Driver Guide

3",

139

140

*/

int main (long argc,

/*

cha

/* Declar

*/

/* Handle
SQLHDBC
SQLHENV
SQLHSTMT
HINFX_RC

/* Miscel

UCHAR

SQLRETURN
int

int
charx

charx

SQLINTEGE

STEP 1.
*%
*%
*%

* %

5/

/* If(dsn
if (argc
{
/* Use
fprint
strcpy
}
else
{
/* Use
strcpy
fprint

/* Alloca

r xargv[])

e variables

s x/
hdbc;
henv;
hstmt;
hrow, hlist;

laneous variables x/

dsn[20];/*name of the DSN used for connecting to the
databasex/

rc = 0;

in;

data_size = SQL_NTS;

listSelectStmt = "SELECT fname, lname, contact_dates FROM
customer";

rowSelectStmt = "SELECT fname, lname, address FROM
customer";

R cbHlist = 0, cbHrow = 0;

Get data source name from command line (or use default).
Allocate environment handle and set ODBC version.
Allocate connection handle.

Establish the database connection.

Allocate the statement handle.

is not explicitly passed in as arg) x/
1= 2)

default dsn - odbc_demo */
f (stdout, "\nUsing default DSN : %s\n", defDsn);
((char *)dsn, (char *)defDsn);

specified dsn */
((char *)dsn, (char x)argv[1]);
f (stdout, "\nUsing specified DSN : %s\n", dsn);

te the Environment handle x/

rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

if (rc !=
{
fprint
return
}

SQL_SUCCESS)

f (stdout, "Environment Handle Allocation failed\nExiting!!");
(1)

/*

/*

rc

if

/*
rc
if

/*
rc
if

/*
rc
if

Set the ODBC version to 3.5 %/

= SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0);

(checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!"))

return (1);

Allocate the connection handle */

= SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);

(checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!"))

return (1);

Establish the database connection */

= SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);

(checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\n"))

return (1);

Allocate the statement handle */

= SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

(checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))

return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

STEP 2. Allocate an unfixed collection handle.

* %
* %

&/

/*

rc

if

rc

if

rc
if

/*

Retrieve database rows containing a list.
Reset the statement parameters.

Allocate an unfixed list handle x/

= SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, &hlist, sizeof(HINFX_RC),
&cbHlist);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 2 --
SQLBindParameter (param 1) failed\n"))

goto Exit;

= SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
0, 0, (UCHAR *) "list", 0, &data_size);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter (param 2) failed\n"))

goto Exit;

= SQLExecDirect (hstmt, "{? = call ifx_rc_create(?)}", SQL_NTS);

(checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed\n"))

goto Exit;

Retrieve databse rows containing a list */

if (!do_select (hdbc, listSelectStmt, hlist))

goto Exit;

Chapter 1. Informix® ODBC Driver Guide

141

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...list data retrieved\n");
fprintf (stdout,"\nHit <Enter> to continue...");

in = getchar ();

/* STEP 3. Allocate an unfixed row handle.

* % Retrieve database rows containing a row.
*% Reset the statement parameters.
*/

/* Allocate an unfixed row handle x/
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_INFX_RC_ROW, sizeof(HINFX_RC), 0, &hrow, sizeof(HINFX_RC),
&cbHrow) ;
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 1) failed\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
0, 0, (UCHAR *) "row", 0, &data_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 2) failed\n"))
goto Exit;

rc = SQLExecDirect (hstmt, "{? = call ifx_rc_create(?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLExecDirect failed\n"))
goto Exit;

/* Retrieve databse rows containing a row */
if (!do_select (hdbc, rowSelectStmt, hrow))
goto Exit;

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 3 done...row data retrieved\n");

/* STEP 4. Free the row and list handles.
*/
/* Free the row handle x/
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_ROW, sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC),
&cbHrow) ;

rc = SQLExecDirect(hstmt, (UCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

142

/*

/* Free the list handle x*/

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, hlist, sizeof(HINFX_RC),
&cbHlist);

rc = SQLExecDirect(hstmt, (UCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

fprintf (stdout, "STEP 4 done...row and list handles freed\n");

Exit:

CLEANUP: Close the statement handle.

*% Free the statement handle.

*% Disconnect from the datasource.

*k Free the connection and environment handles.
** Exit.

*/

/* Close the statement handle x/
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle x/
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source x/
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle */
SQLFreeHandle (SQL_HANDLE_DBC, hdbc);

SQLFreeHandle (SQL_HANDLE_ENV, henv);

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
in = getchar ();

return (rc);

Example of creating a row and a list on the client

Chapter 1. Informix® ODBC Driver Guide

The code example, r ccr eat e. ¢, creates a row and a list on the client, adds items to them, and inserts them into the

database.

You can find the r ccr eat e. c file in the % NFORM XDl R% deno/ cl i denp directory on UNIX™ and in the % NFORM XDI R
% denp\ odbcdeno directory in Windows™. You can also find instructions on how to build the odbc_demo database in the

same location.

/*
* %k
*%
* %k

*)

* %
**
* %

**

x/

rccreate.c

To create a collection & 1insert it into the database table

OBDC Functions:
SQLBindParameter
SQLConnect
SQLDisconnect
SQLExecDirect

143

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32x*/

#include "infxcli.h"

#define BUFFER_LEN 25
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURNrc,
SQLSMALLINT handleType,

SQLHANDLE handle,
char *errmsg)
{
SQLRETURN retcode = SQL_SUCCESS;
SQLSMALLINT errNum = 1;
SQLCHAR sqlState[6];
SQLINTEGER nativeError;
SQLCHAR errMsg[ERRMSG_LEN];
SQLSMALLINT textLengthPtr;
if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
{
while (retcode != SQL_NO_DATA)
{
retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
&nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);
if (retcode == SQL_INVALID_HANDLE)
{
fprintf (stderr, "checkError function was called with an
invalid handle!!\n");
return 1;
}
if ((retcode == SQL_SUCCESS) || (retcode ==
SQL_SUCCESS_WITH_INFO)) fprintf (stderr, "ERROR: %d: %s
¢ %s \n", nativeError, sqlState, errMsg);
errNum++;
}
fprintf (stderr, "%s\n", errmsg);
return 1; /* all errors on this handle have been reported */
}
else
return 0; /* no errors to report *x/
}

144

int main (long

char

argc,
*argv([])

/* Declare variables

*/

/* Handles x/

SQLHDB
SQLHENV
SQLHSTMT

HINFX_RC
HINFX_RC

hdbc;
henv;
hstmt;

hrow;
hlist;

/* Miscellaneous variables x/

UCHAR dsn[20];/*name of the DSN used for connecting to the
databasex/
SQLRETURN rc = 0;
int i, 1in;
int data_size = SQL_NTS;
short position = SQL_INFX_RC_ABSOLUTE;
short jump;
UCHAR row_data[4] [BUFFER_LEN] = {"520 Topaz Way", "Redwood City",
"CA", "94062"};
int row_data_size = SQL_NTS;
UCHAR list_data[2] [BUFFER_LEN] = {"1991-06-20", '"1993-07-17"};
int list_data_size = SQL_NTS;
charx insertStmt = "INSERT INTO customer VALUES (110, 'Roy',
'Jaeger', ?, 2)";
SQLINTEGER cbHrow = 0, cbHlist = 0, cbPosition = 0, cbJump = 0;
STEP 1. Get data source name from command line (or use default).
*% Allocate environment handle and set ODBC version.
** Allocate connection handle.
*% Establish the database connection.
** Allocate the statement handle.
*/

/* If(dsn is not explicitly passed in as arg) x/
if (argec != 2)

{

/* Use default dsn - odbc_demo x/
fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
strcpy ((char *)dsn, (char *)defDsn);

}

else

{

/* Use specified dsn *x/

strcpy ((char x)dsn, (char x)argv[1l]);
fprintf (stdout, "\nUsing specified DSN : %s\n'", dsn);

}

/* Allocate the Environment handle x/
rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (rc != SQL_SUCCESS)

{

fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");

Chapter 1. Informix® ODBC Driver Guide

145

return (1);

/* Set the ODBC version to 3.5 x/
rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
(SQLPOINTER)SQL_OV_ODBC3, 0);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
SQLSetEnvAttr failed\nExiting!!"))
return (1);

/* Allocate the connection handle x/
rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
Handle Allocation failed\nExiting!!"))
return (1);

/* Establish the database connection %/
rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
failed\n"))
return (1);

/* Allocate the statement handle */
rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
Handle Allocation failed\nExiting!!"))
return (1);

fprintf (stdout, "STEP 1 done...connected to database\n");

/* STEP 2. Allocate fixed-type row handle -- this creates a non-null row

** buffer, each of whose values is null, and can be updated.

*% Allocate a fixed-type list handle -- this creates a non-null
*% but empty list buffer into which values can be 1inserted.

* % Reset the statement parameters.

*/

/* Allocate a fixed-type row handle -- this creates a row with each

value empty */

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_INFX_RC_ROW, sizeof(HINFX_RC), 0, &hrow, sizeof(HINFX_RC),

&cbHrow) ;
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter (param 1) failed for row handle\n")) goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
0, 0, (UCHAR %) "ROW(addressl VARCHAR(25), city VARCHAR(15), state
VARCHAR(15), zip VARCHAR(5))", 0, &data_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter (param 2) failed for row handle\n"))
goto Exit;

rc = SQLExecDirect (hstmt, (UCHAR *) "{? = call ifx_rc_create(?)}",

SQL_NTS) ;
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --

146

/*

SQLExecDirect failed for row handle\n"))
goto Exit;

/* Allocate a fixed-type list handle x/
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, &hlist, sizeof(HINFX_RC),
&cbHlist);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 2 --
SQLBindParameter (param 1) failed for list handle\n"))
goto Exit;

data_size = SQL_NTS;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
0, 0, (UCHAR %) "LIST (DATETIME YEAR TO DAY NOT NULL)",0,
&data_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLBindParameter (param 2) failed for list handle\n"))
goto Exit;

rc = SQLExecDirect (hstmt, (UCHAR %) "{? = call ifx_rc_create(?)}",
SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLExecDirect failed for list handle\n"))
goto Exit;

/* Reset the statement parameters */
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
SQLFreeStmt failed\n"))
goto Exit;

fprintf (stdout, "STEP 2 done...fixed-type row and collection handles
allocated\n");

STEP 3. Update the elements of the fixed-type row buffer allocated.

*% Insert elements 1into the fixed-type list buffer allocated.
*% Reset the statement parameters.
*/

/* Update elements of the row buffer x/
for (i=0; 1i<4; i++)
{
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_ROW, sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC),
&cbHrow) ;
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 1) failed for row handle\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, BUFFER_LEN, 0, row_data[i], 0, &row_data_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 2) failed for row handle\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &position, 0, &cbPosition);

Chapter 1. Informix® ODBC Driver Guide

147

if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 3) failed for row handle\n"))
goto Exit; jump = i + 1;
rc = SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &jump, 0, &cbJump);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 4) failed for row handle\n"))
goto Exit;

rc = SQLExecDirect (hstmt,
(UCHAR *)"{call ifx_rc_update(?, ?, ?, ?)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLExecDirect failed for row handle\n"))
goto Exit;

/* Insert elements 1into the list buffer x/
for (i=0; 9<2; i++)

{
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, hlist, sizeof(HINFX_RC),
&cbHlist) ;
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 1) failed for list handle\n"))
goto Exit;
rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_DATE, 25, 0, list_datal[i], 0, &list_data_size);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 2) failed for list handle\n"))
goto Exit;
rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &position, 0, &cbPosition);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 3) failed for list handle\n"))
goto Exit;
jump = i + 1;
rc = SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL_C_SHORT,
SQL_SMALLINT, 0, 0, &jump, 0, &cbJump);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLBindParameter (param 4) failed for list handle\n"))
goto Exit;
rc = SQLExecDirect (hstmt,
(UCHAR *)"{call ifx_rc_insert(?, 2, ?, 2)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLExecDirect failed for list handle\n"))
goto Exit;
}

/* Reset the statement parameters x/
rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
SQLFreeStmt failed\n"))
goto Exit;

148

fprintf (stdout, "STEP 3 done...row and list buffers populated\n");

/* STEP 4. Bind parameters for the row and list handles.

*% Execute the insert statement to insert the new row into table
*% 'customer'.
*/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_COLLECTION, sizeof(HINFX_RC), 0, hrow,
sizeof (HINFX_RC), &cbHrow);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error 1in Step 4 --
SQLBindParameter failed (param 1)\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_COLLECTION, sizeof(HINFX_RC), 0, hlist,
sizeof (HINFX_RC), &cbHlist);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLBindParameter failed (param 2)\n"))
goto Exit;

rc = SQLExecDirect (hstmt, (UCHAR *)insertStmt, SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
SQLExecDirect failed\n"))
goto Exit;

fprintf (stdout, "STEP 4 done...new row inserted into table
'customer'\n");
/* STEP 5. Free the row and list handles.

*/

/* Free the row handle %/

rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_ROW, sizeof(HINFX_RC), @, hrow, sizeof(HINFX_RC),
&cbHrow) ;

rc = SQLExecDirect(hstmt, (UCHAR x)"{call ifx_rc_free(?)}", SQL_NTS);

/* Free the 1list handle */

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, hlist, sizeof(HINFX_RC),
&cbHlist);

rc = SQLExecDirect(hstmt, (UCHAR x)"{call ifx_rc_free(?)}", SQL_NTS);

fprintf (stdout, "STEP 5 done...row and list handles freed\n");

Exit:

/* CLEANUP: Close the statement handle.

** Free the statement handle.
*% Disconnect from the datasource.
*% Free the connection and environment handles.

Chapter 1. Informix® ODBC Driver Guide

149

*% Exit.

*/

/* Close the statement handle x/
SQLFreeStmt (hstmt, SQL_CLOSE);

/* Free the statement handle */

SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source x/

SQLD1isconnect (hdbc);

/* Free the environment handle and the database connection handle x/
SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
SQLFreeHandle (SQL_HANDLE_ENV, henv);

fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
in = getchar ();
return (rc);

Modify a row or collection

HCL Informix® ODBC Driver provides functions that can be used to modify rows and collections.

The following table provides an overview of the functions that HCL Informix® ODBC Driver provides for modifying rows and

collections.

Function Modification Row Collection

ifx_rc_delete() Delete an element No Yes

ifx_rc_insert() Insert an element No Yes (See the following table.)
ifx_rc_setnull() Set the row or collection to null Yes Yes

ifx_rc_update() Update the value of an element Yes Yes

The following table describes the collection locations into which you can insert an element. You can insert an element only at

the end of a SET or MULTISET collection because elements in these types of collections do not have ordered positions.

Beginning Middle End
List Yes Yes Yes
Multiset No No Yes
Set No No Yes

150

Chapter 1. Informix® ODBC Driver Guide

Tip: If you only need to insert or update a row or collection column with literal values, you do not need to use a row or
collection buffer. Instead, you can explicitly list the literal value in either the INTO clause of the INSERT statement or
the SET clause of the UPDATE statement.

Each row and collection maintains a seek position that points to the current element in the row or collection. When the row
or collection is created, the seek position points to the first element that is in the row or collection. All calls to client functions
share the same seek position for a row or collection buffer. Therefore, one client function can affect the seek position for
another client function that uses the same buffer handle. The following table describes how client functions use and modify

the seek position.

Client function Acts on Changes

ifx_rc_delete() At the specified position Sets the seek position to the position after the one
that was deleted

ifx_rc_fetch() At the specified position Sets the seek position to the specified position
ifx_rc_insert() Before the specified position Sets the seek position to the specified position
ifx_rc_update() At the specified position Sets the seek position to the specified position

Retrieve information about a row or collection

HCL Informix® ODBC Driver provides functions that can be used to retrieve information about rows and collections.

The following table provides an overview of the functions that HCL Informix® ODBC Driver provides for retrieving information
about rows and collections. The ifx_rc_describe() function returns the data types of elements in a row or collection.

Function Information Reference

ifx_rc_count() Number of columns The ifx_rc_count() function on page 172

ifx_rc_describe() Data type information The ifx_rc_describe() function on page 174

ifx_rc_isnull() Value that indicates whether itis | The ifx_rc_isnull() function on page 178
null

ifx_rc_typespec() Type specification The ifx_rc_typespec() function on page 179

Client functions

These topics describe the HCL Informix® ODBC Driver client functions. Use these functions to access and manipulate smart
large objects and rows and collections.

The information in these topics apply only if your database server is .

Call a client function

This section describes the syntax of client functions, their input/output arguments, return values, and SQL_BIGINT.

151

Function syntax

The database server and the application both partially implement each client function.

You can execute a client function with either SQLPrepare() and SQLExecute() or with SQLExecDirect(). You need to call
SQLBindParameter() or SQLBindCol() to bind each parameter before you call SQLExecute() or SQLExecDirect().

Executing a client function with SQLPrepare() and SQLExecute()
You can execute a client function with the SQLPrepare() and SQLExecute() functions.
About this task

To execute a client function with SQLPrepare() and SQLExecute():

1. Prepare the SQL statement for the client function.
2. Bind the parameters.
3. Execute the SQL statement.

Results

The following code example illustrates these steps for ifx_lo_open():

rc = SQLPrepare(hstmt, "{? = call ifx_lo_open(?, ?, ?)}", SQL_NTS);
rc = SQLBindParameter(...);
rc = SQLExecute(hstmt);

Executing a client function with SQLExecDirect()
You can execute a client function with the SQLExecDirect() function.
About this task

To execute a client function with SQLExecDirect():

1. Bind the parameters.
2. Execute the SQL statement.

Results

The following code example illustrates these steps for ifx_lo_open():

rc = SQLBindParameter(...);
rc = SQLExecDirect(hstmt, "{? = call ifx_lo_open(?, ?, ?)}", SQL_NTS);

Input and output parameters

Most of the input and output parameters for client functions are output parameters from the perspective of the client

application.

152

Chapter 1. Informix® ODBC Driver Guide

However, a client function that accepts an input/output parameter initializes the parameter internally and sends it to the
database server with the request to execute the client function. Therefore, you need to pass these parameters as input/
output parameters to the driver.

The SQL_BIGINT data type

HCL Informix® supports the INT8 Informix® SQL data type.

By default, the driver maps INT8 to the SQL_BIGINT HCL Informix® ODBC Driver SQL data type and to the SQL_C_CHAR
default HCL Informix® ODBC Driver C data type. However, client functions cannot access all the data type conversion
functions. Therefore, you must use a data type other than SQL_C_CHAR when you use a value of type SQL_BIGINT.

For example, before you call ifx_lo_specset_estbytes(), you need to bind a variable for the estbytes input argument. Because
estbytes is an SQL_BIGINT, you would normally bind estbytes to an SQL_C_CHAR. However, SQL_C_CHAR does not work for
SQL_BIGINT for a client function. The following code example illustrates how to bind estbytes to an SQL_C_LONG instead of
an SQL_C_CHAR for ifx_lo_specset_estbytes():

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_BIGINT, (UDWORD)®, 0, &estbytes, sizeof(estbytes), NULL);
rc = SQLExecDirect(hstmt, "{call ifx_lo_specset_estbytes(?, ?)}", SQL_NTS);

Return codes
The client functions do not provide return codes.

For success or failure information, see the return codes for the HCL Informix® ODBC Driver function with which you call the
client function (SQLExecDirect() or SQLExecute()).

Functions for smart large objects
This section describes each client function that the driver provides for smart large objects.
The functions are listed alphabetically. For more information, see Smart large objects on page 94.

The ifx_lo_alter() function

The ifx_lo_alter() function alters the storage characteristics of a smart large object.

Syntax

ifx_lo_alter (loptr, lospec)

Arguments

The function accepts the following arguments.

Argument Type Use Description
loptr SQL_INFX_UDT_FIXED Input Smart-large-object pointer structure
lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

153

Usage

The ifx_lo_alter() function performs the following steps to update the storage characteristics of a smart large object:

1. Gets an exclusive lock for the smart large object.

2. Uses the characteristics that are in the lospec smart-large-object specification structure to update the storage

characteristics of the smart large object. The ifx_lo_alter() function lets you change the following storage

characteristics:

3. Unlocks the smart large object.

> Logging characteristics

o Extent size

o Last-access time characteristics

As an alternative to calling this function, you can call one of the following functions if you want to change only one of these

characteristics:

« ifx_lo_specset_flags()

- ifx_lo_specset_extsz()

The ifx_lo_close() function

The ifx_lo_close() function closes a smart large object.

Syntax

ifx_lo_close (lofd)

Arguments

The function accepts the following argument.

Argument Type Use Description
lofd SQL_INTEGER Input Smart-large-object file descriptor
Usage

The ifx_lo_close() function closes a smart large object. During this function, the database server tries to unlock the smart

large object. If the isolation mode is repeatable read or if the lock is an exclusive lock, the database server does not release

the lock until the end of the transaction.

o Tip: If you do not update a smart large object inside a BEGIN WORK transaction block, each update is a separate

transaction.

The ifx_lo_col_info() function

The ifx_lo_col_info() function updates a smart-large-object specification structure with column-level storage characteristics.

154

Chapter 1. Informix® ODBC Driver Guide

Syntax

ifx_lo_col_info(colname, lospec)

Arguments

The function accepts the following arguments.

Argument Type Use Description
colname SQL_CHAR Input Pointer to a buffer that contains the name of a database
column

This value must be in the following format:

database@server_name:table.column

If the column is in a database that is ANSI-compliant, you can
include the owner name. In this case, use the following format:

database@server_name:owner.table.column

lospec SQL_INFX_UDT_FIXED 1/0 Smart-large-object specification structure

Usage

The ifx_lo_col_info() function sets the fields for a smart-large-object specification structure to the storage characteristics
for the colname database column. If the specified column does not have column-level storage characteristics defined, the

database server uses the storage characteristics that are inherited.

! Important: You must call ifx_lo_def_create_spec() before you call this function.

The ifx_lo_create() function

The ifx_lo_create() function creates and opens a new smart large object.

Syntax

ifx_lo_create (lospec, flags, loptr, lofd)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure that
contains storage characteristics for the new smart

large object

flags SQL_INTEGER Input Mode in which to open the new smart large object.

155

Argument Type Use Description

loptr SQL_INFX_UDT_FIXED 1/0 Smart-large-object pointer structure

lofd SQL_INTEGER Output Smart-large-object file descriptor. This file descriptor
is only valid within the current database connection.

Usage

The ifx_lo_create() function performs the following steps to create and open a new smart large object:

1. Creates a smart-large-object pointer structure.
2. Assigns a pointer to this structure and returns this pointer in loptr.
3. Assigns storage characteristics for the smart large object from the smart-large-object specification structure that

lospec indicates.

If lospec is null, ifx_lo_create() uses the system-specified storage characteristics. If the smart-large-object
specification structure exists but does not contain storage characteristics, ifx_lo_create() uses the storage

characteristics from the inheritance hierarchy.

4. Opens the smart large object in the access mode that flags specifies.

5. Associates the smart large object with the current connection.

When you close this connection, the database server deallocates any associated smart large objects that have a
reference count of zero. The reference count indicates the number of database columns that refer to the smart large

object.

6. Returns a file descriptor that identifies the smart large object.

The database server uses the default parameters that the call to ifx_lo_create() establishes to determine whether to lock or
log subsequent operations on the smart large object.

The ifx_lo_def_create_spec() function

The ifx_lo_def_create_spec() function creates a smart-large-object specification structure.

Syntax

ifx_lo_def_create_spec(lospec)

Arguments

The function accepts the following argument.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED 1/0 Smart-large-object specification structure

156

Usage

Chapter 1. Informix® ODBC Driver Guide

The ifx_lo_def_create_spec() function creates a smart-large-object specification structure and initializes the fields to null

values. If you do not change these values, the null values tell the database server to use the system-specified defaults for the

storage characteristics of the smart large object.

The ifx_lo_open() function

The ifx_lo_open() function opens a smart large object.

Syntax

ifx_lo_open (lofd, loptr, flags)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Output Smart-large-object file descriptor. This file descriptor
is only valid within the current database connection.

loptr SQL_INFX_UDT_FIXED Input Smart-large-object pointer structure

flags SQL_INTEGER Input Mode in which to open the smart large object.

Usage

The ifx_lo_open() function performs the following steps to open a smart large object:

1. Opens the loptr smart large object in the access mode that flags specifies.

2. Sets the seek position to byte zero.

3. Locks the smart large object.

! Important: The database server does not check access permissions on the smart large object. Your application must

make sure that the user or application is trusted.

As the following table describes, the access mode determines the type of lock.

Access mode Type of lock
Dirty read No lock
Read only Shared lock

Write only, write/append, or

read/write

Update lock. When you call ifx_lo_write() or ifx_lo_writewithseek() for the smart large

object, the database server promotes the lock to an exclusive lock.

157

The database server loses this lock when the current transaction terminates. The database server obtains the lock again the

next time you call a function that needs a lock.

As an alternative, you can use a BEGIN WORK transaction block and place a COMMIT WORK or ROLLBACK WORK statement
after the last statement that needs to use the lock.

1. Associates the smart large object with the current connection.

When you close this connection, the database server deallocates any associated smart large objects that have a
reference count of zero. The reference count indicates the number of database columns that refer to the smart large

object.

2. Returns a file descriptor that identifies the smart large object.

The database server uses the default parameters that the call to ifx_lo_open() establishes to determine whether to lock or

log subsequent operations on the smart large object.

The ifx_lo_read() function

The ifx_lo_read() function reads data from an open smart large object.

Syntax

ifx_lo_read(lofd, buf)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

buf SQL_CHAR Output Pointer to a character buffer into which the function will read
the data

Usage

The ifx_lo_read() function reads data from an open smart large object. The read begins at the current seek position for lofd.

You can call ifx_lo_tell() to obtain the current seek position.

The ifx_lo_read() function reads chValueMax bytes of data. cbValueMax is an input argument for SQLBindParameter() and
SQLBindCol(). The size of buf or chValueMax cannot exceed 2 gigabytes. To read a smart large object that is larger than 2
gigabytes, read it in 2-gigabyte chunks. The ifx_lo_read() function reads this data into the user-defined buffer to which buf
points.

If SQLBindParameter() or SQLBindCol() returns SQL_SUCCESS, then pcbValue, which is an argument for each of these
functions, contains the number of bytes that the function read from the smart large object. If SQLBindParameter() or

158

Chapter 1. Informix® ODBC Driver Guide

SQLBindCol() returns SQL_SUCCESS_WITH_INFO, then pcbValue contains the number of bytes that are available to read from
the smart large object.

The ifx_lo_readwithseek() function

The ifx_lo_readwithseek() function performs a seek operation and then reads data from an open smart large object.

Syntax

ifx_lo_readwithseek(lofd, buf, offset, whence)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

buf SQL_CHAR Output Pointer to a character buffer into which the function will read the
data

offset SQL_BIGINT Input Offset from the starting seek position, in bytes. Instead of

using the default HCL Informix® ODBC Driver C data type of
SQL_C_CHAR for offset, use SQL_C_LONG or SQL_C_SHORT.

whence SQL_INTEGER Input Starting seek position. The possible values are:
LO_SEEK_CUR

The current seek position in the smart large object
LO_SEEK_END

The end of the smart large object

LO_SEEK_SET

The start of the smart large object

Usage

The ifx_lo_readwithseek() function performs a seek operation and then reads data from an open smart large object. The read

begins at the seek position of lofd that the offset and whence arguments indicate.

The ifx_lo_readwithseek() function reads cbValueMax bytes of data. cbValueMax is an input argument for
SQLBindParameter() and SQLBindCol(). The size of buf or cbValueMax cannot exceed 2 GB. To read a smart large object
that is larger than 2 gigabytes, read it in 2-GB chunks. The ifx_lo_readwithseek() function reads this data into the user-defined
buffer to which buf points.

If SQLBindParameter() or SQLBindCol() returns SQL_SUCCESS, then pcbValue, which is an argument for each of these
functions, contains the number of bytes that the function read from the smart large object. If SQLBindParameter() or

159

SQLBindCol() returns SQL_SUCCESS_WITH_INFO, then pcbValue contains the number of bytes that are available to read from
the smart large object.

The ifx_lo_seek() function

The ifx_lo_seek() function sets the file position for the next read or write operation on an open smart large object.

Syntax

ifx_lo_seek (lofd, offset, whence, seek_pos)

Arguments

The function accepts the following arguments.

Argument Type Use Description
lofd SQL_INTEGER Input Smart-large-object file descriptor
offset SQL_BIGINT Input Offset from the starting seek position, in bytes. Instead of

using the default HCL Informix® ODBC Driver C data type of
SQL_C_CHAR for offset, use SQL_C_LONG or SQL_C_SHORT.

whence SQL_INTEGER Input Starting seek position. The possible values are:
LO_SEEK_CUR

The current seek position in the smart large object
LO_SEEK_END

The end of the smart large object
LO_SEEK_SET

The start of the smart large object

seek_pos SQL_BIGINT I/0 New seek position. Instead of using the default HCL Informix®
ODBC Driver C data type of SQL_C_CHAR for seek_pos, use
SQL_C_LONG. For more information, see The SQL_BIGINT data
type on page 153.

Usage

The ifx_lo_seek() function sets the seek position of lofd to the position that the offset and whence arguments indicate.

The ifx_lo_specget_estbytes() function

The ifx_lo_specget_estbytes() function gets the estimated number of bytes from a smart-large-object specification structure.

Syntax

ifx_lo_specget_estbytes (lospec, estbytes)

160

Arguments

The function accepts the following arguments.

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

estbytes SQL_BIGINT Output Estimated final size of the smart large object, in
bytes. This estimate is an optimization hint for the
smart-large-object optimizer. Instead of using the
default HCL Informix® ODBC Driver C data type of
SQL_C_CHAR for estbytes, use SQL_C_LONG.

Usage

The ifx_lo_specget_estbytes() function gets the estimated number of bytes from a smart-large-object specification structure.

The ifx_lo_specget_extsz() function

The ifx_lo_specget_extsz() function gets the allocation extent from a smart-large-object specification structure.

Syntax

ifx_lo_specget_extsz(lospec, extsz)

Arguments

The function accepts the following arguments.

Argument

Type

Use

Description

lospec

SQL_INFX_UDT_FIXED

Input

Smart-large-object specification structure

extsz

SQL_INTEGER

Output

Extent size of the smart large object, in bytes.

This value is the size of the allocation extents to

be allocated for the smart large object when the
database server writes beyond the end of the current
extent. This value overrides the estimate that the
database server generates for how large an extent
should be.

Usage

The ifx_lo_specget_extsz() function gets the allocation extent from a smart-large-object specification structure.

The ifx_lo_specget_flags() function

The ifx_lo_specget_flags() function gets the create-time flags from a smart-large-object specification structure.

161

Syntax

ifx_lo_specget_flags (lospec, flags)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

flags SQL_INTEGER Output Create-time flags. For more information, see Access
modes on page 111.

Usage

The ifx_lo_specget_flags() function gets the create-time flags from a smart-large-object specification structure.

The ifx_lo_specget_maxbytes() function

The ifx_lo_specget_maxbytes() function gets the maximum number of bytes from a smart-large-object specification

structure.

Syntax

ifx_lo_specget_maxbytes (lospec, maxbytes)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

maxbytes SQL_BIGINT Input Maximum size, in bytes, of the smart large object.
Instead of using the default HCL Informix® ODBC
Driver C data type of SQL_C_CHAR for maxbytes, use
SQL_C_LONG.

Usage

The ifx_lo_specget_maxbytes() function gets the maximum number of bytes from a smart-large-object specification

structure.

The ifx_lo_specget_sbspace() function

The ifx_lo_specget_sbspace() function gets the sbspace name from a smart-large-object specification structure.

162

Syntax

ifx_lo_specget_sbspace (lospec, sbspace)

Arguments

The function accepts the following arguments.

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

shbspace SQL_CHAR Output Name of the sbspace for the smart large object. An
sbspace name can be up to 18 characters long and
must be null terminated.

Usage

The ifx_lo_specget_sbspace() function returns the name of the sbspace in which to store the smart large object. The

function copies up to (pcbValue-1) bytes into the shspace buffer and makes sure that it is null terminated. pcbValue is an

argument for SQLBindParameter() and SQLBindCol().

The ifx_lo_specset_estbytes() function

The ifx_lo_specset_estbytes() function sets the estimated number of bytes in a smart-large-object specification structure.

Syntax

ifx_lo_specset_estbytes (lospec, estbytes)

Arguments

The function accepts the following arguments.

Argument Type Use Description
lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure
estbytes SQL_BIGINT Input Estimated final size of the smart large object, in bytes.

This estimate is an optimization hint for the smart large
object optimizer. This value cannot exceed 2 gigabytes.

If you do not specify an estbytes value when you create
a new smart large object, the database server gets
the value from the inheritance hierarchy of storage

characteristics.

Do not change this system value unless you know the
estimated size for the smart large object. If you do

set the estimated size for a smart large object, do not

163

164

Argument Type

Use

Description

specify a value much higher than the final size of the
smart large object. Otherwise, the database server might
allocate unused storage.

Instead of using the default HCL Informix® ODBC
Driver C data type of SQL_C_CHAR for estbytes, use
SQL_C_LONG or SQL_C_SHORT.

Usage

The ifx_lo_specset_estbytes() function sets the estimated number of bytes in a smart-large-object specification structure.

The ifx_lo_specset_extsz() function

The ifx_lo_specset_extsz() function sets the allocation extent size in a smart-large-object specification structure.

Syntax

ifx_lo_specset_extsz(lospec, extsz)

Arguments

The function accepts the following arguments.

Argument Type Use Description
lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure
extsz SQL_INTEGER Input Extent size of the smart large object, in bytes. This

value specifies the size of the allocation extents to be
allocated for the smart large object when the database
server writes beyond the end of the current extent. This
value overrides the estimate that the database server

generates for how large an extent should be.

If you do not specify an extsz value when you create a
new smart large object, the database server attempts
to optimize the extent size based on past operations on
the smart large object and other storage characteristics
(such as maximum bytes) that it obtains from the

inheritance hierarchy of storage characteristics.

Do not change this system value unless you know
the allocation extent size for the smart large object.
Only applications that encounter severe storage
fragmentation should ever set the allocation extent

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description
size. For such applications, make sure that you know
exactly the number of bytes by which to extend the
smart large object.

Usage

The ifx_lo_specset_extsz() function sets the allocation extent size in a smart-large-object specification structure.

The ifx_lo_specset_flags() function

The ifx_lo_specset_flags() function sets the create-time flags in a smart-large-object specification structure.

Syntax

ifx_lo_specset_flags (lospec, flags)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure
flags SQL_INTEGER Input Create-time flags.

Usage

The ifx_lo_specset_flags() function sets the create-time flags in a smart-large-object specification structure.

The ifx_lo_specset_maxbytes() function

The ifx_lo_specset_maxbytes() function sets the maximum number of bytes in a smart-large-object specification structure.

Syntax

ifx_lo_specset_maxbytes (lospec, maxbytes)

Arguments

The function accepts the following arguments.

Argument Type Use Description
lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure
maxbytes SQL_BIGINT Input Maximum size of the smart large object, in bytes.

This value cannot exceed 2 gigabytes. Instead
of using the default HCL Informix® ODBC Driver

165

Argument Type Use Description

C data type of SQL_C_CHAR for maxbytes, use
SQL_C_LONG or SQL_C_SHORT.

Usage
The ifx_lo_specset_maxbytes() function sets the maximum number of bytes in a smart-large-object specification structure.

The ifx_lo_specset_sbspace() function

The ifx_lo_specset_shspace() function sets the sbspace name in a smart-large-object specification structure.

Syntax

ifx_lo_specset_sbspace (lospec, sbspace)

Arguments

The function accepts the following arguments.

Argument Type Use Description
lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure
shspace SQL_CHAR Input Name of the sbspace for the smart large object.

An sbspace name can be up to 18 characters long
and must be null terminated. If you do not specify

an sbspace when you create a new smart large
object, the database server obtains the sbspace
name from either the column information or from the
SBSPACENAME parameter of the onconfi g file.

Usage

The ifx_lo_specset_sbspace() function uses pcbValue to determine the length of the sbspace name. pcbValue is an
argument for SQLBindParameter() and SQLBindCol().

The ifx_lo_stat() function

The ifx_lo_stat() function initializes a smart-large-object status structure.

Syntax

ifx_lo_stat(lofd, lostat)

Arguments

The function accepts the following arguments.

166

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor
lostat SQL_INFX_UDT_FIXED I/0 Smart-large-object status structure
Usage

Before you call ifx_lo_stat(), call SQLGetInfo() to get the size of the smart-large-object status structure. Use this size to

allocate memory for the structure.

The ifx_lo_stat() function allocates a smart-large-object status structure and initializes it with the status information for the

smart large object.

The ifx_lo_stat_atime() function

The ifx_lo_stat_atime() function retrieves the last access time for a smart large object.

Syntax

ifx_lo_stat_atime (lostat, atime)

Arguments

The function accepts the following arguments.

Argument Type Use Description
lostat SQL_INFX_UDT_FIXED Input Smart-large-object status structure
atime SQL_INTEGER Output Time of the last access for a smart large object, in

seconds. The database server maintains the time
of last access only if the LO_KEEP_LASTACCESS
_TIME flag is set for the smart large object.

Usage
The ifx_lo_stat_atime() function retrieves the last access time for a smart large object.

The ifx_lo_stat_cspec() function

The ifx_lo_stat_cspec() function retrieves a smart-large-object specification structure.

Syntax

ifx_lo_stat_cspec (lostat, lospec)

Arguments

The function accepts the following arguments.

167

168

Argument Type Use Description

lostat SQL_INFX_UDT_FIXED Input Smart-large-object status structure
lospec SQL_INFX_UDT_FIXED Output Smart-large-object specification structure
Usage

The ifx_lo_stat_cspec() function retrieves a smart-large-object specification structure and returns a pointer to the structure.
The ifx_lo_stat_ctime() function

The ifx_lo_stat_ctime() function retrieves the time of the last change of a smart large object.

Syntax

ifx_lo_stat_ctime (lostat, ctime)

Arguments

The function accepts the following arguments.

Argument Type Use Description
lostat SQL_INFX_UDT_FIXED Input Smart-large-object status structure
ctime SQL_INTEGER Out Time of the last change of the smart large object,

in seconds. The time of the last status change
includes modification of storage characteristics,
including a change in the number of references and

writes to the smart large object.

Usage
The ifx_lo_stat_ctime() function retrieves the time of the last change of a smart large object.

The ifx_lo_stat_refcnt() function

The ifx_lo_stat_refcnt() function retrieves the number of references to a smart large object.

Syntax

ifx_lo_stat_refcnt (lostat, refcount)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lostat SQL_INFX_UDT_FIXED Input Smart-large-object status structure

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description

refcount SQL_INTEGER Output Number of references to a smart large object. This
value is the number of database columns that refer

to the smart large object.

Usage
The ifx_lo_stat_refcnt() function retrieves the number of references to a smart large object.

A database server can remove a smart large object and reuse any resources that are allocated to it when the reference count

for the smart large object is zero and one of the following events occurs:

- The transaction in which the reference count is decremented to zero commits.
« The connection during which the smart large object was created terminates, but the reference count is not

incremented.

The database server increments a reference counter when it stores the smart-large-object pointer structure for a

smart large object in a row.

The ifx_lo_stat_size() function

The ifx_lo_stat_size() function retrieves the size of a smart large object.

Syntax

ifx_lo_stat_size(lostat, size)

Arguments

The function accepts the following arguments.

Argument Type Use Description
lostat SQL_INFX_UDT_FIXED Input Smart-large-object status structure
size SQL_BIGINT Output Size of a smart large object, in bytes. This value

cannot exceed 2 gigabytes. Instead of using the
default HCL Informix® ODBC Driver C data type of
SQL_C_CHAR for size, use SQL_C_LONG.

Usage

The ifx_lo_stat_size() function retrieves the size of a smart large object.

The ifx_lo_tell() function

The ifx_lo_tell() function retrieves the current file or seek position for an open smart large object.

169

Syntax

ifx_lo_tell(lofd, seek_pos)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

seek _pos SQL_BIGINT 1/0 New seek position, which is the offset for the next read or write
operation on the smart large object. Instead of using the default
HCL Informix® ODBC Driver C data type of SQL_C_CHAR for
seek_pos, use SQL_C_LONG.

Usage

The ifx_lo_tell() function retrieves the current file or seek position for an open smart large object.

This function works correctly for smart large objects up to 2 gigabytes in size.

The ifx_lo_truncate() function

The ifx_lo_truncate() function truncates a smart large object at the specified position.

Syntax

ifx_lo_truncate (lofd, offset)

Arguments

The function accepts the following arguments.

Argument Type Use Description
lofd SQL_INTEGER Input Smart-large-object file descriptor
offset SQL_BIGINT Input End of the smart large object. If this value exceeds the end of the

smart large object, the function extends the smart large object.

If this value is less than the end of the smart large object, the
database server reclaims all storage from the offset position to the
end of the smart large object.

Instead of using the default HCL Informix® ODBC Driver C data type
of SQL_C_CHAR for offset, use SQL_C_LONG or SQL_C_SHORT.

170

Chapter 1. Informix® ODBC Driver Guide

Usage
The ifx_lo_truncate() function sets the end of a smart large object to the location that the offset argument specifies.

The ifx_lo_write() function

The ifx_lo_write() function writes data to an open smart large object.

Syntax

ifx_lo_wr1ite (lofd, buf)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

buf SQL_CHAR Input Buffer that contains the data that the function writes to the smart
large object. The size of the buffer cannot exceed 2 gigabytes.

Usage

The ifx_lo_write() function writes data to an open smart large object. The write begins at the current seek position for lofd.

You can call ifx_lo_tell() to obtain the current seek position.

The ifx_lo_write() function writes cbValueMax bytes of data. cbValueMax is an input argument for SQLBindParameter()
and SQLBindCol(). The size of buf or cbValueMax cannot exceed 2 GB. To write to a smart large object that is larger than
2 gigabytes, write to it in 2-GB chunks. The ifx_lo_write() function gets the data from the user-defined buffer to which buf

points.

If SQLExecDirect() or SQLExecute() returns SQL_SUCCESS_WITH_INFO, then the database server wrote less than
cbValueMax bytes of data to the smart large object and pcbValue, which is an argument for each of these functions,
contains the number of bytes that the function wrote. This condition can occur when the sbspace runs out of space.

The ifx_lo_writewithseek() function

The ifx_lo_writewithseek() function performs a seek operation and then writes data to an open smart large object.

Syntax

ifx_lo_writewithseek (lofd, buf, offset, whence)

Arguments

The function accepts the following arguments.

171

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor.

buf SQL_CHAR Input Buffer that contains the data that the function writes to the smart
large object. The size of the buffer must not exceed 2 gigabytes.

offset SQL_BIGINT Input Offset from the starting seek position, in bytes. Instead of
using the default HCL Informix® ODBC Driver C data type of
SQL_C_CHAR for offset, use SQL_C_LONG or SQL_C_SHORT.

whence SQL_INTEGER Input Starting seek position. The possible values are:
LO_SEEK_CUR

The current seek position in the smart large object
LO_SEEK_END

The end of the smart large object
LO_SEEK_SET

The start of the smart large object

Usage

The ifx_lo_writewithseek() function performs a seek operation and then writes data to an open smart large object. The write

begins at the seek position of lofd that the offset and whence arguments indicate.

The ifx_lo_writewithseek() function writes chValueMax bytes of data. cbValueMax is an input argument for
SQLBindParameter() and SQLBindCol(). The size of buf or cbValueMax cannot exceed 2 GB. To write to a smart large object
that is larger than 2 gigabytes, write to it in 2-GB chunks. The ifx_lo_writewithseek() function gets the data from the user-
defined buffer to which buf points.

If SQLExecDirect() or SQLExecute() returns SQL_SUCCESS_WITH_INFO, then the database server wrote less than
cbValueMax bytes of data to the smart large object and pcbValue, which is an argument for each of these functions,
contains the number of bytes that the function wrote. This condition can occur when the sbspace runs out of space.

Functions for rows and collections

This section describes each client function that HCL Informix® ODBC Driver provides for rows and collections.

The functions are listed alphabetically. For more information about rows and collections, see Rows and collections on
page 133.

The ifx_rc_count() function

The ifx_rc_count() function returns the number of elements or fields that are in a row or collection.

172

Chapter 1. Informix® ODBC Driver Guide

Syntax

ifx_rc_count(rowcount, rchandle)

Arguments

The function accepts the following arguments.

Argument Type Use Description

rowcount SQL_SMALLINT Output Number of elements or fields that are in the row or collection
rchandle HINFX_RC Input Handle for a row or collection buffer

Usage

The ifx_rc_count() function returns the number of elements or fields that are in the row or collection.
The ifx_rc_delete() function

The ifx_rc_delete() function deletes an element from a collection.

Syntax

ifx_rc_delete(rchandle, action, jump)

Arguments

The function accepts the following arguments.

Argument Type Use Description
rchandle HINFX_RC Input Handle for a collection buffer
action SQL_SMALLINT Input Location of the element relative to the seek position. The

possible values are

* SQL_INFX_RC_ABSOLUTE: Element number jump where
the first element in the buffer is element number one

» SQL_INFX_RC_CURRENT: Current® element

* SQL_INFX_RC_FIRST: First element

* SQL_INFX_RC_LAST: Last element

* SQL_INFX_RC_NEXT: Next element

» SQL_INFX_RC_PRIOR: Previous element

* SQL_INFX_RC_RELATIVE: Element that is jump elements
past the current element

jump SQL_SMALLINT Input Offset when action is SQL_INFX_RC_ABSOLUTE or
SQL_INFX_RC_RELATIVE

173

Usage

The ifx_rc_delete() function deletes an element from a collection from the location that is specified by action and jump. The

function sets the seek position to the position of the value that was deleted. It is not possible to delete an element from a

row.

The ifx_rc_describe() function

The ifx_rc_describe() function returns descriptive information about the data type for a row or collection or for an element

that is in a row or collection.

Syntax

ifx_rc_describe(rchandle, fieldnum, fieldname, typecode,
columnsize, decdigits, nullable, typename, typeowner)

Arguments

The function accepts the following arguments.

Argument Type Use Description

rchandle HINFX_RC Input Handle for a row or collection buffer

fieldnum SQL_SMALLINT Input Field number. If this value is 0, the function returns
information for the entire row or collection. For a collection,
any value other than 0 causes the function to return
information for the elements that are in the collection. For a
row, this value specifies the element for which the function
returns information.

fieldname SQL_CHAR Output Field name. The function returns this value only for an
element that is in a row.

typecode SQL_SMALLINT Output HCL Informix® ODBC Driver SQL data type of the element

columnsize SQL_INTEGER Output Column size. For a character element, this value is the size of
the column, in bytes. For a numeric element, this value is the
precision. For other data types, the function does not return
this value.

decdigits SQL_SMALLINT Output Decimal digits. For a numeric element, this value is the
number of digits after the decimal point. For other data types,
the function does not return this value.

nullable SQL_SMALLINT Output Null indicator. The possible values are:

174

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description
* SQL_NO_NULLS
* SQL_NULLABLE
typename SQL_CHAR Output Type name. For a named row, this value is the name of the
row. For collections and unnamed rows, the function does not
return this value.
typeowner SQL_CHAR Output Type owner. This value is the name of the owner of the data
type. This name can be up to 18 characters long.
Usage

The ifx_rc_describe() function returns information about the data type for a row or collection or for an element that is in a

row or collection. For elements that are in a collection, this information is the same for all elements that are in the collection.

This function does not change the seek position.

The ifx_rc_fetch() function

The ifx_rc_fetch() function retrieves the value of an element that is in a row or collection.

Syntax

ifx_rc_fetch(result, rchandle, action, jump)

Arguments

The function accepts the following arguments.

Argument Type Use Description

result Data type of the element Output Retrieved value

rchandle HINFX_RC Input Handle for a row or collection buffer

action SQL_SMALLINT Input Location of the element relative to the seek position.

The possible values are:

* SQL_INFX_RC_ABSOLUTE: Element number
jump where the first element in the buffer is
element number one

* SQL_INFX_RC_CURRENT: Current® element

* SQL_INFX_RC_FIRST: First element

* SQL_INFX_RC_LAST: Last element

* SQL_INFX_RC_NEXT: Next element

175

Argument Type Use Description

» SQL_INFX_RC_PRIOR: Previous element
» SQL_INFX_RC_RELATIVE: Element that is jump
elements past the current element

jump SQL_SMALLINT Input Offset when action is SQL_INFX_RC_ABSOLUTE or
SQL_INFX_RC_RELATIVE

Usage

The ifx_rc_fetch() function retrieves the value of the element that is specified by action and jump and returns the value in

result. The function sets the seek position to the position of the value that was just fetched.

The ifx_rc_free() function

The ifx_rc_free() function frees a row or collection handle.

Syntax

ifx_rc_free(rchandle)

Arguments

The function accepts the following argument.

Argument Type Use Description
rchandle HINFX_RC Input Handle for a row or collection buffer
Usage

The ifx_rc_free() function frees all the resources that are associated with a row or collection handle and frees the handle.

The ifx_rc_insert() function

The ifx_rc_insert() function inserts a new element into a collection.

Syntax

ifx_rc_insert(rchandle, value, action, jump)

Arguments

The function accepts the following arguments.

Argument Type Use Description

rchandle HINFX_RC Input Handle for a collection buffer

176

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description
value Data type of the element Input Value to insert
action SQL_SMALLINT Input Location of the element relative to the seek position. The

possible values are:

» SQL_INFX_RC_ABSOLUTE: Element number jump
where the first element in the buffer is element
number one

« SQL_INFX_RC_CURRENT: Current® element

* SQL_INFX_RC_FIRST: First element

* SQL_INFX_RC_LAST: Last element

* SQL_INFX_RC_NEXT: Next element

* SQL_INFX_RC_PRIOR: Previous element

« SQL_INFX_RC_RELATIVE: Element that is jump
elements past the current element

jump SQL_SMALLINT Input Offset when action is SQL_INFX_RC_ABSOLUTE or
SQL_INFX_RC_RELATIVE

Usage

The ifx_rc_insert() function inserts a new element into a collection before the location that is specified by action and jump.
The function sets the seek position to the position of the value that was inserted. It is not possible to insert a new element

into a row.

The following table describes the allowable insertion locations for each type of collection.

Type of col
lection Allowable insertion locations

List Anywhere in the buffer

Set or multiset At the end of the buffer

If the seek position specified by action and jump exceeds the end of the buffer, ifx_rc_insert() appends the new element
at the end of the buffer. Likewise, if the seek position specified by action and jump precedes the beginning of the buffer,
ifx_rc_insert() inserts the new element at the beginning of the buffer. If action specifies an insertion point other than the end

for a set or multiset, ifx_rc_insert() fails.

For example, if action is SQL_INFX_RC_LAST, the function inserts the new element before the last element. To append a new

element, take one of the following actions:

177

178

- Set the seek position to the end of the buffer and set action to SQL_INFX_RC_NEXT.
- Set action to SQL_INFX_RC_ABSOLUTE or SQL_INFX_RC_RELATIVE and set jump to a value that exceeds the end of

the buffer.

To insert a new element at the beginning of a buffer, set action to SQL_INFX_RC_FIRST.

The ifx_rc_isnull() function

The ifx_rc_isnull() function returns a value that indicates whether a row or collection is null.

Syntax

ifx_rc_isnull(nulliflag, rchandle)

Arguments

The function accepts the following arguments.

Argument Type Use Description
nullflag SQL_SMALLINT Output Flag that indicates whether a row or collection is null. The
possible values are:
« TRUE
« FALSE
rchandle HINFX_RC Input Handle for a row or collection buffer
Usage

The ifx_rc_isnull() function returns a value that indicates whether a row or collection is null.

The ifx_rc_setnull() function

The ifx_rc_setnull() function sets a row or collection to null.

Syntax

ifx_rc_setnull(rchandle)

Arguments

The function accepts the following argument.

Argument Type Use

Description

rchandle HINFX_RC Input

Handle for a row or collection buffer

Usage

The ifx_rc_setnull() function sets a row or collection to null.

row or collection to null.

The ifx_rc_typespec() function

Chapter 1. Informix® ODBC Driver Guide

The ifx_rc_setnull() function does not set each element within the

The ifx_rc_typespec() function returns the type specification for a row or collection.

Syntax

ifx_rc_typespec (typespec, rchandle, flag)

Arguments

The function accepts the following arguments.

Argument Type Use Description

typespec SQL_CHAR Output Type specification. The format for this value is the same as the
type specification syntax for ifx_rc_create().

rchandle HINFX_RC Input Handle for a row or collection buffer

flag SQL_SMALLINT Input Flag that specifies whether to return the current or original type
specification. If this value is TRUE, the function returns the
original type specification. Otherwise, the function returns the
current type specification.

Usage

The ifx_rc_typespec() function returns the type specification for a row or collection.

The ifx_rc_update() function

The ifx_rc_update() function updates the value for an element that is in a row or collection.

Syntax

ifx_rc_update(rchandle, value, action, jump)

Arguments

The function accepts the following arguments.

Argument Type Use Description
rchandle HINFX_RC Input Handle for a row or collection buffer
value Data type of the element Input Value with which to update the element

179

Argument Type Use Description

action SQL_SMALLINT Input Location of the element relative to the seek position. The

possible values are:

* SQL_INFX_RC_ABSOLUTE: Element number jump
where the first element in the buffer is element
number one

* SQL_INFX_RC_CURRENT: Current® element

* SQL_INFX_RC_FIRST: First element

* SQL_INFX_RC_LAST: Last element

* SQL_INFX_RC_NEXT: Next element

» SQL_INFX_RC_PRIOR: Previous element

« SQL_INFX_RC_RELATIVE: Element that is jump
elements past the current element

jump SQL_SMALLINT Input Offset when action is SQL_INFX_RC_ABSOLUTE or
SQL_INFX_RC_RELATIVE

Usage

The ifx_rc_update() function updates the value for an element that immediately precedes the location that is specified by

action and jump. The function sets the seek position to the position of the value that was updated.

Application tracking in ODBC

Set the CLIENT_LABEL environment variable in CSDK 4.50.xC4 onwards to assign a character string to ODBC client session
and identify that character string on the database server. You can use this variable to distinguish one database session from
the other.

Improve application performance

These topics suggest ways to improve performance of HCL Informix® ODBC Driver applications.

Error checking during data transfer

The IFX_LOB_XFERSIZE environment variable is used to specify the number of kilobytes in a CLOB or BLOB to transfer from a

client application to the database server before checking whether an error has occurred.

The error check occurs each time the specified number of kilobytes is transferred. If an error occurs, the remaining data is

not sent and an error is reported. If no error occurs, the file transfer continues until it finishes.

The valid range for IFX_LOB_XFERSIZE is from 1 to 9223372036854775808 kilobytes. The IFX_LOB_XFERSIZE environment

variable is set on the client.

180

Chapter 1. Informix® ODBC Driver Guide

For more information about IFX_LOB_XFERSIZE, see the HCL® Informix® Guide to SQL: Reference.

Enable delimited identifiers in ODBC

By default delimited identifiers are disabled when connecting through ODBC.

There are three ways to enable them, listed here in order of decreasing precedence:

The DELIMIDENT connection string keyword

If you are using a connection string to connect you can set the DELIMIDENT keyword to enable or disable delimited
identifiers. If the keyword is set to y then delimited identifiers are enabled for the connection. If the keywords are set to
n delimited identifiers are disabled for the connection. If the keyword is present but is set to no value it has no effect on

whether delimited identifiers are enabled.

For example, this connection string connects by using a data source name (DSN) of nydsn and enables delimited identifiers

for the connection.

"DSN=mydsn ; DELIMIDENT=y;"

This connection string also connects by using the DSN nydsn but has no effect on whether delimited identifiers are used.

"DSN=mydsn; DELIMIDENT=;"

Setting the DELIMIDENT keyword in the connection string overrides any connection attributes or environment variables that

enable or disable delimited identifiers.

The SQL_INFX_ATTR_DELIMIDENT connection attribute

You can enable or disable delimited identifiers for a given connection by setting the SQL_INFX_ATTR_DELIMIDENT
connection attribute before connecting. The SQL_INFX_ATTR_DELIMIDENT connection attribute accepts the values listed in

the following table.

Table 9. Allowed values for the SQL_INFX_ATTR_DELIMIDENT connection attribute

Value Effect
SQL_TRUE Delimited identifiers are enabled for the connection.
SQL_FALSE Delimited identifiers are disabled for the connection.
SQL_IFX_CLEAR Clears any previous settings so that this connection attribute has no effect

on whether delimited identifiers are used.

For example, this call causes delimited identifiers to be enabled when the connection is made:

SQLSetConnectAttr (hdbc, SQL_INFX_ATTR_DELIMIDENT, SQL_TRUE, SQL_IS_INTEGER);

If this connection attribute is set to SQL_TRUE or SQL_FALSE the setting overrides the DELIMIDENT environment variable but
not the DELIMIDENT connection string keyword.

181

182

The DELIMIDENT environment variable

In some HCL Informix® APIs, such as ESQL/C, delimited identifiers are enabled by setting the DELIMIDENT environment
variable to any value. In ODBC, however, delimited identifiers are enabled by setting the DELIMIDENT environment variable to
y and are disabled by setting it to n.

Connection level optimizations

Establishing a connection to a database is an expensive process. Optimally, an application performs as many tasks as
possible while a connection is open.

This process can by achieved by:

« Pooling connections when using Windows™ Driver Manager
« Using multiple statement handles on the same connection handle

Also, you can fine tune application performance by setting the following connection level attributes:

» AutoCommit optimization
+ Message transfer optimization (OPTMSG)
 Open-Fetch-Close optimization (OPTOFC)

Optimizing query execution

There are several items you must consider when using prepared SQL queries.

Consider the following when using prepared SQL queries:

» SQLExecDirect is optimized for a single execution of an SQL statement. Thus, it is used for SQL queries that are not
executed repeatedly.

- In cases where SQL queries are executed multiple times, using SQLPrepare and SQLExecute improves performance.
Typically, you can do this with input and output parameters.

« SPL routines can be called from an ODBC application to perform certain SQL tasks and to expand what you can
accomplish with SQL alone. Because SPL is native to the database and SPL routines are parsed and optimized at
creation, rather than at runtime, SPL routines can improve performance for some tasks. SPL routines can also reduce
traffic between a client application and the database server and reduce program complexity.

» When a stored procedure with a return value is executed using the HCL Informix® ODBC Driver, errors returned by the
procedure are not returned to the application until a fetch is called on the result set. Error information from stored

procedures with no returned values is available immediately following the execution of the procedure.

Insert multiple rows

Use an insert cursor to efficiently insert rows into a table in bulk.

Chapter 1. Informix® ODBC Driver Guide

To create an insert cursor, set the SQL_ENABLE_INSERT_CURSOR attribute by using SQLSetStmtOption, then call
SQLParamOptions with the number of rows as a parameter. You can create an insert cursor for data types VARCHAR,
LVARCHAR, and opaque.

When you open an insert cursor, a buffer is created in memory to hold a block of rows. The buffer receives rows of data
as the program produces them; then they are passed to the database server in a block when the buffer is full. The buffer
reduces the amount of communication between the program and the database server. As a result, the insertions go faster.

Automatically freeing a cursor
When an application uses a cursor, it usually sends a FREE statement to the database server to deallocate memory assigned

to a cursor after it no longer needs that cursor.

Execution of this statement involves of message requests between the application and the database server. When the
AUTOFREE is enabled, HCL Informix® ODBC Driver saves message requests because it does not need to execute the FREE

statement. When the database server closes an insert cursor, it automatically frees the memory that it has allocated for it.

Enabling the AUTOFREE feature

You can enable the AUTOFREE feature for an ODBC application in two ways.
About this task

The SQL_INFX_ATTR_AUTO_FREE attribute can be set in any connection state between C2 and C5 (both included) when
setting it using SQLSetConnectAttr, whereas it can be set by using SQLSetStmtAttr only when the statement is in S1
(allocated) state. The value of the SQL_INFX_ATTR_AUTO_FREE attribute can be retrieved by using SQLGetConnectAttr or
SQLSetStmtAttr.

You can enable the AUTOFREE feature for an ODBC application in either of the following ways:

» Set the SQL_INFX_ATTR_AUTO_FREE attribute with SQLSetConnectAttr.

When you use SQLSetConnectAttr to enable this attribute, all new allocated statements for that connection inherit the
attribute value. The only way to change this attribute value per statement is to set and reset it again as a statement
attribute. The default is DISABLED for the connection attribute.

+ Set the SQL_INFX_ATTR_AUTO_FREE attribute with SQLSetStmtAttr.

The AUTOFREE feature

The AUTOFREE feature only works withresult generating statements executed by using SQLExecDirect, as it opens the cursor

which is then closed and released by the corresponding SQLCloseCursor or SQLFreeStmt.

The AUTOFREE feature does not work when the application has to prepare a statement once and then execute it several
times (for example, using SQLPrepare to prepare and then executing it by calling SQLExecute several times). When you close
the cursor with SQLCloseCursor after SQLExecute, it only closes the cursor but does not release the cursor memory on the

database server side. But if you close the cursor by using SQLFreeStmt with SQL_CLOSE or SQL_DROP it not only closes and

183

releases the cursor, but it also unprepares the statement. In the latter case there is savings of a network roundtrip, but the

application is unable to execute the statement again until it reprepares it.

When AUTOFREE is enabled, the application sees an improvement in the network performance when the application closes
the cursor with SQLCloseCursor or SQLFreeStmt with SQL_DROP.

Delay execution of the SQL PREPARE statement

You can defer execution of the SQLPrepare statement by enabling the deferred-PREPARE feature.

This feature works primarily with dynamic SQL statements where the application does a series of SQLPrepare and
SQLExecute statements. It optimizes the number of round-trip messages to the database server by not sending SQLPrepare

statements to the database server until the application calls SQLExecute on that statement.

When deferred-PREPARE is enabled, the following behavior is expected of the application:

« Execution of SQLPrepare does not put the statement in a prepared state.

« Syntax errors in an SQLPrepare statement are not known until the statement is executed because the SQL statement
is never sent to the database server until it is executed. If open-fetch-close optimization is turned on, errors are not
returned to the client until the first fetch, because open-fetch-close optimizes the OPEN/FETCH so that OPEN is sent
on the first fetch.

+ SQLColAttributes, SQLDescribeCol, SQLNumResultCols, and SQLNumParams always return HY010 (function
sequence error) if called after SQLPrepare but before SQLExecute by the application.

» SQLCopyDesc returns HY010 if the source descriptor handle is an IRD if called after SQLPrepare but before
SQLExecute by the application.

» SQLGetDescField and SQLGetDescRec return HY010 if the descriptor handle is an IRD if called after SQLPrepare but
before SQLExecute by the application.

You can enable the deferred-PREPARE feature for an ODBC application in either of the following ways:

« Set the SQL_INFX_ATTR_DEFERRED_PREPARE attribute with SQLSetConnectAttr.

When you use SQLSetConnectAttr to enable this attribute, all new allocated statements for that connection inherit
the attribute value. The only way to change this attribute value per statement, is to set/reset it again as a statement
attribute. The default is DISABLED for the connection attribute.

* Set the SQL_INFX_ATTR_DEFERRED_PREPARE attribute with SQLSetStmtAttr.
The SQL_INFX_ATTR_DEFERRED_PREPARE attribute can be set in any connection state between C2 and C5 (both included)
when setting it using SQLSetConnectAttr, whereas it can be set by with SQLSetStmtAttr only when the statement is in S1

(allocated) state. The value of the SQL_INFX_ATTR_DEFERRED_PREPARE attribute can be retrieved with SQLGetConnectAttr
or SQLSetStmtAttr.

Set the fetch array size for simple-large-object data

To reduce the network overhead for fetches involving multiple rows of simple-large-object data, you can set the array size.

184

Chapter 1. Informix® ODBC Driver Guide

Set the array size so when the driver receives a multiple-row fetch request, it optimizes the fetch buffer size and the internal

fetch array size, and eliminates a round trip to the database server for every simple large object.

Setting the array size greater than 1 can result in a performance improvement even for other types of data because it has
the side effect of automatically increasing the fetch buffer size if necessary. (If the number of rows specified can fit in the
current fetch buffer, setting it has little effect.)

An application can request that multiple rows be returned to it by setting the statement attribute
SQL_ATTR_ROW_ARRAY_SIZE or setting the ARD header field SQL_DESC_ARRAY_SIZE to a value greater than one, and

then calling either SQLFetch or SQLFetchScroll. (The default value of SQL_ATTR_ROW_ARRAY_SIZE is one.) The driver then
recognizes when it receives a multiple-row fetch request and optimizes the settings for the fetch buffer size and the internal
fetch array size. Settings for these are based on the internal tuple size, the user setting of row array size, and the current
setting of fetch array size.

You cannot use the internal fetch array feature under the following conditions:

» When OPTOFC and deferred-PREPARE are both enabled

To use the fetch array feature, the driver is dependent upon knowing how large a row is going to be, as received from
the database server, before sending the fetch request to the database server. When both of these are enabled, this

information is unavailable until after a fetch is performed.

When using scroll cursors

There are separate internal client-to-server protocols used for scroll cursors that are distinct from those protocols
used for fetching arrays. The database server does not support simple large object columns in a scroll cursor. An

error is returned.

When using SQLGetData

In order for the driver to use the fetch array feature, it has to be able to tell the database server how much data it is

prepared to receive at the time of the fetch request. Calls to SQLGetData take place after SQLFetch.

According to the ODBC standard, when using block cursors, the application must call SQLSetPos to position the
cursor on a particular row before calling SQLGetData. SQLSetPos is only usable with scroll cursors and simple-large-
object columns are not allowed in scroll cursors. Also according to the standard, SQLGetData must not be used with
a forward-only cursor with a rowset size greater than 1.

The alternative to using SQLGetData is to use SQLBindCol, which would come before the call to SQLFetch.

You might want to optimize use of SQL_ATTR_ROW_ARRAY_SIZE so the application sets the value of it according to the
maximum number of rows that can be transported in a single buffer. After a statement is prepared, the application might call
SQLGetStmtAttr to get the value of SQL_INFX_ATTR_FET_ARR_SIZE. If the data fits in one fetch buffer, the internal setting

of SQL_INFX_ATTR_FET_ARR_SIZE equals the application setting of SQL_ATTR_ROW_ARRAY_SIZE. In practice, this is only
useful on large result sets.

185

186

The SPL output parameter feature

HCL Informix® ODBC Driver supports the ODBC defined method of getting the return value from a database procedure.

Specifically, ODBC supports the parameter to that precedes the equals sign in a procedure-call escape sequence. The host

variable associated with that parameter is updated upon statement execution either with SQLExecute or SQLExecDirect.

In the HCL Informix® ODBC Driver definition of a procedure-call escape sequence, there is only one return value; therefore,
the following restrictions are placed on this feature:

« Procedures used with this feature must return only one value, although they might return multiple rows.

If this condition is not met, the parameter and its binding are ignored.

« Data from the first row only be placed in the host variable associated with the bound parameter, although procedures
used with this feature can return multiple rows.

To return multiple-value, multiple-row result sets from the HCL Informix® database server, you have to fetch the data as
though it were the result columns of a select statement. This output parameter feature works with existing applications that
bind column or columnss and call SQLFetch or call SQLFetch and SQLGetData when accessing data through a procedure

call. Therefore, no error or warning is generated when more than one row is available to be returned.

You can use either or both methods for retrieving the data from a stored procedure. A host variable can be bound as a
parameter or as a column, or both. If separate buffers are used, only the host variable bound as a parameter is updated upon
statement execution, and only the host variable bound as a column is updated upon a fetch. Unbound columns accessed
through SQLGetData remain unaffected.

OUT and INOUT parameters

As of Version 4.10, HCL Informix® Client Software Development Kit supports the use of OUT and INOUT parameters during
execution of SPL.

The following data types are supported:

* BIGINT

« BLOB

« BOOLEAN
* DATETIME
* CHAR

- CLOB

« DECIMAL
» FLOAT

+ INT8

« INTEGER
« INTERVAL
* LVARCHAR

Chapter 1. Informix® ODBC Driver Guide

* MONEY

* NCHAR

* NVARCHAR

* SMALLFLOAT
* SMALLINT

* VARCHAR

These restrictions exist when using OUT or INOUT parameters in SPL execution:

« Collection data types such as LIST, MULTISET, ROW, and SET are not supported.
- Returning result sets is not supported. After executing SPL with OUT or INOUT parameters, you cannot call SQLFetch
or SQLGetData.

« Only one value can be returned; that is, only one set of OUT or INOUT parameters can be returned per individual SPL
execution.

The following SPL execution example creates one OUT, one INOUT, and one IN (default) parameter and one return
value.

create procedure myproc(OUT dintparam INT, INOUT charparam char(20),
inparam int) returns int

<body of SPL>

end procedure;

The following code example, out i nout par anbl ob. c, shows how to use OUT and INOUT parameters with BLOB, INTEGER,
and VARCHAR data types.

/* Drop procedure */
SQLExecDirect(hstmt, (UCHAR *)"drop procedure spl_out_param_blob;", SQL_NTS);
SQLExecDirect(hstmt, (UCHAR *)"drop table tab_blob;", SQL_NTS);

/* Create table with BLOB column x*/

rc = SQLExecDirect(hstmt, (UCHAR x)"create table tab_blob(c_blob BLOB,
c_int INTEGER, c_char varchar(20));", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR %) "Error in Step 2 --
SQLExecDirect failed\n"))

goto Exit;

/* Insert one row into the table x/
rc = SQLExecDirect(hstmt, (UCHAR x)"insert into tab_blob
values(filetoblob('insert.data', 'c'), 10, 'blob_test');", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR %) "Error in Step 2
-- SQLExecDirect failed\n"))
goto Exit;

/* Create procedure */
rc = SQLExecDirect(hstmt, "CREATE PROCEDURE spl_out_param_blob(inParam int,
OUT blobparam BLOB, OUT dntparam int, OUT charparam varchar(20)) \n"
"returning integer; \n"
"select c_blob, c_int, c_char into blobparam,
intparam, charparam from tab_blobj; \n"
"return inParam; \n"
"end procedure; ",

187

SQL_NTS) ;
if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR %) "Error in Step 2
-- SQLExecDirect failed\n"))
goto Exit;

/* Prepare stored procedure to be executed x*/
rc = SQLPrepare(hstmt, (UCHAR x)"{? = call spl_out_param_blob
(2, 2, 2, 2)}", SQL_NTS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR x)
"Error in Step 2 -- SQLPrepare failed\n"))

goto Exit;

/* Bind the required parameters */
rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_INTEGER, 3, 0, &sParml, 0, &cbParml);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR x)
"Error in Step 2 -- SQLBindParameter 1 failed\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_LONG,
SQL_INTEGER, 10, 0, &sParm2, 0, &cbParm2);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR x*)
"Error in Step 2 -- SQLBindParameter 2 failed\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 3, SQL_PARAM_OUTPUT, SQL_C_BINARY,
SQL_LONGVARBINARY, sizeof(blob_buffer), 0, blob_buffer,
sizeof(blob_buffer), &cbParm3);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR x*)
"Error in Step 2 -- SQLBindParameter 3 failed\n"))

goto Exit;

rc = SQLBindParameter (hstmt, 4, SQL_PARAM_OUTPUT, SQL_C_LONG,
SQL_INTEGER, 10, 0, &sParm3, 0, &cbParm4);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR x)
"Error in Step 2 -- SQLBindParameter 4 failed\n"))
goto Exit;

rc = SQLBindParameter (hstmt, 5, SQL_PARAM_OUTPUT, SQL_C_CHAR,
SQL_VARCHAR, sizeof(schar), 0, schar, sizeof(schar), &cbParmé);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR x*)
"Error in Step 2 -- SQLBindParameter 5 failed\n"))
goto Exit;

/* Exeute the prepared stored procedure x*/

rc = SQLExecute(hstmt);

if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *)
"Error in Step 2 -- SQLExecute failed\n"))
goto Exit;

len =
strilen("123456789abcdefghijklmnopgrstuvwxyz
1234567890123456789012345678901234567890 ")

if((sParm2 != sParml) || (10 != sParm3) ||
(strcmp("blob_test", schar)) || (cbParm3 != 1len))
{

188

Chapter 1. Informix® ODBC Driver Guide

fprintf(stdout, "\n 1st Data compare failed!");

goto Exit;
}
else
{
fprintf(stdout, "\n 1st Data compare successful");
}
/* Reset the parameters x/
rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS);
if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR x)
"Error in Step 3 -- SQLFreeStmt failed\n"))
goto Exit;

/* Reset variables x/
sParml = 0;

cbParmé = cbParml = SQL_NTS;
cbParm3 = SQL_NULL_DATA;
schar[0]=0;

blob_buffer[0]=0;

Asynchronous execution

Design your application to take advantage of data sources that support asynchronous execution. Asynchronous calls do not

perform faster, but well-designed applications appear to run more efficiently.

Turning on asynchronous execution does not by itself improve performance. Well-designed applications, however, can take
advantage of asynchronous query execution by allowing the user to work on other things while the query is being evaluated

on the database server. Perhaps users start one or more subsequent queries or choose to work in another application, all

while the query is executing on the database server. Designing for asynchronous execution makes your application appear to

run faster by allowing the user to work concurrently on multiple tasks.

By default, an application calls to an ODBC driver that then executes statements against the database serverin a
synchronous manner. In this mode of operation, the driver does not return control to the application until its own request
to the database server is complete. For statements that take more than a few seconds to complete execution, this control
return delay can result in the perception of poor performance.

Some data sources support asynchronous execution. When in asynchronous mode, an application calls to an ODBC driver
and control is returned almost immediately. In this mode, the driver returns the status SQL_STILL_EXECUTING to the
application and then sends the appropriate request to the database server for execution. The application polls the driver

at various intervals at which point the driver itself polls the database server to see if the query has completed execution. If
the query is still executing, then the status SQL_STILL_EXECUTING is returned to the application. If it has completed, then a
status such as SQL_SUCCESS is returned, and the application can then begin to fetch records.

Update data with positioned updates and deletes

Although positioned updates do not apply to all types of applications, try to use positioned updates and deletes whenever
possible.

189

190

Positioned updates (with UPDATE WHERE CURRENT OF CURSOR) allow you to update data by positioning the database
cursor to the row to be changed and signaling the driver to change the data. You are not forced to build a complex SQL
statement; you supply the data to be changed.

Besides making the code more maintainable, positioned updates typically result in improved performance. Because the
database server is already positioned on the row (for the SELECT statement currently in process), expensive operations
to locate the row to be changed are unnecessary. If the row must be located, the database server typically has an internal

pointer to the row available (for example, ROWID).

To support positioned UPDATE and DELETE statements with scrollable cursors, HCL Informix® ODBC Driver constructs a
new searched UPDATE or DELETE statement from the original positioned statement. However, the database server cannot
update scroll cursors directly. Instead, HCL Informix® ODBC Driver constructs a WHERE clause that references each column
fetched in the SELECT statement referenced in the WHERE CURRENT OF CURSOR clause. Values from the rowset data cache
of the SELECT statement are bound to each value in the constructed WHERE clause.

This method of positioning is both slower and more error prone than using a WHERE CURRENT OF CURSOR clause with
FORWARD ONLY cursors. If the fetched rows do not contain a unique key value, the constructed WHERE clause might identify
one or many rows, causing many rows to be deleted or updated. Deletion of rows in this manner affects both positioned
UPDATE and DELETE statements, and SQLSetPos statements when you use scroll cursors.

Use SQLSpecialColumns to determine the optimal set of columns to use in the WHERE clause for updating data. Many times

pseudocolumns provide the fastest access to the data; you can determine these columns only by using SQLSpecialColumns.

Many applications cannot be designed to take advantage of positioned updates and deletes. These applications typically
update data by forming a WHERE clause that consists of some subset of the column values that are returned in the result
set. Some applications might formulate the WHERE clause by using all searchable result columns or by calling SQLStatistics
to find columns that might be part of a unique index. These methods typically work but can result in fairly complex queries.

Consider the following example:

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name, ssn,
address, city, state, zip FROM emp", SQL_NTS);
// fetchdata

rc = SQLExecDirect (hstmt, "UPDATE EMP SET ADDRESS = ?
WHERE first_name = ? AND last_name = ? AND ssn = ? AND
address = ? AND city = ? AND state = ? AND zip = ?", SQL_NTS);
// fairly complex query

Applications should call SQLSpecialColumns/SQL_BEST_ROWID to retrieve the optimal set of columns (possibly a
pseudocolumn) that identifies any given record. Many databases support special columns that are not explicitly user-
defined in the table definition but are hidden columns of every table (for example, ROWID, TID, and other columns). These
pseudocolumns almost always provide the fastest access to the data because they typically are pointers to the exact
location of the record. Because pseudocolumns are not part of the explicit table definition, they are not returned from
SQLSpecialColumns. The only way to determine whether pseudocolumns exist is to call SQLSpecialColumns.

Consider the previous example, this time with SQLSpecialColumns:

Chapter 1. Informix® ODBC Driver Guide

rc = SQLSpecialColumns (hstmt, 'emp', ...);

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name, ssn,
address, city, state, zip, ROWID FROM emp", SQL_NTS);
// fetch data and probably "hide" ROWID from the user

rc = SQLExecDirect (hstmt, "UPDATE emp SET address = ? WHERE
ROWID = 2", SQL_NTS);
// fastest access to the data!

If your data source does not contain special pseudocolumns, the result set of SQLSpecialColumns consists of the columns
of the optimal unique index on the specified table (if a unique index exists). Therefore, your application does not additionally
call SQLStatistics to find the smallest unique index.

BIGINT and BIGSERIAL data types

BIGINT and BIGSERIAL data types have the same range of values as INT8 and SERIAL8 data types.

However, BIGINT and BIGSERIAL have advantages for storage and computation over INT8 and SERIALS.

Message transfer optimization

If you activate the message transfer optimization feature (OPTMSG), the driver minimizes message transfers with the

database server for most HCL Informix® ODBC functions.

In addition, the driver chains messages from the database server together and eliminates some small message packets to

accomplish optimized message transfers.

To activate message transfer optimization, set the SQL_INFX_ATTR_OPTMSG statement attribute to one (1). The

optimization default is: OFF.

Message chaining restrictions

HCL Informix® ODBC does not chain SQL functions even when you enable message transfer optimization.

The SQL functions that ODBC does not chain are:

» SQLDisconnect

» SQLConnect

» SQLENndTran

» SQLExecute (if the driver returns results by using the select or call procedure and when the driver uses insert cursors
to perform a bulk insert)

» SQLExtendedFetch

» SQLFetch

» SQLFetchScroll

» SQLPrepare

When the driver reaches one of the functions listed previously, it performs the following actions:

191

192

1. Flushes the message queue to the database server only when it encounters SQL statements that require a response

from the database server.

The driver does not flush the message queue when it encounters functions that do not require network traffic, such
as SQLAllocStmt.

2. Continues message chaining for subsequent SQL statements.

Disable message chaining

You can choose to disable message chaining.

Before you disable message chaining, consider the following situations:

- Some SQL statements require immediate replies. If you disable message chaining, re-enable the OPTMSG feature
after the restricted SQL statement is completed.

- If you perform debugging, you can disable the OPTMSG feature when you are trying to determine how each SQL
statement responds.

« If you enable OPTMSG, the message is queued up for the database server but it is not sent for processing. Consider
disabling message chaining before the last SQL statement in the program to ensure that the database server
processes all messages before the application exits.

« If you disable message chaining, you must reset the SQL_INFX_ATTR_OPTMSG attribute immediately after the SQL
statement that requires it to avoid unintended chaining.

The following example shows how to disable message chaining by placing the SQL_INFX_ATTR_OPTMSG attribute
after the DELETE statement. If you place the attribute after the delete statement, the driver can flush all the queued

messages when the next SQL statement executes.

SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 1);
SQLExecDirect(hstmt, (unsigned char x)

"delete from customer", SQL_NTS);
SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 0);
SQLExecDirect(hstmt, (unsigned char x)

"create index ixl on customer (zipcode)", SQL_NTS);

Unintended message chaining can make it difficult to determine which of the chained statements failed.

At the CREATE INDEX statement, the driver sends both the DELETE and the CREATE INDEX statements to the

database server.
Errors with optimized message transfers
When you enable the OPTMSG feature, HCL Informix® ODBC does not perform error handling on any chained statement.

If you are not sure whether a particular statement might generate an error, include error-handling statements in your code
and do not enable message chaining for that statement.

The database server stops execution of subsequent statements when an error occurs in a chained statement. For example,
in the following code fragment, the intent is to chain five INSERT statements:

Chapter 1. Informix® ODBC Driver Guide

SQLExecDirect(hstmt, "create table tabl (coll INTEGER)", SQL_NTS);
/* enable message chaining */

SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 1);

/* these two INSERT statements execute successfully */
SQLExecDirect(hstmt, "dinsert into tabl values (1)", SQL_NTS);
SQLExecDirect(hstmt, "insert into tabl values (2)", SQL_NTS);

/* this INSERT statement generates an error because the data

* in the VALUES clause is not compatible with the column type x/
SQLExecDirect(hstmt, "insert into tabl values ('a')", SQL_NTS);
/* these two INSERT statements never execute */
SQLExecDirect(hstmt, "insert into tabl values (3)", SQL_NTS);
SQLExecDirect(hstmt, "dinsert into tabl values (4)", SQL_NTS);

/* disable message chaining x/

SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 0);

/* commit work x/

rc = SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

if (rc != SQL_SUCCESS)

In this example, the following actions occur:

« The driver sends the five INSERT statements and the COMMIT WORK statements to the database server for
execution.

 The database inserts col1 values of 1 and 2 into the tab1 table.

« The third INSERT statement generates an error, so the database server does not execute the subsequent INSERT
statements or the COMMIT WORK statement.

- The driver flushes the message queue when the queue reaches the SQLEndTran function.

» The SQLEndTran function, which is the last statement in the chained statements, returns the error from the failed
INSERT statement.

If you want to keep the values that the database server inserted into col1, you must commit them yourself.

Error messages

These topics describe the HCL Informix® ODBC Driver error messages.

The topics provide information about:

« Diagnostic SQLSTATE values
» SQLSTATE values mapped to Informix® error messages

« HCL Informix® ODBC Driver error messages mapped to specific SQLSTATE values

For a description of an error message, use the finderr utility.
Diagnostic SQLSTATE values
Each HCL Informix® ODBC Driver function can return an SQLSTATE value that corresponds to the Informix® error code.

A function can return additional SQLSTATE values that arise from implementation-specific situations. SQLError returns
SQLSTATE values as defined by the GLS and SQL Access Group SQL CAE specification (1992).

193

SQLSTATE values are character strings that consist of a two-character class value followed by a three-character subclass
value. A class value of 01 indicates a warning and is accompanied by a return code of SQL_SUCCESS_WITH_INFO. Class
values other than 01, except for the class I M indicate an error and are accompanied by a return code of SQL_ERROR. The
class I Msignifies warnings and errors that derive from the implementation of HCL Informix® ODBC Driver. The subclass
value 000 in any class is for implementation-defined conditions within the given class. ANSI SQL-92 defines the assignment

of class and subclass values.

Map SQLSTATE values to Informix® error messages

View the SQLSTATE values that HCL Informix® ODBC Driver can return.

The following table maps SQLSTATE values that HCL Informix® ODBC Driver can return.

A return value of SQL_SUCCESS normally indicates a function has executed successfully, although the SQLSTATE 00000 also
indicates success.

SQLSTATE Error message Can be returned from

01000 General war ni ng All HCL Informix® ODBC Driver functions
except:

SQLAIllocEnv
SQLError

01002 Di sconnect error SQLDisconnect

01004 Data truncated SQLBrowseConnect

SQLColAttributes
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPutData
SQLSetPos

01006 Privilege not revoked SQLExecDirect

SQLExecute

194

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE

Error message

Can be returned from

01S00

Invalid connection string attribute

SQLBrowseConnect
SQLDriverConnect

01S01

Error in row

SQLExtendedFetch
SQLSetPos

01S02

Option val ue changed

SQLSetConnectOption
SQLSetStmtOption

01S03

No rows updated or del eted

SQLExecDirect
SQLExecute
SQLSetPos

01S04

More than one row updated or del eted

SQLExecDirect
SQLExecute
SQLSetPos

07001

W ong nunber of paraneters

SQLExecDirect
SQLExecute

07006

Restricted data type attribute violation

SQLBindParameter
SQLExtendedFetch
SQLFetch
SQLGetData

08001

Unabl e to connect to data source

SQLBrowseConnect
SQLConnect
SQLDriverConnect

08002

Connection in use

SQLBrowseConnect
SQLConnect
SQLDriverConnect
SQLSetConnectOption

08003

Connecti on not open

SQLAllocStmt
SQLDisconnect
SQLGetConnectOption
SQLGetInfo
SQLNativeSql

195

196

SQLSTATE

Error message

Can be returned from

SQLSetConnectOption
SQLTransact

08004

Dat a source rejected establishment of connection

SQLBrowseConnect
SQLConnect
SQLDriverConnect

08007

Connection failure during transaction

SQLTransact

08S01

Communi cation link failure

SQLBrowseConnect
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLGetData
SQLGetTypelnfo
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetConnectOption
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

21801

Insert value |list does not match colum Iist

SQLExecDirect
SQLPrepare

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE

Error message

Can be returned from

21S02

Degree of derived table does not match colum Ii st

SQLExecDirect
SQLPrepare
SQLSetPos

22001

String data right truncation

SQLPutData

22003

Nuneric val ue out of range

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLGetInfo
SQLPutData
SQLSetPos

22005

Error in assignment

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLPrepare
SQLPutData
SQLSetPos

22008

Datetine field overflow

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData
SQLPutData
SQLSetPos

22012

Di vi sion by zero

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLGetData

22026

String data, length mismatch

SQLParamData

197

198

SQLSTATE

Error message

Can be returned from

23000

Integrity constraint violation

SQLExecDirect
SQLExecute
SQLSetPos

24000

Invalid cursor state

SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetStmtOption
SQLGetTypelnfo
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetCursorName
SQLSetPos
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

25000

Invalid transaction state

SQLDisconnect

28000

Invalid authorization specification

SQLBrowseConnect
SQLConnect
SQLDriverConnect

34000

Invalid cursor name

SQLExecDirect
SQLPrepare
SQLSetCursorName

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE

Error message

Can be returned from

37000

Syntax error or access violation

SQLExecDirect
SQLNativeSql
SQLPrepare

3C000

Dupl i cate cursor nane

SQLSetCursorName

40001

Serialization failure

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch

42000

Syntax error or access violation

SQLExecDirect
SQLExecute
SQLPrepare
SQLSetPos

70100

Qperation aborted

SQLCancel

IMOO1

Driver does not support this function

All ODBC functions except:

SQLAllocConnect
SQLAllocEnv
SQLDataSources
SQLDrivers
SQLError
SQLFreeConnect
SQLFreeEnv
SQLGetFunctions

IM002

Data source nane not found and no default driver

specified

SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM0O03

Specified driver could not be |oaded

SQLBrowseConnect
SQLConnect
SQLDriverConnect

IM004

Driver's SQLAI |l ocEnv failed

SQLBrowseConnect
SQLConnect
SQLDriverConnect

199

200

SQLSTATE Error message Can be returned from
IM005 Driver's SQAI I ocConnect failed SQLBrowseConnect
SQLConnect
SQLDriverConnect
IM006 Driver's SQLSet Connect Option failed SQLBrowseConnect
SQLConnect
SQLDriverConnect
IM007 No data source or driver specified; dialog prohibited SQLDriverConnect
IM008 Dialog failed SQLDriverConnect
IM009 Unable to load translation shared library (DLL) SQLBrowseConnect
SQLConnect
SQLDriverConnect
SQLSetConnectOption
IMO10 Data source name too |ong SQLBrowseConnect
SQLDriverConnect
IMO11 Driver nane too |ong SQLBrowseConnect
SQLDriverConnect
IM012 DRI VER keyword syntax error SQLBrowseConnect
SQLDriverConnect
IM013 Trace file error All ODBC functions.
S0001 Base table or view already exists SQLExecDirect
SQLPrepare
S0002 Base table not found SQLExecDirect
SQLPrepare
S0011 I ndex al ready exists SQLExecDirect
SQLPrepare
S0012 I ndex not found

SQLExecDirect
SQLPrepare

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE

Error message

Can be returned from

S0021

Col um al ready exists

SQLExecDirect
SQLPrepare

S0022

Col umm not found

SQLExecDirect
SQLPrepare

S0023

No default for colum

SQLSetPos

S1000

General error

All ODBC functions except:

S1001

Menory al l ocation failure

All ODBC functions except:

SQLAllocEnv
SQLError
SQLFreeConnect
SQLFreeEnv

S1002

Invalid col um nunber

SQLBindCol
SQLColAttributes
SQLDescribeCol
SQLExtendedFetch
SQLFetch
SQLGetData

S1003

Program type out of range

SQLBindCol
SQLBindParameter
SQLGetData

S1004

SQL data type out of range

SQLBindParameter
SQLGetTypelnfo

S1008

Qperation cancel ed

All ODBC functions that can be processed
asynchronously:

SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch

201

SQLSTATE

Error message

Can be returned from

SQLForeignKeys
SQLGetData
SQLGetTypelnfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

S1009

Invalid argunment val ue

SQLAllocConnect
SQLAllocStmt
SQLBindCol
SQLBindParameter
SQLExecDirect
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLNativeSql
SQLPrepare
SQLPutData
SQLSetConnectOption
SQLSetCursorName
SQLSetPos
SQLSetStmtOption

202

S1010

Function sequence error

SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE

Error message

Can be returned from

SQLDisconnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt
SQLGetConnectOption
SQLGetCursorName
SQLGetData
SQLGetFunctions
SQLGetStmtOption
SQLGetTypelnfo
SQLMoreResults
SQLNumParams
SQLNumResultCols
SQLParamData
SQLParamOptions
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLRowCount
SQLSetConnectOption
SQLSetCursorName
SQLSetPos
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

S1011

Qperation invalid at this tine

SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

203

SQLSTATE

Error message

Can be returned from

S1012

Invalid transaction operation code specified

SQLTransact

S1015

No cursor nanme avail abl e

SQLGetCursorName

S1090

Invalid string or buffer length

SQLBindCol
SQLBindParameter
SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDrivers
SQLExecDirect
SQLExecute
SQLForeignKeys
SQLGetCursorName
SQLGetData
SQLGetInfo
SQLNativeSq|
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetCursorName
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

S1091

Descriptor type out of range

SQLColAttributes

S1092

Option type out of range

SQLFreeStmt
SQLGetConnectOption
SQLGetStmtOption
SQLSetConnectOption
SQLSetStmtOption

204

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error message Can be returned from
S1093 Invalid paraneter nunber SQLBindParameter
S1094 Invalid scal e val ue SQLBindParameter
S1095 Function type out of range SQLGetFunctions
S1096 Information type out of range SQLGetInfo
S1097 Col umm type out of range SQLSpecialColumns
S1098 Scope type out of range SQLSpecialColumns
S1099 Nul | abl e type out of range SQLSpecialColumns
S1100 Uni queness option type out of range SQLStatistics
S1101 Accuracy option type out of range SQLStatistics
S1103 Direction option out of range SQLDataSources
SQLDrivers
S1104 Invalid precision val ue SQLBindParameter
S1105 Invalid paraneter type SQLBindParameter
S1106 Fetch type out of range SQLExtendedFetch
S1107 Row val ue out of range SQLExtendedFetch
SQLParamOptions
SQLSetPos
SQLSetScrollOptions
S1108 Concurrency option out of range SQLSetScrollOptions
S1109 Invalid cursor position SQLExecute
SQLExecDirect
SQLGetData
SQLGetStmtOption
SQLSetPos
S1110 Invalid driver conpletion SQLDriverConnect
S1111 Inval i d bookmark val ue SQLExtendedFetch
S1C00 Driver not capable SQLBindCol
SQLBindParameter
SQLColAttributes
SQLColumnPrivileges
SQLColumns

205

206

SQLSTATE

Error message

Can be returned from

SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetConnectOption
SQLGetData
SQLGetInfo
SQLGetStmtOption
SQLGetTypelnfo
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLSetConnectOption
SQLSetPos
SQLSetScrollOptions
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables
SQLTransact

S1T00

Ti me-out expired

SQLBrowseConnect
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLDescribeCol
SQLDriverConnect
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetInfo
SQLGetTypelnfo
SQLMoreResults

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error message Can be returned from

SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

Map Informix® error messages to SQLSTATE values

The rest of this section describes diagnostic SQLSTATE values for HCL Informix® ODBC Driver functions.

The return code for each SQLSTATE value is SQL_ERROR unless a description indicates otherwise. When a function returns
SQL_SUCCESS_WITH_INFO or SQL_ERROR, you can call SQLError to get the SQLSTATE value.

Deprecated and new HCL Informix® ODBC Driver APls

In Version 4.10, numerous ODBC APIs have been deprecated and their functionality transferred to new APIs.

Only the name has been changed; no functionality has changed. The following table lists the deprecated and new APIs.

Table 10. Deprecated and new ODBC APls

Depreca
ted ODBC APIs New ODBC APIs
SQLAllocConnect SQLAllocHandle
SQLAllocEnv SQLAllocHandle
SQLAllocStmt SQLAllocHandle
SQLColAttributes SQLColAttribute
SQLError SQLGetDiagRec

SQLExtendedFetch SQLFetch,
SQLFetchScroll

SQLFreeConnect SQLFreeHandle

207

208

Table 10. Deprecated and new ODBC APIs

(continued)

Depreca
ted ODBC APIs New ODBC APIs

SQLFreeEnv SQLFreeHandle
SQLFreeStmt SQLFreeHandle
SQLGetConnectOption SQLGetConnectAttr
SQLGetStmtOption SQLGetStmtAttr
SQLSetConnectOption SQLSetConnectAttr
SQLSetPos SQLBulkOperations
SQLSetStmtOption SQLSetStmtAttr
SQLTransact SQLEndTran

SQLAllocConnect (core level only)

This table describes the SQLSTATE and error values for SQLAllocConnect.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1009 -11066 Invalid argument val ue

SQLAIllocEnv (core level only)

SQLAIllocEnv allocates memory for an environment handle and initializes the driver call level interface for application use.
An application must call SQLAIllocEnv before it calls any other driver function.

A driver cannot return SQLSTATE values directly after the call to SQLAIllocEnv because no valid handle exists with which to

call SQLError.

Two levels of SQLAIllocEnv functions exist, one within the driver manager (if you are using one) and one within the driver.

The driver manager does not call the driver-level function until the application calls SQLConnect, SQLBrowseConnect,

or SQLDriverConnect. If an error occurs in the driver-level SQLAllocEnv function, the driver manager-level SQLConnect,
SQLBrowseConnect, or SQLDriverConnect function returns SQL_ERROR. A subsequent call to SQLError with henv,
SQL_NULL_HDBC, and SQL_NULL_HSTMT returns SQLSTATE IM004 (the driver SQLAllocEnv function failed), followed by one

of the following errors from the driver:

» SQLSTATE S1000 (General error)

Chapter 1. Informix® ODBC Driver Guide

» The HCL Informix® ODBC Driver SQLSTATE value, which ranges from s1000 to s19zz.

For example, SQLSTATE S1001 (Memory-allocation failure) indicates that the call from the driver manager to the
driver-level SQLAIllocEnv returned SQL_ERROR, and the henv from the driver manager was set to SQL_NULL_HENV.

SQLAllocStmt (core level only)

SQLAllocStmt allocates memory for a statement handle and associates the statement handle with the connection that hdbc

specifies.

An application must call SQLAllocStmt before it submits SQL statements.

The following table describes the SQLSTATE and error values for SQLAllocStmt.

SQLSTATE Error value Error message

01000 -11001 General warning

08003 -11017 Connection not open

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1009 -11066 Invalid argument val ue

08S01 -11301 A protocol error has been detected. Current connection is closed.

SQLBindCol (core level only)

SQLBindCol assigns the storage and HCL Informix® ODBC Driver C data type for a column in a result set.

The SQLBindCol assigns the storage as follows:

« A storage buffer that receives the contents of a column of data

* The length of the storage buffer

- A storage location that receives the actual length of the column of data returned by the fetch operation

- Data type conversion from the Informix® SQL data type to the Informix® ODBC driver C data type

The following table describes the SQLSTATE and error values for SQLBindCol.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1002 -11062 Invalid col um nunber

209

210

SQLSTATE Error value Error message

S1003 -11063 Program type out of range
sS1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length
S1C00 -11092 Driver not capable

! Important: An application can call SQLBindCol to bind a column to a new storage location, regardless of whether

data has already been fetched. The new binding replaces the old binding for bookmark columns as well as other

bound columns. The new binding does not apply to data already fetched; it takes effect the next time SQLFetch,
SQLExtendedFetch, or SQLSetPos is called.

SQLBindParameter (level one only)

SQLBindParameter binds a buffer to a parameter marker in an SQL statement.

The following table describes the SQLSTATE and error values for SQLBindParameter.

SQLSTATE Error value Error message

01000 -11001 General warning

07006 -11013 Restricted data type attribute violation
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
$1003 -11063 Program type out of range
S1004 -11064 SQL data type out of range
S1009 -11066 Invalid argunent val ue

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length
S1093 -11074 Invalid parameter nunber
S1094 -11075 Invalid scale val ue

S1104 -11084 Invalid precision val ue

S1105 -11085 Invalid parameter type

S1C00 -11092 Driver not capable

Chapter 1. Informix® ODBC Driver Guide

SQLBrowseConnect (level two only)

SQLBrowseConnect supports an iterative method of discovering and enumerating the attributes and attribute values required

to connect to a data source.

Each call to SQLBrowseConnect returns successive levels of attributes and attribute values. When all levels are enumerated,

a connection to the data source is completed, and a SQLBrowseConnect string is returned with a return code of now

connected to the data source.

SQLSTATE Error value Error message

01000 -11001 General war ning

01004 -11003 Data truncated

01S00 -11005 Invalid connection string attribute

08001 -11015 Unabl e to connect to data source

08002 -11016 Connection in use

08S01 -11020 Comuni cation-1ink failure

28000 -11033 Invalid authorization specification

IM002 -11041 Data source not found and no default driver specified
IM003 -11042 Specified driver could not be |oaded

IM004 -11043 Driver's SQAI |l ocEnv failed

IM005 -11044 Driver's SQAl | ocConnect failed

IM006 -11045 Driver's SQLSet ConnectOption failed

IM009 -11048 Unable to load translation shared library (DLL)
IMO10 -11049 Dat a- sour ce nhame too |ong

IMO11 -11050 Driver name too |ong

IM012 -11051 DRI VER keyword syntax error

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1090 -11071 Invalid string or buffer length

S1TO0O0 -11094 Ti me- out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11303 I nput connection string too |arge

S1000 -11317 Invalid connectdatabase val ue specified

211

SQLSTATE Error value Error message

S1000 -11318 Invalid vnbcharl enexact val ue specified

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLCancel (core level only)

SQLCancel cancels the processing on an hstmt or a query.

The following table describes the SQLSTATE and error values for the function.

SQLSTATE Error value Error message

01000 -11001 General war ning

01S05 -11010 Cancel treated as FreeStnt/d ose.

70100 -11039 Cperati on abort ed

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

08S01 -11301 A protocol error has been detected. Current connection is closed.

SQLColAttributes (core level only)

SQLColAttributes returns descriptor information for a column in a result set.

It cannot be used to return information about the bookmark column (column 0). Descriptor information is returned as a

character string, a 32-bit descriptor-dependent value, or an integer value.

The following table describes the SQLSTATE and error values for SQLColAttributes.

SQLSTATE Error value Error message

01000 -11001 General warni ng

01004 -11003 Data truncated

24000 -11031 Invalid cursor state
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1002 -11062 Invalid col um nunber
S1008 -11065 Operation cancel ed
s1010 -11067 Functi on- sequence error

212

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

S1090 -11071 Invalid string or buffer length
S1091 -11072 Descriptor type out of range
S1C00 -11092 Driver not capable

S1T00 -11094 Ti me- out expired

SQLColAttributes can return any SQLSTATE that can be returned by SQLPrepare or SQLExecute when it is called after

SQLPrepare and before SQLExecute, depending on when the data source evaluates the SQL statement associated with the

hstmt.

SQLColumnPrivileges (level two only)

SQLColumnPrivileges returns a list of columns and associated privileges for the specified table. The driver returns the

information as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for SQLColumnPrivileges.

SQLSTATE Error value Error message

01000 -11001 General war ni ng

08S01 -11020 Comuni cation-1ink failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1008 -11065 Qperation cancel ed

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1TO0O0 -11094 Ti nme- out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

213

SQLColumns (level one only)

SQLColumns returns the list of column names in specified tables. The driver returns this information as a result set on the

specified hstmt.

The following table describes the SQLSTATE and error values for SQLColumns.

SQLSTATE Error value Error message

01000 -11001 General warni ng

08S01 -11020 Comuni cation-1ink failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1008 -11065 Qeration cancel ed

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1TO0O0 -11094 Ti me- out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLConnect (core level only)

SQLConnect loads a driver and establishes a connection to a data source.

The connection handle references where all information about the connection, including status, transaction state, and error

information is stored.

The following table describes the SQLSTATE and error values for SQLConnect.

SQLSTATE Error value Error message

01000 -11001 General warning

08001 -11015 Unabl e to connect to data source
08002 -11016 Connection in use

214

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

08S01 -11020 Communi cation-link failure

28000 -11033 Invalid authorization specification

IM002 -11041 Data source not found and no default driver specified
IM003 -11042 Specified driver could not be |oaded

IM004 -11043 Driver's SQAl | ocEnv failed

IM005 -11044 Driver's SQAI | ocConnect failed

IMOO06 -11045 Driver's SQ.Set Connect Qption failed

IM009 -11048 Unabl e to load translation shared library (DLL)
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1090 -11071 Invalid string or buffer length

S1T00 -11094 Ti me- out expired

S1000 -11302 I nsufficient connection information was supplied
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLDataSources (level two only)

SQLDataSources lists data-source names.

The following table describes the SQLSTATE and error values for SQLDataSources.

SQLSTATE Error value Error message

01000 -11001 General war ni ng

01004 -11003 Data truncat ed

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1090 -11071 Invalid string or buffer length
S1103 -11083 Direction option out of range

SQLDescribeCol (core level only)

SQLDescribeCol returns the result descriptor (column name, type, precision, scale, and whether it can have a NULL value) for

one column in the result set.

215

It cannot be used to return information about the bookmark column (column 0).

The following table describes the SQLSTATE and error values for SQLDescribeCol.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

24000 -11031 Invalid cursor state
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1002 -11062 Invalid col utm number
S1008 -11065 Operation cancel ed

S1010 -11067 Functi on- sequence error
S1090 -11071 Invalid string or buffer length
S1T00 -11094 Ti me- out expired

SQLDescribeCol can return any SQLSTATE that SQLPrepare or SQLExecute returns when SQLDescribeCol is called after

SQLPrepare and before SQLExecute, depending on when the data source evaluates the SQL statement associated with the

hstmt.

SQLDisconnect

SQLDisconnect closes the connection associated with a specific connection handle.

The following table describes the SQLSTATE and error values for SQLDisconnect.

SQLSTATE Error value Error message

01000 -11001 General warning

01002 -11002 Di sconnect error

08003 -11017 Connection not open

25000 -11032 Invalid transaction state

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

s1010 -11067 Functi on- sequence error

08S01 -11301 A protocol error has been detected. Current connection is closed.

216

Chapter 1. Informix® ODBC Driver Guide

Usage

If an application calls SQLDisconnect after SQLBrowseConnect returns SQL_NEED_DATA and before it returns a different

return code, the driver cancels the connection-browsing process and returns the hdbc to an unconnected state.

If an application calls SQLDisconnect while an incomplete transaction is associated with the connection handle, the driver
returns SQLSTATE 25000 (Invalid transaction state), indicating that the transaction is unchanged and the connection is open.

An incomplete transaction is one that was not committed or rolled back with SQLTransact.

If an application calls SQLDisconnect before it frees every hstmt associated with the connection, the driver frees each
remaining hstmt after it successfully disconnects from the data source. However, if one or more of the hstmts associated
with the connection are still executing asynchronously, SQLDisconnect returns SQL_ERROR with an SQLSTATE value of
S1010 (Function sequence error).

SQLDriverConnect (level one only)

SQLDriverConnect is an alternative to SQLConnect.

It supports data sources that require more connection information than the three arguments in SQLConnect dialog boxes to
prompt the user for all connection information and data sources that are not defined data source names.

SQLDriverConnect provides the following connection options:

« You can establish a connection by using a connection string that contains the data source name, one or more user
IDs, one or more passwords, and other information that the data source requires.
- You can establish a connection by using a partial connection string or no additional information; in this case, HCL

Informix® ODBC Driver can prompt the user for connection information.

After a connection is established, SQLDriverConnect connection string is completed. The application can use this string for

subsequent connection requests.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

01S00 -11005 Invalid connection string attribute

08001 -11015 Unabl e to connect to data source

08002 -11016 Connection in use

08S01 -11020 Communi cation-1ink failure

28000 -11033 Invalid authorization specification

IM002 -11041 Data source not found and no default driver specified
IM003 -11042 Specified driver could not be |oaded

217

218

SQLSTATE Error value Error message

IM004 -11043 Driver's SQAI |l ocEnv failed

IM005 -11044 Driver's SQLAl | ocConnect fail ed

IM006 -11045 Driver's SQ.Set ConnectOption failed

IMOOQ7 -11046 No data source or driver specified; dialog prohibited
IM008 -11047 Dialog failed

IM009 -11048 Unabl e to load translation shared library

IMO10 -11049 Dat a- sour ce name too |ong

IMO11 -11050 Driver name too |ong

IM012 -11051 DRI VER keyword syntax error

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1090 -11071 Invalid string or buffer length

S1110 -11090 Invalid driver conpletion

S1TO0O0 -11094 Ti me- out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11302 Insufficient connection information was supplied
S1000 -11303 I nput connection string too |arge

S1000 -11317 Invalid connectdatabase val ue specified

S1000 -11318 Invalid vnbcharl enexact val ue specified

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLDrivers (level two only)

SQLDrivers lists driver descriptions and driver-attribute keywords.

The following table describes the SQLSTATE and error values for SQLDrivers.

SQLSTATE Error value Error message
01000 -11001 General warning
01004 -11003 Data truncated
S1000 -11060 General error

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

S1001 -11061 Menory-al | ocation failure
S1090 -11071 Invalid string or buffer length
S1103 -11083 Direction option out of range

SQLError (core level only)

SQLError returns error or status information.

SQLError does not post error values for itself. SQLError returns SQL_NO_DATA_FOUND when it cannot retrieve any error
information (in which case sqlstate equals 00000). If SQLError cannot access error values for any reason that would normally
return SQL_ERROR, SQLError returns SQL_ERROR but does not post any error values. If the buffer for the error message is too
short, SQLError returns SQL_SUCCESS_WITH_INFO but still does not return an SQLSTATE value for SQLError.

To determine that a truncation occurred in the error message, an application can compare cbErrorMsgMax to the actual
length of the message text written to pcbErrorMsg.

SQLExecDirect (core level only)

SQLExecDirect executes a preparable statement by using the current values of the parameter-marker variables if any
parameters exist in the statement.

SQLExecDirect is the fastest way to submit an SQL statement for one-time execution.

The following table describes the SQLSTATE and error values for SQLExecDirect.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

01006 -11004 Privilege not revoked

01S03 -11008 No rows updated or del eted

01S04 -11009 More than one row updated or del eted

07001 -11012 Wong nunber of paraneters

07S01 -11014 Invalid use of default parameter

08S01 -11020 Cormmuni cation-1ink failure

21801 -11021 Insert value list does not match columm Iist
21S02 -11022 Degree of derived table does not match colum |ist
22003 -11025 Nuneric val ue out of range

219

220

SQLSTATE Error value Error message

22005 -11026 Error in assignment

22008 -11027 Datetime field overflow

22012 -11028 Di vi si on by zero

23000 -11030 Integrity-constraint violation
24000 -11031 Invalid cursor state

34000 -11034 Invalid cursor name

37000 -11035 Syntax error or access violation
40001 -11037 Serialization failure

42000 -11038 Syntax error or access violation
S0001 -11053 Base table or view already exists
S0002 -11054 Base table not found

S0011 -11055 Index already exists

S0012 -11056 I ndex not found

S0021 -11057 Col umm al ready exists

S0022 -11058 Col umm not found

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1008 -11065 Operation cancel ed

S1009 -11066 Invalid argunent val ue

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length
S1109 -11089 Invalid cursor position

S1C00 -11092 Driver not capable

S1T00 -11094 Ti me- out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed
08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection
S1000 -11320 Syntax error

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value

Error message

S1000 -11323

The statenment contained an escape clause not supported by this database driver

SQLExecute (core level only)

SQLExecute executes a prepared statement by using the current values of the parameter-marker variables if any parameter

markers exist in the statement.

The following table describes the SQLSTATE and error values for SQLExecute.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

01006 -11004 Privilege not revoked

01S03 -11008 No rows updated or del eted
01S04 -11009 Mre than one row updated or del eted
07001 -11012 Wong nunber of paraneters
07S01 -11014 Invalid use of default paraneter.
08S01 -11020 Communi cation-1ink failure
22003 -11025 Numeric val ue out of range
22005 -11026 Error in assignment

22008 -11027 Datetine field overflow

22012 -11028 Di visi on by zero

23000 -11030 Integrity constraint violation
24000 -11031 Invalid cursor state

40001 -11037 Serialization failure

42000 -11038 Syntax error or access violation
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1008 -11065 Operation cancel ed

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length
S1109 -11089 Invalid cursor position

221

SQLSTATE Error value Error message

S1C00 -11092 Driver not capable

S1T00 -11094 Ti me- out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

222

SQLExecute can return any SQLSTATE that SQLPrepare can return based on when the data source evaluates the SQL

statement associated with the hstmt.

SQLExtendedFetch (level two only)

SQLExtendedFetch extends the functionality of SQLFetch.

SQLExtendedFetch extends functionality in the following ways:

« It returns row-set data (one or more rows), in the form of an array, for each bound column.

« It scrolls through the result set according to the setting of a scroll-type argument.

SQLExtendedFetch works with SQLSetStmtOption.

To fetch one row of data at a time in a forward direction, an application calls SQLFetch.

The following table describes the SQLSTATE and error values for SQLExtendedFetch.

SQLSTATE Error value Error message

01000 -11001 General warni ng

01004 -11003 Data truncated

01801 -11006 Error in row

07006 -11013 Restricted data type attribute violation
08S01 -11020 Comuni cation-1ink failure

22002 -11024 I ndi cator val ue required but not supplied
22003 -11025 Numeric val ue out of range

22005 -11026 Error in assignment

22008 -11027 Datetinme field overflow

22012 -11028 Di visi on by zero

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

24000 -11031 Invalid cursor state

40001 -11037 Serialization failure

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1002 -11062 Invalid col um nunber

S1008 -11065 Qperation cancel ed

S1010 -11067 Funct i on- sequence error

S1106 -11086 Fetch type out of range

S1107 -11087 Row val ue out of range

S1C00 -11092 Driver not capable

S1TO0O0 -11094 Ti me- out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11307 I'n SQLExt endedFet ch, only SQL_FETCH NEXT is supported for
SQL_SCROLL_Forward_only cursors

If an error occurs that pertains to the entire row set, such as SQLSTATE S1T00 (Time-out expired), the driver returns
SQL_ERROR and the appropriate SQLSTATE. The contents of the row set buffers are undefined, and the cursor position is

unchanged.

If an error occurs that pertains to a single row, the driver performs the following actions:

- Sets the element in the rgfRowStatus array for the row to SQL_ROW_ERROR
« Posts SQLSTATE 01S01 (Error in row) in the error queue
+ Posts zero or more additional SQLSTATE values for the error after SQLSTATE 01S01 (Error in row) in the error queue

After the driver processes the error or warning, it continues the operation for the remaining rows in the row set and returns
SQL_SUCCESS_WITH_INFO. Thus, for each error that pertains to a single row, the error queue contains SQLSTATE 01S01
(Error in row) followed by zero or more additional SQLSTATEs.

After the driver processes the error, it fetches the remaining rows in the row set and returns SQL_SUCCESS_WITH_INFO.
Thus, for each row that returns an error, the error queue contains SQLSTATE 01S01 (Error in row) followed by zero or more
additional SQLSTATE values.

If the row set contains rows that are already fetched, the driver is not required to return SQLSTATE values for errors that
occurred when the rows were first fetched. However, it is required to return SQLSTATE 01S01 (Error in row) for each row

in which an error originally occurred and to return SQL_SUCCESS_WITH_INFO. For example, a static cursor that maintains

223

224

a cache might cache row-status information (so that it can determine which rows contain errors) but might not cache the
SQLSTATE associated with those errors.

Error rows do not affect relative cursor movements. For example, suppose the result set size is 100, and the row-set size is
10. If the current row set is rows 11 through 20 and the element in the rgfRowStatus array for row 11 is SQL_ROW_ERROR,
calling SQLExtendedFetch with the SQL_FETCH_NEXT fetch type still returns rows 21 through 30.

If the driver returns any warnings, such as SQLSTATE 01004 (Data truncated), it returns warnings that apply to the entire row
set or to unknown rows in the row set before it returns error information that applies to specific rows. It returns warnings for
specific rows with any other error information about those rows.

SQLFetch (core level only)
SQLFetch fetches a row of data from a result set.
The driver returns data for all columns that were bound to storage locations with SQLBindCol.

The following table describes the SQLSTATE and error values for SQLFetch.

SQLSTATE Error value Error message

01000 -11001 General war ni ng

01004 -11003 Data truncated

07006 -11013 Restricted data-type attribute violation
08S01 -11020 Conmuni cation-link failure

22002 -11024 I ndi cator val ue required but not supplied
22003 -11025 Nurmeric val ue out of range

22005 -11026 Error in assignment

22008 -11027 Datetinme field overflow

22012 -11028 Di vi sion by zero

24000 -11031 Invalid cursor state

40001 -11037 Serialization failure

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1002 -11062 Invalid col um nunber

S1008 -11065 Cperation cancel ed

sS1010 -11067 Functi on- sequence error

S1C00 -11092 Driver not capable

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE

Error value

Error message

S1T00

-11094

Ti me- out expired

SQLForeignKeys (level two only)

SQLForeignKeys can return a list of foreign keys.

SQLForeignKeys can return either of the following items:

« A list of foreign keys in the specified table (columns in the specified table that refer to primary keys in other tables)

- Alist of foreign keys in other tables that refer to the primary key in the specified table

The driver returns each list as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for SQLForeignKeys.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication link failure

24000 -11031 Invalid cursor state

IM0O1 -11040 Driver does not support this function

S1000 -11060 General error

S1001 -11061 Memory allocation failure

S1008 -11065 Operation canceled

S1009 -11066 Invalid argument value

S1010 -11067 Function sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Timeout expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current® connection is closed.
S1000 -11310 Create and Drop must be executed within a ServerOnly Connection
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

225

SQLFreeConnect (core level only)

SQLFreeConnect releases a connection handle and frees all memory associated with the handle.

The following table describes the SQLSTATE and error values for SQLFreeConnect.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Cormmuni cation-1ink failure
S1000 -11060 General error

S1010 -11067 Funct i on- sequence error

SQLFreeEnv (core level only)

SQLFreeEnv frees the environment handle and releases all memory associated with the environment handle.

The following table describes the SQLSTATE and error values for SQLFreeEnv.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1010 -11067 Functi on- sequence error

SQLFreeStmt (core level only)

SQLFreeStmt stops the processing that is associated with a specific hstmt, closes any open cursors that are associated with

the hstmt, discards pending results, and, optionally, frees all resources associated with the statement handle.

The following table describes the SQLSTATE and error values for SQLFreeStmt.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1010 -11067 Functi on- sequence error
S1092 -11073 Option type out of range

SQLGetConnectOption (level one only)

SQLGetConnectOption returns the current setting of a connection option.

226

Chapter 1. Informix® ODBC Driver Guide

The following table describes the SQLSTATE and error values for SQLGetConnectOption.

SQLSTATE Error value Error message

01000 -11001 General warning

08003 -11017 Connection not open
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
s1010 -11067 Functi on- sequence error
S1092 -11073 Option type out of range
S1C00 -11092 Driver not capable

SQLGetCursorName (core level only)

SQLGetCursorName returns the cursor name associated with a specified hstmt.

The following table describes the SQLSTATE and error values for SQLGetCursorName.

SQLSTATE Error value Error message

01000 -11001 General warni ng

01004 -11003 Data truncated

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
s1010 -11067 Functi on- sequence error

S1015 -11070 No cursor name avail abl e
S1090 -11071 Invalid string or buffer length

SQLGetData (level one only)

SQLGetData returns result data for a single unbound column in the current row.

The application must call SQLFetch or SQLExtendedFetch and (optionally) SQLSetPos to position the cursor on a row of
data before it calls SQLGetData. It is possible to use SQLBindCol for some columns and use SQLGetData for others within
the same row. This function can be used to retrieve character or binary data values in parts from a column with a character,
binary, or data source-specific data type (for example, data from SQL_LONGVARBINARY or SQL_LONGVARCHAR columns).

The following table describes the SQLSTATE and error values for SQLGetData.

227

228

SQLSTATE Error value Error message

01000 -11001 General war ni ng

01004 -11003 Data truncat ed

07006 -11013 Restricted data- type attribute violation
08S01 -11020 Communi cation-1ink failure

22002 -11024 I ndi cator val ue required but not supplied
22003 -11025 Nureric val ue out of range

22005 -11026 Error in assignnent

22008 -11027 Datetime-field overflow

22012 -11028 Di visi on by zero

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1002 -11062 Invalid col um nunber

S1003 -11063 Program type out of range

S1008 -11065 Operation cancel ed

S1009 -11066 Invalid argunent val ue

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length

S1109 -11089 Invalid cursor position

S1C00 -11092 Driver not capable

S1T00 -11094 Ti me-out expi red

08S01 -11301 A protocol error has been detected. Current connection is closed.

SQLGetFunctions (level one only)

SQLGetFunctions returns information about whether the driver supports a specific function.

The following table describes the SQLSTATE and error values for SQLGetFunctions.

SQLSTATE Error value Error message
01000 -1101 General warning
S1000 -11060 General error

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

S1001 -11061 Menory-al | ocation failure
sS1010 -11067 Functi on- sequence error
S1095 -11076 Function type out of range

SQLGetInfo (level one only)

SQLGetInfo returns general information about the driver and data source associated with an hdbc.

The following table describes the SQLSTATE and error values for SQLGetInfo.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

08003 -11017 Connection not open

22003 -11025 Numeric val ue out of range
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1009 -11066 Invalid argunent val ue

S1090 -11071 Invalid string or buffer length
S1096 -11077 Information type out of range
S1C00 -11092 Driver not capable

S1T00 -11094 Ti me- out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

SQLGetStmtOption (level one only)

SQLGetStmtOption returns the current setting of a statement option.

The following table describes the SQLSTATE and error values for SQLGetStmtOption.

SQLSTATE Error value Error message

01000 -11001 General warning

24000 -11031 Invalid cursor state
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

229

SQLSTATE Error value Error message

S1010 -11067 Functi on- sequence error

S1011 -11068 Operation invalid at this tine
S1092 -11073 Option type out of range
S1109 -11089 Invalid cursor position
S1C00 -11092 Driver not capable

SQLGetTypelnfo (level one only)

SQLGetTypelnfo returns information about data types that the data source supports.
The driver returns the information in the form of an SQL result set.

The following table describes the SQLSTATE and error values for SQLGetTypelnfo.

SQLSTATE Error value Error message

01000 -11001 General war ni ng

08S01 -11020 Cormmuni cation-1ink failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1004 -11064 SQ data type out of range

S1008 -11065 Qperation cancel ed

S1010 -11067 Funct i on- sequence error

S1C00 -11092 Driver not capable

S1TO0O0 -11094 Ti me- out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11305 SQLGet Typel nfo supported for FORWARD ONLY cursors

S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

230

Chapter 1. Informix® ODBC Driver Guide

SQLMoreResults (level two only)

SQLMoreResults determines whether more results are available on an hstmt that contains SELECT, UPDATE, INSERT, or

DELETE statements and, if so, initializes processing for those results.

The following table describes the SQLSTATE and error values for SQLMoreResults.

SQLSTATE Error value Error message

01000 -11001 General warni ng

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1008 -11065 Operation cancel ed

s1010 -11067 Functi on- sequence error

S1T00 -11094 Ti me- out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

SQLNativeSql (level two only)

SQLNativeSql returns the SQL string that the driver translates.

The following table describes the SQLSTATE and error values for SQLNativeSql.

SQLSTATE Error value Error message

01000 -11001 General war ni ng

01004 -11003 Data truncated

08003 -11017 Connection not open

37000 -11035 Syntax error or access violation
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1009 -11066 Invalid argunent val ue

S1090 -11071 Invalid string or buffer length
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

231

Usage

The following example shows what SQLNativeSql might return for an input SQL string that contains the scalar function
LENGTH:

SELECT {fn LENGTH(NAME)} FROM EMPLOYEE

HCL Informix® might return the following translated SQL string:

SELECT length(NAME) FROM EMPLOYEE

SQLNumParams (level two only)

SQLNumParams returns the number of parameters in an SQL statement.

The following table describes the SQLSTATE and error values for SQLNumParams.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1008 -11065 Operation cancel ed
S1010 -11067 Funct i on- sequence error
S1T00 -11094 Ti me-out expi red

SQLNumResultCols (core level only)

SQLNumResultCols returns the number of columns in a result set.

The following table describes the SQLSTATE and error values for SQLNumResultCols.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1008 -11065 Operation cancel ed
S1010 -11067 Funct i on- sequence error
S1T00 -11094 Ti me- out expired

SQLNumResultCols can return any SQLSTATE that SQLPrepare or SQLExecute can return when SQLNumResultCols is
called after SQLPrepare and before SQLExecute is called, depending on when the data source evaluates the SQL statement

associated with the hstmt.

232

Chapter 1. Informix® ODBC Driver Guide

SQLParambData (level one only)

SQLParamData is used with SQLPutData to supply parameter data when a statement executes.

The following table describes the SQLSTATE and error values for SQLParamData.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Cormmuni cation-1ink failure
22026 -11029 String data, |ength nismatch
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1008 -11065 Operation cancel ed

s1010 -11067 Functi on- sequence error

S1T00 -11094 Ti me- out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed
08S01 -11301 A protocol error has been detected. Current connection is closed.

If SQLParamData is called while sending data for a parameter in an SQL statement, it can return any SQLSTATE that can be
returned by the function that was called to execute the statement (SQLExecute or SQLExecDirect). If it is called while sending
data for a column being updated or added with SQLSetPos, it can return any SQLSTATE that can be returned by SQLSetPos.

SQLParamOptions (core and level two only)

SQLParamOptions allows an application to specify multiple values for the set of parameters assigned by SQLBindParameter.

The ability to specify multiple values for a set of parameters is useful for bulk inserts and other work that requires the data
source to process the same SQL statement multiple times with various parameter values. For example, an application can
specify three sets of values for the set of parameters associated with an INSERT statement, and then execute the INSERT

statement once to perform the three insert operations.

The following table lists the SQLSTATE values commonly returned by SQLParamOptions and explains each one in the
context of this function; the notation (Dv precedes the description of each SQLSTATE returned by the driver manager. The
return code associated with each SQLSTATE value is SQL_ERROR unless noted otherwise.

SQLSTATE Error value Error message

01000 General war ni ng

S1000 General error

S1001 Menory-al | ocation failure

233

SQLSTATE

Error value

Error message

S1010 Functi on- sequence error
S1107 Row val ue out of range
SQLPrepare

SQLPrepare prepares an SQL string for execution.

The following table describes the SQLSTATE and error values for SQLPrepare.

SQLSTATE Error value Error message

01000 -11001 General warni ng

08S01 -11020 Cormmuni cation-1ink failure

21S01 -11021 Insert value list does not match columm |ist
21S02 -11022 Degree of derived table does not match colum |ist
22005 -11026 Error in assignment

24000 -11031 Invalid cursor state

34000 -11034 Invalid cursor name

37000 -11035 Syntax error or access violation
42000 -11038 Syntax error or access violation
S0001 -11053 Base table or view al ready exists
S0002 -11054 Base table not found

S0011 -11055 Index already exists

S0012 -11056 I ndex not found

S0021 -11057 Col um al ready exists

S0022 -11058 Col urm not found

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1008 -11065 Cperation cancel ed

S1009 -11066 Invalid argunent val ue

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length
S1C00 -11092 Driver not capable

234

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

S1T00 -11094 Ti me- out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLPrimaryKeys (level two only)

SQLPrimaryKeys returns the column names that comprise the primary key for a table.

The driver returns the information as a result set. This function does not support returning primary keys from multiple tables

in a single call.

The following table describes the SQLSTATE and error values for SQLPrimaryKeys.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Comuni cation-1ink failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1008 -11065 Qperation cancel ed

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1TO00 -11094 Ti me-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

235

236

SQLProcedureColumns (level two only)

SQLProcedureColumns returns the list of input and output parameters, as well as the columns that make up the result set for

the specified procedures.
The driver returns the information as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for SQLProcedureColumns.

SQLSTATE Error value Error message

01000 -11001 General war ni ng

08S01 -11020 Cormmuni cation link failure

24000 -11031 Invalid cursor state

IM0O1 -11040 Driver does not support this function

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1008 -11065 Qperation cancel ed

S1010 -11067 Functi on sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Ti me- out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLProcedures (level two only)

SQLProcedures returns the list of procedure names stored in a specific data source.

Procedure is a generic term used to describe an executable object, or a named entity that can be started with input and
output parameters, and which can return result sets similar to the results that SELECT statements return.

The following table describes the SQLSTATE and error values for SQLProcedures.

SQLSTATE Error value Error message

01000 -11001 General war ni ng

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

08S01 -11020 Communi cation-link failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1008 -11065 Cperation cancel ed

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Ti me- out expi red

S1C00 -11300 SQL_DEFAULT_PARAM not support ed

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11310 Create and Drop nust be executed within a Servernly Connection
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLPutData (level one only)

SQLPutData allows an application to send data for a parameter or column to the driver at statement execution time.

This function can send character or binary data values in parts to a column with a character, binary, or data-source-specific

data type (for example, parameters of SQL_LONGVARBINARY or SQL_LONGVARCHAR).

The following table describes the SQLSTATE and error values for SQLPutData.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

07S01 -11014 Invalid use of default paraneter
08S01 -11020 Comuni cation-1ink failure
22001 -11023 String data right truncation
22003 -11025 Numeric val ue out of range
22005 -11026 Error in assignment

22008 -11027 Datetine-field overflow

237

SQLSTATE Error value Error message

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1008 -11065 Qperation cancel ed

S1009 -11066 Invalid argunent val ue

s1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length
S1T00 -11094 Ti me-out expi red

| Important: An application can use SQLPutData to send sections of character C data to a column with a character,

binary, or data source-specific data type or to send binary C data to a column with a character, binary, or data source-

specific data type. If SQLPutData is called more than once under any other conditions, it returns SQL_ERROR and
SQLSTATE 22003 (Numeric value out of range).

SQLRowCount (core level only)

SQLRowCount returns the number of rows affected by an UPDATE, INSERT, or DELETE statement or by an SQL_UPDATE,
SQL_ADD, or SQL_DELETE operation in SQLSetPos.

The following table describes the SQLSTATE and error values for SQLRowCount.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1010 -11067 Funct i on- sequence error

SQLSetConnectOption (level one only)

SQLSetConnectOption sets options that govern aspects of connections.

The following table describes the SQLSTATE and error values for SQLSetConnectOption.

SQLSTATE Error value Error message
01000 -11001 General warning
01S02 -11007 Option val ue changed
08002 -11016 Connection in use

238

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

08003 -11017 Connection not open

08S01 -11020 Conmuni cation-link failure

IM009 -11048 Unabl e to load translation shared library (DLL)

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1009 -11066 Invalid argunent val ue

S1010 -11067 Funct i on- sequence error

S1011 -11068 Cperation invalid at this tinme

S1092 -11073 Option type out of range

S1C00 -11092 Driver not capable

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

When fOption is a statement option, SQLSetConnectOption can return any SQLSTATE that SQLSetStmtOption returns.

SQLSetCursorName (core level only)

SQLSetCursorName associates a cursor name with an active hstmt.

If an application does not call SQLSetCursorName, the driver generates cursor names as needed for SQL statement

processing.

The following table describes the SQLSTATE and error values for SQLSetCursorName.

SQLSTATE Error value Error message

01000 -11001 General warning

24000 -11031 Invalid cursor state
34000 -11034 Invalid cursor name
3C000 -11036 Dupl i cate cursor nane
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1009 -11066 Invalid argunent val ue
S1010 -11067 Functi on- sequence error

239

SQLSTATE Error value Error message

S1090 -11071 Invalid string or buffer length

SQLSetStmtOption (level one only)

SQLSetStmtOption sets options that are related to an hstmt.
To set an option for all the statements associated with a specific hdbc, an application can call SQLSetConnectOption.

The following table describes the SQLSTATE and error values for SQLSetStmtOption.

SQLSTATE Error value Error message

01000 -11001 General war ni ng

01S02 -11007 Option val ue changed
08S01 -11020 Cormuni cation-1ink failure
24000 -11031 Invalid cursor state
S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1009 -11066 Invalid argument val ue
s1010 -11067 Functi on- sequence error
S1011 -11068 Cperation invalid at this tine
S1092 -11073 Option type out of range
S1C00 -11092 Driver not capable

SQLSpecialColumns (level one only)

SQLSpecialColumns retrieves information about columns.

SQLSpecialColumns retrieves the following information about columns within a specified table:

- The optimal set of columns that uniquely identifies a row in the table

« Columns that are automatically updated when any value in the row is updated by a transaction

The following table describes the SQLSTATE and error values for SQLSpecialColumns.

SQLSTATE Error value Error message
01000 -11001 General warning
08S01 -11020 Comuni cation-1ink failure

240

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1008 -11065 Qeration cancel ed

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length

S1097 -11078 Col unn type out of range

S1098 -11079 Scope type out of range

S1099 -11080 Nul | abl e type out of range

S1C00 -11092 Driver not capable

S1TO0O0 -11094 Ti me- out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLStatistics (level one only)

SQLStatistics retrieves a list of statistics about a single table and the indexes associated with the table.

The driver returns this information as a result set.

The following table describes the SQLSTATE and error values for SQLStatistics.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communi cation-1ink failure
24000 -11031 Invalid cursor state
S1000 -11060 General error

S1001 -11061 Menory- allocation failure
S1008 -11065 Cperation cancel ed

241

242

SQLSTATE Error value Error message

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length

S1100 -11081 Uni queness option type out of range

S1101 -11082 Accuracy option type out of range

S1C00 -11092 Driver not capable

S1TO0O0 -11094 Ti me- out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection
S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLTablePrivileges (level two only)

SQLTablePrivileges returns a list of tables and the privileges associated with each table.

The driver returns the information as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for SQLTablePrivileges.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communi cation-1ink failure
24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure
S1008 -11065 Operation cancel ed

S1010 -11067 Funct i on- sequence error

S1090 -11071 Invalid string or buffer length
S1C00 -11092 Driver not capable

S1T00 -11094 Ti me- out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLTables (level one only)

SQLTables returns the list of table names that are stored in a specific data source.

The driver returns this information as a result set.

The following table describes the SQLSTATE and error values for SQLTables.

SQLSTATE Error value Error message

01000 -11001 General warni ng

08S01 -11020 Cormmuni cation-1ink failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

S1008 -11065 Operation cancel ed

S1010 -11067 Functi on- sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Ti me- out expired

S1C00 -11300 SQL_DEFAULT_PARAM not support ed

08S01 -11301 A protocol error has been detected. Current connection is closed.
S1000 -11310 Create and Drop nust be executed within a ServerOnly Connection
S1000 -11320 Syntax error

S1000 -11323 The statenment contained an escape clause not supported by this database driver

SQLTransact (core level only)

SQLTransact requests a commit or rollback operation for all active operations on all hstmts associated with a connection.

SQLTransact can also request that a commit or rollback operation is performed for all connections associated with the henv.

243

The following table describes the SQLSTATE and error values for SQLTransact.

SQLSTATE Error value Error message

01000 -11001 General war ni ng

08003 -11017 Connection not open

S1000 -11060 General error

S1001 -11061 Menory-al | ocation failure

s1010 -11067 Functi on- sequence error

S1012 -11069 Invalid transaction operation code specified

S1C00 -11092 Driver not capable

08S01 -11301 A protocol error has been detected. Current connection is closed.
Unicode

These topics provide a brief overview of the Unicode standard and shows how it is used within ODBC applications.

Overview of Unicode
Unicode is a character encoding standard that provides a means of representing each character used in every major

language.

In the Unicode standard, each character is assigned a unique numeric value and name. These values can be used

consistently between applications across multiple platforms.

Unicode versions
Although Unicode provides a consistent way of representing text across multiple languages, there are different versions
which provide different data sizes for each character.
The following list describes the versions that are supported within HCL Informix® ODBC applications.
ucs-2
ISO encoding standard that maps Unicode characters to 2 bytes each. UCS-2 is the common encoding
standard on Windows™.
HCL Informix® ODBC Driver for IBM® AIX® platforms supports UCS-2 encoding. HCL Informix® ODBC Driver
for Windows™ supports only UCS-2.
ucs-4

ISO encoding standard that maps Unicode characters into 4 bytes each.

The HCL Informix® ODBC Driver supports UCS-4 on UNIX™ platforms.

244

Chapter 1. Informix® ODBC Driver Guide

UTF-8

Encoding standard that is based on a single (8 bit) byte. UTF-8 defines a mechanism to transform all Unicode
characters into a variable length (1 - 4) encoding of bytes.

The HCL Informix® ODBC Driver uses UTF-8 encoding for all UNIX™ applications that connect to the Data Direct
(formerly Merant) driver manager.

The 7-bit ASCII characters have the same encoding under both ASCIl and UTF-8. This has the advantage that UTF-8 can be

used with much existing software without extensive revision.

! Important: In applications that use Unicode, the driver does the work of code set conversion from Unicode to the
database locale and vice versa.The UTF-8 is the only type of Unicode code set that can be set as the client locale.

Unicode in an ODBC application

View the typical ODBC application architecture.

The following diagram shows the architecture of a typical ODBC application with a driver manager and the HCL Informix®
ODBC Driver.
Figure 8. Typical ODBC application architecture

Driver managar IBM Informix
Application s) =
m l ODEC Drver Datatasa

ANSI or Unicode LITF-E} or other
locale

In this scenario, if an application calls to Unicode enabled APIs, then it must be connected to a Unicode enabled HCL
Informix® ODBC Driver (Version 3.8 and later) to ensure that there is no loss of data. If the application calls to ANSI ODBC
APIs, the application can be linked to either a Unicode enabled driver or an ANSI driver.

The HCL Informix® ODBC Driver continues to support HCL Informix® GLS. Hence all data fetched in character buffers are
fetched in the client locale code set. Only data fetched with wide character buffers use Unicode.

On Windows™, if the ODBC driver is not Unicode enabled, the ODBC Driver Manager maps all Unicode API function calls to
ANSI ODBC APls.

If the ODBC driver is Unicode enabled, the Windows™ ODBC Driver Manager (Version 4.10 or later) maps all ANSI ODBC APIs
to Unicode ODBC APIs. The Data Direct (formerly Merant) driver manager for UNIX™ also works this way.

245

Important: In CSDK Version 2.70 there are two ODBC drivers. One with only ANSI APIs (called ANSI ODBC Driver,
Version 3.34) and another with both ANSI and UNICODE APIs (called Unicode ODBC Driver, Version 3.80). For CSDK
2.80 and later, there is only one ODBC driver that supports both ANSI and UNICODE APIs.

Important: The HCL® Informix® Driver Manager Replacement (DMR) for UNIX™ platforms does not map between
Unicode and ANSI APlIs.

For details about how the Windows™ ODBC driver manager handles mapping, see the section "Function Mapping in the Driver

Manager" in the ODBC Programmer's Reference for Microsoft™.

Unicode in an ODBC application

This section provides details on compiling and configuring Unicode within HCL® Informix® ODBC applications.

Configuration

Since the HCL Informix® ODBC Driver supports different types of Unicode on UNIX™ platforms, the type of Unicode used by
an application must be indicated in the ODBC section of the odbc. i ni file.

Indicate the type of Unicode in the ODBC section as follows:

[ODBC]

UNICODE=UCS-4

! Important: A Unicode-enabled application must indicate the type of Unicode used in the odbc. i ni file. If the

Unicode parameter is not set in odbc. i ni , the default type is UCS-4.

It is required that all UNIX™ ODBC applications must set the Unicode type in the odbc. i ni file as follows:

« An ANSI ODBC application on UNIX™ (including AIX® 64-bit) must set UNICODE=UCS-4

« An ANSI ODBC application on IBM® AIX® 32-bit must set UNICODE-UCS-2

+ An ANSI ODBC application that uses the Data Direct (formerly Merant) ODBC driver manager never indicates a
Unicode type other than UTF-8 in the odbc. i ni file.

The following table provides an overview of the odbc. i ni settings:

Platform Driver manager odbc. i ni setting
AIX® Data Direct UTF-8
AIX® 32-bit DMR or none ucs-2
AIX® 64-bit Data Direct UTF-8

246

Chapter 1. Informix® ODBC Driver Guide

Platform Driver manager odbc. i ni setting
UNIX™ Data Direct UTF-8
UNIX™ DMR or none ucs-4
Windows™ Windows™ ODBC Driver Manager N/A
! Important:

If all of the following conditions exist, the settings are automatically reset without any warning or error message:

* The application is an ANSI application.
« You are linking with DMR or none.

ODBC Smart trigger

Smart Triggers (also known as Pushdata) in ODBC are a set of classes/interfaces that provide an ease of use capability to

the Push data feature.

 The Unicode setting in the odbc.ini file does not match the values shown in the table.

A smart trigger is a set of commands issued to the database that sets up a push notification when certain changes happen
to data in a table. These changes are detected by a SQL query that is run after INSERT, UPDATE, or DELETE commands are

executed. It is available across all CSDK/ODBC supported platforms.

It uses ODBC's standard APIs SQLSetStmtAttr()/SQLSetStmtAttrA()/SQLSetStmtAttrW() and SQLGetStmtAttr()/
SQLGetStmtAttrA()/SQLGetStmtAttrW() with following Informix extensions, defined ini nf xcl i . h file.

SQL_INFX_ATTR_OPEN_SMART_TRIGGER
SQL_INFX_ATTR_JOIN_SMART_TRIGGER
SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER
SQL_INFX_ATTR_GET_SESSION_ID_SMART_TRIGGER
SQL_INFX_ATTR_REGISTER_SMART_TRIGGER
SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP
SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP
SQL_INFX_ATTR_DELETE_SMART_TRIGGER

ODBC API

Using the following ODBC API to use Smart Trigger:

1. Allocate Environment handle

2. Allocate Connection Handle

3. Connect to “sysadmin” database

4. Allocate statement handle
5. Call SQLSetStmtAttr(SQL_INFX_ATTR_OPEN_SMART_TRIGGER) and using structure IFMX_OPEN_SMART_TRIGGER

247

248

6. Call SQLGetStmtAttr(SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER) and get the File Descriptor ID (to be
used for registering the event/queries, the same File Descriptor to be used for multiple event/queries)
7. Following steps could be in thread loop for each event/query to be registered.
a. SQLAllocHandle(STMT)
b. Fill/Populate the SQL_INFX_ATTR_REGISTER_SMART_TRIGGER structure
c. Call SQLSetStmtAttr(SQL_INFX_ATTR_REGISTER_SMART_TRIGGER)
d. Call SQLGetStmtAttr(SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP /
SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP)

Once you register the event or join the already registered session, the call becomes blocking (ODBC waits for IDS server
to return the message/data), once the data/response or timeout message is received from IDS server, ODBC invokes the
registered callback function with output buffer.

Note: It is read only buffer and application should not tamper the buffer.

Once the control comes back to application (callback function), application may decide to come out of the loop by setting
IFMX_JOIN_SMART_TRIGGER->ControlBackToApplication OR SQL_INFX_ATTR_REGISTER_SMART_TRIGGER->isDeregister
to TRUE. If you decide to continue, then there is no action needed by you in the callback function (other than consuming the
received output).

Register the smart trigger events

File Descriptor is required to “register the events". After successful call to
SQLSetStmtAttr(SQL_INFX_ATTR_OPEN_SMART_TRIGGER), application should call following SQLGetStmtAttr() API to get
the “File Descriptor". The same “File Descriptor" should be used to “Register the smart trigger/pushdata events".

SQLGetStmtAttr (hstmt, SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER, (int *)&FileDesc, SQL_NTS, NULL);

Application should use “File Descriptor" received from above SQLGetStmtAttr() call and other inputs like table, database,
user, query etc to populate/fill the structure (mentioned above) IFMX_REGISTER_SMART_TRIGGER. Application should make
call to SQLSetStmtAttr() as follows. Application can register as many as events/queries they want in each thread (application
example below). It is advised to use separate statement handle for each registration.

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &tmpHstmt);

SQLSetStmtAttr (tmpHstmt, SQL_INFX_ATTR_REGISTER_SMART_TRIGGER, (void x)&SmartTriggerInstance, SQL_NTS);

If the session was opened with detachable option then session ID will be created. Application can save the same session
ID and could use the same later to attach/join to the session. Below API should be used to attach/join the session using
structure IFMX_JOIN_SMART_TRIGGER. All the registered events/queries with the attached/joined session will be in effect.

SQLSetStmtAttr (hstmt, SQL_INFX_ATTR_JOIN_SMART_TRIGGER, (void *)&gJoinSmartTrigger, SQL_NTS);

Delete the registered session

If the session was registered as detachable session, there should be “session ID". The same session ID should be used to

delete the session by making below call.

SQLSetStmtAttr (hstmt, SQL_INFX_ATTR_DELETE_SMART_TRIGGER, (int *)&sesID, SQL_NTS);

Chapter 1. Informix® ODBC Driver Guide

API Structure

« IFMX_OPEN_SMART_TRIGGER structure: This is input structure to be used in SQLSetStmtAttr() call while
establishing the smart trigger/pushdata session. The allocation & deallocation of this structure and it's members is

application’s responsibility. Each member of the structure is explained below:

BOOL *isDetachable -> If the session is expected to be reused at later time, even after finishing the application, one
should set this flag to TRUE. Otherwise set to FALSE.

int *timeOut-> Time in seconds, as per registered event/query, if no event happens, IDS sever will send “timeout"
message to ODBC based on the value set for this member. Valid range is 0 to 12000 seconds. If it's beyond these

value, internally it will be set to 300 seconds.

short *maxRecsPerRead->This is number of records, returned (in callback function output buffer). Default is 1. Valid
allowed range is 1 to 200. The max buffer size is 8KB, if this number is set high, it will return data only max of 8KB at

a time, which may not match the number of records.
int *maxPendingOperations->Maximum pending operation. Default is 0. Allowed range is 0 to 200.

SQLWCHAR reserved[16]->Reserved for future usage.

IFMX_JOIN_SMART_TRIGGER structure: This structure is used to attach/join already opened session. Each member
of the structure is explained below:

void(*callback) (char const *jsonOutBuf)-> This is user defined callback function. This will be called when response
from IDS server is received on registered event/query(events/queries) for a session to be attached/joined. The data

returned is read only for the user.

int *joinSessionID-> This is to be assigned from the value received from the SQLGetStmtAttr() call. This session ID

will be used to connect to prior registered session.

BOOL *ControlBackToApplication-> Once control comes back to application (as part of callback call), if user decides

to come out of the blocking call (event registration is blocking call), user can set this flag to TRUE.

SQLWCHAR reserved[16] -> Reserved for future usage.

IFMX_REGISTER_SMART_TRIGGER structure: This structure is used to register the event/query on already opened
smart trigger/pushdata session. There could be as many as trigger/event user wants to register. Each trigger/event
should be invoked with separate thread. Each member of the structure is explained below.

void(*callback) (char const *jsonOutBuf)-> This is user defined callback function. This will be called when response
from IDS server is received on registered event/query. The data returned is read only for the user.

int *loFileDescriptor -> This is input, which is received from
SQLGetStmtAttr(SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER) call. For each event/query registration for a

given session, this value will remain same.

249

250

SQLWCHAR *tableName -> This is table name to be registered. The input to be provided in SQLWCHAR type. Max
length as per IDS supported table length.

SQLWCHAR *ownerName -> This is user/owner of table to be registered. The input to be provided in SQLWCHAR
type. Max length as per IDS supported user/owner length.

SQLWCHAR *dbName -> This is database name where the table belongs. The input to be provided in SQLWCHAR
type. Max length as per IDS supported database length.

SQLWCHAR *sqlQuery -> This is the SELECT query which is on registered table. The input to be provided in
SQLWCHAR type. Max length of query 4KB.

SQLWCHAR *label -> If NULL, internally, ODBC will create the label using table name, owner name database name &
internal counter i.e. "%s_%s_%s_%d". The input to be provided in SQLWCHAR type.

BOOL *isDeregister -> Smart Trigger/Pushdata is blocking call, the control is back to application when ODBC calls
user specified callback function. If user wants to come out of the blocking call, they can set this flag to TRUE.

BOOL *ControlBackToApplication-> Once control comes back to application (as part of callback call), if user decides
to come out of the blocking call without non-registering the event (event registration is blocking call), user can set
this flag to TRUE.

SQLWCHAR reserved[16] -> Reserved for future usage.

Compiling sample application on Linux

Use below compilation/linking steps, assuming C file name is SmartTrigger.c and application links directly to Informix driver
(no Driver Manager).

gcc -g -c -fsigned-char -DNO_WIN32 -0 -I$INFORMIXDIR/incl/cli -ISINFORMIXDIR/incl/esql -ISINFORMIXDIR/incl/dmi
SmartTrigger.c

gcc -g -o SmartTrigger SmartTrigger.o -LSINFORMIXDIR/lib/cli -L$INFORMIXDIR/Llib/esql -lthcli -1ifdmr
-LSINFORMIXDIR/lib/esql -lifgls -lifglx -lm -lnsl

Compiling sample application on Windows

Use below steps to compile the Smart Trigger application on Windows.

cl /Zi /DEBUG /MD /D_CRT_SECURE_NO_DEPRECATE /D_CRT_NON_CONFORMING_SWPRINTFS /D
_CRT_NONSTDC_NO_DEPRECATE /I%INFORMIXDIR%\incl\cli %INFORMIXDIR%\1lib\iclit09b.lib odbc32.1lib odbccp32.lib
SmartTrigger.c

The below example, supports two(2) trigger/event registration, hence two threads (NUM_OF_INSTANCE) has been used.
There are following 3 functions which needs to be changed to provide appropriate input for your environment.

ODBC

Chapter 1. Informix® ODBC Driver Guide

. SetConnectionString() => This is for database connection, you can provide “DSN=<value>" as well, depending on your

choice. In this function, you need to provide your own connection string.

. AssignOpenParams() => In this function, you may need to change timeout, number of records(1 is recommended) etc

parameters for smart trigger/pushdata session opening.

. AssignRegisterParams() => In this function, you need to change, callback function, table, owner, database and query

values which suits your environment. This function uses two such events/inputs to be registered.

sample application

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>

#include <conio.h>

#endi

f /*NO_WIN32x/

#define __REENTRANT

#include <signal.h>

#1ifde

f NO_WIN32

#include <sys/wait.h>
#include <pthread.h>

#endi

£

#include <time.h>
#include <infxcli.h>

#define ERRMSG_LEN 200
#define NAMELEN 300
#define NUM_OF_INSTANCE 2

SQLHDBC hdbc;

SQLHENV henv;

SQLHSTMT hstmt;

SQLINTEGER sesID = 0;

SQLWCHAR connStrInW[NAMELEN];
SQLCHAR connStrIn[NAMELEN];

BOOL delete = 0;

int gFileDesc = 0;

int fileDesc[NUM_OF_INSTANCE];
int timeOut;

short maxRec;

int maxPend;

int detachable;

BOOL dregister [NUM_OF_INSTANCE];
BOOL ControlBack[NUM_OF_INSTANCE];

IFMX_REGISTER_SMART_TRIGGER gSmartTriggerRegister [NUM_OF_INSTANCE];
IFMX_OPEN_SMART_TRIGGER gopenSmartTrigger;
IFMX_JOIN_SMART_TRIGGER gloinSmartTrigger;

251

SQLINTEGER checkError (SQLRETURN rc,

SQLSMALLINT handleType,
SQLHANDLE handle,
SQLCHAR* errmsg)
{
SQLRETURN retcode = SQL_SUCCESS;
SQLSMALLINT errNum = 1;
SQLWCHAR sqlStateW[6];
SQLCHAR *sqlState;
SQLINTEGER nativeError;
SQLWCHAR errMsgW[ERRMSG_LEN] ;
SQLCHAR *errMsg;

SQLSMALLINT textLengthPtr;

if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
{
while (retcode != SQL_NO_DATA)
{
retcode = SQLGetDiagRecW (handleType, handle, errNum, sqlStateW, &nativeError, errMsgW, ERRMSG_LEN,
&textLengthPtr) ;

if (retcode == SQL_INVALID_HANDLE)

{
fprintf (stderr, "checkError function was called with an invalid handle!!\n");
return 1;
}
if ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO))
{
sqlState = (SQLCHAR x) malloc (wcslen(sqlStateW) + sizeof(char));
wcstombs((char *) sqlState, sqlStateW, wcslen(sqlStateW)
+ sizeof(char));
errMsg = (SQLCHAR *) malloc (wcslen(errMsgW) + sizeof(char));
wcstombs((char *) errMsg, errMsgW, wcslen(errMsgW)
+ sizeof(char));
fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError, sqlState, errMsg);
}
errNum++;

fprintf (stderr, "%s\n", errmsg);

return 1; /* all errors on this handle have been reported */
}
else

return 0; /* no errors to report x/

void TriggerCallbackl(char const *outBuf)
{
dregister[0] = FALSE; //TRUE;
ControlBack[0] = FALSE;
printf("\nCallback #1");

252

A\

{

D!
{

Chapter 1. Informix® ODBC Driver Guide

if(outBuf != NULL)

printf("\nData received : %s\n", outBuf);
else

printf("\nReturned NULL data!!");

gSmartTriggerRegister[0].isDeregister = &dregister[0];
gSmartTriggerRegister[0].ControlBackToApplication = &ControlBack[0];
gJoinSmartTrigger.ControlBackToApplication = &ControlBack[0];
return;

oid TriggerCallback2(char const *outBuf)

dregister[1] = FALSE;
ControlBack[1] = FALSE; //TRUE;
printf("\nCallback #2");
if(outBuf != NULL)

printf("\nData received : %s\n", outBuf);
else

printf("\nReturned NULL data!!");

gSmartTriggerRegister[1].isDeregister = &dregister[1];
gSmartTriggerRegister[1].ControlBackToApplication = &ControlBack[1];
gJoinSmartTrigger.ControlBackToApplication = &ControlBack[1];
return;

WORD ThreadRegisterPushDataQuery(void xlpParam)

SQLRETURN rc = 0;
SQLHSTMT tmpHstmt;
SQLINTEGER dummy = 0;

IFMX_REGISTER_SMART_TRIGGER temp;
IFMX_REGISTER_SMART_TRIGGER SmartTriggerInstance;

SmartTriggerInstance = *((IFMX_REGISTER_SMART_TRIGGER *)1lpParam);

rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &tmpHstmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, (SQLCHAR *) "Error(Thread) in Step 1 -- Statement Handle
Allocation failed\nExiting!!"))
exit(-1);

rc = SQLSetStmtAttrW(tmpHstmt, SQL_INFX_ATTR_REGISTER_SMART_TRIGGER, (IFMX_REGISTER_SMART_TRIGGER
*)&SmartTriggerInstance, SQL_IS_POINTER);
if (checkError(rc, SQL_HANDLE_DBC, hdbc, (SQLCHAR x) "Error(Thread) in Step 2 -- SQLSetStmtAttr
failed\nExiting!!"))
exit(-1);
rc = SQLGetStmtAttrW(tmpHstmt, SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP, (void *)&dummy, SQL_NTS, NULL);
//rc = SQLGetStmtAttrW(tmpHstmt, SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP, (void *)&dummy, SQL_NTS,
NULL) ;
if (checkError(rc, SQL_HANDLE_DBC, hdbc, (SQLCHAR *) "Error(Thread) in Step 2 -- SQLGetStmtAttr
failed\nExiting!!"))
exit(-1);

SQLFreeHandle (SQL_HANDLE_STMT, tmpHstmt);
printf("\nFinished thread execution\n");

253

void SetConnectionString()
{
#ifdef NO_WIN32
//sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC
DRIVER} ;HOST=x.x.x.X;SERVER=01_informix1210_2;SERVICE=8573;PROTOCOL=0onsoctcp ;DATABASE=sysadmin;UID=1informix;PW
D=xxx");
wsprintf((SQLWCHAR *) connStrInW, "DSN=SmartTrigger");
#else
//sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC
DRIVER};HOST=x.x.Xx.x;SERVER=01_informix1210_1;SERVICE=20195;PROTOCOL=onsoctcp;DATABASE=sysadmin;UID=informix;P
WD=xxx");
swprintf ((SQLWCHAR *) connStrInW, L"DSN=SmartTrigger");
#endif
return;

void AssignOpenParams()

{
timeOut = 5; //In seconds
maxRec = 1; //Maximum number of records to get, (8192 Bytes limit)
maxPend = 0;
detachable = FALSE; //TRUE, If want to retain session for later usage
delete = FALSE; //TRUE, if want to delete the detachable session
gopenSmartTrigger.timeOut = &timeOut;
gopenSmartTrigger.isDetachable = &detachable;
gopenSmartTrigger.maxRecsPerRead = &maxRec;
gopenSmartTrigger.maxPendingOperations = &maxPend;
return;

}

void AssignRegisterParams(IFMX_REGISTER_SMART_TRIGGER *SmartTriggerInstance, int FileDesc, int 1)
{
fileDesc[i] = FileDesc;
dregister[i] = FALSE; // Just initialize, should be changed in callback
ControlBack[i] = FALSE; // Just dinitialize, should be changed in callback
SmartTriggerInstance->1oFileDescriptor = &fileDesc[i];
SmartTriggerInstance->tableName = (SQLWCHAR *)malloc(50 * sizeof (SQLWCHAR));
SmartTriggerInstance->ownerName = (SQLWCHAR *)malloc(50 * sizeof(SQLWCHAR));
SmartTriggerInstance->dbName = (SQLWCHAR x)malloc(50 * sizeof (SQLWCHAR));
SmartTriggerInstance->sqlQuery = (SQLWCHAR *)malloc (500 * sizeof(SQLWCHAR));
//SmartTriggerInstance->label = (SQLWCHAR *)malloc(50 * sizeof(SQLWCHAR));
SmartTriggerInstance->label = NULL;
SmartTriggerInstance->isDeregister = &dregister[i];
SmartTriggerInstance->ControlBackToApplication = &ControlBack[i];

//wecscpy ((SQLWCHAR *)SmartTriggerInstance->ownerName, L"shesh");
//wcscpy ((SQLWCHAR *)SmartTriggerInstance->dbName, L"sheshdb");
wsprintf ((SQLWCHAR x)SmartTriggerInstance->ownerName, "shesh");
wsprintf ((SQLWCHAR *)SmartTriggerInstance->dbName, "sheshdb");

if (i==0)
{
SmartTriggerInstance->callback = TriggerCallbackl;
//wcscpy ((SQLWCHAR *)SmartTriggerInstance->label, L"labell");

254

//wecscpy ((SQLWCHAR *)SmartTriggerInstance->tableName, L"tabl");

Chapter 1. Informix® ODBC Driver Guide

//wcscpy ((SQLWCHAR *)SmartTriggerInstance->sqlQuery, L"select * from tabl;");
gg

//wsprintf((SQLWCHAR x)SmartTriggerInstance->label, "labell");
wsprintf((SQLWCHAR *)SmartTriggerInstance->tableName, "tabl");

wsprintf((SQLWCHAR *)SmartTriggerInstance->sqlQuery, "select * from tabl;");

}
else
{
SmartTriggerInstance->callback = TriggerCallback2;
//wecscpy ((SQLWCHAR *)SmartTriggerInstance->label, L"label2");
//wcscpy ((SQLWCHAR *)SmartTriggerInstance->tableName, L"tab2");
//wecscpy ((SQLWCHAR *)SmartTriggerInstance->sqlQuery, L"select * from tab2;");
//wsprintf((SQLWCHAR *)SmartTriggerInstance->label, "label2");
wsprintf ((SQLWCHAR *)SmartTriggerInstance->tableName, "tab2");
wsprintf((SQLWCHAR *)SmartTriggerInstance->sqlQuery, "select * from tab2;");
}
return;

void FreeMemory (IFMX_REGISTER_SMART_TRIGGER *SmartTriggerInstance)
{
free(SmartTriggerInstance->tableName) ;
free(SmartTriggerInstance->ownerName);
free(SmartTriggerInstance->dbName) ;
free(SmartTriggerInstance->sqlQuery);
if(SmartTriggerInstance->label != NULL)
free(SmartTriggerInstance->label);

return;
}
int main (long argc,
charx argv([])
{
/* Miscellaneous variables */
SQLRETURN rc = 0;
SQLINTEGER i=0;
SQLINTEGER getSesID = 0;
SQLWCHAR connStrOoutW[NAMELEN] ;
SQLSMALLINT connStrOutLen;
SQLINTEGER stackSize = 40 x 1024;
HANDLE hThread_[NUM_OF_INSTANCE];
DWORD threadID_[NUM_OF_INSTANCE];
#ifdef NO_WIN32
pthread_t cpid[NUM_OF_INSTANCE];
#endif
DWORD dwThreadID=10;

printf("\nApplication sizeof (SQLWCHAR) = %d", sizeof(SQLWCHAR));

/* Allocate the Environment handle x/

rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

if (rc != SQL_SUCCESS)

{
fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
exit (-1);

/* Set the ODBC version to 3.0 x/

rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,

(SQLPOINTER) SQL_OV_ODBC3,

0);

255

if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
failed\nExiting!!"))
exit (-1);

/* Allocate the connection handle x/
rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR x) "Error(main) in Step 2 -- Connection Handle
Allocation failed\nExiting!!"))
exit (-1);

/* Establish the database connection */

SetConnectionString();

rc = SQLDriverConnectW(hdbc, NULL, connStrInW, SQL_NTS, connStrOutW, NAMELEN, &connStrOutLen,
SQL_DRIVER_NOPROMPT) ;

if (checkError (rc, SQL_HANDLE_DBC, hdbc, (SQLCHAR *) "Error(main) in Step 3 -- SQLDriverConnect
failed\nExiting!!"))

exit (-1);
printf("\nApplication : Database connection successful");

/* Allocate the statement handle */
rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
if (checkError (rc, SQL_HANDLE_DBC, hdbc, (SQLCHAR *) "Error(main) in Step 4 -- Statement Handle Allocation
failed\nExiting!!"))
exit (-1);

sesID = 0;
gloinSmartTrigger.callback = TriggerCallbackl;
gJoinSmartTrigger.joinSessionID = &sesID;

if(sesID != 0)
{
rc = SQLSetStmtAttrW(hstmt, SQL_INFX_ATTR_JOIN_SMART_TRIGGER, (void *)&gJoinSmartTrigger, SQL_NTS);
if (checkError(rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error(main) in Step 5 --
SQLSetStmtAttr(SQL_INFX_ATTR_JOIN_SMART_TRIGGER) failed\nExiting!!"))
exit(-1);

printf("\nJoin session was executed successfully... Exiting.\n");
goto Exit; // Exit gracefully

AssignOpenParams() ;

rc = SQLSetStmtAttrW(hstmt, SQL_INFX_ATTR_OPEN_SMART_TRIGGER,&gopenSmartTrigger, SQL_NTS);
if (checkError(rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR %) "Error(main) in Step 5 --
SQLSetStmtAttr (SQL_INFX_ATTR_OPEN_SMART_TRIGGER) failed\nExiting!!"))
exit(-1);

rc = SQLGetStmtAttrW(hstmt, SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER, (int *)&gFileDesc, SQL_NTS,
NULL) ;
if (checkError(rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error(main) in Step 6 --
SQLGetStmtAttr (SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER) failed\nExiting!!"))
exit(-1);

for (i = ©0; i < NUM_OF_INSTANCE; 1i++)
{
printf("\nStart Thread %d", i + 1);
AssignRegisterParams (&gSmartTriggerRegister[i], gFileDesc, i);

256

Chapter 1. Informix® ODBC Driver Guide

#ifndef NO_WIN32
hThread_[i] = CreateThread(
0, // Security Attributes (no security restrictions)
stackSize, // Stack Size
ThreadRegisterPushDataQuery, // Start address
(void *)&gSmartTriggerRegister[i], //&inputValues[i],
0, // Creation Flags (create running)
&(threadID_[1i]) // Thread Id
)

#else

rc = pthread_create(&cpid[i],NULL, (void *)ThreadRegisterPushDataQuery,&gSmartTriggerRegister[i]);

#endif

#ifndef NO_WIN32
if (NUM_OF_INSTANCE > 0)
WaitForMultipleObjects (NUM_OF_INSTANCE, hThread_, TRUE, INFINITE);
#else
for (i = ©; i < NUM_OF_INSTANCE; ++7)
pthread_join(cpid[i], NULL);
#endif

rc = SQLGetStmtAttrW(hstmt, SQL_INFX_ATTR_GET_SESSION_ID_SMART_TRIGGER, (int *)&getSesID, SQL_NTS, NULL);

if (checkError(rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error(main) in Step 7 --
SQLGetStmtAttr(SQL_INFX_ATTR_GET_SESSION_ID_SMART_TRIGGER) failed\nExiting!!"))
exit(-1);
printf("\nSession ID received = %d\n", getSesID);

if(getSesID > 0 && delete == 1)
{

rc = SQLSetStmtAttrW(hstmt, SQL_INFX_ATTR_DELETE_SMART_TRIGGER, (int *)&getSesID, SQL_NTS);

if (checkError(rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR x) "Error(main) in Step 8 --
SQLSetStmtAttr(SQL_INFX_ATTR_DELETE_SMART_TRIGGER) failed\nExiting!!"))

exit(-1);

printf("\nSession ID deleted = %d\n",getSesID);

for (i = 05 1 < NUM_OF_INSTANCE; ++1)
{
#ifndef NO_WIN32
printf("Close Thread Handle : %d\n", i);
CloseHandle(hThread_[1i]);
#endif
FreeMemory (&gSmartTriggerRegister[i]);

Exit:

/* CLEANUP: Close the statement handle

*% Free the statement handle

*k Disconnect from the datasource

*k Free the connection and environment handles
*% Exit

x/

/* Close the statement handle x/
SQLFreeStmt (hstmt, SQL_CLOSE);

257

258

/* Free the statement handle x/
SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

/* Disconnect from the data source x*/
SQLDisconnect (hdbc);

/* Free the environment handle and the database connection handle */
SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
SQLFreeHandle (SQL_HANDLE_ENV, henv);

return (rc);

Best Practices/Trouble shooting

You can link Smart Trigger ODBC application with ODBC Driver Manager(DM). Smart Trigger feature has been tested with
Windows Driver Manager and unixODBC Driver Manager. Due to synchronization behaviour of certain Driver Manager, it may
not allow more than one SQLSetStmtAttr(with Smart trigger) / SQLGetStmtAttr to be called until previous call is completed,
Smart Trigger is blocking call (due to internal call to ifx_lo_read()). In multi-threaded Smart Trigger application, this could

cause unexpected/hang behaviour, to avoid the same one of the two below available options could be used:

« For unixODBC DM configuration in .odbcinst.ini file, use “Threading = 0" (disables synchronization/mutex of DM)
Note: Synchronization/mutex continues to work from Informix ODBC driver

* You can use SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP interface in application and manage the
WHILE loop in application (example given below). If you use this option, you may not need to set “Threading = 0" in
DM.

SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP and
SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP interfaces

These two interfaces are provided to choose the appropriate one depending on the usage of DM.

In SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP interface, ODBC internally uses WHILE loop to wait for data for
Smart Trigger from server until user deregister or wants control back to application (example below), this is suitable when
application uses unixODBC DM and wants to register many events/queries from application by setting “Threading = 0" in
DM'’s .odbcinst.ini file.

In SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP interface, the responsibility of looping to get next Smart Trigger

from server lies with application, this way you don not really have to set “Threading = 0" in unixODBC DM.

Example

Thread Start

SQLSetStmtAttr (SQL_INFX_ATTR_REGISTER_SMART_TRIGGER)

SQLGetStmtAttr (SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP) (while loop 1inside the ODBC code.
OR

While (TRUE)

Chapter 1. Informix® ODBC Driver Guide

{
SQLGetStmtAttr (SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP)
//Break with some business condition

}

Thread End

Note: On Unix/Linux user libthcli.so and on Windows use iclit09b.lib, you can directly link Smart Trigger application
with Informix ODBC driver

If you have multiple events/queries to be registered from single database connection, then application should be linked with
multi-threaded ODBC library “libthcli.so". Multiple events/queries could be registered only with multi-threaded application,
where each event/query could be registered from each thread.

In addition to above extensions, there are following structures provided in infxcli.h file. The allocation & deallocation of
memory for these structures and its members is responsibility of application.

typedef struct tagIfmxJoinTrigger
{
void(xcallback)
(char const *jsonOutBuf);
int *joinSessionID;
BOOL *ControlBackToApplication;
SQLWCHAR reserved[16];
} IFMX_JOIN_SMART_TRIGGER;

typedef struct tagIfmxOpenTrigger

{
BOOL *isDetachable;
int *timeOut;
short *maxRecsPerRead;
int *maxPendingOperations;
SQLWCHAR reserved[16];

} IFMX_OPEN_SMART_TRIGGER;

typedef struct tagIfmxRegisterTrigger
{
void(xcallback)

(char const *jsonOutBuf);
int *LoFileDescriptor;
SQLWCHAR *tableName;

SQLWCHAR *ownerName;
SQLWCHAR *dbName;
SQLWCHAR *sqlQuery;
SQLWCHAR *label;
BOOL *isDeregister;
BOOL *ControlBackToApplication;
SQLWCHAR reserved[16];
} IFMX_REGISTER_SMART_TRIGGER;

Structure IFMX_OPEN_SMART_TRIGGER should be allocated/filled with respective values and must call following
SQLSetStmtAttr() API. If “isDetachable" member is TRUE, it will retain the session even after closing the connection /
finishing the application execution.

SQLSetStmtAttr (hstmt, SQL_INFX_ATTR_OPEN_SMART_TRIGGER, &gopenSmartTrigger, SQL_NTS);

259

If session is opened with “isDetachable” member TRUE, then application can call following SQLGetStmtAttr() to get the
session ID, which could be used later to JOIN (more info below) the session. If “isDetachable” member was FALSE while
opening the session, if so calling SQLGetStmtAttr() may return 0 (zero) or negative number, which are invalid session ID.

SQLGetStmtAttr (hstmt, SQL_INFX_ATTR_GET_SESSION_ID_SMART_TRIGGER, (int *)&getSesID, SQL_NTS, NULL);

260

Index

Special Characters

.hfiles. 3
.netrc file 54

Allocating handles. 3
Architecture 5
Arguments 3
null pointers 13
pointers 13
Arrays. 3
Attributes, columns 216
Auto-commit mode. 3
AUTOFREE feature 183

Binary data
C data type 74
transferring 77
Binding columns 3, 133, 209
Binding parameters. 3
Bit data, converting to SQL 91
BLOB data type 67
Bookmarks, support 42
Boolean data
C data type 74
Boundaries, segment 13
Buffers 3
allocating 13
input 13,13
interoperability 13
maintaining pointers 13
NULL data 14
null pointers 13
null-termination 14
output 13, 14
segment boundaries 13
truncating data 14
Bulk operations 233

C data type 3,74
binary 74
boolean 74
character 74
conversion examples 89, 92
converting from SQL data type 66, 86
converting to SQL data types 91
date 74
default conversions 87
Informix
ODBC Driver
66
numeric 74
SQL_C_BINARY 74
SQL_C_BIT 74
SQL_C_CHAR 74
SQL_C_DATE 74
SQL_C_DOUBLE 74
SQL_C_FLOAT 74
SQL_C_LONG 74
SQL_C_SHORT 74
SQL_C_SLONG 74
SQL_C_SSHORT 74
SQL_C_STINYINT 74
SQL_C_TIMESTAMP 74
SQL_C_TINYINT 74
SQL_C_ULONG 74

SQL_C_USHORT 74
SQL_C_UTINYINT 74
standard 66
timestamp 74
typedefs 66
Calls, executing with SQLPrepare and
SQLExecute 186
Canceling, connection browsing 217
Challenge and response buffer pointers 36
Character data 74
empty string 13
Client functions, calling 151, 151
Client locale 32
CLIENT_LOCALE environment variable 32, 46
CLOB data types 67
Code, example 3
Collections 67
buffers 133
converting SQL data 134
creating 143
current position 150
deleting 150, 173
inserting 150, 176
local fetch 134
modifying 150
retrieving 175
retrieving information 151
transferring 133
updating 150, 179
Columns 3
attributes 216
binding. 3
precision. 3
procedure 236
Concurrency 43
Configuring a DSN on
UNIX 44
Configuring a DSN on Windows 55
Configuring data sources. 3
connection attribute
SQL_INFX_ATTR_DELIMIDENT 181
Connection handles
defined connection handles
HDBC variable type 12
SQLFreeConnect 226
Connection pool
demo program 25
Sun JDBC 3.0 properties 25
tuning parameters 25
Connection Pool Manager 25
connection string
enabling delimited identifiers in 181
connection string keywords
DELIMIDENT 181
Connections, SQLDisconnect 217
Converting data 3
CtoSQL 91
default conversions 87
examples 89, 92
SQLto C 86
Create-time flags 96
Cursor
automatically freeing 183
enable insert cursor 55
insert 182
position errors 222
Report KeySet 55
scrollable 55

261

D

Data
committing 191
converting 3
length 67
transferring in binary form 77
translating. 3
truncating. 3
updating 189
Data sources
configuring on UNIX 44
configuring on Windows 55
Data transfer
error checking 180
Data types. 3
Data-source specification 46
Database locale 32
Date data
C data type 74
DATE_STRUCT typedef 74
DB_LOCALE environment variable 32, 46
DBCENTURY environment variable 8
Default fetch type for UDTs 79
DELETE statements 3, 231, 238
affected rows 238
DELIMIDENT
connection string keyword 181
DELIMIDENT environment variable
in ODBC 181, 181
delimited identifiers
in ODBC 181
Descriptors, columns 216
Diagnostics 193
Disk-storage information 95
Display size 67
DISTINCT data type 67
Driver manager, described 5
Driver,
Informix
ODBC
5
Drivers, allocating handles 208
DSN settings 79

Empty strings 13
Environment handles
defined 12
SQLAllocEnv 208
SQLFreeEnv 226
environment variable
DELIMIDENT
in ODBC 181
Environment variables 8
CLIENT_LABEL 180
CLIENT_LOCALE 32, 46
DB_LOCALE 32, 46
DBCENTURY 8
GL_DATE 8
IFMX_CPM_AGELIMIT 25

IFMX_CPM_ENABLE_SWITCH_HDRPOOL 25

IFMX_CPM_INIT_POOLSIZE 25
IFMX_CPM_MAX_CONNECTIONS 25
IFMX_CPM_MAX_POOLSIZE 25
IFMX_CPM_MIN_AGELIMIT 25
IFMX_CPM_MIN_POOLSIZE 25
IFMX_CPM_SERVICE_INTERVAL 25

IFX_LOB_XFERSIZE 180
INFORMIXDIR 8
INFORMIXSQLHOSTS 8
ODBCINI 8
PATH 8
TRANSLATION_OPTION 32
TRANSLATIONDLL 32, 46
VMBCHARLENEXACT 32
Error descriptions
Informix
40
ISAM 40
Error handling
checking during data transfer 180
Error messages
Informix
mapping SQLSTATE values 194
Errors 3
diagnostic SQLSTAGE values 193
error messages 193
handling with OPTMSG 192
mapping
Informix
to SQLSTATE values
194
rowsets 222
Examples, data conversion 89, 92
Extended data types 4
Extensive error detection 4
External authentication 35

fCType 87
Fetch simple large object data 184
Fetch type 79
Fetching data. 3
Files
.hfiles. 3
.netrc 54
infxcli.h 9, 67
odbc.ini 46
odbcinst.ini 44
Freeing handles. 3
Functions
rows and collections
ifx_rc_count() 172
ifx_rc_delete() 173
ifx_rc_describe() 174
ifx_rc_fetch() 175
ifx_rc_free() 176
ifx_rc_insert() 176
ifx_rc_isnull() 178
ifx_rc_setnull() 178
ifx_rc_typespec() 179
ifx_rc_update() 179
smart large objects 153
ifx_lo_alter() 153
ifx_lo_close() 154
ifx_lo_col_info() 154
ifx_lo_create() 155
ifx_lo_def_create_spec() 156
ifx_lo_open() 157
ifx_lo_read() 158
ifx_lo_readwithseek() 159
ifx_lo_seek() 160
ifx_lo_specget_estbytes() 160
ifx_lo_specget_extsz() 161
ifx_lo_specget_flags() 161
ifx_lo_specget_maxbytes() 162
ifx_lo_specget_sbspace() 162
ifx_lo_specset_estbytes() 163

G

H

ifx_lo_specset_extsz() 164
ifx_lo_specset_flags() 165
ifx_lo_specset_maxbytes() 165
ifx_lo_specset_sbspace() 166
ifx_lo_stat_atime() 167
ifx_lo_stat_cspec() 167
ifx_lo_stat_ctime() 168
ifx_lo_stat_refcnt() 168
ifx_lo_stat_size() 169
ifx_lo_stat() 166

ifx_lo_tell() 169
ifx_lo_truncate() 170
ifx_lo_write() 171
ifx_lo_writewithseek() 171

GLS feature
data types 4
GLS.3

Handles. 3
hdbc. 3
Header files
required 9
sqglext.h C data type 10
henv. 3
High-Availability Data Replication
IFMX_CPM_ENABLE_SWITCH_HDRPOOL 25
hstmt. 3

identifiers
delimited

enabling/disabling using ODBC 181
IFMX_CPM_AGELIMIT environment
variable 25
IFMX_CPM_ENABLE_SWITCH_HDRPOOL
environment variable 25
IFMX_CPM_INIT_POOLSIZE environment
variable 25
IFMX_CPM_MAX_CONNECTIONS environment
variable 25
IFMX_CPM_MAX_POOLSIZE environment
variable 25
IFMX_CPM_MIN_AGELIMIT environment
variable 25
IFMX_CPM_MIN_POOLSIZE environment
variable 25
IFMX_CPM_SERVICE_INTERVAL environment
variable 25
ifx_lo_alter() 153
ifx_lo_close() 154
ifx_lo_col_info() 154
ifx_lo_create() 155
ifx_lo_def_create_spec() 156
ifx_lo_open() 157
ifx_lo_read() 158
ifx_lo_readwithseek() 159
ifx_lo_seek() 160
ifx_lo_specget_estbytes() 160
ifx_lo_specget_extsz() 161
ifx_lo_specget_flags() 161
ifx_lo_specget_maxbytes() 162
ifx_lo_specget_sbspace() 162
ifx_lo_specset_estbytes() 163
ifx_lo_specset_extsz() 164
ifx_lo_specset_flags() 165
ifx_lo_specset_maxbytes() 165
ifx_lo_specset_sbspace() 166
ifx_lo_stat_atime() 167
ifx_lo_stat_cspec() 167

262

ifx_lo_stat_ctime() 168
ifx_lo_stat_refcnt() 168
ifx_lo_stat_size() 169
ifx_lo_stat() 166
ifx_lo_tell() 169
ifx_lo_truncate() 170
ifx_lo_write() 171
ifx_lo_writewithseek() 171
IFX_LOB_XFERSIZE

environment variable 180
ifx_rc_count() 172
ifx_rc_delete() 173
ifx_rc_describe() 174
ifx_rc_fetch() 175
ifx_rc_free() 176
ifx_rc_insert() 176
ifx_rc_isnull() 178
ifx_rc_setnull() 178
ifx_rc_typespec() 179
ifx_rc_update() 179
IN parameters

used during execution of SPL 186
Include files. 3
INFORMIXDIR environment variable 8
INFORMIXSQLHOSTS environment variable 8
infxcli.h file 67
Initializing data sources 44
initialPoolSize 25
Input buffers 13
Insert cursor 182

enabling 55
INSERT statements

affected rows 238, 238

SQLParamOptions 233
INSERT statements. 3
Internet Protocol Version 6 4
Interoperability

buffer length 13

default C data type 87

transferring data 77

LDAP authentication on Windows 36
Length

data 67
Length, buffers

input 13

maximum 13

output 14
Length, defined 67
Length, unknown

precision 67
Libraries 10
Library

Informix

ODBC Driver

10

translation 32

shared 32

LIST data type 67
LO_APPEND 111
LO_BUFFER 111
LO_DIRTY_READ 111
LO_KEEP_LASTACCESS_TIME 96
LO_NOBUFFER 111
LO_NOKEEP_LASTACCESS_ TIME 96
LO_NOLOG 96
LO_RDONLY 111
LO_RDWR 111
LO_SEEK_CUR 159, 160, 171
LO_SEEK_END 159, 160, 171

LO_SEEK_SET 159, 160, 171
LO_WRONLY 111
Locales

client 32

database 32
lofd 94
Login authorization. 3
Logon ID 46
Long identifiers 4
loptr 94
lospec 94
lostat 94

Manual-commit mode. 3
maxldleTime 25
maxPoolSize 25
maxStatements 25
Memory. 3
Message chaining 192
Message transfer optimization 191
Messages, error. 3
Microsoft Transaction Server 4
Migrating to
Informix
ODBC
DSN connection on UNIX 79
DSN connection on Windows 79
minPoolSize 25
Modes
auto-commit. 3
manual commit. 3
MTS. 3
MULTISET data type 67
Multithreading, with environment handles 209

Named rows 67
NULL data
output buffers 14
Null pointers
input buffers 13
output buffers 14
Null-termination byte
embedded 13
examples 89, 92
input buffers 13
output buffers 14
Numeric data 3
C data type 74
TIMESTAMP_STRUCT 74
UCHAR 74
UWORD 74

ODBC_CLIENT_LABEL environment
variable 180
odbc.ini file 46
Data Source Specification section 46
ODBC Data Sources section 46
odbc.ini tracing options 53
ODBCINI environment variable 8
odbcinst.ini file 44
OPAQUE data type 67
Optimistic concurrency control. 3
OPTMSG 191
OUT parameters
used during execution of SPL 186
Output buffers 14

PAM. 35

Parameters 3
arrays 233
binding 186
SQLBindParameter 210
number 232
used during execution of SPL 186
Passwords 55
PATH environment variable 8
Pluggable Authentication Module
Connect functions 17
Connection pooling 36
Intermediate Code 37
SQLSetConnectAttr() function 36
Third party connections 37
Pointers, maintaining 13
Pointers, null. 3
Position, cursor. 3
Positioned
DELETE statements 189
UPDATE statements 189
Precision 67
Procedure
defined 236
Procedure columns 236
Procedures, SQL 236
SQLSTAGE and error values 236
propertyCycle 25
pwd 46

Q

Queries. 3
R

Report KeySet cursors 55
Report sets
SQLDescribeCol 215
Report standard ODBC data type
DSN settings 79
Result sets 3
arrays. 3
defined 11
SQLNumResultCols 232
SQLRowCount 238, 238
Retrieving data
arrays. 3
binding columns. 3
rows. 3
Row status array, errors 222
Rows 3, 67
affected 238, 238
and collections 133
buffers 133
converting SQL data 134
creating 143
current position 150
deleting 150, 173
errors in 222
inserting 150, 176
local fetch 134
modifying 150
retrieving 175
retrieving information 151
transferring 133
updating 150, 179
Rowsets
errors 222

S

SBSPACENAME 98
Scale, defined 67
SCHAR typedef 74
Scrollable cursor 55

263

SDOUBLE typedef 74
SDWORD typedef 74
Segment boundaries 13
SELECT statements 3
affected rows 238, 238
bulk 233
SET data type 67
Setting GLS options
UNIX 32
Windows 32
setup.odbc 8
SFLOAT typedef 74
Simple large object fetches 184
Size, display 67
Smart large objects 67
access modes 111
accessing 108
allocation extent size 95
altering 153
closing 114, 154
creating 99, 155
data structures 94
disk-storage information 95
estimated size 95
file descriptor 94
functions 153
getting file position 169
ifx_lo functions 110
inheritance hierarchy 97
inserting 108
last access-time 96
lightweight 170 112
locks 113
logging indicator
LO_LOG 96
maximum size 95
modifying 114
ODBC API 109
opening 110, 157
pointer structure 94
reading 158, 159
retrieving status 123
sbspace name 95
selecting 110
setting file position 160, 170
specification structure 94
status structure 94
storage characteristics 95, 154
transferring 108
updating 108
writing 171,171
smart trigger 247
SQL data types 3
BLOB 67
CLOB 67
collection 67
conversion examples 89, 92
converting from C data type 91
converting to C data type 86
default C data type 87
display size 67
DISTINCT 67
Informix
66
Informix
ODBC Driver
66
length 67
LIST 67
MULTISET 67
OPAQUE 67

precision 67

row 67

scale 67

SET 67

smart large object 67

SQL_IFMX_UDT_BLOB 67

SQL_IFMX_UDT_CLOB 67

SQL_INFX_UDT_FIXED 67

SQL_INFX_UDT_VARYING 67
SQL statements

native 231
SQL_ATTR_ROW_ARRAY_SIZE 184
SQL_C_BINARY data type 74
SQL_C_BIT data type 74
SQL_C_CHAR data type 74
SQL_C_DATE data type 74
SQL_C_DOUBLE data type 74
SQL_C_FLOAT data type 74
SQL_C_LONG data type 74
SQL_C_SHORT data type 74
SQL_C_SLONG data type 74
SQL_C_SSHORT data type 74
SQL_C_STINYINT data type 74
SQL_C_TIMESTAMP data type 74
SQL_C_TINYINT data type 74
SQL_C_ULONG data type 74
SQL_C_USHORT data type 74
SQL_C_UTINYINT data type 74
SQL_DESC_OCTET_LENGTH, and
bookmarks 42
SQL_DIAG_ISAM_ERROR attribute 40
SQL_ENABLE_INSERT_CURSOR 182
SQL_IFMX_UDT_BLOB data type 67
SQL_IFMX_UDT_CLOB data type 67
SQL_INFX_ATTR_AUTO_FREE 183

SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE 79

SQL_INFX_ATTR_DEFERRED_PREPARE 184
SQL_INFX_ATTR_DELIMIDENT connection
attribute 181

SQL_INFX_ATTR_ENABLE_INSERT_CURSORS 55
SQL_INFX_ATTR_ENABLE_SCROLL_CURSORS 55

SQL_INFX_ATTR_IDSISAMERRMSG

attribute 40

SQL_INFX_ATTR_LO_AUTOMATIC 78, 78, 109
SQL_INFX_ATTR_ODBC_TYPES_ONLY 78,78
SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT 55
SQL_INFX_ATTR_OPTMSG 191
SQL_INFX_ATTR_OPTOFC 55

SQL_INFX_ATTR_REPORT_KEYSET_CURSORS 55

SQL_INFX_UDT_FIXED data type 67
SQL_INFX_UDT_VARYING data type 67
SQLAllocConnect 3

function description 208
SQLAllocEnv 3

function description 208
SQLAllocStmt 3

function description 209
SQLBindCol

function description 209
SQLBindParameter

function description 210
SQLBrowseConnect

function description 211
SQLBulkOperations 42

bookmarks 42

function description 42
SQLCancel, function description 212
SQLColAttributes, function description 212
SQLColumnPrivileges, function
description 213
SQLColumns, function description 214

SQLConnect, function description 214
SQLDataSources, function description 215
SQLDescribeCol, function description 215
SQLDescribeParam 42
SQLDisconnect, function description 216
SQLDriverConnect, function description 217
SQLDrivers, function description 218
SQLError 3
function description 219
SQLExecDirect, function description 219
SQLExecute, function description 221
SQLExtendedFetch
bookmarks 42
function description 222
SQLFetch, function description 224
SQLFetchScroll, bookmarks 42
SQLForeignKeys, function description 225
SQLFreeConnect
function description 226
SQLFreeEnv 3
function description 226
SQLFreeHandle 3
SQLFreeStmt 3
function description 226
SQLGetConnectOption, function
description 226
SQLGetCursorName, function description 227
SQLGetData, function description 227
SQLGetDiagRec API 40
SQLGetFunctions, function description 228
SQLGetInfo, function description 229
SQLGetStmtOption, function description 229
SQLGetTypelnfo
function description 230
supported data types 10
SQLMoreResults, function description 231
SQLNativeSq|, function description 231
SQLNumParams, function description 232
SQLNumResultCols, function description 232
SQLParamData
function description 233
SQLPutData 233
SQLParamOptions
function description 233
multiple parameter values 233
SQLPrepare
deferring execution 184
function description 234
SQLPrimaryKeys, function description 235
SQLProcedureColumns, function
description 236
SQLProcedures, function description 236
SQLPutData
function description 237
SQLParamData 233
SQLRowCount, function description 238
SQLSetConnectOption 3
function description 238
SQLSetCursorName, function description 239
SQLSetPos
column binding 209
error messages 194
LockType argument
SQL_CAT_LOCK_NO_CHANGE 14
operation argument
SQL_CA1_POS_DELETE 14
SQL_CA1_POS_POSITION 14
SQL_CA1_POS_REFRESH 14
SQL_CA1_POS_UPDATE 14
positioned UPDATE and DELETE
statements 189

264

T

u

scroll cursors 184, 189
SQLGetData 184, 227
SQLParamData 233
SQLRowCount 238
SQLSetStmtOption
function description 240
SQLSpecialColumns, function description 240
SQLSTATE
naming conventions 193
values 194
values. 3
SQLStatistics 241
function description 241
SQLTablePrivileges, function description 242
SQLTables, function description 243
SQLTransact, function description 243
SqlType 66
Statement handles
defined 12
HSTMT variable type 12
SQLAllocStmt 209
SQLFreeStmt 226
Status array, errors 222
Status information. 3
Storage characteristics
create-time flags 96
disk-storage information 95
inheritance hierarchy 97
String data. 3
Sun JDBC 3.0 properties 25
SWORD typedef 74
syscolattribs 99

Table

columns. 3

indexes. 3

rows. 3
Termination byte, null. 3
Threads, multiple

with environment handles 209
Time-stamp data 74
TIMESTAMP_STRUCT typedef 74
Tracing values in ODBC 53
Transactions

concurrency 43

incomplete 217
Transferring binary data 77
Translation

library 32

options 32

shared library 32

error 194,211, 214,217,238

TRANSLATION_OPTION environment
variable 32
TRANSLATIONDLL environment variable 32,
46
Truncating data 3, 3

output buffers 14

SQLBindCol 209
Typedefs

DATE_STRUCT 74

SCHAR 74

SDOUBLE 74

SDWORD 74

SFLOAT 74

SWORD 74

UDWORD 74

UCHAR typedef 74
UDT fetch type 79

UDWORD typedef 74

Unicode 4

Unnamed rows 67

UPDATE statements 3
affected rows 238, 238
bulk 233

User ID 55

UWORD typedef 74

v

Variables, binding
estbytes input argument 153
SQL_INFX_UDT_FIXED 88
SQL_INFX_UDT_VARYING 88
VMBCHARLENEXACT environment variable 32

W

Window handles. 3
X

XA 4,9,35

265

	HCL Informix ODBC Driver Programmer's Manual
	Contents
	Chapter 1. Informix® ODBC Driver Guide
	Overview of HCL Informix® ODBC Driver
	What is HCL Informix® ODBC Driver?
	HCL Informix® ODBC Driver features
	Support for extended data types
	Support for GLS data types
	Extended error detection

	Additional values for some ODBC function arguments

	ODBC component overview
	HCL Informix® ODBC Driver with a driver manager
	HCL Informix® ODBC Driver without a driver manager (UNIX™)

	HCL Informix® ODBC Driver with the DMR
	HCL Informix® ODBC Driver components
	Environment variables
	Set environment variables on UNIX™
	Set environment variables in Windows™

	Header files
	Data types
	Libraries
	UNIX™
	Windows™

	The HCL Informix® ODBC Driver API
	Environment, connection, and statement handles
	Buffers
	Input buffers
	Output buffers

	SQLGetInfo argument implementation

	Connection pooling
	Enabling/Disabling connection pooling
	Sample Output
	Tuning the Connection Pool Manager
	Sample code for MinPoolSize and MaxConnLimit usage

	Global Language Support
	X/Open standard interface
	External authentication
	Pluggable Authentication Module (PAM) on UNIX™ and Linux™
	LDAP Authentication on Windows™
	The SQLSetConnectAttr() function with authentication
	Connect functions
	The SQLConnect() function
	The SQLBrowseConnect() function

	Third-party applications or intermediate code

	Bypass ODBC parsing
	BufferLength in character for SQLGetDiagRecW
	Informix® and ISAM error descriptions in SQLGetDiagRec
	Improved performance for single-threaded applications
	Partially supported and unsupported ODBC features
	Transaction processing
	Transaction isolation levels
	Changing the transaction mode

	ODBC cursors
	ODBC bookmarks
	SQLBulkOperations
	SQLDescribeParam
	Unsupported Microsoft™ ODBC driver features

	Configure data sources
	Configure a DSN on UNIX™
	The odbcinst.ini file
	ODBC drivers
	Driver specifications

	The odbc.ini file
	ODBC Data Sources
	Data-source specification
	Set the isolation level (UNIX™ only)

	ODBC section
	Set the $ODBCINI environment variable
	The .netrc file

	Configuring a DSN in Windows™
	Configuring a new user DSN or system DSN
	Removing a DSN
	Reconfiguring an existing DSN
	Configuring a file DSN
	Creating logs of calls to the drivers

	Connection string keywords that make a connection
	DSN migration tool
	Setting up and using the DSN migration tool
	DSN migration tool examples

	Data types
	Data types
	SQL data types
	Additional SQL data types for Informix®
	Precision, scale, length, and display size
	Standard SQL data types
	Additional SQL data types for Informix®

	C data types
	C interval structure
	Transfer data

	Report standard ODBC types
	SQL_INFX_ATTR_ODBC_TYPES_ONLY
	SQL_INFX_ATTR_LO_AUTOMATIC
	SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE
	Report wide character columns
	DSN settings for report standard ODBC data types

	Convert data
	Standard conversions
	Additional conversions for GLS
	Additional conversions for Informix®
	Convert data from SQL to C
	Default C data types
	Standard default C data types
	Additional default C data types for Informix®

	SQL-to-C data conversion examples

	Convert data from C to SQL
	C to SQL: Bit
	C-to-SQL data conversion examples

	Smart large objects
	Data structures for smart large objects
	Working with a smart-large-object data structure

	Storage of smart large objects
	Disk-storage information
	Create-time flags
	Inheritance hierarchy
	Using system-specified storage characteristics
	Using column-level storage characteristics
	User-defined storage characteristics

	Example of creating a smart large object
	Transfer smart-large-object data
	Access a smart large object
	Smart-large-object automation
	Set the access method using SQL_INFX_ATTR_LO_AUTOMATIC
	Insert, update, and delete smart large objects using the ODBC API
	Select smart large objects using the ODBC API

	The ifx_lo functions
	Select a smart large object using ifx_lo functions
	Open a smart large object using ifx_lo functions
	Access modes

	Lightweight I/O
	Smart-large-object locks
	Duration of an open operation on a smart large object
	Delete a smart large object
	Modifying a smart large object
	Close a smart large object
	Example of retrieving a smart large object from the database using ifx_lo functions

	Retrieve the status of a smart large object
	Example of retrieving information about a smart large object

	Read or write a smart large object to or from a file

	Rows and collections
	Allocating and binding a row or collection buffer
	Fixed-type buffers and unfixed-type buffers
	Buffers and memory allocation
	SQL data
	Performing a local fetch
	Example of retrieving row and collection data from the database

	Example of creating a row and a list on the client
	Modify a row or collection
	Retrieve information about a row or collection

	Client functions
	Call a client function
	Function syntax
	Executing a client function with SQLPrepare() and SQLExecute()
	Executing a client function with SQLExecDirect()

	Input and output parameters
	The SQL_BIGINT data type
	Return codes

	Functions for smart large objects
	The ifx_lo_alter() function
	Syntax
	Arguments
	Usage

	The ifx_lo_close() function
	Syntax
	Arguments
	Usage

	The ifx_lo_col_info() function
	Syntax
	Arguments
	Usage

	The ifx_lo_create() function
	Syntax
	Arguments
	Usage

	The ifx_lo_def_create_spec() function
	Syntax
	Arguments
	Usage

	The ifx_lo_open() function
	Syntax
	Arguments
	Usage

	The ifx_lo_read() function
	Syntax
	Arguments
	Usage

	The ifx_lo_readwithseek() function
	Syntax
	Arguments
	Usage

	The ifx_lo_seek() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specget_estbytes() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specget_extsz() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specget_flags() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specget_maxbytes() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specget_sbspace() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specset_estbytes() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specset_extsz() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specset_flags() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specset_maxbytes() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specset_sbspace() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat_atime() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat_cspec() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat_ctime() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat_refcnt() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat_size() function
	Syntax
	Arguments
	Usage

	The ifx_lo_tell() function
	Syntax
	Arguments
	Usage

	The ifx_lo_truncate() function
	Syntax
	Arguments
	Usage

	The ifx_lo_write() function
	Syntax
	Arguments
	Usage

	The ifx_lo_writewithseek() function
	Syntax
	Arguments
	Usage

	Functions for rows and collections
	The ifx_rc_count() function
	Syntax
	Arguments
	Usage

	The ifx_rc_delete() function
	Syntax
	Arguments
	Usage

	The ifx_rc_describe() function
	Syntax
	Arguments
	Usage

	The ifx_rc_fetch() function
	Syntax
	Arguments
	Usage

	The ifx_rc_free() function
	Syntax
	Arguments
	Usage

	The ifx_rc_insert() function
	Syntax
	Arguments
	Usage

	The ifx_rc_isnull() function
	Syntax
	Arguments
	Usage

	The ifx_rc_setnull() function
	Syntax
	Arguments
	Usage

	The ifx_rc_typespec() function
	Syntax
	Arguments
	Usage

	The ifx_rc_update() function
	Syntax
	Arguments
	Usage

	Application tracking in ODBC
	Improve application performance
	Error checking during data transfer
	Enable delimited identifiers in ODBC
	The DELIMIDENT connection string keyword
	The SQL_INFX_ATTR_DELIMIDENT connection attribute
	The DELIMIDENT environment variable

	Connection level optimizations
	Optimizing query execution
	Insert multiple rows
	Automatically freeing a cursor
	Enabling the AUTOFREE feature
	The AUTOFREE feature

	Delay execution of the SQL PREPARE statement
	Set the fetch array size for simple-large-object data
	The SPL output parameter feature
	OUT and INOUT parameters
	Asynchronous execution
	Update data with positioned updates and deletes
	BIGINT and BIGSERIAL data types
	Message transfer optimization
	Message chaining restrictions
	Disable message chaining
	Errors with optimized message transfers

	Error messages
	Diagnostic SQLSTATE values
	Map SQLSTATE values to Informix® error messages
	Map Informix® error messages to SQLSTATE values
	Deprecated and new HCL Informix® ODBC Driver APIs
	SQLAllocConnect (core level only)
	SQLAllocEnv (core level only)
	SQLAllocStmt (core level only)
	SQLBindCol (core level only)
	SQLBindParameter (level one only)
	SQLBrowseConnect (level two only)
	SQLCancel (core level only)
	SQLColAttributes (core level only)
	SQLColumnPrivileges (level two only)
	SQLColumns (level one only)
	SQLConnect (core level only)
	SQLDataSources (level two only)
	SQLDescribeCol (core level only)
	SQLDisconnect
	Usage

	SQLDriverConnect (level one only)
	SQLDrivers (level two only)
	SQLError (core level only)
	SQLExecDirect (core level only)
	SQLExecute (core level only)
	SQLExtendedFetch (level two only)
	SQLFetch (core level only)
	SQLForeignKeys (level two only)
	SQLFreeConnect (core level only)
	SQLFreeEnv (core level only)
	SQLFreeStmt (core level only)
	SQLGetConnectOption (level one only)
	SQLGetCursorName (core level only)
	SQLGetData (level one only)
	SQLGetFunctions (level one only)
	SQLGetInfo (level one only)
	SQLGetStmtOption (level one only)
	SQLGetTypeInfo (level one only)
	SQLMoreResults (level two only)
	SQLNativeSql (level two only)
	Usage

	SQLNumParams (level two only)
	SQLNumResultCols (core level only)
	SQLParamData (level one only)

	SQLParamOptions (core and level two only)
	SQLPrepare
	SQLPrimaryKeys (level two only)
	SQLProcedureColumns (level two only)
	SQLProcedures (level two only)
	SQLPutData (level one only)
	SQLRowCount (core level only)
	SQLSetConnectOption (level one only)
	SQLSetCursorName (core level only)
	SQLSetStmtOption (level one only)
	SQLSpecialColumns (level one only)
	SQLStatistics (level one only)
	SQLTablePrivileges (level two only)
	SQLTables (level one only)
	SQLTransact (core level only)

	Unicode
	Overview of Unicode
	Unicode versions

	Unicode in an ODBC application
	Unicode in an ODBC application
	Configuration

	ODBC Smart trigger
	ODBC API
	Register the smart trigger events
	Delete the registered session
	API Structure
	Compiling sample application on Linux
	Compiling sample application on Windows
	ODBC sample application
	Best Practices/Trouble shooting
	SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP and SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP interfaces

	Index

