
HCL Informix 15.0.0

HCL Informix ODBC Driver Programmer's Manual

ii

Contents
Chapter 1. Informix® ODBC Driver Guide.......................... 3

Overview of HCL Informix® ODBC Driver.......................3
What is HCL Informix® ODBC Driver?.....................3
ODBC component overview.....................................5
HCL Informix® ODBC Driver with the DMR.............7
HCL Informix® ODBC Driver components.............. 8
The HCL Informix® ODBC Driver API....................11
Connection pooling.. 17
Global Language Support...................................... 32
X/Open standard interface.................................... 35
External authentication.. 35
Bypass ODBC parsing.. 38
BufferLength in character for
SQLGetDiagRecW... 39
Informix® and ISAM error descriptions in
SQLGetDiagRec...40
Improved performance for single-threaded
applications...40
Partially supported and unsupported ODBC
features... 41

Configure data sources... 44
Configure a DSN on UNIX™....................................44
Configuring a DSN in Windows™........................... 55
Connection string keywords that make a
connection.. 64
DSN migration tool...65

Data types.. 66
Data types...66
SQL data types... 66
C data types..74
Report standard ODBC types.................................77
Convert data... 81

Smart large objects... 94
Data structures for smart large objects................94
Storage of smart large objects..............................95
Example of creating a smart large object.............99
Transfer smart-large-object data........................ 108
Access a smart large object............................... 108
Retrieve the status of a smart large object........ 123
Read or write a smart large object to or from a
file.. 132

Rows and collections.. 133
Allocating and binding a row or collection
buffer...133
Example of creating a row and a list on the
client..143
Modify a row or collection...................................150

Retrieve information about a row or
collection...151

Client functions..151
Call a client function.. 151
Functions for smart large objects.......................153
Functions for rows and collections.....................172

Application tracking in ODBC......................................180
Application tracking in ODBC...........................

Improve application performance.............................. 180
Error checking during data transfer.................... 180
Enable delimited identifiers in ODBC.................. 181
Connection level optimizations...........................182
Optimizing query execution.................................182
Insert multiple rows... 182
Automatically freeing a cursor............................ 183
Delay execution of the SQL PREPARE
statement..184
Set the fetch array size for simple-large-object
data..184
The SPL output parameter feature......................186
OUT and INOUT parameters................................186
Asynchronous execution..................................... 189
Update data with positioned updates and
deletes...189
BIGINT and BIGSERIAL data types......................191
Message transfer optimization........................... 191

Error messages..193
Diagnostic SQLSTATE values.............................. 193
Map SQLSTATE values to Informix® error
messages..194
Map Informix® error messages to SQLSTATE
values.. 207
SQLParamOptions (core and level two only)...... 233

Unicode...244
Overview of Unicode.. 244
Unicode in an ODBC application......................... 245
Unicode in an ODBC application......................... 246
Unicode..

ODBC Smart trigger... 247
Index...261

ids_odbc_client_label.dita
ids_odbc_client_label.dita
ids_odbc_client_label.dita
ids_odbc_client_label.dita
ids_odbc_299.dita
ids_odbc_299.dita
ids_odbc_299.dita
ids_odbc_299.dita

Chapter 1. Informix® ODBC Driver Guide
The Informix® ODBC Driver Programmer's Manual serves as a user guide and reference for HCL Informix® ODBC Driver,

which is the Informix® implementation of the Microsoft™ Open Database Connectivity (ODBC) interface, Version 3.0.

These topics explain how to use the HCL Informix® ODBC Driver application programming interface (API) to access the

Informix® database and interact with the Informix® database server.

These topics are written for C programmers who use HCL Informix® ODBC Driver to access Informix® databases.

These topics assume that you have the following background:

• A working knowledge of your computer, your operating system, and the utilities that your operating system provides

• Some experience working with relational or object-relational databases, or exposure to relational database concepts

• C programming language

For information about software compatibility, see the Informix® Client SDK release notes.

Overview of HCL Informix® ODBC Driver
These topics introduce the HCL Informix® ODBC Driver and describe its advantages and architecture. The topics also

describe conformance, isolation and lock levels, libraries, and environment variables.

What is HCL Informix® ODBC Driver?
Open Database Connectivity (ODBC) is a specification for a database application programming interface (API).

Microsoft™ ODBC, Version 3.0, is based on the Call Level Interface specifications from X/Open and the International

Standards Organization/International Electromechanical Commission (ISO/IEC). ODBC supports SQL statements with a

library of C functions. An application calls these functions to implement ODBC functionality.

ODBC applications enable you to perform the following operations:

• Connect to and disconnect from data sources

• Retrieve information about data sources

• Retrieve information about HCL Informix® ODBC Driver

• Set and retrieve HCL Informix® ODBC Driver options

• Prepare and send SQL statements

• Retrieve SQL results and process the results dynamically

• Retrieve information about SQL results and process the information dynamically

ODBC lets you allocate storage for results before or after the results are available. This feature lets you determine the results

and the action to take without the limitations that predefined data structures impose.

ODBC does not require a preprocessor to compile an application program.

3

4

HCL Informix® ODBC Driver features
HCL Informix® ODBC Driver implements the Microsoft™ Open Database Connectivity (ODBC), Version 3.0 standard.

The HCL Informix® ODBC Driver product also provides the following features and functionality:

• Data Source Name (DSN) migration

• Driver Manager Replacement Module, which supports compatibility between ODBC 2.x applications and the ODBC

driver, version 3.0.

• Microsoft™ Transaction Server (MTS), which is an environment that lets you develop, run, and manage scalable,

component-based Internet and intranet server applications. MTS performs the following tasks:

◦ Manages system resources, including processes, threads, and database connections, so that your application

can scale to many simultaneous users

◦ Manages server component creation, execution, and deletion

◦ Automatically initiates and controls transactions to make your application reliable

◦ Implements security so that unauthorized users cannot access your application

◦ Provides tools for configuration, management, and deployment

Important: If you want to use distributed transactions managed by MTS with the HCL Informix®

ODBC Driver, you must have connection pooling enabled.

• Extended data types, including rows and collections

• Long identifiers

• Limited support of bookmarks

• GLS data types

• Extensive error detection

• Unicode support

• XA support

• Internet Protocol Version 6 support for internet protocols of 128 bits. (For more information, see HCL® Informix®

Administrator's Guide.)

Support for extended data types
HCL Informix® ODBC Driver supports the extended data types.

HCL Informix® ODBC Driver supports the following extended data types:

• Collection (LIST, MULTISET, SET)

• DISTINCT

• OPAQUE (fixed, unnamed)

• Row (named, unnamed)

• Smart large object (BLOB, CLOB)

• Client functions to support some of the extended data types

Chapter 1. Informix® ODBC Driver Guide

Support for GLS data types
HCL Informix® ODBC Driver supports the GLS data types.

HCL Informix® ODBC Driver supports the following GLS data types:

• NCHAR

• NVARCHAR

Extended error detection
HCL Informix® ODBC Driver detects the XA types of errors.

Additional values for some ODBC function arguments
HCL Informix® ODBC Driver supports additional values for some ODBC function arguments.

These additional values for some ODBC function arguments include:

• fDescType values for SQLColAttributes

◦ SQL_INFX_ATTR_FLAGS

◦ SQL_INFX_ATTR_EXTENDED_TYPE_ALIGNMENT

◦ SQL_INFX_ATTR_EXTENDED_TYPE_CODE

◦ SQL_INFX_ATTR_EXTENDED_TYPE_NAME

◦ SQL_INFX_ATTR_EXTENDED_TYPE_OWNER

◦ SQL_INFX_ATTR_SOURCE_TYPE_CODE

• fInfoType return value for SQLGetInfo

◦ SQL_INFX_LO_PTR_LENGTH

◦ SQL_INFX_LO_SPEC_LENGTH

• SQL_INFX_LO_STAT_LENGTH

• fOption value for SQLGetConnectOption and SQLSetConnectOption: SQL_INFX_OPT_LONGID

• fOption value for SQLGetConnectOption and SQLSetConnectOption: SQL_ATTR_ENLIST_IN_DTC

ODBC component overview
ODBC with the HCL Informix® ODBC Driver includes several components.

ODBC with the HCL Informix® ODBC Driver can include the following components:

• Driver manager

An application can link to a driver manager, which links to the driver specified by the data source. The driver manager

also checks parameters and transitions. On most UNIX™ platforms, the ODBC Driver Manager can be purchased from

a third-party vendor.

On Microsoft™ Windows™ platforms, the ODBC Driver Manager is a part of the OS.

5

6

• HCL Informix® ODBC Driver

The driver provides an interface to Informix® database server. Applications can use the driver in the following

configurations:

◦ to link to the ODBC driver manager

◦ to link to the Driver Manager Replacement & the driver

◦ to link to the driver directly

• Data sources

The driver provides access to the following data sources:

◦ database management systems (DBMS), including a database server

◦ databases

◦ operating systems and network software required for accessing the database

HCL Informix® ODBC Driver with a driver manager
There is software architecture when a driver manager is included in the system.

The following figure shows the software architecture when a driver manager is included in the system. In such a system, the

driver and driver manager act like a single unit that processes function calls.

Figure 1. HCL Informix® ODBC Driver with a driver manager

Chapter 1. Informix® ODBC Driver Guide

HCL Informix® ODBC Driver without a driver manager (UNIX™)
There is software architecture when a driver manager is not included in the system.

The following figure shows an application that uses HCL Informix® ODBC Driver without a driver manager. In this case, the

application must link to the HCL Informix® ODBC Driver library.

Figure 2. HCL Informix® ODBC Driver without a driver manager

HCL Informix® ODBC Driver with the DMR
HCL Informix® ODBC Driver includes a Driver Manager Replacement (DMR) library. The DMR replaces the driver manager on

platforms where no driver manager is available.

The following figure shows an ODBC configuration with the DMR.

Figure 3. Architecture of the driver manager replacement module

Applications that are linked directly to the ODBC Version 4.10 driver and the DMR do not require the ODBC Driver Manager.

7

8

In addition to supporting ODBC Version 4.10 features, the DMR supports compatibility between ODBC 2.x applications and

Version 3.00 of the HCL Informix® ODBC Driver. To be compatible with ODBC 2.x applications, the application must link to

Version 3.00 of HCL Informix® ODBC Driver through the DMR or through the ODBC Version 4.10 driver manager.

You cannot use the HCL® Informix® DMR to connect to non-Informix® data sources. The DMR does not support connection

pooling. The DMR does not map between Unicode and ANSI APIs.

HCL Informix® ODBC Driver components
HCL Informix® ODBC Driver includes the four components.

HCL Informix® ODBC Driver includes the following components:

Environment variables
There are four environment variables that you must set for the driver.

The following list describes environment variables that you must set for the driver. For more information about environment

variables, see the HCL® Informix® Guide to SQL: Reference.

INFORMIXDIR

Full path of the directory where the HCL Informix® Client Software Development Kit is installed.

On Windows™ platforms, INFORMIXDIR is a registry setting rather than an environment variable. It is set during

installation.

PATH

Directories that are searched for executable programs. Your PATH setting must include the path to your

$INFORMIXDIR/bin directory.

DBCENTURY (optional)

Controls the setting of year values. DBCENTURY affects a client program when a user issues a statement that

contains a date or datetime string that specifies only the last two digits of the year. For example:

insert into datetable (datecol) values ("01/01/01");

The database server stores the date specified in this statement as either 01-01-1901 or 01-01-2001, depending

on the DBCENTURY value on the client.

GL_DATE (optional)

GL_DATE controls the interpretation of dates. For example, you can specify whether the date format is mm-dd-

yyyy or yyyy-mm-dd.

Set environment variables on UNIX™
If you set the environment variables at the command line, you must reset them whenever you log on to your system. If you

set the environment variables in a file, they are set automatically when you log on to your system.

Chapter 1. Informix® ODBC Driver Guide

HCL Informix® ODBC Driver provides a sample setup file called setup.odbc in $INFORMIXDIR/etc. You can use this file

to set environment variables for the driver. The following list describes the environment variables that are in setup.odbc.

INFORMIXDIR

Full path of the directory where HCL Informix® Client Software Development Kit is installed.

INFORMIXSQLHOSTS

This value is optional. It specifies the directory that contains sqlhosts. By default, sqlhosts is in

$INFORMIXDIR/etc. Set INFORMIXSQLHOSTS if you want sqlhosts to be in a different directory.

ODBCINI

This value is optional. You can use it to specify an alternative location for the odbc.ini file. The default

location is your home directory.

Set environment variables in Windows™
If you set the environment variables at the command line, you must reset them whenever you log in to your Windows™

environment. If you set them in the Windows™ registry, however, they are set automatically when you log in.

HCL Informix® ODBC Driver stores environment variables in the following location in the Windows™ registry:

\HKEY_CURRENT_USERS\Software\Informix\Environment

In a Windows™ environment you must use setnet32.exe, or a tool that updates the registry correctly, to set environment

variables that HCL Informix® dynamic link libraries (DLLs), such as iclit09b.dll, use. The Setnet utility can only be used

to set Informix® environment variables.

You can use environment variables as required by your development environment. For example, the compiler needs to know

where to find the include files. To specify the location of the include files, set the environment variable INFORMIXDIR (or

some other environment variable) and then set the include path to INFORMIXDIR\incl\cli.

The options for setting environment variables have the following precedence:

1. Setnet utility

2. Command line

3. Windows™ registry

Header files
You can use the sql.h and sqlext.h header files, which are part of the Microsoft™ compiler, to run HCL Informix® ODBC

Driver.

To run Informix® extensions, include the infxcli.h file, which is installed in INFORMIXDIR/incl/cli. This file defines

HCL Informix® ODBC Driver constants and types, and provides function prototypes for the HCL Informix® ODBC Driver

functions. If you include the infxcli.h file, it automatically includes the sql.h and sqlext.h files.

The sql.h and sqlext.h header files contain definitions of the C data types.

9

10

Include the xa.h header file in XA ODBC applications. ODBC applications on Windows™ require the HCL Informix® Client

Software Development Kit to compile. Existing applications that use the ODBC driver might need to include the location of

the Client SDK in the PATH environment variable before they are recompiled.

Data types
A column of data stored on a data source has an SQL data type.

HCL Informix® ODBC Driver maps Informix®-specific SQL data types to ODBC SQL data types, which are defined in the

ODBC SQL grammar. (The driver returns these mappings through SQLGetTypeInfo. It also uses the ODBC SQL data types to

describe the data types of columns and parameters in SQLColAttributes and SQLDescribeCol).

Each SQL data type corresponds to an ODBC C data type. By default, the driver assumes that the C data type of a storage

location corresponds to the SQL data type of the column or parameter to which the location is bound. If the C data type of

a storage location is not the default C data type, the application can specify the correct C data type with the TargetType

argument for SQLBindCol, the fCType argument for SQLGetData, and the ValueType argument in SQLBindParameter. Before

the driver returns data from the data source, it converts the data to the specified C data type. Before the driver sends data to

the data source, it converts the data from the specified C data type to the SQL data type.

The Informix® data type names differ from the Microsoft™ ODBC data type names. For information about these differences,

see the appendix about data types in the IBM® Informix® ODBC Driver Programmer's Manual.

Libraries
There is an installation procedure that installs libraries for UNIX™ and Windows™.

UNIX™

The installation procedure installs the following libraries into INFORMIXDIR/lib/cli. In each data source specification

section in the odbc.ini file, set the driver value indicating the full path to one of the following library file names.

libifcli.a or libcli.a

Static version for single (nonthreaded) library

libifcli15a.so or iclis15a.so

Shared version for single (nonthreaded) library

libthcli.a

Static version for multithreaded library

libthcli15a.so or iclit15a.so

Shared version for multithreaded library

libifdmr15a.so or idmrs15a.so

Shared library for DMR (thread safe)

Chapter 1. Informix® ODBC Driver Guide

If you do not use a driver manager, your application needs to link to either the static or the shared version of the HCL

Informix® ODBC Driver libraries.

The following compile command links an application to the thread-safe version of the HCL Informix® ODBC Driver libraries:

cc ... -L$INFORMIXDIR/lib/cli -lifdmr - lthcli

Windows™

The installation procedure installs the following libraries into INFORMIXDIR\lib.

iclit09b.lib

Enables linking directly to the driver without the use of a driver manager

iregt07b.lib

Allows linking directly to iregt07b.dll

The following compile command links an application to the thread-safe version of the HCL Informix® ODBC Driver libraries:

cl ... -L$INFORMIXDIR/lib/cli iclit09b.lib

If you use a driver manager, you must link your application to the driver manager library only, as the following example

shows:

cl odbc32.lib

The HCL Informix® ODBC Driver API
An application uses the HCL Informix® ODBC Driver API to make a connection to a data source, send SQL statements to a

data source, process result data dynamically, and terminate a connection.

The driver enables your application to perform the following steps:

1. Connect to the data source.

You can connect to the data source through a DSN connection, or you can use DSN-less connection strings. Specify

the data-source name and any additional information needed to complete the connection.

2. Process one or more SQL statements:

a. Place the SQL text string in a buffer. If the statement includes parameter markers, set the parameter values.

b. If the statement returns a result set, either assign a cursor name for the statement or let the driver assign one.

c. Either prepare the statement or submit it for immediate execution.

d. If the statement creates a result set, you can inquire about the attributes of the result set, such as the number

of columns and the name and type of a specific column. For each column in the result set, assign storage and

fetch the results.

e. If the statement causes an error, retrieve error information from the driver and take the appropriate action.

3. End any transaction by committing it or rolling it back.

4. Terminate the connection when the application finishes interacting with the data source.

11

12

Every HCL Informix® ODBC Driver function name starts with the prefix SQL. Each function accepts one or more arguments.

Arguments are defined as input (to the driver) or output (from the driver).

The following figure shows the basic function calls that an application makes even though an application generally calls

other functions also.

Figure 4. Sample listing of function calls that the HCL Informix® ODBC Driver application makes

Environment, connection, and statement handles
When an application requests it, the driver and the driver manager allocate storage for information about the environment,

each connection, and each SQL statement.

The driver returns a handle for each of these allocations to the application, which uses one or more handles in each call to a

function.

The HCL Informix® ODBC Driver API uses the following types of handles:

Chapter 1. Informix® ODBC Driver Guide

Environment handles

Environment handles identify memory storage for global information, including the valid connection handles

and the current active connection handle. The environment handle is an henv variable type. An application uses

one environment handle. It must request this handle before it connects to a data source.

Connection handles

Connection handles identify memory storage for information about particular connections. A connection

handle is an hdbc variable type. An application must request a connection handle before it connects to a data

source. Each connection handle is associated with the environment handle. However, the environment handle

can be associated with multiple connection handles.

Statement handles

Statement handles identify memory storage for information about SQL statements. A statement handle is an

hstmt variable type. An application must request a statement handle before it submits SQL requests. Each

statement handle is associated with exactly one connection handle. However, each connection handle can be

associated with multiple statement handles.

Buffers
An application passes data to the driver in an input buffer. The driver returns data to the application in an output buffer.

The application must allocate memory for both input and output buffers. If the application uses the buffer to retrieve string

data, the buffer must contain space for the null termination byte.

Some functions accept pointers to buffers that are used later by other functions. The application must ensure that these

pointers remain valid until all applicable functions have used them. For example, the argument rgbValue in SQLBindCol

points to an output buffer where SQLFetch returns the data for a column.

Input buffers
An application passes the address and length of an input buffer to the driver.

The length of the buffer must be one of the following values:

• A length greater than or equal to zero

This value is the actual length of the data in the input buffer. For character data, a length of zero indicates that the

data is an empty (zero length) string. A length of zero is different from a null pointer. If the application specifies the

length of character data, the character data does not need to be null-terminated.

• SQL_NTS

This value specifies that a character data value is null-terminated.

• SQL_NULL_DATA

This value tells the driver to ignore the value in the input buffer and use a NULL data value instead. It is valid only

when the input buffer provides the value of a parameter in an SQL statement.

13

14

For character data that contains embedded null characters, the operation of HCL Informix® ODBC Driver functions is

undefined; for maximum interoperability, it is better not to use them. Informix® database servers treat null characters as end-

of-string markers or as indicators that no more data exists.

Unless it is prohibited in a function description, the address of an input buffer can be a null pointer. In such cases, the value

of the corresponding buffer-length argument is ignored.

Output buffers
An application passes arguments to the driver so that the driver can return data in an output buffer.

These arguments are:

• The address of the output buffer, to which the driver returns the data

Unless it is prohibited in a function description, the address of an output buffer can be a null pointer. In such cases,

the driver does not return anything in the buffer and, in the absence of other errors, returns SQL_SUCCESS.

If necessary, the driver converts data before returning it. The driver always null-terminates character data before

returning it.

• The length of the buffer

The driver ignores this value if the returned data has a fixed length in C, as with an integer, real number, or date

structure.

• The address of a variable in which the driver returns the length of the data (the length buffer)

The returned length of the data is SQL_NULL_DATA if the data is a null value in a result set. Otherwise, the returned

length of the data is the number of bytes of data that are available to return. If the driver converts the data, the

returned length of the data is the number of bytes that remain after the conversion; for character data, it does not

include the null-termination byte that the driver adds.

If the output buffer is too small, the driver attempts to truncate the data. If the truncation does not cause a loss of significant

data, the driver returns the truncated data in the output buffer, returns the length of the available data (as opposed to the

length of the truncated data) in the length buffer, and returns SQL_SUCCESS_WITH_INFO. If the truncation causes a loss of

significant data, the driver leaves the output and length buffers untouched and returns SQL_ERROR. The application calls

SQLGetDiagRec to retrieve information about the truncation or the error.

SQLGetInfo argument implementation
HCL Informix® implements the SQLGetInfo arguments for HCL Informix® ODBC Driver.

The following table describes the HCL Informix® implementation of SQLGetInfo arguments for HCL Informix® ODBC Driver.

Chapter 1. Informix® ODBC Driver Guide

Argument name Informix® implementation

SQL_ACTIVE_ENVIRONMENTS HCL® Informix® driver does not have a limit on number of

active environments. Zero is always returned.

SQL_AGGREGATE_FUNCTIONS HCL® Informix® driver returns all aggregate functions that the

database server supports.

SQL_ASYNC_MODE HCL® Informix® driver returns SQL_AM_NONE.

SQL_ATTR_METADATA_ID Supported for GetInfo and PutInfo

SQL_BATCH_ROW_COUNT HCL® Informix® driver returns bitmask zero.

SQL_BATCH_SUPPORT HCL® Informix® driver returns bitmask zero.

SQL_CA1_POS_DELETE Operation arguments supported in a call to SQLSetPos

SQL_CA1_POS_POSITION Operation arguments supported in a call to SQLSetPos

SQL_CA1_POS_REFRESH Operation arguments supported in a call to SQLSetPos

SQL_CA1_POS_UPDATE Operation arguments supported in a call to SQLSetPos

SQL_CA1_POSITIONED_DELETE A DELETE WHERE CURRENT OF SQL statement is supported

when the cursor is a forward-only cursor. (An SQL-92

entry-level-conforming driver always return this option as

supported.)

SQL_CA1_POSITIONED_UPDATE An UPDATE WHERE CURRENT OF SQL statement is

supported when the cursor is a static-only cursor. (An SQL-92

entry-level-conforming driver always return this option as

supported.)

SQL_CA1_LOCK_NO_CHANGE A LockType argument of SQL_LOCK_NO_CHANGE is supported

in a call to SQLSetPos when the cursor is a static-only cursor.

SQL_CA1_SELECT_FOR_UPDATE A SELECT FOR UPDATE SQL statement is supported

when the cursor is a forward-only cursor. (An SQL-92

entry-level-conforming driver always return this option as

supported.)

SQL_CATALOG_NAME HCL® Informix® driver returns 'Y'

SQL_COLLATION_SEQ returns InfoValuePtr (unmodified)

SQL_DDL_INDEX Returns bitmask SQL_DL_CREATE_INDEX |

SQL_DL_DROP_INDEX

SQL_DESCRIBE_PARAMETER Returns 'N'; parameters cannot be described. (This is because

the latest Informix® database servers support function

15

16

Argument name Informix® implementation

overloading such that multiple functions with the same name

can accept different parameter types.)

SQL_DIAG_DYNAMIC_FUNCTION Returns empty string

SQL_DROP_TABLE Returns bitmask SQL_DT_DROP_TABLE | SQL_DT_CASCADE |

SQL_DT_RESTRICT

SQL_DROP_VIEW Returns bitmask SQL_DV_DROP_TABLE | SQL_DV_CASCADE |

SQL_DV_RESTRICT

SQL_INDEX_KEYWORDS_ SQL_LLK_ASC | SQL_LK_DESC

SQL_INSERT_STATEMENT Returns bitmask SQL_IS_INSERT_LITERALS | SQL_

INSERT_SEARCHED | SQL_IS_SELECT_INTO

SQL_MAX_DRIVER_CONNECTIONS Returns zero

SQL_MAX_IDENTIFIER_LEN Returns different values, depending on database server

capability

SQL_ODBC_INTERFACE_CONFORMANCE Returns SQL_OIC_CORE

SQL_PARAM_ARRAY_ROW_COUNTS Returns SQL_PARC_NO_BATCH

SQL_PARAM_ARRAY_SELECTS Returns SQL_PAS_NO_SELECT

SQL_SQL_CONFORMANCE Returns SQL_OSC_CORE

SQL_SQL92_FOREIGN_KEY_DELETE_RULE Returns bitmask zero

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE Returns bitmask zero

SQL_SQL92_GRANT Returns bitmask zero

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS Returns bitmask zero

SQL_SQL92_PREDICATES Returns bitmask zero

SQL_SQL92_RELATIONAL_JOIN_OPERATORS Returns bitmask zero

SQL_SQL92_REVOKE SQL_SR_CASCADE | SQL_SR_RESTRICT

SQL_SQL92_ROW_VALUE_CONSTRUCTOR Returns bitmask zero

SQL_SQL92_STRING_FUNCTIONS Returns bitmask zero

SQL_SQL92_VALUE_EXPRESSIONS Returns bitmask zero

SQL_STANDARD_CLI_CONFORMANCE Returns bitmask SQL_SCC_XOPEN_CLI_VERSION1 |

SQL_SCC_ISO92_CLI

SQL_STATIC_CURSOR_ATTRIBUTES1 Scrollable only

Chapter 1. Informix® ODBC Driver Guide

Argument name Informix® implementation

SQL_STATIC_CURSOR_ATTRIBUTES2 Scrollable only

SQL_XOPEN_CLI_YEAR Returns string 1995

Connection pooling
Starting CSDK 4.50.xC2 onwards, Informix ODBC driver also supports Connection Pooling capabilities. One may decide to

use either Connection Pooling capabilities provided by ODBC Driver Manager or newly added capabilities in Informix ODBC

Driver

The main advantage of connection pooling will be for the applications (including open source drivers) directly using the

Informix ODBC driver (not via ODBC Driver Manager) and wants to optimize the connection resource in highly OLTP nature of

applications where number of connections opened and closed are in large numbers.

Note: Driver Manager and Driver's connection pooling feature cannot be used together. Application should use only

one of the features.

You can find the header file infxcli.h,which is located under $INFORMIXDIR/incl/cli directory. The file has the following

additional macros:

#define SQL_INFX_ATTR_CP_TIMEOUT 2292
#define SQL_INFX_ATTR_CONNECTION_POOLING 2293
#define SQL_INFX_ATTR_CP_MATCH 2294
#define SQL_INFX_ATTR_CP_TOTAL_CONNECTIONS 2295
#define SQL_INFX_ATTR_CP_TOTAL_ACTIVE 2296
#define SQL_INFX_ATTR_CP_TOTAL_IDLE 2297

/* Connection pooling value parameters */
#define SQL_INFX_CP_STRICT_MATCH 1
#define SQL_INFX_CP_RELAXED_MATCH 2
#define SQL_INFX_CP_OFF 1
#define SQL_INFX_CP_ON 2

Enabling/Disabling connection pooling

There are two ways to enable/disable the connection pooling in ODBC:

• On Unix/Linux, user could use following attributes in odbc.ini file:

◦ Set 0 to disable, 1 to enable. By default its disabled(0).

InformixPooling=0

◦ Timeout for the connection in seconds range 5 to 60000. Default 60. Beyond range will be reset to default

value without any error/warning.

InformixCPTimeout=10

17

18

◦ Set 0 for strict match and 1 for relaxed match. By default, it is strict match(0). In strict match, more number

of parameters are compared to find out the match from the available connection from the pool. It is

recommended to use “strict match".

InformixCPMatch=0

• On Unix/Linux or Windows, user can also set/get above values programatically using SQLSetEnvAttr/SQLGetEnvAttr

APIs.

By default, its connection pooling is disabled, "InformixPooling=0" or SQL_INFX_ATTR_CONNECTION_POOLING set to

SQL_INFX_CP_OFF.

Note: APIs used in program will have higher precendence over odbc.ini. For example: In odbc.ini file, pooling is

disabled but in the application using SQLSetEnvAttr(SQL_INFX_ATTR_CONNECTION_POOLING), if user enables

the pooling, then application will take higher precedence. Similarly other way around. Also for Timeout and Match

parameters.

The connection timing will be guided by Timeout parameter value (5 to 60000 seconds) set in "InformixCPTimeout"

parameter of odbc.ini file and/or SQLSetEnvAttr(SQL_INFX_ATTR_CP_TIMEOUT) value in the program. However this value

is not guaranteed to be exact. Whenever the user calls SQLDisonnect() at that point of time, all the "not in use" connection

will be iterated and whichever connections timeout has elapsed (difference between time of disconnect to current time), if

this difference time is more than the timeout set by the user then such connections will be physically disconnected and all

resources will be freed.

If connection pooling is enabled in odbc.ini, then it will be across all applications of ODBC. However, one can always

change(enable/disable) at each ODBC Environment (SQLAllocHanle(ENV)) scope. For example:If it is enabled in the

odbc.ini file and application has two Environments (SQLAllocHandle(ENV1 and ENV2)), then user can disable in one of the

Environments by using SQLSetEnvAttr(SQL_INFX_ATTR_CONNECTION_POOLING = DISABLED), the other Environment will be

enabled from the effect of odbc.ini file. Hence, pooling object is managed at each Environment level.

The simple parameter comparisons across parameters (STRICT vs RELAX mode) is used to decide the pooling strategy.

Depending on the mode used, all parameters must exactly match in order to hand over the available connection to the newly

asked connection request.

You can use SQLGetEnvAttr (SQL_INFX_ATTR_CONNECTION_POOLING / SQL_INFX_ATTR_CP_TIMEOUT /

SQL_INFX_ATTR_CP_MATCH) to list the values being set and if pooling is not enabled, you will get default parameters values

or values (MODE and TIMEOUT) mentioned in the odbc.ini file.

The default value of SQL_INFX_ATTR_CP_TIMEOUT is 60 seconds, range is 5 to 60000 seconds, beyond this range, it will be

reset to 60 seconds.

To track the number of connections using ODBC API, use SQLGetEnvAttr() API with below parameters:

SQLGetEnvAttr(SQL_INFX_ATTR_CP_TOTAL_CONNECTIONS) => This will return total number of connections.
 At any point of time, this will be equal to "Active +
 Idle" number of connections.
SQLGetEnvAttr(SQL_INFX_ATTR_CP_TOTAL_ACTIVE) => This will return connection count which are currently in use.

Chapter 1. Informix® ODBC Driver Guide

SQLGetEnvAttr(SQL_INFX_ATTR_CP_TOTAL_IDLE) => This will return connection count which are currently idle (not
 in use)and
 ready to be assigned for matching incoming connection
 requests.The idle number of connections
 are actually connected to the database server.

Note: If connection pooling is not enabled and calling these APIs would return default/unknown value -1 for each of

the parameters.

Sample Output

Total connections = -1, active = -1, idle = -1
*** Connection pooling enabled ***
*** Connection pooling set to STRICT mode ***
*** Connection pooling timeout set to 10 seconds
Connected, label = connStrIn
Total connections = 1, active = 1, idle = 0
Disconnected, label = connStrIn
Total connections = 1, active = 0, idle = 1
Connected, label = connStrIn
Total connections = 1, active = 1, idle = 0
Disconnected, label = connStrIn
Total connections = 1, active = 0, idle = 1
Connected, label = connStrIn1
Total connections = 2, active = 1, idle = 1
Connected, label = connStrIn
Total connections = 2, active = 2, idle = 0
Disconnected, label = connStrIn
Total connections = 2, active = 1, idle = 1
Connected, label = connStrIn1
Total connections = 3, active = 2, idle = 1
Disconnected, label = connStrIn1
Total connections = 3, active = 1, idle = 2
Press enter to Exit, you may run 'userid informix onstat -g ses' to
see number of connections still opened due to connection pooling effect :

Statement handle freed successfully
Disconnected, label = connStrIn1
Total connections = 3, active = 0, idle = 3
Environment handle freed successfully
Press enter to Exit, you may run 'userid informix onstat -g ses' to see
there should be no connection, all connections must have closed by now :
sh-3.2$

/***
* Licensed Materials - Property of HCL Technologies
*
* "Restricted Materials of HCL"
*
* HCL Informix ODBC Application
*
* Copyright HCL 2019 All rights reserved.
*
* Title: ConnectionPooling.c
*

19

20

* Description: Connection Pooling Sample ODBC Program
*
* Author : User 1
*
* Compile/link options on Linux/Unix :
* gcc -g -c -fsigned-char -DNO_WIN32 -O -I$INFORMIXDIR/incl/cli ConnectionPooling.c
* gcc -g -o ConnectionPooling ConnectionPooling.o -L$INFORMIXDIR/lib/cli -L$INFORMIXDIR/lib/esql -lthcli
 -lifdmr -lifgls -lifglx -lm -lnsl

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32*/

#define __REENTRANT
#include <signal.h>
#ifdef NO_WIN32
#include <sys/wait.h>
#include <pthread.h>
#endif
#include <time.h>
#include <infxcli.h>

#define ERRMSG_LEN 200
#define NAMELEN 300
#define NUM_OF_INSTANCE 2

SQLHDBC hdbc0;
SQLHDBC hdbc1;
SQLHDBC hdbc2;
SQLHDBC hdbc3;
SQLHDBC hdbc4;
SQLHENV henv;
SQLHSTMT hstmt;
SQLCHAR connStrIn[NAMELEN];
SQLCHAR connStrIn1[NAMELEN];
short totalConn=0, totalActive=0, totalIdle=0;
SQLCHAR connStrOut[NAMELEN];
SQLSMALLINT connStrOutLen;

SQLINTEGER checkError (SQLRETURN rc,
 SQLSMALLINT handleType,
 SQLHANDLE handle,
 SQLCHAR* errmsg)
{
 SQLRETURN retcode = SQL_SUCCESS;

 SQLSMALLINT errNum = 1;
 SQLCHAR sqlState[6];
 SQLINTEGER nativeError;
 SQLCHAR errMsg[ERRMSG_LEN];

Chapter 1. Informix® ODBC Driver Guide

 SQLSMALLINT textLengthPtr;

 if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
 {
 while (retcode != SQL_NO_DATA)
 {
 retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState, &nativeError, errMsg, ERRMSG_LEN,
 &textLengthPtr);

 if (retcode == SQL_INVALID_HANDLE)
 {
 fprintf (stderr, "CheckError function was called with an invalid handle!!\n");
 return 1;
 }

 if ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO))
 fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError, sqlState, errMsg);

 errNum++;
 }

 fprintf (stderr, "%s\n", errmsg);
 return 1; /* all errors on this handle have been reported */
 }
 else
 return 0; /* no errors to report */
}

int GetConnectionPoolingAttributes()
{
 SQLRETURN rc = SQL_SUCCESS;

 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_CONNECTIONS , (void *) &totalConn, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling Total Connections failed \nExiting!!");
 exit (-1);
 }
 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_ACTIVE , (void *) &totalActive, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling Total Active failed \nExiting!!");
 exit (-1);
 }
 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_IDLE , (void *) &totalIdle, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling Total Idle failed \nExiting!!");
 exit (-1);
 }

 printf("\nTotal connections = %d, active = %d, idle = %d",totalConn,totalActive, totalIdle);

return 0;
}

21

22

void SetConnectionString()
{
 memset(connStrIn, 0, sizeof(connStrIn));
 memset(connStrIn1, 0, sizeof(connStrIn1));
#ifdef NO_WIN32
 //sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC DRIVER};

 HOST=x.x.x.x;SERVER=ol_informix1210_2;SERVICE=8573;PROTOCOL=onsoctcp;DATABASE=sysadmin;UID=informix;PWD=xxxxx
");
 sprintf((char *) connStrIn, "DSN=SmartTrigger");
 sprintf((char *) connStrIn1, "DSN=odbc_demo");
#else
 //sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC DRIVER};HOST=x.x.x.x;SERVER=ol_informix1210_1;
 SERVICE=20195;PROTOCOL=onsoctcp;DATABASE=sysadmin;UID=informix;PWD=xxxxx");
 sprintf((char *) connStrIn, "DSN=SmartTrigger");
 sprintf((char *)connStrIn1, "DSN=odbc_demo");
#endif
 return;
}

int Connect(SQLHDBC *hdbc, SQLCHAR connStrIn[], SQLCHAR label[])
{
 SQLRETURN rc = SQL_SUCCESS;
 SQLHDBC tmpHdbc = NULL;
 /* Allocate the connection handle */
 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &tmpHdbc);
 if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 2 -- Connection Handle
 Allocation failed\nExiting!!"))
 exit (-1);

 //printf("\nConnection handle BEFORE connection = %p", tmpHdbc);
 /* Establish the database connection */
 rc = SQLDriverConnect (tmpHdbc, NULL, connStrIn, SQL_NTS, connStrOut, NAMELEN, &connStrOutLen,
 SQL_DRIVER_NOPROMPT);
 if (checkError (rc, SQL_HANDLE_DBC, tmpHdbc, (SQLCHAR *) "Error(main) in Step 3 -- SQLDriverConnect
 failed\nExiting!!"))
 exit (-1);
 printf("\nConnected, label = %s", label);
 //printf("\nConnection handle AFTER connection = %p", tmpHdbc);

 *hdbc = tmpHdbc;

 return rc;
}

int DisconnectAndFree(SQLHDBC *hdbc, SQLCHAR label[])
{
 SQLRETURN rc = SQL_SUCCESS;
 SQLHDBC tmphdbc = *hdbc;
 /* Disconnect from the data source */
 rc = SQLDisconnect (tmphdbc);
 printf("\nDisconnected, label = %s", label);

 /* Free the environment handle and the database connection handle */
 rc = SQLFreeHandle (SQL_HANDLE_DBC, tmphdbc);
 //printf("\nDatabase handle freed successfully");

 return rc;

Chapter 1. Informix® ODBC Driver Guide

}

int main (long argc,
 char* argv[])
{
 /* Miscellaneous variables */
 SQLRETURN rc = 0;
 BOOL poolEnabled = 0;
 BOOL cpMode = 0;
 SQLINTEGER timeOut = -1;

 /* Allocate the Environment handle */
 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
 exit (-1);
 }

 /* Set the ODBC version to 3.0 */
 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
 failed\nExiting!!"))
 exit (-1);

 GetConnectionPoolingAttributes();

 //rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (SQLPOINTER) SQL_INFX_CP_OFF, 0);
 rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (SQLPOINTER) SQL_INFX_CP_ON, 0);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling call failed \nExiting!!");
 exit (-1);
 }

 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (void *) &poolEnabled, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling call failed \nExiting!!");
 exit (-1);
 }
 if(SQL_INFX_CP_OFF == poolEnabled)
 printf("\n*** Connection pooling disabled ***");
 else if(SQL_INFX_CP_ON == poolEnabled)
 printf("\n*** Connection pooling enabled ***");
 else
 printf("\n*** What's going with Connection pooling!!!");

/*
 rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH, (SQLPOINTER)SQL_INFX_CP_RELAXED_MATCH, 0);
 //rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH, (SQLPOINTER)SQL_INFX_CP_STRICT_MATCH, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
 failed\nExiting!!"))
 exit (-1);
*/
 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH , (void *) &cpMode, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {

23

24

 fprintf (stdout, "Connection pooling call failed \nExiting!!");
 exit (-1);
 }
 if(SQL_INFX_CP_RELAXED_MATCH == cpMode)
 printf("\n*** Connection pooling set to RELAX mode ***");
 else if(SQL_INFX_CP_STRICT_MATCH == cpMode)
 printf("\n*** Connection pooling set to STRICT mode ***");
/*
 rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_TIMEOUT, (SQLPOINTER)5, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
 failed\nExiting!!"))
 exit (-1);
*/
 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TIMEOUT , (void *) &timeOut, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling call failed \nExiting!!");
 exit (-1);
 }
 printf("\n*** Connection pooling timeout set to %d seconds", timeOut);

 SetConnectionString();
 Connect(&hdbc0, connStrIn, "connStrIn");
 GetConnectionPoolingAttributes();
 DisconnectAndFree(&hdbc0, "connStrIn");
 GetConnectionPoolingAttributes();

 SetConnectionString();
 Connect(&hdbc1, connStrIn, "connStrIn");
 GetConnectionPoolingAttributes();
 DisconnectAndFree(&hdbc1, "connStrIn");
 GetConnectionPoolingAttributes();

 SetConnectionString();
 Connect(&hdbc2, connStrIn1, "connStrIn1");
 GetConnectionPoolingAttributes();
 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc2, &hstmt);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc2, (SQLCHAR *) "Error(main) in Step 4 -- Statement Handle
 Allocation failed\nExiting!!"))
 exit (-1);

 SetConnectionString();
 Connect(&hdbc3, connStrIn, "connStrIn");
 GetConnectionPoolingAttributes();
 DisconnectAndFree(&hdbc3, "connStrIn");
 GetConnectionPoolingAttributes();

 SetConnectionString();
 Connect(&hdbc4, connStrIn1, "connStrIn1");
 GetConnectionPoolingAttributes();
 DisconnectAndFree(&hdbc4, "connStrIn1");
 GetConnectionPoolingAttributes();

 printf("\nPress enter to Exit, you may run 'userid informix onstat -g ses' to see
 number of connections still opened due to connection pooling effect : ");
 char c = getchar();

Chapter 1. Informix® ODBC Driver Guide

Exit:
 /* Close the statement handle */
 SQLFreeStmt (hstmt, SQL_CLOSE);

 /* Free the statement handle */
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
 printf("\nStatement handle freed successfully");

 DisconnectAndFree(&hdbc2, "connStrIn1");
 GetConnectionPoolingAttributes();

 SQLFreeHandle (SQL_HANDLE_ENV, henv);
 printf("\nEnvironment handle freed successfully");

 printf("\nPress enter to Exit, you may run 'userid informix onstat -g ses' to see there
 should be no connection, all connections must have closed by now : ");
 c = getchar();

 return (rc);
}

Tuning the Connection Pool Manager

Starting CSDK 4.50.xC4 onwards, Informix ODBC driver supports new Connection Pool Manager properties:

• MinPoolSize: The purpose of MinPoolSize is to open as many number of connections during first request of

connection.

For example, if MinPoolSize=5, this will open total 5 connections when the first connection request is made. In case,

the connection count goes down due to connection Pool Time Out expiry, and if the same connection request comes

again and there is no matching idle connection available, it will open MinPoolSize number of connections again.

• MaxConnLimit: The purpose of MaxConnLimit/MaxConnectionLimit is to restrict number of connections to the value

set by this parameter.

For example, if MaxConnLimit=20, before opening new connection, this value will be checked, if it exceeds the

opened number of connections, then error will be reported. MaxConnLimit will ensure, applications higher limit to

open physical connections to the database is restricted.

You can use the following methods to set MinPoolSize and MaxConnLimit parameters in ODBC applications:

Setting up MaxConnLimit:

• Use SQLSetEnvAttr/SQLSetConnectAttr(SQL_INFX_ATTR_MAX_CONN_LIMIT).

This parameter allows you to specify the maximum number of simultaneous physical connections that the

DataSource object can have with the server.

The range for SQL_INFX_ATTR_MAX_CONN_LIMIT is 5 to 2000. If you try to set beyond these values, it will be reset

to 5 without any error or warning.

25

26

• On Unix, use odbc.ini file.

• In application, use connection string : "DSN=MyDSN; MaxConnLimit=20".

Setting up MinPoolSize

• Use SQLSetConnectAttr(SQL_INFX_ATTR_MIN_CONN_POOL_SIZE).

This parameter allows you to specify the minimum number of connections to maintain in the pool.

The range for SQL_INFX_ATTR_MAX_CONN_LIMIT is 2 to 1000. If you try to set beyond these values, it will be reset

to 2 without any error or warning.

• On Unix, use odbc.ini file.

• In application, use connection string : "DSN=MyDSN; MinPoolSize=10".

Note: SQL_INFX_ATTR_MIN_CONN_POOL_SIZE and SQL_INFX_ATTR_MAX_CONN_LIMIT definition is located in

$INFORMIXDIR/incl/cli/infxcli.h file.

Note: These parameters are used only when Pooling is enabled. As there is no default value, you need to specify the

value in your application.

Sample code for MinPoolSize and MaxConnLimit usage

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32*/

#define __REENTRANT
#include <signal.h>
#ifdef NO_WIN32
#include <sys/wait.h>
#include <pthread.h>
#endif
#include <time.h>
#include <infxcli.h>

#define ERRMSG_LEN 200
#define NAMELEN 300

SQLHDBC hdbc0;
SQLHDBC hdbc1;
SQLHDBC hdbc2;
SQLHDBC hdbc3;
SQLHDBC hdbc4;

Chapter 1. Informix® ODBC Driver Guide

SQLHENV henv;
SQLHSTMT hstmt;
SQLCHAR connStrIn[NAMELEN];
SQLCHAR connStrIn1[NAMELEN];
short totalConn=0, totalActive=0, totalIdle=0, mxConnPoolSize=0;
SQLCHAR connStrOut[NAMELEN];
 SQLSMALLINT connStrOutLen;

SQLINTEGER checkError (SQLRETURN rc,
 SQLSMALLINT handleType,
 SQLHANDLE handle,
 SQLCHAR* errmsg)
{
 SQLRETURN retcode = SQL_SUCCESS;

 SQLSMALLINT errNum = 1;
 SQLCHAR sqlState[6];
 SQLINTEGER nativeError;
 SQLCHAR errMsg[ERRMSG_LEN];
 SQLSMALLINT textLengthPtr;

 if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
 {
 while (retcode != SQL_NO_DATA)
 {
 retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState, &nativeError, errMsg, ERRMSG_LEN,
 &textLengthPtr);

 if (retcode == SQL_INVALID_HANDLE)
 {
 fprintf (stderr, "CheckError function was called with an invalid handle!!\n");
 return 1;
 }

 if ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO))
 fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError, sqlState, errMsg);

 errNum++;
 }

 fprintf (stderr, "%s\n", errmsg);
 return 1; /* all errors on this handle have been reported */
 }
 else
 return 0; /* no errors to report */
}

int GetConnectionPoolingAttributes()
{
 SQLRETURN rc = SQL_SUCCESS;

 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_MAX_CONN_LIMIT , (void *) &mxConnPoolSize, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling Total Connections failed \nExiting!!");
 exit (-1);

27

28

 }
 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_CONNECTIONS , (void *) &totalConn, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling Total Connections failed \nExiting!!");
 exit (-1);
 }
 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_ACTIVE , (void *) &totalActive, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling Total Active failed \nExiting!!");
 exit (-1);
 }
 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TOTAL_IDLE , (void *) &totalIdle, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling Total Idle failed \nExiting!!");
 exit (-1);
 }

 printf("\nMaxConnLimit = %d, Total = %d, active = %d, idle = %d",mxConnPoolSize, totalConn,totalActive,
 totalIdle);

return 0;
}

void SetConnectionString()
{
 memset(connStrIn, 0, sizeof(connStrIn));
 memset(connStrIn1, 0, sizeof(connStrIn1));
#ifdef NO_WIN32
 //sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC
 DRIVER};HOST=x.x.x.x;SERVER=ol_informix1210_2;SERVICE=8573;PROTOCOL=onsoctcp;DATABASE=sysadmin;MinPoolSize=8;M
axConnLimit=9;UID=informix;PWD=xxxx");
 //sprintf((char *) connStrIn, "DSN=SmartTrigger");
 //sprintf((char *) connStrIn1, "DSN=odbc_demo");
 sprintf((char *) connStrIn, "DSN=SmartTrigger;MinPoolSize=4;MaxConnLimit=9");
 sprintf((char *) connStrIn1, "DSN=odbc_demo;MinPoolSize=4;MaxConnLimit=9");
#else
 //sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC
 DRIVER};HOST=x.x.x.x;SERVER=ol_informix1210_2;SERVICE=8573;PROTOCOL=onsoctcp;DATABASE=sysadmin;MinPoolSize=8;M
axConnLimit=9;UID=informix;PWD=xxxx");
 //sprintf((char *) connStrIn, "DSN=SmartTrigger");
 //sprintf((char *)connStrIn1, "DSN=odbc_demo");
 sprintf((char *) connStrIn, "DSN=SmartTrigger;MinPoolSize=4;MaxConnLimit=9");
 sprintf((char *)connStrIn1, "DSN=odbc_demo;MinPoolSize=4;MaxConnLimit=9");
#endif
 return;
}

int Connect(SQLHDBC *hdbc, SQLCHAR connStrIn[], SQLCHAR label[])
{
 SQLRETURN rc = SQL_SUCCESS;
 SQLHDBC tmpHdbc = NULL;
 unsigned int *setPoolSize=100;
 unsigned int getPoolSize=0;
 unsigned int getMinPoolSize=0;
 /* Allocate the connection handle */

Chapter 1. Informix® ODBC Driver Guide

 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &tmpHdbc);
 if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(Connect) in Step 1 -- Connection Handle
 Allocation failed\nExiting!!"))
 exit (-1);

 //*setPoolSize = 100;
 //rc = SQLSetConnectAttr(tmpHdbc, SQL_INFX_ATTR_MAX_CONN_LIMIT, (unsigned int *)&setPoolSize, 2);
 //rc = SQLSetConnectAttr(tmpHdbc, SQL_INFX_ATTR_MAX_CONN_LIMIT, (unsigned int *)setPoolSize, 2);
 rc = SQLSetEnvAttr(henv, SQL_INFX_ATTR_MAX_CONN_LIMIT, (unsigned int *)setPoolSize, SQL_IS_UINTEGER);
 if (checkError (rc, SQL_HANDLE_DBC, tmpHdbc, (SQLCHAR *) "Error(Connect) in Step 2 -- SQLSetConnectAttr
 failed\nExiting!!"))
 exit (-1);
 //printf("\nSet Max Pool Size using SQLSetConnectAttr() call = %d", setPoolSize);

 //printf("\nConnection handle BEFORE connection = %p", tmpHdbc);
 /* Establish the database connection */
 rc = SQLDriverConnect (tmpHdbc, NULL, connStrIn, SQL_NTS, connStrOut, NAMELEN, &connStrOutLen,
 SQL_DRIVER_NOPROMPT);
 if (checkError (rc, SQL_HANDLE_DBC, tmpHdbc, (SQLCHAR *) "Error(Connect) in Step 3 -- SQLDriverConnect
 failed\nExiting!!"))
 exit (-1);
 printf("\nConnected, label = %s", label);

 rc = SQLGetConnectAttr(tmpHdbc, SQL_INFX_ATTR_MAX_CONN_LIMIT, (void *)&getPoolSize, 4, NULL);
 if (checkError (rc, SQL_HANDLE_DBC, tmpHdbc, (SQLCHAR *) "Error(Connect) in Step 2 --
 SQLGetConnectAttr(MAX) failed\nExiting!!"))
 exit (-1);
 //printf("\nGot Max Pool Size using SQLGetConnectAttr() call = %d", getPoolSize);

 rc = SQLGetConnectAttr(tmpHdbc, SQL_INFX_ATTR_MIN_CONN_POOL_SIZE, (void *)&getMinPoolSize, 4, NULL);
 if (checkError (rc, SQL_HANDLE_DBC, tmpHdbc, (SQLCHAR *) "Error(Connect) in Step 2 --
 SQLGetConnectAttr(MIN) failed\nExiting!!"))
 exit (-1);
 //printf("\nGot Min Pool Size using SQLGetConnectAttr() call = %d", getMinPoolSize);

 //printf("\nConnection handle AFTER connection = %p", tmpHdbc);

 *hdbc = tmpHdbc;

 return rc;
}

int DisconnectAndFree(SQLHDBC *hdbc, SQLCHAR label[])
{
 SQLRETURN rc = SQL_SUCCESS;
 SQLHDBC tmphdbc = *hdbc;
 /* Disconnect from the data source */
 rc = SQLDisconnect (tmphdbc);
 printf("\nDisconnected, label = %s", label);

 /* Free the environment handle and the database connection handle */
 rc = SQLFreeHandle (SQL_HANDLE_DBC, tmphdbc);
 //printf("\nDatabase handle freed successfully");

 return rc;
}

29

30

int main (long argc,
 char* argv[])
{
 /* Miscellaneous variables */
 SQLRETURN rc = 0;
 BOOL poolEnabled = 0;
 BOOL cpMode = 0;
 SQLINTEGER timeOut = -1;

 /* Allocate the Environment handle */
 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
 exit (-1);
 }

 /* Set the ODBC version to 3.0 */
 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
 failed\nExiting!!"))
 exit (-1);

 GetConnectionPoolingAttributes();

 //rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (SQLPOINTER) SQL_INFX_CP_OFF, 0);
 rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (SQLPOINTER) SQL_INFX_CP_ON, 0);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling call failed \nExiting!!");
 exit (-1);
 }

 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CONNECTION_POOLING , (void *) &poolEnabled, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling call failed \nExiting!!");
 exit (-1);
 }
 if(SQL_INFX_CP_OFF == poolEnabled)
 printf("\n*** Connection pooling disabled ***");
 else if(SQL_INFX_CP_ON == poolEnabled)
 printf("\n*** Connection pooling enabled ***");
 else
 printf("\n*** What's going with Connection pooling!!!");

/*
 rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH, (SQLPOINTER)SQL_INFX_CP_RELAXED_MATCH, 0);
 //rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH, (SQLPOINTER)SQL_INFX_CP_STRICT_MATCH, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
 failed\nExiting!!"))
 exit (-1);
*/
 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_MATCH , (void *) &cpMode, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling call failed \nExiting!!");
 exit (-1);

Chapter 1. Informix® ODBC Driver Guide

 }
 if(SQL_INFX_CP_RELAXED_MATCH == cpMode)
 printf("\n*** Connection pooling set to RELAX mode ***");
 else if(SQL_INFX_CP_STRICT_MATCH == cpMode)
 printf("\n*** Connection pooling set to STRICT mode ***");

 rc = SQLSetEnvAttr (henv, SQL_INFX_ATTR_CP_TIMEOUT, (SQLPOINTER)5, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
 failed\nExiting!!"))
 exit (-1);

 rc = SQLGetEnvAttr (henv, SQL_INFX_ATTR_CP_TIMEOUT , (void *) &timeOut, SQL_NTS, NULL);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Connection pooling call failed \nExiting!!");
 exit (-1);
 }
 printf("\n*** Connection pooling timeout set to %d seconds", timeOut);

 SetConnectionString();
 Connect(&hdbc0, connStrIn, "1. connStrIn");
 GetConnectionPoolingAttributes();
 DisconnectAndFree(&hdbc0, "1. connStrIn");
 GetConnectionPoolingAttributes();

 SetConnectionString();
 Connect(&hdbc1, connStrIn, "2. connStrIn");
 GetConnectionPoolingAttributes();
 DisconnectAndFree(&hdbc1, "2. connStrIn");
 GetConnectionPoolingAttributes();

 SetConnectionString();
 Connect(&hdbc2, connStrIn1, "3. connStrIn1");
 GetConnectionPoolingAttributes();

 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc2, &hstmt);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc2, (SQLCHAR *) "Error(main) in Step 4 -- Statement Handle
 Allocation failed\nExiting!!"))
 exit (-1);

 SetConnectionString();
 Connect(&hdbc3, connStrIn, "4. connStrIn");
 GetConnectionPoolingAttributes();
fflush(stdout);
 DisconnectAndFree(&hdbc3, "4. connStrIn");
 GetConnectionPoolingAttributes();

 SetConnectionString();
 Connect(&hdbc4, connStrIn1, "5. connStrIn1");
 GetConnectionPoolingAttributes();
 DisconnectAndFree(&hdbc4, "5. connStrIn1");
 GetConnectionPoolingAttributes();

 printf("\nPress enter to Exit, you may run 'userid informix onstat -g ses' to see number of connections
 still opened due to connection pooling effect : ");
 char c = getchar();

31

32

Exit:
 /* Close the statement handle */
 SQLFreeStmt (hstmt, SQL_CLOSE);

 /* Free the statement handle */
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);
 printf("\nStatement handle freed successfully");

 DisconnectAndFree(&hdbc2, "3. connStrIn1");
 GetConnectionPoolingAttributes();

 printf("\nBefore SQLFreeHandle(HENV)");
 SQLFreeHandle (SQL_HANDLE_ENV, henv);
 printf("\nEnvironment handle freed successfully");

 printf("\nPress enter to Exit, you may run 'userid informix onstat -g ses' to see there should be no
 connection, all connections must have closed by now : ");
 c = getchar();

 return (rc);
}

Global Language Support
HCL Informix® products can support many languages, cultures, and code sets. Global Language Support (GLS) provides

support for all language- and culture-specific information.

The following table describes how to set the GLS options depending on your platform.

Platform How to set GLS options

UNIX™ Specify the GLS options in the odbc.ini file.

Windo

ws™

Specify the GLS options in the HCL Informix® ODBC Driver DSN

Setup dialog box.

The following table describes the GLS options for HCL Informix® ODBC Driver.

GLS o

ption Description

Client

locale

Description:

Locale and code set that the application runs in

Format:

locale.codeset@modifier

odbc.ini field for UNIX™:

CLIENT_LOCALE

Default value for UNIX™:

en_us.8859-1

Chapter 1. Informix® ODBC Driver Guide

GLS o

ption Description

Default value for Windows™:

en_us.1252

Important: The setting of the CLIENT_LOCALE environment variable in the operating system environment

and in Setnet32 are ignored by HCL Informix® ODBC Driver. To change the client locale, you must use this

GLS option.

Datab

ase

locale

Description:

Locale and code set that the database was created in

Format:

locale.codeset@modifier

odbc.ini field for UNIX™:

DB_LOCALE

Default value for UNIX™:

en_us.8859-1

Default value for Windows™:

en_us.1252

Important: The setting of the DB_LOCALE environment variable in the operating system environment and in

Setnet32 are ignored by HCL Informix® ODBC Driver. To change the database locale, you must use this GLS

option.

Trans

lation

libr

ary

Description:

Performs the code set conversion

Format:

Path to the file for the library. The translation DLL must follow the ODBC standard for translation

libraries. For more information, see the IBM® Informix® ODBC Driver Programmer's Manual.

odbc.ini field for UNIX™:

TRANSLATIONDLL

Default value for UNIX™:

$INFORMIXDIR/lib/esql/igo4a304.xx where xx is platform-specific extension for shared library

Default value for Windows™:

igo4n304.dll

33

34

GLS o

ption Description

Trans

lation

opt

ion

Description:

Option for a non-HCL® Informix® translation library

Format:

Determined by the vendor

odbc.ini field for UNIX™:

TRANSLATION_OPTION

Default value for Windows™:

Determined by the vendor

Restriction: Do not set this option for the HCL Informix® translation library. The HCL Informix® translation

library determines the translation option based on the client locale and database locale values.

VMB

chara

cter

Description:

Varying multibyte character length reporting option that specifies how to set pcbValue when rgbValue

(the output area) is not large enough for the code-set-converted data. The possible values are:

Estimate

HCL Informix® ODBC Driver makes a worst-case estimate of the storage space needed

to return the data.

Exact

HCL Informix® ODBC Driver writes the code-set-converted data to disk until all the data

is converted. Because this option can degrade performance, it is recommended that you

do not use this option unless your application does not work with Estimate.

When you use a multibyte code set (in which characters vary in length from 1 to 4 bytes) for either the

database or client locale, the length of a character string or simple large object (TEXT) in the database

locale does not indicate the length of the string after it is converted to the client locale.

Possible values for UNIX™:

0 = Estimate

1 = Exact

Possible values for Windows™:

Estimate

Exact

Chapter 1. Informix® ODBC Driver Guide

GLS o

ption Description

odbc.ini field for UNIX™:

VMBCHARLENEXACT

Default value for UNIX™:

Estimate

Default value for Windows™:

Estimate

For more information about GLS and locales, see the HCL® Informix® GLS User's Guide.

X/Open standard interface
In addition to the standard ODBC functions, the HCL Informix® ODBC Driver also supports the additional functions.

The following functions are supported by HCL Informix® ODBC Driver

_fninfx_xa_switch

Function for acquiring the xa_switch structure defined by IBM® Enterprise Records Manager

IFMX_SQLGetXaHenv

Function for obtaining the environment handle associated with an XA Connection

IFMX_SQLGetXaHdbc

Function for obtaining the database handle associated with an XA Connection

xa_open

Function takes an xa_info parameter. The HCL Informix® ODBC Driver uses this xa_info to establish a XA

connection

The format of xa_info is as follows:

<appilcationtoken>|<DSN name>

The application token is a unique number the application generates for each xa_open request. It must use the

same application token as parameter to IFMX_SQLGetXaHenv and IFMX_SQLGetXaHdbc to get the associated

environment and database handles.

External authentication
For HCL Informix® Version 10.0 and later, you can implement external authentication through the HCL Informix® ODBC

Driver.

There are two external authentication modules available to use with the HCL Informix® ODBC Driver. The Pluggable

Authentication Module (PAM), works on UNIX™ and Linux™ servers and the LDAP Authentication is supported on Microsoft™

Windows™ operating systems.

35

36

Pluggable Authentication Module (PAM) on UNIX™ and Linux™
You can use Pluggable Authentication Module (PAM) with the HCL Informix® ODBC Driver on the UNIX™ and Linux™

operating systems that support PAM.

PAM enables system administrators to implement different authentication mechanisms for different applications. For

example, the needs of a system like the UNIX™ login program might be different from an application that accesses sensitive

information from a database. PAM allows for many such scenarios in a single machine, because the authentication services

are attached at the application level.

LDAP Authentication on Windows™
You can use LDAP Authentication with the HCL Informix® ODBC Driver on Windows™ operating systems. LDAP

Authentication is similar to the Pluggable Authentication Module.

Use the LDAP Authentication Support module when you want to use an LDAP server to authenticate your system users. The

module contains source code that you can modify for your specific LDAP Authentication Support module. For information

about installing and customizing the LDAP Authentication Support module, see the HCL® Informix® Security Guide.

The SQLSetConnectAttr() function with authentication
Use the SQLSetConnectAttr() function to specify the callback function used by the server.

SQLSetConnectAttr() is also used to specify what parameters are used by the callback function. Parameter attributes are

passed back to the callback function exactly as they are specified to the driver.

The following attributes are Informix®-specific extensions to the ODBC standard:

Parameter Type Description

SQL_INFX_ATTR_PAM_FUNCTION void * A pointer to the callback function.

SQL_INFX_ATTR_PAM_RESPONSE_BUF void * A generic pointer to a buffer containing the

response to an authentication challenge.

SQL_INFX_ATTR_PAM_RESPONSE_LEN int The length of the response buffer in bytes.

SQL_INFX_ATTR_PAM_RESPONSE_LEN_PTR int * The address which stores the number of bytes in

the response.

SQL_INFX_ATTR_PAM_CHALLENGE_BUF void * A generic pointer to a buffer containing the

authentication challenge. The driver stores any

challenge received from the server into this buffer.

If the buffer is not large enough to contain the

challenge, the challenge is truncated. The callback

function can detect this challenge by comparing

the buffer length with the number of bytes in the

Chapter 1. Informix® ODBC Driver Guide

Parameter Type Description

challenge. It is up to the application developer to

detect this situation and handle it correctly.

SQL_INFX_ATTR_PAM_CHALLENGE_BUF_LEN int The length of the challenge buffer in bytes.

SQL_INFX_ATTR_PAM_CHALLENGE_LEN_PTR int * The address that stores the number of bytes in the

challenge.

The challenge and response buffer pointers can be null. If the authentication server requires the information that would be

stored in these buffers, a connection failure results due to an authentication failure. The challenge length information is

returned whether the connection is successful or not. If the message type does not require a response, the response buffer

might be null (default) or it might contain an empty string.

The attributes in the previous table can be set at any time and in any order. However, they are only valid for connections

established with subsequent calls to one of the driver's connect functions.

You can set the isolation level with the SQLSetConnectAttr() API by using one of the following connection attributes:

• SQL_TXN_READ_UNCOMMITTED = Read Uncommitted

• SQL_TXN_READ_COMMITTED = Read Committed

• SQL_TXN_SERIALIZABLE = Serializable

• SQL_TXN_REPEATABLE_READ = Repeatable Read

• SQL_TXN_LAST_COMMITTED = Last Committed

• SQL_TXN_TRANSACTION = Transaction

If you use the SQL_TXN_LAST_COMMITTED or SQL_TXN_TRANSACTION attributes with the SQLSetConnectAttr() API, then

your applications must link directly to the HCL Informix® ODBC Driver instead of to the ODBC Driver Manager. However, if the

attribute is specified in the odbc.ini file or the Data Source Administrator, the application can be linked with ODBC Driver

Manager.

If you use the SQL_TXN_TRANSACTION attribute, then the isolation level set in the DTC application is propagated to the

server. This option should be used only in Windows™ DTC applications.

The default behavior of the ODBC driver is to trim blank characters from the end of VARCHAR column results. To preserve

trailing spaces, set the SQL_INFX_ATTR_LEAVE_TRAILING_SPACES attribute:

SQLSetConnectAttr(hdbc, SQL_INFX_ATTR_LEAVE_TRAILING_SPACES,
(SQLPOINTER)SQL_TRUE, SQL_IS_INTEGER);

To trim trailing spaces, change SQL_TRUE to SQL_FALSE.

The behavior is limited to the connection.

Connect functions
Any ODBC function which establishes a connection, SQLConnect(), SQLDriverConnect(), or SQLBrowseConnect(), can be

used with authentication modules.

37

38

Consider the following when using these functions.

The SQLConnect() function

The DriverCompletion parameter to the SQLConnect() function can take the following values

• SQL_DRIVER_PROMPT

• SQL_DRIVER_COMPLETE

• SQL_DRIVER_COMPLETE_REQUIRED

• SQL_DRIVER_NOPROMPT

If an authentication challenge is expected, it is recommended that you use SQL_DRIVER_NOPROMPT. Using other values

might result in the user being presented with multiple requests for authentication information.

The SQLBrowseConnect() function

The SQLBrowseConnect() function is designed to be used iteratively where the driver provides guidance to the application

on how to complete the connection string and the application prompts the user for the required values. This can create

situations where the user is presented with multiple prompts between connection string completion and authentication.

Additionally, it is typical for the driver to present a choice of databases to the application as part of the connection

string completion process. However, the driver is not able to query the server for a list of databases until after the

user is authenticated. Depending on application logic, whether it provides a database name in the original connection

string, and whether a challenge is going to be received from the authentication server, it might not be possible to use

SQLBrowseConnect() when the server uses authentication.

Third-party applications or intermediate code
When using authentication, it is the responsibility of the application to handle any challenges that originate from the

authentication server.

To handle the challenges, the application programmer must be able to register a callback function with the driver. Because

there are no attributes defined in the ODBC standard that are used to accomplish this, the attributes used are HCL Informix®

extensions.

Many applications are written with ADO layer of Microsoft™ to abstract the ODBC calls from the developer. Most Visual Basic

applications are written with ADO objects. These applications and third-party applications in general are not aware of the

HCL Informix® extensions and are not able to handle an authentication challenge.

The ODBC Data Source Administrator on Windows™ also falls under the class of third-party applications. Not all features are

available when configuring a UNIX™ data source. For example, the Apply and Test Connection button and the User Server

Database Locale toggle does not work if a challenge is received because those features require the ability to connect to the

server.

Bypass ODBC parsing
You can bypass ODBC parsing by using several options.

Chapter 1. Informix® ODBC Driver Guide

Sometimes you might want to improve performance by bypassing ODBC parsing. Do not bypass ODBC parsing if these

conditions exist:

• You intend to use ODBC escape sequences in your query.

• You intend to call any catalog functions (for example, SQLColumns, SQLProcedureColumns, or SQLTables) after

running your SQL query.

You can bypass ODBC parsing in the following ways:

• Set SKIPPARSING to 1 in the connection string. The connection string is used in a SQLDriverConnect call. For

example:

connString="DB=xxx;UID=xxx;....;SKIPPARSING=1;"

• Include SQL_INFX_ATTR_SKIP_PARSING in a SQLSetConnectAttr call, for example:

SQLSetConnectAttr (hdbc, SQL_INFX_ATTR_SKIP_PARSING,
 (SQLPOINTER)SQL_TRUE, SQL_IS_USMALLINT);

Use this call after the connection is completed. To restore ODBC parsing, change SQL_TRUE to SQL_FALSE. After

this value is enabled at the connection level, all statement handles that are allocated with the connection inherit this

property.

• In a SQLSetStmtAttr call, include SQL_TRUE. To restore ODBC parsing, change SQL_TRUE to SQL_FALSE.

SQLSetStmtAttr (hstmt, SQL_INFX_ATTR_SKIP_PARSING,
 (SQLPOINTER)SQL_TRUE, SQL_IS_USMALLINT);

• On UNIX™ systems, in .odbc.ini set SKIPPARSING=1. To restore ODBC parsing, reset the value to SKIPPARSING=0.

The precedence of bypassing ODBC parsing is as follows:

• If ODBC parsing is bypassed or reset in the odbc.ini file (on UNIX™ systems) and also in the application with the

SQLDriverConnect, SQLSetConnectAttr, or the SQLSetStmtAttr APIs, the API setting takes precedence.

• If ODBC parsing is bypassed or reset in the application with the SQLDriverConnect API and also in the

SQLSetConnectAttr or SQLSetStmtAttr APIs, the latter takes precedence.

BufferLength in character for SQLGetDiagRecW
The SQLGetDiagRecW API returns diagnostic information in the output buffer, where the BufferLength parameter is the

length of buffer allocated.

The default for BufferLength is the number of bytes allocated. After setting the

SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW attribute to TRUE, the BufferLength is treated as a specific number of

characters. As a Widechar API, one character=sizeof(SQLWCHAR) bytes.

Set the attribute in the following ways:

• SQLSetEnvAttr (henv, SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW,
 (SQLPOINTER)SQL_TRUE, SQL_IS_UINTEGER);

39

40

• SQLSetConnectAttr (hdbc, SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW,
 (SQLPOINTER)SQL_TRUE, SQL_IS_UINTEGER);

• SQLSetStmtAttr (hstmt, SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW,
 (SQLPOINTER)SQL_TRUE, SQL_IS_UINTEGER);

• Set the LENGTHINCHARFORDIAGRECW=1 in the connection string.

• On UNIX™ systems, in odbc.ini set LENGTHINCHARFORDIAGRECW=1

The precedence of setting SQL_INFX_ATTR_LENGTHINCHARFORDIAGRECW is:

• Setting the SQLSetEnvAttr attribute reflects to the henv, hdbc, and hstmt handles.

• Resetting the hdbc and hstmt handles through

◦ Setting SQLSetConnectAttr

◦ Passing the attribute in connection string

◦ Enabling the Length in Chars for SQLGetDiagRecW option in the DSN

• If the hstmt handle is set or not set by the previously mentioned methods, setting SQLSetStmtAttr resets it.

Informix® and ISAM error descriptions in SQLGetDiagRec
The SQLGetDiagRec API returns diagnostic information in the output buffer, where the error description is for the HCL

Informix® error message.

When the HCL Informix® server encounters an error, it returns the Informix® error code and the associated error description.

There is an additional error code, the ISAM error code, which provides information that is necessary to understand the

circumstances that caused the Informix® error code.

If you do not set an attribute for the SQLSetConnectAttr API, the SQLGetDiagRec API returns the Informix® error message.

If you set the SQL_DIAG_ISAM_ERROR attribute for the SQLGetDiagField API, the SQLGetDiagField API returns the ISAM error

message.

If you set the SQL_INFX_ATTR_IDSISAMERRMSG attribute for the SQLSetConnectAttr API, the SQLGetDiagRec API returns

both the Informix® error message and the ISAM error message.

Set the SQL_INFX_ATTR_IDSISAMERRMSG attribute in the following way:

SQLSetConnectAttr (hdbc, SQL_INFX_ATTR_IDSISAMERRMSG,
 (SQLPOINTER)SQL_TRUE, SQL_IS_UINTEGER);

Improved performance for single-threaded applications
You are likely to improve the performance of single-threaded applications by using the SINGLETHREADED connection

parameter. The value is off by default.

Do not use this parameter in an XA/MSDTC environment. You can set the SINGLETHREADED connection parameter in a

connection string as the following example shows:

DSN=xxx;Uid=xxx;Pwd=xxx;SINGLETHREADED=1;"

Chapter 1. Informix® ODBC Driver Guide

Partially supported and unsupported ODBC features
HCL Informix® ODBC Driver supports partial implementation of several ODBC features.

These ODBC features are

• Transaction processing

• ODBC cursors

• ODBC bookmarks

• SQLBulkOperations

Transaction processing
HCL Informix® ODBC Driver implementation of transaction isolation levels and transaction modes is slightly different from

the Microsoft™ ODBC implementation of these features.

The following topics describe the implementation of transaction isolation levels and transaction modes in HCL Informix®

ODBC Driver.

Transaction isolation levels
HCL Informix® ODBC Driver supports three transaction isolation levels for the Informix® database server.

The following table lists the transaction isolation levels that HCL Informix® ODBC Driver supports for the Informix®

database server.

Database servers Transaction isolation levels

HCL Informix®
• SQL_TXN_READ_COMMITTED

• SQL_TXN_READ_UNCOMMITTED

• SQL_TXN_SERIALIZABLE

The default transaction isolation level is SQL_TXN_READ_COMMITTED. To change the transaction isolation level, call

SQLSetConnectOption() with an fOption value of SQL_TXN_ISOLATION.

For more information about transaction isolation levels, see the SQL_DEFAULT_TXN_ISOLATION and

SQL_TXN_ISOLATION_OPTION descriptions in the IBM® Informix® ODBC Driver Programmer's Manual.

Changing the transaction mode
You can change the transaction mode from its default of auto-commit to manual commit.

About this task

To change the transaction mode to manual commit:

41

42

1. Enable transaction logging for your database server.

For information about transaction logging, see your HCL® Informix® Administrator's Guide.

2. Call SQLSetConnectOption() with SQL_AUTOCOMMIT set to SQL_AUTOCOMMIT_OFF.

ODBC cursors
HCL Informix® ODBC Driver supports static and forward cursors but not dynamic and keyset-driven cursors.

For more information about cursors, see the IBM® Informix® ODBC Driver Programmer's Manual.

ODBC bookmarks
A bookmark is a value that identifies a row of data.

HCL Informix® ODBC Driver supports bookmarks with SQLFetchScroll and SQLExtendedFetch and does not support them

with SQLBulkOperations.HCL Informix® ODBC Driver supports bookmarks to the following extent:

• Uses only variable length bookmarks.

• SQL_DESC_OCTET_LENGTH is set to 4 for bookmark columns.

• A bookmark is an integer that contains the row number within the row set, starting with 1.

• Bookmarks persist only if the cursor remains open.

• SQLFetchScroll, using SQL_FETCH_BOOKMARK for the fetch orientation argument, is fully supported.

• SQLBulkOperations does not update the bookmark column for SQL_ADD.

For more information about ODBC bookmarks, see the IBM® Informix® ODBC Driver Programmer's Manual.

SQLBulkOperations
HCL Informix® ODBC Driver supports only the SQL_ADD argument of SQLBulkOperations.

SQLDescribeParam
SQLDescribeParam is an ODBC API which returns metadata for the parameters of a query.

In earlier releases of the HCL Informix® ODBC Driver, the SQLDescribeParam API returned SQL_UNKNOWN if the API

was called to get information about an expression value or a parameter that was embedded inside another routine. This

restriction no longer applies to values of BOOLEAN, LVARCHAR, or of built-in non-opaque Informix® data types that are

returned by the following expressions in other UDRs:

• Binary arithmetic expressions

◦ Addition (+)

◦ Subtraction (-)

◦ Multiplication (*)

◦ Division (/)

• Relational operator expressions

Chapter 1. Informix® ODBC Driver Guide

◦ Less than (<)

◦ Less than or equal to (<=)

◦ Equal to (=, ==)

◦ Greater than or equal to (>=)

◦ Greater than (>)

◦ Not equal to (<>, !=)

• The following string operations

◦ Concatenation (||)

◦ MATCHES

◦ LIKE

• BETWEEN ... AND conditional expressions

For example, if the column tab1.c1 is an INT data type, SQLDescribeParam() returns type int for the input host variable of the

following query:

select c1, c2 from tab1 where ABS(c1) > ?;

The UDR from the other side of the expression can be a column expression or a built-in routine, but it cannot be a user-

defined routine. In earlier releases, the SQLDescribeParam API returns SQL_UNKNOWN for expression values and

parameters that are embedded in another procedure in the following cases:

• The value on the other side of the expression is a user-defined routine.

• Another operand of the same expression is a user-defined routine.

• The data type of any operand of the expression is not a BOOLEAN, LVARCHAR, or a built-in non-opaque data type.

Unsupported Microsoft™ ODBC driver features
HCL Informix® ODBC Driver does not support implementation of the certain Microsoft™ ODBC driver features.

The unsupported Microsoft™ ODBC driver features are:

• Asynchronous communication mode

• Concurrency checking

◦ SQL_CA2_OPT_ROWVER_CONCURRENCY

◦ SQL_CA2_OPT_VALUES_CONCURRENCY

• CONVERT scalar functions

• Cursor simulation features:

◦ SQL_CA2_CRC_APPROXIMATE

◦ SQL_CA2_CRC_EXACT

◦ SQL_CA2_SIMULATE_NON_UNIQUE

◦ SQL_CA2_SIMULATE_TRY_UNIQUE

◦ SQL_CA2_SIMULATES_UNIQUE

• Dynamic cursor attributes

• Installer DLL

43

44

Configure data sources
These topics explain how to configure a data source (DSN) on UNIX™ and Windows™ for HCL Informix® ODBC Driver.

After you install the driver, you must configure your DSN before you can connect to it.

Configure a DSN on UNIX™
The configuration files provide information, such as driver attributes, that the driver uses to connect to DSNs.

This section provides information about driver specifications and DSN specifications on UNIX™, and describes the following

DSN configuration files:

• sqlhosts

• odbcinst.ini

• odbc.ini

To modify these files, use a text editor. The section also provides examples of driver and DSN specifications.

If you are enabling single-sign on (SSO), additional steps are in "Configuring ESQL/C and ODBC Drivers for SSO" in HCL®

Informix® Security Guide.

The odbcinst.ini file
The odbcinst.ini file has entries for all the installed drivers on your computer.

Installed ODBC drivers use the odbcinst.ini sample file, which is located in $INFORMIXDIR/etc/odbcinst.ini. To

create your odbcinst.ini file, copy the odbcinst.ini sample file to your home directory as $HOME/.odbcinst.ini

(note the added dot at the beginning of the file name). Update this file when you install a new driver or a new version of a

driver. The following table describes section items in the $HOME/.odbcinst.ini file.

Section Description Status

ODBC drivers List of names of all the installed ODBC drivers Optional

ODBC driver specifications List of driver attributes and values Optional

ODBC drivers
Use examples to obtain information about ODBC drivers.

The following example illustrates information about drivers:

[ODBC Drivers]
driver_name1=Installed
driver_name2=Installed

The following example illustrates information about installed drivers:

[ODBC Drivers]
HCL Informix ODBC DRIVER=Installed

Chapter 1. Informix® ODBC Driver Guide

Driver specifications
Each installed driver has a properties section under the name of the driver.

The following example illustrates a driver-specification format:

[driver name1]
Driver=driver_library_path

Setup=setup/driver_library_path

APILevel=api_level_supported

ConnectFunctions=connectfunctions

DriverODBCVer=odbc_version

FileUsage=file_usage

SQLLevel=sql_level

The following example illustrates information about driver specifications:

[HCL Informix ODBC DRIVER]
Driver=/vobs/tristarm/odbc/iclis15a.so
Setup=/vobs/tristarm/odbc/iclis09b.so
APILevel=1
ConnectFunctions=YYY
DriverODBCVer=03.50
FileUsage=0
SQLLevel=1

The following table describes the keywords that are in the driver-specification section.

Keywords Description Status

API Level ODBC interface conformance level that the driver supports

0=None

1=Level 1 supported

2=Level 2 supported

Required

ConnectFunctions Three-character string that indicates whether the driver supports

SQLConnect, SQLDriverConnect, and SQLBrowseConnect

Required

DriverODBCVer Character string with the version of ODBC that the driver supports Required

Driver Driver library path Required

FileUsage Number that indicates how a file-based driver directly treats files in a

DSN

Required

Setup Setup library Required

SQLLevel Number that indicates the SQL-92 grammar that the driver supports Required

For a detailed description of the Driver Specification section, see the IBM® Informix® ODBC Driver Programmer's Manual.

45

46

The odbc.ini file
The odbc.ini file is a sample data-source configuration information file.

For the location of the odbc.ini file, see the release notes. To create this file, copy odbc.ini to your home directory as

$HOME/.odbc.ini (note the added dot at the beginning of the file name). Every DSN to which your application connects

must have an entry in this file. The following table describes the sections in $HOME/.odbc.ini.

Section Description Status

ODBC Data Sources This section lists the DSNs and associates them with the name of the

driver. You need to provide this section only if you use an ODBC driver

manager from a third-party vendor.

Required

Data Source Specification Each DSN listed in the ODBC Data Sources section has a Data-Source

Specification section that describes the DSN.

Required

ODBC This section lists ODBC tracing options. Optional

Follow these rules to include comments in the odbc.ini file on UNIX™ systems:

• Begin a comment with a semicolon (;) or number sign (#) in the first position of the first line.

• If a comment includes multiple lines, you can begin following comment lines with a space or tab character (\t).

• You can include blank lines in comments.

ODBC Data Sources
Each entry in the ODBC Data Sources section lists a DSN and the driver name.

The data_source_name value is any name that you choose. It is like an envelope that contains all relevant connection

information about the DSN.

The following example illustrates an ODBC data-source format:

[ODBC Data Sources]
data_source_name=HCL Informix ODBC DRIVER

The following example defines two DSNs called EmpInfo and CustInfo:

[ODBC Data Sources]
EmpInfo=HCL Informix ODBC DRIVER
CustInfo=HCL Informix ODBC DRIVER

Data-source specification
Each DSN in the data sources section has a data-source specification section.

The following example illustrates a data-source specification format:

[data_source_name]
Driver=driver_path

Description=data_source_description

Chapter 1. Informix® ODBC Driver Guide

Database=database_name

LogonID=user_id

pwd=user_password

Server=database_server

CLIENT_LOCALE=application_locale

DB_LOCALE=database_locale

TRANSLATIONDLL=translation_path

CURSORBEHAVIOR=cursor_behavior

DefaultUDTFetchType=default_UDT_Fetch_type

ENABLESCROLLABLECURSORS=enable_scroll_cursors

ENABLEINSERTCURSORS=enable_insert_cursors

OPTIMIZEAUTOCOMMIT=optimize_auto_commit

NEEDODBCTYPESONLY=need_odbc_types_only

OPTOFC=open_fetch_close_optimization

REPORTKEYSETCURSORS=report_keyset_cursors

FETCHBUFFERSIZE=fetchbuffer_size

DESCRIBEDECIMALFLOATPOINT=describe_decimal_as_float

USESERVERDBLOCALE=use_server_dblocale

DONOTUSELVARCHAR=do_not_use_lvarchar

REPORTCHARCOLASWIDECHARCOL=char_col_as_widechar_col

UPDATE_DESCRIBE=update_describe

[ODBC]
 UNICODE=unicode_type

LENGTHINCHARFORDIAGRECW=bufferlength_as_number_of_characters

LEAVE_TRAILING_SPACES=leave_trailing_spaces

The following table describes the keywords that are in the data-source specification section and the order that they appear in

each section.

Keywords Description Status

data_source_name Data source specified in the Data Sources section Required

Driver Path for the driver

Set this value to the complete path name for the driver library.

For more information about the library directory and file names,

see the release notes.

Required

Description Description of the DSN

Configured for a single user or for system users.

Optional

Database Database to which the DSN connects by default Required

LogonID User identification or account name for access to the DSN Optional

pwd Password for access to the DSN Optional

Server HCL Informix® database server on which database_name is in Required

CLIENT_LOCALE (GLS only) Client locale. Default value: en_us.8859-1 Optional

DB_LOCALE (GLS only) Database locale. Default value: en_us.8859-1 Optional

47

48

Keywords Description Status

TRANSLATIONDLL (GLS only) DLL that performs code-set conversion; default value:

$INFORMIXDIR/lib/esql/ig04a304.xx where xx

represents a platform-specific file extension

Optional

CURSORBEHAVIOR Flag for cursor behavior when a commit or rollback transaction

is called.

Possible values are:

• 0=close cursor

• 1=preserve cursor

Default value: 0

Optional

DefaultUDTFetchType Default UDT fetch type.

Default value: SQL_C_BINARY

Possible values are:

• SQL_C_BINARY

• SQL_C_CHAR

Optional

ENABLESCROLLABLECURSORS If this option is activated, the HCL Informix® ODBC Driver

supports only scrollable, static cursors.

Available only as a connection option:

SQL_INFX_ATTR_ENABLE_SCROLL_CRUSORS

or as a connection attribute string:

EnableScrollableCursors

Default value is: 0 (disabled)

Optional

ENABLEINSERTCURSORS Reduces the number of network messages sent to and from

the server by buffering the inserted rows used with arrays of

parameters and insert statements. This option improves the

performance of bulk insert operations.

Available as both a connection and statement option:

SQL_INFX_ATTR_ENABLE_INSERT_CURSORS

or as a connection attribute string:

EnableInsertCursors

Default value is: 0

Optional

Chapter 1. Informix® ODBC Driver Guide

Keywords Description Status

OPTIMIZEAUTOCOMMIT Defers automatic commit operations while cursors remain

open. This option can reduce database communication when

the application is using non-ANSI logging databases.

Available as a connection option:

SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT

or as a connection attribute string:

OptimizeAutoCommit

Default value is: 1 (enabled)

Optional

OPTOFC Causes the driver to buffer the open, fetch, and close cursor

messages to the server. This option eliminates one or more

message cycles when you use SQLPrepare, SQLExecute, and

SQLFetch statements to fetch data with a cursor.

Only available as a connection option:

SQL_INFX_ATTR_OPTOFC

or as a connection attribute string:

OPTOFC

Default is: 0 (disabled)

Optional

REPORTKEYSETCURSORS Causes the driver to report (through SQLGetInfo) that is

supports forward-only, static, and keyset-driver cursors

even though the driver only supports forward-only and static

cursors. This option is used to enable dynaset-type functions,

such as Microsoft™ Visual Basic, which require drivers that

support keyset-driven cursors.

Also available as connection option:

SQL_INFX_ATTR_REPORT_KEYSET_CURSORS

or as a connection attribute string:

ReportKeysetCursors

Default is: 0 (disabled)

Optional

FETCHBUFFERSIZE Size of a fetch buffer in bytes.

Available as connection attribute string:

FETCHBUFFERSIZE

Optional

49

50

Keywords Description Status

The maximum size of the fetch buffer is 2 GB.

Default is: 32767

DESCRIBEDECIMALFLOATPOINT Describes all floating-point decimal columns as:

• Float(SQL_REAL) or

• Float(SQL_DOUBLE)

A floating-point decimal column is a column that was created

without a scale, for example DECIMAL(12). Some prepackaged

applications such as Visual Basic cannot properly format

Decimal columns that do not have a fixed scale. To use these

applications, you must enable this option or redefine the

column with a fixed scale.

Enabling this option has the disadvantage that SQL_DECIMAL

is an exact numeric data type while SQL_REAL and

SQL_DOUBLE are approximate numeric data types.

SQL_DECIMAL with a precision of 8 or less are described as

SQL_REAL. With a precision greater than 8, it is described as

SQL_DOUBLE.

Available as connection attribute string:

DESCRIBEDECIMALFLOATPOINT

Default is: 0 (disabled)

Optional

USESERVERDBLOCALE Users server database locale.

Available as a connection attribute string:

USERSERVERDBLOCALE

Default is: 0 (disabled)

Optional

DONOTUSELVARCHAR If enabled, the SQLGetTypeInfo does not report LVARCHAR

as a supported type (DATA_TYPE) of SQL_VARCHAR. Some

applications use LVARCHAR instead of VARCHAR, even in

columns that are less than 256 bytes. The minimum number

of bytes transmitted for LVARCHAR is higher than VARCHAR.

Many LVARCHAR columns can result in the rowset size

exceeding the maximum.

Optional

Chapter 1. Informix® ODBC Driver Guide

Keywords Description Status

Important: Enable this option only if your

SQL_VARCHAR columns are less than 256 bytes.

Available as a connection attribute string:

DONOTUSELVARCHAR

Default is: 0 (disabled)

REPORTCHARCOLASWIDECHARCOL Causes SQLDescribeCol to report character columns as wide

character columns as follows:

• SQL_CHAR is reported as SQL_WCHAR

• SQL_VARCHAR is reported as SQL_WVARCHAR

• SQL_LONGVARCHAR is reported as

SQL_WLONGVARCHAR

Available as a connection attribute string:

REPORTCHARCOLASWIDECHARCOL

Default is: 0 (disabled)

Optional

UPDATE_DESCRIBE OR UPD_DESC This is required particularly for BLOB/CLOB data types. If

enabled, server will send the description of these data types

which will be used by ODBC Driver. This option should only be

enabled when needed. It should not be turned on all the time as

that would cause more round trips between client and server.

Possible values are:

• 0

• 1

Default value is: 0

Optional

UNICODE Indicates the type of Unicode used by an application. This

attribute applies to UNIX™ applications only and is set in

the ODBC section of the odbc.ini file. The following

considerations apply:

Required

51

52

Keywords Description Status

• Applications on UNIX™ not linking to Data Direct ODBC

driver manager should set this to UCS-4

• Applications on IBM® AIX® with version lower than 5L

should set this attribute to UCS-2.

• Applications using Data Direct driver manager do not

need to set this attribute.

Default is: UTF-8

For more information about using Unicode in an ODBC

application, see Unicode on page 244.

LENGTHINCHARFORDIAGRECW
If enabled, the SQLGetDiagRecW API treats the BufferLength

parameter as the number of characters.

Default is: FALSE (disabled)

For more information about using the BufferLength parameter

seeBufferLength in character for SQLGetDiagRecW on

page 39.

LEAVE_TRAILING_SPACES If enabled, the driver preserves blank characters at the end of

VARCHAR column results.

Possible values are:

• 0 (trim trailing spaces)

• 1 (preserve trailing spaces)

Default value is: 0

The following example shows the configuration for a DSN called EmpInfo:

[EmpInfo]
Driver=/informix/lib/cli/iclis09b.so
Description=Demo data source
Database=odbc_demo
LogonID=admin
pwd=tiger
Server=ifmx_91
CLIENT_LOCALE=en_us.8859-1
DB_LOCALE=en_us.8859-1
TRANSLATIONDLL=/opt/informix/lib/esql/igo4a304.so

The following example shows the configuration for a DSN called Informix® 9:

[Informix9]
Driver=/work/informix/lib/cli/iclis09b.so

Chapter 1. Informix® ODBC Driver Guide

Description=Informix 9.x ODBC Driver
LogonID=user1
pwd=tigress4
Database=odbc_demo
ServerName=my_server

If you specify a null LogonID or pwd, the following error occurs:

Insufficient connect information supplied

Tip: You can establish a connection to a DSN with null values for LogonID and pwd if the local Informix® database

server is on the same computer where the client is located. In this case, the current user is considered a trusted user.

A sample data source, with no LogonID and pwd, where the server and client are on the same computer, might look like the

following example:

Driver=/work/informix/lib/cli/iclis09b.so
Description=Informix 9.x ODBC Driver
LogonID=
pwd=tiger
Database=odbc_demo
ServerName=ifmx_server

Set the isolation level (UNIX™ only)
Set the isolation level in the odbc.ini file by using the ISOLATIONLEVEL and SQL_TXN_LAST_COMMITTED keywords.

To specify the isolation level in the odbc.ini file, use the following keyword and values:

• ISOLATIONLEVEL = level

• SQL_TXN_LAST_COMMITTED = last committed

where level is a number from 0 to 5:

• 0 = Automatically considers the default based on database type

• 1 = Read Uncommitted

• 2 = Read Committed (default for non-ANSI databases)

• 3 = Repeatable Read (default for ANSI databases)

• 4 = Serializable

• 5 = Last Committed

If an application calls SQLSetConnectAttr with the SQL_ATTR_TXN_ISOLATION attribute and sets the value before

connecting, and later sets ISOLATIONLEVEL or ISOLVL in the connection string, the connection string is the final value to be

used.

The SQL_TXN_TRANSACTION isolation level is not supported on UNIX™ platforms.

ODBC section
The values in the ODBC section of odbc.ini specify ODBC tracing options.

53

54

With tracing, you can find the log of calls made and also the return codes for each call. These options are set through the

Tracing tab of the ODBC Data Source Administrator dialog box on Windows™.

The following table describes the tracing options in the ODBC section:

Table 1. Tracing options for ODBC section of odbc.ini

Option Details

TRACE=1 Tracing enabled

TRACE=0 Tracing disabled

TRACEFILE Set to where you want to driver to write the call logs.

TRACEDLL Always idmrs09a.so

The following example illustrates an ODBC section specification format:

[ODBC]
TRACE=1
TRACEFILE=/WORK/ODBC/ODBC.LOG
TRACEDLL=idmrs09a.so
UNICODE=UCS-4

You must set the TRACEFILE to where you want the driver to write all of the call logs. Keep in mind that TRACE=1 means that

tracing is enabled. TRACE=0 disables tracing options.

Set the $ODBCINI environment variable
Set the $ODBCINI environment variable to provide access to your DSN by system users

By default, HCL Informix® ODBC Driver uses configuration information found in the $HOME/.odbc.ini file. If you

want to provide access to your DSN by system users, modify the path in the $ODBCINI environment variable to point to

another configuration file that also contains the configuration information found in the $HOME/.odbc.ini file. Then

change the configuration file permissions to allow read access for system users. Do not change the permissions to the

$HOME/.odbc.ini file.

In the following example, the configuration file name is myodbc.ini:

setenv ODBCINI /work/myodbc.ini

The .netrc file
The .netrc file contains data for logging in to a remote database server over the network.

Create the .netrc file in the home directory where the client computer initiates the connection. Set the .netrc file

permissions for the user to deny read access by the group and others.

To connect to a remote database server, create entries in the .netrc file for the LogonID and pwd required to autoconnect to

the data source. To establish a connection to a remote data source, the ODBC driver first reads the LogonID and pwd from the

Chapter 1. Informix® ODBC Driver Guide

data source entry in the $HOME/.odbc.ini file. If the $HOME/.odbc.ini file does not specify a LogonID and pwd, the ODBC

driver searches the $HOME/.netrc file.

For example, to allow an autologin to the computer called ray by using the login name log8in with password mypassword, your

.netrc file contains the following line:

machine ray login log8in password mypassword

For information about the .netrc file, see the UNIX™ man pages.

Configuring a DSN in Windows™
In Windows™ environments, HCL Informix® ODBC Driver provides a GUI to configure DSNs.

About this task

To configure a DSN:

• Choose a procedure to modify your DSN:

Choose from:

◦ Choose the User DSN option to restrict access to one user.

◦ Choose the System DSN option to restrict access to system users.

◦ Choose the File DSN option to allow access to all users on a network.

• Enter DSN-configuration values to create a DSN, such as the data-source name, the database server name, and the

database locale.

What to do next

For a description of values, see the following two tables. Values are shown in the order that they appear in each section. You

can also use Microsoft™ ODBC, Version 2.5 or later, to configure a DSN.

Tip: To find out what DSN you have, click the About tab and read the contents of the Description text box.

Important: To configure a DSN on the Windows™ 64-bit platform, you must use the 32-bit ODBC Data Source

Administrator:

C:\WINDOWS\SysWOW64\odbcad32.exe

You must specify the user and password or the CSM setting for SSO.If you are enabling single-sign on (SSO), additional steps

are in "Configuring ESQL/C and ODBC Drivers for SSO" in HCL® Informix® Security Guide.

55

56

Note: Support for Communication Support Module (CSM) is removed starting Informix Server 14.10.xC9 . You should

use Transport Layer Security (TLS)/Secure Sockets Layer (SSL) instead.

Table 2. Required DSN values

Required values Description

Data Source Name DSN to access

This value is any name that you choose. Data Source Name is like an envelope that

contains all relevant connection information about the DSN.

Database Name Name of the database to which the DSN connects by default

Host Name Computer on which Server is in

Protocol Protocol used to communicate with Server

After you have added a DSN, the menu will display the available choices.

Server Name HCL® Informix® database server on which Database is in

Service HCL® Informix® database server process that runs on your Host computer

Confirm the service name with your system administrator or database administrator.

Table 3. Optional DSN values

Optional values Description

Client Locale Default value: en_us.1252

Database Locale Default value: en_us.1252

Description Any information, such as version number and service

Options General information, such as password settings

For more information about this value, see the sqlhosts information in your HCL®

Informix® Administrator's Guide.

Password Password for access to the DSN

Translation Library Dynamic linked library (DLL) that performs code-set conversion; default value:

$INFORMIXDIR\bin\ig04n304.dll

User ID User identification or account name for access to the DSN

Translation Option Option for a non-HCL® Informix® translation library

Varying multibyte character length reporting option that specifies how to set pcbValue

when rgbValue (the output area) is not large enough for the code-set-converted data

Chapter 1. Informix® ODBC Driver Guide

Table 3. Optional DSN values (continued)

Optional values Description

Possible values:

• 0=Estimate

• 1=Exact

Default value: 0

Cursor Behavior Flag for cursor behavior when a commit or rollback transaction is called

Possible values are:

• 0=close cursor

• 1=preserve cursor

Default value: 0

After you complete these steps, you will connect to the DSN.

Configuring a new user DSN or system DSN
Access the ODBC Data Source Administrator dialog box to configure a new user DSN or system DSN.

About this task

To configure a new user DSN or system DSN:

1. Choose Start > Settings > Control Panel.

2. Double-click ODBC to open the ODBC Data Source Administrator dialog box.

Choose from:

◦ To configure a user DSN, go to step 3 on page 57.

◦ To configure a system DSN, click the System DSN tab and go to step 3 on page 57.

All subsequent steps are the same to configure either a user DSN or a system DSN.

3. Click Add.

The Create New Data Source dialog box opens.

4. Double-click HCL Informix ODBC driver on the Create New Data Source wizard.

The General page for the HCL Informix® ODBC Driver Setup dialog box opens.

5. Enter the values in the General page, as the following example shows:

Example

57

58

◦ Data Source Name: odbc33int

◦ Description: file DSN 3.81 on turbo

For a description of the values, see Table 2: Required DSN values on page 56 and Table 3: Optional DSN values on

page 56.

Restriction: Do not click OK after you enter the values on this page. If you click OK before you enter all the

values, you get an error message.

6. Click the Connection tab to display the Connection page and enter the values, as the following example shows:

Example

◦ Server Name: ol_clipper (or use the menu to choose a server that is on the sqlhosts registry. If you use the

menu, the ODBC application sets the Host Name, Service, Protocol, and Options values.)

◦ Host Name: clipper

◦ Service: turbo

◦ Protocol: onsoctcp (or use the menu to choose a protocol)

◦ Options: csm=(SPWDCSM)

Note: Support for Communication Support Module (CSM) is removed starting Informix Server

14.10.xC9 . You should use Transport Layer Security (TLS)/Secure Sockets Layer (SSL) instead.

◦ Database Name: odbc_demo (or use the menu to find a database name)

◦ User ID: myname

◦ Password: *******

To save the values you chose and verify that your DSN connects successfully, click Apply & Test Connection.

An ODBC Message dialog box opens. The box tells you if your connection was successful or, if it was not, tells

you which Connection-tab value is incorrect.

7. Click the Environment tab to display the Environment page and enter the values, as the following example shows:

Example

◦ Client Locale: en_US.CP1252

◦ Database Locale: en_US.CP1252

◦ Use Server Database Locale: if check box is checked, database locale value is set to the server locale. If the

check box is cleared, the database locale is set to the default locale, en_US.CP1252.

◦ Translation Library: INFORMIXDIR\lib\esql\ig04n304.dll

◦ Translation Option: 0

◦ Cursor Behavior: 0 - Close

◦ VMB Character: 0 - Estimate

◦ Fetch Buffer Size: 4096

◦ Isolation Level: 0 - Default will be considered, Read Committed (non-ANSI databases) or Repeatable Read

(ANSI databases)

8. Click the Advanced tab to display the Advanced page and click all applicable boxes.

Chapter 1. Informix® ODBC Driver Guide

Option Description

Auto commit

optimization

This option defers automatic commit operations while cursors remain open and can reduce

database communication when the application is using non-ANSI logging databases. This option is

available only as a connection option:

SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT

or as a connection attribute string: "OptimizeAutoCommit"

The default is: 1 (enabled).

Open-Fet

ch-Close

optimization

This option causes the driver to buffer the open, fetch, and close cursor messages to the server.

In addition, this option eliminates one or more message round trips when you use SQLPrepare,

SQLExecute, and SQLFetch statements to fetch data with a cursor. This option is available only as a

connection option:

SQL_INFX_ATTR_OPTOFC

or as a connection attribute string: "OPTOFC"

The default is: 0 (disabled).

Insert

cursors

This option reduces the number of network messages sent to and from the server by buffering

the inserted rows that are used with arrays of parameters and insert statements. This option can

greatly improve the performance of bulk insert operations, and is available as both connection and

statement options:

SQL_INFX_ATTR_ENABLE_INSERT_CURSORS.

or as a connection attribute string: "EnableInsertCursors"

The default is: 0 (disabled).

Scrollable

cursor

If this option is activated, HCL Informix® ODBC Driver, Version 2.90 and later, supports only

scrollable, static cursors. This option is available only as a connection option:

SQL_INFX_ATTR_ENABLE_SCROLL_CURSORS

or as a connection attribute string: "EnableScrollableCursors"

The default is: 0 (disabled).

Report

KeySet

cursors

This option causes the driver to report (through SQLGetInfo) that it supports forward-only, static,

and keyset-driven cursor types, although the driver only supports forward-only and static cursors.

When you set this option, the driver enables dynaset-type functions, such as functions for Microsoft™

Visual Basic. These functions require drivers that support keyset-driven cursor types. This option is

also available as a connection attribute:

SQL_INFX_ATTR_REPORT_KEYSET_CURSORS

or as a connection attribute string: "ReportKeysetCursors"

59

60

Option Description

The default is: 0 (disabled).

Report

standard

ODBC types

only

If you activate this feature, the driver causes SQLGetTypeInfo to map all occurrences of user-defined

types (UDTs) as follows:

Blob

SQL_LONGVARBINARY

Clob

SQL_LONGVARBINARY

Multiset

SQL_C_CHAR/SQL_C_BINARY

Set

SQL_C_CHAR/SQL_C_BINARY

List

SQL_C_CHAR/SQL_C_BINARY

Row

SQL_C_CHAR/SQL_C_BINARY

The driver maps multiset, set, row, and list data types to SQL_C_CHAR or SQL_C_BINARY, which is

the default UDT

FetchType to SQL_C_CHAR features.

The default is: 0 (disabled).

Describe

decimal

floating

point as

SQL_REAL /

SQL_DOU

BLE

This option describes all floating-point decimal columns as Float (SQL_REAL or SQL_DOUBLE). A

floating-point decimal column is a column that was created without a scale, ex: DECIMAL(12). Some

prepackaged applications such as Visual Basic cannot properly format Decimal columns that do not

have a fixed scale. To use these applications you must enable this option or redefine the column with

a fixed scale.

There is a disadvantage to enabling this option however, SQL_DECIMAL is an exact numeric data

type while SQL_REAL and SQL_DOUBLE are approximate numeric data types. A SQL_DECIMAL with a

precision of 8 or less aree described as SQL_REAL, with a precision greater than 8 it is SQL_DOUBLE.

The default is: 0 (disabled).

Do not use

LVARCHAR

Causes SQLGetTypeInfo to not report LVARCHAR as a supported type of DATA_TYPE of

SQL_VARCHAR.

Chapter 1. Informix® ODBC Driver Guide

Option Description

Some applications such as MS Access97 use LVARCHAR instead of VARCHAR even for columns

that are less than 256 bytes long. The minimum number of bytes transmitted for LVARCHAR is

higher than for VARCHAR and many LVARCHAR columns can result in the rowset size exceeding the

maximum. Enable this option only if your SQL_VARCHAR columns are less than 256 bytes in length.

The default is: 0 (disabled).

Report CHAR

columns as

wide CHAR

columns

Causes SQLDescribeCol to report char columns as wide char columns. SQL_CHAR column is

reported as SQL_WCHAR, SQL_VARCHAR as SQL_WVARCHAR and SQL_LONGVARCHAR column as

SQL_WLONGVARCHAR

The default is: 0 (disabled).

Length in

Chars for

SQLGetDiag

RecW

If enabled, the SQLGetDiagRecW API treats the BufferLength Parameter as the number of characters.

The default is: FALSE (disabled).

Leave

Trailing

Spaces

If enabled, the driver preserves blank characters at the end of VARCHAR column results.

The default is: 0 (disabled).

Describe

input

parameters

for SQL

statements

This is required particularly for BLOB/CLOB data types. If enabled, server will send the description

of these data types which will be used by ODBC Driver. This option should only be enabled when

needed. It should not be turned on all the time as that would cause more round trips between client

and server.

The default is: 0 (disabled).

9. To check your connection to the database server, click Test Connection.

10. Click OK to return to the ODBC Data Source Administrator dialog box and to update the DSN information in the

appropriate files.

Results

When your application connects to this DSN, the values that you entered are the default entries for the DSN connection.

Removing a DSN
Access the ODBC Data Source Administrator dialog box to remove a DSN.

About this task

To remove a DSN:

61

62

1. Follow steps 1 on page 57 and 2 on page 57 from Configuring a new user DSN or system DSN on page 57.

2. Click Remove in the ODBC Data Source Administrator dialog box.

The 32-bit ODBC Administrator dialog box opens.

3. Click Yes to remove the DSN and return to the ODBC Data Source Administrator dialog box.

Reconfiguring an existing DSN
Access the ODBC Data Source Administrator dialog box to reconfigure an exiting user DSN.

About this task

To reconfigure an existing DSN:

1. Follow steps 1 on page 57 and 2 on page 57 from Configuring a new user DSN or system DSN on page 57

2. Click Configure to display the HCL Informix® ODBC Driver Setup dialog box.

Enter the new configuration values in the corresponding text boxes and click OK to return to the ODBC Data Source

Administrator dialog box.

Results

After you complete these steps, you will connect to the DSN.

Configuring a file DSN
Access the ODBC Data Source Administrator dialog box to configure a file DSN.

About this task

To configure a file DSN:

1. Choose Start > Settings > Control Panel.

2. Double-click the ODBC icon to open the ODBC Data Source Administrator dialog box.

3. Click the File DSN tab to display the File DSN page.

Choose the File DSN option to allow access to the DSN to all users on a network. For a description of values, see

Table 2: Required DSN values on page 56 and Table 3: Optional DSN values on page 56.

4. Click Add.

The Create New Data Source wizard opens.

5. Select HCL Informix ODBC Driver from the driver list and click Next to display the Create New Data Source Setup

wizard, which contains a file data source text box.

6. If you know the name of the date source file, type the name into the text box, click Next to display the completed

Create New Data Source wizard, and go to step 9 on page 63

Chapter 1. Informix® ODBC Driver Guide

If you do not know the name of the file, click Browse to display the Save As dialog box and enter the values, as the

following example shows:

◦ File Name: File_DSN

◦ Save as type: ODBC File Data Sources

Select a file name or type a file name in the File_name text box.

7. Click Save to display the Create New Data Source wizard, which displays information about the data source name.

8. Click Next to display the completed Create New Data Source wizard.

9. Click Finish to display the HCL Informix® Connect dialog box.

For a description of the values, see Table 2: Required DSN values on page 56 and Table 3: Optional DSN values on

page 56. For Advanced tab values, see Configuring a new user DSN or system DSN on page 57.

10. Click OK to save the values and display the ODBC Data Source Administrator dialog box.

The name of the data file that you chose or typed in step 6 on page 62 is displayed in the text box.

Results

After you add or change DSN-configuration information, the driver updates the appropriate Windows™ registry to reflect the

specified values. To be compatible with other HCL® Informix® connectivity products, the driver stores the DSN-configuration

information in the Windows™ registry.

Creating logs of calls to the drivers
Access the Tracing page to create logs of calls to the drivers.

About this task

To create logs of calls to the drivers:

1. Click the Tracing tab to display the Tracing page.

2. Select Start Tracing Now to turn on tracing.

3. To enter an existing log file, click Browse to display the Select ODBC Log File dialog box.

4. Enter the file name in the File_name text box and click Save to return to the Tracing page.

5. To select a custom trace dynamic link library (DLL), click Select DLL to display the Select a custom trace dll dialog

box, and enter the values, as the following example shows:

Example

◦ File name: test2_dsn

◦ Files of type: Dynamic link libraries(*.dll)

Choose a file or type a file name in the File_name text box.

6. Click Open to display the Tracing page.

7. Click OK to save the changes.

63

64

Connection string keywords that make a connection
Use connection string keywords to make a connection with or without DSN and with the DRIVER keywords.

The following table lists the connection string keywords that can be used in making a connection:

Keyword Short version

CLIENT_LOCALE CLOC

CONNECTDATABASE CONDB

CURSORBEHAVIOR CURB

DATABASE DB

DB_LOCALE DLOC

DESCRIBEDECIMALFLOATPOINT DDFP

DESCRIPTION DESC

DONOTUSELVARCHAR DNL

DRIVER DRIVER

DSN DSN

ENABLEINSERTCURSORS ICUR

ENABLESCROLLABLECURSORS SCUR

EXCLUSIVE XCL

FETCHBUFFERSIZE FBC

FILEDSN FILEDSN

HOST HOST

NEEDODBCTYPESONLY ODTYP

OPTIMIZEAUTOCOMMIT OAC

OPTIONS OPT

OPTOFC OPTOFC

PWD PWD

REPORTCHARCOLASWIDECHARCOL RCWC

REPORTKEYSETCURSORS RKC

SAVEFILE SAVEFILE

SERVER SRVR

SERVICE SERV

Chapter 1. Informix® ODBC Driver Guide

Keyword Short version

SINGLETHREADED SINGLETH

SKIPPARSING SKIPP

TRANSLATIONDLL TDLL

TRANSLATIONOPTION TOPT

UID UID

UPDATE_DESCRIBE UPDDESC

DSN migration tool
You can use the DSN migration tool by creating a text file with an .ini extension.

To use the DSN migration tool, dsnmigrate.exe, that accompanies HCL Informix® ODBC Driver, create a text file with the

extension .ini; and then type the names and values of the DSNs that you want to migrate or restore. The migration log file

is located in %INFORMIXDIR%\release\dsnMigr.log. The restore information is located in %INFORMIXDIR%\release

\dsnMigr.sav.

The following restrictions apply:

• A user DSN can be used or migrated only by the user who created that DSN.

• A system DSN can be used by all users of the system.

• A file DSN requires write privileges to the file.

Setting up and using the DSN migration tool
Set up and use the DSN migration tool with a text editor to create a text file.

About this task

To set up and use the DSN migration tool:

1. Open a text editor and create a text file with an .ini extension.

2. Create a section in the file for each type of DSN (user, system, and file) to be modified.

3. On a separate line in each section, specify your DSNs by using the following format:

DSNname=drivername

drivername must be HCL Informix ODBC DRIVER

4. To run dsnmigrate.exe, use the following command:

dsnMigrate -f filename

where filename is the name of the text file created in step 1 on page 65

65

66

DSN migration tool examples
The DSN migration tool examples illustrate various DSNs migrated to the HCL Informix® ODBC Driver.

In the following example a DSN named Test1 migrates to HCL Informix ODBC DRIVER, and a DSN named Test2 migrates to HCL

Informix ODBC DRIVER. Both DSNs are restricted to the user who created them.

 [User DSN]
 Test1=HCL Informix ODBC DRIVER
 Test2=HCL Informix ODBC DRIVER

In the second example a DSN named Test3 migrates to HCL Informix ODBC DRIVER, and a DSN named Test4 migrates to

its original DSN. Both DSNs can be used by all users of the system. The user who migrates these system DSNs must have

permission to modify ODBC system DSN registry entries.

 [System DSN]
 Test3=HCL Informix ODBC DRIVER
 Test4=restore

In the third example, two file DSNs named test5.dsn and test6.dsn migrate to HCL Informix ODBC DRIVER.

 [File DSN]
 C:\Program Files\ODBC\Data Sources\test5.dsn=HCL Informix ODBC DRIVER
 C:\Program Files\ODBC\Data Sources\test6.dsn=IHCL Informix ODBC DRIVER

Data types
These topics contain information about the data types that are supported by HCL Informix® ODBC Driver.

Data types
HCL Informix® ODBC Driver supports five different data types.

The following table describes the data types that HCL Informix® ODBC Driver supports.

Data type Description Example

Informix® SQL data type Data types that your Informix® database server uses CHAR(n)

Informix® ODBC Driver SQL data type Data types that correspond to the Informix® SQL data

types

SQL_CHAR

Standard C data type Data types that your C compiler defines unsigned char

Informix® ODBC Driver typedef Typedefs that correspond to the standard C data types UCHAR

Informix® ODBC Driver C data type Data types that correspond to the standard C data

types

SQL_C_CHAR

SQL data types
HCL Informix® database server uses SQL data types.

Chapter 1. Informix® ODBC Driver Guide

For detailed information about the HCL Informix® SQL data types, see HCL® Informix® Guide to SQL: Reference, HCL®

Informix® Guide to SQL: Tutorial, and HCL® Informix® User-Defined Routines and Data Types Developer's Guide.

Additional SQL data types for Informix®
Additional HCL Informix® SQL data types for Informix® have corresponding HCL Informix® ODBC Driver data types.

The following table lists the additional HCL Informix® SQL data types for Informix® and their corresponding HCL Informix®

ODBC Driver data types. To use the Informix® ODBC driver SQL data types for Informix®, include infxcli.h.

Informix® SQL data type Informix® ODBC driver SQL data type

(fSqlType)

Description

Collection (LIST, MULTISET, SET) Any Informix® ODBC driver SQL data

type

Composite value that consists of one or

more elements, where each element has the

same data type.

DISTINCT Any Informix® ODBC driver SQL data

type

UDT that is stored the same way as its

source data type but has different casts and

functions

OPAQUE (fixed) SQL_INFX_UDT_FIXED Fixed-length UDT with an internal structure

that has the same size for all possible

values

OPAQUE (varying) SQL_INFX_UDT_VARYING Variable-length UDT with an internal

structure that can have a different size for

each different value

Row (Named row, unnamed row) Any Informix® ODBC Driver SQL data

type

Composite value that consists of one or

more elements, where each element can

have a different data type.

Smart large object (BLOB or

CLOB)

SQL_IFMX_UDT_BLOB

SQL_IFMX_UDT_CLOB

Large object that is stored in an sbspace on

disk and is recoverable.

Precision, scale, length, and display size
The functions that get and set precision, scale, length, and display size for SQL values have size limitations for their input

arguments.

Therefore, these values are limited to the size of an SDWORD that has a maximum value of 2,147,483,647. The following

table describes these values.

67

68

Value Description for a numeric data type Description for a non-numeric data type

Precision Maximum number of digits. Either the maximum length or the specified

length.

Scale Maximum number of digits after the decimal point.

For floating point values, the scale is undefined

because the number of digits to the right of the

decimal point is not fixed.

Not applicable.

Length Maximum number of bytes that a function returns

when a value is transferred to its default C data

type.

Maximum number of bytes that a function

returns when a value is transferred to its

default C data type. The length does not

include the NULL termination byte.

Display size Maximum number of bytes needed to display data

in character form.

Maximum number of bytes needed to display

data in character form.

Standard SQL data types
View the values for the precision, scale, length, and display size for standard HCL Informix® ODBC Driver SQL data types.

The following table describes the precision, scale, length, and display size for the standard HCL Informix® ODBC Driver SQL

data types.

Informix® ODBC driver sql data

type (fSqlType)

Description

SQL_BIGINT Precision

19. SQLBindParameter ignores the value of cbColDef for this data type.

Scale

0. SQLBindParameter ignores the value of ibScale for this data type.

Length

8 bytes

Display size

20 digits. One digit is for the sign.

SQL_BIT Precision

1. SQLBindParameter ignores the value of cbColDef for this data type.

Scale

0. SQLBindParameter ignores the value of ibScale for this data type.

Length

1 byte

Chapter 1. Informix® ODBC Driver Guide

Informix® ODBC driver sql data

type (fSqlType)

Description

Display size

1 digit

SQL_CHAR Precision

Same as the length

Scale

Not applicable. SQLBindParameter ignores the value of ibScale for this data

type.

Length

The specified length. For example, the length of CHAR(10) is 10 bytes.

Display size

Same as the length.

SQL_DATE Precision

10. SQLBindParameter ignores the value of cbColDef for this data type.

Scale

Not applicable. SQLBindParameter ignores the value of ibScale for this data

type.

Length

6 bytes

Display size

10 digits in the format yyyy-mm-dd.

SQL_DECIMAL Precision

The specified precision. For example, the precision of DECIMAL (12, 3) is

12.

Scale

The specified scale. For example, the scale of DECIMAL(12, 3) is 3.

Length

The specified precision plus 2. For example, the length of DECIMAL(12, 3)

is 14 bytes. The two additional bytes are used for the sign and the decimal

points because functions return this data type as a character string.

Display size

Same as the length.

69

70

Informix® ODBC driver sql data

type (fSqlType)

Description

SQL_DOUBLE Precision

15. SQLBindParameter ignores the value of cbColDef for this data type.

Scale

Not applicable. SQLBindParameter ignores the value of ibScale for this data

type.

Length

8 bytes

Display size

22 digits. The digits are for a sign, 15 numeric characters, a decimal point,

the letter E, another sign, and 2 more numeric characters.

SQL_INTEGER Precision

10. SQLBindParameter ignores the value of cbColDef for this data type.

Scale

0. SQLBindParameter ignores the value of ibScale for this data type.

Length

4 bytes

Display size

11 digits. One digit is for the sign.

SQL_LONGVARBINARY Precision

Same as the length.

Scale

Not applicable. SQLBindParameter ignores the value of ibScale for this data

type.

Length

The maximum length. If a function cannot determine the maximum length, it

returns SQL_NO_TOTAL.

Display size

The maximum length times 2. If a function cannot determine the maximum

length, it returns SQL_NO_TOTAL.

SQL_LONGVARCHAR Precision

Same as the length.

Chapter 1. Informix® ODBC Driver Guide

Informix® ODBC driver sql data

type (fSqlType)

Description

Scale

Not applicable. SQLBindParameter ignores the value of ibScale for this data

type.

Length

The maximum length. If a function cannot determine the maximum length, it

returns SQL_NO_TOTAL.

Display size

Same as the length.

SQL_REAL Precision

7. SQLBindParameter ignores the value of cbColDef for this data type.

Scale

Not applicable. SQLBindParameter ignores the value of ibScale for this data

type.

Length

4 bytes

Display size

13 digits. The digits are for a sign, 7 numeric characters, a decimal point,

the letter E, another sign, and 2 more numeric characters.

SQL_SMALLINT Precision

5. SQLBindParameter ignores the value of cbColDef for this data type.

Scale

0. SQLBindParameter ignores the value of ibScale for this data type.

Length

2 bytes

Display size

6 digits. One digit is for the sign.

SQL_TIMESTAMP Precision

8. SQLBindParameter ignores the value of cbColDef for this data type.

Scale

The number of digits in the FRACTION field.

71

72

Informix® ODBC driver sql data

type (fSqlType)

Description

Length

16 bytes

Display size

19 or more digits:

• If the scale of the time stamp is 0: 19 digits in the format yyyy-mm-dd

hh:mm:ss.

• If the scale of the time stamp exceeds 0: 20 digits plus digits for the

FRACTION field in the format yyyy-mm-dd hh:mm:ss.f...

SQL_VARCHAR Precision

Same as the length.

Scale

Not applicable. SQLBindParameter ignores the value of ibScale for this data

type.

Length

The specified length. For example, the length of VARCHAR(10) is 10 bytes.

Display size

Same as the length.

Additional SQL data types for Informix®
View the values for the precision, scale, length, and display size for additional HCL Informix® ODBC Driver SQL data types.

The following table describes the precision, scale, length, and display size for the HCL Informix® ODBC Driver SQL data types

for Informix®.

Informix® ODBC driver sql data

type (fSqlType)

Description

SQL_IFMX_UDT_BLOB Precision

Variable value. To determine this value, call a function that returns the

precision for a column.

Scale

Not applicable. A function that returns the scale for a column returns -1

for this data type.

Chapter 1. Informix® ODBC Driver Guide

Informix® ODBC driver sql data

type (fSqlType)

Description

Length

Variable value. To determine this value, call a function that returns the

length for a column.

Display size

Variable value. To determine this value, call a function that returns the

display size for a column.

SQL_IFMX_UDT_CLOB Precision

Variable value. To determine this value, call a function that returns the

precision for a column.

Scale

Not applicable. A function that returns the scale for a column returns -1

for this data type.

Length

Variable value. To determine this value, call a function that returns the

length for a column.

Display size

Variable value. To determine this value, call a function that returns the

display size for a column.

SQL_INFX_UDT_FIXED Precision

Variable value. To determine this value, call a function that returns the

precision for a column.

Scale

Not applicable. A function that returns the scale for a column returns -1

for this data type.

Length

Variable value. To determine this value, call a function that returns the

length for a column.

Display size

Variable value. To determine this value, call a function that returns the

display size for a column.

SQL_INFX_UDT_VARYING Precision

Variable value. To determine this value, call a function that returns the

precision for a column.

73

74

Informix® ODBC driver sql data

type (fSqlType)

Description

Scale

Not applicable. A function that returns the scale for a column returns -1

for this data type.

Length

Variable value. To determine this value, call a function that returns the

length for a column.

Display size

Variable value. To determine this value, call a function that returns the

display size for a column.

C data types
HCL Informix® ODBC Driver applications use C data types to store values that the application processes.

The following table describes the C data types that HCL Informix® ODBC Driver provides.

Important: String arguments in Informix® ODBC driver functions are unsigned. Therefore, you need to cast a CString

object as an unsigned string before you use it as an argument in the Informix® ODBC driver function.

Value Informix® ODBC driver C data type

(fCType)

Informix® ODBC driver typedef Standard C data type

Binary SQL_C_BINARY UCHAR FAR * unsigned char FAR *

Boolean SQL_C_BIT UCHAR unsigned char

Character SQL_C_CHAR UCHAR FAR * unsigned char FAR *

Wide Character SQL_C_WCHAR WCHAR FAR * wchar_t FAR *

Date SQL_C_DATE DATE_STRUCT struct

tagDATE_STRUCT{ SWORD year;

UWORD month; UWORD day; }

Interval SQL_C_INTERVAL_YEAR SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_MONTH SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_DAY SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_HOUR SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_MINUTE SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_SECOND SQL_INTERVAL_STRUCT C Interval Structure

Chapter 1. Informix® ODBC Driver Guide

Value Informix® ODBC driver C data type

(fCType)

Informix® ODBC driver typedef Standard C data type

SQL_C_INTERVAL_YEAR

_TO_MONTH

SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_DAY _TO_HOUR SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_DAY_

TO_MINUTE

SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_DAY_

TO_SECOND

SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_HOUR

_TO_MINUTE

SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_HOUR

_TO_SECOND

SQL_INTERVAL_STRUCT C Interval Structure

SQL_C_INTERVAL_MINUTE

_TO_SECOND

SQL_INTERVAL_STRUCT C Interval Structure

Numeric SQL_C_DOUBLE SDOUBLE signed double

SQL_C_FLOAT SFLOAT signed float

SQL_C_LONG SDWORD signed long int

SQL_C_NUMERIC SQL_NUMERIC_STRUCT struct tag

SQL_NUMERIC_STRUCT

{ SQLCHAR precision;

SQLSCHAR scale; SQLCHAR

sign; SQLCHAR val [SQL_MAX_

NUMERIC_LEN]; }SQL_NUMERIC_

STRUCT;

SQL_C_SHORT SWORD signed short int

SQL_C_SLONG SDWORD signed long int

SQL_C_SSHORT SWORD signed short int

SQL_C_STINYINT SCHAR signed char

SQL_C_TINYINT SCHAR signed char

SQL_C_ULONG UDWORD unsigned long int

SQL_C_USHORT UWORD unsigned short int

SQL_C_UTINYINT UCHAR unsigned char

75

76

Value Informix® ODBC driver C data type

(fCType)

Informix® ODBC driver typedef Standard C data type

Time stamp SQL_C_TIMESTAMP TIMESTAMP_STRUCT struct tagTIMESTAMP_STRUCT

{ SWORD year; UWORD month;

UWORD day; UWORD hour;

UWORD minute; UWORD second;

UDWORD fraction; }

C interval structure
Specify the C data type for the SQL interval data type by using a C interval structure.

The following structures specify the C data type for the SQL interval data type:

typedef struct tagSQL_INTERVAL_STRUCT
 {
 SQLINTERVAL interval_type;
 SQLSMALLINT interval_sign;
 union
 {
 SQL_YEAR_MONTH_STRUCT year_month;
 SQL_DAY_SECOND_STRUCT day_second;
 } intval;
 }SQLINTERVAL_STRUCT;

typedef enum
 {
 SQL_IS_YEAR=1,
 SQL_IS_MONTH=2,
 SQL_IS_DAY=3,
 SQL_IS_HOUR=4,
 SQL_IS_MINUTE=5,
 SQL_IS_SECOND=6,
 SQL_IS_YEAR_TO_MONTH=7,
 SQL_IS_DAY_TO_HOUR=8,
 SQL_IS_DAY_TO_MINUTE=9,
 SQL_IS_DAY_TO_SECOND=10,
 SQL_IS_HOUR_TO_MINUTE=11,
 SQL_IS_HOUR_TO_SECOND=12,
 SQL_IS_MINUTE_TO_SECOND=13,
 }SQLINTERVAL;

typedef struct tagSQL_YEAR_MONTH
 {
 SQLUINTEGER year;
 SQLUINTEGER month;
 }SQL_YEAR_MOHTH_STRUCT;

typedef struct tagSQL_DAY_SECOND
 {
 SQLUINTEGER day;
 SQLUNINTEGER hour;
 SQLUINTEGER minute;
 SQLUINTEGER second;

Chapter 1. Informix® ODBC Driver Guide

 SQLUINTEGER fraction;
 }SQL_DAY_SECOND_STRUCT;

Transfer data
Among data sources that use the same DBMS, you can safely transfer data in the internal form that a DBMS uses.

For a particular piece of data, the SQL data types must be the same in the source and target data sources. The C data type is

SQL_C_BINARY.

When you call SQLFetch, SQLExtendedFetch, or SQLGetData to retrieve this data from a data source, HCL Informix® ODBC

Driver retrieves the data and transfers it, without conversion, to a storage location of type SQL_C_BINARY. When you call

SQLExecute, SQLExecDirect, or SQLPutData to send this data to a target data source, HCL Informix® ODBC Driver retrieves

the data from the storage location and transfers it, without conversion, to the target data source.

The binary representation of INT8, SERIAL8, and BIGSERIAL data types is an array of two unsigned long integers followed by

a short integer that indicates the sign field. The sign field is 1 for a positive value, -1 for a negative value, or 0 for a null value.

Important: Applications that transfer any data (except binary data) in this manner are not interoperable among

DBMSs.

Report standard ODBC types
HCL Informix® ODBC Driver supports existing applications that support standard ODBC data types only. Check the DSN

option Report Standard ODBC Types to turn on this behavior.

When an application sets this option, the driver sets the following behavior:

• Only Standard ODBC data types are reported for all the driver defined new data types.

• The data type access method for smart-large-object (LO) data can be accessed as SQL_LONGVARCHAR and

SQL_LONGVARBINARY. In other words, SQL_LONGVARCHAR and SQL_LONGVARBINARY act like the simple large

objects, byte, and text.

• The defaultUDTfetchtype is set to SQL_C_CHAR.

However, you can control each of the preceding behaviors individually as a connection or a statement level option. Use the

following connection and statement level attributes:

• SQL_INFX_ATTR_ODBC_TYPES_ONLY

• SQL_INFX_ATTR_LO_AUTOMATIC

• SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE

Applications can use SQLSetConnectAttr and SQLSetStmtAttr to set and unset these values. (ODBC 2.x applications can use

SQLSetConnectOption and SQLSetStmtOption equivalently.)

77

78

SQL_INFX_ATTR_ODBC_TYPES_ONLY
Applications can set the SQL_INFX_ATTR_ODBC_TYPES_ONLY attribute to value SQL_TRUE or SQL_FALSE.

This attribute can be set and unset at connection and statement level. All the statements allocated under the same

connection inherit this value. Alternatively each statement can change this attribute. By default this attribute is set to

SQL_FALSE.

An application can change the value of this attribute by using SQLSetConnectAttr and SQLSetStmtAttr

(SQLSetConnectOption and SQLSetStmtOption in ODBC 2.x). Applications can retrieve the values set by using

SQLGetConnectAttr and SQLGetStmtAttr (SQLGetConnectOption and SQLGetStmtOption in ODBC 2.x).

This attribute cannot be set to SQL_TRUE when SQL_INFX_ATTR_LO_AUTOMATIC is set SQL_FALSE. An error message is

returned that reports the following message:

Attribute cannot be set. LoAutomatic should be ON to set this value

.

The application should first set the SQL_INFX_ATTR_LO_AUTOMATIC attribute to SQL_TRUE and then set the attribute

SQL_INFX_ATTR_ODBC_TYPES_ONLY to SQL_TRUE.

SQL_INFX_ATTR_LO_AUTOMATIC
Applications can set the SQL_INFX_ATTR_LO_AUTOMATIC attribute to value SQL_TRUE or SQL_FALSE.

This attribute can be set and unset at connection and statement level. All the statements allocated under the same

connection inherit this value. Alternatively each statement can change this attribute. By default this attribute is set to

SQL_FALSE.

An application can change the value of this attribute by using SQLSetConnectAttr and SQLSetStmtAttr

(SQLSetConnectOption and SQLSetStmtOption in ODBC 2.x). Applications can retrieve the values set by using

SQLGetConnectAttr and SQLGetStmtAttr (SQLGetConnectOption and SQLGetStmtOption in ODBC 2.x).

The attribute SQL_INFX_ATTR_LO_AUTOMATIC cannot be set to SQL_FALSE when SQL_INFX_ATTR_ODBC_TYPES_ONLY is

set to SQL_TRUE. An error message is returned that reports the following message:

Attribute cannot be set. ODBC types only should be OFF to set this value

.

Applications should first set the attribute SQL_INFX_ODBC_TYPES_ONLY to SQL_FALSE and then set the attribute

SQL_INFX_ATTR_LO_AUTOMATIC to SQL_FALSE.

Applications would like to set attribute SQL_INFX_ATTR_UPDATE_DESCRIBE (this option could also be enabled using DSN

and/or connection string. For more information, see Connection string keywords that make a connection on page 64)

using SQLSetConnectAttr() API. By enabling this option server will send the description of BLOB/CLOB data types which will

be used by ODBC Driver. This option should only be enabled when needed. It should not be enabled all the time, otherwise it

would cause more round trips between client and server.

Chapter 1. Informix® ODBC Driver Guide

SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE
Applications can set the SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE attribute to SQL_C_CHAR or SQL_C_BINARY to set

the default fetch type for UDTs.

The default value of this attribute is set depending on the following conditions:

• If the DSN setting for Report Standard ODBC Types is ON, the value of DefaultUDTFetchType is set to SQL_C_CHAR.

• If the DSN setting for Report Standard ODBC Types is OFF, the value of DefaultUDTFetchType is set to

SQL_C_BINARY.

• If a user has set a registry key, the value of DefaultUDTFetchType is set to the value in the registry provided Report

Standard ODBC Types is not set.

An application can change the value of this attribute by using SQLSetConnectAttr and SQLSetStmtAttr

(SQLSetConnectOption and SQLSetStmtOption in ODBC 2.x). Applications can retrieve the values set by using

SQLGetConnectAttr and SQLGetStmtAttr (SQLGetConnectOption and SQLGetStmtOption in ODBC 2.x).

Setting the Report Standard ODBC Types to ON always overrides DefaultUDTFetchType to SQL_C_CHAR.

Report wide character columns
HCL Informix® servers do not support wide character data types.

When an application sets the Report Char Columns as Wide Char Columns option, the driver sets the following behavior:

• SQLDescribeCol reports char columns as wide char columns

• SQL_CHAR column is reported as SQL_WCHAR

• SQL_VARCHAR column is reported as SQL_WVARCHAR

• SQL_LONGVARCHAR column is reported as SQL_WLONGVARCHAR

• The default is 0: (disabled)

After setting the Report Char Columns as Wide Char Columns option, calls to SQLBindParameter with SQL data types have

the following behavior:

• SQL_WCHAR is mapped to SQL_CHAR

• SQL_WVARCHAR is mapped to SQL_VARCHAR

• SQL_WLONGVARCHAR is mapped to SQL_LONGVARCHAR

DSN settings for report standard ODBC data types
For UNIX™ and Windows™, you can add the new DSN option NeedODBCTypesOnly.

For UNIX™, add a new DSN option NeedODBCTypesOnly under your DSN setting in your odbc.ini file [default is 0]. For

example:

[Informix9]
Driver=/informix/lib/cli/libthcli.so
Description=HCL Informix ODBC Driver

79

80

.
NeedODBCTypesOnly=1

For Windows™, check this option under the Advanced tab of the ODBC Administration for HCL Informix® Driver DSN [default

is 0].

The following table shows how the Informix® data types map to the standard ODBC data types.

Table 4. Informix® and ODBC data type

mapping

Infor

mix® ODBC

Bigint SQL_BIGINT

Bigserial SQL_BIGINT

Blob SQL_LONGVARBINARY

Boolean SQL_BIT

Clob SQL_LONGVARCHAR

Int8 SQL_BIGINT

Lvarc

har

SQL_VARCHAR

Serial8 SQL_BIGINT

Multiset SQL_C_CHAR or

SQL_C_BINARY

Set SQL_C_CHAR or

SQL_C_BINARY

List SQL_C_CHAR or

SQL_C_BINARY

Row SQL_C_CHAR or

SQL_C_BINARY

Important:

Chapter 1. Informix® ODBC Driver Guide

• For multiset, set, row, and list data types, the data type is mapped to the defaultUDTFetchType attribute set

(SQL_C_CHAR or SQL_C_BINARY).

• To enable SQL_BIGINT to work correctly with SQLBindCol and SQLBindParameter, you must use

SQL_C_UBIGINT (which has a supported data range of 8 byte unsigned integer) and not SQL_C_LONG (which

has a supported data range of 4 byte integer).

Convert data
The word convert is used in this section in a broad sense; it includes the transfer of data from one storage location to

another without a conversion in data type.

Standard conversions
Standard conversions exist between the HCL Informix® SQL data types and the HCL Informix® ODBC Driver C data types.

Only Informix® can convert data to SQL_C_BIT.

The Informix® ODBC driver C data types, SQL_C_BINARY, SQL_C_CHAR, and SQL_C_WCHAR, support conversion between

all Informix® SQL data types listed in the following tables.

The following tables show the supported conversions between the Informix® SQL data types and the Informix® ODBC Driver

C data types.

Table 5. Supported conversions between Informix® SQL data types and ODBC Driver C data types

A five-column table that shows the supported conversions between Informix® SQL data types and ODBC Driver C data types.

ODBC driver C data types (target type)SQL data type

SQL_C_BIT SQL_C_DATE SQL_C_DOUBLE SQL_C_FLOAT

BOOLEAN yes no no no

CHAR, CHARACTER yes no yes yes

CHARACTER

VARYING

yes no yes yes

DATE no yes no no

DATETIME no yes no no

DEC, DECIMAL yes no yes yes

DOUBLE PRECISION no no yes yes

FLOAT no no yes yes

INT, INTEGER yes no yes yes

81

82

Table 5. Supported conversions between Informix® SQL data types and ODBC Driver C data types

A five-column table that shows the supported conversions between Informix® SQL data types and ODBC Driver C data types.

(continued)

ODBC driver C data types (target type)SQL data type

SQL_C_BIT SQL_C_DATE SQL_C_DOUBLE SQL_C_FLOAT

INT8 no no no no

LVARCHAR yes yes no yes

MONEY no yes yes yes

NUMERIC no yes yes yes

REAL no yes yes yes

SERIAL no yes yes yes

SMALLFLOAT yes no yes yes

SMALLINT yes no yes yes

TEXT yes yes yes yes

VARCHAR yes yes yes yes

Table 6. Supported conversions between Informix® SQL data types and ODBC Driver C data types

A five-column table that shows the supported conversions between Informix® SQL data types and ODBC Driver C data types.

ODBC driver C data types (target type)SQL data type

SQL_C_LONG SQL_C_NUMERIC SQL_C_SHORT SQL_C_SLONG

BIGINT yes yes no yes

BIGSERIAL yes yes yes yes

BYTE no no no no

CHAR, CHARACTER yes yes yes yes

CHARACTER

VARYING

yes yes yes yes

DEC, DECIMAL yes yes yes yes

DOUBLE

PRECISION

yes yes yes yes

FLOAT yes yes yes yes

Chapter 1. Informix® ODBC Driver Guide

Table 6. Supported conversions between Informix® SQL data types and ODBC Driver C data types

A five-column table that shows the supported conversions between Informix® SQL data types and ODBC Driver C data types.

(continued)

ODBC driver C data types (target type)SQL data type

SQL_C_LONG SQL_C_NUMERIC SQL_C_SHORT SQL_C_SLONG

INT, INTEGER yes yes yes yes

INT8 yes yes no yes

LVARCHAR yes no yes yes

MONEY yes yes yes yes

NUMERIC yes yes yes yes

REAL yes yes yes yes

SERIAL yes no yes yes

SERIAL8 yes yes yes yes

SMALLFLOAT yes yes yes yes

SMALLINT yes yes yes yes

TEXT yes yes yes yes

VARCHAR yes yes yes yes

Table 7. Supported conversions between Informix® SQL data types and ODBC Driver C data types

A five-column table that shows the supported conversions between Informix® SQL data types and ODBC Driver C data types.

ODBC driver C data types (target type)SQL data type

SQL_C_SSHORT SQL_C_STINYINT SQL_C_TIMESTAMP

BIGINT yes no no

BIGSERIAL yes no no

CHAR, CHARACTER yes yes no

CHARACTER

VARYING

yes yes no

DATE no no yes

DATETIME no no yes

DEC, DECIMAL yes yes no

83

84

Table 7. Supported conversions between Informix® SQL data types and ODBC Driver C data types

A five-column table that shows the supported conversions between Informix® SQL data types and ODBC Driver C data types.

(continued)

ODBC driver C data types (target type)SQL data type

SQL_C_SSHORT SQL_C_STINYINT SQL_C_TIMESTAMP

DOUBLE PRECISION yes yes no

FLOAT yes yes no

INT, INTEGER yes yes no

INT8 yes no no

LVARCHAR yes yes yes

MONEY yes yes yes

NUMERIC yes yes yes

REAL yes yes yes

SERIAL yes yes yes

SERIAL8 yes no no

SMALLFLOAT yes yes no

SMALLINT yes yes no

TEXT yes yes yes

VARCHAR yes yes yes

The ODBC driver C data type SQL_C_ULONG supports conversion between all the SQL data types listed in the following table.

Table 8. Supported conversions between Informix® SQL data types and ODBC Driver C data types

A five-column table that shows the supported conversions between Informix® SQL data types and ODBC Driver C data types.

ODBC driver C data types (target type)SQL data type

SQL_C_TINYINT SQL_C_USHORT SQL_C_UTINYINT

BIGINT no no no

BIGSERIAL no yes no

CHAR, CHARACTER yes yes yes

CHARACTER

VARYING

yes yes yes

Chapter 1. Informix® ODBC Driver Guide

Table 8. Supported conversions between Informix® SQL data types and ODBC Driver C data types

A five-column table that shows the supported conversions between Informix® SQL data types and ODBC Driver C data types.

(continued)

ODBC driver C data types (target type)SQL data type

SQL_C_TINYINT SQL_C_USHORT SQL_C_UTINYINT

DEC, DECIMAL yes yes yes

DOUBLE PRECISION yes yes yes

FLOAT yes yes yes

INT, INTEGER yes yes yes

INT8 no no no

LVARCHAR yes yes yes

MONEY yes yes yes

NUMERIC yes yes yes

REAL yes yes yes

SERIAL yes yes yes

SERIAL8 no yes no

SMALLFLOAT yes yes yes

SMALLINT yes yes yes

TEXT yes yes yes

VARCHAR yes yes yes

Additional conversions for GLS
There are supported conversions between the additional HCL Informix® SQL data types for GLS and the HCL Informix®

ODBC Driver C data types.

Only Informix® can convert data to SQL_C_BIT.

The Informix® NCHAR and NVARCHAR SQL data types support conversion between the following ODBC driver C data types

(fCType):

• SQL_C_BINARY

• SQL_C_BIT

• SQL_C_CHAR

• SQL_C_DATE

• SQL_C_DOUBLE

85

86

• SQL_C_FLOAT

• SQL_C_LONG

• SQL_C_SHORT

• SQL_C_SLONG

• SQL_C_SSHORT

• SQL_C_STINYINT

• SQL_C_TIME STAMP

• SQL_C_TINYINT

• SQL_C_ULONG

• SQL_C_USHORT

• SQL_C_UTINYINT

Additional conversions for Informix®
There are supported conversions between the additional HCL Informix® SQL data types for Informix® and the HCL

Informix® ODBC Driver C data types.

The Informix® SQL data types, Collection, DISTINCT, Row, and Smart large object, support conversions between the

following Informix® ODBC driver C data types (fCType):

• SQL_C_BINARY

• SQL_C_BIT

• SQL_C_CHAR

• SQL_C_DATE

• SQL_C_DOUBLE

• SQL_C_FLOAT

• SQL_C_LONG

• SQL_C_SHORT

• SQL_C_SLONG

• SQL_C_SSHORT

• SQL_C_STINYINT

• SQL_C_TIMESTAMP

• SQL_C_TINYINT

• SQL_C_ULONG

• SQL_C_USHORT

• SQL_C_UTINYINT

The Informix® SQL data type OPAQUE supports conversion between the SQL_C_BINARY and SQL_C_CHAR ODBC driver C

data types (fCType). Use SQL_C_CHAR to access an OPAQUE value in the external format as a string. Use SQL_C_BINARY to

access an OPAQUE value in the internal binary format.

Convert data from SQL to C
When you call SQLExtendedFetch, SQLFetch, or SQLGetData, HCL Informix® ODBC Driver retrieves data from a data source.

Chapter 1. Informix® ODBC Driver Guide

If necessary, HCL Informix® ODBC Driver converts the data from the source data type to the data type that the TargetType

argument in SQLBindCol or the fCType argument in SQLGetData specifies. Finally, HCL Informix® ODBC Driver stores the

data in the location pointed to by the rgbValue argument in SQLBindCol or SQLGetData.

The tables in the following sections describe how HCL Informix® ODBC Driver converts data that it retrieves from a data

source. For a given HCL Informix® ODBC Driver SQL data type, the first column of the table lists the legal input values of the

TargetType argument in SQLBindCol and the fCType argument in SQLGetData. The second column lists the outcomes of a

test, often by using the cbValueMax argument specified in SQLBindCol or SQLGetData, which HCL Informix® ODBC Driver

performs to determine whether it can convert the data. For each outcome, the third and fourth columns list the values of the

rgbValue and pcbValue arguments specified in SQLBindCol or SQLGetData after HCL Informix® ODBC Driver tries to convert

the data.

The last column lists the SQLSTATE returned for each outcome by SQLExtendedFetch, SQLFetch, or SQLGetData.

If the TargetType argument in SQLBindCol or the fCType argument in SQLGetData contains a value for the HCL

Informix® ODBC Driver C data type that is not shown in the table for a given HCL Informix® ODBC Driver SQL data type,

SQLExtendedFetch, SQLFetch, or SQLGetData returns SQLSTATE 07006 (Restricted data type attribute violation). If the

fCType argument or the TargetType argument contains a value that specifies a conversion from a driver-specific SQL data

type to the HCL Informix® ODBC Driver C data type and HCL Informix® ODBC Driver does not support this conversion, then

SQLExtendedFetch, SQLFetch, or SQLGetData returns SQLSTATE S1C00 (Driver not capable).

Although the tables in this chapter do not show it, the pcbValue argument contains SQL_NULL_DATA when the SQL data

value is null. When HCL Informix® ODBC Driver converts SQL data to character C data, the character count returned in

pcbValue does not include the null-termination byte. If rgbValue is a null pointer, SQLBindCol or SQLGetData returns

SQLSTATE S1009 (Invalid argument value).

The following terms and conventions are used in the tables:

Length of data

The number of bytes of C data that are available to return in rgbValue, regardless of whether the data is

truncated before it returns to the application. For string data, this does not include the null-termination byte.

Display size

Total number of bytes that are needed to display the data in character format.

Words in italics

Represent function arguments or elements of the HCL Informix® ODBC Driver SQL grammar.

Default C data types
You can specify the SQL_C_DEFAULT for different functions so that HCL Informix® ODBC Driver uses the C data type.

If you specify SQL_C_DEFAULT for the TargetType argument in SQLBindCol, the fCType argument in SQLGetData, or the

ValueType argument in SQLBindParameter, HCL Informix® ODBC Driver uses the C data type of the output or input buffer for

the SQL data type of the column or parameter to which the buffer is bound.

87

88

Standard default C data types
There is default C data type for each HCL Informix® ODBC Driver SQL data type.

For each HCL Informix® ODBC Driver SQL data type, the following table shows the default C data type.

Informix® ODBC driver

SQL data type (fSqlType)

Default Informix® ODBC

driver C data type (fCType)

SQL_BIGINT SQL_C_CHAR

SQL_BIT SQL_C_BITS

SQL_CHAR SQL_C_CHAR

SQL_DATE SQL_C_DATE

SQL_DECIMAL SQL_C_CHAR

SQL_DOUBLE SQL_C_DOUBLE

SQL_INTEGER SQL_C_SLONG

SQL_LONGVARBINARY SQL_C_BINARY

SQL_LONGVARCHAR SQL_C_CHAR

SQL_NUMERIC SQL_C_NUMERIC

SQL_REAL SQL_C_FLOAT

SQL_SMALLINT SQL_C_SSHORT

SQL_TIMESTAMP SQL_C_TIMESTAMP

SQL_VARCHAR SQL_C_CHARS

Additional default C data types for Informix®
There is default C data type for each additional HCL Informix® ODBC Driver SQL data type.

For each additional HCL Informix® ODBC Driver SQL data type for Informix®, the following table shows the default C data

type.

Inform

ix® ODBC

driver SQL

data type

(fSqlType) Default Informix® ODBC driver C data type (fCType)

SQL_IFMX_U

DT_BLOB

SQL_C_BINARY

Chapter 1. Informix® ODBC Driver Guide

Inform

ix® ODBC

driver SQL

data type

(fSqlType) Default Informix® ODBC driver C data type (fCType)

SQL_IFMX_U

DT_CLOB

SQL_C_BINARY

SQL_INFX_U

DT_FIXED

This HCL Informix® ODBC Driver SQL data type does not have a default HCL Informix® ODBC Driver C data

type. Because this Informix® ODBC driver SQL data type can contain binary data or character data, you must

bind a variable for this Informix® ODBC driver SQL data type before you fetch a corresponding value. The

data type of the bound variable specifies the C data type for the value.

SQL_INFX_U

DT_VARYING

This HCL Informix® ODBC Driver SQL data type does not have a default HCL Informix® ODBC Driver C data

type. Because this Informix® ODBC Driver SQL data type can contain binary data or character data, you must

bind a variable for this Informix® ODBC Driver SQL data type before you fetch a corresponding value. The

data type of the bound variable specifies the C data type for the value.

SQL-to-C data conversion examples
The examples show how HCL Informix® ODBC Driver converts SQL data to C data.

The following table illustrates how HCL Informix® ODBC Driver converts SQL data to C data. \0 represents a null-termination

byte (\0 represents a wide null termination character when the C data type is SQL_C_WCHAR). HCL Informix® ODBC Driver

always null-terminates SQL_C_CHAR and SQL_C_WCHAR data. For the combination of SQL_DATE and SQL_C_TIMESTAMP,

HCL Informix® ODBC Driver stores the numbers that are in the rgbValue column in the fields of the TIMESTAMP_STRUCT

structure.

Six-column table that shows how HCL Informix® ODBC Driver converts SQL data to C data.

SQL data type SQL data

value

C data type cbValueMax rgbValue SQLSTATE

SQL_CHAR tigers SQL_C_CHAR 7 tigers\0 N/A

SQL_CHAR tigers SQL_C_CHAR 6 tiger\0 01004

SQL_CHAR tigers SQL_C_WCHAR 14 tigers\0 N/A

SQL_CHAR tigers SQL_C_WCHAR 12 tiger\0 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 N/A

SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 4 - 22003

SQL_DECIMAL 1234.56 SQL_C_WCHAR 16 1234.56\0 N/A

89

90

SQL data type SQL data

value

C data type cbValueMax rgbValue SQLSTATE

SQL_DECIMAL 1234.56 SQL_C_WCHAR 10 1234\0 01004

SQL_DECIMAL 1234.56 SQL_C_WCHAR 8 - 220023

SQL_DECIMAL 1234.56 SQL_C_FLOAT Ignored 1234.56 N/A

SQL_DECIMAL 1234.56 SQL_C_SSHORT Ignored 1234 01004

SQL_DECIMAL 1234.56 SQL_C_STINYINT Ignored - 22003

SQL_DOUBLE 1.2345678 SQL_C_DOUBLE Ignored 1.234567 N/A

SQL_DOUBLE 1.2345678 SQL_C_FLOAT Ignored 1.234567 N/A

SQL_DOUBLE 1.2345678 SQL_C_STINYINT Ignored 1 N/A

SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 N/A

SQL_DATE 1992-12-31 SQL_C_CHAR 10 - 22003

SQL_DATE 1992-12-31 SQL_C_WCHAR 22 1992-12-31\0 N/A

SQL_DATE 1992-12-31 SQL_C_WCHAR 20 - 22003

SQL_DATE 1992-12-31 SQL_C_TIMESTAMP Ignored 1992,12,31,

0,0,0,0

N/A

SQL_TIMESTAMP 1992-12-31

23:45:55.12

SQL_C_CHAR 23 1992-12-31

23:45:55.12\0

N/A

SQL_TIMESTAMP 1992-12-31

23:45:55.12

SQL_C_CHAR 22 1992-12-31

23:45:55.1\0

01004

SQL_TIMESTAMP 1992-12-31

23:45:55.12

SQL_C_CHAR 18 - 22003

SQL_TIMESTAMP 1992-12-31

23:45:55.12

SQL_C_WCHAR 46 1992-12-31

23:45:55.12\0

N/A

SQL_TIMESTAMP 1992-12-31

23:45:55.12

SQL_C_WCHAR 44 1992-12-31

23:45:55.1\0

01004

SQL_TIMESTAMP 1992-12-31 SQL_C_WCHAR 36 - 22003

Chapter 1. Informix® ODBC Driver Guide

SQL data type SQL data

value

C data type cbValueMax rgbValue SQLSTATE

23:45:55.12

Important: The size of a wide character (wchar_t) is platform dependent. The previous examples are applicable to

Windows™ where the size of wide characters is 2 bytes. On most UNIX™ platforms, wide characters are 4 bytes. On

IBM® AIX® versions lower than AIX5L, it is 2 bytes.

Convert data from C to SQL
When you call SQLExecute or SQLExecDirect, HCL Informix® ODBC Driver retrieves the data for parameters that are bound

with SQLBindParameter from storage locations in the application.

For data-at-execution parameters, call SQLPutData to send the parameter data. If necessary, HCL Informix® ODBC Driver

converts the data from the data type that the ValueType argument specifies in SQLBindParameter to the data type that

the fSqlType argument specifies in the SQLBindParameter. Finally, HCL Informix® ODBC Driver sends the data to the data

source.

If the rgbValue and pcbValue arguments specified in SQLBindParameter are both null pointers, then that function returns

SQLSTATE S1009 (Invalid argument value). To specify a null SQL data value, set the value that the pcbValue argument of

SQLBindParameter points to or the value of the cbValue argument to SQL_NULL_DATA. To specify that the value in rgbValue

is a null-terminated string, set these values to SQL_NTS.

The following terms are used in the tables:

Length of data

The number of bytes of SQL data that are available to send to the data source, regardless of whether the data is

truncated before it goes to the data source. For string data, this does not include the null-termination byte.

Column length and display size

Defined for each SQL data type in Precision, scale, length, and display size on page 67.

Number of digits

The number of characters that represent a number, including the minus sign, decimal point, and exponent (if

needed).

Words in italics

Represent elements of the HCL Informix® ODBC Driver SQL syntax.

C to SQL: Bit
The bit HCL Informix® ODBC Driver C data type is SQL_C_BIT.

The following table shows the HCL Informix® ODBC Driver SQL data types to which bit C data can be converted.

91

92

fSqlType Test SQLSTATE

SQL_BIGINT

SQL_DECIMAL

SQL_DOUBLE

SQL_INTEGER

SQL_REAL

SQL_SMALLINT

None N/A

SQL_BIT None N/A

SQL_CHAR

SQL_LONGVARCHAR

SQL_VARCHAR

None N/A

HCL Informix® ODBC Driver ignores the value that the pcbValue argument of SQLBindParameter points to and the value of

the cbValue argument of SQLPutData when it converts data from the Boolean C data type. HCL Informix® ODBC Driver uses

the size of rgbValue for the size of the Boolean C data type.

C-to-SQL data conversion examples
The examples show how HCL Informix® ODBC Driver converts C data to SQL data.

The following table illustrates how HCL Informix® ODBC Driver converts C data to SQL data. \0 represents a null-termination

byte. The null-termination byte is required only if the length of the data is SQL_NTS. For SQL_C_DATE, the numbers

that are in the C Data Value column are the numbers that are stored in the fields of the DATE_STRUCT structure. For

SQL_C_TIMESTAMP, the numbers that are in the C Data Value column are the numbers that are stored in the fields of the

TIMESTAMP_STRUCT structure.

C data type C data value SQL data type Column length SQL data

value

SQLSTATE

SQL_C_CHAR tigers\0 SQL_CHAR 6 tigers N/A

SQL_C_CHAR tigers\0 SQL_CHAR 5 tiger 01004

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 8

(In addition to bytes

for numbers, one byte

is required for a sign

1234.56 N/A

Chapter 1. Informix® ODBC Driver Guide

C data type C data value SQL data type Column length SQL data

value

SQLSTATE

and another for the

decimal point.)

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 7

(In addition to bytes

for numbers, one byte

is required for a sign

and another for the

decimal point.)

1234.5 01004

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 4 - 22003

SQL_C_FLOAT 1234.56 SQL_FLOAT not applicable 1234.56 N/A

SQL_C_FLOAT 1234.56 SQL_INTEGER not applicable 1234 01004

SQL_C_FLOAT 1234.56 SQL_TINYINT not applicable - 22003

SQL_C_DATE 1992,12,31 SQL_CHAR 10 1992-12-31 N/A

SQL_C_DATE 1992,12,31 SQL_CHAR 9 - 22003

SQL_C_DATE 1992,12,31 SQL_TIMESTAMP not applicable 1992-12-31

00:00:00.0

N/A

SQL_C_TIMESTAMP 1992,12,31,

23,45,55,

120000000

SQL_CHAR 22 1992-12-31

23:45:55.12

N/A

SQL_C_TIMESTAMP 1992,12,31,

23,45,55,

120000000

SQL_CHAR 21 1992-12-31

23:45:55.1

01004

SQL_C_TIMESTAMP 1992,12,31,

23,45,55,

120000000

SQL_CHAR 18 - 22003

93

94

Smart large objects
These topics describe how to store, create, and access a smart large object; how to transfer smart-large-object data; how to

retrieve the status of a smart large object; and how to read or write a smart large object to or from a file.

The information in these topics apply only if your database server is .

A smart large object is a recoverable large object that is stored in an sbspace on disk. You can access a smart large object

with read, write, and seek operations similar to an operating-system file. The two data types for smart large objects are

character large object (CLOB) and binary large object (BLOB). A CLOB consists of text data and a BLOB consists of binary

data in an undifferentiated byte stream.

For more information about smart-large-object data types, see the HCL® Informix® Guide to SQL: Reference.

Data structures for smart large objects
Because a smart large object can be huge, has two alternatives to store the content of a smart large object.

Therefore, instead of storing the content of a smart large object in a database table, does the following:

• Stores the content of the smart large object in an sbspace

• Stores a pointer to the smart large object in the database table

Because a smart large object can be huge, the HCL Informix® ODBC Driver application cannot receive a smart large object

in a variable. Instead, the application sends or receives information about the smart large object in a data structure. The

following table describes the data structures that HCL Informix® ODBC Driver uses for smart large objects.

Data structure Name Description

lofd Smart-large-object file

descriptor

Provides access to a smart large object. Uses a file descriptor to access

smart-large-object data as if it were in an operating-system file.

loptr Smart-large-object pointer

structure

Provides security information and a pointer to a smart large object. This

structure is the data that the database server stores in a database table

for a smart large object. Therefore, SQL statements such as INSERT and

SELECT accept a smart-large-object pointer structure as a value for a

column or a parameter that has a data type of smart large object.

lospec Smart-large-object

specification structure

Specifies the storage characteristics for a smart large object.

lostat Smart-large-object status

structure

Stores status information for a smart large object. Normally

you can fetch a user-defined data type (UDT) in either binary or

character representation. However, it is not possible to convert a

smart-large-object status structure to character representation.

Therefore, you need to use SQL_C_BINARY as the HCL Informix® ODBC

Driver C data type for lostat.

Chapter 1. Informix® ODBC Driver Guide

Restriction: These data structures are opaque to HCL Informix® ODBC Driver applications and their internal

structures might change. Therefore, do not access the internal structures directly. Use the smart-large-object client

functions to manipulate the data structures.

The application is responsible for allocating space for these smart-large-object data structures.

Working with a smart-large-object data structure
You can use this procedure to work with a smart-large-object data structure. An example is included.

About this task

To work with a smart-large-object data structure:

1. Determine the size of the smart-large-object structure.

2. Use either a fixed size array or a dynamically allocated buffer that is at least the size of the data structure.

3. Free the array or buffer space when you are done with it.

Results

The following code example illustrates these steps:

rc = SQLGetInfo(hdbc, SQL_INFX_LO_SPEC_LENGTH, &lospec_size,
 sizeof(lospec_size), NULL);
lospec_buffer = malloc(lospec_size);

free(lospec_buffer);

Storage of smart large objects
The smart-large-object specification structure stores the disk-storage information and create-time flags for a smart large

object.

Disk-storage information
Disk-storage information helps HCL Informix® determine how to store the smart large object most efficiently on disk.

The following table describes the types of disk-storage information and the corresponding client functions. For most

applications, it is recommended that you use the values for the disk-storage information that the database server

determines.

Disk-storage information Description Client functions

Estimated size An estimate of the final size, in bytes, of the smart

large object. The database server uses this value to

determine the extents in which to store the smart

large object. This value provides optimization

information. If the value is grossly incorrect, it does

ifx_lo_specget_estbytes()

ifx_lo_specset_estbytes()

95

96

Disk-storage information Description Client functions

not cause incorrect behavior. However, it does mean

that the database server might not necessarily

choose optimal extent sizes for the smart large

object.

Maximum size The maximum size, in bytes, for the smart large

object. The database server does not allow the smart

large object to grow beyond this size.

ifx_lo_specget_maxbytes()

ifx_lo_specset_maxbytes()

Allocation extent size The allocation extent size is specified in kilobytes.

Optimally, the allocation extent is the single extent

in a chunk that holds all the data for the smart large

object.

The database server performs storage allocations for

smart large objects in increments of the allocation

extent size. It tries to allocate an allocation extent

as a single extent in a chunk. However, if no single

extent is large enough, the database server must use

multiple extents as necessary to satisfy the request.

ifx_lo_specget_extsz()

ifx_lo_specset_extsz()

Name of the sbspace The name of the sbspace that contains the smart

large object. On this database server, an sbspace

name can be up to 128 characters long and must be

null terminated.

ifx_lo_specget_sbspace()

ifx_lo_specset_sbspace()

Create-time flags
Create-time flags tell HCL Informix® what options to assign to the smart large object.

The following table describes the create-time flags.

Three-column table that describes the create-time flags.

Type of indicator Create-time flag Description

Logging LO_LOG Tells the database server to log changes to the

smart large object in the system log file.

Consider carefully whether to use the LO_LOG flag

value. The database server incurs considerable

overhead to log smart large objects. You must

also make sure that the system log file is large

enough to hold the value of the smart large object.

Chapter 1. Informix® ODBC Driver Guide

Type of indicator Create-time flag Description

For more information, see your HCL® Informix®

Administrator's Guide.

LO_NOLOG Tells the database server to turn off logging for all

operations that involve the associated smart large

object.

LO_KEEP_LASTACCESS_TIME Tells the database server to save the last access

time for the smart large object. This access time is

the time of the last read or write operation.

Consider carefully whether to use the

LO_KEEP_LASTACCESS_TIME flag value. The

database server incurs considerable overhead to

maintain last access times for smart large objects.

Last access-time

LO_NOKEEP_LASTACCESS_TIME Tells the database server not to maintain the last

access time for the smart large object.

The ifx_lo_specset_flags() function sets the create-time flags to a new value. The ifx_lo_specget_flags() function retrieves

the current value of the create-time flag.

Logging indicators and the last access-time indicators are stored in the smart-large-object specification structure as a single

flag value. To set a flag from each group, use the C-language OR operator to mask the two flag values together. However,

masking mutually exclusive flags causes an error. If you do not specify a value for one of the flag groups, the database server

uses the inheritance hierarchy to determine this information.

Inheritance hierarchy
HCL Informix® uses an inheritance hierarchy to obtain storage characteristics.

The following figure shows the inheritance hierarchy for smart-large-object storage characteristics.

97

98

Figure 5. Inheritance hierarchy for storage characteristics

Using system-specified storage characteristics
HCL Informix® uses one set of storage characteristics as the system-specified storage characteristics.

About this task

HCL Informix® uses one of the following sets of storage characteristics:

• If the sbspace in which the smart large object is stored specifies a value for a particular storage characteristic, the

database server uses the sbspace value as the system-specified storage characteristic.

The database administrator can use the onspaces utility to define storage characteristics for an sbspace.

• If the sbspace in which the smart large object is stored does not specify a value for a particular storage

characteristic, the database server uses the system default as the system-specified storage characteristic.

The database server defines the system defaults for storage characteristics internally. However, you can specify a

default sbspace name with the SBSPACENAME configuration parameter in the onconfig file. Also, an application

call to ifx_lo_col_info() or ifx_lo_specset_sbspace() can supply the target sbspace in the smart-large-object

specification structure.

Important: An error occurs if the SBSPACENAME configuration parameter is not specified and the smart-large-object

specification structure does not contain the name of the target sbspace.

It is recommended that you use the system-specified storage characteristics for the disk-storage information. For more

information about sbspaces and the description of the onspaces utility, see your HCL® Informix® Administrator's Guide.

To use system-specified storage characteristics for a new smart large object:

Chapter 1. Informix® ODBC Driver Guide

1. Call ifx_lo_def_create_spec() to allocate a smart-large-object specification structure and to initialize the structure to

null values.

2. Call ifx_lo_create() to create an instance of the smart large object.

Using column-level storage characteristics
The CREATE TABLE statement assigns storage characteristics to a database column.

About this task

The PUT clause of the CREATE TABLE statement specifies storage characteristics for a smart-large-object column. The

syscolattribs system catalog table stores the column-level storage characteristics.

To use column-level storage characteristics for a new smart-large-object instance:

1. Call ifx_lo_def_create_spec() to allocate a smart-large-object specification structure and initialize this structure to null

values.

2. Call ifx_lo_col_info() to retrieve the column-level storage characteristics and store them in the specified smart-large-

object specification structure.

3. Call ifx_lo_create() to create an instance of the smart large object.

User-defined storage characteristics
To specify user-defined storage characteristics, call an ifx_lo_specset_* function.

You can define a unique set of storage characteristics for a new smart large object, as follows:

• For a smart large object that will be stored in a column, you can override some storage characteristics for the column

when you create an instance of a smart large object.

If you do not override some or all of these characteristics, the smart large object uses the column-level storage

characteristics.

• You can specify a wider set of characteristics for a smart large object because a smart large object is not

constrained by table column properties.

If you do not override some or all of these characteristics, the smart large object inherits the system-specified

storage characteristics.

Example of creating a smart large object
The code example, locreate.c, shows how to create a smart large object.

You can find the locreate.c file in the %INFORMIXDIR%/demo/clidemo directory on UNIX™ platforms and in the

%INFORMIXDIR%\demo\odbcdemo directory in Windows™ environments. You can also find instructions on how to build the

odbc_demo database in the same location.

/*
** locreate.c

99

100

**
** To create a smart large object
**
** OBDC Functions:
** SQLAllocHandle
** SQLBindParameter
** SQLConnect
** SQLFreeStmt
** SQLGetInfo
** SQLDisconnect
** SQLExecDirect
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32*/

#include "infxcli.h"

#define BUFFER_LEN 12
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
 SQLSMALLINT handleType,
 SQLHANDLE handle,
 char *errmsg)
{
 SQLRETURN retcode = SQL_SUCCESS;

 SQLSMALLINT errNum = 1;
 SQLCHAR sqlState[6];
 SQLINTEGER nativeError;
 SQLCHAR errMsg[ERRMSG_LEN];
 SQLSMALLINT textLengthPtr;

 if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
 {
 while (retcode != SQL_NO_DATA)
 {
 retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
 &nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

 if (retcode == SQL_INVALID_HANDLE)
 {
 fprintf (stderr, "checkError function was called with an
 invalid handle!!\n");
 return 1;
 }

Chapter 1. Informix® ODBC Driver Guide

 if ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO))
 fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
 sqlState, errMsg);

 errNum++;
 }

 fprintf (stderr, "%s\n", errmsg);
 return 1; /* all errors on this handle have been reported */
 }
 else
 return 0; /* no errors to report */
}

int main (long argc,
 char *argv[])
{
 /* Declare variables
 */

 /* Handles */
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 /* Smart large object file descriptor */
 long lofd;
 long lofd_valsize = 0;

 /* Smart large object pointer structure */
 char* loptr_buffer;
 short loptr_size;
 long loptr_valsize = 0;

 /* Smart large object specification structure */
 char* lospec_buffer;
 short lospec_size;
 long lospec_valsize = 0;

 /* Write buffer */
 char* write_buffer;
 short write_size;
 long write_valsize = 0;

 /* Miscellaneous variables */
 UCHAR dsn[20];/*name of the DSN used for connecting to the
 database*/
 SQLRETURN rc = 0;
 int in;

 FILE* hfile;
 char* lo_file_name = "advert.txt";

 char colname[BUFFER_LEN] = "item.advert";
 long colname_size = SQL_NTS;

101

102

 long mode = LO_RDWR;
 long cbMode = 0;

 char* insertStmt = "INSERT INTO item VALUES (1005, 'Helmet', 235,
 'Each', ?, '39.95')";

/* STEP 1. Get data source name from command line (or use default).
 ** Allocate environment handle and set ODBC version.
 ** Allocate connection handle.
 ** Establish the database connection.
 ** Allocate the statement handle.
 */

 /* If (dsn is not explicitly passed in as arg) */
 if (argc != 2)
 {
 /* Use default dsn - odbc_demo */
 fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
 strcpy ((char *)dsn, (char *)defDsn);
 }
 else
 {
 /* Use specified dsn */
 strcpy ((char *)dsn, (char *)argv[1]);
 fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);
 }

 /* Allocate the Environment handle */
 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
 return (1);
 }

 /* Set the ODBC version to 3.5 */
 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
 (SQLPOINTER)SQL_OV_ODBC3, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
 SQLSetEnvAttr failed\nExiting!!"))
 return (1);

 /* Allocate the connection handle */
 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
 Handle Allocation failed\nExiting!!"))
 return (1);

 /* Establish the database connection */
 rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
 failed\n"))
 return (1);

 /* Allocate the statement handle */
 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

Chapter 1. Informix® ODBC Driver Guide

 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
 Handle Allocation failed\nExiting!!"))
 return (1);

 fprintf (stdout, "STEP 1 done...connected to database\n");

/* STEP 2. Get the size of the smart large object specification
 ** structure.
 ** Allocate a buffer to hold the structure.
 ** Create a default smart large object specification structure.
 ** Reset the statement parameters.
 */

 /* Get the size of a smart large object specification structure */
 rc = SQLGetInfo (hdbc, SQL_INFX_LO_SPEC_LENGTH, &lospec_size,
 sizeof(lospec_size), NULL);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 2 -- SQLGetInfo
 failed\n"))
 goto Exit;

 /* Allocate a buffer to hold the smart large object specification
 structure*/
 lospec_buffer = malloc (lospec_size);

 /* Create a default smart large object specification structure */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
 lospec_size, &lospec_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLBindParameter failed\n"))
 goto Exit;
 rc = SQLExecDirect (hstmt, "{call ifx_lo_def_create_spec(?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 2 done...default smart large object specification
 structure created\n");

/* STEP 3. Initialise the smart large object specification structure
 ** with values for the database column where the smart large
 ** object is being inserted.
 ** Reset the statement parameters.
 */

 /* Initialise the smart large object specification structure */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 BUFFER_LEN, 0, colname, BUFFER_LEN, &colname_size);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --

103

104

 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 lospec_valsize = lospec_size;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
 lospec_size, &lospec_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_col_info(?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLFreeStm failed\n"))
 goto Exit;

 fprintf(stdout, "STEP 3 done...smart large object specification
 structure initialised\n");

/* STEP 4. Get the size of the smart large object pointer structure.
 ** Allocate a buffer to hold the structure.
 */

 /* Get the size of the smart large object pointer structure */
 rc = SQLGetInfo (hdbc, SQL_INFX_LO_PTR_LENGTH, &loptr_size,
 sizeof(loptr_size), NULL);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 4 --
 SQLGetInfo failed\n"))
 goto Exit;

 /* Allocate a buffer to hold the smart large object pointer structure */
 loptr_buffer = malloc (loptr_size);

 fprintf (stdout, "STEP 4 done...smart large object pointer structure
 allocated\n");

/* STEP 5. Create a new smart large object.
 ** Reset the statement parameters.
 */

 /* Create a new smart large object */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
 lospec_size, &lospec_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

Chapter 1. Informix® ODBC Driver Guide

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_INTEGER, (UDWORD)0, 0, &mode, sizeof(mode), &cbMode);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 loptr_valsize = loptr_size;

 rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
 loptr_size, &loptr_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLBindParameter failed (param 3)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 4, SQL_PARAM_OUTPUT, SQL_C_SLONG,
 SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLBindParameter failed (param 4)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_create(?, ?, ?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 5 done...smart large object created\n");

/* STEP 6. Open the file containing data for the new smart large object.
 ** Allocate a buffer to hold the smart large object data.
 ** Read data from the input file into the smart large object.
 ** data buffer
 ** Write data from the data buffer into the new smart large.
 ** object.
 ** Reset the statement parameters.
 */

 /* Open the file containing data for the new smart large object */
 hfile = open (lo_file_name, "rt");
 /* sneaky way to get the size of the file */
 write_size = lseek (open (lo_file_name, "rt"), 0L, SEEK_END);

 /* Allocate a buffer to hold the smart large object data */
 write_buffer = malloc (write_size + 1);

 /* Read smart large object data from file */
 read (hfile, write_buffer, write_size);

 write_buffer[write_size] = '\0';
 write_valsize = write_size;

105

106

 /* Write data from the data buffer into the new smart large object */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_SLONG,
 SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 (UDWORD)write_size, 0, write_buffer, write_size, &write_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_write(?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 6 done...data written to new smart large
 object\n");

/* STEP 7. Insert the new smart large object into the database.
 ** Reset the statement parameters.
 */

 /* Insert the new smart large object into the database */
 loptr_valsize = loptr_size;

 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
 loptr_size, &loptr_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
 SQLBindParameter failed\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, insertStmt, SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 7 done...smart large object inserted into the
 database\n");

Chapter 1. Informix® ODBC Driver Guide

/* STEP 8. Close the smart large object.
 */

 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
 SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
 SQLBindParameter failed\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
 SQLExecDirect failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 8 done...smart large object closed\n");

/* STEP 9. Free the allocated buffers.
 */

 free (lospec_buffer);
 free (loptr_buffer);
 free (write_buffer);

 fprintf (stdout, "STEP 9 done...smart large object buffers freed\n");

 Exit:

 /* CLEANUP: Close the statement handle
 ** Free the statement handle
 ** Disconnect from the datasource
 ** Free the connection and environment handles
 ** Exit
 */

 /* Close the statement handle */
 SQLFreeStmt (hstmt, SQL_CLOSE);

 /* Free the statement handle */
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

 /* Disconnect from the data source */
 SQLDisconnect (hdbc);

 /* Free the environment handle and the database connection handle */
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
 in = getchar ();
 return (rc);
}

107

108

Transfer smart-large-object data
An INSERT or UPDATE statement does not perform the actual input of the smart-large-object data. It does, however, provide

a means for the application to identify which smart-large-object data to associate with the column.

A BLOB or CLOB column in a database table stores the smart-large-object pointer structure for a smart large object.

Therefore, when you store a BLOB or CLOB column, you provide a smart-large-object pointer structure for the column in a

loptr variable to the INSERT or UPDATE statement.

The following figure shows how an application transfers the data of a smart large object to the database server.

Figure 6. Transfer smart-large-object data from client application to database server

The smart large object that a smart-large-object pointer structure identifies exists if the smart-large-object pointer structure

exists. When you store a smart-large-object pointer structure in a database, the database server deallocates the smart large

object when appropriate.

If your application does not store the smart-large-object pointer structure for a new smart large object in the database, the

smart-large-object pointer structure is only valid to access the version of the smart large object that was current when the

pointer was passed to the application. If the smart large object is updated later, the pointer is invalid. The smart-large-object

pointer structures that you store in a row do not expire when the object version changes.

When you retrieve a row and then update a smart large object that is contained in that row, the database server exclusively

locks the row for the time that it updates the smart large object. Moreover, long updates for smart large objects (whether

logging is enabled and whether they are associated with a table row) create the potential for a long transaction condition if

the smart large object takes a long time to update or create.

The smart-large-object pointer structure, not the CLOB or BLOB data itself, is stored in a CLOB or BLOB column in the

database. Therefore, SQL statements such as INSERT and SELECT accept and return a smart-large-object pointer structure

as the column value for a smart-large-object column.

Access a smart large object
This section describes how to select, open, delete, modify, and close a smart large object by using either the standard ODBC

API or by using ifx_lo functions.

Chapter 1. Informix® ODBC Driver Guide

Smart-large-object automation
Instead of accessing smart large objects with the ifx_lo functions, you can access smart large objects by using the standard

ODBC API.

Operations supported when accessing smart large objects with the standard ODBC API include select, insert, update, and

delete for CLOB and BLOB data types. You cannot access BYTE and TEXT simple large objects in this way.

Set the access method using SQL_INFX_ATTR_LO_AUTOMATIC
You can use the SQL_INFX_ATTR_LO_AUTOMATIC attribute to tell the database server whether you will access smart large

objects by using the ODBC API or the ifx_lo functions.

If the application enables the SQL_INFX_ATTR_LO_AUTOMATIC attribute as a connection attribute, all statements for

that connection inherit the attribute value. To change this attribute value per statement, you have to set and reset it as a

statement attribute. If you enable this attribute for the statement, the application can access the smart large object by

using the standard ODBC way, as previously described. If you do not enable this attribute for the statement, the application

accesses smart large objects by using ifx_lo functions. The application cannot use the ifx_lo functions if this attribute is

enabled for the statement.

You can also enable the SQL_INFX_ATTR_LO_AUTOMATIC attribute by turning on the Report Standard ODBC Types option

under the Advanced tab of the ODBC Administration for HCL Informix® Driver DSN.

SQLDescribeCol for a CLOB data type column returns SQL_LONGVARCHAR for the DataPtrType. SQLDescribeCol for a

BLOB data type column returns SQL_LONGVARBINARY, if the SQL_INFX_ATTR_LO_AUTOMATIC attribute is enabled for that

statement.

SQLColAttributes for a CLOB data type column returns SQL_LONGVARCHAR for the Field Identifier of SQL_DESC_TYPE,

whereas for the BLOB data type column it returns SQL_LONGVARBINARY only if the SQL_INFX_ATTR_LO_AUTOMATIC

attribute is enabled for that statement.

Insert, update, and delete smart large objects using the ODBC API
When you insert, update, and delete either a CLOB or BLOB data type, the application binds the data type by using

SQLBindParameter with a C type.

When you insert, update, or delete a CLOB data type, the application binds the CLOB data type by using SQLBindParameter

with C type as SQL_C_CHAR and SQL type as SQL_LONGVARCHAR.

When you insert, update, or delete a BLOB data type, the application binds BLOB data type by using SQLBindParameter with C

type as SQL_C_BINARY and SQL type as SQL_LONGVARBINARY.

HCL Informix® ODBC Driver performs insertion of smart large objects in the following way:

• The driver sends a request to the database server to create a smart large object on the server side in the form of a

new file.

• The driver gets back the file descriptor (for example, lofd) of this file from the database server.

109

110

• The driver sends the preceding lofd file and the smart-large-object data that was bound by the application with

SQLBindParameter to the database server.

• The database server writes the data onto the file.

Select smart large objects using the ODBC API
When you select a CLOB data type, the application binds the C type of the column as SQL_C_CHAR. When you select a BLOB

data type, the C type is bound as SQL_C_BINARY.

HCL Informix® ODBC Driver selects smart large objects in the following way:

• The driver sends a request to the database server to open the smart large object as a file on the server side.

• The driver gets back the file descriptor (for example, lofd) of this file from the database server.

• The driver sends the preceding lofd and a read request to the database server to read the smart-large-object data

from the file.

• The database server reads the data from the corresponding file by using the preceding lofd and sends it to the driver.

• The driver writes the data to the buffer that was bound by the application with SQLBindParameter.

The ifx_lo functions
This section describes how to select, open, delete, modify, and close a smart large object by using ifx_lo functions.

Select a smart large object using ifx_lo functions
A SELECT statement does not perform the actual output for the smart-large-object data. It does, however, establish a means

for the application to identify a smart large object so that the application can then perform operations on the smart large

object.

The following figure shows how the database server transfers the data of a smart large object to the application.

Figure 7. Transferring smart-large-object data from database server to client application

Open a smart large object using ifx_lo functions
When you open a smart large object, you obtain a smart-large-object file descriptor for the smart large object.

Chapter 1. Informix® ODBC Driver Guide

Through the smart-large-object file descriptor, you can access the data of a smart large object as if it were in an operating-

system file.

Access modes
When you open a smart large object, you specify the access mode for the data. The access mode determines which read and

write operations are valid on the open smart large object.

The following table describes the access modes that ifx_lo_open() and ifx_lo_create() support.

Access mode Purpose Constant

Read only Only read operations are valid on the data. LO_RDONLY

Dirty read Lets you read uncommitted data pages for the smart large

object. You cannot write to a smart large object after you set the

mode to LO_DIRTY_READ. When you set this flag, you reset the

current transaction isolation mode to dirty read for this smart

large object.

Do not base updates on data that you obtain from a smart large

object in dirty-read mode.

LO_DIRTY_READ

Write only Only write operations are valid on the data. LO_WRONLY

Append Intended for use with LO_WRONLY or LO_RDWR. Sets the

location pointer to the end of the object immediately before

each write. Appends any data you write to the end of the smart

large object. If LO_APPEND is used alone, the object is opened

for reading only.

LO_APPEND

Read/write Both read and write operations are valid on the data. LO_RDWR

Buffered access Uses standard database server buffer pool. LO_BUFFER

Lightweight I/O Uses private buffers from the session pool of the database

server.

LO_NOBUFFER

When you open a smart large object with LO_APPEND only, the database server opens the smart large object as read-only.

Seek operations and read operations move the file pointer. Write operations fail and do not move the file pointer.

You can mask the LO_APPEND flag with another access mode. In any of these OR combinations, the seek operation remains

unaffected. The following table shows the effect on the read and write operations that each of the OR combinations has.

111

112

OR operation Read operations Write operations

LO_RDONLY | LO_APPEND Occur at the file position and then move

the file position to the end of the data

that has been read.

Fail and do not move the file position.

LO_WRONLY | LO_APPEND Fail and do not move the file position. Move the file position to the end of the

smart large object and then write the

data; file position is at the end of the data

after the write.

LO_RDWR | LO_APPEND Occur at the file position and then move

the file position to the end of the data

that has been read.

Move the file position to the end of the

smart large object and then write the

data; file position is at the end of the data

after the write.

Lightweight I/O
When the database server accesses smart large objects, it uses buffers from the buffer pool for buffered access. Unbuffered

access is called lightweight I/O.

Lightweight I/O uses private buffers instead of the buffer pool to hold smart large objects. These private buffers are

allocated out of the database server session pool.

Lightweight I/O allows you to bypass the overhead of the least recently used (LRU) queues that the database server uses to

manage the buffer pool. For more information about LRU queues, see your .

You can specify lightweight I/O by setting the flags parameter to LO_NOBUFFER when you create or open a smart large

object. To specify buffered access, which is the default, use the LO_BUFFER flag.

Important: Keep in mind the following issues when you use lightweight I/O:

• Close smart large objects with ifx_lo_close() when you finish with them to free memory allocated to the

private buffers.

• All open operations that use lightweight I/O for a particular smart large object share the same private buffers.

Consequently, one operation can cause the pages in the buffer to be flushed while other operations expect

the object to be present in the buffer.

The database server imposes the following restrictions on switching from lightweight I/O to buffered I/O:

Chapter 1. Informix® ODBC Driver Guide

• You can use the ifx_lo_alter() function to switch a smart large object from lightweight I/O (LO_NOBUFFER) to buffered

I/O (LO_BUFFER) if the smart large object is not open. However, ifx_lo_alter() generates an error if you try to change a

smart large object that uses buffered I/O to one that uses lightweight I/O.

• Unless you first use ifx_lo_alter() to change the access mode to buffered access (LO_BUFFER), you can only open

a smart large object that was created with lightweight I/O with the LO_NOBUFFER access-mode flag. If an open

operation specifies LO_BUFFER, the database server ignores the flag.

• You can open a smart large object that has been created with buffered access (LO_BUFFER) with the LO_NOBUFFER

flag only if you open the object in read-only mode. If you attempt to write to the object, the database server returns an

error. To write to the smart large object, you must close it and then reopen it with the LO_BUFFER flag and an access

flag that allows write operations.

You can use the database server utility onspaces to specify lightweight I/O for all smart large objects in an sbspace. For

more information about the onspaces utility, see your HCL® Informix® Administrator's Guide.

Smart-large-object locks
To prevent simultaneous access to smart-large-object data, the database server locks a smart large object when you open it.

Locks on smart large objects are different from row locks. If you retrieve a smart large object from a row, the database server

might hold a row lock as well as a smart-large-object lock. The database server locks smart large objects because many

columns can contain the same smart-large-object data.

To specify the lock mode of a smart large object, pass the access-mode flags, LO_RDONLY, LO_DIRTY_READ, LO_APPEND,

LO_WRONLY, LO_RDWR, and LO_TRUNC, to the ifx_lo_open() and ifx_lo_create() functions. When you specify LO_RDONLY, the

database server places a lock on the smart-large-object data. When you specify LO_DIRTY_READ, the database server does

not place a lock on the smart-large-object data. If you specify any other access-mode flag, the database server obtains an

update lock, which it promotes to an exclusive lock on first write or other update operation.

Share and update locks (read-only mode or write mode before an update operation occurs) are held until your application

takes one of the following actions:

• Closes the smart large object

• Commits the transaction or rolls it back

Exclusive locks are held until the end of a transaction even if you close the smart large object.

Important: You lose the lock at the end of a transaction even if the smart large object remains open. When the

database server detects that a smart large object does not have an active lock, it places a new lock the next time

113

114

that you access the smart large object. The lock that it places is based on the original open mode of the smart large

object.

Duration of an open operation on a smart large object
After you open a smart large object with the ifx_lo_create() function or the ifx_lo_open() function, it remains open until

certain events occurs.

A smart large object remains open until one of these events occur:

• The ifx_lo_close() function closes the smart large object.

• The session ends.

Important: The end of the current transaction does not close a smart large object. It does, however, release any lock

on a smart large object.

Close smart large objects as soon as you finish with them. Leaving smart large objects open unnecessarily uses

system memory. Leaving many smart large objects open can eventually produce an out-of-memory condition.

Delete a smart large object
A smart large object cannot be deleted until certain conditions are met.

A smart large object is not deleted until both of the following conditions are met:

• The current transaction commits.

• The smart large object is closed, if the application opened the smart large object.

Modifying a smart large object
You can modify a smart large object by using either an UPDATE or INSERT statement.

About this task

To modify the data of a smart large object:

1. Read and write the data in the open smart large object.

2. Use an UPDATE or INSERT statement to store the smart-large-object pointer in the database.

Close a smart large object
After you finish modifying a smart large object, call ifx_lo_close() to deallocate the resources that are assigned to it.

When the resources are freed, you can reallocate them to other structures that your application needs. You can also

reallocate the smart-large-object file descriptor to other smart large objects.

Chapter 1. Informix® ODBC Driver Guide

Example of retrieving a smart large object from the database using ifx_lo functions
The code example, loselect.c, shows how to retrieve a smart large object from the database.

You can find the loselect.c file in the %INFORMIXDIR%/demo/clidemo directory on UNIX™ platforms and in the

%INFORMIXDIR%\demo\odbcdemo directory on Windows™ platforms. You can also find instructions on how to build the

odbc_demo database in the same location.

/*
** loselect.c
**
** To access a smart large object
** SQLBindCol
** SQLBindParameter
** SQLConnect
** SQLFetch
** SQLFreeStmt
** SQLGetInfo
** SQLDisconnect
** SQLExecDirect
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32*/

#include "infxcli.h"

#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
 SQLSMALLINT handleType,
 SQLHANDLE handle,
 char *errmsg)
{
 SQLRETURN retcode = SQL_SUCCESS;

 SQLSMALLINT errNum = 1;
 SQLCHAR sqlState[6];
 SQLINTEGER nativeError;
 SQLCHAR errMsg[ERRMSG_LEN];
 SQLSMALLINT textLengthPtr;

 if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
 {
 while (retcode != SQL_NO_DATA)
 {

115

116

 retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
 &nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

 if (retcode == SQL_INVALID_HANDLE)
 {
 fprintf (stderr, "checkError function was called with an
 invalid handle!!\n");
 return 1;
 }

 if ((retcode == SQL_SUCCESS) || (retcode ==
 SQL_SUCCESS_WITH_INFO))
 fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
 sqlState, errMsg);

 errNum++;
 }

 fprintf (stderr, "%s\n", errmsg);
 return 1; /* all errors on this handle have been reported */
 }
 else
 return 0; /* no errors to report */
}

int main (long argc,
 char *argv[])
{
 /* Declare variables
 */

 /* Handles */
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 /* Smart large object file descriptor */
 long lofd;
 long lofd_valsize = 0;

 /* Smart large object pointer structure */
 char* loptr_buffer;
 short loptr_size;
 long loptr_valsize = 0;

 /* Smart large object status structure */
 char* lostat_buffer;
 short lostat_size;
 long lostat_valsize = 0;

 /* Smart large object data */
 char* lo_data;
 long lo_data_valsize = 0;

 /* Miscellaneous variables */
 UCHAR dsn[20]; /*name of the DSN used for connecting to the
 database*/

Chapter 1. Informix® ODBC Driver Guide

 SQLRETURN rc = 0;
 int in;

 char* selectStmt = "SELECT advert FROM item WHERE item_num =
 1004";
 long mode = LO_RDONLY;
 long lo_size;
 long cbMode = 0, cbLoSize = 0;

/* STEP 1. Get data source name from command line (or use default)
 ** Allocate the environment handle and set ODBC version
 ** Allocate the connection handle
 ** Establish the database connection
 ** Allocate the statement handle
 */

 /* If(dsn is not explicitly passed in as arg) */
 if (argc != 2)
 {
 /* Use default dsn - odbc_demo */
 fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
 strcpy ((char *)dsn, (char *)defDsn);
 }
 else
 {
 /* Use specified dsn */
 strcpy ((char *)dsn, (char *)argv[1]);
 fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);
 }

 /* Allocate the Environment handle */
 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Environment Handle Allocation
 failed\nExiting!!\n");
 return (1);
 }

 /* Set the ODBC version to 3.5 */
 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
 (SQLPOINTER)SQL_OV_ODBC3, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
 SQLSetEnvAttr failed\nExiting!!\n"))
 return (1);

 /* Allocate the connection handle */
 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
 Handle Allocation failed\nExiting!!\n"))
 return (1);

 /* Establish the database connection */
 rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
 failed\nExiting!!"))

117

118

 return (1);
 /* Allocate the statement handle */
 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
 Handle Allocation failed\nExiting!!"))
 return (1);

 fprintf (stdout, "STEP 1 done...connected to database\n");

/* STEP 2. Select a smart-large object from the database
 ** -- the select statement executed is -
 ** "SELECT advert FROM item WHERE item_num = 1004"
 */

 /* Execute the select statement */
 rc = SQLExecDirect (hstmt, selectStmt, SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLExecDirect failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 2 done...select statement executed...smart large
 object retrieved from the databse\n");

/* STEP 3. Get the size of the smart large object pointer structure.
 ** Allocate a buffer to hold the structure.
 ** Get the smart large object pointer structure from the
 ** database.
 ** Close the result set cursor.
 */

 /* Get the size of the smart large object pointer structure */
 rc = SQLGetInfo (hdbc, SQL_INFX_LO_PTR_LENGTH, &loptr_size,
 sizeof(loptr_size),
 NULL);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 3 -- SQLGetInfo
 failed\n"))
 goto Exit;

 /* Allocate a buffer to hold the smart large object pointer structure */
 loptr_buffer = malloc (loptr_size);

 /* Bind the smart large object pointer structure buffer allocated to the
 column in the result set & fetch it from the database */
 rc = SQLBindCol (hstmt, 1, SQL_C_BINARY, loptr_buffer, loptr_size,
 &loptr_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindCol failed\n"))
 goto Exit;

 rc = SQLFetch (hstmt);
 if (rc == SQL_NO_DATA_FOUND)
 {
 fprintf (stdout, "No Data Found\nExiting!!\n");
 goto Exit;
 }

Chapter 1. Informix® ODBC Driver Guide

 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 -- SQLFetch
 failed\n"))
 goto Exit;

 /* Close the result set cursor */
 rc = SQLCloseCursor (hstmt);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLCloseCursor failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 3 done...smart large object pointer structure
 fetched from the database\n");

/* STEP 4. Use the smart large object's pointer structure to open it
 ** and obtain the smart large object file descriptor.
 ** Reset the statement parameters.
 */

 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_LONG,
 SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
 loptr_size, &loptr_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_LONG,
 SQL_INTEGER, (UDWORD)0, 0, &mode, sizeof(mode), &cbMode);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLBindParameter failed (param 3)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{? = call ifx_lo_open(?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 4 done...smart large object opened... file
 descriptor obtained\n");

/* STEP 5. Get the size of the smart large object status structure.
 ** Allocate a buffer to hold the structure.
 ** Get the smart large object status structure from the
 ** database.

119

120

 ** Reset the statement parameters.
 */

 /* Get the size of the smart large object status structure */
 rc = SQLGetInfo (hdbc, SQL_INFX_LO_STAT_LENGTH, &lostat_size,
 sizeof(lostat_size), NULL);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 5 -- SQLGetInfo
 failed\n"))
 goto Exit;

 /* Allocate a buffer to hold the smart large object status structure. */
 lostat_buffer = malloc(lostat_size);

 /* Get the smart large object status structure from the database. */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
 SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
 lostat_size, &lostat_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_stat(?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLExecDiret failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 5 done...smart large object status structure
 fetched from the database\n");

/* STEP 6. Use the smart large object's status structure to get the
 ** size of the smart large object.
 ** Reset the statement parameters.
 */

 /* Use the smart large object status structure to get the size of the
 smart large object */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
 lostat_size, &lostat_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_LONG,

Chapter 1. Informix® ODBC Driver Guide

 SQL_BIGINT, (UDWORD)0, 0, &lo_size, sizeof(lo_size), &cbLoSize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_stat_size(?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 6 done...smart large object size = %ld bytes\n",
 lo_size);

/* STEP 7. Allocate a buffer to hold the smart large object's data.
 ** Read the smart large object's data using its file descriptor.
 ** Null-terminate the last byte of the smart large-object's data.
 ** Print out the contents of the smart large object.
 ** Reset the statement parameters.
 */

 /* Allocate a buffer to hold the smart large object's data chunks */
 lo_data = malloc (lo_size + 1);

 /* Read the smart large object's data */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
 SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR,
 lo_size, 0, lo_data, lo_size, &lo_data_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_read(?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Null-terminate the last byte of the smart large objects data */
 lo_data[lo_size] = '\0';

 /* Print the contents of the smart large object */
 fprintf (stdout, "Smart large object contents are.....\n\n\n%s\n\n\n",
 lo_data);

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);

121

122

 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 7 done...smart large object read completely\n");

/* STEP 8. Close the smart large object.
 */

 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
 SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
 SQLBindParameter failed\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
 SQLExecDirect failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 8 done...smart large object closed\n");

/* STEP 9. Free the allocated buffers.
 */

 free (loptr_buffer);
 free (lostat_buffer);
 free (lo_data);

 fprintf (stdout, "STEP 9 done...smart large object buffers freed\n");

 Exit:

 /* CLEANUP: Close the statement handle
 ** Free the statement handle
 ** Disconnect from the datasource
 ** Free the connection and environment handles
 ** Exit
 */

 /* Close the statement handle */
 SQLFreeStmt (hstmt, SQL_CLOSE);

 /* Free the statement handle */
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

 /* Disconnect from the data source */
 SQLDisconnect (hdbc);

 /* Free the environment handle and the database connection handle */
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

Chapter 1. Informix® ODBC Driver Guide

 fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
 in = getchar ();
 return (rc);
}

Retrieve the status of a smart large object
The status information of a smart large object has corresponding client functions.

The following table describes the status information and the corresponding client functions.

Disk-storage information Description Client functions

Last access time The time, in seconds, that a smart large object was last

accessed.

This value is available only if the

LO_KEEP_LASTACCESS_TIME flag is set for the smart

large object.

ifx_lo_stat_atime()

Last time of status change The time, in seconds, of the last status change for a

smart large object.

A change in status includes updates, changes in

ownership, and changes to the number of references.

ifx_lo_stat_ctime()

Last modification time

(seconds)

The time, in seconds, that a smart large object was last

modified.

ifx_lo_stat_mtime_sec()

Last modification time

(microseconds)

The microsecond component of the time of last

modification.

This value is only supported on platforms that provide

system time to microsecond granularity.

ifx_lo_stat_mtime_usec()

Reference count A count of the number of references to a smart large

object.

ifx_lo_stat_refcnt()

Size The size, in bytes, of a smart large object. ifx_lo_stat_size()

The time values (such as last access time and last change time) might differ slightly from the system time. This difference is

due to the algorithm that the database server uses to obtain the time from the operating system.

Example of retrieving information about a smart large object
The code example, loinfo.c, shows how to retrieve information about a smart large object.

123

124

You can find the loinfo.c file in the %INFORMIXDIR%/demo/clidemo directory on UNIX™ platforms and in the

%INFORMIXDIR%\demo\odbcdemo directory in Windows™ environments. You can also find instructions on how to build the

odbc_demo database in the same location.

/*
** loinfo.c
**
** To check the status of a smart large object
**
** OBDC Functions:
** SQLBindCol
** SQLBindParameter
** SQLConnect
** SQLFetch
** SQLFreeStmt
** SQLDisconnect
** SQLExecDirect
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32*/

#include "infxcli.h"

#define BUFFER_LEN 20
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
 SQLSMALLINT handleType,
 SQLHANDLE handle,
 char *errmsg)
{
 SQLRETURN retcode = SQL_SUCCESS;

 SQLSMALLINT errNum = 1;
 SQLCHAR sqlState[6];
 SQLINTEGER nativeError;
 SQLCHAR errMsg[ERRMSG_LEN];
 SQLSMALLINT textLengthPtr;

 if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
 {
 while (retcode != SQL_NO_DATA)
 {
 retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
 &nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

Chapter 1. Informix® ODBC Driver Guide

 if (retcode == SQL_INVALID_HANDLE)
 {
 fprintf (stderr, "checkError function was called with an
 invalid handle!!\n");
 return 1;
 }

 if ((retcode == SQL_SUCCESS) || (retcode ==
 SQL_SUCCESS_WITH_INFO))
 fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
 sqlState, errMsg);

 errNum++;
 }

 fprintf (stderr, "%s\n", errmsg);
 return 1; /* all errors on this handle have been reported */
 }
 else
 return 0; /* no errors to report */
}

int main (long argc,
 char *argv[])
{
 /* Declare variables
 */

 /* Handles */
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 /* Smart large object file descriptor */
 long lofd;
 long lofd_valsize = 0;

 /* Smart large object specification structure */
 char* lospec_buffer;
 short lospec_size;
 long lospec_valsize = 0;

 /* Smart large object status structure */
 char* lostat_buffer;
 short lostat_size;
 long lostat_valsize = 0;

 /* Smart large object pointer structure */
 char* loptr_buffer;
 short loptr_size;
 long loptr_valsize = 0;

 /* Miscellaneous variables */
 UCHAR dsn[20]; /*name of the DSN used for connecting to the
 database*/
 SQLRETURN rc = 0;
 int in;

125

126

 char* selectStmt = "SELECT advert FROM item WHERE item_num =
 1004";
 long lo_size;
 long mode = LO_RDONLY;

 char sbspace_name[BUFFER_LEN];
 long sbspace_name_size = SQL_NTS;

 long cbMode = 0, cbLoSize = 0;

/* STEP 1. Get data source name from command line (or use default).
 ** Allocate the environment handle and set ODBC version.
 ** Allocate the connection handle.
 ** Establish the database connection.
 ** Allocate the statement handle.
 */

 /* If (dsn is not explicitly passed in as arg) */
 if (argc != 2)
 {
 /* Use default dsn - odbc_demo */
 fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
 strcpy ((char *)dsn, (char *)defDsn);
 }
 else
 {
 /* Use specified dsn */
 strcpy ((char *)dsn, (char *)argv[1]);
 fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);
 }

 /* Allocate the Environment handle */
 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Environment Handle Allocation
 failed\nExiting!!\n");
 return (1);
 }

 /* Set the ODBC version to 3.5 */
 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
 (SQLPOINTER)SQL_OV_ODBC3, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
 SQLSetEnvAttr failed\nExiting!!\n"))
 return (1);

 /* Allocate the connection handle */
 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
 Handle Allocation failed\nExiting!!\n"))
 return (1);

 /* Establish the database connection */

Chapter 1. Informix® ODBC Driver Guide

 rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
 failed\nExiting!!"))
 return (1);

 /* Allocate the statement handle */
 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
 Handle Allocation failed\nExiting!!"))
 return (1);

 fprintf (stdout, "STEP 1 done...connected to database\n");

/* STEP 2. Select a smart-large object from the database.
 ** -- the select statement executed is -
 ** "SELECT advert FROM item WHERE item_num = 1004"
 */

 /* Execute the select statement */
 rc = SQLExecDirect (hstmt, selectStmt, SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLExecDirect failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 2 done...select statement executed...smart large
 object retrieved from the databse\n");

/* STEP 3. Get the size of the smart large object pointer structure.
 ** Allocate a buffer to hold the structure.
 ** Get the smart large object pointer structure from the database.
 ** Close the result set cursor.
 */

 /* Get the size of the smart large object pointer structure */
 rc = SQLGetInfo (hdbc, SQL_INFX_LO_PTR_LENGTH, &loptr_size,
 sizeof(loptr_size), NULL);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 3 -- SQLGetInfo
 failed\n"))
 goto Exit;

 /* Allocate a buffer to hold the smart large object pointer structure */
 loptr_buffer = malloc (loptr_size);

 /* Bind the smart large object pointer structure buffer allocated to the
 column in the result set & fetch it from the database */
 rc = SQLBindCol (hstmt, 1, SQL_C_BINARY, loptr_buffer, loptr_size,
 &loptr_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindCol failed\n"))
 goto Exit;

 rc = SQLFetch (hstmt);
 if (rc == SQL_NO_DATA_FOUND)
 {
 fprintf (stdout, "No Data Found\nExiting!!\n");

127

128

 goto Exit;
 }
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 -- SQLFetch
 failed\n"))
 goto Exit;

 /* Close the result set cursor */
 rc = SQLCloseCursor (hstmt);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLCloseCursor failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 3 done...smart large object pointer structure
 fetched from the database\n");

/* STEP 4. Use the smart large object's pointer structure to open it
 ** and obtain the smart large object file descriptor.
 ** Reset the statement parameters.
 */

 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_LONG,
 SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)loptr_size, 0, loptr_buffer,
 loptr_size, &loptr_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_LONG,
 SQL_INTEGER, (UDWORD)0, 0, &mode, sizeof(mode), &cbMode);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLBindParameter failed (param 3)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{? = call ifx_lo_open(?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 4 done...smart large object opened... file
 descriptor obtained\n");

/* STEP 5. Get the size of the smart large object status structure.
 ** Allocate a buffer to hold the structure.

Chapter 1. Informix® ODBC Driver Guide

 ** Get the smart large object status structure from the database.
 ** Reset the statement parameters.
 */

 /* Get the size of the smart large object status structure */
 rc = SQLGetInfo (hdbc, SQL_INFX_LO_STAT_LENGTH, &lostat_size,
 sizeof(lostat_size), NULL);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 5 -- SQLGetInfo
 failed\n"))
 goto Exit;

 /* Allocate a buffer to hold the smart large object status structure. */
 lostat_buffer = malloc(lostat_size);

 /* Get the smart large object status structure from the database. */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
 SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
 lostat_size, &lostat_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_stat(?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 5 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 5 done...smart large object status structure
 fetched from the database\n");

/* STEP 6. Use the smart large object's status structure to get the size
 ** of the smart large object.
 ** Reset the statement parameters.
 ** You can use additional ifx_lo_stat_*() functions to get more
 ** status information about the samrt large object.
 ** You can also use it to retrieve the smart large object
 ** specification structure and get further information about the
 ** smart large objectusing it's specification structure.
 */

 /* Use the smart large object status structure to get the size of the
 smart large object. */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,

129

130

 lostat_size, &lostat_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_LONG,
 SQL_BIGINT, (UDWORD)0, 0, &lo_size, sizeof(lo_size), &cbLoSize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_stat_size(?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 6 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "LARGE OBJECT SIZE = %ld\n", lo_size);
 fprintf (stdout, "STEP 6 done...smart large object size retrieved\n");

/* STEP 7. Get the size of the smart large object specification structure.
 ** Allocate a buffer to hold the structure.
 ** Get the smart large object specification structure from the
 ** database.
 ** Reset the statement parameters.
 */

 /* Get the size of the smart large object specification structure */
 rc = SQLGetInfo (hdbc, SQL_INFX_LO_SPEC_LENGTH, &lospec_size,
 sizeof(lospec_size), NULL);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 7 -- SQLGetInfo
 failed\n"))
 goto Exit;

 /* Allocate a buffer to hold the smart large object specification
 structure */
 lospec_buffer = malloc (lospec_size);

 /* Get the smart large object specification structure from the
 database */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)lostat_size, 0, lostat_buffer,
 lostat_size, &lostat_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
 lospec_size, &lospec_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --

Chapter 1. Informix® ODBC Driver Guide

 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_stat_cspec(?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 7 --
 SQLExecDirect failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 7 done...smart large object status structure
 fetched from the database\n");

/* STEP 8. Use the smart large object's specification structure to get
 ** the sbspace name where the smart large object is stored.
 ** Reset the statement parameters.
 */

 /* Use the smart large object's specification structure to get the
 sbspace name of the smart large object. */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_UDT_FIXED, (UDWORD)lospec_size, 0, lospec_buffer,
 lospec_size, &lospec_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR,
 BUFFER_LEN, 0, sbspace_name, BUFFER_LEN, &sbspace_name_size);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_specget_sbspace(?, ?)}",
 SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 8 --
 SQLExecDirect failed\n"))
 goto Exit;

 fprintf (stdout, "LARGE OBJECT SBSPACE NAME = %s\n", sbspace_name);
 fprintf (stdout, "STEP 8 done...large object sbspace name retrieved\n");

/* STEP 9. Close the smart large object.
 */

 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,
 SQL_INTEGER, (UDWORD)0, 0, &lofd, sizeof(lofd), &lofd_valsize);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 9 --
 SQLBindParameter failed\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{call ifx_lo_close(?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 9 --
 SQLExecDirect failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 9 done...smart large object closed\n");

131

132

/* STEP 10.Free the allocated buffers.
 */

 free (loptr_buffer);
 free (lostat_buffer);
 free (lospec_buffer);

 fprintf (stdout, "STEP 10 done...smart large object buffers freed\n");

 Exit:

 /* CLEANUP: Close the statement handle.
 ** Free the statement handle.
 ** Disconnect from the datasource.
 ** Free the connection and environment handles.
 ** Exit.
 */

 /* Close the statement handle */
 SQLFreeStmt (hstmt, SQL_CLOSE);

 /* Free the statement handle */
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

 /* Disconnect from the data source */
 SQLDisconnect (hdbc);

 /* Free the environment handle and the database connection handle */
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
 in = getchar ();
 return (rc);
}

Read or write a smart large object to or from a file
You can use the SQL functions to read or write a smart large object to or from a file.

You can use the SQL functions FILETOBLOB() and FILETOCLOB() to transfer data from a file to a smart large object. The file

can be on a client computer or on a server computer.

You can use the SQL function LOTOFILE() to transfer data from a smart large object to a file. The file might be on a client

computer or on a server computer. LOTOFILE() accepts a smart-large-object pointer as a parameter. You can use the smart-

large-object pointer structure for this parameter.

For more information about these SQL functions, see the HCL® Informix® Guide to SQL: Syntax.

Chapter 1. Informix® ODBC Driver Guide

Rows and collections
Rows and collections are composite values that consist of one or more elements.

The information in these topics apply only if your database server is .

You can use the SELECT, UPDATE, INSERT, and DELETE statements to access an entire row or collection. However, these SQL

statements do not let you access an element that is in a row or collection. To access an element, you need to retrieve the row

or collection and then access the element from the local copy of the row or collection.

For more information about rows and collections, see the HCL® Informix® Guide to SQL: Reference, and HCL® Informix®

User-Defined Routines and Data Types Developer's Guide.

Allocating and binding a row or collection buffer
When you retrieve a row or collection, the database server puts the row or collection into a buffer that is local to your HCL

Informix® ODBC Driver application.

About this task

To allocate and bind a row or collection buffer:

1. Call ifx_rc_create() to allocate the buffer.

2. Call SQLBindCol() to bind the buffer handle to the database column.

3. Execute a SELECT statement to transfer the row or collection data to the local buffer.

4. Use the row or collection buffer.

5. Call ifx_rc_free() to deallocate the buffer.

Fixed-type buffers and unfixed-type buffers
There are several differences between fixed-type buffers and unfixed-type buffers.

The following table describes the differences between fixed-type buffers and unfixed-type buffers.

Buffer Description

Fixed type When you call ifx_rc_create() to create a row or collection buffer, you specify the following data

types for the buffer:

• The buffer data type (a row or one of the collection types)

• The data types of the elements that are in the row or collection

When you retrieve the row or collection, the database server compares the source and target

data types and converts data from one Informix® SQL data type to another as necessary.

You can modify the row or collection buffer before you retrieve data into the buffer.

Unfixed type When you call ifx_rc_create() to create a row or collection buffer, you specify only the buffer data

type (a row or a collection) and not the element types.

133

134

Buffer Description

When you retrieve the row or collection, the database server does not compare data types

because you did not specify the target data types. Instead, the row or collection buffer adopts the

data types of the source data.

You must initialize the row or collection buffer before you modify it. To initialize the buffer,

retrieve a row or collection into it.

The buffer type remains unfixed even when it contains data.

Buffers and memory allocation
When you retrieve data into a buffer that already contains a row or collection, HCL Informix® ODBC Driver does not reuse the

same buffer.

Instead, HCL Informix® ODBC Driver performs the following steps:

1. Creates a row or collection buffer.

2. Associates the new buffer with the given buffer handle.

3. Deallocates the original buffer.

SQL data
The database server calls cast functions to convert the data from the source HCL Informix® SQL data types to the target

Informix® SQL data types.

If the data types for a row or collection that are on a database server differ from the data types for a row or collection buffer

into which the data is retrieved, the database server calls cast functions to convert the data from the source HCL Informix®

SQL data types to the target Informix® SQL data types. The following table lists the provider of the cast functions for each

combination of source data type and target data type. Cast functions that a data type provides are located on the database

server.

Source data type Target data type Provider of cast functions

Built-in Built-in Database server

Built-in Extended Data type

Extended Built-in Data type

Extended Extended Data type

Performing a local fetch
HCL Informix® ODBC Driver performs a local fetch when you retrieve a row or collection from one location on the client

computer to another location on the client computer.

About this task

Chapter 1. Informix® ODBC Driver Guide

A local fetch has the following limits on SQL data conversion:

• HCL Informix® ODBC Driver cannot convert extended data types for which the cast functions are on a database

server.

• HCL Informix® ODBC Driver cannot convert data from one named row type to another. Only the database server can

perform this type of conversion.

• HCL Informix® ODBC Driver cannot convert SQL data types when retrieving an entire row or collection. Thus, HCL

Informix® ODBC Driver can perform a local fetch of an entire row or collection only if the internal structures for the

source and destination are the same or if the destination is an unfixed-type buffer.

For example, if you define a local collection as list (char(1) not null), the database server can put a list (int not null)

value from the database server into the local collection. During this operation, the database server converts each

integer into a string and constructs a new list to return to the client computer. You cannot perform this operation on

the client computer where you retrieve a local list of integers into a list of characters.

To perform a local fetch:

1. Call ifx_rc_create() to allocate a row or collection buffer.

2. Call SQLBindCol() to bind the buffer handle to the local row or collection.

3. Execute a SELECT statement to transfer the row or collection data to the local buffer.

4. For each element in the row or collection, call ifx_rc_fetch() to copy the value to the buffer.

5. Use the row or collection buffer.

6. Call ifx_rc_free() to deallocate the buffer.

Example of retrieving row and collection data from the database
The sample program, rcselect.c, retrieves row and collection data from the database and displays it.

This example also illustrates the fact that the same client functions can use row and collection handles interchangeably.

You can find the rcselect.c file in the %INFORMIXDIR%/demo/clidemo directory on UNIX™ and in the %INFORMIXDIR

%\demo\odbcdemo directory in Windows™. You can also find instructions on how to build the odbc_demo database in the

same location.

/*
** rcselect.c
**
** To access rows and collections
** OBDC Functions:
** SQLBindParameter
** SQLConnect
** SQLDisconnect
** SQLExecDirect
** SQLFetch
** SQLFreeStmt
*/

#include <stdio.h>
#include <stdlib.h>

135

136

#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32*/

#include "infxcli.h"

#define BUFFER_LEN 25
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURN rc,
 SQLSMALLINT handleType,
 SQLHANDLE handle,
 char *errmsg)
{
 SQLRETURN retcode = SQL_SUCCESS;

 SQLSMALLINT errNum = 1;
 SQLCHAR sqlState[6];
 SQLINTEGER nativeError;
 SQLCHAR errMsg[ERRMSG_LEN];
 SQLSMALLINT textLengthPtr;

 if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
 {
 while (retcode != SQL_NO_DATA)
 {
 retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
 &nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

 if (retcode == SQL_INVALID_HANDLE)
 {
 fprintf (stderr, "checkError function was called with an
 invalid handle!!\n");
 return 1;
 }

 if ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO))
 fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError,
 sqlState, errMsg);

 errNum++;
 }

 fprintf (stderr, "%s\n", errmsg);
 return 1; /* all errors on this handle have been reported */
 }
 else
 return 0; /* no errors to report */
}

/*

Chapter 1. Informix® ODBC Driver Guide

** Executes the given select statement and assumes the results will be
** either rows or collections. The 'hrc' parameter may reference either
** a row or a collection. Rows and collection handles may often be used
** interchangeably.
**
** Each row of the select statement will be fetched into the given row or
** collection handle. Then each field of the row or collection will be
** individually converted into a character buffer and displayed.
**
** This function returns 0 if an error occurs, else returns 1
**
*/

int do_select (SQLHDBChdbc,
 char* select_str,
 HINFX_RChrc)
{
 SQLHSTMT hRCStmt;
 SQLHSTMT hSelectStmt;
 SQLRETURN rc = 0;

 short index, rownum;
 short position = SQL_INFX_RC_ABSOLUTE;
 short jump;

 char fname[BUFFER_LEN];
 char lname[BUFFER_LEN];
 char rc_data[BUFFER_LEN];

 SQLINTEGER cbFname = 0, cbLname = 0, cbHrc = 0;
 SQLINTEGERcbPosition = 0, cbJump = 0, cbRCData = 0;

/* STEP A. Allocate the statement handles for the select statement and
 ** the statement used to retrieve the row/collection data.
 */

 /* Allocate the statement handle */
 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hRCStmt);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step A -- Statement
 Handle Allocation failed for row/collection
 statement\nExiting!!"))
 return 0;

 /* Allocate the statement handle */
 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hSelectStmt);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step A -- Statement
 Handle Allocation failed for select statement\nExiting!!"))
 return 0;

 fprintf (stdout, "STEP A done...statement handles allocated\n");

/* STEP B. Execute the select statement.
 ** Bind the result set columns -
 ** -- col1 = fname
 ** col2 = lname
 ** col3 = row/collection data

137

138

 */

 /* Execute the select statement */
 rc = SQLExecDirect (hSelectStmt, select_str, SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
 SQLExecDirect failed\n"))
 return 0;

 /* Bind the result set columns */
 rc = SQLBindCol (hSelectStmt, 1, SQL_C_CHAR, (SQLPOINTER)fname,
 BUFFER_LEN, &cbFname);
 if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
 SQLBindCol failed for column 'fname'\n"))
 return 0;

 rc = SQLBindCol (hSelectStmt, 2, SQL_C_CHAR, (SQLPOINTER)lname,
 BUFFER_LEN, &cbLname);
 if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
 SQLBindCol failed for column 'lname'\n"))
 return 0;

 rc = SQLBindCol (hSelectStmt, 3, SQL_C_BINARY, (SQLPOINTER)hrc,
 sizeof(HINFX_RC), &cbHrc);
 if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in Step B --
 SQLBindCol failed for row/collection column\n"))
 return 0;

 fprintf (stdout, "STEP B done...select statement executed and result set
 columns bound\n");

/* STEP C. Retrieve the results.
 */

 for (rownum = 1;; rownum++)
 {
 rc = SQLFetch (hSelectStmt);
 if (rc == SQL_NO_DATA_FOUND)
 {
 fprintf (stdout, "No data found...\n");
 break;
 }
 else if (checkError (rc, SQL_HANDLE_STMT, hSelectStmt, "Error in
 Step C -- SQLFetch failed\n"))
 return 0;

 fprintf(stdout, "Retrieving row number %d:\n\tfname -- %s\n\tlname --
 %s\n\tRow/Collection Data --\n", rownum, fname, lname);

 /* For each row in the result set, display each field of the
 retrieved row/collection */
 for (index = 1;; index++)
 {
 strcpy(rc_data, "<null>");

 /* Each value in the local row/collection will be fetched into a

Chapter 1. Informix® ODBC Driver Guide

 * character buffer and displayed using fprintf().
 */

 rc = SQLBindParameter (hRCStmt, 1, SQL_PARAM_OUTPUT, SQL_C_CHAR,
 SQL_CHAR, 0, 0, rc_data, BUFFER_LEN, &cbRCData);
 if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
 SQLBindParameter failed (param 1)\n"))
 return 0;

 rc = SQLBindParameter (hRCStmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_RC_COLLECTION, sizeof(HINFX_RC), 0, hrc,
 sizeof(HINFX_RC), &cbHrc);
 if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
 SQLBindParameter failed (param 2)\n"))
 return 0;

 rc = SQLBindParameter (hRCStmt, 3, SQL_PARAM_INPUT, SQL_C_SHORT,
 SQL_SMALLINT, 0, 0, &position, 0, &cbPosition);
 if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
 SQLBindParameter failed (param 3)\n"))
 return 0;

 jump = index;
 rc = SQLBindParameter (hRCStmt, 4, SQL_PARAM_INPUT, SQL_C_SHORT,
 SQL_SMALLINT, 0, 0, &jump, 0, &cbJump);
 if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in Step C --
 SQLBindParameter failed (param 4)\n"))
 return 0;

 rc = SQLExecDirect(hRCStmt, "{ ? = call ifx_rc_fetch(?, ?, ?) }",
 SQL_NTS);
 if (rc == SQL_NO_DATA_FOUND)
 {
 break;
 }
 else if (checkError (rc, SQL_HANDLE_STMT, hRCStmt, "Error in
 Step C -- SQLExecDirect failed\n"))
 return 0;

 /* Display retrieved row */
 fprintf(stdout, "\t\t%d: %s\n", index, rc_data);
 }
 }

 fprintf (stdout, "STEP C done...results retrieved\n");

 /* Free the statement handles */
 SQLFreeHandle (SQL_HANDLE_STMT, hSelectStmt);
 SQLFreeHandle (SQL_HANDLE_STMT, hRCStmt);

 return 1; /* no error */
}

/*
 * This function allocates the row and collection buffers, passes
 * them to the do_select() function, along with an appropriate select
 * statement and then frees all allocated handles.

139

140

 */
int main (long argc,
 char *argv[])
{
 /* Declare variables
 */

 /* Handles */
 SQLHDBC hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;
 HINFX_RC hrow, hlist;

 /* Miscellaneous variables */

 UCHAR dsn[20];/*name of the DSN used for connecting to the
 database*/
 SQLRETURN rc = 0;
 int in;

 int data_size = SQL_NTS;
 char* listSelectStmt = "SELECT fname, lname, contact_dates FROM
 customer";
 char* rowSelectStmt = "SELECT fname, lname, address FROM
 customer";

 SQLINTEGER cbHlist = 0, cbHrow = 0;

/* STEP 1. Get data source name from command line (or use default).
 ** Allocate environment handle and set ODBC version.
 ** Allocate connection handle.
 ** Establish the database connection.
 ** Allocate the statement handle.
 */

 /* If(dsn is not explicitly passed in as arg) */
 if (argc != 2)
 {
 /* Use default dsn - odbc_demo */
 fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
 strcpy ((char *)dsn, (char *)defDsn);
 }
 else
 {
 /* Use specified dsn */
 strcpy ((char *)dsn, (char *)argv[1]);
 fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);
 }

 /* Allocate the Environment handle */
 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
 return (1);
 }

Chapter 1. Informix® ODBC Driver Guide

 /* Set the ODBC version to 3.5 */
 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
 (SQLPOINTER)SQL_OV_ODBC3, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
 SQLSetEnvAttr failed\nExiting!!"))
 return (1);

 /* Allocate the connection handle */
 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
 Handle Allocation failed\nExiting!!"))
 return (1);

 /* Establish the database connection */
 rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
 failed\n"))
 return (1);

 /* Allocate the statement handle */
 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
 Handle Allocation failed\nExiting!!"))
 return (1);

 fprintf (stdout, "STEP 1 done...connected to database\n");

/* STEP 2. Allocate an unfixed collection handle.
 ** Retrieve database rows containing a list.
 ** Reset the statement parameters.
 */

 /* Allocate an unfixed list handle */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
 SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, &hlist, sizeof(HINFX_RC),
 &cbHlist);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLBindParameter (param 1) failed\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 0, 0, (UCHAR *) "list", 0, &data_size);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLBindParameter (param 2) failed\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{? = call ifx_rc_create(?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Retrieve databse rows containing a list */
 if (!do_select (hdbc, listSelectStmt, hlist))
 goto Exit;

141

142

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 2 done...list data retrieved\n");
 fprintf (stdout,"\nHit <Enter> to continue...");
 in = getchar ();

/* STEP 3. Allocate an unfixed row handle.
 ** Retrieve database rows containing a row.
 ** Reset the statement parameters.
 */

 /* Allocate an unfixed row handle */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
 SQL_INFX_RC_ROW, sizeof(HINFX_RC), 0, &hrow, sizeof(HINFX_RC),
 &cbHrow);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter (param 1) failed\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 0, 0, (UCHAR *) "row", 0, &data_size);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter (param 2) failed\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, "{? = call ifx_rc_create(?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Retrieve databse rows containing a row */
 if (!do_select (hdbc, rowSelectStmt, hrow))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 3 done...row data retrieved\n");

/* STEP 4. Free the row and list handles.
 */

 /* Free the row handle */
 rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_RC_ROW, sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC),
 &cbHrow);

 rc = SQLExecDirect(hstmt, (UCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

Chapter 1. Informix® ODBC Driver Guide

 /* Free the list handle */
 rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, hlist, sizeof(HINFX_RC),
 &cbHlist);

 rc = SQLExecDirect(hstmt, (UCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

 fprintf (stdout, "STEP 4 done...row and list handles freed\n");

 Exit:

/* CLEANUP: Close the statement handle.
 ** Free the statement handle.
 ** Disconnect from the datasource.
 ** Free the connection and environment handles.
 ** Exit.
 */

 /* Close the statement handle */
 SQLFreeStmt (hstmt, SQL_CLOSE);

 /* Free the statement handle */
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

 /* Disconnect from the data source */
 SQLDisconnect (hdbc);

 /* Free the environment handle and the database connection handle */
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);
 fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
 in = getchar ();
 return (rc);

Example of creating a row and a list on the client
The code example, rccreate.c, creates a row and a list on the client, adds items to them, and inserts them into the

database.

You can find the rccreate.c file in the %INFORMIXDIR%/demo/clidemo directory on UNIX™ and in the %INFORMIXDIR

%\demo\odbcdemo directory in Windows™. You can also find instructions on how to build the odbc_demo database in the

same location.

/*
** rccreate.c
**
** To create a collection & insert it into the database table
**
**
** OBDC Functions:
** SQLBindParameter
** SQLConnect
** SQLDisconnect
** SQLExecDirect
*/

143

144

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32*/

#include "infxcli.h"

#define BUFFER_LEN 25
#define ERRMSG_LEN 200

UCHAR defDsn[] = "odbc_demo";

int checkError (SQLRETURNrc,
 SQLSMALLINT handleType,
 SQLHANDLE handle,
 char *errmsg)
{
 SQLRETURN retcode = SQL_SUCCESS;

 SQLSMALLINT errNum = 1;
 SQLCHAR sqlState[6];
 SQLINTEGER nativeError;
 SQLCHAR errMsg[ERRMSG_LEN];
 SQLSMALLINT textLengthPtr;
 if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
 {
 while (retcode != SQL_NO_DATA)
 {
 retcode = SQLGetDiagRec (handleType, handle, errNum, sqlState,
 &nativeError, errMsg, ERRMSG_LEN, &textLengthPtr);

 if (retcode == SQL_INVALID_HANDLE)
 {
 fprintf (stderr, "checkError function was called with an
 invalid handle!!\n");
 return 1;
 }

 if ((retcode == SQL_SUCCESS) || (retcode ==
 SQL_SUCCESS_WITH_INFO)) fprintf (stderr, "ERROR: %d: %s
 : %s \n", nativeError, sqlState, errMsg);

 errNum++;
 }

 fprintf (stderr, "%s\n", errmsg);
 return 1; /* all errors on this handle have been reported */
 }
 else
 return 0; /* no errors to report */
}

Chapter 1. Informix® ODBC Driver Guide

int main (long argc,
 char *argv[])
{
 /* Declare variables
 */

 /* Handles */
 SQLHDB hdbc;
 SQLHENV henv;
 SQLHSTMT hstmt;

 HINFX_RC hrow;
 HINFX_RC hlist;

 /* Miscellaneous variables */
 UCHAR dsn[20];/*name of the DSN used for connecting to the
 database*/
 SQLRETURN rc = 0;
 int i, in;
 int data_size = SQL_NTS;
 short position = SQL_INFX_RC_ABSOLUTE;
 short jump;

 UCHAR row_data[4][BUFFER_LEN] = {"520 Topaz Way", "Redwood City",
 "CA", "94062"};
 int row_data_size = SQL_NTS;

 UCHAR list_data[2][BUFFER_LEN] = {"1991-06-20", "1993-07-17"};
 int list_data_size = SQL_NTS;

 char* insertStmt = "INSERT INTO customer VALUES (110, 'Roy',
 'Jaeger', ?, ?)";
 SQLINTEGER cbHrow = 0, cbHlist = 0, cbPosition = 0, cbJump = 0;
/* STEP 1. Get data source name from command line (or use default).
 ** Allocate environment handle and set ODBC version.
 ** Allocate connection handle.
 ** Establish the database connection.
 ** Allocate the statement handle.
 */

 /* If(dsn is not explicitly passed in as arg) */
 if (argc != 2)
 {
 /* Use default dsn - odbc_demo */
 fprintf (stdout, "\nUsing default DSN : %s\n", defDsn);
 strcpy ((char *)dsn, (char *)defDsn);
 }
 else
 {
 /* Use specified dsn */
 strcpy ((char *)dsn, (char *)argv[1]);
 fprintf (stdout, "\nUsing specified DSN : %s\n", dsn);
 }
 /* Allocate the Environment handle */
 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");

145

146

 return (1);
 }

 /* Set the ODBC version to 3.5 */
 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION,
 (SQLPOINTER)SQL_OV_ODBC3, 0);
 if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 --
 SQLSetEnvAttr failed\nExiting!!"))
 return (1);

 /* Allocate the connection handle */
 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 if (checkError (rc, SQL_HANDLE_ENV, henv, "Error in Step 1 -- Connection
 Handle Allocation failed\nExiting!!"))
 return (1);

 /* Establish the database connection */
 rc = SQLConnect (hdbc, dsn, SQL_NTS, "", SQL_NTS, "", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- SQLConnect
 failed\n"))
 return (1);

 /* Allocate the statement handle */
 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, "Error in Step 1 -- Statement
 Handle Allocation failed\nExiting!!"))
 return (1);

 fprintf (stdout, "STEP 1 done...connected to database\n");

/* STEP 2. Allocate fixed-type row handle -- this creates a non-null row
 ** buffer, each of whose values is null, and can be updated.
 ** Allocate a fixed-type list handle -- this creates a non-null
 ** but empty list buffer into which values can be inserted.
 ** Reset the statement parameters.
 */

 /* Allocate a fixed-type row handle -- this creates a row with each
 value empty */

 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
 SQL_INFX_RC_ROW, sizeof(HINFX_RC), 0, &hrow, sizeof(HINFX_RC),
 &cbHrow);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLBindParameter (param 1) failed for row handle\n")) goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 0, 0, (UCHAR *) "ROW(address1 VARCHAR(25), city VARCHAR(15), state
 VARCHAR(15), zip VARCHAR(5))", 0, &data_size);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLBindParameter (param 2) failed for row handle\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, (UCHAR *) "{? = call ifx_rc_create(?)}",
 SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --

Chapter 1. Informix® ODBC Driver Guide

 SQLExecDirect failed for row handle\n"))
 goto Exit;

 /* Allocate a fixed-type list handle */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_BINARY,
 SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, &hlist, sizeof(HINFX_RC),
 &cbHlist);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLBindParameter (param 1) failed for list handle\n"))
 goto Exit;

 data_size = SQL_NTS;
 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,
 0, 0, (UCHAR *) "LIST (DATETIME YEAR TO DAY NOT NULL)",0,
 &data_size);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLBindParameter (param 2) failed for list handle\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, (UCHAR *) "{? = call ifx_rc_create(?)}",
 SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLExecDirect failed for list handle\n"))
 goto Exit;

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 2 --
 SQLFreeStmt failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 2 done...fixed-type row and collection handles
 allocated\n");

/* STEP 3. Update the elements of the fixed-type row buffer allocated.
 ** Insert elements into the fixed-type list buffer allocated.
 ** Reset the statement parameters.
 */

 /* Update elements of the row buffer */
 for (i=0; i<4; i++)
 {
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_RC_ROW, sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC),
 &cbHrow);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter (param 1) failed for row handle\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_CHAR, BUFFER_LEN, 0, row_data[i], 0, &row_data_size);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter (param 2) failed for row handle\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_SHORT,
 SQL_SMALLINT, 0, 0, &position, 0, &cbPosition);

147

148

 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter (param 3) failed for row handle\n"))
 goto Exit; jump = i + 1;
 rc = SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL_C_SHORT,
 SQL_SMALLINT, 0, 0, &jump, 0, &cbJump);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter (param 4) failed for row handle\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt,
 (UCHAR *)"{call ifx_rc_update(?, ?, ?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLExecDirect failed for row handle\n"))
 goto Exit;
 }

 /* Insert elements into the list buffer */
 for (i=0; i<2; i++)
 {
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, hlist, sizeof(HINFX_RC),
 &cbHlist);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter (param 1) failed for list handle\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
 SQL_DATE, 25, 0, list_data[i], 0, &list_data_size);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter (param 2) failed for list handle\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT, SQL_C_SHORT,
 SQL_SMALLINT, 0, 0, &position, 0, &cbPosition);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter (param 3) failed for list handle\n"))
 goto Exit;

 jump = i + 1;
 rc = SQLBindParameter (hstmt, 4, SQL_PARAM_INPUT, SQL_C_SHORT,
 SQL_SMALLINT, 0, 0, &jump, 0, &cbJump);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLBindParameter (param 4) failed for list handle\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt,
 (UCHAR *)"{call ifx_rc_insert(?, ?, ?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLExecDirect failed for list handle\n"))
 goto Exit;
 }

 /* Reset the statement parameters */
 rc = SQLFreeStmt (hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 3 --
 SQLFreeStmt failed\n"))
 goto Exit;

Chapter 1. Informix® ODBC Driver Guide

 fprintf (stdout, "STEP 3 done...row and list buffers populated\n");

/* STEP 4. Bind parameters for the row and list handles.
 ** Execute the insert statement to insert the new row into table
 ** 'customer'.
 */

 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_RC_COLLECTION, sizeof(HINFX_RC), 0, hrow,
 sizeof(HINFX_RC), &cbHrow);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLBindParameter failed (param 1)\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_RC_COLLECTION, sizeof(HINFX_RC), 0, hlist,
 sizeof(HINFX_RC), &cbHlist);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLBindParameter failed (param 2)\n"))
 goto Exit;

 rc = SQLExecDirect (hstmt, (UCHAR *)insertStmt, SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, "Error in Step 4 --
 SQLExecDirect failed\n"))
 goto Exit;

 fprintf (stdout, "STEP 4 done...new row inserted into table
 'customer'\n");

/* STEP 5. Free the row and list handles.
 */

 /* Free the row handle */
 rc = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_RC_ROW, sizeof(HINFX_RC), 0, hrow, sizeof(HINFX_RC),
 &cbHrow);

 rc = SQLExecDirect(hstmt, (UCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

 /* Free the list handle */
 rc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_BINARY,
 SQL_INFX_RC_LIST, sizeof(HINFX_RC), 0, hlist, sizeof(HINFX_RC),
 &cbHlist);

 rc = SQLExecDirect(hstmt, (UCHAR *)"{call ifx_rc_free(?)}", SQL_NTS);

 fprintf (stdout, "STEP 5 done...row and list handles freed\n");

 Exit:

/* CLEANUP: Close the statement handle.
 ** Free the statement handle.
 ** Disconnect from the datasource.
 ** Free the connection and environment handles.

149

150

 ** Exit.
 */

 /* Close the statement handle */
 SQLFreeStmt (hstmt, SQL_CLOSE);

 /* Free the statement handle */
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

 /* Disconnect from the data source */
 SQLDisconnect (hdbc);

 /* Free the environment handle and the database connection handle */
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 fprintf (stdout,"\n\nHit <Enter> to terminate the program...\n\n");
 in = getchar ();
 return (rc);

Modify a row or collection
HCL Informix® ODBC Driver provides functions that can be used to modify rows and collections.

The following table provides an overview of the functions that HCL Informix® ODBC Driver provides for modifying rows and

collections.

Function Modification Row Collection

ifx_rc_delete() Delete an element No Yes

ifx_rc_insert() Insert an element No Yes (See the following table.)

ifx_rc_setnull() Set the row or collection to null Yes Yes

ifx_rc_update() Update the value of an element Yes Yes

The following table describes the collection locations into which you can insert an element. You can insert an element only at

the end of a SET or MULTISET collection because elements in these types of collections do not have ordered positions.

Beginning Middle End

List Yes Yes Yes

Multiset No No Yes

Set No No Yes

Chapter 1. Informix® ODBC Driver Guide

Tip: If you only need to insert or update a row or collection column with literal values, you do not need to use a row or

collection buffer. Instead, you can explicitly list the literal value in either the INTO clause of the INSERT statement or

the SET clause of the UPDATE statement.

Each row and collection maintains a seek position that points to the current element in the row or collection. When the row

or collection is created, the seek position points to the first element that is in the row or collection. All calls to client functions

share the same seek position for a row or collection buffer. Therefore, one client function can affect the seek position for

another client function that uses the same buffer handle. The following table describes how client functions use and modify

the seek position.

Client function Acts on Changes

ifx_rc_delete() At the specified position Sets the seek position to the position after the one

that was deleted

ifx_rc_fetch() At the specified position Sets the seek position to the specified position

ifx_rc_insert() Before the specified position Sets the seek position to the specified position

ifx_rc_update() At the specified position Sets the seek position to the specified position

Retrieve information about a row or collection
HCL Informix® ODBC Driver provides functions that can be used to retrieve information about rows and collections.

The following table provides an overview of the functions that HCL Informix® ODBC Driver provides for retrieving information

about rows and collections. The ifx_rc_describe() function returns the data types of elements in a row or collection.

Function Information Reference

ifx_rc_count() Number of columns The ifx_rc_count() function on page 172

ifx_rc_describe() Data type information The ifx_rc_describe() function on page 174

ifx_rc_isnull() Value that indicates whether it is

null

The ifx_rc_isnull() function on page 178

ifx_rc_typespec() Type specification The ifx_rc_typespec() function on page 179

Client functions
These topics describe the HCL Informix® ODBC Driver client functions. Use these functions to access and manipulate smart

large objects and rows and collections.

The information in these topics apply only if your database server is .

Call a client function
This section describes the syntax of client functions, their input/output arguments, return values, and SQL_BIGINT.

151

152

Function syntax
The database server and the application both partially implement each client function.

You can execute a client function with either SQLPrepare() and SQLExecute() or with SQLExecDirect(). You need to call

SQLBindParameter() or SQLBindCol() to bind each parameter before you call SQLExecute() or SQLExecDirect().

Executing a client function with SQLPrepare() and SQLExecute()
You can execute a client function with the SQLPrepare() and SQLExecute() functions.

About this task

To execute a client function with SQLPrepare() and SQLExecute():

1. Prepare the SQL statement for the client function.

2. Bind the parameters.

3. Execute the SQL statement.

Results

The following code example illustrates these steps for ifx_lo_open():

rc = SQLPrepare(hstmt, "{? = call ifx_lo_open(?, ?, ?)}", SQL_NTS);
rc = SQLBindParameter(...);
rc = SQLExecute(hstmt);

Executing a client function with SQLExecDirect()
You can execute a client function with the SQLExecDirect() function.

About this task

To execute a client function with SQLExecDirect():

1. Bind the parameters.

2. Execute the SQL statement.

Results

The following code example illustrates these steps for ifx_lo_open():

rc = SQLBindParameter(...);
rc = SQLExecDirect(hstmt, "{? = call ifx_lo_open(?, ?, ?)}", SQL_NTS);

Input and output parameters
Most of the input and output parameters for client functions are output parameters from the perspective of the client

application.

Chapter 1. Informix® ODBC Driver Guide

However, a client function that accepts an input/output parameter initializes the parameter internally and sends it to the

database server with the request to execute the client function. Therefore, you need to pass these parameters as input/

output parameters to the driver.

The SQL_BIGINT data type
HCL Informix® supports the INT8 Informix® SQL data type.

By default, the driver maps INT8 to the SQL_BIGINT HCL Informix® ODBC Driver SQL data type and to the SQL_C_CHAR

default HCL Informix® ODBC Driver C data type. However, client functions cannot access all the data type conversion

functions. Therefore, you must use a data type other than SQL_C_CHAR when you use a value of type SQL_BIGINT.

For example, before you call ifx_lo_specset_estbytes(), you need to bind a variable for the estbytes input argument. Because

estbytes is an SQL_BIGINT, you would normally bind estbytes to an SQL_C_CHAR. However, SQL_C_CHAR does not work for

SQL_BIGINT for a client function. The following code example illustrates how to bind estbytes to an SQL_C_LONG instead of

an SQL_C_CHAR for ifx_lo_specset_estbytes():

rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_LONG,
 SQL_BIGINT, (UDWORD)0, 0, &estbytes, sizeof(estbytes), NULL);
rc = SQLExecDirect(hstmt, "{call ifx_lo_specset_estbytes(?, ?)}", SQL_NTS);

Return codes
The client functions do not provide return codes.

For success or failure information, see the return codes for the HCL Informix® ODBC Driver function with which you call the

client function (SQLExecDirect() or SQLExecute()).

Functions for smart large objects
This section describes each client function that the driver provides for smart large objects.

The functions are listed alphabetically. For more information, see Smart large objects on page 94.

The ifx_lo_alter() function
The ifx_lo_alter() function alters the storage characteristics of a smart large object.

Syntax

ifx_lo_alter(loptr, lospec)

Arguments

The function accepts the following arguments.

Argument Type Use Description

loptr SQL_INFX_UDT_FIXED Input Smart-large-object pointer structure

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

153

154

Usage

The ifx_lo_alter() function performs the following steps to update the storage characteristics of a smart large object:

1. Gets an exclusive lock for the smart large object.

2. Uses the characteristics that are in the lospec smart-large-object specification structure to update the storage

characteristics of the smart large object. The ifx_lo_alter() function lets you change the following storage

characteristics:

◦ Logging characteristics

◦ Last-access time characteristics

◦ Extent size

3. Unlocks the smart large object.

As an alternative to calling this function, you can call one of the following functions if you want to change only one of these

characteristics:

• ifx_lo_specset_flags()

• ifx_lo_specset_extsz()

The ifx_lo_close() function
The ifx_lo_close() function closes a smart large object.

Syntax

ifx_lo_close(lofd)

Arguments

The function accepts the following argument.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

Usage

The ifx_lo_close() function closes a smart large object. During this function, the database server tries to unlock the smart

large object. If the isolation mode is repeatable read or if the lock is an exclusive lock, the database server does not release

the lock until the end of the transaction.

Tip: If you do not update a smart large object inside a BEGIN WORK transaction block, each update is a separate

transaction.

The ifx_lo_col_info() function
The ifx_lo_col_info() function updates a smart-large-object specification structure with column-level storage characteristics.

Chapter 1. Informix® ODBC Driver Guide

Syntax
ifx_lo_col_info(colname, lospec)

Arguments

The function accepts the following arguments.

Argument Type Use Description

colname SQL_CHAR Input Pointer to a buffer that contains the name of a database

column

This value must be in the following format:

database@server_name:table.column

If the column is in a database that is ANSI-compliant, you can

include the owner name. In this case, use the following format:

database@server_name:owner.table.column

lospec SQL_INFX_UDT_FIXED I/O Smart-large-object specification structure

Usage

The ifx_lo_col_info() function sets the fields for a smart-large-object specification structure to the storage characteristics

for the colname database column. If the specified column does not have column-level storage characteristics defined, the

database server uses the storage characteristics that are inherited.

Important: You must call ifx_lo_def_create_spec() before you call this function.

The ifx_lo_create() function
The ifx_lo_create() function creates and opens a new smart large object.

Syntax

ifx_lo_create(lospec, flags, loptr, lofd)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure that

contains storage characteristics for the new smart

large object

flags SQL_INTEGER Input Mode in which to open the new smart large object.

155

156

Argument Type Use Description

loptr SQL_INFX_UDT_FIXED I/O Smart-large-object pointer structure

lofd SQL_INTEGER Output Smart-large-object file descriptor. This file descriptor

is only valid within the current database connection.

Usage

The ifx_lo_create() function performs the following steps to create and open a new smart large object:

1. Creates a smart-large-object pointer structure.

2. Assigns a pointer to this structure and returns this pointer in loptr.

3. Assigns storage characteristics for the smart large object from the smart-large-object specification structure that

lospec indicates.

If lospec is null, ifx_lo_create() uses the system-specified storage characteristics. If the smart-large-object

specification structure exists but does not contain storage characteristics, ifx_lo_create() uses the storage

characteristics from the inheritance hierarchy.

4. Opens the smart large object in the access mode that flags specifies.

5. Associates the smart large object with the current connection.

When you close this connection, the database server deallocates any associated smart large objects that have a

reference count of zero. The reference count indicates the number of database columns that refer to the smart large

object.

6. Returns a file descriptor that identifies the smart large object.

The database server uses the default parameters that the call to ifx_lo_create() establishes to determine whether to lock or

log subsequent operations on the smart large object.

The ifx_lo_def_create_spec() function
The ifx_lo_def_create_spec() function creates a smart-large-object specification structure.

Syntax

ifx_lo_def_create_spec(lospec)

Arguments

The function accepts the following argument.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED I/O Smart-large-object specification structure

Chapter 1. Informix® ODBC Driver Guide

Usage

The ifx_lo_def_create_spec() function creates a smart-large-object specification structure and initializes the fields to null

values. If you do not change these values, the null values tell the database server to use the system-specified defaults for the

storage characteristics of the smart large object.

The ifx_lo_open() function
The ifx_lo_open() function opens a smart large object.

Syntax
ifx_lo_open(lofd, loptr, flags)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Output Smart-large-object file descriptor. This file descriptor

is only valid within the current database connection.

loptr SQL_INFX_UDT_FIXED Input Smart-large-object pointer structure

flags SQL_INTEGER Input Mode in which to open the smart large object.

Usage

The ifx_lo_open() function performs the following steps to open a smart large object:

1. Opens the loptr smart large object in the access mode that flags specifies.

2. Sets the seek position to byte zero.

3. Locks the smart large object.

Important: The database server does not check access permissions on the smart large object. Your application must

make sure that the user or application is trusted.

As the following table describes, the access mode determines the type of lock.

Access mode Type of lock

Dirty read No lock

Read only Shared lock

Write only, write/append, or

read/write

Update lock. When you call ifx_lo_write() or ifx_lo_writewithseek() for the smart large

object, the database server promotes the lock to an exclusive lock.

157

158

The database server loses this lock when the current transaction terminates. The database server obtains the lock again the

next time you call a function that needs a lock.

As an alternative, you can use a BEGIN WORK transaction block and place a COMMIT WORK or ROLLBACK WORK statement

after the last statement that needs to use the lock.

1. Associates the smart large object with the current connection.

When you close this connection, the database server deallocates any associated smart large objects that have a

reference count of zero. The reference count indicates the number of database columns that refer to the smart large

object.

2. Returns a file descriptor that identifies the smart large object.

The database server uses the default parameters that the call to ifx_lo_open() establishes to determine whether to lock or

log subsequent operations on the smart large object.

The ifx_lo_read() function
The ifx_lo_read() function reads data from an open smart large object.

Syntax

ifx_lo_read(lofd, buf)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

buf SQL_CHAR Output Pointer to a character buffer into which the function will read

the data

Usage

The ifx_lo_read() function reads data from an open smart large object. The read begins at the current seek position for lofd.

You can call ifx_lo_tell() to obtain the current seek position.

The ifx_lo_read() function reads cbValueMax bytes of data. cbValueMax is an input argument for SQLBindParameter() and

SQLBindCol(). The size of buf or cbValueMax cannot exceed 2 gigabytes. To read a smart large object that is larger than 2

gigabytes, read it in 2-gigabyte chunks. The ifx_lo_read() function reads this data into the user-defined buffer to which buf

points.

If SQLBindParameter() or SQLBindCol() returns SQL_SUCCESS, then pcbValue, which is an argument for each of these

functions, contains the number of bytes that the function read from the smart large object. If SQLBindParameter() or

Chapter 1. Informix® ODBC Driver Guide

SQLBindCol() returns SQL_SUCCESS_WITH_INFO, then pcbValue contains the number of bytes that are available to read from

the smart large object.

The ifx_lo_readwithseek() function
The ifx_lo_readwithseek() function performs a seek operation and then reads data from an open smart large object.

Syntax
ifx_lo_readwithseek(lofd, buf, offset, whence)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

buf SQL_CHAR Output Pointer to a character buffer into which the function will read the

data

offset SQL_BIGINT Input Offset from the starting seek position, in bytes. Instead of

using the default HCL Informix® ODBC Driver C data type of

SQL_C_CHAR for offset, use SQL_C_LONG or SQL_C_SHORT.

whence SQL_INTEGER Input Starting seek position. The possible values are:

LO_SEEK_CUR

The current seek position in the smart large object

LO_SEEK_END

The end of the smart large object

LO_SEEK_SET

The start of the smart large object

Usage

The ifx_lo_readwithseek() function performs a seek operation and then reads data from an open smart large object. The read

begins at the seek position of lofd that the offset and whence arguments indicate.

The ifx_lo_readwithseek() function reads cbValueMax bytes of data. cbValueMax is an input argument for

SQLBindParameter() and SQLBindCol(). The size of buf or cbValueMax cannot exceed 2 GB. To read a smart large object

that is larger than 2 gigabytes, read it in 2-GB chunks. The ifx_lo_readwithseek() function reads this data into the user-defined

buffer to which buf points.

If SQLBindParameter() or SQLBindCol() returns SQL_SUCCESS, then pcbValue, which is an argument for each of these

functions, contains the number of bytes that the function read from the smart large object. If SQLBindParameter() or

159

160

SQLBindCol() returns SQL_SUCCESS_WITH_INFO, then pcbValue contains the number of bytes that are available to read from

the smart large object.

The ifx_lo_seek() function
The ifx_lo_seek() function sets the file position for the next read or write operation on an open smart large object.

Syntax
ifx_lo_seek(lofd, offset, whence, seek_pos)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

offset SQL_BIGINT Input Offset from the starting seek position, in bytes. Instead of

using the default HCL Informix® ODBC Driver C data type of

SQL_C_CHAR for offset, use SQL_C_LONG or SQL_C_SHORT.

whence SQL_INTEGER Input Starting seek position. The possible values are:

LO_SEEK_CUR

The current seek position in the smart large object

LO_SEEK_END

The end of the smart large object

LO_SEEK_SET

The start of the smart large object

seek_pos SQL_BIGINT I/O New seek position. Instead of using the default HCL Informix®

ODBC Driver C data type of SQL_C_CHAR for seek_pos, use

SQL_C_LONG. For more information, see The SQL_BIGINT data

type on page 153.

Usage

The ifx_lo_seek() function sets the seek position of lofd to the position that the offset and whence arguments indicate.

The ifx_lo_specget_estbytes() function
The ifx_lo_specget_estbytes() function gets the estimated number of bytes from a smart-large-object specification structure.

Syntax

ifx_lo_specget_estbytes(lospec, estbytes)

Chapter 1. Informix® ODBC Driver Guide

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

estbytes SQL_BIGINT Output Estimated final size of the smart large object, in

bytes. This estimate is an optimization hint for the

smart-large-object optimizer. Instead of using the

default HCL Informix® ODBC Driver C data type of

SQL_C_CHAR for estbytes, use SQL_C_LONG.

Usage

The ifx_lo_specget_estbytes() function gets the estimated number of bytes from a smart-large-object specification structure.

The ifx_lo_specget_extsz() function
The ifx_lo_specget_extsz() function gets the allocation extent from a smart-large-object specification structure.

Syntax

ifx_lo_specget_extsz(lospec, extsz)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

extsz SQL_INTEGER Output Extent size of the smart large object, in bytes.

This value is the size of the allocation extents to

be allocated for the smart large object when the

database server writes beyond the end of the current

extent. This value overrides the estimate that the

database server generates for how large an extent

should be.

Usage

The ifx_lo_specget_extsz() function gets the allocation extent from a smart-large-object specification structure.

The ifx_lo_specget_flags() function
The ifx_lo_specget_flags() function gets the create-time flags from a smart-large-object specification structure.

161

162

Syntax
ifx_lo_specget_flags(lospec, flags)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

flags SQL_INTEGER Output Create-time flags. For more information, see Access

modes on page 111.

Usage

The ifx_lo_specget_flags() function gets the create-time flags from a smart-large-object specification structure.

The ifx_lo_specget_maxbytes() function
The ifx_lo_specget_maxbytes() function gets the maximum number of bytes from a smart-large-object specification

structure.

Syntax

ifx_lo_specget_maxbytes(lospec, maxbytes)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

maxbytes SQL_BIGINT Input Maximum size, in bytes, of the smart large object.

Instead of using the default HCL Informix® ODBC

Driver C data type of SQL_C_CHAR for maxbytes, use

SQL_C_LONG.

Usage

The ifx_lo_specget_maxbytes() function gets the maximum number of bytes from a smart-large-object specification

structure.

The ifx_lo_specget_sbspace() function
The ifx_lo_specget_sbspace() function gets the sbspace name from a smart-large-object specification structure.

Chapter 1. Informix® ODBC Driver Guide

Syntax
ifx_lo_specget_sbspace(lospec, sbspace)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

sbspace SQL_CHAR Output Name of the sbspace for the smart large object. An

sbspace name can be up to 18 characters long and

must be null terminated.

Usage

The ifx_lo_specget_sbspace() function returns the name of the sbspace in which to store the smart large object. The

function copies up to (pcbValue-1) bytes into the sbspace buffer and makes sure that it is null terminated. pcbValue is an

argument for SQLBindParameter() and SQLBindCol().

The ifx_lo_specset_estbytes() function
The ifx_lo_specset_estbytes() function sets the estimated number of bytes in a smart-large-object specification structure.

Syntax

ifx_lo_specset_estbytes(lospec, estbytes)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

estbytes SQL_BIGINT Input Estimated final size of the smart large object, in bytes.

This estimate is an optimization hint for the smart large

object optimizer. This value cannot exceed 2 gigabytes.

If you do not specify an estbytes value when you create

a new smart large object, the database server gets

the value from the inheritance hierarchy of storage

characteristics.

Do not change this system value unless you know the

estimated size for the smart large object. If you do

set the estimated size for a smart large object, do not

163

164

Argument Type Use Description

specify a value much higher than the final size of the

smart large object. Otherwise, the database server might

allocate unused storage.

Instead of using the default HCL Informix® ODBC

Driver C data type of SQL_C_CHAR for estbytes, use

SQL_C_LONG or SQL_C_SHORT.

Usage

The ifx_lo_specset_estbytes() function sets the estimated number of bytes in a smart-large-object specification structure.

The ifx_lo_specset_extsz() function
The ifx_lo_specset_extsz() function sets the allocation extent size in a smart-large-object specification structure.

Syntax

ifx_lo_specset_extsz(lospec, extsz)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

extsz SQL_INTEGER Input Extent size of the smart large object, in bytes. This

value specifies the size of the allocation extents to be

allocated for the smart large object when the database

server writes beyond the end of the current extent. This

value overrides the estimate that the database server

generates for how large an extent should be.

If you do not specify an extsz value when you create a

new smart large object, the database server attempts

to optimize the extent size based on past operations on

the smart large object and other storage characteristics

(such as maximum bytes) that it obtains from the

inheritance hierarchy of storage characteristics.

Do not change this system value unless you know

the allocation extent size for the smart large object.

Only applications that encounter severe storage

fragmentation should ever set the allocation extent

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description

size. For such applications, make sure that you know

exactly the number of bytes by which to extend the

smart large object.

Usage

The ifx_lo_specset_extsz() function sets the allocation extent size in a smart-large-object specification structure.

The ifx_lo_specset_flags() function
The ifx_lo_specset_flags() function sets the create-time flags in a smart-large-object specification structure.

Syntax
ifx_lo_specset_flags(lospec, flags)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

flags SQL_INTEGER Input Create-time flags.

Usage

The ifx_lo_specset_flags() function sets the create-time flags in a smart-large-object specification structure.

The ifx_lo_specset_maxbytes() function
The ifx_lo_specset_maxbytes() function sets the maximum number of bytes in a smart-large-object specification structure.

Syntax

ifx_lo_specset_maxbytes(lospec, maxbytes)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

maxbytes SQL_BIGINT Input Maximum size of the smart large object, in bytes.

This value cannot exceed 2 gigabytes. Instead

of using the default HCL Informix® ODBC Driver

165

166

Argument Type Use Description

C data type of SQL_C_CHAR for maxbytes, use

SQL_C_LONG or SQL_C_SHORT.

Usage

The ifx_lo_specset_maxbytes() function sets the maximum number of bytes in a smart-large-object specification structure.

The ifx_lo_specset_sbspace() function
The ifx_lo_specset_sbspace() function sets the sbspace name in a smart-large-object specification structure.

Syntax
ifx_lo_specset_sbspace(lospec, sbspace)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lospec SQL_INFX_UDT_FIXED Input Smart-large-object specification structure

sbspace SQL_CHAR Input Name of the sbspace for the smart large object.

An sbspace name can be up to 18 characters long

and must be null terminated. If you do not specify

an sbspace when you create a new smart large

object, the database server obtains the sbspace

name from either the column information or from the

SBSPACENAME parameter of the onconfig file.

Usage

The ifx_lo_specset_sbspace() function uses pcbValue to determine the length of the sbspace name. pcbValue is an

argument for SQLBindParameter() and SQLBindCol().

The ifx_lo_stat() function
The ifx_lo_stat() function initializes a smart-large-object status structure.

Syntax

ifx_lo_stat(lofd, lostat)

Arguments

The function accepts the following arguments.

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

lostat SQL_INFX_UDT_FIXED I/O Smart-large-object status structure

Usage

Before you call ifx_lo_stat(), call SQLGetInfo() to get the size of the smart-large-object status structure. Use this size to

allocate memory for the structure.

The ifx_lo_stat() function allocates a smart-large-object status structure and initializes it with the status information for the

smart large object.

The ifx_lo_stat_atime() function
The ifx_lo_stat_atime() function retrieves the last access time for a smart large object.

Syntax

ifx_lo_stat_atime(lostat, atime)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lostat SQL_INFX_UDT_FIXED Input Smart-large-object status structure

atime SQL_INTEGER Output Time of the last access for a smart large object, in

seconds. The database server maintains the time

of last access only if the LO_KEEP_LASTACCESS

_TIME flag is set for the smart large object.

Usage

The ifx_lo_stat_atime() function retrieves the last access time for a smart large object.

The ifx_lo_stat_cspec() function
The ifx_lo_stat_cspec() function retrieves a smart-large-object specification structure.

Syntax

ifx_lo_stat_cspec(lostat, lospec)

Arguments

The function accepts the following arguments.

167

168

Argument Type Use Description

lostat SQL_INFX_UDT_FIXED Input Smart-large-object status structure

lospec SQL_INFX_UDT_FIXED Output Smart-large-object specification structure

Usage

The ifx_lo_stat_cspec() function retrieves a smart-large-object specification structure and returns a pointer to the structure.

The ifx_lo_stat_ctime() function
The ifx_lo_stat_ctime() function retrieves the time of the last change of a smart large object.

Syntax
ifx_lo_stat_ctime(lostat, ctime)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lostat SQL_INFX_UDT_FIXED Input Smart-large-object status structure

ctime SQL_INTEGER Out Time of the last change of the smart large object,

in seconds. The time of the last status change

includes modification of storage characteristics,

including a change in the number of references and

writes to the smart large object.

Usage

The ifx_lo_stat_ctime() function retrieves the time of the last change of a smart large object.

The ifx_lo_stat_refcnt() function
The ifx_lo_stat_refcnt() function retrieves the number of references to a smart large object.

Syntax

ifx_lo_stat_refcnt(lostat, refcount)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lostat SQL_INFX_UDT_FIXED Input Smart-large-object status structure

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description

refcount SQL_INTEGER Output Number of references to a smart large object. This

value is the number of database columns that refer

to the smart large object.

Usage

The ifx_lo_stat_refcnt() function retrieves the number of references to a smart large object.

A database server can remove a smart large object and reuse any resources that are allocated to it when the reference count

for the smart large object is zero and one of the following events occurs:

• The transaction in which the reference count is decremented to zero commits.

• The connection during which the smart large object was created terminates, but the reference count is not

incremented.

The database server increments a reference counter when it stores the smart-large-object pointer structure for a

smart large object in a row.

The ifx_lo_stat_size() function
The ifx_lo_stat_size() function retrieves the size of a smart large object.

Syntax

ifx_lo_stat_size(lostat, size)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lostat SQL_INFX_UDT_FIXED Input Smart-large-object status structure

size SQL_BIGINT Output Size of a smart large object, in bytes. This value

cannot exceed 2 gigabytes. Instead of using the

default HCL Informix® ODBC Driver C data type of

SQL_C_CHAR for size, use SQL_C_LONG.

Usage

The ifx_lo_stat_size() function retrieves the size of a smart large object.

The ifx_lo_tell() function
The ifx_lo_tell() function retrieves the current file or seek position for an open smart large object.

169

170

Syntax
ifx_lo_tell(lofd, seek_pos)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

seek_pos SQL_BIGINT I/O New seek position, which is the offset for the next read or write

operation on the smart large object. Instead of using the default

HCL Informix® ODBC Driver C data type of SQL_C_CHAR for

seek_pos, use SQL_C_LONG.

Usage

The ifx_lo_tell() function retrieves the current file or seek position for an open smart large object.

This function works correctly for smart large objects up to 2 gigabytes in size.

The ifx_lo_truncate() function
The ifx_lo_truncate() function truncates a smart large object at the specified position.

Syntax

ifx_lo_truncate(lofd, offset)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

offset SQL_BIGINT Input End of the smart large object. If this value exceeds the end of the

smart large object, the function extends the smart large object.

If this value is less than the end of the smart large object, the

database server reclaims all storage from the offset position to the

end of the smart large object.

Instead of using the default HCL Informix® ODBC Driver C data type

of SQL_C_CHAR for offset, use SQL_C_LONG or SQL_C_SHORT.

Chapter 1. Informix® ODBC Driver Guide

Usage

The ifx_lo_truncate() function sets the end of a smart large object to the location that the offset argument specifies.

The ifx_lo_write() function
The ifx_lo_write() function writes data to an open smart large object.

Syntax
ifx_lo_write(lofd, buf)

Arguments

The function accepts the following arguments.

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor

buf SQL_CHAR Input Buffer that contains the data that the function writes to the smart

large object. The size of the buffer cannot exceed 2 gigabytes.

Usage

The ifx_lo_write() function writes data to an open smart large object. The write begins at the current seek position for lofd.

You can call ifx_lo_tell() to obtain the current seek position.

The ifx_lo_write() function writes cbValueMax bytes of data. cbValueMax is an input argument for SQLBindParameter()

and SQLBindCol(). The size of buf or cbValueMax cannot exceed 2 GB. To write to a smart large object that is larger than

2 gigabytes, write to it in 2-GB chunks. The ifx_lo_write() function gets the data from the user-defined buffer to which buf

points.

If SQLExecDirect() or SQLExecute() returns SQL_SUCCESS_WITH_INFO, then the database server wrote less than

cbValueMax bytes of data to the smart large object and pcbValue, which is an argument for each of these functions,

contains the number of bytes that the function wrote. This condition can occur when the sbspace runs out of space.

The ifx_lo_writewithseek() function
The ifx_lo_writewithseek() function performs a seek operation and then writes data to an open smart large object.

Syntax

ifx_lo_writewithseek(lofd, buf, offset, whence)

Arguments

The function accepts the following arguments.

171

172

Argument Type Use Description

lofd SQL_INTEGER Input Smart-large-object file descriptor.

buf SQL_CHAR Input Buffer that contains the data that the function writes to the smart

large object. The size of the buffer must not exceed 2 gigabytes.

offset SQL_BIGINT Input Offset from the starting seek position, in bytes. Instead of

using the default HCL Informix® ODBC Driver C data type of

SQL_C_CHAR for offset, use SQL_C_LONG or SQL_C_SHORT.

whence SQL_INTEGER Input Starting seek position. The possible values are:

LO_SEEK_CUR

The current seek position in the smart large object

LO_SEEK_END

The end of the smart large object

LO_SEEK_SET

The start of the smart large object

Usage

The ifx_lo_writewithseek() function performs a seek operation and then writes data to an open smart large object. The write

begins at the seek position of lofd that the offset and whence arguments indicate.

The ifx_lo_writewithseek() function writes cbValueMax bytes of data. cbValueMax is an input argument for

SQLBindParameter() and SQLBindCol(). The size of buf or cbValueMax cannot exceed 2 GB. To write to a smart large object

that is larger than 2 gigabytes, write to it in 2-GB chunks. The ifx_lo_writewithseek() function gets the data from the user-

defined buffer to which buf points.

If SQLExecDirect() or SQLExecute() returns SQL_SUCCESS_WITH_INFO, then the database server wrote less than

cbValueMax bytes of data to the smart large object and pcbValue, which is an argument for each of these functions,

contains the number of bytes that the function wrote. This condition can occur when the sbspace runs out of space.

Functions for rows and collections
This section describes each client function that HCL Informix® ODBC Driver provides for rows and collections.

The functions are listed alphabetically. For more information about rows and collections, see Rows and collections on

page 133.

The ifx_rc_count() function
The ifx_rc_count() function returns the number of elements or fields that are in a row or collection.

Chapter 1. Informix® ODBC Driver Guide

Syntax
ifx_rc_count(rowcount, rchandle)

Arguments

The function accepts the following arguments.

Argument Type Use Description

rowcount SQL_SMALLINT Output Number of elements or fields that are in the row or collection

rchandle HINFX_RC Input Handle for a row or collection buffer

Usage

The ifx_rc_count() function returns the number of elements or fields that are in the row or collection.

The ifx_rc_delete() function
The ifx_rc_delete() function deletes an element from a collection.

Syntax

ifx_rc_delete(rchandle, action, jump)

Arguments

The function accepts the following arguments.

Argument Type Use Description

rchandle HINFX_RC Input Handle for a collection buffer

action SQL_SMALLINT Input Location of the element relative to the seek position. The

possible values are

• SQL_INFX_RC_ABSOLUTE: Element number jump where

the first element in the buffer is element number one

• SQL_INFX_RC_CURRENT: Current® element

• SQL_INFX_RC_FIRST: First element

• SQL_INFX_RC_LAST: Last element

• SQL_INFX_RC_NEXT: Next element

• SQL_INFX_RC_PRIOR: Previous element

• SQL_INFX_RC_RELATIVE: Element that is jump elements

past the current element

jump SQL_SMALLINT Input Offset when action is SQL_INFX_RC_ABSOLUTE or

SQL_INFX_RC_RELATIVE

173

174

Usage

The ifx_rc_delete() function deletes an element from a collection from the location that is specified by action and jump. The

function sets the seek position to the position of the value that was deleted. It is not possible to delete an element from a

row.

The ifx_rc_describe() function
The ifx_rc_describe() function returns descriptive information about the data type for a row or collection or for an element

that is in a row or collection.

Syntax
ifx_rc_describe(rchandle, fieldnum, fieldname, typecode,

 columnsize, decdigits, nullable, typename, typeowner)

Arguments

The function accepts the following arguments.

Argument Type Use Description

rchandle HINFX_RC Input Handle for a row or collection buffer

fieldnum SQL_SMALLINT Input Field number. If this value is 0, the function returns

information for the entire row or collection. For a collection,

any value other than 0 causes the function to return

information for the elements that are in the collection. For a

row, this value specifies the element for which the function

returns information.

fieldname SQL_CHAR Output Field name. The function returns this value only for an

element that is in a row.

typecode SQL_SMALLINT Output HCL Informix® ODBC Driver SQL data type of the element

columnsize SQL_INTEGER Output Column size. For a character element, this value is the size of

the column, in bytes. For a numeric element, this value is the

precision. For other data types, the function does not return

this value.

decdigits SQL_SMALLINT Output Decimal digits. For a numeric element, this value is the

number of digits after the decimal point. For other data types,

the function does not return this value.

nullable SQL_SMALLINT Output Null indicator. The possible values are:

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description

• SQL_NO_NULLS

• SQL_NULLABLE

typename SQL_CHAR Output Type name. For a named row, this value is the name of the

row. For collections and unnamed rows, the function does not

return this value.

typeowner SQL_CHAR Output Type owner. This value is the name of the owner of the data

type. This name can be up to 18 characters long.

Usage

The ifx_rc_describe() function returns information about the data type for a row or collection or for an element that is in a

row or collection. For elements that are in a collection, this information is the same for all elements that are in the collection.

This function does not change the seek position.

The ifx_rc_fetch() function
The ifx_rc_fetch() function retrieves the value of an element that is in a row or collection.

Syntax

ifx_rc_fetch(result, rchandle, action, jump)

Arguments

The function accepts the following arguments.

Argument Type Use Description

result Data type of the element Output Retrieved value

rchandle HINFX_RC Input Handle for a row or collection buffer

action SQL_SMALLINT Input Location of the element relative to the seek position.

The possible values are:

• SQL_INFX_RC_ABSOLUTE: Element number

jump where the first element in the buffer is

element number one

• SQL_INFX_RC_CURRENT: Current® element

• SQL_INFX_RC_FIRST: First element

• SQL_INFX_RC_LAST: Last element

• SQL_INFX_RC_NEXT: Next element

175

176

Argument Type Use Description

• SQL_INFX_RC_PRIOR: Previous element

• SQL_INFX_RC_RELATIVE: Element that is jump

elements past the current element

jump SQL_SMALLINT Input Offset when action is SQL_INFX_RC_ABSOLUTE or

SQL_INFX_RC_RELATIVE

Usage

The ifx_rc_fetch() function retrieves the value of the element that is specified by action and jump and returns the value in

result. The function sets the seek position to the position of the value that was just fetched.

The ifx_rc_free() function
The ifx_rc_free() function frees a row or collection handle.

Syntax

ifx_rc_free(rchandle)

Arguments

The function accepts the following argument.

Argument Type Use Description

rchandle HINFX_RC Input Handle for a row or collection buffer

Usage

The ifx_rc_free() function frees all the resources that are associated with a row or collection handle and frees the handle.

The ifx_rc_insert() function
The ifx_rc_insert() function inserts a new element into a collection.

Syntax

ifx_rc_insert(rchandle, value, action, jump)

Arguments

The function accepts the following arguments.

Argument Type Use Description

rchandle HINFX_RC Input Handle for a collection buffer

Chapter 1. Informix® ODBC Driver Guide

Argument Type Use Description

value Data type of the element Input Value to insert

action SQL_SMALLINT Input Location of the element relative to the seek position. The

possible values are:

• SQL_INFX_RC_ABSOLUTE: Element number jump

where the first element in the buffer is element

number one

• SQL_INFX_RC_CURRENT: Current® element

• SQL_INFX_RC_FIRST: First element

• SQL_INFX_RC_LAST: Last element

• SQL_INFX_RC_NEXT: Next element

• SQL_INFX_RC_PRIOR: Previous element

• SQL_INFX_RC_RELATIVE: Element that is jump

elements past the current element

jump SQL_SMALLINT Input Offset when action is SQL_INFX_RC_ABSOLUTE or

SQL_INFX_RC_RELATIVE

Usage

The ifx_rc_insert() function inserts a new element into a collection before the location that is specified by action and jump.

The function sets the seek position to the position of the value that was inserted. It is not possible to insert a new element

into a row.

The following table describes the allowable insertion locations for each type of collection.

Type of col

lection Allowable insertion locations

List Anywhere in the buffer

Set or multiset At the end of the buffer

If the seek position specified by action and jump exceeds the end of the buffer, ifx_rc_insert() appends the new element

at the end of the buffer. Likewise, if the seek position specified by action and jump precedes the beginning of the buffer,

ifx_rc_insert() inserts the new element at the beginning of the buffer. If action specifies an insertion point other than the end

for a set or multiset, ifx_rc_insert() fails.

For example, if action is SQL_INFX_RC_LAST, the function inserts the new element before the last element. To append a new

element, take one of the following actions:

177

178

• Set the seek position to the end of the buffer and set action to SQL_INFX_RC_NEXT.

• Set action to SQL_INFX_RC_ABSOLUTE or SQL_INFX_RC_RELATIVE and set jump to a value that exceeds the end of

the buffer.

To insert a new element at the beginning of a buffer, set action to SQL_INFX_RC_FIRST.

The ifx_rc_isnull() function
The ifx_rc_isnull() function returns a value that indicates whether a row or collection is null.

Syntax
ifx_rc_isnull(nullflag, rchandle)

Arguments

The function accepts the following arguments.

Argument Type Use Description

nullflag SQL_SMALLINT Output Flag that indicates whether a row or collection is null. The

possible values are:

• TRUE

• FALSE

rchandle HINFX_RC Input Handle for a row or collection buffer

Usage

The ifx_rc_isnull() function returns a value that indicates whether a row or collection is null.

The ifx_rc_setnull() function
The ifx_rc_setnull() function sets a row or collection to null.

Syntax

ifx_rc_setnull(rchandle)

Arguments

The function accepts the following argument.

Argument Type Use Description

rchandle HINFX_RC Input Handle for a row or collection buffer

Chapter 1. Informix® ODBC Driver Guide

Usage

The ifx_rc_setnull() function sets a row or collection to null. The ifx_rc_setnull() function does not set each element within the

row or collection to null.

The ifx_rc_typespec() function
The ifx_rc_typespec() function returns the type specification for a row or collection.

Syntax
ifx_rc_typespec(typespec, rchandle, flag)

Arguments

The function accepts the following arguments.

Argument Type Use Description

typespec SQL_CHAR Output Type specification. The format for this value is the same as the

type specification syntax for ifx_rc_create().

rchandle HINFX_RC Input Handle for a row or collection buffer

flag SQL_SMALLINT Input Flag that specifies whether to return the current or original type

specification. If this value is TRUE, the function returns the

original type specification. Otherwise, the function returns the

current type specification.

Usage

The ifx_rc_typespec() function returns the type specification for a row or collection.

The ifx_rc_update() function
The ifx_rc_update() function updates the value for an element that is in a row or collection.

Syntax

ifx_rc_update(rchandle, value, action, jump)

Arguments

The function accepts the following arguments.

Argument Type Use Description

rchandle HINFX_RC Input Handle for a row or collection buffer

value Data type of the element Input Value with which to update the element

179

180

Argument Type Use Description

action SQL_SMALLINT Input Location of the element relative to the seek position. The

possible values are:

• SQL_INFX_RC_ABSOLUTE: Element number jump

where the first element in the buffer is element

number one

• SQL_INFX_RC_CURRENT: Current® element

• SQL_INFX_RC_FIRST: First element

• SQL_INFX_RC_LAST: Last element

• SQL_INFX_RC_NEXT: Next element

• SQL_INFX_RC_PRIOR: Previous element

• SQL_INFX_RC_RELATIVE: Element that is jump

elements past the current element

jump SQL_SMALLINT Input Offset when action is SQL_INFX_RC_ABSOLUTE or

SQL_INFX_RC_RELATIVE

Usage

The ifx_rc_update() function updates the value for an element that immediately precedes the location that is specified by

action and jump. The function sets the seek position to the position of the value that was updated.

Application tracking in ODBC
Set the CLIENT_LABEL environment variable in CSDK 4.50.xC4 onwards to assign a character string to ODBC client session

and identify that character string on the database server. You can use this variable to distinguish one database session from

the other.

Improve application performance
These topics suggest ways to improve performance of HCL Informix® ODBC Driver applications.

Error checking during data transfer
The IFX_LOB_XFERSIZE environment variable is used to specify the number of kilobytes in a CLOB or BLOB to transfer from a

client application to the database server before checking whether an error has occurred.

The error check occurs each time the specified number of kilobytes is transferred. If an error occurs, the remaining data is

not sent and an error is reported. If no error occurs, the file transfer continues until it finishes.

The valid range for IFX_LOB_XFERSIZE is from 1 to 9223372036854775808 kilobytes. The IFX_LOB_XFERSIZE environment

variable is set on the client.

Chapter 1. Informix® ODBC Driver Guide

For more information about IFX_LOB_XFERSIZE, see the HCL® Informix® Guide to SQL: Reference.

Enable delimited identifiers in ODBC
By default delimited identifiers are disabled when connecting through ODBC.

There are three ways to enable them, listed here in order of decreasing precedence:

The DELIMIDENT connection string keyword

If you are using a connection string to connect you can set the DELIMIDENT keyword to enable or disable delimited

identifiers. If the keyword is set to y then delimited identifiers are enabled for the connection. If the keywords are set to

n delimited identifiers are disabled for the connection. If the keyword is present but is set to no value it has no effect on

whether delimited identifiers are enabled.

For example, this connection string connects by using a data source name (DSN) of mydsn and enables delimited identifiers

for the connection.

"DSN=mydsn;DELIMIDENT=y;"

This connection string also connects by using the DSN mydsn but has no effect on whether delimited identifiers are used.

"DSN=mydsn;DELIMIDENT=;"

Setting the DELIMIDENT keyword in the connection string overrides any connection attributes or environment variables that

enable or disable delimited identifiers.

The SQL_INFX_ATTR_DELIMIDENT connection attribute

You can enable or disable delimited identifiers for a given connection by setting the SQL_INFX_ATTR_DELIMIDENT

connection attribute before connecting. The SQL_INFX_ATTR_DELIMIDENT connection attribute accepts the values listed in

the following table.

Table 9. Allowed values for the SQL_INFX_ATTR_DELIMIDENT connection attribute

Value Effect

SQL_TRUE Delimited identifiers are enabled for the connection.

SQL_FALSE Delimited identifiers are disabled for the connection.

SQL_IFX_CLEAR Clears any previous settings so that this connection attribute has no effect

on whether delimited identifiers are used.

For example, this call causes delimited identifiers to be enabled when the connection is made:

SQLSetConnectAttr(hdbc, SQL_INFX_ATTR_DELIMIDENT, SQL_TRUE, SQL_IS_INTEGER);

If this connection attribute is set to SQL_TRUE or SQL_FALSE the setting overrides the DELIMIDENT environment variable but

not the DELIMIDENT connection string keyword.

181

182

The DELIMIDENT environment variable

In some HCL Informix® APIs, such as ESQL/C, delimited identifiers are enabled by setting the DELIMIDENT environment

variable to any value. In ODBC, however, delimited identifiers are enabled by setting the DELIMIDENT environment variable to

y and are disabled by setting it to n.

Connection level optimizations
Establishing a connection to a database is an expensive process. Optimally, an application performs as many tasks as

possible while a connection is open.

This process can by achieved by:

• Pooling connections when using Windows™ Driver Manager

• Using multiple statement handles on the same connection handle

Also, you can fine tune application performance by setting the following connection level attributes:

• AutoCommit optimization

• Message transfer optimization (OPTMSG)

• Open-Fetch-Close optimization (OPTOFC)

Optimizing query execution
There are several items you must consider when using prepared SQL queries.

Consider the following when using prepared SQL queries:

• SQLExecDirect is optimized for a single execution of an SQL statement. Thus, it is used for SQL queries that are not

executed repeatedly.

• In cases where SQL queries are executed multiple times, using SQLPrepare and SQLExecute improves performance.

Typically, you can do this with input and output parameters.

• SPL routines can be called from an ODBC application to perform certain SQL tasks and to expand what you can

accomplish with SQL alone. Because SPL is native to the database and SPL routines are parsed and optimized at

creation, rather than at runtime, SPL routines can improve performance for some tasks. SPL routines can also reduce

traffic between a client application and the database server and reduce program complexity.

• When a stored procedure with a return value is executed using the HCL Informix® ODBC Driver, errors returned by the

procedure are not returned to the application until a fetch is called on the result set. Error information from stored

procedures with no returned values is available immediately following the execution of the procedure.

Insert multiple rows
Use an insert cursor to efficiently insert rows into a table in bulk.

Chapter 1. Informix® ODBC Driver Guide

To create an insert cursor, set the SQL_ENABLE_INSERT_CURSOR attribute by using SQLSetStmtOption, then call

SQLParamOptions with the number of rows as a parameter. You can create an insert cursor for data types VARCHAR,

LVARCHAR, and opaque.

When you open an insert cursor, a buffer is created in memory to hold a block of rows. The buffer receives rows of data

as the program produces them; then they are passed to the database server in a block when the buffer is full. The buffer

reduces the amount of communication between the program and the database server. As a result, the insertions go faster.

Automatically freeing a cursor
When an application uses a cursor, it usually sends a FREE statement to the database server to deallocate memory assigned

to a cursor after it no longer needs that cursor.

Execution of this statement involves of message requests between the application and the database server. When the

AUTOFREE is enabled, HCL Informix® ODBC Driver saves message requests because it does not need to execute the FREE

statement. When the database server closes an insert cursor, it automatically frees the memory that it has allocated for it.

Enabling the AUTOFREE feature
You can enable the AUTOFREE feature for an ODBC application in two ways.

About this task

The SQL_INFX_ATTR_AUTO_FREE attribute can be set in any connection state between C2 and C5 (both included) when

setting it using SQLSetConnectAttr, whereas it can be set by using SQLSetStmtAttr only when the statement is in S1

(allocated) state. The value of the SQL_INFX_ATTR_AUTO_FREE attribute can be retrieved by using SQLGetConnectAttr or

SQLSetStmtAttr.

You can enable the AUTOFREE feature for an ODBC application in either of the following ways:

• Set the SQL_INFX_ATTR_AUTO_FREE attribute with SQLSetConnectAttr.

When you use SQLSetConnectAttr to enable this attribute, all new allocated statements for that connection inherit the

attribute value. The only way to change this attribute value per statement is to set and reset it again as a statement

attribute. The default is DISABLED for the connection attribute.

• Set the SQL_INFX_ATTR_AUTO_FREE attribute with SQLSetStmtAttr.

The AUTOFREE feature
The AUTOFREE feature only works withresult generating statements executed by using SQLExecDirect, as it opens the cursor

which is then closed and released by the corresponding SQLCloseCursor or SQLFreeStmt.

The AUTOFREE feature does not work when the application has to prepare a statement once and then execute it several

times (for example, using SQLPrepare to prepare and then executing it by calling SQLExecute several times). When you close

the cursor with SQLCloseCursor after SQLExecute, it only closes the cursor but does not release the cursor memory on the

database server side. But if you close the cursor by using SQLFreeStmt with SQL_CLOSE or SQL_DROP, it not only closes and

183

184

releases the cursor, but it also unprepares the statement. In the latter case there is savings of a network roundtrip, but the

application is unable to execute the statement again until it reprepares it.

When AUTOFREE is enabled, the application sees an improvement in the network performance when the application closes

the cursor with SQLCloseCursor or SQLFreeStmt with SQL_DROP.

Delay execution of the SQL PREPARE statement
You can defer execution of the SQLPrepare statement by enabling the deferred-PREPARE feature.

This feature works primarily with dynamic SQL statements where the application does a series of SQLPrepare and

SQLExecute statements. It optimizes the number of round-trip messages to the database server by not sending SQLPrepare

statements to the database server until the application calls SQLExecute on that statement.

When deferred-PREPARE is enabled, the following behavior is expected of the application:

• Execution of SQLPrepare does not put the statement in a prepared state.

• Syntax errors in an SQLPrepare statement are not known until the statement is executed because the SQL statement

is never sent to the database server until it is executed. If open-fetch-close optimization is turned on, errors are not

returned to the client until the first fetch, because open-fetch-close optimizes the OPEN/FETCH so that OPEN is sent

on the first fetch.

• SQLColAttributes, SQLDescribeCol, SQLNumResultCols, and SQLNumParams always return HY010 (function

sequence error) if called after SQLPrepare but before SQLExecute by the application.

• SQLCopyDesc returns HY010 if the source descriptor handle is an IRD if called after SQLPrepare but before

SQLExecute by the application.

• SQLGetDescField and SQLGetDescRec return HY010 if the descriptor handle is an IRD if called after SQLPrepare but

before SQLExecute by the application.

You can enable the deferred-PREPARE feature for an ODBC application in either of the following ways:

• Set the SQL_INFX_ATTR_DEFERRED_PREPARE attribute with SQLSetConnectAttr.

When you use SQLSetConnectAttr to enable this attribute, all new allocated statements for that connection inherit

the attribute value. The only way to change this attribute value per statement, is to set/reset it again as a statement

attribute. The default is DISABLED for the connection attribute.

• Set the SQL_INFX_ATTR_DEFERRED_PREPARE attribute with SQLSetStmtAttr.

The SQL_INFX_ATTR_DEFERRED_PREPARE attribute can be set in any connection state between C2 and C5 (both included)

when setting it using SQLSetConnectAttr, whereas it can be set by with SQLSetStmtAttr only when the statement is in S1

(allocated) state. The value of the SQL_INFX_ATTR_DEFERRED_PREPARE attribute can be retrieved with SQLGetConnectAttr

or SQLSetStmtAttr.

Set the fetch array size for simple-large-object data
To reduce the network overhead for fetches involving multiple rows of simple-large-object data, you can set the array size.

Chapter 1. Informix® ODBC Driver Guide

Set the array size so when the driver receives a multiple-row fetch request, it optimizes the fetch buffer size and the internal

fetch array size, and eliminates a round trip to the database server for every simple large object.

Setting the array size greater than 1 can result in a performance improvement even for other types of data because it has

the side effect of automatically increasing the fetch buffer size if necessary. (If the number of rows specified can fit in the

current fetch buffer, setting it has little effect.)

An application can request that multiple rows be returned to it by setting the statement attribute

SQL_ATTR_ROW_ARRAY_SIZE or setting the ARD header field SQL_DESC_ARRAY_SIZE to a value greater than one, and

then calling either SQLFetch or SQLFetchScroll. (The default value of SQL_ATTR_ROW_ARRAY_SIZE is one.) The driver then

recognizes when it receives a multiple-row fetch request and optimizes the settings for the fetch buffer size and the internal

fetch array size. Settings for these are based on the internal tuple size, the user setting of row array size, and the current

setting of fetch array size.

You cannot use the internal fetch array feature under the following conditions:

• When OPTOFC and deferred-PREPARE are both enabled

To use the fetch array feature, the driver is dependent upon knowing how large a row is going to be, as received from

the database server, before sending the fetch request to the database server. When both of these are enabled, this

information is unavailable until after a fetch is performed.

• When using scroll cursors

There are separate internal client-to-server protocols used for scroll cursors that are distinct from those protocols

used for fetching arrays. The database server does not support simple large object columns in a scroll cursor. An

error is returned.

• When using SQLGetData

In order for the driver to use the fetch array feature, it has to be able to tell the database server how much data it is

prepared to receive at the time of the fetch request. Calls to SQLGetData take place after SQLFetch.

According to the ODBC standard, when using block cursors, the application must call SQLSetPos to position the

cursor on a particular row before calling SQLGetData. SQLSetPos is only usable with scroll cursors and simple-large-

object columns are not allowed in scroll cursors. Also according to the standard, SQLGetData must not be used with

a forward-only cursor with a rowset size greater than 1.

The alternative to using SQLGetData is to use SQLBindCol, which would come before the call to SQLFetch.

You might want to optimize use of SQL_ATTR_ROW_ARRAY_SIZE so the application sets the value of it according to the

maximum number of rows that can be transported in a single buffer. After a statement is prepared, the application might call

SQLGetStmtAttr to get the value of SQL_INFX_ATTR_FET_ARR_SIZE. If the data fits in one fetch buffer, the internal setting

of SQL_INFX_ATTR_FET_ARR_SIZE equals the application setting of SQL_ATTR_ROW_ARRAY_SIZE. In practice, this is only

useful on large result sets.

185

186

The SPL output parameter feature
HCL Informix® ODBC Driver supports the ODBC defined method of getting the return value from a database procedure.

Specifically, ODBC supports the parameter to that precedes the equals sign in a procedure-call escape sequence. The host

variable associated with that parameter is updated upon statement execution either with SQLExecute or SQLExecDirect.

In the HCL Informix® ODBC Driver definition of a procedure-call escape sequence, there is only one return value; therefore,

the following restrictions are placed on this feature:

• Procedures used with this feature must return only one value, although they might return multiple rows.

If this condition is not met, the parameter and its binding are ignored.

• Data from the first row only be placed in the host variable associated with the bound parameter, although procedures

used with this feature can return multiple rows.

To return multiple-value, multiple-row result sets from the HCL Informix® database server, you have to fetch the data as

though it were the result columns of a select statement. This output parameter feature works with existing applications that

bind column or columnss and call SQLFetch or call SQLFetch and SQLGetData when accessing data through a procedure

call. Therefore, no error or warning is generated when more than one row is available to be returned.

You can use either or both methods for retrieving the data from a stored procedure. A host variable can be bound as a

parameter or as a column, or both. If separate buffers are used, only the host variable bound as a parameter is updated upon

statement execution, and only the host variable bound as a column is updated upon a fetch. Unbound columns accessed

through SQLGetData remain unaffected.

OUT and INOUT parameters
As of Version 4.10, HCL Informix® Client Software Development Kit supports the use of OUT and INOUT parameters during

execution of SPL.

The following data types are supported:

• BIGINT

• BLOB

• BOOLEAN

• DATETIME

• CHAR

• CLOB

• DECIMAL

• FLOAT

• INT8

• INTEGER

• INTERVAL

• LVARCHAR

Chapter 1. Informix® ODBC Driver Guide

• MONEY

• NCHAR

• NVARCHAR

• SMALLFLOAT

• SMALLINT

• VARCHAR

These restrictions exist when using OUT or INOUT parameters in SPL execution:

• Collection data types such as LIST, MULTISET, ROW, and SET are not supported.

• Returning result sets is not supported. After executing SPL with OUT or INOUT parameters, you cannot call SQLFetch

or SQLGetData.

• Only one value can be returned; that is, only one set of OUT or INOUT parameters can be returned per individual SPL

execution.

The following SPL execution example creates one OUT, one INOUT, and one IN (default) parameter and one return

value.

create procedure myproc(OUT intparam INT, INOUT charparam char(20),
 inparam int) returns int
<body of SPL>
end procedure;

The following code example, outinoutparamblob.c, shows how to use OUT and INOUT parameters with BLOB, INTEGER,

and VARCHAR data types.

 /* Drop procedure */
 SQLExecDirect(hstmt, (UCHAR *)"drop procedure spl_out_param_blob;", SQL_NTS);
 SQLExecDirect(hstmt, (UCHAR *)"drop table tab_blob;", SQL_NTS);

 /* Create table with BLOB column */
 rc = SQLExecDirect(hstmt, (UCHAR *)"create table tab_blob(c_blob BLOB,
 c_int INTEGER, c_char varchar(20));", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error in Step 2 --
 SQLExecDirect failed\n"))
 goto Exit;

 /* Insert one row into the table */
 rc = SQLExecDirect(hstmt, (UCHAR *)"insert into tab_blob
 values(filetoblob('insert.data', 'c'), 10, 'blob_test');", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error in Step 2
 -- SQLExecDirect failed\n"))
 goto Exit;

 /* Create procedure */
 rc = SQLExecDirect(hstmt, "CREATE PROCEDURE spl_out_param_blob(inParam int,
 OUT blobparam BLOB, OUT intparam int, OUT charparam varchar(20)) \n"
 "returning integer; \n"
 "select c_blob, c_int, c_char into blobparam,
 intparam, charparam from tab_blob; \n"
 "return inParam; \n"
 "end procedure; ",

187

188

 SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error in Step 2
 -- SQLExecDirect failed\n"))
 goto Exit;

 /* Prepare stored procedure to be executed */
 rc = SQLPrepare(hstmt, (UCHAR *)"{? = call spl_out_param_blob
 (?, ?, ?, ?)}", SQL_NTS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *)
 "Error in Step 2 -- SQLPrepare failed\n"))
 goto Exit;

 /* Bind the required parameters */
 rc = SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_LONG,
 SQL_INTEGER, 3, 0, &sParm1, 0, &cbParm1);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *)
 "Error in Step 2 -- SQLBindParameter 1 failed\n"))
 goto Exit;

 rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_LONG,
 SQL_INTEGER, 10, 0, &sParm2, 0, &cbParm2);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *)
 "Error in Step 2 -- SQLBindParameter 2 failed\n"))
 goto Exit;

 rc = SQLBindParameter(hstmt, 3, SQL_PARAM_OUTPUT, SQL_C_BINARY,
 SQL_LONGVARBINARY, sizeof(blob_buffer), 0, blob_buffer,
 sizeof(blob_buffer), &cbParm3);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *)
 "Error in Step 2 -- SQLBindParameter 3 failed\n"))
 goto Exit;

 rc = SQLBindParameter(hstmt, 4, SQL_PARAM_OUTPUT, SQL_C_LONG,
 SQL_INTEGER, 10, 0, &sParm3, 0, &cbParm4);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *)
 "Error in Step 2 -- SQLBindParameter 4 failed\n"))
 goto Exit;

 rc = SQLBindParameter (hstmt, 5, SQL_PARAM_OUTPUT, SQL_C_CHAR,
 SQL_VARCHAR, sizeof(schar), 0, schar, sizeof(schar), &cbParm6);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *)
 "Error in Step 2 -- SQLBindParameter 5 failed\n"))
 goto Exit;

 /* Exeute the prepared stored procedure */
 rc = SQLExecute(hstmt);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *)
 "Error in Step 2 -- SQLExecute failed\n"))
 goto Exit;

 len =
 strlen("123456789abcdefghijklmnopqrstuvwxyz
 1234567890123456789012345678901234567890 ");

 if((sParm2 != sParm1) || (10 != sParm3) ||
 (strcmp("blob_test", schar)) || (cbParm3 != len))
 {

Chapter 1. Informix® ODBC Driver Guide

 fprintf(stdout, "\n 1st Data compare failed!");
 goto Exit;
 }
 else
 {
 fprintf(stdout, "\n 1st Data compare successful");
 }

 /* Reset the parameters */
 rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS);
 if (checkError (rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *)
 "Error in Step 3 -- SQLFreeStmt failed\n"))
 goto Exit;

 /* Reset variables */
 sParm1 = 0;
 cbParm6 = cbParm1 = SQL_NTS;
 cbParm3 = SQL_NULL_DATA;
 schar[0]=0;
 blob_buffer[0]=0;

Asynchronous execution
Design your application to take advantage of data sources that support asynchronous execution. Asynchronous calls do not

perform faster, but well-designed applications appear to run more efficiently.

Turning on asynchronous execution does not by itself improve performance. Well-designed applications, however, can take

advantage of asynchronous query execution by allowing the user to work on other things while the query is being evaluated

on the database server. Perhaps users start one or more subsequent queries or choose to work in another application, all

while the query is executing on the database server. Designing for asynchronous execution makes your application appear to

run faster by allowing the user to work concurrently on multiple tasks.

By default, an application calls to an ODBC driver that then executes statements against the database server in a

synchronous manner. In this mode of operation, the driver does not return control to the application until its own request

to the database server is complete. For statements that take more than a few seconds to complete execution, this control

return delay can result in the perception of poor performance.

Some data sources support asynchronous execution. When in asynchronous mode, an application calls to an ODBC driver

and control is returned almost immediately. In this mode, the driver returns the status SQL_STILL_EXECUTING to the

application and then sends the appropriate request to the database server for execution. The application polls the driver

at various intervals at which point the driver itself polls the database server to see if the query has completed execution. If

the query is still executing, then the status SQL_STILL_EXECUTING is returned to the application. If it has completed, then a

status such as SQL_SUCCESS is returned, and the application can then begin to fetch records.

Update data with positioned updates and deletes
Although positioned updates do not apply to all types of applications, try to use positioned updates and deletes whenever

possible.

189

190

Positioned updates (with UPDATE WHERE CURRENT OF CURSOR) allow you to update data by positioning the database

cursor to the row to be changed and signaling the driver to change the data. You are not forced to build a complex SQL

statement; you supply the data to be changed.

Besides making the code more maintainable, positioned updates typically result in improved performance. Because the

database server is already positioned on the row (for the SELECT statement currently in process), expensive operations

to locate the row to be changed are unnecessary. If the row must be located, the database server typically has an internal

pointer to the row available (for example, ROWID).

To support positioned UPDATE and DELETE statements with scrollable cursors, HCL Informix® ODBC Driver constructs a

new searched UPDATE or DELETE statement from the original positioned statement. However, the database server cannot

update scroll cursors directly. Instead, HCL Informix® ODBC Driver constructs a WHERE clause that references each column

fetched in the SELECT statement referenced in the WHERE CURRENT OF CURSOR clause. Values from the rowset data cache

of the SELECT statement are bound to each value in the constructed WHERE clause.

This method of positioning is both slower and more error prone than using a WHERE CURRENT OF CURSOR clause with

FORWARD ONLY cursors. If the fetched rows do not contain a unique key value, the constructed WHERE clause might identify

one or many rows, causing many rows to be deleted or updated. Deletion of rows in this manner affects both positioned

UPDATE and DELETE statements, and SQLSetPos statements when you use scroll cursors.

Use SQLSpecialColumns to determine the optimal set of columns to use in the WHERE clause for updating data. Many times

pseudocolumns provide the fastest access to the data; you can determine these columns only by using SQLSpecialColumns.

Many applications cannot be designed to take advantage of positioned updates and deletes. These applications typically

update data by forming a WHERE clause that consists of some subset of the column values that are returned in the result

set. Some applications might formulate the WHERE clause by using all searchable result columns or by calling SQLStatistics

to find columns that might be part of a unique index. These methods typically work but can result in fairly complex queries.

Consider the following example:

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name, ssn,
 address, city, state, zip FROM emp", SQL_NTS);
// fetchdata

rc = SQLExecDirect (hstmt, "UPDATE EMP SET ADDRESS = ?
 WHERE first_name = ? AND last_name = ? AND ssn = ? AND
 address = ? AND city = ? AND state = ? AND zip = ?", SQL_NTS);
// fairly complex query

Applications should call SQLSpecialColumns/SQL_BEST_ROWID to retrieve the optimal set of columns (possibly a

pseudocolumn) that identifies any given record. Many databases support special columns that are not explicitly user-

defined in the table definition but are hidden columns of every table (for example, ROWID, TID, and other columns). These

pseudocolumns almost always provide the fastest access to the data because they typically are pointers to the exact

location of the record. Because pseudocolumns are not part of the explicit table definition, they are not returned from

SQLSpecialColumns. The only way to determine whether pseudocolumns exist is to call SQLSpecialColumns.

Consider the previous example, this time with SQLSpecialColumns:

Chapter 1. Informix® ODBC Driver Guide

rc = SQLSpecialColumns (hstmt, 'emp', ...);

rc = SQLExecDirect (hstmt, "SELECT first_name, last_name, ssn,
 address, city, state, zip, ROWID FROM emp", SQL_NTS);
// fetch data and probably "hide" ROWID from the user

rc = SQLExecDirect (hstmt, "UPDATE emp SET address = ? WHERE
 ROWID = ?", SQL_NTS);
// fastest access to the data!

If your data source does not contain special pseudocolumns, the result set of SQLSpecialColumns consists of the columns

of the optimal unique index on the specified table (if a unique index exists). Therefore, your application does not additionally

call SQLStatistics to find the smallest unique index.

BIGINT and BIGSERIAL data types
BIGINT and BIGSERIAL data types have the same range of values as INT8 and SERIAL8 data types.

However, BIGINT and BIGSERIAL have advantages for storage and computation over INT8 and SERIAL8.

Message transfer optimization
If you activate the message transfer optimization feature (OPTMSG), the driver minimizes message transfers with the

database server for most HCL Informix® ODBC functions.

In addition, the driver chains messages from the database server together and eliminates some small message packets to

accomplish optimized message transfers.

To activate message transfer optimization, set the SQL_INFX_ATTR_OPTMSG statement attribute to one (1). The

optimization default is: OFF.

Message chaining restrictions
HCL Informix® ODBC does not chain SQL functions even when you enable message transfer optimization.

The SQL functions that ODBC does not chain are:

• SQLDisconnect

• SQLConnect

• SQLEndTran

• SQLExecute (if the driver returns results by using the select or call procedure and when the driver uses insert cursors

to perform a bulk insert)

• SQLExtendedFetch

• SQLFetch

• SQLFetchScroll

• SQLPrepare

When the driver reaches one of the functions listed previously, it performs the following actions:

191

192

1. Flushes the message queue to the database server only when it encounters SQL statements that require a response

from the database server.

The driver does not flush the message queue when it encounters functions that do not require network traffic, such

as SQLAllocStmt.

2. Continues message chaining for subsequent SQL statements.

Disable message chaining
You can choose to disable message chaining.

Before you disable message chaining, consider the following situations:

• Some SQL statements require immediate replies. If you disable message chaining, re-enable the OPTMSG feature

after the restricted SQL statement is completed.

• If you perform debugging, you can disable the OPTMSG feature when you are trying to determine how each SQL

statement responds.

• If you enable OPTMSG, the message is queued up for the database server but it is not sent for processing. Consider

disabling message chaining before the last SQL statement in the program to ensure that the database server

processes all messages before the application exits.

• If you disable message chaining, you must reset the SQL_INFX_ATTR_OPTMSG attribute immediately after the SQL

statement that requires it to avoid unintended chaining.

The following example shows how to disable message chaining by placing the SQL_INFX_ATTR_OPTMSG attribute

after the DELETE statement. If you place the attribute after the delete statement, the driver can flush all the queued

messages when the next SQL statement executes.

SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 1);
SQLExecDirect(hstmt, (unsigned char *)
"delete from customer", SQL_NTS);
SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 0);
SQLExecDirect(hstmt, (unsigned char *)
"create index ix1 on customer (zipcode)", SQL_NTS);

Unintended message chaining can make it difficult to determine which of the chained statements failed.

At the CREATE INDEX statement, the driver sends both the DELETE and the CREATE INDEX statements to the

database server.

Errors with optimized message transfers
When you enable the OPTMSG feature, HCL Informix® ODBC does not perform error handling on any chained statement.

If you are not sure whether a particular statement might generate an error, include error-handling statements in your code

and do not enable message chaining for that statement.

The database server stops execution of subsequent statements when an error occurs in a chained statement. For example,

in the following code fragment, the intent is to chain five INSERT statements:

Chapter 1. Informix® ODBC Driver Guide

SQLExecDirect(hstmt, "create table tab1 (col1 INTEGER)", SQL_NTS);
/* enable message chaining */
SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 1);
/* these two INSERT statements execute successfully */
SQLExecDirect(hstmt, "insert into tab1 values (1)", SQL_NTS);
SQLExecDirect(hstmt, "insert into tab1 values (2)", SQL_NTS);
/* this INSERT statement generates an error because the data
* in the VALUES clause is not compatible with the column type */
SQLExecDirect(hstmt, "insert into tab1 values ('a')", SQL_NTS);
/* these two INSERT statements never execute */
SQLExecDirect(hstmt, "insert into tab1 values (3)", SQL_NTS);
SQLExecDirect(hstmt, "insert into tab1 values (4)", SQL_NTS);
/* disable message chaining */
SQLSetStmtOption(hstmt, SQL_INFX_ATTR_OPTMSG, 0);
/* commit work */
rc = SQLEndTran (SQL_HANDLE_DBC, hdbc, SQL_COMMIT);
if (rc != SQL_SUCCESS)

In this example, the following actions occur:

• The driver sends the five INSERT statements and the COMMIT WORK statements to the database server for

execution.

• The database inserts col1 values of 1 and 2 into the tab1 table.

• The third INSERT statement generates an error, so the database server does not execute the subsequent INSERT

statements or the COMMIT WORK statement.

• The driver flushes the message queue when the queue reaches the SQLEndTran function.

• The SQLEndTran function, which is the last statement in the chained statements, returns the error from the failed

INSERT statement.

If you want to keep the values that the database server inserted into col1, you must commit them yourself.

Error messages
These topics describe the HCL Informix® ODBC Driver error messages.

The topics provide information about:

• Diagnostic SQLSTATE values

• SQLSTATE values mapped to Informix® error messages

• HCL Informix® ODBC Driver error messages mapped to specific SQLSTATE values

For a description of an error message, use the finderr utility.

Diagnostic SQLSTATE values
Each HCL Informix® ODBC Driver function can return an SQLSTATE value that corresponds to the Informix® error code.

A function can return additional SQLSTATE values that arise from implementation-specific situations. SQLError returns

SQLSTATE values as defined by the GLS and SQL Access Group SQL CAE specification (1992).

193

194

SQLSTATE values are character strings that consist of a two-character class value followed by a three-character subclass

value. A class value of 01 indicates a warning and is accompanied by a return code of SQL_SUCCESS_WITH_INFO. Class

values other than 01, except for the class IM, indicate an error and are accompanied by a return code of SQL_ERROR. The

class IM signifies warnings and errors that derive from the implementation of HCL Informix® ODBC Driver. The subclass

value 000 in any class is for implementation-defined conditions within the given class. ANSI SQL-92 defines the assignment

of class and subclass values.

Map SQLSTATE values to Informix® error messages
View the SQLSTATE values that HCL Informix® ODBC Driver can return.

The following table maps SQLSTATE values that HCL Informix® ODBC Driver can return.

A return value of SQL_SUCCESS normally indicates a function has executed successfully, although the SQLSTATE 00000 also

indicates success.

SQLSTATE Error message Can be returned from

01000 General warning All HCL Informix® ODBC Driver functions

except:

SQLAllocEnv

SQLError

01002 Disconnect error SQLDisconnect

01004 Data truncated SQLBrowseConnect

SQLColAttributes

SQLDataSources

SQLDescribeCol

SQLDriverConnect

SQLDrivers

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLGetCursorName

SQLGetData

SQLGetInfo

SQLNativeSql

SQLPutData

SQLSetPos

01006 Privilege not revoked SQLExecDirect

SQLExecute

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error message Can be returned from

01S00 Invalid connection string attribute SQLBrowseConnect

SQLDriverConnect

01S01 Error in row SQLExtendedFetch

SQLSetPos

01S02 Option value changed SQLSetConnectOption

SQLSetStmtOption

01S03 No rows updated or deleted SQLExecDirect

SQLExecute

SQLSetPos

01S04 More than one row updated or deleted SQLExecDirect

SQLExecute

SQLSetPos

07001 Wrong number of parameters SQLExecDirect

SQLExecute

07006 Restricted data type attribute violation SQLBindParameter

SQLExtendedFetch

SQLFetch

SQLGetData

08001 Unable to connect to data source SQLBrowseConnect

SQLConnect

SQLDriverConnect

08002 Connection in use SQLBrowseConnect

SQLConnect

SQLDriverConnect

SQLSetConnectOption

08003 Connection not open SQLAllocStmt

SQLDisconnect

SQLGetConnectOption

SQLGetInfo

SQLNativeSql

195

196

SQLSTATE Error message Can be returned from

SQLSetConnectOption

SQLTransact

08004 Data source rejected establishment of connection SQLBrowseConnect

SQLConnect

SQLDriverConnect

08007 Connection failure during transaction SQLTransact

08S01 Communication link failure SQLBrowseConnect

SQLColumnPrivileges

SQLColumns

SQLConnect

SQLDriverConnect

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLForeignKeys

SQLFreeConnect

SQLGetData

SQLGetTypeInfo

SQLParamData

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLPutData

SQLSetConnectOption

SQLSetStmtOption

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges

SQLTables

21S01 Insert value list does not match column list SQLExecDirect

SQLPrepare

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error message Can be returned from

21S02 Degree of derived table does not match column list SQLExecDirect

SQLPrepare

SQLSetPos

22001 String data right truncation SQLPutData

22003 Numeric value out of range SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLGetData

SQLGetInfo

SQLPutData

SQLSetPos

22005 Error in assignment SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLGetData

SQLPrepare

SQLPutData

SQLSetPos

22008 Datetime field overflow SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLGetData

SQLPutData

SQLSetPos

22012 Division by zero SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLGetData

22026 String data, length mismatch SQLParamData

197

198

SQLSTATE Error message Can be returned from

23000 Integrity constraint violation SQLExecDirect

SQLExecute

SQLSetPos

24000 Invalid cursor state SQLColAttributes

SQLColumnPrivileges

SQLColumns

SQLDescribeCol

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLForeignKeys

SQLGetData

SQLGetStmtOption

SQLGetTypeInfo

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLSetCursorName

SQLSetPos

SQLSetStmtOption

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges

SQLTables

25000 Invalid transaction state SQLDisconnect

28000 Invalid authorization specification SQLBrowseConnect

SQLConnect

SQLDriverConnect

34000 Invalid cursor name SQLExecDirect

SQLPrepare

SQLSetCursorName

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error message Can be returned from

37000 Syntax error or access violation SQLExecDirect

SQLNativeSql

SQLPrepare

3C000 Duplicate cursor name SQLSetCursorName

40001 Serialization failure SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

42000 Syntax error or access violation SQLExecDirect

SQLExecute

SQLPrepare

SQLSetPos

70100 Operation aborted SQLCancel

IM001 Driver does not support this function All ODBC functions except:

SQLAllocConnect

SQLAllocEnv

SQLDataSources

SQLDrivers

SQLError

SQLFreeConnect

SQLFreeEnv

SQLGetFunctions

IM002 Data source name not found and no default driver

specified

SQLBrowseConnect

SQLConnect

SQLDriverConnect

IM003 Specified driver could not be loaded SQLBrowseConnect

SQLConnect

SQLDriverConnect

IM004 Driver's SQLAllocEnv failed SQLBrowseConnect

SQLConnect

SQLDriverConnect

199

200

SQLSTATE Error message Can be returned from

IM005 Driver's SQLAllocConnect failed SQLBrowseConnect

SQLConnect

SQLDriverConnect

IM006 Driver's SQLSetConnectOption failed SQLBrowseConnect

SQLConnect

SQLDriverConnect

IM007 No data source or driver specified; dialog prohibited SQLDriverConnect

IM008 Dialog failed SQLDriverConnect

IM009 Unable to load translation shared library (DLL) SQLBrowseConnect

SQLConnect

SQLDriverConnect

SQLSetConnectOption

IM010 Data source name too long SQLBrowseConnect

SQLDriverConnect

IM011 Driver name too long SQLBrowseConnect

SQLDriverConnect

IM012 DRIVER keyword syntax error SQLBrowseConnect

SQLDriverConnect

IM013 Trace file error All ODBC functions.

S0001 Base table or view already exists SQLExecDirect

SQLPrepare

S0002 Base table not found SQLExecDirect

SQLPrepare

S0011 Index already exists SQLExecDirect

SQLPrepare

S0012 Index not found SQLExecDirect

SQLPrepare

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error message Can be returned from

S0021 Column already exists SQLExecDirect

SQLPrepare

S0022 Column not found SQLExecDirect

SQLPrepare

S0023 No default for column SQLSetPos

S1000 General error All ODBC functions except:

S1001 Memory allocation failure All ODBC functions except:

SQLAllocEnv

SQLError

SQLFreeConnect

SQLFreeEnv

S1002 Invalid column number SQLBindCol

SQLColAttributes

SQLDescribeCol

SQLExtendedFetch

SQLFetch

SQLGetData

S1003 Program type out of range SQLBindCol

SQLBindParameter

SQLGetData

S1004 SQL data type out of range SQLBindParameter

SQLGetTypeInfo

S1008 Operation canceled All ODBC functions that can be processed

asynchronously:

SQLColAttributes

SQLColumnPrivileges

SQLColumns

SQLDescribeCol

SQLDescribeParam

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

201

202

SQLSTATE Error message Can be returned from

SQLForeignKeys

SQLGetData

SQLGetTypeInfo

SQLMoreResults

SQLNumParams

SQLNumResultCols

SQLParamData

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLPutData

SQLSetPos

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges

SQLTables

S1009 Invalid argument value SQLAllocConnect

SQLAllocStmt

SQLBindCol

SQLBindParameter

SQLExecDirect

SQLForeignKeys

SQLGetData

SQLGetInfo

SQLNativeSql

SQLPrepare

SQLPutData

SQLSetConnectOption

SQLSetCursorName

SQLSetPos

SQLSetStmtOption

S1010 Function sequence error SQLBindCol

SQLBindParameter

SQLColAttributes

SQLColumnPrivileges

SQLColumns

SQLDescribeCol

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error message Can be returned from

SQLDisconnect

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLForeignKeys

SQLFreeConnect

SQLFreeEnv

SQLFreeStmt

SQLGetConnectOption

SQLGetCursorName

SQLGetData

SQLGetFunctions

SQLGetStmtOption

SQLGetTypeInfo

SQLMoreResults

SQLNumParams

SQLNumResultCols

SQLParamData

SQLParamOptions

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLPutData

SQLRowCount

SQLSetConnectOption

SQLSetCursorName

SQLSetPos

SQLSetScrollOptions

SQLSetStmtOption

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges

SQLTables

SQLTransact

S1011 Operation invalid at this time SQLGetStmtOption

SQLSetConnectOption

SQLSetStmtOption

203

204

SQLSTATE Error message Can be returned from

S1012 Invalid transaction operation code specified SQLTransact

S1015 No cursor name available SQLGetCursorName

S1090 Invalid string or buffer length SQLBindCol

SQLBindParameter

SQLBrowseConnect

SQLColAttributes

SQLColumnPrivileges

SQLColumns

SQLConnect

SQLDataSources

SQLDescribeCol

SQLDriverConnect

SQLDrivers

SQLExecDirect

SQLExecute

SQLForeignKeys

SQLGetCursorName

SQLGetData

SQLGetInfo

SQLNativeSql

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLPutData

SQLSetCursorName

SQLSetPos

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges

SQLTables

S1091 Descriptor type out of range SQLColAttributes

S1092 Option type out of range SQLFreeStmt

SQLGetConnectOption

SQLGetStmtOption

SQLSetConnectOption

SQLSetStmtOption

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error message Can be returned from

S1093 Invalid parameter number SQLBindParameter

S1094 Invalid scale value SQLBindParameter

S1095 Function type out of range SQLGetFunctions

S1096 Information type out of range SQLGetInfo

S1097 Column type out of range SQLSpecialColumns

S1098 Scope type out of range SQLSpecialColumns

S1099 Nullable type out of range SQLSpecialColumns

S1100 Uniqueness option type out of range SQLStatistics

S1101 Accuracy option type out of range SQLStatistics

S1103 Direction option out of range SQLDataSources

SQLDrivers

S1104 Invalid precision value SQLBindParameter

S1105 Invalid parameter type SQLBindParameter

S1106 Fetch type out of range SQLExtendedFetch

S1107 Row value out of range SQLExtendedFetch

SQLParamOptions

SQLSetPos

SQLSetScrollOptions

S1108 Concurrency option out of range SQLSetScrollOptions

S1109 Invalid cursor position SQLExecute

SQLExecDirect

SQLGetData

SQLGetStmtOption

SQLSetPos

S1110 Invalid driver completion SQLDriverConnect

S1111 Invalid bookmark value SQLExtendedFetch

S1C00 Driver not capable SQLBindCol

SQLBindParameter

SQLColAttributes

SQLColumnPrivileges

SQLColumns

205

206

SQLSTATE Error message Can be returned from

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLForeignKeys

SQLGetConnectOption

SQLGetData

SQLGetInfo

SQLGetStmtOption

SQLGetTypeInfo

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLSetConnectOption

SQLSetPos

SQLSetScrollOptions

SQLSetStmtOption

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges

SQLTables

SQLTransact

S1T00 Time-out expired SQLBrowseConnect

SQLColAttributes

SQLColumnPrivileges

SQLColumns

SQLConnect

SQLDescribeCol

SQLDriverConnect

SQLExecDirect

SQLExecute

SQLExtendedFetch

SQLFetch

SQLForeignKeys

SQLGetData

SQLGetInfo

SQLGetTypeInfo

SQLMoreResults

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error message Can be returned from

SQLNumParams

SQLNumResultCols

SQLParamData

SQLPrepare

SQLPrimaryKeys

SQLProcedureColumns

SQLProcedures

SQLPutData

SQLSetPos

SQLSpecialColumns

SQLStatistics

SQLTablePrivileges

SQLTables

Map Informix® error messages to SQLSTATE values
The rest of this section describes diagnostic SQLSTATE values for HCL Informix® ODBC Driver functions.

The return code for each SQLSTATE value is SQL_ERROR unless a description indicates otherwise. When a function returns

SQL_SUCCESS_WITH_INFO or SQL_ERROR, you can call SQLError to get the SQLSTATE value.

Deprecated and new HCL Informix® ODBC Driver APIs
In Version 4.10, numerous ODBC APIs have been deprecated and their functionality transferred to new APIs.

Only the name has been changed; no functionality has changed. The following table lists the deprecated and new APIs.

Table 10. Deprecated and new ODBC APIs

Depreca

ted ODBC APIs New ODBC APIs

SQLAllocConnect SQLAllocHandle

SQLAllocEnv SQLAllocHandle

SQLAllocStmt SQLAllocHandle

SQLColAttributes SQLColAttribute

SQLError SQLGetDiagRec

SQLExtendedFetch SQLFetch,

SQLFetchScroll

SQLFreeConnect SQLFreeHandle

207

208

Table 10. Deprecated and new ODBC APIs

(continued)

Depreca

ted ODBC APIs New ODBC APIs

SQLFreeEnv SQLFreeHandle

SQLFreeStmt SQLFreeHandle

SQLGetConnectOption SQLGetConnectAttr

SQLGetStmtOption SQLGetStmtAttr

SQLSetConnectOption SQLSetConnectAttr

SQLSetPos SQLBulkOperations

SQLSetStmtOption SQLSetStmtAttr

SQLTransact SQLEndTran

SQLAllocConnect (core level only)
This table describes the SQLSTATE and error values for SQLAllocConnect.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1009 -11066 Invalid argument value

SQLAllocEnv (core level only)
SQLAllocEnv allocates memory for an environment handle and initializes the driver call level interface for application use.

An application must call SQLAllocEnv before it calls any other driver function.

A driver cannot return SQLSTATE values directly after the call to SQLAllocEnv because no valid handle exists with which to

call SQLError.

Two levels of SQLAllocEnv functions exist, one within the driver manager (if you are using one) and one within the driver.

The driver manager does not call the driver-level function until the application calls SQLConnect, SQLBrowseConnect,

or SQLDriverConnect. If an error occurs in the driver-level SQLAllocEnv function, the driver manager-level SQLConnect,

SQLBrowseConnect, or SQLDriverConnect function returns SQL_ERROR. A subsequent call to SQLError with henv,

SQL_NULL_HDBC, and SQL_NULL_HSTMT returns SQLSTATE IM004 (the driver SQLAllocEnv function failed), followed by one

of the following errors from the driver:

Chapter 1. Informix® ODBC Driver Guide

• SQLSTATE S1000 (General error)

• The HCL Informix® ODBC Driver SQLSTATE value, which ranges from S1000 to S19ZZ.

For example, SQLSTATE S1001 (Memory-allocation failure) indicates that the call from the driver manager to the

driver-level SQLAllocEnv returned SQL_ERROR, and the henv from the driver manager was set to SQL_NULL_HENV.

SQLAllocStmt (core level only)
SQLAllocStmt allocates memory for a statement handle and associates the statement handle with the connection that hdbc

specifies.

An application must call SQLAllocStmt before it submits SQL statements.

The following table describes the SQLSTATE and error values for SQLAllocStmt.

SQLSTATE Error value Error message

01000 -11001 General warning

08003 -11017 Connection not open

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1009 -11066 Invalid argument value

08S01 -11301 A protocol error has been detected. Current connection is closed.

SQLBindCol (core level only)
SQLBindCol assigns the storage and HCL Informix® ODBC Driver C data type for a column in a result set.

The SQLBindCol assigns the storage as follows:

• A storage buffer that receives the contents of a column of data

• The length of the storage buffer

• A storage location that receives the actual length of the column of data returned by the fetch operation

• Data type conversion from the Informix® SQL data type to the Informix® ODBC driver C data type

The following table describes the SQLSTATE and error values for SQLBindCol.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1002 -11062 Invalid column number

209

210

SQLSTATE Error value Error message

S1003 -11063 Program type out of range

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

Important: An application can call SQLBindCol to bind a column to a new storage location, regardless of whether

data has already been fetched. The new binding replaces the old binding for bookmark columns as well as other

bound columns. The new binding does not apply to data already fetched; it takes effect the next time SQLFetch,

SQLExtendedFetch, or SQLSetPos is called.

SQLBindParameter (level one only)
SQLBindParameter binds a buffer to a parameter marker in an SQL statement.

The following table describes the SQLSTATE and error values for SQLBindParameter.

SQLSTATE Error value Error message

01000 -11001 General warning

07006 -11013 Restricted data type attribute violation

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1003 -11063 Program type out of range

S1004 -11064 SQL data type out of range

S1009 -11066 Invalid argument value

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1093 -11074 Invalid parameter number

S1094 -11075 Invalid scale value

S1104 -11084 Invalid precision value

S1105 -11085 Invalid parameter type

S1C00 -11092 Driver not capable

Chapter 1. Informix® ODBC Driver Guide

SQLBrowseConnect (level two only)
SQLBrowseConnect supports an iterative method of discovering and enumerating the attributes and attribute values required

to connect to a data source.

Each call to SQLBrowseConnect returns successive levels of attributes and attribute values. When all levels are enumerated,

a connection to the data source is completed, and a SQLBrowseConnect string is returned with a return code of now

connected to the data source.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

01S00 -11005 Invalid connection string attribute

08001 -11015 Unable to connect to data source

08002 -11016 Connection in use

08S01 -11020 Communication-link failure

28000 -11033 Invalid authorization specification

IM002 -11041 Data source not found and no default driver specified

IM003 -11042 Specified driver could not be loaded

IM004 -11043 Driver's SQLAllocEnv failed

IM005 -11044 Driver's SQLAllocConnect failed

IM006 -11045 Driver's SQLSetConnectOption failed

IM009 -11048 Unable to load translation shared library (DLL)

IM010 -11049 Data-source name too long

IM011 -11050 Driver name too long

IM012 -11051 DRIVER keyword syntax error

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1090 -11071 Invalid string or buffer length

S1T00 -11094 Time-out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11303 Input connection string too large

S1000 -11317 Invalid connectdatabase value specified

211

212

SQLSTATE Error value Error message

S1000 -11318 Invalid vmbcharlenexact value specified

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLCancel (core level only)
SQLCancel cancels the processing on an hstmt or a query.

The following table describes the SQLSTATE and error values for the function.

SQLSTATE Error value Error message

01000 -11001 General warning

01S05 -11010 Cancel treated as FreeStmt/Close.

70100 -11039 Operation aborted

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

08S01 -11301 A protocol error has been detected. Current connection is closed.

SQLColAttributes (core level only)
SQLColAttributes returns descriptor information for a column in a result set.

It cannot be used to return information about the bookmark column (column 0). Descriptor information is returned as a

character string, a 32-bit descriptor-dependent value, or an integer value.

The following table describes the SQLSTATE and error values for SQLColAttributes.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1002 -11062 Invalid column number

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

S1090 -11071 Invalid string or buffer length

S1091 -11072 Descriptor type out of range

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

SQLColAttributes can return any SQLSTATE that can be returned by SQLPrepare or SQLExecute when it is called after

SQLPrepare and before SQLExecute, depending on when the data source evaluates the SQL statement associated with the

hstmt.

SQLColumnPrivileges (level two only)
SQLColumnPrivileges returns a list of columns and associated privileges for the specified table. The driver returns the

information as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for SQLColumnPrivileges.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

213

214

SQLColumns (level one only)
SQLColumns returns the list of column names in specified tables. The driver returns this information as a result set on the

specified hstmt.

The following table describes the SQLSTATE and error values for SQLColumns.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLConnect (core level only)
SQLConnect loads a driver and establishes a connection to a data source.

The connection handle references where all information about the connection, including status, transaction state, and error

information is stored.

The following table describes the SQLSTATE and error values for SQLConnect.

SQLSTATE Error value Error message

01000 -11001 General warning

08001 -11015 Unable to connect to data source

08002 -11016 Connection in use

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

08S01 -11020 Communication-link failure

28000 -11033 Invalid authorization specification

IM002 -11041 Data source not found and no default driver specified

IM003 -11042 Specified driver could not be loaded

IM004 -11043 Driver's SQLAllocEnv failed

IM005 -11044 Driver's SQLAllocConnect failed

IM006 -11045 Driver's SQLSetConnectOption failed

IM009 -11048 Unable to load translation shared library (DLL)

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1090 -11071 Invalid string or buffer length

S1T00 -11094 Time-out expired

S1000 -11302 Insufficient connection information was supplied

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLDataSources (level two only)
SQLDataSources lists data-source names.

The following table describes the SQLSTATE and error values for SQLDataSources.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1090 -11071 Invalid string or buffer length

S1103 -11083 Direction option out of range

SQLDescribeCol (core level only)
SQLDescribeCol returns the result descriptor (column name, type, precision, scale, and whether it can have a NULL value) for

one column in the result set.

215

216

It cannot be used to return information about the bookmark column (column 0).

The following table describes the SQLSTATE and error values for SQLDescribeCol.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1002 -11062 Invalid column number

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1T00 -11094 Time-out expired

SQLDescribeCol can return any SQLSTATE that SQLPrepare or SQLExecute returns when SQLDescribeCol is called after

SQLPrepare and before SQLExecute, depending on when the data source evaluates the SQL statement associated with the

hstmt.

SQLDisconnect
SQLDisconnect closes the connection associated with a specific connection handle.

The following table describes the SQLSTATE and error values for SQLDisconnect.

SQLSTATE Error value Error message

01000 -11001 General warning

01002 -11002 Disconnect error

08003 -11017 Connection not open

25000 -11032 Invalid transaction state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1010 -11067 Function-sequence error

08S01 -11301 A protocol error has been detected. Current connection is closed.

Chapter 1. Informix® ODBC Driver Guide

Usage

If an application calls SQLDisconnect after SQLBrowseConnect returns SQL_NEED_DATA and before it returns a different

return code, the driver cancels the connection-browsing process and returns the hdbc to an unconnected state.

If an application calls SQLDisconnect while an incomplete transaction is associated with the connection handle, the driver

returns SQLSTATE 25000 (Invalid transaction state), indicating that the transaction is unchanged and the connection is open.

An incomplete transaction is one that was not committed or rolled back with SQLTransact.

If an application calls SQLDisconnect before it frees every hstmt associated with the connection, the driver frees each

remaining hstmt after it successfully disconnects from the data source. However, if one or more of the hstmts associated

with the connection are still executing asynchronously, SQLDisconnect returns SQL_ERROR with an SQLSTATE value of

S1010 (Function sequence error).

SQLDriverConnect (level one only)
SQLDriverConnect is an alternative to SQLConnect.

It supports data sources that require more connection information than the three arguments in SQLConnect dialog boxes to

prompt the user for all connection information and data sources that are not defined data source names.

SQLDriverConnect provides the following connection options:

• You can establish a connection by using a connection string that contains the data source name, one or more user

IDs, one or more passwords, and other information that the data source requires.

• You can establish a connection by using a partial connection string or no additional information; in this case, HCL

Informix® ODBC Driver can prompt the user for connection information.

After a connection is established, SQLDriverConnect connection string is completed. The application can use this string for

subsequent connection requests.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

01S00 -11005 Invalid connection string attribute

08001 -11015 Unable to connect to data source

08002 -11016 Connection in use

08S01 -11020 Communication-link failure

28000 -11033 Invalid authorization specification

IM002 -11041 Data source not found and no default driver specified

IM003 -11042 Specified driver could not be loaded

217

218

SQLSTATE Error value Error message

IM004 -11043 Driver's SQLAllocEnv failed

IM005 -11044 Driver's SQLAllocConnect failed

IM006 -11045 Driver's SQLSetConnectOption failed

IM007 -11046 No data source or driver specified; dialog prohibited

IM008 -11047 Dialog failed

IM009 -11048 Unable to load translation shared library

IM010 -11049 Data-source name too long

IM011 -11050 Driver name too long

IM012 -11051 DRIVER keyword syntax error

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1090 -11071 Invalid string or buffer length

S1110 -11090 Invalid driver completion

S1T00 -11094 Time-out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11302 Insufficient connection information was supplied

S1000 -11303 Input connection string too large

S1000 -11317 Invalid connectdatabase value specified

S1000 -11318 Invalid vmbcharlenexact value specified

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLDrivers (level two only)
SQLDrivers lists driver descriptions and driver-attribute keywords.

The following table describes the SQLSTATE and error values for SQLDrivers.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

S1000 -11060 General error

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

S1001 -11061 Memory-allocation failure

S1090 -11071 Invalid string or buffer length

S1103 -11083 Direction option out of range

SQLError (core level only)
SQLError returns error or status information.

SQLError does not post error values for itself. SQLError returns SQL_NO_DATA_FOUND when it cannot retrieve any error

information (in which case sqlstate equals 00000). If SQLError cannot access error values for any reason that would normally

return SQL_ERROR, SQLError returns SQL_ERROR but does not post any error values. If the buffer for the error message is too

short, SQLError returns SQL_SUCCESS_WITH_INFO but still does not return an SQLSTATE value for SQLError.

To determine that a truncation occurred in the error message, an application can compare cbErrorMsgMax to the actual

length of the message text written to pcbErrorMsg.

SQLExecDirect (core level only)
SQLExecDirect executes a preparable statement by using the current values of the parameter-marker variables if any

parameters exist in the statement.

SQLExecDirect is the fastest way to submit an SQL statement for one-time execution.

The following table describes the SQLSTATE and error values for SQLExecDirect.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

01006 -11004 Privilege not revoked

01S03 -11008 No rows updated or deleted

01S04 -11009 More than one row updated or deleted

07001 -11012 Wrong number of parameters

07S01 -11014 Invalid use of default parameter

08S01 -11020 Communication-link failure

21S01 -11021 Insert value list does not match column list

21S02 -11022 Degree of derived table does not match column list

22003 -11025 Numeric value out of range

219

220

SQLSTATE Error value Error message

22005 -11026 Error in assignment

22008 -11027 Datetime field overflow

22012 -11028 Division by zero

23000 -11030 Integrity-constraint violation

24000 -11031 Invalid cursor state

34000 -11034 Invalid cursor name

37000 -11035 Syntax error or access violation

40001 -11037 Serialization failure

42000 -11038 Syntax error or access violation

S0001 -11053 Base table or view already exists

S0002 -11054 Base table not found

S0011 -11055 Index already exists

S0012 -11056 Index not found

S0021 -11057 Column already exists

S0022 -11058 Column not found

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1009 -11066 Invalid argument value

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1109 -11089 Invalid cursor position

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLExecute (core level only)
SQLExecute executes a prepared statement by using the current values of the parameter-marker variables if any parameter

markers exist in the statement.

The following table describes the SQLSTATE and error values for SQLExecute.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

01006 -11004 Privilege not revoked

01S03 -11008 No rows updated or deleted

01S04 -11009 More than one row updated or deleted

07001 -11012 Wrong number of parameters

07S01 -11014 Invalid use of default parameter.

08S01 -11020 Communication-link failure

22003 -11025 Numeric value out of range

22005 -11026 Error in assignment

22008 -11027 Datetime field overflow

22012 -11028 Division by zero

23000 -11030 Integrity constraint violation

24000 -11031 Invalid cursor state

40001 -11037 Serialization failure

42000 -11038 Syntax error or access violation

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1109 -11089 Invalid cursor position

221

222

SQLSTATE Error value Error message

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLExecute can return any SQLSTATE that SQLPrepare can return based on when the data source evaluates the SQL

statement associated with the hstmt.

SQLExtendedFetch (level two only)
SQLExtendedFetch extends the functionality of SQLFetch.

SQLExtendedFetch extends functionality in the following ways:

• It returns row-set data (one or more rows), in the form of an array, for each bound column.

• It scrolls through the result set according to the setting of a scroll-type argument.

SQLExtendedFetch works with SQLSetStmtOption.

To fetch one row of data at a time in a forward direction, an application calls SQLFetch.

The following table describes the SQLSTATE and error values for SQLExtendedFetch.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

01S01 -11006 Error in row

07006 -11013 Restricted data type attribute violation

08S01 -11020 Communication-link failure

22002 -11024 Indicator value required but not supplied

22003 -11025 Numeric value out of range

22005 -11026 Error in assignment

22008 -11027 Datetime field overflow

22012 -11028 Division by zero

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

24000 -11031 Invalid cursor state

40001 -11037 Serialization failure

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1002 -11062 Invalid column number

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1106 -11086 Fetch type out of range

S1107 -11087 Row value out of range

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11307 In SQLExtendedFetch, only SQL_FETCH_NEXT is supported for

SQL_SCROLL_Forward_only cursors

If an error occurs that pertains to the entire row set, such as SQLSTATE S1T00 (Time-out expired), the driver returns

SQL_ERROR and the appropriate SQLSTATE. The contents of the row set buffers are undefined, and the cursor position is

unchanged.

If an error occurs that pertains to a single row, the driver performs the following actions:

• Sets the element in the rgfRowStatus array for the row to SQL_ROW_ERROR

• Posts SQLSTATE 01S01 (Error in row) in the error queue

• Posts zero or more additional SQLSTATE values for the error after SQLSTATE 01S01 (Error in row) in the error queue

After the driver processes the error or warning, it continues the operation for the remaining rows in the row set and returns

SQL_SUCCESS_WITH_INFO. Thus, for each error that pertains to a single row, the error queue contains SQLSTATE 01S01

(Error in row) followed by zero or more additional SQLSTATEs.

After the driver processes the error, it fetches the remaining rows in the row set and returns SQL_SUCCESS_WITH_INFO.

Thus, for each row that returns an error, the error queue contains SQLSTATE 01S01 (Error in row) followed by zero or more

additional SQLSTATE values.

If the row set contains rows that are already fetched, the driver is not required to return SQLSTATE values for errors that

occurred when the rows were first fetched. However, it is required to return SQLSTATE 01S01 (Error in row) for each row

in which an error originally occurred and to return SQL_SUCCESS_WITH_INFO. For example, a static cursor that maintains

223

224

a cache might cache row-status information (so that it can determine which rows contain errors) but might not cache the

SQLSTATE associated with those errors.

Error rows do not affect relative cursor movements. For example, suppose the result set size is 100, and the row-set size is

10. If the current row set is rows 11 through 20 and the element in the rgfRowStatus array for row 11 is SQL_ROW_ERROR,

calling SQLExtendedFetch with the SQL_FETCH_NEXT fetch type still returns rows 21 through 30.

If the driver returns any warnings, such as SQLSTATE 01004 (Data truncated), it returns warnings that apply to the entire row

set or to unknown rows in the row set before it returns error information that applies to specific rows. It returns warnings for

specific rows with any other error information about those rows.

SQLFetch (core level only)
SQLFetch fetches a row of data from a result set.

The driver returns data for all columns that were bound to storage locations with SQLBindCol.

The following table describes the SQLSTATE and error values for SQLFetch.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

07006 -11013 Restricted data-type attribute violation

08S01 -11020 Communication-link failure

22002 -11024 Indicator value required but not supplied

22003 -11025 Numeric value out of range

22005 -11026 Error in assignment

22008 -11027 Datetime field overflow

22012 -11028 Division by zero

24000 -11031 Invalid cursor state

40001 -11037 Serialization failure

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1002 -11062 Invalid column number

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1C00 -11092 Driver not capable

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

S1T00 -11094 Time-out expired

SQLForeignKeys (level two only)
SQLForeignKeys can return a list of foreign keys.

SQLForeignKeys can return either of the following items:

• A list of foreign keys in the specified table (columns in the specified table that refer to primary keys in other tables)

• A list of foreign keys in other tables that refer to the primary key in the specified table

The driver returns each list as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for SQLForeignKeys.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication link failure

24000 -11031 Invalid cursor state

IM001 -11040 Driver does not support this function

S1000 -11060 General error

S1001 -11061 Memory allocation failure

S1008 -11065 Operation canceled

S1009 -11066 Invalid argument value

S1010 -11067 Function sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Timeout expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current® connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

225

226

SQLFreeConnect (core level only)
SQLFreeConnect releases a connection handle and frees all memory associated with the handle.

The following table describes the SQLSTATE and error values for SQLFreeConnect.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

S1000 -11060 General error

S1010 -11067 Function-sequence error

SQLFreeEnv (core level only)
SQLFreeEnv frees the environment handle and releases all memory associated with the environment handle.

The following table describes the SQLSTATE and error values for SQLFreeEnv.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1010 -11067 Function-sequence error

SQLFreeStmt (core level only)
SQLFreeStmt stops the processing that is associated with a specific hstmt, closes any open cursors that are associated with

the hstmt, discards pending results, and, optionally, frees all resources associated with the statement handle.

The following table describes the SQLSTATE and error values for SQLFreeStmt.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1010 -11067 Function-sequence error

S1092 -11073 Option type out of range

SQLGetConnectOption (level one only)
SQLGetConnectOption returns the current setting of a connection option.

Chapter 1. Informix® ODBC Driver Guide

The following table describes the SQLSTATE and error values for SQLGetConnectOption.

SQLSTATE Error value Error message

01000 -11001 General warning

08003 -11017 Connection not open

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1010 -11067 Function-sequence error

S1092 -11073 Option type out of range

S1C00 -11092 Driver not capable

SQLGetCursorName (core level only)
SQLGetCursorName returns the cursor name associated with a specified hstmt.

The following table describes the SQLSTATE and error values for SQLGetCursorName.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1010 -11067 Function-sequence error

S1015 -11070 No cursor name available

S1090 -11071 Invalid string or buffer length

SQLGetData (level one only)
SQLGetData returns result data for a single unbound column in the current row.

The application must call SQLFetch or SQLExtendedFetch and (optionally) SQLSetPos to position the cursor on a row of

data before it calls SQLGetData. It is possible to use SQLBindCol for some columns and use SQLGetData for others within

the same row. This function can be used to retrieve character or binary data values in parts from a column with a character,

binary, or data source-specific data type (for example, data from SQL_LONGVARBINARY or SQL_LONGVARCHAR columns).

The following table describes the SQLSTATE and error values for SQLGetData.

227

228

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

07006 -11013 Restricted data- type attribute violation

08S01 -11020 Communication-link failure

22002 -11024 Indicator value required but not supplied

22003 -11025 Numeric value out of range

22005 -11026 Error in assignment

22008 -11027 Datetime-field overflow

22012 -11028 Division by zero

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1002 -11062 Invalid column number

S1003 -11063 Program type out of range

S1008 -11065 Operation canceled

S1009 -11066 Invalid argument value

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1109 -11089 Invalid cursor position

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

SQLGetFunctions (level one only)
SQLGetFunctions returns information about whether the driver supports a specific function.

The following table describes the SQLSTATE and error values for SQLGetFunctions.

SQLSTATE Error value Error message

01000 -1101 General warning

S1000 -11060 General error

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

S1001 -11061 Memory-allocation failure

S1010 -11067 Function-sequence error

S1095 -11076 Function type out of range

SQLGetInfo (level one only)
SQLGetInfo returns general information about the driver and data source associated with an hdbc.

The following table describes the SQLSTATE and error values for SQLGetInfo.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

08003 -11017 Connection not open

22003 -11025 Numeric value out of range

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1009 -11066 Invalid argument value

S1090 -11071 Invalid string or buffer length

S1096 -11077 Information type out of range

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

SQLGetStmtOption (level one only)
SQLGetStmtOption returns the current setting of a statement option.

The following table describes the SQLSTATE and error values for SQLGetStmtOption.

SQLSTATE Error value Error message

01000 -11001 General warning

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

229

230

SQLSTATE Error value Error message

S1010 -11067 Function-sequence error

S1011 -11068 Operation invalid at this time

S1092 -11073 Option type out of range

S1109 -11089 Invalid cursor position

S1C00 -11092 Driver not capable

SQLGetTypeInfo (level one only)
SQLGetTypeInfo returns information about data types that the data source supports.

The driver returns the information in the form of an SQL result set.

The following table describes the SQLSTATE and error values for SQLGetTypeInfo.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1004 -11064 SQL data type out of range

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11305 SQLGetTypeInfo supported for FORWARD_ONLY cursors

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

Chapter 1. Informix® ODBC Driver Guide

SQLMoreResults (level two only)
SQLMoreResults determines whether more results are available on an hstmt that contains SELECT, UPDATE, INSERT, or

DELETE statements and, if so, initializes processing for those results.

The following table describes the SQLSTATE and error values for SQLMoreResults.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1T00 -11094 Time-out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

SQLNativeSql (level two only)
SQLNativeSql returns the SQL string that the driver translates.

The following table describes the SQLSTATE and error values for SQLNativeSql.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

08003 -11017 Connection not open

37000 -11035 Syntax error or access violation

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1009 -11066 Invalid argument value

S1090 -11071 Invalid string or buffer length

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

231

232

Usage

The following example shows what SQLNativeSql might return for an input SQL string that contains the scalar function

LENGTH:

SELECT {fn LENGTH(NAME)} FROM EMPLOYEE

HCL Informix® might return the following translated SQL string:

SELECT length(NAME) FROM EMPLOYEE

SQLNumParams (level two only)
SQLNumParams returns the number of parameters in an SQL statement.

The following table describes the SQLSTATE and error values for SQLNumParams.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1T00 -11094 Time-out expired

SQLNumResultCols (core level only)
SQLNumResultCols returns the number of columns in a result set.

The following table describes the SQLSTATE and error values for SQLNumResultCols.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1T00 -11094 Time-out expired

SQLNumResultCols can return any SQLSTATE that SQLPrepare or SQLExecute can return when SQLNumResultCols is

called after SQLPrepare and before SQLExecute is called, depending on when the data source evaluates the SQL statement

associated with the hstmt.

Chapter 1. Informix® ODBC Driver Guide

SQLParamData (level one only)
SQLParamData is used with SQLPutData to supply parameter data when a statement executes.

The following table describes the SQLSTATE and error values for SQLParamData.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

22026 -11029 String data, length mismatch

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

If SQLParamData is called while sending data for a parameter in an SQL statement, it can return any SQLSTATE that can be

returned by the function that was called to execute the statement (SQLExecute or SQLExecDirect). If it is called while sending

data for a column being updated or added with SQLSetPos, it can return any SQLSTATE that can be returned by SQLSetPos.

SQLParamOptions (core and level two only)
SQLParamOptions allows an application to specify multiple values for the set of parameters assigned by SQLBindParameter.

The ability to specify multiple values for a set of parameters is useful for bulk inserts and other work that requires the data

source to process the same SQL statement multiple times with various parameter values. For example, an application can

specify three sets of values for the set of parameters associated with an INSERT statement, and then execute the INSERT

statement once to perform the three insert operations.

The following table lists the SQLSTATE values commonly returned by SQLParamOptions and explains each one in the

context of this function; the notation (DM) precedes the description of each SQLSTATE returned by the driver manager. The

return code associated with each SQLSTATE value is SQL_ERROR unless noted otherwise.

SQLSTATE Error value Error message

01000 General warning

S1000 General error

S1001 Memory-allocation failure

233

234

SQLSTATE Error value Error message

S1010 Function-sequence error

S1107 Row value out of range

SQLPrepare
SQLPrepare prepares an SQL string for execution.

The following table describes the SQLSTATE and error values for SQLPrepare.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

21S01 -11021 Insert value list does not match column list

21S02 -11022 Degree of derived table does not match column list

22005 -11026 Error in assignment

24000 -11031 Invalid cursor state

34000 -11034 Invalid cursor name

37000 -11035 Syntax error or access violation

42000 -11038 Syntax error or access violation

S0001 -11053 Base table or view already exists

S0002 -11054 Base table not found

S0011 -11055 Index already exists

S0012 -11056 Index not found

S0021 -11057 Column already exists

S0022 -11058 Column not found

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1009 -11066 Invalid argument value

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

S1T00 -11094 Time-out expired

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLPrimaryKeys (level two only)
SQLPrimaryKeys returns the column names that comprise the primary key for a table.

The driver returns the information as a result set. This function does not support returning primary keys from multiple tables

in a single call.

The following table describes the SQLSTATE and error values for SQLPrimaryKeys.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

235

236

SQLProcedureColumns (level two only)
SQLProcedureColumns returns the list of input and output parameters, as well as the columns that make up the result set for

the specified procedures.

The driver returns the information as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for SQLProcedureColumns.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication link failure

24000 -11031 Invalid cursor state

IM001 -11040 Driver does not support this function

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLProcedures (level two only)
SQLProcedures returns the list of procedure names stored in a specific data source.

Procedure is a generic term used to describe an executable object, or a named entity that can be started with input and

output parameters, and which can return result sets similar to the results that SELECT statements return.

The following table describes the SQLSTATE and error values for SQLProcedures.

SQLSTATE Error value Error message

01000 -11001 General warning

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

08S01 -11020 Communication-link failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLPutData (level one only)
SQLPutData allows an application to send data for a parameter or column to the driver at statement execution time.

This function can send character or binary data values in parts to a column with a character, binary, or data-source-specific

data type (for example, parameters of SQL_LONGVARBINARY or SQL_LONGVARCHAR).

The following table describes the SQLSTATE and error values for SQLPutData.

SQLSTATE Error value Error message

01000 -11001 General warning

01004 -11003 Data truncated

07S01 -11014 Invalid use of default parameter

08S01 -11020 Communication-link failure

22001 -11023 String data right truncation

22003 -11025 Numeric value out of range

22005 -11026 Error in assignment

22008 -11027 Datetime-field overflow

237

238

SQLSTATE Error value Error message

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1009 -11066 Invalid argument value

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1T00 -11094 Time-out expired

Important: An application can use SQLPutData to send sections of character C data to a column with a character,

binary, or data source-specific data type or to send binary C data to a column with a character, binary, or data source-

specific data type. If SQLPutData is called more than once under any other conditions, it returns SQL_ERROR and

SQLSTATE 22003 (Numeric value out of range).

SQLRowCount (core level only)

SQLRowCount returns the number of rows affected by an UPDATE, INSERT, or DELETE statement or by an SQL_UPDATE,

SQL_ADD, or SQL_DELETE operation in SQLSetPos.

The following table describes the SQLSTATE and error values for SQLRowCount.

SQLSTATE Error value Error message

01000 -11001 General warning

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1010 -11067 Function-sequence error

SQLSetConnectOption (level one only)
SQLSetConnectOption sets options that govern aspects of connections.

The following table describes the SQLSTATE and error values for SQLSetConnectOption.

SQLSTATE Error value Error message

01000 -11001 General warning

01S02 -11007 Option value changed

08002 -11016 Connection in use

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

08003 -11017 Connection not open

08S01 -11020 Communication-link failure

IM009 -11048 Unable to load translation shared library (DLL)

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1009 -11066 Invalid argument value

S1010 -11067 Function-sequence error

S1011 -11068 Operation invalid at this time

S1092 -11073 Option type out of range

S1C00 -11092 Driver not capable

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

When fOption is a statement option, SQLSetConnectOption can return any SQLSTATE that SQLSetStmtOption returns.

SQLSetCursorName (core level only)
SQLSetCursorName associates a cursor name with an active hstmt.

If an application does not call SQLSetCursorName, the driver generates cursor names as needed for SQL statement

processing.

The following table describes the SQLSTATE and error values for SQLSetCursorName.

SQLSTATE Error value Error message

01000 -11001 General warning

24000 -11031 Invalid cursor state

34000 -11034 Invalid cursor name

3C000 -11036 Duplicate cursor name

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1009 -11066 Invalid argument value

S1010 -11067 Function-sequence error

239

240

SQLSTATE Error value Error message

S1090 -11071 Invalid string or buffer length

SQLSetStmtOption (level one only)
SQLSetStmtOption sets options that are related to an hstmt.

To set an option for all the statements associated with a specific hdbc, an application can call SQLSetConnectOption.

The following table describes the SQLSTATE and error values for SQLSetStmtOption.

SQLSTATE Error value Error message

01000 -11001 General warning

01S02 -11007 Option value changed

08S01 -11020 Communication-link failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1009 -11066 Invalid argument value

S1010 -11067 Function-sequence error

S1011 -11068 Operation invalid at this time

S1092 -11073 Option type out of range

S1C00 -11092 Driver not capable

SQLSpecialColumns (level one only)
SQLSpecialColumns retrieves information about columns.

SQLSpecialColumns retrieves the following information about columns within a specified table:

• The optimal set of columns that uniquely identifies a row in the table

• Columns that are automatically updated when any value in the row is updated by a transaction

The following table describes the SQLSTATE and error values for SQLSpecialColumns.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1097 -11078 Column type out of range

S1098 -11079 Scope type out of range

S1099 -11080 Nullable type out of range

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLStatistics (level one only)
SQLStatistics retrieves a list of statistics about a single table and the indexes associated with the table.

The driver returns this information as a result set.

The following table describes the SQLSTATE and error values for SQLStatistics.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory- allocation failure

S1008 -11065 Operation canceled

241

242

SQLSTATE Error value Error message

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1100 -11081 Uniqueness option type out of range

S1101 -11082 Accuracy option type out of range

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLTablePrivileges (level two only)
SQLTablePrivileges returns a list of tables and the privileges associated with each table.

The driver returns the information as a result set on the specified hstmt.

The following table describes the SQLSTATE and error values for SQLTablePrivileges.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

Chapter 1. Informix® ODBC Driver Guide

SQLSTATE Error value Error message

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLTables (level one only)
SQLTables returns the list of table names that are stored in a specific data source.

The driver returns this information as a result set.

The following table describes the SQLSTATE and error values for SQLTables.

SQLSTATE Error value Error message

01000 -11001 General warning

08S01 -11020 Communication-link failure

24000 -11031 Invalid cursor state

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1008 -11065 Operation canceled

S1010 -11067 Function-sequence error

S1090 -11071 Invalid string or buffer length

S1C00 -11092 Driver not capable

S1T00 -11094 Time-out expired

S1C00 -11300 SQL_DEFAULT_PARAM not supported

08S01 -11301 A protocol error has been detected. Current connection is closed.

S1000 -11310 Create and Drop must be executed within a ServerOnly Connection

S1000 -11320 Syntax error

S1000 -11323 The statement contained an escape clause not supported by this database driver

SQLTransact (core level only)
SQLTransact requests a commit or rollback operation for all active operations on all hstmts associated with a connection.

SQLTransact can also request that a commit or rollback operation is performed for all connections associated with the henv.

243

244

The following table describes the SQLSTATE and error values for SQLTransact.

SQLSTATE Error value Error message

01000 -11001 General warning

08003 -11017 Connection not open

S1000 -11060 General error

S1001 -11061 Memory-allocation failure

S1010 -11067 Function-sequence error

S1012 -11069 Invalid transaction operation code specified

S1C00 -11092 Driver not capable

08S01 -11301 A protocol error has been detected. Current connection is closed.

Unicode
These topics provide a brief overview of the Unicode standard and shows how it is used within ODBC applications.

Overview of Unicode
Unicode is a character encoding standard that provides a means of representing each character used in every major

language.

In the Unicode standard, each character is assigned a unique numeric value and name. These values can be used

consistently between applications across multiple platforms.

Unicode versions
Although Unicode provides a consistent way of representing text across multiple languages, there are different versions

which provide different data sizes for each character.

The following list describes the versions that are supported within HCL Informix® ODBC applications.

UCS-2

ISO encoding standard that maps Unicode characters to 2 bytes each. UCS-2 is the common encoding

standard on Windows™.

HCL Informix® ODBC Driver for IBM® AIX® platforms supports UCS-2 encoding. HCL Informix® ODBC Driver

for Windows™ supports only UCS-2.

UCS-4

ISO encoding standard that maps Unicode characters into 4 bytes each.

The HCL Informix® ODBC Driver supports UCS-4 on UNIX™ platforms.

Chapter 1. Informix® ODBC Driver Guide

UTF-8

Encoding standard that is based on a single (8 bit) byte. UTF-8 defines a mechanism to transform all Unicode

characters into a variable length (1 - 4) encoding of bytes.

The HCL Informix® ODBC Driver uses UTF-8 encoding for all UNIX™ applications that connect to the Data Direct

(formerly Merant) driver manager.

The 7-bit ASCII characters have the same encoding under both ASCII and UTF-8. This has the advantage that UTF-8 can be

used with much existing software without extensive revision.

Important: In applications that use Unicode, the driver does the work of code set conversion from Unicode to the

database locale and vice versa.The UTF-8 is the only type of Unicode code set that can be set as the client locale.

Unicode in an ODBC application
View the typical ODBC application architecture.

The following diagram shows the architecture of a typical ODBC application with a driver manager and the HCL Informix®

ODBC Driver.

Figure 8. Typical ODBC application architecture

In this scenario, if an application calls to Unicode enabled APIs, then it must be connected to a Unicode enabled HCL

Informix® ODBC Driver (Version 3.8 and later) to ensure that there is no loss of data. If the application calls to ANSI ODBC

APIs, the application can be linked to either a Unicode enabled driver or an ANSI driver.

The HCL Informix® ODBC Driver continues to support HCL Informix® GLS. Hence all data fetched in character buffers are

fetched in the client locale code set. Only data fetched with wide character buffers use Unicode.

On Windows™, if the ODBC driver is not Unicode enabled, the ODBC Driver Manager maps all Unicode API function calls to

ANSI ODBC APIs.

If the ODBC driver is Unicode enabled, the Windows™ ODBC Driver Manager (Version 4.10 or later) maps all ANSI ODBC APIs

to Unicode ODBC APIs. The Data Direct (formerly Merant) driver manager for UNIX™ also works this way.

245

246

Important: In CSDK Version 2.70 there are two ODBC drivers. One with only ANSI APIs (called ANSI ODBC Driver,

Version 3.34) and another with both ANSI and UNICODE APIs (called Unicode ODBC Driver, Version 3.80). For CSDK

2.80 and later, there is only one ODBC driver that supports both ANSI and UNICODE APIs.

Important: The HCL® Informix® Driver Manager Replacement (DMR) for UNIX™ platforms does not map between

Unicode and ANSI APIs.

For details about how the Windows™ ODBC driver manager handles mapping, see the section "Function Mapping in the Driver

Manager" in the ODBC Programmer's Reference for Microsoft™.

Unicode in an ODBC application
This section provides details on compiling and configuring Unicode within HCL® Informix® ODBC applications.

Configuration
Since the HCL Informix® ODBC Driver supports different types of Unicode on UNIX™ platforms, the type of Unicode used by

an application must be indicated in the ODBC section of the odbc.ini file.

Indicate the type of Unicode in the ODBC section as follows:

[ODBC]
.
.
.
UNICODE=UCS-4

Important: A Unicode-enabled application must indicate the type of Unicode used in the odbc.ini file. If the

Unicode parameter is not set in odbc.ini, the default type is UCS-4.

It is required that all UNIX™ ODBC applications must set the Unicode type in the odbc.ini file as follows:

• An ANSI ODBC application on UNIX™ (including AIX® 64-bit) must set UNICODE=UCS-4

• An ANSI ODBC application on IBM® AIX® 32-bit must set UNICODE-UCS-2

• An ANSI ODBC application that uses the Data Direct (formerly Merant) ODBC driver manager never indicates a

Unicode type other than UTF-8 in the odbc.ini file.

The following table provides an overview of the odbc.ini settings:

Platform Driver manager odbc.ini setting

AIX® Data Direct UTF-8

AIX® 32-bit DMR or none UCS-2

AIX® 64-bit Data Direct UTF-8

Chapter 1. Informix® ODBC Driver Guide

Platform Driver manager odbc.ini setting

UNIX™ Data Direct UTF-8

UNIX™ DMR or none UCS-4

Windows™ Windows™ ODBC Driver Manager N/A

Important:

If all of the following conditions exist, the settings are automatically reset without any warning or error message:

• The application is an ANSI application.

• You are linking with DMR or none.

• The Unicode setting in the odbc.ini file does not match the values shown in the table.

ODBC Smart trigger
Smart Triggers (also known as Pushdata) in ODBC are a set of classes/interfaces that provide an ease of use capability to

the Push data feature.

A smart trigger is a set of commands issued to the database that sets up a push notification when certain changes happen

to data in a table. These changes are detected by a SQL query that is run after INSERT, UPDATE, or DELETE commands are

executed. It is available across all CSDK/ODBC supported platforms.

It uses ODBC’s standard APIs SQLSetStmtAttr()/SQLSetStmtAttrA()/SQLSetStmtAttrW() and SQLGetStmtAttr()/

SQLGetStmtAttrA()/SQLGetStmtAttrW() with following Informix extensions, defined in infxcli.h file.

 SQL_INFX_ATTR_OPEN_SMART_TRIGGER
SQL_INFX_ATTR_JOIN_SMART_TRIGGER
SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER
SQL_INFX_ATTR_GET_SESSION_ID_SMART_TRIGGER
SQL_INFX_ATTR_REGISTER_SMART_TRIGGER
SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP
SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP
SQL_INFX_ATTR_DELETE_SMART_TRIGGER

ODBC API

Using the following ODBC API to use Smart Trigger:

1. Allocate Environment handle

2. Allocate Connection Handle

3. Connect to “sysadmin" database

4. Allocate statement handle

5. Call SQLSetStmtAttr(SQL_INFX_ATTR_OPEN_SMART_TRIGGER) and using structure IFMX_OPEN_SMART_TRIGGER

247

248

6. Call SQLGetStmtAttr(SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER) and get the File Descriptor ID (to be

used for registering the event/queries, the same File Descriptor to be used for multiple event/queries)

7. Following steps could be in thread loop for each event/query to be registered.

a. SQLAllocHandle(STMT)

b. Fill/Populate the SQL_INFX_ATTR_REGISTER_SMART_TRIGGER structure

c. Call SQLSetStmtAttr(SQL_INFX_ATTR_REGISTER_SMART_TRIGGER)

d. Call SQLGetStmtAttr(SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP /

SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP)

Once you register the event or join the already registered session, the call becomes blocking (ODBC waits for IDS server

to return the message/data), once the data/response or timeout message is received from IDS server, ODBC invokes the

registered callback function with output buffer.

Note: It is read only buffer and application should not tamper the buffer.

Once the control comes back to application (callback function), application may decide to come out of the loop by setting

IFMX_JOIN_SMART_TRIGGER->ControlBackToApplication OR SQL_INFX_ATTR_REGISTER_SMART_TRIGGER->isDeregister

to TRUE. If you decide to continue, then there is no action needed by you in the callback function (other than consuming the

received output).

Register the smart trigger events

File Descriptor is required to “register the events". After successful call to

SQLSetStmtAttr(SQL_INFX_ATTR_OPEN_SMART_TRIGGER), application should call following SQLGetStmtAttr() API to get

the “File Descriptor". The same “File Descriptor" should be used to “Register the smart trigger/pushdata events".

SQLGetStmtAttr(hstmt, SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER, (int *)&FileDesc, SQL_NTS, NULL);

Application should use “File Descriptor" received from above SQLGetStmtAttr() call and other inputs like table, database,

user, query etc to populate/fill the structure (mentioned above) IFMX_REGISTER_SMART_TRIGGER. Application should make

call to SQLSetStmtAttr() as follows. Application can register as many as events/queries they want in each thread (application

example below). It is advised to use separate statement handle for each registration.

 SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &tmpHstmt);
 SQLSetStmtAttr(tmpHstmt, SQL_INFX_ATTR_REGISTER_SMART_TRIGGER, (void *)&SmartTriggerInstance, SQL_NTS);

If the session was opened with detachable option then session ID will be created. Application can save the same session

ID and could use the same later to attach/join to the session. Below API should be used to attach/join the session using

structure IFMX_JOIN_SMART_TRIGGER. All the registered events/queries with the attached/joined session will be in effect.

SQLSetStmtAttr(hstmt, SQL_INFX_ATTR_JOIN_SMART_TRIGGER, (void *)&gJoinSmartTrigger, SQL_NTS);

Delete the registered session

If the session was registered as detachable session, there should be “session ID". The same session ID should be used to

delete the session by making below call.

SQLSetStmtAttr(hstmt, SQL_INFX_ATTR_DELETE_SMART_TRIGGER, (int *)&sesID, SQL_NTS);

Chapter 1. Informix® ODBC Driver Guide

API Structure

• IFMX_OPEN_SMART_TRIGGER structure: This is input structure to be used in SQLSetStmtAttr() call while

establishing the smart trigger/pushdata session. The allocation & deallocation of this structure and it’s members is

application’s responsibility. Each member of the structure is explained below:

BOOL *isDetachable -> If the session is expected to be reused at later time, even after finishing the application, one

should set this flag to TRUE. Otherwise set to FALSE.

int *timeOut-> Time in seconds, as per registered event/query, if no event happens, IDS sever will send “timeout"

message to ODBC based on the value set for this member. Valid range is 0 to 12000 seconds. If it’s beyond these

value, internally it will be set to 300 seconds.

short *maxRecsPerRead->This is number of records, returned (in callback function output buffer). Default is 1. Valid

allowed range is 1 to 200. The max buffer size is 8KB, if this number is set high, it will return data only max of 8KB at

a time, which may not match the number of records.

int *maxPendingOperations->Maximum pending operation. Default is 0. Allowed range is 0 to 200.

SQLWCHAR reserved[16]->Reserved for future usage.

• IFMX_JOIN_SMART_TRIGGER structure: This structure is used to attach/join already opened session. Each member

of the structure is explained below:

void(*callback) (char const *jsonOutBuf)-> This is user defined callback function. This will be called when response

from IDS server is received on registered event/query(events/queries) for a session to be attached/joined. The data

returned is read only for the user.

int *joinSessionID-> This is to be assigned from the value received from the SQLGetStmtAttr() call. This session ID

will be used to connect to prior registered session.

BOOL *ControlBackToApplication-> Once control comes back to application (as part of callback call), if user decides

to come out of the blocking call (event registration is blocking call), user can set this flag to TRUE.

SQLWCHAR reserved[16] -> Reserved for future usage.

• IFMX_REGISTER_SMART_TRIGGER structure: This structure is used to register the event/query on already opened

smart trigger/pushdata session. There could be as many as trigger/event user wants to register. Each trigger/event

should be invoked with separate thread. Each member of the structure is explained below.

void(*callback) (char const *jsonOutBuf)-> This is user defined callback function. This will be called when response

from IDS server is received on registered event/query. The data returned is read only for the user.

int *loFileDescriptor -> This is input, which is received from

SQLGetStmtAttr(SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER) call. For each event/query registration for a

given session, this value will remain same.

249

250

SQLWCHAR *tableName -> This is table name to be registered. The input to be provided in SQLWCHAR type. Max

length as per IDS supported table length.

SQLWCHAR *ownerName -> This is user/owner of table to be registered. The input to be provided in SQLWCHAR

type. Max length as per IDS supported user/owner length.

SQLWCHAR *dbName -> This is database name where the table belongs. The input to be provided in SQLWCHAR

type. Max length as per IDS supported database length.

SQLWCHAR *sqlQuery -> This is the SELECT query which is on registered table. The input to be provided in

SQLWCHAR type. Max length of query 4KB.

SQLWCHAR *label -> If NULL, internally, ODBC will create the label using table name, owner name database name &

internal counter i.e. "%s_%s_%s_%d". The input to be provided in SQLWCHAR type.

BOOL *isDeregister -> Smart Trigger/Pushdata is blocking call, the control is back to application when ODBC calls

user specified callback function. If user wants to come out of the blocking call, they can set this flag to TRUE.

BOOL *ControlBackToApplication-> Once control comes back to application (as part of callback call), if user decides

to come out of the blocking call without non-registering the event (event registration is blocking call), user can set

this flag to TRUE.

SQLWCHAR reserved[16] -> Reserved for future usage.

Compiling sample application on Linux

Use below compilation/linking steps, assuming C file name is SmartTrigger.c and application links directly to Informix driver

(no Driver Manager).

gcc -g -c -fsigned-char -DNO_WIN32 -O -I$INFORMIXDIR/incl/cli -I$INFORMIXDIR/incl/esql -I$INFORMIXDIR/incl/dmi
 SmartTrigger.c

gcc -g -o SmartTrigger SmartTrigger.o -L$INFORMIXDIR/lib/cli -L$INFORMIXDIR/lib/esql -lthcli -lifdmr
 -L$INFORMIXDIR/lib/esql -lifgls -lifglx -lm -lnsl

Compiling sample application on Windows

Use below steps to compile the Smart Trigger application on Windows.

cl /Zi /DEBUG /MD /D_CRT_SECURE_NO_DEPRECATE /D_CRT_NON_CONFORMING_SWPRINTFS /D
_CRT_NONSTDC_NO_DEPRECATE /I%INFORMIXDIR%\incl\cli %INFORMIXDIR%\lib\iclit09b.lib odbc32.lib odbccp32.lib
 SmartTrigger.c

The below example, supports two(2) trigger/event registration, hence two threads (NUM_OF_INSTANCE) has been used.

There are following 3 functions which needs to be changed to provide appropriate input for your environment.

Chapter 1. Informix® ODBC Driver Guide

1. SetConnectionString() => This is for database connection, you can provide “DSN=<value>" as well, depending on your

choice. In this function, you need to provide your own connection string.

2. AssignOpenParams() => In this function, you may need to change timeout, number of records(1 is recommended) etc

parameters for smart trigger/pushdata session opening.

3. AssignRegisterParams() => In this function, you need to change, callback function, table, owner, database and query

values which suits your environment. This function uses two such events/inputs to be registered.

ODBC sample application

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef NO_WIN32
#include <io.h>
#include <windows.h>
#include <conio.h>
#endif /*NO_WIN32*/

#define __REENTRANT
#include <signal.h>
#ifdef NO_WIN32
#include <sys/wait.h>
#include <pthread.h>
#endif
#include <time.h>
#include <infxcli.h>

#define ERRMSG_LEN 200
#define NAMELEN 300
#define NUM_OF_INSTANCE 2

SQLHDBC hdbc;
SQLHENV henv;
SQLHSTMT hstmt;
SQLINTEGER sesID = 0;
SQLWCHAR connStrInW[NAMELEN];
SQLCHAR connStrIn[NAMELEN];
BOOL delete = 0;
int gFileDesc = 0;
int fileDesc[NUM_OF_INSTANCE];
int timeOut;
short maxRec;
int maxPend;
int detachable;
BOOL dregister[NUM_OF_INSTANCE];
BOOL ControlBack[NUM_OF_INSTANCE];

IFMX_REGISTER_SMART_TRIGGER gSmartTriggerRegister[NUM_OF_INSTANCE];
IFMX_OPEN_SMART_TRIGGER gopenSmartTrigger;
IFMX_JOIN_SMART_TRIGGER gJoinSmartTrigger;

251

252

SQLINTEGER checkError (SQLRETURN rc,
 SQLSMALLINT handleType,
 SQLHANDLE handle,
 SQLCHAR* errmsg)
{
 SQLRETURN retcode = SQL_SUCCESS;
 SQLSMALLINT errNum = 1;
 SQLWCHAR sqlStateW[6];
 SQLCHAR *sqlState;
 SQLINTEGER nativeError;
 SQLWCHAR errMsgW[ERRMSG_LEN];
 SQLCHAR *errMsg;
 SQLSMALLINT textLengthPtr;

 if ((rc != SQL_SUCCESS) && (rc != SQL_SUCCESS_WITH_INFO))
 {
 while (retcode != SQL_NO_DATA)
 {
 retcode = SQLGetDiagRecW (handleType, handle, errNum, sqlStateW, &nativeError, errMsgW, ERRMSG_LEN,
 &textLengthPtr);

 if (retcode == SQL_INVALID_HANDLE)
 {
 fprintf (stderr, "checkError function was called with an invalid handle!!\n");
 return 1;
 }

 if ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO))
 {
 sqlState = (SQLCHAR *) malloc (wcslen(sqlStateW) + sizeof(char));
 wcstombs((char *) sqlState, sqlStateW, wcslen(sqlStateW)
 + sizeof(char));

 errMsg = (SQLCHAR *) malloc (wcslen(errMsgW) + sizeof(char));
 wcstombs((char *) errMsg, errMsgW, wcslen(errMsgW)
 + sizeof(char));

 fprintf (stderr, "ERROR: %d: %s : %s \n", nativeError, sqlState, errMsg);
 }

 errNum++;
 }

 fprintf (stderr, "%s\n", errmsg);
 return 1; /* all errors on this handle have been reported */
 }
 else
 return 0; /* no errors to report */
}

void TriggerCallback1(char const *outBuf)
{
 dregister[0] = FALSE; //TRUE;
 ControlBack[0] = FALSE;
 printf("\nCallback #1");

Chapter 1. Informix® ODBC Driver Guide

 if(outBuf != NULL)
 printf("\nData received : %s\n", outBuf);
 else
 printf("\nReturned NULL data!!");

 gSmartTriggerRegister[0].isDeregister = &dregister[0];
 gSmartTriggerRegister[0].ControlBackToApplication = &ControlBack[0];
 gJoinSmartTrigger.ControlBackToApplication = &ControlBack[0];
 return;
}

void TriggerCallback2(char const *outBuf)
{
 dregister[1] = FALSE;
 ControlBack[1] = FALSE; //TRUE;
 printf("\nCallback #2");
 if(outBuf != NULL)
 printf("\nData received : %s\n", outBuf);
 else
 printf("\nReturned NULL data!!");

 gSmartTriggerRegister[1].isDeregister = &dregister[1];
 gSmartTriggerRegister[1].ControlBackToApplication = &ControlBack[1];
 gJoinSmartTrigger.ControlBackToApplication = &ControlBack[1];
 return;
}

DWORD ThreadRegisterPushDataQuery(void *lpParam)
{
 SQLRETURN rc = 0;
 SQLHSTMT tmpHstmt;
 SQLINTEGER dummy = 0;

 IFMX_REGISTER_SMART_TRIGGER temp;
 IFMX_REGISTER_SMART_TRIGGER SmartTriggerInstance;

 SmartTriggerInstance = *((IFMX_REGISTER_SMART_TRIGGER *)lpParam);

 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &tmpHstmt);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, (SQLCHAR *) "Error(Thread) in Step 1 -- Statement Handle
 Allocation failed\nExiting!!"))
 exit(-1);

 rc = SQLSetStmtAttrW(tmpHstmt, SQL_INFX_ATTR_REGISTER_SMART_TRIGGER,(IFMX_REGISTER_SMART_TRIGGER
 *)&SmartTriggerInstance, SQL_IS_POINTER);
 if (checkError(rc, SQL_HANDLE_DBC, hdbc, (SQLCHAR *) "Error(Thread) in Step 2 -- SQLSetStmtAttr
 failed\nExiting!!"))
 exit(-1);
 rc = SQLGetStmtAttrW(tmpHstmt, SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP,(void *)&dummy, SQL_NTS, NULL);
 //rc = SQLGetStmtAttrW(tmpHstmt, SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP,(void *)&dummy, SQL_NTS,
 NULL);
 if (checkError(rc, SQL_HANDLE_DBC, hdbc, (SQLCHAR *) "Error(Thread) in Step 2 -- SQLGetStmtAttr
 failed\nExiting!!"))
 exit(-1);

 SQLFreeHandle(SQL_HANDLE_STMT, tmpHstmt);
 printf("\nFinished thread execution\n");

253

254

}

void SetConnectionString()
{
#ifdef NO_WIN32
 //sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC
 DRIVER};HOST=x.x.x.x;SERVER=ol_informix1210_2;SERVICE=8573;PROTOCOL=onsoctcp;DATABASE=sysadmin;UID=informix;PW
D=xxx");
 wsprintf((SQLWCHAR *) connStrInW, "DSN=SmartTrigger");
#else
 //sprintf((char *) connStrIn, "DRIVER={HCL Informix ODBC
 DRIVER};HOST=x.x.x.x;SERVER=ol_informix1210_1;SERVICE=20195;PROTOCOL=onsoctcp;DATABASE=sysadmin;UID=informix;P
WD=xxx");
 swprintf((SQLWCHAR *) connStrInW, L"DSN=SmartTrigger");
#endif
 return;
}

void AssignOpenParams()
{
 timeOut = 5; //In seconds
 maxRec = 1; //Maximum number of records to get, (8192 Bytes limit)
 maxPend = 0;
 detachable = FALSE; //TRUE, If want to retain session for later usage
 delete = FALSE; //TRUE, if want to delete the detachable session

 gopenSmartTrigger.timeOut = &timeOut;
 gopenSmartTrigger.isDetachable = &detachable;
 gopenSmartTrigger.maxRecsPerRead = &maxRec;
 gopenSmartTrigger.maxPendingOperations = &maxPend;

 return;
}

void AssignRegisterParams(IFMX_REGISTER_SMART_TRIGGER *SmartTriggerInstance, int FileDesc, int i)
{
 fileDesc[i] = FileDesc;
 dregister[i] = FALSE; // Just initialize, should be changed in callback
 ControlBack[i] = FALSE; // Just initialize, should be changed in callback
 SmartTriggerInstance->loFileDescriptor = &fileDesc[i];
 SmartTriggerInstance->tableName = (SQLWCHAR *)malloc(50 * sizeof(SQLWCHAR));
 SmartTriggerInstance->ownerName = (SQLWCHAR *)malloc(50 * sizeof(SQLWCHAR));
 SmartTriggerInstance->dbName = (SQLWCHAR *)malloc(50 * sizeof(SQLWCHAR));
 SmartTriggerInstance->sqlQuery = (SQLWCHAR *)malloc(500 * sizeof(SQLWCHAR));
 //SmartTriggerInstance->label = (SQLWCHAR *)malloc(50 * sizeof(SQLWCHAR));
 SmartTriggerInstance->label = NULL;
 SmartTriggerInstance->isDeregister = &dregister[i];
 SmartTriggerInstance->ControlBackToApplication = &ControlBack[i];

 //wcscpy((SQLWCHAR *)SmartTriggerInstance->ownerName, L"shesh");
 //wcscpy((SQLWCHAR *)SmartTriggerInstance->dbName, L"sheshdb");
 wsprintf((SQLWCHAR *)SmartTriggerInstance->ownerName, "shesh");
 wsprintf((SQLWCHAR *)SmartTriggerInstance->dbName, "sheshdb");

 if (i==0)
 {
 SmartTriggerInstance->callback = TriggerCallback1;
 //wcscpy((SQLWCHAR *)SmartTriggerInstance->label, L"label1");

Chapter 1. Informix® ODBC Driver Guide

 //wcscpy((SQLWCHAR *)SmartTriggerInstance->tableName, L"tab1");
 //wcscpy((SQLWCHAR *)SmartTriggerInstance->sqlQuery, L"select * from tab1;");
 //wsprintf((SQLWCHAR *)SmartTriggerInstance->label, "label1");
 wsprintf((SQLWCHAR *)SmartTriggerInstance->tableName, "tab1");
 wsprintf((SQLWCHAR *)SmartTriggerInstance->sqlQuery, "select * from tab1;");
 }
 else
 {
 SmartTriggerInstance->callback = TriggerCallback2;
 //wcscpy((SQLWCHAR *)SmartTriggerInstance->label, L"label2");
 //wcscpy((SQLWCHAR *)SmartTriggerInstance->tableName, L"tab2");
 //wcscpy((SQLWCHAR *)SmartTriggerInstance->sqlQuery, L"select * from tab2;");
 //wsprintf((SQLWCHAR *)SmartTriggerInstance->label, "label2");
 wsprintf((SQLWCHAR *)SmartTriggerInstance->tableName, "tab2");
 wsprintf((SQLWCHAR *)SmartTriggerInstance->sqlQuery, "select * from tab2;");
 }
 return;
}

void FreeMemory(IFMX_REGISTER_SMART_TRIGGER *SmartTriggerInstance)
{
 free(SmartTriggerInstance->tableName);
 free(SmartTriggerInstance->ownerName);
 free(SmartTriggerInstance->dbName);
 free(SmartTriggerInstance->sqlQuery);
 if(SmartTriggerInstance->label != NULL)
 free(SmartTriggerInstance->label);
 return;
}

int main (long argc,
 char* argv[])
{
 /* Miscellaneous variables */
 SQLRETURN rc = 0;
 SQLINTEGER i = 0;
 SQLINTEGER getSesID = 0;
 SQLWCHAR connStrOutW[NAMELEN];
 SQLSMALLINT connStrOutLen;
 SQLINTEGER stackSize = 40 * 1024;
 HANDLE hThread_[NUM_OF_INSTANCE];
 DWORD threadID_[NUM_OF_INSTANCE];
#ifdef NO_WIN32
 pthread_t cpid[NUM_OF_INSTANCE];
#endif
 DWORD dwThreadID=10;

 printf("\nApplication : sizeof(SQLWCHAR) = %d", sizeof(SQLWCHAR));
 /* Allocate the Environment handle */
 rc = SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
 if (rc != SQL_SUCCESS)
 {
 fprintf (stdout, "Environment Handle Allocation failed\nExiting!!");
 exit (-1);
 }

 /* Set the ODBC version to 3.0 */
 rc = SQLSetEnvAttr (henv, SQL_ATTR_ODBC_VERSION, (SQLPOINTER) SQL_OV_ODBC3, 0);

255

256

 if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 1 -- SQLSetEnvAttr
 failed\nExiting!!"))
 exit (-1);

 /* Allocate the connection handle */
 rc = SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);
 if (checkError (rc, SQL_HANDLE_ENV, henv, (SQLCHAR *) "Error(main) in Step 2 -- Connection Handle
 Allocation failed\nExiting!!"))
 exit (-1);

 /* Establish the database connection */
 SetConnectionString();
 rc = SQLDriverConnectW(hdbc, NULL, connStrInW, SQL_NTS, connStrOutW, NAMELEN, &connStrOutLen,
 SQL_DRIVER_NOPROMPT);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, (SQLCHAR *) "Error(main) in Step 3 -- SQLDriverConnect
 failed\nExiting!!"))
 exit (-1);
 printf("\nApplication : Database connection successful");

 /* Allocate the statement handle */
 rc = SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);
 if (checkError (rc, SQL_HANDLE_DBC, hdbc, (SQLCHAR *) "Error(main) in Step 4 -- Statement Handle Allocation
 failed\nExiting!!"))
 exit (-1);

 sesID = 0;
 gJoinSmartTrigger.callback = TriggerCallback1;
 gJoinSmartTrigger.joinSessionID = &sesID;

 if(sesID != 0)
 {
 rc = SQLSetStmtAttrW(hstmt, SQL_INFX_ATTR_JOIN_SMART_TRIGGER,(void *)&gJoinSmartTrigger, SQL_NTS);
 if (checkError(rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error(main) in Step 5 --
 SQLSetStmtAttr(SQL_INFX_ATTR_JOIN_SMART_TRIGGER) failed\nExiting!!"))
 exit(-1);

 printf("\nJoin session was executed successfully... Exiting.\n");
 goto Exit; // Exit gracefully
 }

 AssignOpenParams();

 rc = SQLSetStmtAttrW(hstmt, SQL_INFX_ATTR_OPEN_SMART_TRIGGER,&gopenSmartTrigger, SQL_NTS);
 if (checkError(rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error(main) in Step 5 --
 SQLSetStmtAttr(SQL_INFX_ATTR_OPEN_SMART_TRIGGER) failed\nExiting!!"))
 exit(-1);

 rc = SQLGetStmtAttrW(hstmt, SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER, (int *)&gFileDesc, SQL_NTS,
 NULL);
 if (checkError(rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error(main) in Step 6 --
 SQLGetStmtAttr(SQL_INFX_ATTR_GET_LO_FILE_DESC_SMART_TRIGGER) failed\nExiting!!"))
 exit(-1);

 for (i = 0; i < NUM_OF_INSTANCE; i++)
 {
 printf("\nStart Thread %d", i + 1);
 AssignRegisterParams(&gSmartTriggerRegister[i], gFileDesc, i);

Chapter 1. Informix® ODBC Driver Guide

#ifndef NO_WIN32
 hThread_[i] = CreateThread(
 0, // Security Attributes (no security restrictions)
 stackSize, // Stack Size
 ThreadRegisterPushDataQuery, // Start address
 (void *)&gSmartTriggerRegister[i], //&inputValues[i],
 0, // Creation Flags (create running)
 &(threadID_[i]) // Thread Id
);
#else
 rc = pthread_create(&cpid[i],NULL,(void *)ThreadRegisterPushDataQuery,&gSmartTriggerRegister[i]);
#endif
 }

#ifndef NO_WIN32
 if(NUM_OF_INSTANCE > 0)
 WaitForMultipleObjects(NUM_OF_INSTANCE, hThread_, TRUE, INFINITE);
#else
 for (i = 0; i < NUM_OF_INSTANCE; ++i)
 pthread_join(cpid[i], NULL);
#endif

 rc = SQLGetStmtAttrW(hstmt, SQL_INFX_ATTR_GET_SESSION_ID_SMART_TRIGGER, (int *)&getSesID, SQL_NTS, NULL);
 if (checkError(rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error(main) in Step 7 --
 SQLGetStmtAttr(SQL_INFX_ATTR_GET_SESSION_ID_SMART_TRIGGER) failed\nExiting!!"))
 exit(-1);
 printf("\nSession ID received = %d\n", getSesID);

 if(getSesID > 0 && delete == 1)
 {
 rc = SQLSetStmtAttrW(hstmt, SQL_INFX_ATTR_DELETE_SMART_TRIGGER, (int *)&getSesID, SQL_NTS);
 if (checkError(rc, SQL_HANDLE_STMT, hstmt, (SQLCHAR *) "Error(main) in Step 8 --
 SQLSetStmtAttr(SQL_INFX_ATTR_DELETE_SMART_TRIGGER) failed\nExiting!!"))
 exit(-1);
 printf("\nSession ID deleted = %d\n",getSesID);
 }

 for (i = 0; i < NUM_OF_INSTANCE; ++i)
 {
#ifndef NO_WIN32
 printf("Close Thread Handle : %d\n", i);
 CloseHandle(hThread_[i]);
#endif
 FreeMemory(&gSmartTriggerRegister[i]);
 }

Exit:

 /* CLEANUP: Close the statement handle
 ** Free the statement handle
 ** Disconnect from the datasource
 ** Free the connection and environment handles
 ** Exit
 */

 /* Close the statement handle */
 SQLFreeStmt (hstmt, SQL_CLOSE);

257

258

 /* Free the statement handle */
 SQLFreeHandle (SQL_HANDLE_STMT, hstmt);

 /* Disconnect from the data source */
 SQLDisconnect (hdbc);

 /* Free the environment handle and the database connection handle */
 SQLFreeHandle (SQL_HANDLE_DBC, hdbc);
 SQLFreeHandle (SQL_HANDLE_ENV, henv);

 return (rc);
}

Best Practices/Trouble shooting

You can link Smart Trigger ODBC application with ODBC Driver Manager(DM). Smart Trigger feature has been tested with

Windows Driver Manager and unixODBC Driver Manager. Due to synchronization behaviour of certain Driver Manager, it may

not allow more than one SQLSetStmtAttr(with Smart trigger) / SQLGetStmtAttr to be called until previous call is completed,

Smart Trigger is blocking call (due to internal call to ifx_lo_read()). In multi-threaded Smart Trigger application, this could

cause unexpected/hang behaviour, to avoid the same one of the two below available options could be used:

• For unixODBC DM configuration in .odbcinst.ini file, use “Threading = 0" (disables synchronization/mutex of DM)

Note: Synchronization/mutex continues to work from Informix ODBC driver

• You can use SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP interface in application and manage the

WHILE loop in application (example given below). If you use this option, you may not need to set “Threading = 0" in

DM.

SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP and
SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP interfaces

These two interfaces are provided to choose the appropriate one depending on the usage of DM.

In SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP interface, ODBC internally uses WHILE loop to wait for data for

Smart Trigger from server until user deregister or wants control back to application (example below), this is suitable when

application uses unixODBC DM and wants to register many events/queries from application by setting “Threading = 0" in

DM’s .odbcinst.ini file.

In SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP interface, the responsibility of looping to get next Smart Trigger

from server lies with application, this way you don not really have to set “Threading = 0" in unixODBC DM.

Example

Thread Start
SQLSetStmtAttr(SQL_INFX_ATTR_REGISTER_SMART_TRIGGER)
SQLGetStmtAttr(SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP)  While loop inside the ODBC code.
OR
While(TRUE)

Chapter 1. Informix® ODBC Driver Guide

{
 SQLGetStmtAttr(SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP)
 //Break with some business condition
}
Thread End

Note: On Unix/Linux user libthcli.so and on Windows use iclit09b.lib, you can directly link Smart Trigger application

with Informix ODBC driver

If you have multiple events/queries to be registered from single database connection, then application should be linked with

multi-threaded ODBC library “libthcli.so". Multiple events/queries could be registered only with multi-threaded application,

where each event/query could be registered from each thread.

In addition to above extensions, there are following structures provided in infxcli.h file. The allocation & deallocation of

memory for these structures and its members is responsibility of application.

typedef struct tagIfmxJoinTrigger
{
 void(*callback)
 (char const *jsonOutBuf);
 int *joinSessionID;
 BOOL *ControlBackToApplication;
 SQLWCHAR reserved[16];
} IFMX_JOIN_SMART_TRIGGER;

typedef struct tagIfmxOpenTrigger
{
 BOOL *isDetachable;
 int *timeOut;
 short *maxRecsPerRead;
 int *maxPendingOperations;
 SQLWCHAR reserved[16];
} IFMX_OPEN_SMART_TRIGGER;

typedef struct tagIfmxRegisterTrigger
{
 void(*callback)
 (char const *jsonOutBuf);
 int *loFileDescriptor;
 SQLWCHAR *tableName;
 SQLWCHAR *ownerName;
 SQLWCHAR *dbName;
 SQLWCHAR *sqlQuery;
 SQLWCHAR *label;
 BOOL *isDeregister;
 BOOL *ControlBackToApplication;
 SQLWCHAR reserved[16];
} IFMX_REGISTER_SMART_TRIGGER;

Structure IFMX_OPEN_SMART_TRIGGER should be allocated/filled with respective values and must call following

SQLSetStmtAttr() API. If “isDetachable" member is TRUE, it will retain the session even after closing the connection /

finishing the application execution.

SQLSetStmtAttr(hstmt, SQL_INFX_ATTR_OPEN_SMART_TRIGGER, &gopenSmartTrigger, SQL_NTS);

259

260

If session is opened with “isDetachable" member TRUE, then application can call following SQLGetStmtAttr() to get the

session ID, which could be used later to JOIN (more info below) the session. If “isDetachable" member was FALSE while

opening the session, if so calling SQLGetStmtAttr() may return 0 (zero) or negative number, which are invalid session ID.

SQLGetStmtAttr(hstmt, SQL_INFX_ATTR_GET_SESSION_ID_SMART_TRIGGER, (int *)&getSesID, SQL_NTS, NULL);

Index
Special Characters

.h files. 3

.netrc file 54

A
Allocating handles. 3
Architecture 5
Arguments 3

null pointers 13
pointers 13

Arrays. 3
Attributes, columns 216
Auto-commit mode. 3
AUTOFREE feature 183

B
Binary data

C data type 74
transferring 77

Binding columns 3, 133, 209
Binding parameters. 3
Bit data, converting to SQL 91
BLOB data type 67
Bookmarks, support 42
Boolean data

C data type 74
Boundaries, segment 13
Buffers 3

allocating 13
input 13, 13
interoperability 13
maintaining pointers 13
NULL data 14
null pointers 13
null-termination 14
output 13, 14
segment boundaries 13
truncating data 14

Bulk operations 233

C
C data type 3, 74

binary 74
boolean 74
character 74
conversion examples 89, 92
converting from SQL data type 66, 86
converting to SQL data types 91
date 74
default conversions 87
Informix
ODBC Driver
 66
numeric 74
SQL_C_BINARY 74
SQL_C_BIT 74
SQL_C_CHAR 74
SQL_C_DATE 74
SQL_C_DOUBLE 74
SQL_C_FLOAT 74
SQL_C_LONG 74
SQL_C_SHORT 74
SQL_C_SLONG 74
SQL_C_SSHORT 74
SQL_C_STINYINT 74
SQL_C_TIMESTAMP 74
SQL_C_TINYINT 74
SQL_C_ULONG 74

SQL_C_USHORT 74
SQL_C_UTINYINT 74
standard 66
timestamp 74
typedefs 66

Calls, executing with SQLPrepare and
SQLExecute 186
Canceling, connection browsing 217
Challenge and response buffer pointers 36
Character data 74

empty string 13
Client functions, calling 151, 151
Client locale 32
CLIENT_LOCALE environment variable 32, 46
CLOB data types 67
Code, example 3
Collections 67

buffers 133
converting SQL data 134
creating 143
current position 150
deleting 150, 173
inserting 150, 176
local fetch 134
modifying 150
retrieving 175
retrieving information 151
transferring 133
updating 150, 179

Columns 3
attributes 216
binding. 3
precision. 3
procedure 236

Concurrency 43
Configuring a DSN on

UNIX 44
Configuring a DSN on Windows 55
Configuring data sources. 3
connection attribute

SQL_INFX_ATTR_DELIMIDENT 181
Connection handles

defined connection handles
HDBC variable type 12

SQLFreeConnect 226
Connection pool

demo program 25
Sun JDBC 3.0 properties 25
tuning parameters 25

Connection Pool Manager 25
connection string

enabling delimited identifiers in 181
connection string keywords

DELIMIDENT 181
Connections, SQLDisconnect 217
Converting data 3

C to SQL 91
default conversions 87
examples 89, 92
SQL to C 86

Create-time flags 96
Cursor

automatically freeing 183
enable insert cursor 55
insert 182
position errors 222
Report KeySet 55
scrollable 55

D
Data

committing 191
converting 3
length 67
transferring in binary form 77
translating. 3
truncating. 3
updating 189

Data sources
configuring on UNIX 44
configuring on Windows 55

Data transfer
error checking 180

Data types. 3
Data-source specification 46
Database locale 32
Date data

C data type 74
DATE_STRUCT typedef 74
DB_LOCALE environment variable 32, 46
DBCENTURY environment variable 8
Default fetch type for UDTs 79
DELETE statements 3, 231, 238

affected rows 238
DELIMIDENT

connection string keyword 181
DELIMIDENT environment variable

in ODBC 181, 181
delimited identifiers

in ODBC 181
Descriptors, columns 216
Diagnostics 193
Disk-storage information 95
Display size 67
DISTINCT data type 67
Driver manager, described 5
Driver,
Informix
ODBC
 5
Drivers, allocating handles 208
DSN settings 79

E
Empty strings 13
Environment handles

defined 12
SQLAllocEnv 208
SQLFreeEnv 226

environment variable
DELIMIDENT

in ODBC 181
Environment variables 8

CLIENT_LABEL 180
CLIENT_LOCALE 32, 46
DB_LOCALE 32, 46
DBCENTURY 8
GL_DATE 8
IFMX_CPM_AGELIMIT 25
IFMX_CPM_ENABLE_SWITCH_HDRPOOL 25
IFMX_CPM_INIT_POOLSIZE 25
IFMX_CPM_MAX_CONNECTIONS 25
IFMX_CPM_MAX_POOLSIZE 25
IFMX_CPM_MIN_AGELIMIT 25
IFMX_CPM_MIN_POOLSIZE 25
IFMX_CPM_SERVICE_INTERVAL 25

261

IFX_LOB_XFERSIZE 180
INFORMIXDIR 8
INFORMIXSQLHOSTS 8
ODBCINI 8
PATH 8
TRANSLATION_OPTION 32
TRANSLATIONDLL 32, 46
VMBCHARLENEXACT 32

Error descriptions
Informix
 40
ISAM 40

Error handling
checking during data transfer 180

Error messages
Informix

mapping SQLSTATE values 194
Errors 3

diagnostic SQLSTAGE values 193
error messages 193
handling with OPTMSG 192
mapping
Informix
to SQLSTATE values
 194
rowsets 222

Examples, data conversion 89, 92
Extended data types 4
Extensive error detection 4
External authentication 35

F
fCType 87
Fetch simple large object data 184
Fetch type 79
Fetching data. 3
Files

.h files. 3

.netrc 54
infxcli.h 9, 67
odbc.ini 46
odbcinst.ini 44

Freeing handles. 3
Functions

rows and collections
ifx_rc_count() 172
ifx_rc_delete() 173
ifx_rc_describe() 174
ifx_rc_fetch() 175
ifx_rc_free() 176
ifx_rc_insert() 176
ifx_rc_isnull() 178
ifx_rc_setnull() 178
ifx_rc_typespec() 179
ifx_rc_update() 179

smart large objects 153
ifx_lo_alter() 153
ifx_lo_close() 154
ifx_lo_col_info() 154
ifx_lo_create() 155
ifx_lo_def_create_spec() 156
ifx_lo_open() 157
ifx_lo_read() 158
ifx_lo_readwithseek() 159
ifx_lo_seek() 160
ifx_lo_specget_estbytes() 160
ifx_lo_specget_extsz() 161
ifx_lo_specget_flags() 161
ifx_lo_specget_maxbytes() 162
ifx_lo_specget_sbspace() 162
ifx_lo_specset_estbytes() 163

ifx_lo_specset_extsz() 164
ifx_lo_specset_flags() 165
ifx_lo_specset_maxbytes() 165
ifx_lo_specset_sbspace() 166
ifx_lo_stat_atime() 167
ifx_lo_stat_cspec() 167
ifx_lo_stat_ctime() 168
ifx_lo_stat_refcnt() 168
ifx_lo_stat_size() 169
ifx_lo_stat() 166
ifx_lo_tell() 169
ifx_lo_truncate() 170
ifx_lo_write() 171
ifx_lo_writewithseek() 171

G
GLS feature

data types 4
GLS. 3

H
Handles. 3
hdbc. 3
Header files

required 9
sqlext.h C data type 10

henv. 3
High-Availability Data Replication

IFMX_CPM_ENABLE_SWITCH_HDRPOOL 25
hstmt. 3

I
identifiers

delimited
enabling/disabling using ODBC 181

IFMX_CPM_AGELIMIT environment
variable 25
IFMX_CPM_ENABLE_SWITCH_HDRPOOL
environment variable 25
IFMX_CPM_INIT_POOLSIZE environment
variable 25
IFMX_CPM_MAX_CONNECTIONS environment
variable 25
IFMX_CPM_MAX_POOLSIZE environment
variable 25
IFMX_CPM_MIN_AGELIMIT environment
variable 25
IFMX_CPM_MIN_POOLSIZE environment
variable 25
IFMX_CPM_SERVICE_INTERVAL environment
variable 25
ifx_lo_alter() 153
ifx_lo_close() 154
ifx_lo_col_info() 154
ifx_lo_create() 155
ifx_lo_def_create_spec() 156
ifx_lo_open() 157
ifx_lo_read() 158
ifx_lo_readwithseek() 159
ifx_lo_seek() 160
ifx_lo_specget_estbytes() 160
ifx_lo_specget_extsz() 161
ifx_lo_specget_flags() 161
ifx_lo_specget_maxbytes() 162
ifx_lo_specget_sbspace() 162
ifx_lo_specset_estbytes() 163
ifx_lo_specset_extsz() 164
ifx_lo_specset_flags() 165
ifx_lo_specset_maxbytes() 165
ifx_lo_specset_sbspace() 166
ifx_lo_stat_atime() 167
ifx_lo_stat_cspec() 167

ifx_lo_stat_ctime() 168
ifx_lo_stat_refcnt() 168
ifx_lo_stat_size() 169
ifx_lo_stat() 166
ifx_lo_tell() 169
ifx_lo_truncate() 170
ifx_lo_write() 171
ifx_lo_writewithseek() 171
IFX_LOB_XFERSIZE

environment variable 180
ifx_rc_count() 172
ifx_rc_delete() 173
ifx_rc_describe() 174
ifx_rc_fetch() 175
ifx_rc_free() 176
ifx_rc_insert() 176
ifx_rc_isnull() 178
ifx_rc_setnull() 178
ifx_rc_typespec() 179
ifx_rc_update() 179
IN parameters

used during execution of SPL 186
Include files. 3
INFORMIXDIR environment variable 8
INFORMIXSQLHOSTS environment variable 8
infxcli.h file 67
Initializing data sources 44
initialPoolSize 25
Input buffers 13
Insert cursor 182

enabling 55
INSERT statements

affected rows 238, 238
SQLParamOptions 233

INSERT statements. 3
Internet Protocol Version 6 4
Interoperability

buffer length 13
default C data type 87
transferring data 77

L
LDAP authentication on Windows 36
Length

data 67
Length, buffers

input 13
maximum 13
output 14

Length, defined 67
Length, unknown

precision 67
Libraries 10
Library

Informix
ODBC Driver
 10
translation 32

shared 32
LIST data type 67
LO_APPEND 111
LO_BUFFER 111
LO_DIRTY_READ 111
LO_KEEP_LASTACCESS_ TIME 96
LO_NOBUFFER 111
LO_NOKEEP_LASTACCESS_ TIME 96
LO_NOLOG 96
LO_RDONLY 111
LO_RDWR 111
LO_SEEK_CUR 159, 160, 171
LO_SEEK_END 159, 160, 171

262

LO_SEEK_SET 159, 160, 171
LO_WRONLY 111
Locales

client 32
database 32

lofd 94
Login authorization. 3
Logon ID 46
Long identifiers 4
loptr 94
lospec 94
lostat 94

M
Manual-commit mode. 3
maxIdleTime 25
maxPoolSize 25
maxStatements 25
Memory. 3
Message chaining 192
Message transfer optimization 191
Messages, error. 3
Microsoft Transaction Server 4
Migrating to
Informix
ODBC

DSN connection on UNIX 79
DSN connection on Windows 79

minPoolSize 25
Modes

auto-commit. 3
manual commit. 3

MTS. 3
MULTISET data type 67
Multithreading, with environment handles 209

N
Named rows 67
NULL data

output buffers 14
Null pointers

input buffers 13
output buffers 14

Null-termination byte
embedded 13
examples 89, 92
input buffers 13
output buffers 14

Numeric data 3
C data type 74
TIMESTAMP_STRUCT 74
UCHAR 74
UWORD 74

O
ODBC_CLIENT_LABEL environment
variable 180
odbc.ini file 46

Data Source Specification section 46
ODBC Data Sources section 46

odbc.ini tracing options 53
ODBCINI environment variable 8
odbcinst.ini file 44
OPAQUE data type 67
Optimistic concurrency control. 3
OPTMSG 191
OUT parameters

used during execution of SPL 186
Output buffers 14

P
PAM. 35

Parameters 3
arrays 233
binding 186

SQLBindParameter 210
number 232
used during execution of SPL 186

Passwords 55
PATH environment variable 8
Pluggable Authentication Module

Connect functions 17
Connection pooling 36
Intermediate Code 37
SQLSetConnectAttr() function 36
Third party connections 37

Pointers, maintaining 13
Pointers, null. 3
Position, cursor. 3
Positioned

DELETE statements 189
UPDATE statements 189

Precision 67
Procedure

defined 236
Procedure columns 236
Procedures, SQL 236

SQLSTAGE and error values 236
propertyCycle 25
pwd 46

Q
Queries. 3

R
Report KeySet cursors 55
Report sets

SQLDescribeCol 215
Report standard ODBC data type

DSN settings 79
Result sets 3

arrays. 3
defined 11
SQLNumResultCols 232
SQLRowCount 238, 238

Retrieving data
arrays. 3
binding columns. 3
rows. 3

Row status array, errors 222
Rows 3, 67

affected 238, 238
and collections 133
buffers 133
converting SQL data 134
creating 143
current position 150
deleting 150, 173
errors in 222
inserting 150, 176
local fetch 134
modifying 150
retrieving 175
retrieving information 151
transferring 133
updating 150, 179

Rowsets
errors 222

S
SBSPACENAME 98
Scale, defined 67
SCHAR typedef 74
Scrollable cursor 55

SDOUBLE typedef 74
SDWORD typedef 74
Segment boundaries 13
SELECT statements 3

affected rows 238, 238
bulk 233

SET data type 67
Setting GLS options

UNIX 32
Windows 32

setup.odbc 8
SFLOAT typedef 74
Simple large object fetches 184
Size, display 67
Smart large objects 67

access modes 111
accessing 108
allocation extent size 95
altering 153
closing 114, 154
creating 99, 155
data structures 94
disk-storage information 95
estimated size 95
file descriptor 94
functions 153
getting file position 169
ifx_lo functions 110
inheritance hierarchy 97
inserting 108
last access-time 96
lightweight I/O 112
locks 113
logging indicator

LO_LOG 96
maximum size 95
modifying 114
ODBC API 109
opening 110, 157
pointer structure 94
reading 158, 159
retrieving status 123
sbspace name 95
selecting 110
setting file position 160, 170
specification structure 94
status structure 94
storage characteristics 95, 154
transferring 108
updating 108
writing 171, 171

smart trigger 247
SQL data types 3

BLOB 67
CLOB 67
collection 67
conversion examples 89, 92
converting from C data type 91
converting to C data type 86
default C data type 87
display size 67
DISTINCT 67
Informix
 66
Informix
ODBC Driver
 66
length 67
LIST 67
MULTISET 67
OPAQUE 67

263

precision 67
row 67
scale 67
SET 67
smart large object 67
SQL_IFMX_UDT_BLOB 67
SQL_IFMX_UDT_CLOB 67
SQL_INFX_UDT_FIXED 67
SQL_INFX_UDT_VARYING 67

SQL statements
native 231

SQL_ATTR_ROW_ARRAY_SIZE 184
SQL_C_BINARY data type 74
SQL_C_BIT data type 74
SQL_C_CHAR data type 74
SQL_C_DATE data type 74
SQL_C_DOUBLE data type 74
SQL_C_FLOAT data type 74
SQL_C_LONG data type 74
SQL_C_SHORT data type 74
SQL_C_SLONG data type 74
SQL_C_SSHORT data type 74
SQL_C_STINYINT data type 74
SQL_C_TIMESTAMP data type 74
SQL_C_TINYINT data type 74
SQL_C_ULONG data type 74
SQL_C_USHORT data type 74
SQL_C_UTINYINT data type 74
SQL_DESC_OCTET_LENGTH, and
bookmarks 42
SQL_DIAG_ISAM_ERROR attribute 40
SQL_ENABLE_INSERT_CURSOR 182
SQL_IFMX_UDT_BLOB data type 67
SQL_IFMX_UDT_CLOB data type 67
SQL_INFX_ATTR_AUTO_FREE 183
SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE 79
SQL_INFX_ATTR_DEFERRED_PREPARE 184
SQL_INFX_ATTR_DELIMIDENT connection
attribute 181
SQL_INFX_ATTR_ENABLE_INSERT_CURSORS 55
SQL_INFX_ATTR_ENABLE_SCROLL_CURSORS 55
SQL_INFX_ATTR_IDSISAMERRMSG
attribute 40
SQL_INFX_ATTR_LO_AUTOMATIC 78, 78, 109
SQL_INFX_ATTR_ODBC_TYPES_ONLY 78, 78
SQL_INFX_ATTR_OPTIMIZE_AUTOCOMMIT 55
SQL_INFX_ATTR_OPTMSG 191
SQL_INFX_ATTR_OPTOFC 55
SQL_INFX_ATTR_REPORT_KEYSET_CURSORS 55
SQL_INFX_UDT_FIXED data type 67
SQL_INFX_UDT_VARYING data type 67
SQLAllocConnect 3

function description 208
SQLAllocEnv 3

function description 208
SQLAllocStmt 3

function description 209
SQLBindCol

function description 209
SQLBindParameter

function description 210
SQLBrowseConnect

function description 211
SQLBulkOperations 42

bookmarks 42
function description 42

SQLCancel, function description 212
SQLColAttributes, function description 212
SQLColumnPrivileges, function
description 213
SQLColumns, function description 214

SQLConnect, function description 214
SQLDataSources, function description 215
SQLDescribeCol, function description 215
SQLDescribeParam 42
SQLDisconnect, function description 216
SQLDriverConnect, function description 217
SQLDrivers, function description 218
SQLError 3

function description 219
SQLExecDirect, function description 219
SQLExecute, function description 221
SQLExtendedFetch

bookmarks 42
function description 222

SQLFetch, function description 224
SQLFetchScroll, bookmarks 42
SQLForeignKeys, function description 225
SQLFreeConnect

function description 226
SQLFreeEnv 3

function description 226
SQLFreeHandle 3
SQLFreeStmt 3

function description 226
SQLGetConnectOption, function
description 226
SQLGetCursorName, function description 227
SQLGetData, function description 227
SQLGetDiagRec API 40
SQLGetFunctions, function description 228
SQLGetInfo, function description 229
SQLGetStmtOption, function description 229
SQLGetTypeInfo

function description 230
supported data types 10

SQLMoreResults, function description 231
SQLNativeSql, function description 231
SQLNumParams, function description 232
SQLNumResultCols, function description 232
SQLParamData

function description 233
SQLPutData 233

SQLParamOptions
function description 233
multiple parameter values 233

SQLPrepare
deferring execution 184
function description 234

SQLPrimaryKeys, function description 235
SQLProcedureColumns, function
description 236
SQLProcedures, function description 236
SQLPutData

function description 237
SQLParamData 233

SQLRowCount, function description 238
SQLSetConnectOption 3

function description 238
SQLSetCursorName, function description 239
SQLSetPos

column binding 209
error messages 194
LockType argument

SQL_CA1_LOCK_NO_CHANGE 14
operation argument

SQL_CA1_POS_DELETE 14
SQL_CA1_POS_POSITION 14
SQL_CA1_POS_REFRESH 14
SQL_CA1_POS_UPDATE 14

positioned UPDATE and DELETE
statements 189

scroll cursors 184, 189
SQLGetData 184, 227
SQLParamData 233
SQLRowCount 238

SQLSetStmtOption
function description 240

SQLSpecialColumns, function description 240
SQLSTATE

naming conventions 193
values 194
values. 3

SQLStatistics 241
function description 241

SQLTablePrivileges, function description 242
SQLTables, function description 243
SQLTransact, function description 243
SqlType 66
Statement handles

defined 12
HSTMT variable type 12
SQLAllocStmt 209
SQLFreeStmt 226

Status array, errors 222
Status information. 3
Storage characteristics

create-time flags 96
disk-storage information 95
inheritance hierarchy 97

String data. 3
Sun JDBC 3.0 properties 25
SWORD typedef 74
syscolattribs 99

T
Table

columns. 3
indexes. 3
rows. 3

Termination byte, null. 3
Threads, multiple

with environment handles 209
Time-stamp data 74
TIMESTAMP_STRUCT typedef 74
Tracing values in ODBC 53
Transactions

concurrency 43
incomplete 217

Transferring binary data 77
Translation

library 32
options 32
shared library 32

error 194, 211, 214, 217, 238
TRANSLATION_OPTION environment
variable 32
TRANSLATIONDLL environment variable 32,
46
Truncating data 3, 3

output buffers 14
SQLBindCol 209

Typedefs
DATE_STRUCT 74
SCHAR 74
SDOUBLE 74
SDWORD 74
SFLOAT 74
SWORD 74
UDWORD 74

U
UCHAR typedef 74
UDT fetch type 79

264

UDWORD typedef 74
Unicode 4
Unnamed rows 67
UPDATE statements 3

affected rows 238, 238
bulk 233

User ID 55
UWORD typedef 74

V
Variables, binding

estbytes input argument 153
SQL_INFX_UDT_FIXED 88
SQL_INFX_UDT_VARYING 88

VMBCHARLENEXACT environment variable 32

W
Window handles. 3

X
XA 4, 9, 35

265

	HCL Informix ODBC Driver Programmer's Manual
	Contents
	Chapter 1. Informix® ODBC Driver Guide
	Overview of HCL Informix® ODBC Driver
	What is HCL Informix® ODBC Driver?
	HCL Informix® ODBC Driver features
	Support for extended data types
	Support for GLS data types
	Extended error detection

	Additional values for some ODBC function arguments

	ODBC component overview
	HCL Informix® ODBC Driver with a driver manager
	HCL Informix® ODBC Driver without a driver manager (UNIX™)

	HCL Informix® ODBC Driver with the DMR
	HCL Informix® ODBC Driver components
	Environment variables
	Set environment variables on UNIX™
	Set environment variables in Windows™

	Header files
	Data types
	Libraries
	UNIX™
	Windows™

	The HCL Informix® ODBC Driver API
	Environment, connection, and statement handles
	Buffers
	Input buffers
	Output buffers

	SQLGetInfo argument implementation

	Connection pooling
	Enabling/Disabling connection pooling
	Sample Output
	Tuning the Connection Pool Manager
	Sample code for MinPoolSize and MaxConnLimit usage

	Global Language Support
	X/Open standard interface
	External authentication
	Pluggable Authentication Module (PAM) on UNIX™ and Linux™
	LDAP Authentication on Windows™
	The SQLSetConnectAttr() function with authentication
	Connect functions
	The SQLConnect() function
	The SQLBrowseConnect() function

	Third-party applications or intermediate code

	Bypass ODBC parsing
	BufferLength in character for SQLGetDiagRecW
	Informix® and ISAM error descriptions in SQLGetDiagRec
	Improved performance for single-threaded applications
	Partially supported and unsupported ODBC features
	Transaction processing
	Transaction isolation levels
	Changing the transaction mode

	ODBC cursors
	ODBC bookmarks
	SQLBulkOperations
	SQLDescribeParam
	Unsupported Microsoft™ ODBC driver features

	Configure data sources
	Configure a DSN on UNIX™
	The odbcinst.ini file
	ODBC drivers
	Driver specifications

	The odbc.ini file
	ODBC Data Sources
	Data-source specification
	Set the isolation level (UNIX™ only)

	ODBC section
	Set the $ODBCINI environment variable
	The .netrc file

	Configuring a DSN in Windows™
	Configuring a new user DSN or system DSN
	Removing a DSN
	Reconfiguring an existing DSN
	Configuring a file DSN
	Creating logs of calls to the drivers

	Connection string keywords that make a connection
	DSN migration tool
	Setting up and using the DSN migration tool
	DSN migration tool examples

	Data types
	Data types
	SQL data types
	Additional SQL data types for Informix®
	Precision, scale, length, and display size
	Standard SQL data types
	Additional SQL data types for Informix®

	C data types
	C interval structure
	Transfer data

	Report standard ODBC types
	SQL_INFX_ATTR_ODBC_TYPES_ONLY
	SQL_INFX_ATTR_LO_AUTOMATIC
	SQL_INFX_ATTR_DEFAULT_UDT_FETCH_TYPE
	Report wide character columns
	DSN settings for report standard ODBC data types

	Convert data
	Standard conversions
	Additional conversions for GLS
	Additional conversions for Informix®
	Convert data from SQL to C
	Default C data types
	Standard default C data types
	Additional default C data types for Informix®

	SQL-to-C data conversion examples

	Convert data from C to SQL
	C to SQL: Bit
	C-to-SQL data conversion examples

	Smart large objects
	Data structures for smart large objects
	Working with a smart-large-object data structure

	Storage of smart large objects
	Disk-storage information
	Create-time flags
	Inheritance hierarchy
	Using system-specified storage characteristics
	Using column-level storage characteristics
	User-defined storage characteristics

	Example of creating a smart large object
	Transfer smart-large-object data
	Access a smart large object
	Smart-large-object automation
	Set the access method using SQL_INFX_ATTR_LO_AUTOMATIC
	Insert, update, and delete smart large objects using the ODBC API
	Select smart large objects using the ODBC API

	The ifx_lo functions
	Select a smart large object using ifx_lo functions
	Open a smart large object using ifx_lo functions
	Access modes

	Lightweight I/O
	Smart-large-object locks
	Duration of an open operation on a smart large object
	Delete a smart large object
	Modifying a smart large object
	Close a smart large object
	Example of retrieving a smart large object from the database using ifx_lo functions

	Retrieve the status of a smart large object
	Example of retrieving information about a smart large object

	Read or write a smart large object to or from a file

	Rows and collections
	Allocating and binding a row or collection buffer
	Fixed-type buffers and unfixed-type buffers
	Buffers and memory allocation
	SQL data
	Performing a local fetch
	Example of retrieving row and collection data from the database

	Example of creating a row and a list on the client
	Modify a row or collection
	Retrieve information about a row or collection

	Client functions
	Call a client function
	Function syntax
	Executing a client function with SQLPrepare() and SQLExecute()
	Executing a client function with SQLExecDirect()

	Input and output parameters
	The SQL_BIGINT data type
	Return codes

	Functions for smart large objects
	The ifx_lo_alter() function
	Syntax
	Arguments
	Usage

	The ifx_lo_close() function
	Syntax
	Arguments
	Usage

	The ifx_lo_col_info() function
	Syntax
	Arguments
	Usage

	The ifx_lo_create() function
	Syntax
	Arguments
	Usage

	The ifx_lo_def_create_spec() function
	Syntax
	Arguments
	Usage

	The ifx_lo_open() function
	Syntax
	Arguments
	Usage

	The ifx_lo_read() function
	Syntax
	Arguments
	Usage

	The ifx_lo_readwithseek() function
	Syntax
	Arguments
	Usage

	The ifx_lo_seek() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specget_estbytes() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specget_extsz() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specget_flags() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specget_maxbytes() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specget_sbspace() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specset_estbytes() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specset_extsz() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specset_flags() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specset_maxbytes() function
	Syntax
	Arguments
	Usage

	The ifx_lo_specset_sbspace() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat_atime() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat_cspec() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat_ctime() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat_refcnt() function
	Syntax
	Arguments
	Usage

	The ifx_lo_stat_size() function
	Syntax
	Arguments
	Usage

	The ifx_lo_tell() function
	Syntax
	Arguments
	Usage

	The ifx_lo_truncate() function
	Syntax
	Arguments
	Usage

	The ifx_lo_write() function
	Syntax
	Arguments
	Usage

	The ifx_lo_writewithseek() function
	Syntax
	Arguments
	Usage

	Functions for rows and collections
	The ifx_rc_count() function
	Syntax
	Arguments
	Usage

	The ifx_rc_delete() function
	Syntax
	Arguments
	Usage

	The ifx_rc_describe() function
	Syntax
	Arguments
	Usage

	The ifx_rc_fetch() function
	Syntax
	Arguments
	Usage

	The ifx_rc_free() function
	Syntax
	Arguments
	Usage

	The ifx_rc_insert() function
	Syntax
	Arguments
	Usage

	The ifx_rc_isnull() function
	Syntax
	Arguments
	Usage

	The ifx_rc_setnull() function
	Syntax
	Arguments
	Usage

	The ifx_rc_typespec() function
	Syntax
	Arguments
	Usage

	The ifx_rc_update() function
	Syntax
	Arguments
	Usage

	Application tracking in ODBC
	Improve application performance
	Error checking during data transfer
	Enable delimited identifiers in ODBC
	The DELIMIDENT connection string keyword
	The SQL_INFX_ATTR_DELIMIDENT connection attribute
	The DELIMIDENT environment variable

	Connection level optimizations
	Optimizing query execution
	Insert multiple rows
	Automatically freeing a cursor
	Enabling the AUTOFREE feature
	The AUTOFREE feature

	Delay execution of the SQL PREPARE statement
	Set the fetch array size for simple-large-object data
	The SPL output parameter feature
	OUT and INOUT parameters
	Asynchronous execution
	Update data with positioned updates and deletes
	BIGINT and BIGSERIAL data types
	Message transfer optimization
	Message chaining restrictions
	Disable message chaining
	Errors with optimized message transfers

	Error messages
	Diagnostic SQLSTATE values
	Map SQLSTATE values to Informix® error messages
	Map Informix® error messages to SQLSTATE values
	Deprecated and new HCL Informix® ODBC Driver APIs
	SQLAllocConnect (core level only)
	SQLAllocEnv (core level only)
	SQLAllocStmt (core level only)
	SQLBindCol (core level only)
	SQLBindParameter (level one only)
	SQLBrowseConnect (level two only)
	SQLCancel (core level only)
	SQLColAttributes (core level only)
	SQLColumnPrivileges (level two only)
	SQLColumns (level one only)
	SQLConnect (core level only)
	SQLDataSources (level two only)
	SQLDescribeCol (core level only)
	SQLDisconnect
	Usage

	SQLDriverConnect (level one only)
	SQLDrivers (level two only)
	SQLError (core level only)
	SQLExecDirect (core level only)
	SQLExecute (core level only)
	SQLExtendedFetch (level two only)
	SQLFetch (core level only)
	SQLForeignKeys (level two only)
	SQLFreeConnect (core level only)
	SQLFreeEnv (core level only)
	SQLFreeStmt (core level only)
	SQLGetConnectOption (level one only)
	SQLGetCursorName (core level only)
	SQLGetData (level one only)
	SQLGetFunctions (level one only)
	SQLGetInfo (level one only)
	SQLGetStmtOption (level one only)
	SQLGetTypeInfo (level one only)
	SQLMoreResults (level two only)
	SQLNativeSql (level two only)
	Usage

	SQLNumParams (level two only)
	SQLNumResultCols (core level only)
	SQLParamData (level one only)

	SQLParamOptions (core and level two only)
	SQLPrepare
	SQLPrimaryKeys (level two only)
	SQLProcedureColumns (level two only)
	SQLProcedures (level two only)
	SQLPutData (level one only)
	SQLRowCount (core level only)
	SQLSetConnectOption (level one only)
	SQLSetCursorName (core level only)
	SQLSetStmtOption (level one only)
	SQLSpecialColumns (level one only)
	SQLStatistics (level one only)
	SQLTablePrivileges (level two only)
	SQLTables (level one only)
	SQLTransact (core level only)

	Unicode
	Overview of Unicode
	Unicode versions

	Unicode in an ODBC application
	Unicode in an ODBC application
	Configuration

	ODBC Smart trigger
	ODBC API
	Register the smart trigger events
	Delete the registered session
	API Structure
	Compiling sample application on Linux
	Compiling sample application on Windows
	ODBC sample application
	Best Practices/Trouble shooting
	SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_LOOP and SQL_INFX_ATTR_GET_DATA_SMART_TRIGGER_NO_LOOP interfaces

	Index

