<L

HCL Informix 15.0.0

HCL Informix Embedded SQLJ User’s Guide

Contents

Chapter 1. Embedded SQLJ for HCL Informix®................. 3
Introduction to HCL Informix® embedded SQLJ........... 3
Preparation to use embedded SQLJ.........cceeevrenrennnnnn. 5
Fundamentals of embedded SQLJ programs................ 5

Embedded SQL statements.........ccccceererieirennennne. 6
Result sets and iterators.........cc.coeevvenerieeneneenenne. 6
A simple embedded SQLJ program............c.......... 8
The embedded SQLJ language..........ccccevevvevienieereennnen. 8
Embedded SQLJ statements..........ccccoceveerenieennne 9
Host variables.........ccccooereirineieeeeeeeee e 9
SELECT statements that return a single row........ 10
RESUIt SELS....viiiieieieeeceeeee e 10
SQL query execution and monitoring.................... 13
SPL routine and function calls............ccccoeverveuennne 14
SQL and Java™ type mappings.........cceceeveriereenens 14
Language character sets..........ccocecvevieviieeiennnnn. 16
Java™ package importation............cccccoeeveeiiiiniane. 17
SQLJ reserved NAMES.........ccvvverieeeeenieieeerieneeeenens 17
Handling rrors.........ccccoecveeenienieeeieeeee e 18
Embedded SQLJ source code processing................... 18
SQL program translation, compiling, and
FUNNING. ¢ttt 18
The ifxsqlj command..........cccccooeviiiiieciiee 19
Options for the ifxsqlj command.......................... 24
Online checking.........ccoooveveieeiiieeeeeeeee 26
The ifxprofp tool........ooveeieeeeeee e, 27
APPENAIX. ettt 28
Embedded SQLJ and database connections........ 28
Descriptions of sample programs included with
HCL Informix® Embedded SQLJ........c.coeuvuneee. 29
... 31

Chapter 1. Embedded SQLJ for HCL Informix®

The HCL® Informix® Embedded SQLJ User's Guide contains information about using HCL Informix® Embedded SQLJ.

This guide is for programmers who want to write Java™ programs that can:

» Connect to Informix® databases.

« Issue SQL statements to manipulate data in the database.
These topics are written with the assumption that you have the following background:

- A working knowledge of your computer, your operating system, and the utilities that your operating system provides
« Experience with the Java™ programming language

« Experience working with relational databases or exposure to database concepts

 Experience with the SQL query language

Introduction to HCL Informix® embedded SQLJ

This chapter explains what you can do with HCL Informix® Embedded SQLJ and provides an overview of how embedded
SQLJ works.

What is embedded SQLJ?

HCL Informix® Embedded SQLJ enables you to embed SQL statements in your Java™ programs. HCL Informix® Embedded
SQLJ consists of:

» The SQLJ translator, which translates SQLJ code into Java™ code

« A set of Java™ classes that provide runtime support for SQLJ programs

HCL Informix® Embedded SQLJ includes the standard SQLJ implementation, as defined by the SQLJ consortium, plus
specific Informix® extensions. The rest of this manual refers to HCL Informix® Embedded SQLJ as Embedded SQLJ. The
standard SQLJ implementation is referred to as traditional Embedded SQLJ.

How does embedded SQLJ work?

When you use Embedded SQLJ, you embed SQL statements in your Java™ source code. You use the SQLJ translator to
convert the embedded SQL statements to Java™ source code with calls to JDBC. JDBC is the JavaSoft specification of a

standard application programming interface (API) that allows Java™ programs to access database management systems.

Finally, you use the Java™ compiler to compile your translated Java™ program into an executable Java™ .class file, as shown
in Figure 1: Translation and Compilation of an Embedded SQLJ Program on page 3.

Figure 1. Translation and Compilation of an Embedded SQLJ Program

S0LJ Source Java Source Java .class File
Java source code Java source code Java byte codes
with embedded ———& | withcallsto |———— | withcallsto
saL SQL) JOBC Java JDBC

translator compiler

When you run your program, it uses the HCL Informix® JDBC Driver to connect to the Informix® database, as shown in
Figure 2: Runtime Architecture for Embedded SQLJ Programs on page 4.
Figure 2. Runtime Architecture for Embedded SQLJ Programs

Java executable
'

Callsto JOBC | | Results from the dalabase

Y

JDBC Driver
'

Queries and otherl | Result sets for SELECT
QL statemants siatements

D

Database

See the HCL® Informix® JDBC Driver Programmer's Guide for information about using the HCL Informix® JDBC Driver.

Embedded SQLJ versus JDBC

Embedded SQLJ does not support dynamic SQL; you must use the JDBC API if you want to use dynamic SQL. Your
Embedded SQLJ program can call the JDBC API to perform a dynamic operation (the SQLJ connection-context object that
you use to connect an Embedded SQLJ program to the database contains a JDBC Connection object that you can use to
create JDBC statement objects).

If you are using static SQL, Embedded SQLJ provides the following advantages:

« Default connection context. You only need to set the default connection context once within a program; then every
subsequent Embedded SQLJ statement uses this connection context unless you specify otherwise.

» Reduced statement complexity. For example, you do not need to explicitly bind each variable; Embedded SQLJ
performs binding for you. Generally, this feature allows you to create smaller programs than with the JDBC API.

« Compile-time syntax and semantics checking. The Embedded SQLJ translator checks the syntax of SQL statements.

» Compile-time type checking. The Embedded SQLJ translator and the Java™ compiler check that the Java™ data
types of arguments are compatible with the SQL data types of the SQL operation.

- Compile-time schema checking. You can connect to a sample database schema during translation to check that

your program uses valid SQL statements for the tables, views, columns, stored procedures, and so on in your sample.

Chapter 1. Embedded SQLJ for HCL Informix®

Preparation to use embedded SQLJ

You must install and set up software before you can develop embedded SQLJ programs.

What components do you need?

You need the following software to create and run SQLJ programs:

* HCL Informix® Embedded SQLJ.
- database server.
« A supported Java software development kit to create your programs.

« HCL Informix® JDBC Driver to enable your programs to connect to the database server.

Program Examples

HCL Informix® Embedded SQLJ includes sample online programs in the /demo/sqlj directory. The README file in this
directory briefly explains what each of the programs demonstrates and how to set up, compile, and run the programs. The
programs also enable you to verify that HCL Informix® Embedded SQLJ and HCL Informix® JDBC Driver are correctly

installed. The examples in this manual are taken from these sample programs.

Fundamentals of embedded SQLJ programs

Each SQLJ statement in an Embedded SQLJ program is identified by #sql at the beginning of the statement. The SQLJ
translator recognizes #sql and translates the rest of the statement into Java™ code using JDBC calls.

You can use a class called ConnectionManager (located in a file in the /demo/sqlj directory) to initiate a JDBC connection.
The ConnectionManager class uses a JDBC driver and a database URL to connect to a database. Database URLs are

described in Database URLs on page 28.

To enable your embedded SQLJ program to connect to a database, you assign values to the following data members of the
ConnectionManager class in the file /demo/sqlj/ConnectionManager.java:

Member Description
uiD The user name
PWD The password for the user name
DRIVER The JDBC driver
DBURL The URL for the database

You must include the directory that contains your ConnectionManager.class file (produced when you compile
ConnectionManager.java) in your CLASSPATH environment variable definition.

Your Embedded SQLJ program connects to the database by calling the initContext() method of the ConnectionManager

class, as follows:

ConnectionManager.initContext();
The ConnectionManager class on page 28 provides details about the functionality of the initContext() method.

As an alternative to using the ConnectionManager class, you can write your own input methods to read the values of user
name, password, driver, and database URL from a file or from the command line.

The connection context that you set up is the default connection context; all #sql statements execute within this context,
unless you specify a different context. For information about using nondefault connection contexts, see Nondefault

connection contexts on page 28.

Embedded SQL statements

Embedded SQL statements can appear anywhere that Java™ statements can legally appear. SQL statements must appear
within curly braces, as follows:

#sql

{

INSERT INTO customer VALUES

(101, "Ludwig", "Pauli", "A1ll Sports Supplies",

"213 Erstwild Court", "", "Sunnyvale", "CA",

"94086", "408-789-8075"

)

};
You can use the SELECT...INTO statement to retrieve data into Java™ variables (host variables). Host variables within
SQL statements are designated by a preceding colon (:). For example, the following query places values in the variables
customer_num, fname, Iname, company, address1, address2, city, state, zipcode, and phone:

#sql

{

SELECT * INTO :customer_num, :fname, :lname, :company,

raddressl, :address2, :city, :state, :zipcode,

:phone

FROM customer

WHERE customer_num = 101
}s

SQL statements are case insensitive and can be written in uppercase, lowercase, or mixed-case letters. Java™ statements
are case sensitive (and so are host variables).

You use SELECT...INTO statements for queries that return a single record; for queries that return multiple rows (a result set),
you use an iterator object, described in the next section.

Result sets and iterators

Embedded SQLJ uses result-set iterator objects rather than cursors to manage result sets (cursors are used by languages
such as). A result-set iterator is a Java™ object from which you can retrieve the data returned by a SELECT statement. Unlike
cursors, iterator objects can be passed as parameters to a method.

Chapter 1. Embedded SQLJ for HCL Informix®

Important: Names of iterator classes must be unique within an application.

When you declare an iterator class, you specify a set of Java™ variables to match the SQL columns that your SELECT
statement returns. There are two types of iterators: positional and named.

Positional iterators

The order of declaration of the Java™ variables of a positional iterator must match the order in which the SQL columns are

returned. You use a FETCH...INTO statement to retrieve data from a positional iterator.

For example, the following statement generates a positional iterator class with five columns, called Custlter:

#sql iterator CustIter(int , String, String, String, String, String);

This iterator can hold the result set from the following SELECT statement:

SELECT customer_num, fname, lname, addressl,
address2, phone
FROM customer

Named iterators

The name of each Java™ variable of a named iterator must match the name of a column returned by your SELECT statement;

order is irrelevant. The matching of SQL column name and iterator column name is case insensitive.

You use accessor methods of the same name as each iterator column to obtain the returned data, as shown in the example
in A simple embedded SQLJ program on page 8. The SQLJ translator uses the iterator column names to create accessor
methods. Iterator column names are case sensitive; therefore, you must use the correct case when you specify an accessor
method.

You cannot use the FETCH...INTO statement with named iterators.

For example, the following statement generates a named iterator class called CustRec:

#sql dterator CustRec(
int customer_num,
String fname,

String lname ,
String company ,
String addressl ,
String address2 ,
String city ,

String state ,
String zipcode ,
String phone

)5

This iterator class can hold the result set of any query that returns the columns defined in the iterator class. The result set
from the query can have more columns than the iterator class, but the iterator class cannot have more columns than the

result set. For example, this iterator class can hold the result set of the following query because the iterator columns include

all of the columns in the customer table:

SELECT * FROM customer

A simple embedded SQLJ program

The sample program Demo03.sqlj demonstrates the use of a named iterator to retrieve data from a database.

This simple program outlines a standard sequence for many HCL Informix® Embedded SQLJ programs:

1. Import necessary Java™ classes.
2. Declare an iterator class.

3. Define the main() method.
All Java™ applications have a method called main, which is the entry point for the application (where the interpreter
starts executing the program).

4. Connect to the database.
The constructor of the application makes the connection to the database by calling the initContext() method of the
ConnectionManager class.

. Run queries.
. Create an iterator object and populate it by running a query.
. Handle the results.

0 N o o

. Close the iterator.

You can find the Demo03.sqlj sample program code in the $| NFORM XDI R/ j dbc/ denp/ sql j directory.

The embedded SQLJ language

This chapter provides detailed information about using the Embedded SQLJ language. For syntax and reference information
about specific statements, refer to the HCL® Informix® Guide to SQL: Syntax.

Embedded SQLJ has some differences from the earlier embedded SQL languages defined by ANSI/ISO: ESQL/C, ESQL/ADA,
ESQL/FORTRAN, ESQL/COBOL, and ESQL/PL/1. The major differences are as follows:

 The SQL connection statement of traditional embedded SQL is replaced by a Java™ connection-context object. This
approach enables Embedded SQLJ programs to open multiple database connections simultaneously.

« In Embedded SQLJ there is no host variable definition section (preceded by a BEGIN DECLARE SECTION statement
and terminated by an END DECLARE SECTION statement). All legal Java™ variables can be used as host variables.

» Embedded SQLJ does not include the WHENEVER...GOTO/ CONTINUE statement, because Java™ has well-developed
rules for declaring and handling exceptions.

- Embedded SQLJ uses iterator objects rather than cursors to manage result sets. A result-set iterator is a Java™
object from which you can retrieve the data returned by a SELECT statement. Unlike cursors, iterator objects can be
passed as parameters to methods.

- Embedded SQLJ supports access to data in columns of iterator objects by name, through generated accessor
methods. You can also access this data by position using the FETCH...INTO statement, as used by traditional
embedded SQL.

Chapter 1. Embedded SQLJ for HCL Informix®

« Unlike other host languages, Java™ allows null data. Therefore, you do not need to use null indicator variables with
Embedded SQLJ.
« Embedded SQLJ does not include dynamic SQL; you must use JDBC instead.

The files containing your Embedded SQLJ source code must have the extension .sqlj; for example, custapp.sqlj.

Embedded SQLJ statements

To identify Embedded SQLJ statements to the SQLJ translator, each SQLJ statement must begin with #sql. The SQLJ
translator recognizes #sql and translates the statement into Java™ code.

SQL statements

Embedded SQLJ supports SQL statements at the SQL92 Entry level, with the following additions:

» The EXECUTE PROCEDURE statement, for calling SPL routines and user-defined routines
« The EXECUTE FUNCTION statement, for calling stored functions
» The BEGIN...END block

SQL statements must appear within curly braces, as follows:

#sql
{

create table customer

(

customer_num serial(101),
fname char(15),
Tname char(15),
company char(20),
addressl char(20),
address2 char(20),
city char(15),
state char(2),
zipcode char(5),
phone char(18),

primary key (customer_num)
)
};

An SQL statement that is not enclosed within curly braces will generate a syntax error.

SQL statements are case insensitive (unless delimited by double quotes) and can be written in uppercase, lowercase, or

mixed-case letters. Java™ statements are case sensitive.

Host variables

Host variables are variables of the host language (in this case Java™) that appear within SQL statements. A host variable
represents a parameter, variable, or field and is prefixed by a colon (:), as in the following example:

#sql [ctx] { SELECT INTO customer WHERE customer_num = :cust_no };

10

You use the SELECT statement with the INTO (as shown in this example), the FETCH statement with the INTO clause
(described in Positional iterators on page 10), or an accessor method (described in Named iterators on page 11) to
retrieve data into host variables.

SELECT statements that return a single row

You use the SELECT...INTO statement for queries that return a single record of data. For queries that return multiple rows

(called a result set) you use an iterator object, as described in the next section, Result sets on page 10.

The SELECT...INTO statement includes a list of host variables in the INTO clause to which the selected data is assigned. For
example:

#sql

{

SELECT * INTO :customer_num, :fname, :lname, :company,

raddressl, :address2, :city, :state, :zipcode,

:phone

FROM customer

WHERE customer_num = 101

}s
The number of selected expressions must match the number of host variables. The SQL types must be compatible with
the host variable types. If you use online checking, the SQLJ translator checks that the order, number, and types of the
SQL expressions and host variables match. For information on how to perform online checking, see Online checking on
page 26.

Result sets

Embedded SQLJ uses iterator objects to manage result sets returned by SELECT statements. A result-set iterator is a Java™
object from which you can retrieve the data returned from the database. lterator objects can be passed as parameters to
methods and manipulated like other Java™ objects.

Important: Names of iterator classes must be unique within an application.

When you declare an iterator object, you specify a set of Java™ variables to match the SQL columns that your SELECT

statement returns. There are two types of iterators: positional and named.

Positional iterators

The order of declaration of the Java™ variables in a positional iterator must match the order in which the SQL columns are

returned.

For example, the following statement generates a positional iterator class called Custlter with six columns:

#sql iterator CustIter(int , String, String, String, String, String);

This iterator can hold the result set from the following SELECT statement:

Chapter 1. Embedded SQLJ for HCL Informix®

SELECT customer_num, fname, lname, addressl,
address2, phone
FROM customer

You run the SELECT statement and populate the iterator object with the result set by using an Embedded SQLJ statement of
the form:

#sql iterator-object = { SELECT ...};

For example:

CustIter cust_rec;

#sql [ctx] cust_rec = { SELECT customer_num, fname, lname, addressi,
address2, phone

FROM customer

};
You retrieve data from a positional iterator into host variables using the FETCH...INTO statement:

#sql { FETCH :cust_rec
INTO :customer_num, :fname, :lname,
raddressl, :address2, :phone

b

The SQLJ translator checks that the types of the host variables in the INTO clause of the FETCH statement match the types
of the iterator columns in corresponding positions.

The types of the SQL columns in the SELECT statement must be compatible with the types of the iterator. These type
conversions are checked at translation time if you perform online checking. For information about setting up online checking,
see Online checking on page 26. For a listing of SQL and Java™ type mappings, see SQL and Java type mappings on

page 14.

Named iterators

The name of each Java™ variable of a named iterator must match the name of a column returned by your SELECT statement;

order is irrelevant. The matching of SQL column names and iterator column names is case insensitive.

For example, the following statement generates a named iterator class called CustRec:

#sql diterator CustRec(
int customer_num,
String fname,

String lname ,
String company ,
String addressl ,
String address2 ,
String city ,

String state ,
String zipcode ,
String phone

)3

This iterator can hold the result set of any query that returns the columns defined in the iterator class. You use accessor

methods of the same name as each iterator column to obtain the returned data, as shown in the example in A simple

11

12

embedded SQLJ program on page 8. The SQLJ translator uses the iterator column names to create accessor methods.

Iterator column names are case sensitive; therefore, you must use the correct case when you specify an accessor method.
You cannot use the FETCH...INTO statement with named iterators.

The following example illustrates the use of hamed iterators:

// Declare Iterator of type CustRec
CustRec cust_rec;

#sql cust_rec = { SELECT * FROM customer };

int row_cnt = 0;
while (cust_rec.next())

{
System.out.println("=====

System.out.println("CUSTOMER NUMBER :" + cust_rec.customer_num());
System.out.println("FIRST NAME :" + cust_rec.fname());
System.out.println("LAST NAME "+ cust_rec.lname());
System.out.println("COMPANY :" + cust_rec.company());
System.out.println("ADDRESS :" + cust_rec.addressl() +"\n" +
W " + cust_rec.address2());
System.out.println("CITY "+ cust_rec.city());
System.out.println("STATE :" + cust_rec.state());
System.out.println("ZIPCODE " + cust_rec.zipcode());
System.out.println("PHONE :" + cust_rec.phone());
System.out.println("===================================")
System.out.println("\n\n");

row_cnt++;

}

System.out.println("Total No Of rows Selected :" + row_cnt);
cust_rec.close() ;

The next() method of the iterator object advances processing to successive rows of the result set. It returns FALSE after it

fails to find a row to retrieve.
The Java™ compiler detects type mismatches for the accessor methods.

The validity of the types and names of the iterator columns and their related columns in the SELECT statement are checked
at translation time if you perform online checking. For information about setting up online checking, see Online checking on

page 26.

Column aliases

When an expression returned by a SELECT statement has an SQL name that is not a valid Java™ identifier, use SQL column
aliases to rename them. For example, the name Not valid for Java™ is acceptable as a column name in SQL, but not as a

Java™ identifier. You can use a column alias that has a name acceptable as a Java™ identifier by using the AS clause:

SELECT "Not valid for Java" AS "Coll" FROM tablename

When you create a named iterator class for this query, you specify the column alias name for the Java™ variable, as in:

#sql iterator Iterator_name (String Coll);

Chapter 1. Embedded SQLJ for HCL Informix®

[terator methods

Both named and positional iterator objects have the following methods:

 rowCount()

Returns the number of rows retrieved by the iterator object
« close()

Closes the iterator; raises SQLException if the iterator is already closed

« isClosed()

Returns TRUE after the iterator's close() method has been called; otherwise, it returns FALSE

Positional iterators also have the endFetch() method. The endFetch() method returns TRUE when no more rows are available.

Named iterators also have the next() method. The next() method advances processing to successive rows of the result set.
It returns FALSE after it fails to find a row to retrieve. For an example of how to use the next() method, see Named iterators on
page 11.

Positioned updates and deletes
To perform positioned updates and deletes in a result set, you use the WHERE CURRENT OF clause with a host variable that
contains an iterator object. For example:

#sql { delete_statement/update_statement
WHERE CURRENT OF :diter };

At runtime, the variable :iter must contain an open iterator object that contains a result set selected from the same table
accessed by the query in either delete_statement or update_statement. The current row of that iterator object is deleted or
updated.

SQL query execution and monitoring

You can monitor and modify the execution of an SQL query by using the execution context associated with it. An execution
context is an instance of the class sqlj.runtime.ExecutionContext; an execution context is associated with each executable
SQL operation in an Embedded SQLJ program.

You can supply an execution context explicitly for an SQL statement:

#sgql [execCtx] {SQL_statement};

If you do not explicitly supply an execution context, the SQL statement uses the default execution context for the connection

context you are using.

If you want to supply an explicit connection context and an explicit execution context, the SQL statement looks like this:

#sql [connCtx, execCtx] {SQL_statement };

13

You use the getExecutionContext() method of the connection context to obtain that connection’s default execution context.

The execution-context object has attributes and methods that provide information about an SQL operation and the ability to
modify its execution.

For each of the following attributes, there is a method called getattribute that reads the value of the attribute, and a method
called setattribute that sets its value. The attributes are:

Attribute Description
MaxRows The maximum number of rows a query can return
MaxFieldSize The maximum number of bytes that can be returned as data for any column or output variable
QueryTimeout The number of seconds to wait for an SQL operation to complete
SQLWarnings Any warnings that occurred during the last SQL operation
UpdateCount The number of rows updated, inserted, or deleted during the last SQL operation

SPL routine and function calls

You can call a Stored Procedure Language (SPL) procedure by using the EXECUTE PROCEDURE statement. For example:

#sql { EXECUTE PROCEDURE proc_name(:arg_name) };

You can call a stored function by using the EXECUTE FUNCTION statement. For example:
#sql {EXECUTE FUNCTION func_name (func_arg) into :num };

SQL and Java™ type mappings

When you retrieve data from a database into an iterator object (see Result sets on page 10) or into a host variable, you
must use Java™ types that are compatible with the SQL types. The following table shows valid conversions from SQL types
to Java™ types.

SQL type Java™ type
BIGINT, BIGSERIAL bigint
BLOB byte[]
BOOLEAN boolean
BYTE bytel]
CHAR, CHARACTER String

14

Chapter 1. Embedded SQLJ for HCL Informix®

SQL type Java™ type
CHARACTER VARYING String

CLOB byte[]

DATE java.sql.Date
DATETIME java.sql.Timestamp

DECIMAL, NUMERIC, DEC

java.math.BigDecimal

FLOAT, DOUBLE PRECISION double

INT8 long

INTEGER, INT int

INTERVAL IfxIntervalDF, Ifxintervalym' ©"Pade 15
LVARCHAR String

MONEY java.math.BigDecimal
NCHAR, NVARCHAR String

SERIAL int

SERIAL8 long

SMALLFLOAT flogt2 O Page 15
SMALLINT short

TEXT String

VARCHAR String

Table notes:

1. IfxIntervalYM and IfxIntervalDF are HCL Informix® extensions to JDBC 2.0.
2. This mapping is JDBC compliant. You can use HCL Informix® JDBC Driver to map SMALLFLOAT data type
(via the JDBC FLOAT data type) to the Java™ double data type for backward compatibility by setting the

IFX_GET_SMFLOAT_AS_FLOAT environment variable to 1.

You must also use compatible Java™ types for host variables that are arguments to SQL operations. This table shows valid

conversions from Java™ types to SQL types.

Java™ type

SQL type

java.math.BigDecimal

DECIMAL

15

Java™ type SQL type

boolean BOOLEAN
bytell BYTE
java.sqgl.Date DATE

double FLOAT' ©nPage 16
float SMALLFLOAT
int INT

long INT8

short SMALLINT
String CHAR
java.sql.Time DATETIME
java.sql.Timestamp DATETIME
com.informix.jdbc.IfxIntervalDF INTERVAL
com.informix.jdbc.IfxIntervalYM INTERVAL

Table note:

1. This mapping is JDBC compliant. You can use HCL Informix® JDBC Driver to map the Java™ double
data type (via the JDBC FLOAT data type) to the HCL Informix® SMALLFLOAT data type for backward
compatibility by setting the IFX_GET_SMFLOAT_AS_FLOAT environment variable to 1.

! Important: Unlike other host languages (for example, C), Java™ allows null data. Therefore, you do not need to use

null indicator variables with Embedded SQLJ. The Java™ nul | value is equivalent to the SQL NuLL value.

Language character sets

Embedded SQLJ supports Java's Unicode escape sequences. Also, if you set your Java™ property file.encoding to 8859_1 (or

do not set it at all), you can use the Latin-1 character set.

To process files with a different encoding-for example, SJIS-you have the following choices:

« Use the JDK tool native2ascii to convert the native encoded source to a source with ASCII encoding.
» Setfile. encodi ng=SJI S in java.properties in the Java™ home directory.
« Invoke the SQLJ translator using the following command:

java ifxsqlj -Dfile.encoding=SJIS file.sqlj

Chapter 1. Embedded SQLJ for HCL Informix®

Java™ package importation

Your Embedded SQLJ programs need to import the JDBC API (java.sql.*) and SQLJ runtime (sqlj.runtime.*) packages to

which they refer. The classes you are likely to commonly use are:

- In package java.sql for the JDBC API:

The SQLException class-includes all runtime exceptions raised by Embedded SQLJ-and classes you explicitly use,

such as java.sql.Date, java.sql.ResultSet.

« In package sqlj.runtime for SQLJ runtime:

SQLJ stream types (explicitly referenced): for example, BinaryStream, the ConnectionContext class, and the

reference implementation of Embedded SQLJ classes (in sqlj.runtime.ref).

SQLJ reserved names

This section lists names reserved by the SQLJ translator. Do not use these names in your Embedded SQLJ programming.

Parameter, field, and variable names

The string _sJT is a reserved prefix for generated variable names. Do not use this prefix for the names of:

« Variables declared within blocks that include SQL statements
» Parameters to methods that contain SQL statements

« Fields in classes that contain SQL statements or whose subclasses contain SQL statements

Class names and filenames

Do not declare classes that conflict with the names of internal classes. Do not create files that conflict with generated

internal resource files.

The SQLJ translator creates internal classes and resource files for use by generated code. The names of these files and
classes have a prefix composed of the name of the original input file followed by the string _SJ. For example, if you translate

a file called File1.sqlj that uses the package COM.foo, the names of some of the internal classes produced are:

« COM.foo.File1_SJInternalClass

« COM.foo.File1_SJProfileKeys

+ COM.foo.File1_SJInternalClass$Inner
« COM.foo.File1_SJProfile0

« COM.foo.File1_SJProfile1

Generated files for these internal classes, which are created in the same directory as the input file, File1.sqlj, are called:

» File1_SJInternalClass.java (includes the class COM.foo.File1_SJInternalClass$Inner)

« File1_SJProfileKeys.java

17

« File1_SJProfile0.ser
« File1_SJProfile1.ser

Files with the .ser extension are internal resource files that contain information about SQL operations in an .sqlj file.

Handling errors

Some iterator and connection-context methods might raise exceptions specified by the JDBC API SQLException class.
For information about using SQLException methods to obtain information about these errors, refer to your JDBC API

documentation.

Embedded SQLJ source code processing

This chapter describes how to create executable Java™ programs from your Embedded SQLJ source code. It explains:

» How to use the SQLJ translator

- Basic translation and compilation options

« Advanced translation and compilation options
- How to use property files

« How to perform online checking

SQL program translation, compiling, and running
You use the command java ifxsqlj to create executable Java™ .class files from your Embedded SQLJ source code.

When you run the java ifxsqlj command with an .sqlj source file, the source file is processed in two stages. In the first stage,
called translation, the SQLJ translator creates a Java™ source file (with the extension .java). For example, when you process
a file called File1.sqlj, the SQLJ translator creates a file called File1.java. The SQLJ translator also creates internal resource

files with the extension .ser.

In the second stage of processing, the SQLJ translator passes .java files to a Java™ compiler. Compilation creates files with
the extension .class; in this example, your compiled Java™ program is called File1.class. An internal resource file named
profilekeys.class is also created. If your program includes an iterator, a file called iterator_name.class is produced.

Tip: To perform translation only, execute the java ifxsqlj command with the -compile option set to FALSE. For

information about the -compile option, see Advanced options for the ifxsglj command on page 21.

To create a complete application, you must include the directories that contain the SQLJ runtime classes in sqlj.runtime.* in
your CLASSPATH environment variable definition. The SQLJ runtime files are available in ifxsqlj.jar, the file that you installed
when you first installed the Embedded SQLJ product, as described in A simple embedded SQLJ program on page 8.

In addition, you must include the locations of ifxtools.jar and the relevant version of the JDK in your CLASSPATH definition.
At runtime, you must also include the location of ifxjdbc.jar; however, you do not need to include this file location when
translating or compiling your application.

18

Chapter 1. Embedded SQLJ for HCL Informix®

You run your Embedded SQLJ program like any other Java™ program, by using the Java™ interpreter, as follows:

java Filel

The ifxsqlj command

You use the java ifxsqlj command to translate and compile your Embedded SQLJ source code. You run the java ifxsqlj
command at the DOS or UNIX™ prompt.

The syntax of the java ifxsqlj command is as follows:
java ifxsqlj optionlist filelist
optionlist

A set of options separated by spaces. Some options have prefixes to indicate they are to be passed to utilities
other than the SQLJ translator, such as the Java™ compiler.

filelist

A list of filenames separated by spaces: for example, filel.sqlj file2.sqlj
You must include the absolute or relative path to the files in filelist.

The files can have the extension .sqlj or .java. You can specify .sqlj files together with .java files on the same
command line.

If you have .sqlj and .java files that require access to code in each other's file, enter all of these files on the
command line for the same execution of the java ifxsqlj command.

You can use an asterisk (*) as a wildcard to specify filenames; for example, c*.sqlj processes all files
beginning with ¢ that have the extension .sqlj.

When you run the java ifxsqlj command, your CLASSPATH environment variable must be set to include any directories that
contain .class files and .ser files the translator needs to access for type resolution of variables in your Embedded SQLJ
source code.

Basic options for the ifxsqlj command

The following table lists the basic options available for use with the java ifxsqlj command.
Option

Description

Specifies the root output directory for generated .ser and .class files

If you do not specify this option, files are generated under the directory of the input .sqlj file.
-dir

Specifies the root output directory for generated .java files

19

20

If you do not specify this option, files are generated under the directory of the input .sqlj file.
-encoding

Specifies the GLS encoding for .sqlj and .java input files and for .java generated files
If unspecified, the setting of the file.encoding property for the Java™ interpreter is used.

The -encoding option is also passed to the Java™ compiler.
-help

Displays option names, descriptions, and current settings

The list displays:

» The name of the option

+ The type of the option (for example, if it is Boolean) or a selection of allowed values

* The current value

« A description of the option

» Whether the property is at its default, or was set by either a property file or the command line

No translation or compilation is performed when you specify the -help option.
-linemap
Enables the mapping of line numbers between the generated .java file and the original .sqlj file

The -linemap option is useful for debugging because it allows you to trace compilation and execution errors
back to your Embedded SQLJ source code.

For the -linemap option to be effective, the name of the .sqlj source code file must match the name of the class
it implements.
-props

Specifies the name of the property file from which to read options

The ifxprofp tool on page 27 explains how to use property files.
-status

Displays status messages while the java ifxsqlj command is running
-version

Displays the version of Embedded SQLJ you are using

No translation or compilation is performed when you specify the -version option.
-warn

Specifies a list of flags in a comma-separated string for controlling the display of warning and information
messages during translation

Chapter 1. Embedded SQLJ for HCL Informix®

The flags are:

- all/none. Turns on or off all warnings and information messages

« null(default)/nonull. Specifies whether the translator checks nullable columns and nullable Java™
variable types for conversion loss when data is transferred between database columns and Java™ host
variables
The translator must connect to the database for this option to be in effect.

- precision(default)/noprecision. Specifies whether the translator checks for loss of precision when data
is transferred between database columns and Java™ variables

The translator must connect to the database for this option to be in effect.

- portable(default)/noportable. Turns on or off warning messages about the portability of Embedded
SQLJ statements

- strict(default)/nostrict. Specifies whether the translator checks named iterators against the columns
returned by a SELECT statement and issues a warning for any mismatches
The translator must connect to the database for this option to be in effect.

- verbose(default)/noverbose. Turns on or off additional information messages about the translation

process

The translator must connect to the database for this option to be in effect.

For example, the following setting of the -warn option turns off all warnings and then turns on the precision and
nullability checks:

-warn=none,null,precision

Advanced options for the ifxsqlj command
The following table lists the advanced options available for use with the java ifxsqlj command. Many of these options are for
online checking, which is discussed in Online checking on page 26.
Option
Description
-cache
Turns on the caching of results from online checking

Caching saves you from unnecessary connections to the database in subsequent runs of the translator for the
same file.

Results are written to the file SQLChecker.cache in your current directory. The cache holds serialized
representations of all SQL statements that translated without errors or warnings. The cache is cumulative and
grows through successive invocations of the translator.

21

22

You empty the cache by deleting the SQLChecker.cache file.
Caching is off by default; you turn caching on by setting the -cache option to t r ue, 1, or on; for example,
-cache=t rue. You turn caching off by setting the option to f al se, 0, or of .

-compile

Set this flag to f al se to disable processing of .java files by the compiler. This applies to generated .java files

and to .java files specified on the command line.
-compiler-executable
Specifies a particular Java™ compiler for the java ifxsqglj command to use
If not specified, the translator uses javac. If you do not specify a directory path, the java ifxsqlj command
searches for the executable according to the setting of your PATH environment variable.
-compiler-encoding-flag

Set this flag to f al se to prevent the value of the SQLJ -encoding option from being automatically passed to the
compiler.

-compiler-output-file

If you have instructed the Java™ compiler to output its results to a file, use the -compiler-output-file option to
specify the filename.

-driver
Specifies a list of JDBC drivers that can be used to interpret JDBC connection URLs for online checking (see

Online checking on page 26)

You specify a class name or a comma-separated list of class names. For example, specify HCL Informix®
JDBC Driver as follows:

-driver=com.informix.jdbc.IfxDriver
-offline

Specifies a Java™ class to implement off-line checking
The default off-line checker class is sqlj.semantics.OfflineChecker.

Off-line checking only runs when online checking does not (either because online checking was not enabled or
because it stopped because of error). Off-line checking verifies SQL syntax and the usage of Java™ types.

With off-line checking, there is no connection to the database.
-online

Specifies a Java™ class or list of classes to implement online checking
The default online checker class is sqlj.semantics.JdbcChecker.

You can specify an online checker class for a particular connection context, as in:

Chapter 1. Embedded SQLJ for HCL Informix®

-online@ctxclass2=sqlj.semantics.JdbcChecker

You must specify a user name with the -user option for online checking to occur. The -password, -url, and

-driver options must be appropriately set as well.

-password

Specifies a password for the user name set with the -user option
If you specify the -user option, but not the -password option, the translator prompts you for the password.

If you are using multiple connection contexts, the setting for -password for the default connection context also
applies to any connection context that does not have a specific setting.

-ser2class

-url

Set this flag to t rue to convert the generated .ser files to .class files. This is necessary if you are creating an
applet to be run from a browser, such as Netscape 4.0, that does not support loading a serialized object from a

resource file.

The original .ser file is not saved.

Specifies a JDBC URL for establishing a database connection for online checking (see Database URLs on

page 28 and Online checking on page 26)
The URL can include a host name, a port number, and the Informix® database name. The format is:

jdbc:informix-sqli:/{<ip-address>| <domain-name>}:<port-number>[/<dbname>]: INFORMIXSERVER=<server-

name>[;user=<username>; password=<password>;<name>=<value> [;<name>=<value>]...]

If you are using multiple connection contexts, the setting for -url for the default context also applies to any

connection context that does not have a specific setting.
You can specify a URL for a particular connection context, as in -url@ctxclass2=....

Any connection context with a URL must also have a user name set for it (using the -user option) for online

checking to occur.

-user

Enables online checking and specifies the user name with which the translator connects to the database (see

Online checking on page 26)

For example, to enable online checking on the default connection context and connect with the user name fred,

use the following option:
-user=fred

If you are using multiple connection contexts, the setting for -user for the default connection context also
applies to any connection context that does not have a specific setting.

23

If you want to enable online checking for the default context, but turn off online checking for another

connection-for example ctxcon2-you need to specify the -user option twice:

-user=fred -user@ctxcon2=

To enable online checking for a particular connection context, specify that context with the user name, as in:
-user@ctxcon3=joyce

The classes of the connection contexts you specify must all be declared in your source code or previously

compiled into a .class file.

Specifies a particular Java™ interpreter for the java ifxsqlj command to use

You must also include the path to the interpreter. If you do not specify a particular Java™ interpreter using this

option, the translator uses java as a default.

The -vm option must be specified on the command line; you cannot set it in a property file.

Options for the ifxsqglj command

You specify options for the java ifxsqlj command either on the command line or in a property file. Command line options
are discussed in ifxsglj command-line options on page 24. Property files are discussed in Format of property files on

page 25.

For Boolean options (those that are either on or off), you can set the option simply by specifying the option name; for
example, - 1i nemap. You can also set the option to TRUE, as in -1 i nemap=t r ue. To turn off a Boolean option, you must set it to
FALSE: for example, - I i nemap=f al se. You can also set Boolean options to yes or no, or to 1 or o.

ifxsqlj command-line options

Options on the command line override any options set in default files. If the same option appears more than once on the

command line, the translator uses the final (rightmost) option's value.
Command-line option names are case sensitive.

You can attach prefixes to options to pass the option to the Java™ compiler or to the Java™ interpreter. If you do not use a
prefix, the option is passed to the SQLJ translator.

The prefixes are:
-C

Passes compiler options to the Java™ compiler, as shown in the following example:

- C-cl asspat h=/user/j dk/ bin

Passes interpreter options to the Java™ interpreter, as shown in the following example:

24

Chapter 1. Embedded SQLJ for HCL Informix®

-J-Duser. | anguage=j a
The options available to pass to the interpreter depend on the release and brand of Java™ you are using.

Do not use the -C prefix with the -d and -encoding options; when you specify these SQLJ translator options, they are
automatically passed to the Java™ compiler.

ifxsqlj options in property files

You can use property files to supply options to the java ifxsqlj command. The default name of a property file is
sqlj.properties; you can specify a different name by using the -props option on the command line (see Basic options for the

ifxsglj command on page 19).
You cannot use a property file to specify:

« The -props, -help, and -version basic options
» The -vm advanced option

« Options with the prefix -J (for passing options to the Java™ interpreter)

Precedence of ifxsqlj options

The java ifxsqlj command checks for the existence of files called sqlj.properties in the following directories in the following

order:

1. The Java™ home directory
2. Your home directory

3. The current directory

The translator processes each property file it finds and overrides any previously set option if it finds a new setting for that

option.
Later entries in the same property file override earlier entries.
Options on the command line override options set by property files.

If you set options on the command line or in a property file specified using the -props option, these options override any

options set in sqlj.properties files.

Format of property files

In a property file, you:

« Specify one option per line.

* Begin a line with the symbol # to denote a comment.

25

Tip: The translator ignores empty lines.

The syntax for specifying options is the same as shown in Parameter, field, and variable names on page 17, except you
replace the initial hyphen with a string followed by a period that indicates to which utility the option is passed.

You can pass options to the SQLJ translator or the Java™ compiler; however, you cannot pass options to the Java™
interpreter from a property file. The strings for specifying utilities are as follows.
Precede an option with...
To pass it to this utility...
sqlj.
SQLJ translator
compile.

Java™ compiler

An example property file looks like this:

Turn on online checking and specify the user to connect with
sqlj.user=joyce

sqlj.password=x%***xxx

JDBC Driver to connect with

sqlj.driver=com.informix.jdbc.IfxDriver

Database URL

sqlj.url=jdbc:<ipaddr>: <portno>/demo_isqlj:informixserver=<$INFORMIXSERVER>
Instruct the compiler to output status messages during compile
compile.verbose

Online checking

Online checking analyzes the validity of the embedded SQL statements against the database schema (user name, password,
and database) you specify.

Online checking performs the following operations:

« Passes SQL data manipulation statements (DML) to the database to verify their syntax and semantics and their
validity for the database schema

« Checks stored procedures and functions for overloading

* Runs the checks covered by off-line checking

Off-line checking verifies SQL syntax and usage of Java™ types; there is no connection to a database for off-line checking.

To set up online checking, you use the following options with the java ifxsqlj command or set them in a property file: -user,

-password, -url, and -driver. These options are described in Advanced options for the ifxsqglj command on page 21.

26

Chapter 1. Embedded SQLJ for HCL Informix®

-user and -password options

You enable online checking by setting the -user option. The -user option also supplies the user name for the database
connection to be used for checking. You do not have to specify the same database or user name for online checking as the

application uses at runtime.

In the simplest case, you supply a user name with the -user option, and online checking is performed using the default

connection context, as in:

-user = joyce

You can supply the password for the user name by using the -password option or by combining the password with the user

name; for example, - user = joyce/jcs123 Or -user = joyce -password =j cs123

To disable online checking on the command line, set the -user option to an empty value (as in - user =) or omit the option

entirely. To disable online checking in a property file, comment out the line specifying sqlj.user.

To enable online checking against a nondefault connection context, you specify the connection context with the user name in
the -user option. In the following example, the SQLJ translator connects to the database specified in the connection-context

object, conctx, using the user name fred:

-user@conctx = fred

-url and -driver options
The -url option specifies a JDBC URL for establishing a database connection (see Database URLs on page 28).
The -driver option specifies a list of JDBC drivers that can be used to interpret JDBC connection URLs for online checking.

Both of these options are shown in Advanced options for the ifxsqlj command on page 21.

The ifxprofp tool

Embedded SQLJ includes the ifxprofp tool. The tool ifxprofp enables you to print out the information stored in internal

resource .ser files, for debugging purposes. You invoke the tool as follows:

java ifxprofp filename.ser

Here is an example of the output of the ifxprofp tool:

printing contents of profile Demo02_SJProfile®d

created 918584057644 (2/9/99 10:14 AM)

associated context is sqlj.runtime.ref.DefaultContext

profile loader 1is sqlj.runtime.profile.DefaultLoader@lf7f1941
contains no customizations

original source file:Demo02.sqlj

contains 8 entries

profile Demo®2_SJProfile® entry 0
#sql { CREATE DATABASE demo_sqlj WITH LOG MODE ANSI
}s

line number:59

27

28

PREPARED_STATEMENT executed via EXECUTE_UPDATE
role is STATEMENT

descriptor is null

contains no parameters

result set type is NO_RESULT

result set name 1is null

contains no result columns

Appendix

This section contains additional reference information.

Embedded SQLJ and database connections

Embedded SQLJ versus JDBC on page 4 describes how Embedded SQLJ programs connect to databases. This

appendix provides background information and information about using nondefault connection contexts.

The ConnectionManager class

You use the ConnectionManager class to make a connection to a database, as described in Embedded SQLJ versus JDBC

on page 4. The ConnectionManager class has two methods:

» newConnection()
« initContext()

The newConnection() method creates and returns a new JDBC Connection object using the current values of the DRIVER,
DBURL, UID, and PWD attributes. If any of the needed attributes is null or a connection cannot be established, an error

message is printed to System.out, and the program exits.

The initContext() method returns the currently installed default context. If the current default context is null, a new default

context instance is created and installed using a connection obtained from a call to getConnection.

Database URLs

The DBURL data member of the ConnectionManager class and the value for the -url option that you specify for online
checking are database URLs. (For information about online checking, see Online checking on page 26.) Database URLs

specify the subprotocol (the database connectivity mechanism), the database or server identifier, and a list of properties.

Your Embedded SQLJ program uses HCL Informix® JDBC Driver to connect to the Informix® database.

Nondefault connection contexts

This section explains how to use nondefault connection contexts. Embedded SQLJ uses a connection-context object
to manage the connection to the database in which you want an SQL statement to execute. You can specify different
connection-context objects for different SQL statements in the same Embedded SQLJ program, as shown in the sample

program MultiConnect.sqlj included in this section.

Chapter 1. Embedded SQLJ for HCL Informix®

To use a nondefault connection context

1. Define the connection-context class by using an Embedded SQLJ connection statement. The syntax of the

connection statement is as follows:

#sql [modifiers] context java_class_name;
modifiers

A list of Java™ class modifiers: for example, public
java_class_name

The name of the Java™ class of the new connection context

2. Create a connection-context object for connecting to the database.
3. Specify the connection-context object in your Embedded SQLJ statement in parentheses following the #sql string.

MultiConnect.sqlj sample program

The sample program MultiConnect.sqlj creates two databases with one table each, Orders and Items, and inserts two
records in the Orders table and corresponding records in the Items table. The program prints the order line items for all the
orders from both tables, which exist in different databases, by creating separate connection contexts for each database.

You can find the MultiConnect.sqlj sample program code in the $| NFORM XDl R/ j dbc/ deno/ sql j directory.

MultiConnect.sqlj calls the methods executeSQLScript() and getConnect(). These methods are contained in demoUtil.java,

which follows this program.

Descriptions of sample programs included with HCL Informix® Embedded SQLJ

The following table lists and describes the online sample programs that are included with HCL Informix® Embedded SQLJ.

Demo Program Name

Description
Demo01.sqlj

Demonstrates a simple connection to the database
Demo02.sqlj

Demonstrates a simple SELECT statement and the use of host variables
Demo03.sqlj

Demonstrates the use of a named iterator
Demo04.sqlj

Demonstrates the use of a positional iterator
Demo05.sqlj

Demonstrates interoperability between a JDBC ResultSet object and an SQLJ iterator

30

Demo06.sqlj
Demonstrates interoperability between a JDBC Connection object and an SQLJ connection-context object
The sample programs are located in the | FXJLOCATI ON/ deno/ sql j directory (I FXJLOCATI ONrefers to the directory

where you chose to install HCL Informix® Embedded SQLJ). The README file in the directory explains how to compile and
run the programs.

Index

Special Characters

__sJT prefix 17

-C prefix 24

-cache option 19

-compile option 19
-compiler-encoding-flag option 19
-compiler-executable option 19
-compiler-output-file option 19
-d option 19

-dir option 19

-driver option 19

-encoding option 19

-help option 19

-J prefix 24

-linemap option 19

-offline option 19

-online option 19, 19, 19
-password option 19

-props option 19, 24
-ser2class option 19

-status option 19

-url option 19

-user option 19

-version option 19

-vm option 19

-warn option 19

.class files 3

.ser files 18, 19, 27

.sqlj file extension 8

A
Accessor methods 6, 8, 11
B

BEGIN DECLARE SECTION statement 8
BEGIN...END block 9

Binding of variables 3

Boolean options 24

CLASSPATH environment variable 5, 18
close() method 13

Column aliases 12

Command options, ifxsqlj 19
Compiling code 18

Connecting to a database 5
Connection-context class 28
Connection-context object 28
ConnectionManager class 5, 8, 28
ConnectionManager.java file 5
Curly braces, {} 9

Cursors 6, 8

Database server names, setting in database

URLs 28

Database servers 5
Database URLs 5, 28
Databases, connecting to 5
Default connection context 3, 6
Deletes, positioned 13
Demo01.sqlj program 29
Demo02.sqlj program 29
Demo03.sqlj program 8, 29
Demo04.sqlj program 29
Demo05.sqlj program 29
Demo06.sqlj program 29
demoUtil.java program 29

Domain names, setting in database URLs 28

Dynamic SQL 8

Embedded SQL, traditional 8

END DECLARE SECTION statement 8
endFetch() method 13

Errors 18

ESQL/C 8

EXECUTE FUNCTION statement 9, 14
EXECUTE PROCEDURE statement 9, 14
Execution context 13

FETCH statement 6, 8,9, 10
file.encoding property 16, 19
Files
.ser 18,19, 27
ConnectionManager.java 5
ifxjdbc.jar 18
ifxsqlj.jar 18
ifxtools.jar 18
iterator_name.class 18
java.properties 16
profilekeys.class 18
Property files 24
SQLChecker.cache 19
sqlj.properties 24
Functions 14

getExecutionContext() method 13
getMaxFieldSize() method 13
getMaxRows() method 13
getQueryTimeout() method 13
getSQLWarnings() method 13
getUpdateCount() method 13
GLS feature 19

HCL

Informix

JDBC Driver

3,528

Host variables 6, 8, 9

ifxjdbc.jar file 18

ifxprofp tool 27

ifxsqlj command 18

ifxsqlj.jar file 18

ifxtools.jar file 18

Informix

database servers

5

INFORMIXSERVER environment variable 28
initContext() method 5, 8, 28

Internal resource files 18

IP addresses, setting in database URLs 28
isClosed() method 13

Iterator objects 6, 8,8, 10
iterator_name.class file 18

Java compiler 3

Java Development Kit (JDK) 5, 5
Java interpreter 18

Java types 14

java.properties file 16

JDBC 3,3,17,19,19

31

Language character sets 16
Latin-1 character set 16
Line numbers 19

M

main() method 8
MultiConnect.sqlj program 28
Multiple database connections 8

Name-value pairs of database URLs 28
Named iterators 6, 11

native2ascii tool 16

newConnection() method 28

next() method 11, 13

Nondefault connections 28

Null data 8

Null indicator variables 14

Off-line checking 26
On-line checking 26
Online checking 19
Output directory 19

Passwords, setting in database URLs 28
PATH environment variable 19

Port numbers, setting in database URLs 28
Positional iterators 6, 10

Positioned updates, deletes 13
Preprocessing source code 18
profilekeys.class file 18

Property files 24

README file 5, 29

Reserved names 17

Result sets 6, 10

Root output directory 19

rowCount() method 13

Running Embedded SQLJ programs 18

Sample programs 5, 8, 29
Schema checking 3

SELECT statements 6
SELECT...AS statement 12
SELECT...INTO statement 6,9, 10
Semantics checking 3, 26
setMaxFieldSize() method 13
setMaxRows() method 13
setQueryTimeou() method 13
setUpdateCount() method 13
Specifying environment variables 28
SPL routines 14

SQL statements 6

SQL types 14

SQL92 Entry level 9
SQLChecker.cache file 19
SQLException class 17
SQLException methods 18

SQLJ consortium 3

SQLJ runtime package 17

SQLJ statement identifier 5
SQLJ translator 3,17, 18
sqlj.properties file 24
sqlj.semantics.JdbcChecker class 19

T

u

w

sqlj.semantics.OfflineChecker class 19
Stored functions 14
Syntax checking 3, 26

Translating source code 18
Type checking 3,10, 11
Type mappings 14

Unicode escape sequences 16
Updates, positioned 13
User names, setting in database URLs 28

WHENEVER...GOTO/CONTINUE statement 8
WHERE CURRENT OF clause 13

32

	HCL Informix Embedded SQLJ User’s Guide
	Contents
	Chapter 1. Embedded SQLJ for HCL Informix®
	Introduction to HCL Informix® embedded SQLJ
	What is embedded SQLJ?
	How does embedded SQLJ work?
	Embedded SQLJ versus JDBC

	Preparation to use embedded SQLJ
	What components do you need?
	Program Examples

	Fundamentals of embedded SQLJ programs
	Embedded SQL statements
	Result sets and iterators
	Positional iterators
	Named iterators

	A simple embedded SQLJ program

	The embedded SQLJ language
	Embedded SQLJ statements
	SQL statements

	Host variables
	SELECT statements that return a single row
	Result sets
	Positional iterators
	Named iterators
	Column aliases
	Iterator methods
	Positioned updates and deletes

	SQL query execution and monitoring
	SPL routine and function calls
	SQL and Java™ type mappings
	Language character sets
	Java™ package importation
	SQLJ reserved names
	Parameter, field, and variable names
	Class names and filenames

	Handling errors

	Embedded SQLJ source code processing
	SQL program translation, compiling, and running
	The ifxsqlj command
	Basic options for the ifxsqlj command
	Advanced options for the ifxsqlj command

	Options for the ifxsqlj command
	ifxsqlj command-line options
	ifxsqlj options in property files
	Precedence of ifxsqlj options
	Format of property files

	Online checking
	-user and -password options
	-url and -driver options

	The ifxprofp tool

	Appendix
	Embedded SQLJ and database connections
	The ConnectionManager class
	Database URLs
	Nondefault connection contexts
	To use a nondefault connection context

	MultiConnect.sqlj sample program

	Descriptions of sample programs included with HCL Informix® Embedded SQLJ

	Index

