
HCL Informix 15.0.0

HCL Informix 4GL By Example

INFORMIX-4GL
by Example

Introduction 15

About This Manual 15
Summary of Chapters 16
How to Use This Manual 18

How to Use The Examples 18
Typographical Conventions 19

The Demonstration Database and Application Files 19
Creating the Demo Database on Informix Dynamic Server 20
Creating the Demo Database on INFORMIX-SE 21
Copying the Example Files 22
Running an Example 22
Files Used in Each Example 24

Naming Conventions 25
Using the Examples with Prior Releases 25
Additional Documentation 26

Documentation Included with 4GL 26
On-Line Manuals 27
On-Line Help 27
On-Line Error Messages 27
Related Reading 28

Informix Welcomes Your Comments 28

Example 1 Writing a Simple 4GL Program 31

Displaying Information Using a Form 32
The MAIN Function 32
The DISPLAY Statements 33
Function Overview 33
The f_logo Form Specification 34
The MAIN Function 36
The dsply_logo() Function 36

4 Table of Contents

Example 2 Displaying a Message Window 43

Defining Global Variables 44
The MAIN Function 44
Displaying Messages in a Window 44
Function Overview 45
The GLOBALS Statement and MAIN Function 46
The message_window() Function 48
The init_msgs() Function 52

Example 3 Populating a Ring Menu with Options 55
Opening a Menu 55
Demonstrating the Choice of a Menu Option 56
Executing a Command Supplied by the User 56
Function Overview 56
The MAIN Function 58
The dsply_option() Function 62
The bang() Function 64
The hlpmsgs Message File 66

Example 4 Displaying a Row on a Form 69
Defining Records 70
Returning Values from Functions 70
Entering Information on a Form 71
Selecting Database Information 71
Recovering from Runtime Errors 72
Function Overview 73
The f_custkey and f_custsum Forms 74
The DATABASE and GLOBALS Statements 76
The MAIN Function 76
The cust_summary() Function 78
The get_custnum() Function 80
The get_summary() Function 84
The dsply_summary() Function 86
The tax_rates() Function 88
The prompt_window() Function 88

Example 5 Programming a Query by Example 95

Constructing Criteria from the User’s Entry 96
Executing an SQL Query Dynamically 97
Accessing Multiple Rows with Cursors 97
Handling User Interrupts 98
Utility Functions 100
Function Overview 100

Table of Contents 5

The f_customer Form 102
The GLOBALS Statement and MAIN Function 104
The query_cust1() Function 106
The answer_yes() Function 114
The msg() Function 114

Example 6 Querying and Updating 117

Modifying the Rows Qualified by a Query 117
Checking for Dependent Rows 118
Function Overview 118
The GLOBALS Statement and MAIN Function 120
The query_cust2() Function 120
The browse_custs Function 124
The next_action() Function 126
The change_cust() Function 128
The update_cust() Function 130
The delete_cust() Function 130
The verify_delete() Function 132
The clear_lines() Function 134

Example 7 Validating and Inserting a Row 137

Validating Data Entry 137
Retrieving Information from Multiple Tables 138
Function Overview 138
The f_stock Form 140
The GLOBALS Statement 142
The MAIN Function 142
The input_stock() Function 144
The unique_stock() Function 146
The insert_stock() Function 148

Example 8 Displaying a Screen Array in a Popup Window 151

Displaying Information in an Array Form 152
Triggering Form Actions with Keys 153
Function Overview 153
The f_manufsel Form 154
The input_stock2() Function 156
The manuf_popup() Function 158

6 Table of Contents

Example 9 Accessing a Table with a Single-Row Form 165
Function Overview 166
The f_statesel Form 168
The MAIN Function 170
The cust_menu1() Function 170
The browse_custs1() Function 172
The next_action2() Function 172
The addupd_cust() Function 174
The state_popup() Function 180
The insert_cust() Function 182

Example 10 Accessing a Table with a Multi-Row Form 185
Modifying Information in an Array Form 186

Handling Empty Fields 186
Identifying Keystrokes 187
Function Overview 189
The f_manuf Form 190
The DATABASE and GLOBALS Statements 192
The MAIN Function 192
The dsply_manuf() Function 194
The valid_null() Function 204
The reshuffl Function 206
The verify_mdel() Function 208
The choose_op() Function 210
The insert_manuf() Function 210
The update_manuf() Function 212
The delete_manuf() Function 212
The verify_rowid() Function 214
The save_rowid() Function 214

Example 11 Implementing a Master-Detail Relationship 217
Program Overview 217
Function Overview 222
The f_orders Form 224
The f_custsel Form 226
The f_stocksel Form 226
The f_ship Form 228
The DATABASE and GLOBALS Statements 230
The MAIN Function 232
The add_order() Function 232
The input_cust() Function 234
The cust_popup() Function 238
The input_order() Function 240
The input_items() Function 242

Table of Contents 7

The renum_items() Function 248
The stock_popup() Function 250
The dsply_taxes() Function 252
The order_amount() Function 254
The ship_order() Function 254
The input_ship() Function 256
The order_tx() Function 258
The insert_order() Function 260
The insert_items() Function 260

Example 12 Displaying an Unknown Number of Rows 263

Paging Through Rows Using Array Form 264
Function Overview 265
The f_ordersel File 266
The GLOBALS Statement 268
The MAIN Function 268
The find_order() Function 270
The cust_popup2() Function 276
The order_popup() Function 282
The calc_order() Function 288
The upd_order() Function 288

Example 13 Calling a C Function 291

The Interface Between C and 4GL 291
The Argument Stack 291
Passing Arguments to a C Function 292
Returning Values from a C Function 292

The fglgets.c Module 293
Using fglgets() 293
The Design of fglgets() 294
Returning Both a Value and a Code 294
Handling Arguments 296

Running the Example 297
Creating the Executable Files 298
Calling the Executable File 299

C Module Overview 300
Function Overview 301
The f_name Form 302
The MAIN Function 304
The fdump() Function 306

8 Table of Contents

The fgiusr.c Module 308
The fglgets.c Module 310
The getquote() Function 312
The fglgetret() Function 312
The fglgets() Function 314

Example 14 Generating a Report 319
The Program Model 320
Steps in Generating a Report 320
Basic Parts of a Report 321
Directing a Report to the Screen 323
Function Overview 323
The MAIN Function 324
The manuf_listing() Function 324
The manuf_rpt() Report Function 326

Example 15 Reporting Group Totals 329

Choosing a Report Destination 329
The Report Contents 331
Function Overview 332
The DATABASE and GLOBALS Statements 334
The MAIN Function 334
The add_order2() Function 336
The invoice() Function 338
The report_output() Function 340
The invoice_rpt() Report Function 342

Example 16 Creating Vertical Menus 351

A Hard-Coded Vertical Menu—Example 16a 352
A Generic Vertical Menu—Example 16b 353
Example 16a: The f_menu Form 356
The DATABASE and GLOBALS Statements 358
The MAIN Function 358
The main_menu() Function 358
The cust_maint() Function 360
The Remaining maint() Functions 360
Example 16b: The f_menu2 Form 362
The DATABASE and GLOBALS Statements 364
The MAIN Function 364
The dsply_menu() Function 364
The init_menu() Function 366
The init_opnum() Function 368
The choose_option() Function 368

Table of Contents 9

Example 17 Using the DATETIME Data Type 373

Redefining the DATETIME Data Entry 373
Conserving Screen Space 375
Function Overview 376
The f_custcall Form 378
The f_edit Form 380
The DATABASE and GLOBALS Statements 382
The MAIN Function 384
The cust_menu2() Function 384
The browse_custs2() Function 386
The next_action3() Function 386
The open_calls() Function 388
The call_menu() Function 388
The addupd_call() Function 390
The input_call() Function 392
The browse_calls() Function 404
The nxtact_call() Function 406
The get_timeflds() Function 408
The get_datetime() Function 410
The init_time() Function 410
The edit_descr() Function 412
The insert_call() Function 414
The update_call() Function 416

Example 18 Using TEXT and VARCHAR Data Types 419
Verifying the Database Type 419
Positioning the DATABASE Statement in a Program 419
Using Parallel Arrays to Manage Information 421
Handling VARCHAR Data 422
Handling TEXT Data 422
Handling BYTE Data 423

Function Overview 424
The f_catalog Form 426
The f_catadv Form 428
The f_catdescr Form 430
The DATABASE and GLOBALS Statements 432
The MAIN Function 432
The is_online() Function 434
The load_arrays() Function 436
The open_wins() Function 440

10 Table of Contents

The close_wins() Function 440
The dsply_cat() Function 440
The show_advert() Function 442
The show_descr() Function 446
The upd_err() Function 448

Example 19 Browsing with a Scroll Cursor 451

The Main Function 451
The Browsing Function 452

A Simple Approach to Scrolling 453
Fetching Ahead 453
Manipulating the Menu 454

Error Handling 454
Function Overview 455
The DATABASE and GLOBALS Statements 456
The MAIN Function 456
The scroller_1() Function 458

Example 20 Combining Criteria from Successive Queries 465

The Main Function 465
The Browsing Function 466

Revising a Query 467
Displaying the Search Criteria 467

The Query By Example Functions 468
The answer() Function 468
Function Overview 469
The f_answer Form 470
The MAIN Function 472
The scroller_2() Function 472 The
query_cust3a() Function 476 The
answer() Function 478

Example 21 Using an Update Cursor 483

Displaying Multiple Forms 483
Updating Rows 484
Using an Update Cursor 485
Handling Locked Rows 486
Function Overview 487
The f_date Form 488
The f_payord Form 488
The DATABASE and GLOBALS Statements 490
The MAIN Function 490
The input_date() Function 492

Table of Contents 11

The open_ckey() Function 494
The close_ckey() Function 494
The fi Function 494
The fi Function 500
The pay_orders() Function 502

Example 22 Determining Database Features 509

The SQLAWARN Array 509
Opening the Database 510
Conditional Transactions 510
Function Overview 511
The GLOBALS Statement and MAIN Function 512
The open_db() Function 514
The begin_wk() Function 516
The commit_wk() Function 518
The rollback_wk() Function 518

Example 23 Handling Locked Rows 521

Locks and Transactions 522
Testing for Locked Rows 523
Running the Lock Test 523
Function Overview 525
The DATABASE Statement and MAIN Function 526
The lock_menu() Function 526
The lock_cust() Function 530
The try_update() Function 530
The get_repeat() Function 532
The update_cust2() Function 534
The test_success() Function 538
The row_locked() Function 538

Example 24 Using a Hold Cursor 541
The Update Journal 542
Contents of an Update Journal 542
Using a Cursor WITH HOLD 543

Comparisons in the Presence of Nulls 544
Function Overview 545
The GLOBALS Statement 546
The MAIN Function 546
The update_driver() Function 548
The upd_rep() Report Function 552
The save_orders() Function 556
The restore_orders() Function 556

12 Table of Contents

 The build_journal() Function 556
The save_journal() Function 560
The like() Function 560
The check_db_priv() Function 560

Example 25 Logging Application Errors 565

 The 4GL Error Log 566
SQLCODE Versus Status 568
Function Overview 568
The DATABASE Statement and MAIN Function

570

 The create_index() Function 570
The drop_index() Function 572
The init_log() Function 572
The cust_menu3() Function 572
The browse_custs3() Function 574
The next_action4() Function 576
The insert_cust2() Function 578
The update_cust3() Function 578
The delete_cust2() Function 580
The log_entry() Function 580
The get_user() Function 582

Example 26 Managing Multiple Windows 585

 Managing Windows 586
Using Dummy Functions 586
Function Overview 587
The MAIN Function 588
The dsply_screen() Function 588
The close_screen() Function 588
The curr_wndw() Function 590
The new_time() Function 590
The dummymsg() Function 590
The menu_main() Function 590
The sub_menu() Function 592

Example 27 Displaying Menu Options Dynamically 597

The Scroll Cursor and Volatile Data 597
Resynchronizing a Scroll Cursor 598

Updating Rows Fetched Through a Scroll Cursor 599
Using the Row ID 600
Checking User Authorization 601
Function Overview 602
The GLOBALS Statement and MAIN Function 604

Table of Contents 13

The scroller_3() Function 606
The disp_row() Function 616
The del_row() Function 618
The upd_row() Function 618
The get_tab_auth() Function 624
The sel_merged_auths() Function 626
The merge_auth() Function 626

Example 28 Writing Recursive Functions 629

Representing Hierarchical Data 629
The Parts Explosion Problem 632

The Parts Explosion in 4GL 633
The Parts Inventory 634

The Inventory Report in 4GL 635
Function Overview 636
The MAIN Function 638
The explode_all() Function 638
The explode() Function 640
The kaboom() Report Function 642
The inventory_all() Function 642
The inventory() Function 644
The inven_rep() Report Function 646
The pushkids() Function 646
The pop_a_kid() Function 648
The set_up_tables() Function 648
The tear_down_tables() Function 652

Example 29 Generating Mailing Labels 657
Label Stationery 657
Printing a Multi-Column Report 658
Function Overview 660
The MAIN Function 662
The three_up() Report Function 662

Example 30 Generating a Schema Listing 671

The System Catalogs 671
Program Overview 672
Decoding Data Type Information 673
Displaying Indexes 674
Function Overview 675
The GLOBALS Statement 678
The MAIN Function 678
The get_dbname() Function 678

14 Table of Contents

The schema() Function 680
The convert_type() Function 684
The cnvrt_varch() Function 686
The cnvrt_dt() Function 688
The cnvrt_intvl() Function 688
The qual_fld() Function 690 The
intvl_lngth() Function 692 The
to_hex() Function 694
The hex_digit() Function 694
The dec_digit() Function 696
The schema_rpt() Report Function 696

Appendix A The Demonstration Database

Appendix B Notices

Function Index

Introduction 15

Introduction
INFORMIX-4GL is a fourth-generation language designed specifically for
relational database applications. It allows you, the developer, to move
quickly from the conceptual stage to an application program. 4GL includes
statements that allow you to provide your users with all the essential opera-
tions for manipulating information. By offering you procedural statements
and allowing calls to C functions, 4GL also offers a finer granularity of control
when needed.

For example, within one 4GL program you can:

• Create windows, menus, and screen forms that facilitate the user’s task of
entering and retrieving data.

• Extract information and display it in an attractive report format.

About This Manual
This manual is an annotated tour of the programming facilities available with
4GL. You do not need 4GL experience to use this manual. However, a knowl-
edge of SQL (Structured Query Language) is assumed. The Informix imple-
mentation of SQL is described in detail in a separate set of manuals: Informix
Guide to SQL: Tutorial, Informix Guide to SQL: Reference, and Informix Guide to
SQL: Syntax. Your 4GL manual set also includes some SQL information.

If you are new to the language, this manual will introduce you to the
principal 4GL programming techniques. If you are an experienced 4GL

programmer, this manual will provide models for programming many com-
mon projects. Note that this is not a complete reference to 4GL. It is intended
to work with the INFORMIX-4GL Reference Manual.

INFORMIX-4GL by Example contains a series of 30 programming examples that
range in complexity from simple procedures like creating ring menus
through more advanced topics like handling locked rows and using update
cursors.

16 Introduction

Summary of Chapters

Each chapter begins with a chapter overview, which consists of a general
description of the program, followed by a discussion of the programming
techniques demonstrated in the example. A summary of all functions used in
the example appears at the end of the chapter overview. The remaining pages
of the chapter consist of the annotated code examples: code appears on the
right page with the corresponding descriptive notes on the left page.

The examples appear in generally increasing order of complexity; later
examples build on techniques and functions explained in earlier examples.

Summary of Chapters
This manual contains the following chapters:

Example 1, “Writing a Simple 4GL Program.” Explains basic 4GL program
structure by describing how to implement an application logo: a screen that
displays the name of the application being started.

Example 2, “Displaying a Message Window.” Explains how to implement a
generic message window.

Example 3, “Populating a Ring Menu with Options.” Describes how to
program a simple 4GL ring menu.

Example 4, “Displaying a Row on a Form.” Illustrates how to use forms to
provide an interface for interacting with the database.

Example 5, “Programming a Query by Example.” Demonstrates how to
collect search criteria from the user and then to construct and run a query.

Example 6, “Querying and Updating.” Explains how to allow the user to
update or delete a row qualified through a query by example.

Example 7, “Validating and Inserting a Row.” Contains routines to add a
row to the database.

Example 8, “Displaying a Screen Array in a Popup Window.” Demonstrates
how to manage a simple screen array.

Example 9, “Accessing a Table with a Single-Row Form.” Combines
techniques demonstrated in earlier examples to provide a menu and form
interface for the standard SQL operations on a table.

Example 10, “Accessing a Table with a Multi-Row Form.” Demonstrates
how to manage a screen array for the standard SQL operations on a table.

Example 11, “Implementing a Master-Detail Relationship.” Illustrates how
to program a single-row master form with a multi-row detail form.

Introduction 17

Summary of Chapters

Example 12, “Displaying an Unknown Number of Rows.” Demonstrates
how to handle an unknown number of entries in a fixed-sized program array.

Example 13, “Calling a C Function.” Describes how to integrate C functions
with a 4GL program.

Example 14, “Generating a Report.” Illustrates how to produce a simple
report.

Example 15, “Reporting Group Totals.” Demonstrates how to create a more
complex report that includes group totals.

Example 16, “Creating Vertical Menus.” Illustrates two ways of creating
vertical menus: using a simple INPUT statement and a form with menu
options, and using an INPUT ARRAY statement and a generic menu form.

Example 17, “Using the DATETIME Data Type.” Demonstrates how to
handle DATATIME data in a 4GL program.

Example 18, “Using TEXT and VARCHAR Data Types.” Explains how to
display and update TEXT and VARCHAR columns available with Informix
Dynamic Server.

Example 19, “Browsing with a Scroll Cursor.” Demonstrates how to use a
scroll cursor to let the user browse through a set of selected rows.

Example 20, “Combining Criteria from Successive Queries.” Describes how
to revise a query with additional constraints produced by successive query
by example operations.

Example 21, “Using an Update Cursor.” Demonstrates how to use an update
cursor to let the user selectively update database rows.

Example 22, “Determining Database Features.” Demonstrates how to
interpret the fields in the SQLCA.SQLAWARN array upon opening a database.

Example 23, “Handling Locked Rows.” Illustrates how to handle locked
rows in your 4GL programs.

Example 24, “Using a Hold Cursor.” Demonstrates how to write batch-
oriented programs that take advantage of the hold cursor.

Example 25, “Logging Application Errors.” Demonstrates how to use an
error log to record application errors.

Example 26, “Managing Multiple Windows.” Illustrates how to program a
multi-window application.

Example 27, “Displaying Menu Options Dynamically.” Describes how to
display menu options based on a user’s database permissions.

18 Introduction

The Demonstration Database and Application Files

Example 28, “Writing Recursive Functions.” Demonstrates how to use
recursive algorithms in 4GL.

Example 29, “Generating Mailing Labels.” Illustrates how to produce multi-
column mailing labels.

Example 30, “Generating a Schema Listing.” Demonstrates how to interpret
the information in the system catalogs and produce a listing of a database
schema.

Appendix A. Lists the contents of the demonstration database.

Function Index. Identifies the location of all functions used in the programs
in 4GL by Example.

How to Use This Manual
This manual contains a series of examples that, in general, build on one
another. Later examples use techniques and functions introduced in earlier
examples.

The manual was written to meet the needs of 4GL programmers with varying
levels of experience:

• If you are new to 4GL, you will probably want to begin with Example 1
and read through the examples sequentially.

While this manual provides a detailed introduction to many common
programming techniques, it is not a comprehensive review of all 4GL fea-
tures, statements, and built-in functions. You will want to refer regularly
to the INFORMIX-4GL Reference Manual.

• If you are familiar with 4GL, you may want to concentrate on the code
listings for each example and refer to the annotations when you need
clarification. If you find that you do not understand something, you may
want to turn to an earlier example.

• If you are an experienced 4GL programmer, you can review examples that
address programming tasks of interest.

How to Use The Examples
The programs in this manual illustrate how to use 4GL to solve many
common programming tasks. They are presented in a style and sequence that
should be helpful to all 4GL programmers, including those who are new to
the language.

Introduction 19

How to Use This Manual

The examples illustrate how to perform particular programming tasks; they
are not the only ways to program with 4GL. A task may have many possible
solutions, and the one best suited to your application may depend on a vari-
ety of factors, including your hardware platform, programming conventions
and needs, and the database server.

The examples appear in increasing order of complexity. Many examples omit
important validations that should appear in a fi application. Indeed,
they are not industrial-strength programs, and should not be used “as is” in
your applications. Rather, they provide a model for addressing various 4GL

tasks and should be treated as the beginning point if you are preparing end-
user applications.

Whether you are an experienced 4GL programmer or someone just getting up
to speed in the use of the language, you are encouraged to experiment with
the programs to make them more complete and more appropriate for your
needs. For this reason, on-line versions of all files are provided as part of this
release. Suggestions for extensions to the programs appear in the annotation.
Similarly, alternate coding methods are discussed at several points.

Typographical Conventions
This manual uses a standard set of conventions to introduce new terms,
illustrate screen displays, identify 4GL keywords, and so forth.

When new terms are introduced, they are printed in italics. Illustrations that
show what you see on the screen as you use 4GL appear in computer font.
All keywords are shown in UPPERCASE LETTERS for ease of identification.
However, 4GL is case insensitive, and you need not use uppercase when writ-
ing your 4GL programs.

The Demonstration Database and Application Files
The examples in this manual assume that you are using the stores7 demon-
stration database. The demonstration database contains information about a
fi wholesale sporting-goods distributor and is described in detail in
Appendix A.

Also included in the software are all the fi for the examples referenced in
this manual. The examples are installed with the software in the
$INFORMIXDIR / demo / fglbe directory. For the U.S. English locale, they are
located in the en_us / 0333 subdirectory within the fglbe directory.

20 Introduction

The Demonstration Database and Application Files

Two scripts exist to help you make a copy of the database and the examples:

• The script you use to make a copy of the demonstration database is called
dbaccessdemo7; it is located in the $INFORMIXDIR / bin directory.

• The script you use to make a copy of the examples is called fglexcopy;
it also is located in $INFORMIXDIR / bin.

Instructions on how to use these two scripts appear in the next sections.

If you installed your 4GL software according to the installation instructions,
the fi that make up the demonstration database and examples are pro-
tected so that you cannot make changes to them. You can run dbaccessdemo7
and copy the example files again whenever you want a fresh demonstration
database and application.

Creating the Demo Database on Informix Dynamic Server
Use the following procedure to create and populate the demonstration
database:

1. Set the INFORMIXDIR environment variable so that it contains the name
of the directory in which your Informix products are installed.

See the Informix Guide to SQL: Reference for a full description of environ-
ment variables. An appendix in the INFORMIX-4GL Reference Manual also
describes environment variables.

2. Set the SQLEXEC environment variable to the pathname of Informix
Dynamic Server ($INFORMIXDIR / lib / sqlturbo).

3. Create the demonstration database by entering:

dbaccessdemo7

The examples in this book are written to work with a non-ANSI-compliant
database that supports transactions.

When you run dbaccessdemo7, the data for the database is put into the root
dbspace for your database server.

To give other users SQL privileges to access the database, use the GRANT and
REVOKE statements. These statements are described in the Informix Guide to
SQL: Syntax.

Introduction 21

The Demonstration Database and Application Files

Creating the Demo Database on INFORMIX-SE
Use the following procedure to create and populate the demonstration
database in an INFORMIX-SE environment:

1. Set the INFORMIXDIR environment variable so that it contains the name
of the directory in which your Informix products are installed.

See the Informix Guide to SQL: Reference for a full description of environ-
ment variables. An appendix in the INFORMIX-4GL Reference Manual also
describes environment variables.

2. Set the SQLEXEC environment variable to the full pathname of the
INFORMIX-SE database server ($INFORMIXDIR / lib / sqlexec).

3. Create a new directory for the demo database by entering:

mkdir dirname

You also might want to place the 4GL by Example application fi in this
directory.

4. Make the new directory the current directory by entering:

cd dirname

5. Create the demonstration database by entering:

dbaccessdemo7

The examples in this book are written to work with a non-ANSI-compliant
database that supports transactions.

When you run the dbaccessdemo7 script, it creates a subdirectory called
dbname.dbs (by default, stores7.dbs) in your current directory and places the
database fi there.

To use the database, you must have UNIX READ and EXECUTE permissions
for each directory in the pathname of the directory that contains the database.
Check with your system administrator for more information about operating
system file and directory permissions. UNIX permissions are discussed in the
INFORMIX-SE Administrator’s Guide.

To give other users the SQL privileges to access the database, use the GRANT

and REVOKE statements. These statements are described in the Informix Guide
to SQL: Syntax and in the INFORMIX-4GL Reference Manual.

22 Introduction

The Demonstration Database and Application Files

Copying the Example Files
Use the following procedure to copy the example fi into your current
working directory:

1. If you have not already done so, create a new directory for the example
fi by entering:

mkdir dirname

2. Make the new directory the current directory by entering:

cd dirname

3. Copy the example files.

If you use the fglexcopy script to copy the example files, you can specify
the name of the database that appears in all DATABASE statements. If you
copy the fi from the command line, you must edit the DATABASE

statements.

To run the fglexcopy script, enter the following command:

fglexcopy

The fglexcopy script copies a complete set of all application source files into
your current directory. These fi are not executable. To run the examples,
you must fi compile the fi The compilation procedure is described in
the next section.

Running an Example
Before you can run an example, you must first compile the 4GL module along
with any form specifications and help message file used in the example. The
following paragraphs briefly outline this process. See Chapter 1, “Compiling
INFORMIX-4GL Source Files,” of the INFORMIX-4GL Reference Manual for
information about compiling source files.

Use the following procedure to produce an executable example:

1. Compile the form specifications for the example.

At the command line, enter a command of the form:

form4gl formfile.per

This generates the compiled formfile.frm file.

Because a compiled form requires little disk space, you may want to
compile all forms at one time.

Introduction 23

The Demonstration Database and Application Files

2. Compile the 4GL source module for the example:

• To compile a 4GL source fi using the C Compiler, enter:

c4gl source.4gl -o output.4ge

where source is the name of the source fi and output is the name of
the output file. This command generates the compiled output.4ge file.
You can run the compiled source file at the command line by entering:

output.4ge

• To compile a 4GL source fi using the Rapid Development System,
enter the following command:

fglpc source.4gl

where source is the name of the source fi This generates the
compiled source.4go fi You can run the compiled source fi at
the command line by entering:

fglgo source

Compiled 4GL programs are quite large. If your disk space is limited, you
can wait to compile a program until you are ready to use it.

3. Compile the help message file.

To compile the help message fi at the command line, enter:

mkmessage hlpmsgs.src hlpmsgs

This generates the compiled hlpmsgs file. This help file name appears in
the OPTIONS statement in those examples that use a help file.

Example 13, “Calling a C Function,” requires additional compilation
steps. The example overview includes detailed information about how to
run the example.

24 Introduction

The Demonstration Database and Application Files

Files Used in Each Example
The following table lists all fi used in each example.

Example Files Accessed in the Example
Number

ex1 ex1.4gl, f_logo.per
ex2 ex2.4gl
ex3 ex3.4gl, hlpmsgs.src
ex4 ex4.4gl, f_custkey.per, f_custsum.per
ex5 ex5.4gl, f_customer.per
ex6 ex6.4gl, f_customer.per, hlpmsgs.src
ex7 ex7.4gl, f_stock.per
ex8 ex8.4gl, f_stock.per, f_manufsel.per
ex9 ex9.4gl, f_customer.per, f_statesel.per, hlpmsgs.src
ex10 ex10.4gl, f_manuf.per
ex11 ex11.4gl, f_orders.per, f_custsel.per, f_stocksel.per, f_ship.per,

hlpmsgs.scr
ex12 ex12.4gl, f_ship.per, f_custsel.per, f_ordersel.per, hlpmsgs.src
ex13 ex13.4gl, ex13a.4gl, f_name.per, fgiusr.c, fglgets.c, ex13r.sh, ex13i.sh
ex14 ex14.4gl
ex15 ex15.4gl, f_orders.per, f_custsel.per, f_stocksel.per, f_ship.per,

hlpmsgs.src
ex16 ex16a.4gl, ex16b.4gl, f_menu.per, f_menu2.per, hlpmsgs.src
ex17 ex17.4gl, f_custcall.per, f_customer.per, f_edit.per, f_statesel.per,

hlpmsgs.src
ex18 ex18.4gl, f_catalog.per, f_catadv.per, f_catdescr.per
ex19 ex19.4gl, f_customer.per, hlpmsgs.src
ex20 ex20.4gl, f_customer.per, f_answer.per, hlpmsgs.src
ex21 ex21.4gl, f_custkey.per, f_custsel.per, f_date.per, f_payord.per
ex22 ex22.4gl
ex23 ex23.4gl, f_customer.per, f_custkey.per, f_custsel.per, hlpmsgs.src
ex24 ex24.4gl, ex24.unl
ex25 ex25.4gl, f_customer.per, f_statesel.per, hlpmsgs.src
ex26 ex26.4gl, f_logo.per, f_customer.per, f_orders.per, f_stock.per
ex27 ex27.4gl, f_customer.per, f_answer.per, hlpmsgs.src
ex28 ex28.4gl, ex28pa.unl, ex28pt.unl
ex29 ex29.4gl
ex30 ex30.4gl, f_name.per

The names of all fi used in an example appear in the comment header at
the top of each 4GL program module.

Introduction 25

Additional Documentation

Naming Conventions
The programming examples follow a standard set of conventions to name
various 4GL identifiers in the application programs. The naming conventions
used in these examples are summarized in the following table.

Program Object

Global records and arrays:
Prefix Example

global records
global arrays
global variables

gr_
ga_
g_

gr_customer
gr_items
g_custnum

Module records and arrays:
module records

mr_

mr_currcust
module arrays
module variables

ma_
m_

ma_kidstack
m_nextkid

Local records and arrays:
local records

pr_

pr_orders
local arrays
local variables

pa_
no prefix used

pa_manuf
stock_cnt

Screen records and arrays:
screen records sr_ sr_customer
screen arrays sa_ sa_items
screen variables no prefix used stock_num

Other objects:
cursors c_ c_cust
windows w_ w_warn
forms f_ f_customer
queries (in CONSTRUCT) q_ q_cust
prepared statement st_ st_selstmt
record elements defined with LIKE:

same name as the table's column

The portion of the name that follows a prefix attempts to describe, as fully as
possible, the purpose of the variable.

Using the Examples with Prior Releases
The application programs in 4GL by Example were written for releases 4.1 and
later, of INFORMIX-4GL. You can use the manual and the sample programs
with earlier versions of the product. However, for releases prior to 4.1, you
may need to remove or replace code in several of the examples.

26 Introduction

Naming Conventions

If you are using a release prior to 4.1, consider the following:

• Example 3 includes a MENU statement featuring two options that begin
with the same letter.

• Examples 6, 9, 17, 19, and 25 include an AFTER CONSTRUCT clause and
a CONTINUE CONSTRUCT statement, and use the HELP clause of the
CONSTRUCT statement.

• Examples 10, 12, and 16b include calls to the FGL_LASTKEY() and the

FGL_KEYVAL() built-in functions.

• Examples 19, 20, and 27 include calls to the FIELD_TOUCHED() built-in
function, as well as HIDE OPTION, SHOW OPTION, and CONTINUE

CONSTRUCT statements, and BEFORE MENU and AFTER CONSTRUCT

clauses.

• Example 23 includes a WHENEVER ANY statement.

• Example 26 includes a variable as the form name in an OPEN FORM

statement.

Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

• Documentation included with 4GL

• On-line manuals

• On-line help

• On-line error messages

• Related reading

Documentation Included with 4GL
The 4GL documentation set includes the following additional manuals:

• INFORMIX-4GL Installation Guide is a pamphlet that describes how to
install the various 4GL products.

• INFORMIX-4GL Reference Manual is a day-to-day, keyboard-side compan-
ion for 4GL programmers. It describes the features and syntax of the 4GL

language, including 4GL statements, forms, reports, and the built-in func-
tions and operators.

Introduction 27

Informix Welcomes Your Comments

• INFORMIX-4GL Concepts and Use introduces 4GL and provides the context
needed to understand the other manuals in the documentation set. It cov-
ers 4GL goals (what kinds of programming the language is meant to
facilitate), concepts and nomenclature (parts of a program, ideas of data-
base access, screen form, and report generation), and methods (how
groups of language features are used together to achieve particular
effects).

• Guide to the INFORMIX-4GL Interactive Debugger is both an introduction to
the Debugger and a comprehensive reference of Debugger commands
and features. The Debugger allows you to interact with your 4GL pro-
grams while they are running. It helps you learn more about the 4GL

language and determine the source of errors within your programs.

• Documentation Notes, which contain additions and corrections to the
manuals, and Release Notes are located in the directory where the product
is installed. Please examine these files because they contain vital informa-
tion about application and performance issues.

On-Line Manuals
The Informix Answers OnLine CD allows you to print chapters or entire
books and perform full-text searches for information in specific books or
throughout the documentation set. You can install the documentation or
access it directly from the CD. For information about how to install, read, and
print on-line manuals, see the installation insert that accompanies Answers
OnLine. You can also access Answers OnLine on the Web at the following
URL: www.informix.com / answers.

On-Line Help
4GL provides on-line help; invoke help by pressing CONTROL-W.

On-Line Error Messages
Use the fi script to display a particular error message or messages on
your screen. The script is located in the $INFORMIXDIR / bin directory.

The fi script has the following syntax:

finderr msg_num

where msg_num indicates the number of the error message to display. Error
messages range from -1 to -32000. Specifying the minus sign (-) is optional.

http://www.informix.com/

28 Introduction

Additional Documentation

For example, to display the -359 error message, you can enter either of the
following:

finderr -359

or, equivalently:

finderr 359

The following example demonstrates how to specify a list of error messages.
The example also pipes the output to the UNIX more command to control the
display. You can also direct the output to another file so that you can save or
print the error messages:

finderr 233 107 113 134 143 144 154 | more

A few messages have positive numbers. These messages are used solely
within the application tools. In the unlikely event that you want to display
them, you must precede the message number with the + sign.

The messages numbered -1 to -100 can be platform-dependent. If the message
text for a message in this range does not apply to your platform, check the
operating system’s documentation for the precise meaning of the message
number.

Related Reading
The following publications provide additional information about the topics
that this manual discusses:

• Informix database servers and the SQL language are described in separate
manuals, including the Informix Guide to SQL: Tutorial, Informix Guide to
SQL: Syntax, and Informix Guide to SQL: Reference.

• Information about setting up Informix database servers is provided in the

Administrator’s Guide for your particular server.

Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would fi useful. Include the following information:

• The name and version of the manual that you are using

• Any comments that you have about the manual

• Your name, address, and phone number

Introduction 29

Informix Welcomes Your Comments

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:

doc@informix.com

We appreciate your suggestions.

mailto:doc@informix.com
mailto:doc@informix.com

30 Writing a Simple 4GL Program

1
 1.Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 1 31

Writing a Simple 4GL
Program

This example shows how to display a logo banner to identify a program
while the program is initializing. You can copy and adapt the 4GL code to
provide a logo banner for your own application.

This example also illustrates the fundamentals of 4GL in much the same way
that the classic hello, world program illustrates the C programming language.
4GL enhances the set of standard SQL database statements with screen inter-
action statements, flow control statements, and other statements that make it
easier to program a database application.

This example demonstrates the following display techniques:

• Displaying a form.

• Displaying information in a fi on the form.

• Displaying text at a row and column location.

• Setting display attributes such as reverse video.

Example 1 also demonstrates the following 4GL programming techniques:

• Defining a MAIN function for the 4GL program.

• Defining supporting functions.

• Calling functions with parameters.

• Defining variables.

• Assigning values to variables.

• Opening and closing forms.

Later examples will show you how to display database information and how
to collect information from the user.

Displaying Information Using a Form

32 Writing a Simple 4GL Program

Displaying Information Using a Form
Forms are the most important screen interaction element provided by 4GL.
Forms visually organize information, making it easy for the end-user to inter-
act with the database.

A form displays static text and fi The static text in the form never
changes, but information in a fi can change during the execution of the
program. For example, a fi can display the value of a column in the data-
base. The value might be different in each database row. You can also activate
a form so that the user can position the cursor in the form fields and change
the values displayed in the fields.

You specify the layout of the form in a form specification file, not in the code of
a function. The form specification file is compiled separately. The structure of
the form is independent of the use of the form. For example, one function can
use a form to display a database row, another to let the user enter a new data-
base row, and still another to let the user enter criteria for selecting database
rows. After compiling a satisfactory form, you rarely need to change the form
specification.

In Example 1, the f_logo form uses a fi to display the current date.

The MAIN Function
The MAIN function is a special function that executes automatically when the
user starts the program. The program starts with the fi statement in the
MAIN function and ends with the last statement.

To use a block of statements in several locations or to organize a series of
statements into a well-defined unit, you place the statements in a function
defined with the FUNCTION statement. You can invoke the function with the
CALL statement to execute the statements within the function. The effect is
much the same as if the function’s statements had been inserted at the loca-
tion of the CALL statement.

In Example 1, the statements that display the logo appear in the dsply_logo()
function to simplify the MAIN function.

The DISPLAY Statements

Example 1 33

The DISPLAY Statements
The dsply_logo() function uses three versions of the DISPLAY statement:

DISPLAY FORM Displays a form containing the fi text of the logo.

DISPLAY AT Displays text at a specific row and column location. The
DISPLAY AT statement is not associated with a form but
rather displays information ‘‘on top’’ of the form.

DISPLAY TO Displays a value in a fi on the form.

Function Overview

Function Name Purpose

dsply_logo() Displays the logo form with the current date.

To locate any function definition, see the Function Index on page 730.

DISPLAY FORM DISPLAY AT DISPLAY TO

34 Writing a Simple 4GL Program

The f_logo Form Specification

The f_logo Form Specification
1➤ When the fields on a form correspond to columns in a database, you can take

advantage of some 4GL shortcuts by identifying the database. The f_logo
form does not display values from any database column, so the DATABASE

section specifies the form as formonly. The DATABASE section is required.

2➤ In the SCREEN section, the lines enclosed by the braces (shaded in gray on the
opposite page) are a template for the screen display. All text outside of the
brackets is static, displaying as it appears in the file.

3➤ Within the SCREEN section, brackets indicate the beginning and end of a field.
Each fi must have an identifier tag. In the f_logo form, there is one field
with the d1 tag.

4➤ The ATTRIBUTES section maps a field identifier tag to a screen variable name.
The screen variable name is what you use in a 4GL program to address a field.
In the f_logo form, the screen variable name is appdate. Because the field tag
is distinct from the screen variable name, you can embed a terse tag in a short
fi and still use a longer, more readable name for the screen variable.

The ATTRIBUTES specification for the screen variable includes the data type.
The data type specifies the kind of information handled by a database col-
umn or 4GL variable. Because you specify the data type, 4GL can manipulate
the information efficiently and appropriately. In the f_logo form, the appdate
screen variable displays dates.

The ATTRIBUTES specification for a screen variable can also specify
formatting for the information displayed in the fi The format controls
the insertion of punctuation into the value. The formatting makes the
information much more readable without interfering with editing in the
fi Special tokens represent the components of the value:

Token Represents

ddd alphabetic day of the week
mmm alphabetic month
dd two-digit day of the month
yyyy four-digit year

Here is an example: (Thu) Nov 21, 1998.

5➤ Ordinarily, the fields of a form have bracket delimiters so the user can clearly
distinguish the fields for editing values. If the user can never edit the values,
it is a good idea to change the delimiter character to a space so the fields
appear to be text within the form. The INSTRUCTIONS section of the f_logo
form makes this change.

Example 1 35

The f_logo Form Specification

Y

Y

[d

1

]

}

ATTRIBUTES

d1 = formonly.appdate type date, format = "(ddd) mmm dd,

yyyy";

1➤ DATABASE formonly
SCREEN

2➤

EEEEEE X X AAAA M M PPPPPP L EEEEEE
E X X A A M M M M P P L E
E X X A A M M M P P L E
EEEEE X AAAAAA M M PPPPPP L EEEEE
E X X A A M M P L E
E X X A A M M P L E
EEEEEE X X A A M M P LLLLLL EEEEEE

3➤

4➤

INSTRUCTIONS

5➤ DELIMITERS " "

f_logo form file

{

4 4

GGGGG

L

BBBBB

Y

 4 4 G L B B Y

 4 4 G L B B Y Y

 444444 G L BBBBB Y

 4 G GGG L B B Y

 4 G G L B B Y

 4 GGGG LLLLLL BBBBB Y

36 Writing a Simple 4GL Program

The dsply_logo() Function

The MAIN Function
1➤ The statements between the MAIN and END MAIN statements constitute the

MAIN function, which is the special function started when the user runs the
program.

2➤ The MAIN function uses the CALL statement to execute the dsply_logo()
function. When the dsply_logo() function fi the line after the CALL

statement executes, which in Example 1 is the END MAIN statement. The END

MAIN statement terminates the MAIN function and thus the program.

You can execute function calls from within the body of any other function.
For example, the dsply_logo() function could call other functions. You can
call functions within expressions as well as with the CALL statement.

The CALL statement passes the length of time for displaying the logo as a
parameter to the function. In the example, the parameter is three seconds, but
in another context, you could call the dsply_logo() function with more or
fewer seconds.

The dsply_logo() Function
3➤ The definition for the dsply_logo() function starts with the FUNCTION

statement and ends with the END FUNCTION statement.

The FUNCTION statement for dsply_logo() specifies a single parameter
named sleep_secs. You must call a function with the specified number of
arguments.

4➤ The DEFINE statement defines the thedate and sleep_secs variables. As with
the screen variable in the f_logo form specification fi the specification for
each variable indicates the type of data stored by the variable. For example,
thedate is a variable of type DATE.

Because these variables are defined within the function, they are local to
dsply_logo(). That is, the variables exist from the start through the end of
dsply_logo() but not outside the function. Also, the variables do not retain
their values from one invocation of dsply_logo() to the next.

The sleep_secs variable corresponds to the parameter of the dsply_logo()
function. You must define each function parameter as a local variable within
the function. 4GL automatically assigns the value of the parameter to the
sleep_secs variable when the dsply_logo() function is called.

Example 1 37

The MAIN Function

1➤ MAIN

2➤ CALL dsply_logo(3)

END MAIN

#######################################

3➤ FUNCTION dsply_logo(sleep_secs)
#######################################

4➤ DEFINE sleep_secs SMALLINT,

thedate DATE

4GL source file

38 Writing a Simple 4GL Program

The dsply_logo() Function

5➤ The OPEN FORM statement loads the f_logo form into memory and assigns
the app_logo identifier to the form. After the OPEN FORM statement, you
always use the form identifier to manipulate the form rather than the file
name.

The OPEN FORM statement does not display the f_logo form. To do that, you
use the DISPLAY FORM statement. You can display a form any number of
times without having to open it again. You must display a form before you
can use it in user interaction statements.

Displaying the form takes much less time if the form is already open. Thus,
you may want to open the principal forms in your program when the pro-
gram is starting up so that the forms can be displayed quickly thereafter.

The f_logo form is available until closed with the CLOSE FORM statement. In
Example 1, the form is closed near the end of the dsply_logo() function, but
the form could have been closed in the MAIN function or anywhere else in the
program. That is, in contrast with a local variable, the form identifier is not
restricted to the function containing the OPEN FORM statement. The form
associated with the form identifier is available until you close it explicitly.

6➤ The DISPLAY AT statement places a phrase on the screen starting at the
second row and the 15th column.

You can think of the terminal screen as a grid composed of each position
where you can display a character. On many terminals, the screen grid has
24 rows and 80 columns. The first row is at the top of the screen and the first
column at the far left of the screen.

The DISPLAY AT statement does not make use of the f_logo form and could
have positioned the phrase at any screen location far enough away from the
right screen edge to show the entire phrase.

The ATTRIBUTES clause displays the phrase in reverse video and, on color
monitors, in green. Many of the 4GL screen statements let you customize the
display with an ATTRIBUTES clause.

The ability to display information at a specific row and column is handy
when you need to display status information or other information that
changes frequently. As in the dsply_logo() function, you can use the DISPLAY

AT statement to give a form a title specific to the context in which the form is
being used.

7➤ The LET statement assigns the current date to the variable thedate. To
generate the value, Example 1 uses the TODAY function, which is built into
4GL. In the same way, you can use one of your functions to generate a value
for assignment with a LET statement.

Example 1 39

The dsply_logo() Function

5➤ OPEN FORM app_logo FROM "f_logo"

DISPLAY FORM app_logo

6➤ DISPLAY " INFORMIX-4GL By Example Application" AT 2,15

ATTRIBUTE (REVERSE, GREEN)

7➤ LET thedate = TODAY

DISPLAY thedate TO formonly.appdate

40 Writing a Simple 4GL Program

The dsply_logo() Function

The DISPLAY TO statement displays the value of the date in the field
associated with the screen variable appdate, which was specified in the
f_logo form specification file. As in all statements that move data to and from
a form, you must supply a corresponding program variable for each screen
variable.

A value displayed in a form field must be convertible to the data type of the
associated screen variable. Similarly, a value entered in a form field must be
convertible to the data type of the program variable that receives it.

For example, 4GL can convert a character value consisting of numbers for
storage in an INTEGER variable. 4GL cannot, however, generate a numeric
value for an alphabetic character value.

The safest approach is to use the same data type in both the program variable
and the screen variable. In the dsply_logo() function, both appdate and
thedate variables are of type DATE.

You can also use closely related data types with confidence as long as the
target variable can store a larger value than the source variable. For example,
it is safe to display the value of a SMALLINT screen variable in an INTEGER

screen variable, but not vice versa.

In the DISPLAY TO statement, the formonly qualification for the appdate
variable is optional. You must supply the qualification if the form mixes
FORMONLY screen variables with screen variables that correspond to data-
base columns.

8➤ The SLEEP statement suspends execution to give the user time to view the
logo. The number of seconds slept was passed by the sleep_secs parameter in
the call to the dsply_logo() function.

If you create a logo function, you can omit the SLEEP statement if the program
spends enough time opening forms and performing other initialization tasks
to let the user view the logo.

9➤ The END FUNCTION statement terminates the dsply_logo() function,
returning control to the statement that called dsply_logo().

In this case, control returns to the MAIN function.

Example 1 41

The dsply_logo() Function

8➤ SLEEP sleep_secs

CLOSE FORM app_logo

9➤ END FUNCTION -- dsply_logo --

To locate any function definition, see the Function Index on page 730.

42 Displaying a Message Window

2
1.Writing a Simple 4GL Program

 2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 2 43

Displaying a Message
Window

One of the most important interface features of 4GL is its support for
windows. You can enclose a form or other information in a window.

This example uses a window to display a message. The message can report
an error or convey any other useful information. Because the message
appears in a window, you can use it in any context without confusing the
user.

When you display a window on the screen, the window overlays some or all
other information on the screen. Some portion of the user’s previous activi-
ties are behind the window, which can have a border to prevent confusion
with the background. When you close the current window, the overlaid infor-
mation redisplays so the user can resume work.

This example demonstrates the following 4GL programming techniques:

• Opening and closing a window.

• Testing for conditions before performing actions.

• Performing actions repeatedly in a loop.

• Defining global variables.

• Manipulating a list of values with an array.

Defining Global Variables

44 Displaying a Message Window

• Prompting the user.

• Modifying values with character and arithmetic expressions.

Defining Global Variables
In this program a GLOBALS statement defines an array to store the lines in an
error message. An array is a list of variables or records with the same defini-
tion. Because Example 2 defines the array globally, the array can be used in
any module in a multi-module program.

The MAIN Function
The MAIN function detects an imaginary error condition of which the user
should be notified. MAIN assigns each line of the error message to an element
of the global array and then calls the message_window() function.

The message_window() function could be called from any other function of
the program. That is, this function provides a common subroutine for dis-
playing messages within the application.

Displaying Messages in a Window
The message_window() function performs the following actions:

1. Counts the number of elements of the array that contain text.

2. Opens a message window with enough lines for the text.

3. Displays each element of the array as a separate line of text in the message
window.

4. Prompts for confirmation that the user has read the error message.

5. Closes the message window.

Because the program places the text of the message in the global array rather
than passing the text as parameters, the call to message_window() does not
have to spend time copying the message text to the function variables.

Function Overview

Example 2 45

To remove the dependence on a global message array, you could create a
message function that accepts the message text as an argument:

FUNCTION message_box()

DEFINE caution_msg CHAR(50),
 confirm_msg CHAR(50),
 dummy SMALLINT

LET confirm_msg = "Press any key to continue."

CALL yesno_box(caution_msg, confirm_msg) RETURNING dummy

END FUNCTION -- message_box --

FUNCTION yesno_box(caution_msg, confirm_msg)

DEFINE caution_msg CHAR(50),
 confirm_msg CHAR(50),

yes_no CHAR(1)

OPEN WINDOW w_yesno AT 10, 10

WITH 4 ROWS, 56 COLUMNS

ATTRIBUTE (BORDER, MESSAGE LINE FIRST+1,

PROMPT LINE FIRST+2)

MESSAGE caution_msg

PROMPT confirm_msg CLIPPED FOR CHAR yes_no

CLOSE WINDOW w_yesno

RETURN (DOWNSHIFT(yes_no) = "y")

END FUNCTION -- yesno_box --

However, to display several lines of text in a message box, you may need to
create a function that can separate a single message argument into separate
lines.

Example 4 contains a function called prompt_window() that implements a
Yes / No box using the global message array.

Function Overview

Function Name Purpose

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.

init_msgs() Initializes the members of the ga_dsplymsg array to null.

To locate any function definition, see the Function Index on page 730.

46 Displaying a Message Window

The GLOBALS Statement and MAIN Function

The GLOBALS Statement and MAIN Function
1➤ The GLOBALS statement defines the ga_dsplymsg array as a global array. The

array contains fi identical character variables that are 48 characters long.

In a program with multiple modules, the global definitions must appear in
each module. To reduce maintenance problems, it is usually easier to put the
definitions in a fi and specify the fi with the GLOBALS statement.

Also note that, to make a variable visible in all functions within a module,
you can place the definition outside any function.

2➤ The MAIN function uses the INITIALIZE statement to set each element in the
ga_dsplymsg array to null. This step is important because the program later
tests the value of each element in the array. In general, you must assign a
value to a variable at least once before testing the variable. In this example,
elements in the array that are null are not displayed in the message window.

After the ga_dsplymsg array is initialized, the program can use it in any
function to display a message to the user. As it happens, the MAIN function
immediately uses the array, but many lines could have separated the initial-
ization and the use.

3➤ MAIN sets the fi array element to the fi line of the message and the
second array element to the second line of the message. You supply the num-
ber of the array element within brackets after the array name.

The program constructs the second line of the message using a character
expression. The fi component of the expression is a character constant
stated within quotation marks (the phrase database due to an error:). The
comma, which is the concatenation operator, appends the value of the dbstat
variable to the phrase. Finally, the USING keyword introduces a format that
controls the punctuation and justification of the value of dbstat. The format-
ting tokens are the same as those used in the specification of a form field. The
format for dbstat justifies the value on the left and prefixes the value with a
minus sign if the value is negative.

After assigning the message to the array, MAIN calls the message_window()
function to display the message placed in the array. The parameters to
message_window() control the row and column at which the top left corner
of the window is anchored.

Example 2 47

The GLOBALS Statement and MAIN Function

GLOBALS

used by init_msgs(), message_window(), and prompt_window() to allow

user to display text in a message or prompt window.

1➤ DEFINE ga_dsplymsg ARRAY[5] OF CHAR(48)

END GLOBALS

MAIN

DEFINE i SMALLINT,

dbstat INTEGER

LET dbstat = -3720

2➤ INITIALIZE ga_dsplymsg TO NULL

3➤ LET ga_dsplymsg[1] = "The record has not been inserted into the"

LET ga_dsplymsg[2] = " database due to an error: ",

dbstat USING "-<<<<<<<<<<<"

CALL message_window(3,4)

END MAIN

4GL source file

48 Displaying a Message Window

The message_window() Function

The message_window() Function
4➤ The array_sz variable acts as a constant for the size of the ga_dsplymsg global

array. The array_sz variable is assigned 5 with first LET statement and keeps
the value for the rest of the message_window() function. The benefit of this
approach is that, if you change the size of the array, you need only modify the
LET statement rather than all of the code that works with the array.

5➤ The message_window() function fi determines the height of the message
window in lines. It starts by setting the numrows variable to 4 to reserve
space for the border and margin of the window.

The function then counts the number of elements in the ga_dsplymsg array
that are not null, using a FOR statement. The IS NOT NULL operator compares
the value of the array element to null.

When an array element has a value, the code block within the IF statement
executes. In this case, the block consists of a single LET statement, which adds
one to the current value of the numrows variable.

At the end of the FOR loop, the message_window() function has added the
number of text lines in the array to the initial value of numrows.

6➤ The OPEN WINDOW statement creates a new window and assigns the w_msg
identifier to the window. Like forms, windows remain open until explicitly
closed. As it happens, the w_msg window is closed at the end of the
message_window() function, but it could be closed in the MAIN function or
elsewhere.

The row and column coordinates of the top left corner of the window are
obtained from the x and y parameters, which were passed to the
message_window() function by the CALL statement in the MAIN function.

To set the number of rows in the height of the window, the OPEN WINDOW

statement evaluates the numrows variable. The number of columns in the
width of the window is set to 52, which is the maximum length of a text line
in the ga_dsplymsg array plus four characters for the margin and border on
the left and right sides.

The ATTRIBUTES clause displays the window with a border and sets the
location of the prompt. The border takes up an extra character position
outside the stated positions for the window.

For example, a window with a stated width of 40 columns actually occupies
42 columns when you add a border. Thus, on a 24-row by 80-column termi-
nal, the maximum size for a bordered window is 22 by 78, and the position
for the maximum window would be at row 2 and column 2.

Example 2 49

The message_window() Function

#######################################

FUNCTION message_window(x,y)

#######################################

DEFINE numrows SMALLINT,

x,y SMALLINT,

rownum,i SMALLINT,

answer CHAR(1),

4➤ array_sz SMALLINT -- size of the ga_dsplymsg array

LET array_sz = 5

5➤ LET numrows = 4 -- * numrows value:

-- * 1 (for the window header)

-- * 1 (for the window border)

-- * 1 (for the empty line before

-- * the first line of message)

-- * 1 (for the empty line after

-- * the last line of message)

FOR i = 1 TO array_sz

IFga_dsplymsg[i] IS NOT NULL THEN

LET numrows = numrows + 1

END IF

END FOR

6➤ OPEN WINDOW w_msg AT x, y

WITH numrows ROWS, 52 COLUMNS

ATTRIBUTE (BORDER, PROMPT LINE LAST)

50 Displaying a Message Window

The message_window() Function

Some terminals scroll the screen if you display a character in the bottom right
character position. You should also avoid positioning a window border or
other display in this location.

7➤ The DISPLAY AT statement displays a generic title for the message.

DISPLAY AT, like FORM and most of the 4GL screen statements, displays
within the current window. When no window is current, the screen is
regarded as a window the size of the terminal monitor.

The row and column coordinates apply within the current window. Thus, the
title APPLICATION MESSAGE appears at the first row and 17th column of the
w_msg window.

Note that some terminals, such as some Televideo and Wyse models, cannot
display a character immediately before or after a border or other special
attribute (such as reverse video). These terminals have an sg#1 fi in their
entry in the termcap file. In case someone runs your program on one of these
terminals, be sure to leave the fi and last column positions blank on each
line of the window, as well as a blank character before the text that is dis-
played in reverse video.

8➤ In much the same way that the message_window() function previously used
the numrows variable and a FOR statement to calculate the number of lines
required for the message, the function uses the rownum variable and a FOR

statement to control the display of the message.

The message_window() function sets the rownum variable to 3 so that the
fi line of the message displays on the third line of the window.

The FOR statement then iterates through the ga_dsplymsg array. When the IF

statement discovers an array element with a value, message_window() uses
a DISPLAY AT statement to display the value on the row specified by the
rownum variable and at the second column of the current window. The IF

statement also increments the rownum variable so that the next value
displays on the next lower line of the window.

The CLIPPED operator within the FOR loop removes all trailing spaces before
displaying the value. You improve the performance of your program by not
displaying the spaces. When concatenating values, clipping trailing spaces
can be essential.

Example 2 51

The message_window() Function

7➤ DISPLAY " APPLICATION MESSAGE" AT 1, 17

ATTRIBUTE (REVERSE, BLUE)

8➤ LET rownum = 3 -- * start text display at third line

FOR i = 1 TO array_sz

IF ga_dsplymsg[i] IS NOT NULL THEN

DISPLAY ga_dsplymsg[i] CLIPPED AT rownum, 2

LET rownum = rownum + 1

END IF

END FOR

52 Displaying a Message Window

The init_msgs() Function

9➤ The PROMPT statement suspends execution until the user enters a single
value. In the message_window() function, the purpose of the prompt is to
keep the w_msg window on the screen until the user is ready to close it.

The PROMPT statement assigns the value entered by the user to the answer
variable. This variable is supplied only because it is required by the PROMPT

statement. The value of the answer variable is never used.

10 ➤ The message_window() function calls the init_msgs() function to initialize
the members of the ga_dsplymsg array to null before returning.

You should clear the array to prevent 4GL from displaying extraneous
messages. To see why this step is necessary, consider two messages. The first
uses all fi elements of the array. The second uses only the fi three ele-
ments. When the message_window() function is called for the second mes-
sage, the last two elements of the array still store lines from the first message.
To prevent this, the init_msgs() function initializes the array.

The init_msgs() Function
11 ➤ The init_msgs() function is a separate function rather than part of the

message_window() function because the prompt_window() function needs
the same service. For more information about the prompt_window() func-
tion, see Example 4.

The init_msgs() function uses LET statements in a loop to initialize the
ga_dsplymsg array. You could also use the INITIALIZE statement; however,
it is somewhat slower.

Example 2 53

The init_msgs() Function

9➤ PROMPT " Press RETURN to continue." FOR answer

CLOSE WINDOW w_msg

10 ➤ CALL init_msgs()

END FUNCTION -- message_window --

FUNCTION init_msgs()

DEFINE i SMALLINT

11 ➤ FOR i = 1 TO 5

LET ga_dsplymsg[i] = NULL

END FOR

END FUNCTION -- init_msgs --

To locate any function definition, see the Function Index on page 730.

54 Populating a Ring Menu with Options

3
1. Writing a Simple 4GL Program

2.Displaying a Message Window

 3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 3 55

Populating a Ring Menu
with Options

When you need to offer the user a set of possible options, you can create a
menu. Each option on the menu executes a separate block of code. You can
use menus to prompt the user for an option before continuing with an action.
You can also create a hierarchy of menus that structures your program.

This example creates the following menu:

This example introduces the following 4GL programming techniques:

• Populating a menu with options.

• Providing concealed options for experts.

• Running operating system commands.

• Configuring program execution options.

• Placing help in an external file.

Opening a Menu
The MAIN function sets options for execution of the program and then
displays a menu with supporting help messages. You place the help
messages in a separate fi for faster lookup and to make translation easier.

Demonstrating the Choice of a Menu Option

56 Populating a Ring Menu with Options

Demonstrating the Choice of a Menu Option
For demonstration purposes, the dsply_option() function reports the option
that was chosen. In your programs, options initiate distinct actions or set a
fl to distinct values.

Executing a Command Supplied by the User
The bang() function lets the user enter and execute any number of operating
system commands. The option that calls this function does not appear on the
menu.

Function Overview

Function Name Purpose

dsply_option() Creates an appropriate message and calls
message_window() to report the menu option chosen.

bang() Prompts the user for a command and executes the command.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array. See the description in Example 2.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

To locate any function definition, see the Function Index on page 730.

Function Overview

Example 3 57

58 Populating a Ring Menu with Options

The MAIN Function

The MAIN Function
1➤ The OPTIONS statement configures the execution of Example 3. The

HELP FILE clause specifies that the hlpmsgs file stores the help messages. The
PROMPT LINE clause specifies that the PROMPT statement should display on
the last line of the screen.

Program execution options remain in effect until you change them. Some 4GL

statements let you change an option for a specific entity. For instance, as
shown in “Displaying a Message Window” on page 43, the OPEN WINDOW

statement can set the prompt line for prompts within the window.

You can use the OPTIONS statement to specify the line location for forms,
menus, and most of the other 4GL screen statements. 4GL provides the special
constants FIRST and LAST for specifying line locations. You can use addition
or subtraction to specify a line location relative to FIRST or LAST.

2➤ The DISPLAY AT statement displays a separator line on the third line. As a
menu occupies two lines and displays by default on the fi two lines, the
separator falls immediately below the menu. You would want to position
other screen displays on the fourth line or below.

A visual separation between the menu and the information brought up by
the menu can improve the quality of the user interface.

3➤ The demonstration menu exists from the MENU statement to the END MENU

statement. Unlike a form or window, a menu is a continuous control block
residing within a single function.

The MENU statement specifies “DEMO MENU” for the title of the menu. The
title provides a fixed point of reference when the menu contains more options
than can display at one time.

4➤ The COMMAND statement specifies an option for the demonstration menu.
The fi character string (“First”) is the title of the option within the menu.
The second character string (“This is the fi option of the menu.”) appears
on the line below the menu whenever the user highlights the option title.

In Example 3, the option description provides a short explanation. You can
also use the option description to provide a preview of the next set of options
in a hierarchical menu structure. This technique is used in many popular
spreadsheets.

When the user chooses an option, 4GL executes the code block between the
current COMMAND statement and the next COMMAND statement or, for the
last option, the END MENU statement. When the code block fi execut-
ing, 4GL reactivates the menu. You can terminate the block prematurely using
the CONTINUE MENU or EXIT MENU statement.

Example 3 59

The MAIN Function

MAIN

1➤ OPTIONS

HELP FILE "hlpmsgs",

PROMPT LINE LAST

2➤ DISPLAY

See Example 2.

"---------------------------------------Press CTRL-W for Help----------

" AT 3, 1

3➤ MENU "DEMO MENU"

4➤ COMMAND "First" "This is the first option of the menu." HELP 1

CALL dsply_option(1)

COMMAND "Second" "This is the second option of the menu." HELP 2

CALL dsply_option(2)

COMMAND "Third" "This is the third option of the menu." HELP 3

CALL dsply_option(3)

COMMAND "Fourth" "This is the fourth option of the menu." HELP 4

CALL dsply_option(4)

4GL source file

60 Populating a Ring Menu with Options

The MAIN Function

In Example 3, most of the options call the dsply_option() function, which
reports the selected option for demonstration purposes. Your options will
initiate distinct, meaningful actions.

The order of the COMMAND statements determines the order in which
options appear on a menu. If all of the option titles will not fi within the
screen width, 4GL displays ellipsis points to indicate the undisplayed options
and lets the user scroll to the undisplayed options.

The HELP clause specifies a message that 4GL displays if the user presses the
Help key (usually CONTROL-W) while highlighting the option. The OPTIONS

statement specifies the name of the message file.

5➤ The KEY clause of the COMMAND statement specifies the exclamation point
as the accelerator key for the menu option. While the menu is active, the user
can press an exclamation point to trigger execution of the code block, which
calls the bang() function.

An option can have either or both a title and an associated key or set of keys.
To hide dangerous or confusing options from most users, while making the
options available to expert users for whom you have provided documenta-
tion, use an option with a key only (no title). In this example, the option is
hidden because the bang() function executes operating system commands.

This technique does not provide a reliable security mechanism. For that, you
can provide restricted application administration functions to maintain a
database table of user accounts and their permissions. Example 25 and
Example 27 demonstrate how to retrieve the user name of the current user.

6➤ The “Exit” option on the demonstration menu executes the EXIT MENU

statement. When the user chooses this option, the menu terminates and 4GL

resumes execution with the line following the END MENU statement. As in
the example, the option that exits the menu is typically the last option.

If you do not provide an option or other mechanism for executing the
EXIT MENU statement, the user can never leave the menu. The menu reacti-
vates after the code block for an option finishes.

You can also use a menu to prompt the user to select one of a set of values,
rather than to execute one of a set of actions as here. In such a menu, each
command block would consist of a LET statement to store the selected value,
followed by EXIT MENU.

7➤ Example 3 executes the CLEAR SCREEN statement at the end of the MAIN

function so the screen is not confused when the command interpreter or
other calling program resumes.

Example 3 61

The MAIN Function

5➤ COMMAND KEY ("!")

CALL bang()

6➤ COMMAND "Exit" "Exit the program." HELP 100

EXIT MENU

END MENU

7➤ CLEAR SCREEN

END MAIN

62 Populating a Ring Menu with Options

The dsply_option() Function

The dsply_option() Function
8➤ The CASE statement tests for possible values of the option_num variable and

sets the option_name variable to an appropriate name. You could also test the
option_num variable with a series of IF statements, but the CASE statement is
more readable.

You can also use the CASE statement to list a series of independent tests rather
than a series of values. You can use the OTHERWISE clause of the CASE state-
ment as a catch-all for unanticipated cases.

9➤ After setting the option_name variable, dsply_option() uses the
message_window() function to report the selected option. As in Example 2,
the text of the message is assigned to the global array ga_dsplymsg before
calling message_window(). The GLOBALS statement defining the array
appears at the top of the source file but is omitted here for brevity. For more
information about the message_window() function, see Example 2.

Example 3 63

The dsply_option() Function

#######################################

FUNCTION dsply_option(option_num)

#######################################

DEFINE option_num SMALLINT,

option_name CHAR(6)

8➤ CASE option_num

WHEN 1

LET option_name = "First"

WHEN 2

LET option_name = "Second"

WHEN 3

LET option_name = "Third"

WHEN 4

LET option_name = "Fourth"

END CASE

9➤ LET ga_dsplymsg[1] = "You have selected the ", option_name CLIPPED,

" option from the"

LET ga_dsplymsg[2] = " DEMO menu."

CALL message_window(6, 4)

END FUNCTION -- dsply_option --

64 Populating a Ring Menu with Options

The bang() Function

The bang() Function
10 ➤ The bang() function uses a WHILE statement to let the user execute any

number of operating system commands. Unlike the FOR statement, which
loops for a specified number of times, the WHILE statement loops indefinitely
until a condition is no longer met.

The WHILE statement in the bang() function requires that the user press the
bang (!) key before executing each operating system command. An alternate
WHILE statement, which would allow the user to type a series of operating
system commands without having to press the bang key, follows.

WHILE key_stroke = "!"

PROMPT "unix! " FOR cmd

IF LENGTH(cmd) > 0 THEN -- test for empty input

RUN cmd

ELSE

LET key_stroke = ""

END IF

END WHILE

The approach demonstrated in the example works much like the bang facility
present in the UNIX vi editor; this WHILE statement would be preferable if
you expected users to type multiple operating system commands.

11 ➤ The key_stroke variable controls repetition of the loop. The LET statement
immediately before the WHILE statement sets key_stroke so that the loop will
execute at least once.

12 ➤ The first PROMPT statement obtains an operating system command from the
user. It displays the following prompt: UNIX!

13 ➤ The RUN statement suspends the 4GL program and invokes the command.
The command has complete control of the screen for the duration of its exe-
cution. For example, the RUN statement can start up a command interpreter
to execute a batch fi or to start an interactive session with the user.

When the operating system command terminates, the 4GL program resumes.
You can use the RETURNING clause to capture the exit status of the command.
You can also use the WITHOUT WAITING clause to run a command in the
background while the 4GL program continues to execute.

14 ➤ The second PROMPT statement preserves the fi display of the command until
the user is ready to restore the previous 4GL display. The CHAR clause ends
input on any keystroke. This contrasts with the first PROMPT statement,
which (to let the user correct errors) requires that the user press the RETURN

or Accept key to end input.

Example 3 65

The bang() Function

10 ➤ FUNCTION bang()

DEFINE cmd CHAR(80),

key_stroke CHAR(1)

11 ➤ LET key_stroke = "!"

WHILE key_stroke = "!"

12 ➤ PROMPT "unix! " FOR cmd

13 ➤ RUN cmd

14 ➤ PROMPT "Type RETURN to continue." FOR CHAR key_stroke

END WHILE

END FUNCTION -- bang --

66 Populating a Ring Menu with Options

The hlpmsgs Message File

Because the key_stroke variable receives the keystroke, the expert user can
type an exclamation point to trigger repetition of the loop. Any other key-
stroke exits the loop (and the bang() function).

The hlpmsgs Message File
1➤ The help text for this example resides in a message fi that is separate from

the 4GL source code files.

Within a message file, each message starts with a message identifier line. The
message identifier line consists of a period followed by a unique message
number that identifies the help message. The message number must be a pos-
itive small integer; negative numbers are reserved for Informix error mes-
sages. The message consists of all lines between the message identifier line
and a new message identifier line or the end of the file.

To use the help message file in a program, you must first compile the message
fi with the mkmessage utility. An appendix in the INFORMIX-4GL Reference
describes the mkmessage utility.

Within the program, you use the OPTIONS statement to specify the message
fi that contains the help messages. You can associate a help message num-
ber with an option in the COMMAND clause of the MENU statement. For
notes on using the help fi with the example, see “The MAIN Function” on
page 58.

You can also associate a help message with a form field in the field specifica-
tion within the ATTRIBUTES section of the form file.

Example 3 67

The hlpmsgs Message File

1➤ .1

This is the first option of the sample menu: DEMO MENU. It can

be selected by:

1. typing the letter "f" followed by the letter "i". The

second letter is required to distinguish between the "First"

and the "Fourth" option (also selected with the letter "f").

2. moving the cursor to the "First" option and pressing RETURN

.2

This is the second option of the sample menu: DEMO MENU. It can

be selected by:

1. typing the letter "s"

2. moving the cursor to the "Second" option and pressing RETURN

.3

This is the third option of the sample menu: DEMO MENU. It can

be selected by:

1. typing the letter "t"

2. moving the cursor to the "Third" option and pressing RETURN

.4

This is the fourth option of the sample menu: DEMO MENU. It can

be selected by:

1. typing the letter "f" followed by the letter "o". The

second letter is required to distinguish between the "Fourth"

and the "First" option (also selected with the letter "f").

2. moving the cursor to the "Fourth" option and pressing RETURN

.100

This option leaves the menu and exits the program. You are returned to

the environment from which you called the program. It can be selected

by:

1. typing the letter "e"

2. moving the cursor to the "Exit" option and pressing RETURN

To locate any function definition, see the Function Index on page 730.

hlpmsgs message file

68 Displaying a Row on a Form

4
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
 4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27. Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 4 69

Displaying a Row
on a Form

This example uses forms to collect a customer number from the user and then
display a summary of all information about the customer. It demonstrates the
value of 4GL forms, which give the user an interface for interacting with the
database.

To move information from the database to a form, you fi retrieve the
information into program variables and then display the information on the
form. Similarly, to update a database row, you set program variables based
on the values of form fi and then update the database row from the
variables.

The following form appears in this example:

Defining Records

70 Displaying a Row on a Form

This example introduces the following 4GL programming techniques:

• Retrieving information from the database.

• Collecting information from the user with a form.

• Handling data entry, database, and program errors.

• Returning values from functions.

• Manipulating a record composed of values of different types.

• Extracting and addressing a substring within a character value.

Defining Records
This example defines a record to store several kinds of information about
customers. Resembling a C struct definition or a Pascal record, a 4GL record is
a variable that specifies a set of other variables. The advantage of defining a
record is that you can manipulate the components of the record as a unit.

A record differs from an array in that an array is a list of values of the same
type, whereas a record is a single collection of values that may have many dif-
ferent types. The example defines the record globally so that it is available in
all functions.

Returning Values from Functions
A 4GL function can return values to the calling statement. You list the
variables that receive the values in the RETURNING clause of the CALL

statement.

If the function returns a single value, you can also call the function in an
expression to supply a value for the expression. For example, a function can
return a true or false value that is tested by a CASE, IF, or WHILE statement.

Testing a single value may seem strange if you are used to testing Boolean
expressions containing an equals sign or other logical operator. You should
recognize that a Boolean expression always evaluates to the true or false
value. Thus, the conditional statement really determines whether to execute
its code block based on a single value.

Entering Information on a Form

Example 4 71

Entering Information on a Form
Example 2 and Example 3 use the PROMPT statement to collect a single value
from the user. This example introduces the INPUT statement, which activates
a form so that the user can enter multiple values.

To use a form for data entry, you fi open and display the form. Then, you
use the INPUT statement to associate a list of program variables with the
screen variables that correspond to the fields on the form. When the user fin-
ishes the data entry session, 4GL assigns the values of the fi to the pro-
gram variables.

As demonstrated in this example, an INPUT statement can reference a subset
of the fields on the form. The unlisted fields are not activated. That is, the user
cannot enter these fields.

This example also gives you a brief introduction to the AFTER FIELD clause of
the INPUT statement. The AFTER FIELD clause lets you perform actions such
as validation on a field-by-field basis. For more information about using the
AFTER FIELD clause, see Example 7.

The form used in this example prompts the user for a customer number. You
can also use forms to update existing database rows (see Example 6) or insert
new database rows (see Example 7).

Selecting Database Information
To qualify rows in the database and retrieve a single value or row, you use the
SQL SELECT statement.

One common use of the SELECT statement is to determine whether a value
entered by the user corresponds to a row in the database. This example
accomplishes this task by using the built-in COUNT(*) aggregate function to
count the number of rows that match the value entered by the user.

The COUNT(*) function is also used to count the number of orders and calls
outstanding for a customer, while the SUM() aggregate function totals the
charges for those orders.

Other SELECT statements retrieve the company and state for a particular
customer.

72 Displaying a Row on a Form

Function Overview

Recovering from Runtime Errors
By default, 4GL terminates whenever a statement generates an error. This
behavior is desirable in most cases because you do not want to continue exe-
cuting with an unknown program state.

However, in some situations you may want to recover from the error within
the program and continue executing the program. The following technique
suppresses termination for the statement that can generate the recoverable
error:

• Suppress termination with the WHENEVER ERROR CONTINUE statement.

• Execute the statement.

• Resume termination with the WHENEVER ERROR STOP statement.

• Use an IF statement to execute the recovery code when the built-in status
variable has a value less than zero.

4GL automatically sets the status variable to zero when a statement succeeds
and to a negative number when a statement fails. After an SQL statement, the
status variable shows the same number as the built-in SQLCA.SQLCODE vari-
able. Unlike SQLCODE, however, 4GL also sets the status variable after a 4GL

screen statement.

The prompt_window() function uses this technique to adjust the positioning
of a window, but later examples make extensive use of this technique for SQL

statements. SQL statements are particularly appropriate for recovery because
an SQL statement can be invalidated at runtime by changes in the database
schema or by locks on the desired rows.

You should always use the standard termination behavior for statements for
which you are not providing recovery code. The continuation behavior
increases the size of the executable code compiled from the 4GL code. In addi-
tion, terminating the program is the appropriate recovery mechanism for
statements for which you have not provided explicit recovery code.

Note that the WHENEVER statement is not a runtime statement that applies
to statements in the thread of execution. Instead, WHENEVER is an instruc-
tion to the compiler that takes effect when the module is compiled. That is,
the WHENEVER statement applies to all lower lines within the module until
the next WHENEVER statement or the end of the module. The WHENEVER

statement does not apply to functions called from the covered lines.

Example 4 73

Recovering from Runtime Errors

Function Overview

Function Name Purpose

cust_summary() Loops through the action until the user is done.

get_custnum() Obtains a customer number from the user.

get_summary() Uses a series of SELECT statements to fetch from the database
and summarize customer information.

dsply_summary() Displays the customer summary on a form.

tax_rates() Supplies the appropriate tax schedule for a customer.
init_msgs() Initializes the members of the ga_dsplymsg array to null.

See the description in Example 2.
prompt_window() Displays a message and prompts the user for confirmation.

This function is a variation of the message_window()
function that appears in Example 2.

To locate any function definition, see the Function Index on page 730.

74 Displaying a Row on a Form

The f_custkey and f_custsum Forms

The f_custkey and f_custsum Forms
1➤ The SCREEN and ATTRIBUTES sections of the form specification fulfill the

same purpose as described in the section “The f_logo Form Specification” on
page 34. In contrast with Example 3, for which the database was FORMONLY,
the f_custkey form and f_custsum form are defined to work with the stores7
demonstration database.

The TABLES section specifies the relevant tables from the database. The
ATTRIBUTES section can associate a fi tag with a database column to
assign the data type of the database column to the corresponding screen
variable.

Note that, if the data type of the database column changes, you must
recompile the form.

2➤ The f001 fi in the f_custkey form is specified as a member of the
FORMONLY table. You use this pseudo-table within the specification of a
database form for fi that cannot or should not correspond to a database
column.

The customer_num column of the customer table has a SERIAL data type. To
prevent a user from inputting or updating a SERIAL value, 4GL automatically
moves the cursor out of a screen fi that is defined like a SERIAL field.
Because the user must be able to enter a customer number to select the cus-
tomer, the f_custkey form specification defines the customer_num screen
variable as a member of the FORMONLY table. The customer_num name
merely clarifies for any programmer reading the code that the information
entered in the field corresponds to the database column. The name does not
apply any characteristics of the column.

3➤ The f002, f003, and f004 fi in the f_custsum form are also specified as
members of the FORMONLY table. These formonly fields display information
synthesized from several columns in several tables.

Example 4 75

The f_custkey and f_custsum Forms

f_custkey form file

f_custsum form file

1➤
DATABASE stores7

 SCREEN

{

Customer Number:[f001

] Company Name:[f002

]

}

TABLES

customer

ATTRIBUTES

2➤ f001 = formonly.customer_num;
f002 = customer.company;

DATABASE stores7

SCREEN

{

CUSTOMER:

Customer Number:[f000] Company Name:[f001]

ORDERS:

Number of unpaid orders:[f002] Total amount due:[f003]

CALLS:

Number of open calls:[f004]

}

TABLES

customer

ATTRIBUTES

f000 = customer.customer_num;

f001 = customer.company;

3➤ f002 = formonly.unpaid_ords;
f003 = formonly.amount_due;

f004 = formonly.open_calls;

76 Displaying a Row on a Form

The MAIN Function

The DATABASE and GLOBALS Statements
1➤ The DATABASE statement opens the stores7 demonstration database.

The program uses information in the database to assist with the definition of
the program variables. In the same way that the DATABASE section of a form
specification file declares a database for field definitions, this program reads
information from the database and defines variables based on columns.

If you are developing an application for an existing database, you may want
to make a copy of the database that has the same schema but fewer rows. You
can test your program against the copy without affecting the performance or
the data in the real database. When your program is ready for use, change the
database name from the test database to the real database in the form speci-
fi and all modules, and then recompile.

2➤ For convenience, the program groups several variables as a record. For
example, the dsply_summary() function displays the gr_customer record in
the f_custsum form with a single statement. The gr_custsum record is
defined as a global variable so any function can access the record.

Each member of the record is a variable that, like all variables, is defined with
a data type. The LIKE clause assigns the data type of a column in the database.
Because the data type is determined when the code is compiled, you must
recompile the module if the data type of the column changes.

Each member of the gr_custsum record corresponds to a screen variable of
the same name in the f_custsum form. Because the names are the same, the
program need not specify both the variable and its corresponding field
names when exchanging data between the record and the form.

The MAIN Function
3➤ Along with the prompt line, the OPTIONS statement lets you specify the line

on which a message appears. The MESSAGE statement displays a line of text
that does not require a response from the user.

The INPUT ATTRIBUTE clause sets the display attributes for fi in which
the user can position. This technique gives the user a visual cue to distinguish
input fi from read-only fields.

Example 4 77

The DATABASE and GLOBALS Statements

1➤ DATABASE stores7

GLOBALS

2➤ DEFINE gr_custsum RECORD

customer_num LIKE customer.customer_num,

company LIKE customer.company,

unpaid_ords SMALLINT,

amount_due MONEY(11),

open_calls SMALLINT

END RECORD

See Example 2.

END GLOBALS

MAIN

3➤ OPTIONS

INPUT ATTRIBUTE (REVERSE, BLUE),

PROMPT LINE 13,

MESSAGE LINE LAST

CALL cust_summary()

END MAIN

4GL source file

78 Displaying a Row on a Form

The cust_summary() Function

The cust_summary() Function
4➤ The cust_summary() function executes a loop to let the user see a summary

for several different customers.

The search_again variable is the controlling variable for the WHILE loop. The
LET statement assigns the value of the built-in TRUE constant. 4GL also pro-
vides a built-in FALSE constant.

While the IF and WHILE statements usually test a Boolean expression using a
logical operator, these statements can in fact test any expression that yields a
single value that is TRUE or FALSE. As demonstrated in cust_summary(), you
can evaluate a variable to generate the tested value. You can also generate the
tested value using a function call that returns a single value.

5➤ The call to get_custnum() uses the RETURNING clause to fi the
gr_custsum.customer_num variable with the value returned by the function.
Here only one value is returned, but the RETURNING clause lets you assign a
list of values to a list of variables.

If a function returns a single value, you can call it within an expression
instead of using the CALL statement. In particular, you can use a function call
to generate the value assigned to a variable by the LET statement. For exam-
ple, you could rewrite the call to get_custnum() as follows:

LET gr_custsum.customer_num = get_custnum()

If the function call requires a return value and the function does not supply
it, 4GL reports a runtime error. Remember that you can return a null value if
no other value is appropriate.

Note that the RETURNING clause refers to the gr_custsum.customer_num
variable. To address the customer_num member, you qualify it with the
gr_custsum record and a separating period.

6➤ The loop calls the dsply_summary() function to generate and display the
summary for that customer. The dsply_summary() function sets the
search_again variable to TRUE if the user wants to see the summary for
another customer and to FALSE if the user is done.

Example 4 79

The cust_summary() Function

FUNCTION cust_summary()

DEFINE search_again SMALLINT

4➤ LET search_again = TRUE

WHILE search_again

5➤ CALL get_custnum() RETURNING gr_custsum.customer_num

6➤ CALL dsply_summary() RETURNING search_again

END WHILE

CLEAR SCREEN

END FUNCTION

80 Displaying a Row on a Form

The get_custnum() Function

The get_custnum() Function
7➤ The get_custnum() function opens and displays the f_custkey form and uses

the DISPLAY AT statement to give the form a title appropriate to the context.

8➤ The INPUT statement suspends execution of the get_custnum() function
while the user fi in the input fi of the f_custkey form.

The INPUT statement associates the cust_num local variable with the
customer_num screen variable of the form. (See Note 2 on page 74). When the
user finishes entering data, 4GL assigns the value of the customer_num field
to the cust_num local variable. Although only one variable appears here, the
INPUT statement can associate multiple program variables with screen
variables.

Note that although the f_custkey form specification includes the company
screen variable, the INPUT statement does not refer to this variable. As a
result, the user cannot move into the company field.

The INPUT statement applies to the currently displayed form. You can open
two forms and switch the user between forms by executing a new DISPLAY

statement for the appropriate form before executing the INPUT statement.

The user terminates data entry by using the Accept key (typically ESCAPE).
Data entry also terminates when the user leaves the last activated field on the
form, although you can use INPUT WRAP setting of the OPTIONS statement
to cycle back to the fi fi Because only the customer_num fi is acti-
vated on the f_custkey form, tabbing exits the form.

The user can terminate the program at any time by using the Cancel key. Also
referred to as the Interrupt key, the Cancel key is typically CONTROL-C. To
stop data entry but continue the program, use the DEFER INTERRUPT state-
ment (see Example 5).

9➤ The AFTER FIELD clause specifies a block of code that 4GL executes when the
user leaves the customer_num fi or terminates data entry while in the
field. As in get_custnum(), the typical use of the AFTER FIELD clause is to val-
idate the value entered by the user.

The form activation statements also provide a BEFORE FIELD clause, which
you can use to initialize a field when the user enters the field (see Example 7).

10 ➤ 4GL assigns the value of the customer_num fi to the cust_num variable
before executing the AFTER FIELD clause. The first IF statement checks the
value of the cust_num variable to determine whether the user fi in the
customer_num field.

Example 4 81

The get_custnum() Function

FUNCTION get_custnum()

DEFINE cust_num INTEGER,

cust_cnt SMALLINT

7➤ OPEN FORM f_custkey FROM "f_custkey"

DISPLAY FORM f_custkey

DISPLAY " "

AT 2, 30

DISPLAY "CUSTOMER KEY LOOKUP"

AT 2, 20

DISPLAY " Enter customer number and press Accept."

AT 4, 1 ATTRIBUTE (REVERSE, YELLOW)

8➤ INPUT cust_num FROM customer_num

9➤ AFTER FIELD customer_num

10 ➤ IF cust_num IS NULL THEN

ERROR "You must enter a customer number. Please try again."

NEXT FIELD customer_num

END IF

82 Displaying a Row on a Form

The get_custnum() Function

If the user did not enter a value, the ERROR statement causes the terminal to
beep and displays an explanation of the error.

The NEXT FIELD statement then returns the cursor to the same fi By
positioning the cursor in the form, the NEXT FIELD statement implicitly
prevents the termination of the form. Thus, this statement is necessary even
in a single-field form if you want to stop the user from leaving the form. The
NEXT FIELD statement appears within the IF statement code block so that the
user can leave the fi if the customer exists.

11 ➤ The AFTER FIELD clause executes a SELECT statement to try to fi a
customer that has the customer number entered by the user.

The COUNT(*) aggregate function counts the number of rows qualified by the
query. The INTO clause fills the cust_cnt variable with the value generated by
the query. The WHERE clause qualifies only the rows in the customer table in
which the customer_num column matches the value entered by the user.

12 ➤ The second IF statement tests the cust_cnt variable to determine whether a
customer was found. If not, the ERROR statement reports the problem to the
user, and the NEXT FIELD statement reactivates the form so that the user can
correct the customer number.

13 ➤ As Example 4 calls the get_custnum() function in a loop, 4GL opens and
closes the f_custkey form on each repetition of the loop. You could make the
example more efficient by opening the form once before the loop, displaying
the form on each call to get_custnum(), and closing the form after the loop.

Example 4 takes the less effi approach of opening and closing the form
entirely within the get_custnum() function so that the function can be reused
in other contexts with nothing more than the function call. In your own pro-
grams, you will encounter similar trade-offs between efficiency and reusabil-
ity that you must evaluate on a case-by-case basis.

14 ➤ The RETURN statement returns the customer number entered by the user. The
RETURNING clause of the call to get_custnum() assigns this value to the
gr_custsum.customer_num variable. Because the record is global, the
get_custnum() function could have made the assignment instead of returning
the value. The return technique was adopted so that get_custnum() could be
reused in other programs without requiring the gr_custsum global record.

The RETURN statement terminates the current function immediately. The
RETURN statement can return multiple values or, when only termination is
required, no values.

Example 4 83

The get_custnum() Function

11 ➤ SELECT COUNT(*)

INTO cust_cnt

FROM customer

WHERE customer_num = cust_num

12 ➤ IF (cust_cnt = 0) THEN

ERROR "Unknown customer number. Please try again."

LET cust_num = NULL

NEXT FIELD customer_num

END IF

END INPUT

13 ➤ CLOSE FORM f_custkey

14 ➤ RETURN (cust_num)

END FUNCTION -- get_custnum --

84 Displaying a Row on a Form

The get_summary() Function

The get_summary() Function
15 ➤ The dsply_summary() function (which is called in the WHILE loop in the

cust_summary() function) calls get_summary() to build the summary of cus-
tomer information. The get_summary() function executes a series of queries
to build the summary.

16 ➤ The fi query retrieves the company and state information from the
customer table for the customer supplied by the user in the get_custnum()
function. The query places the company name in the company member of the
gr_custsum global record for later display in the dsply_summary() function.
The query places the state in a local variable for later use within the
get_summary() function.

17 ➤ The second query uses the built-in COUNT(*) aggregate function to count the
number of orders for which the customer has not paid. The count is stored in
the gr_custsum global record for later display. The count is also used to deter-
mine whether or not to calculate the amount owed on the outstanding orders.

Only the SELECT statement and reports offer the aggregate functions.

18 ➤ The third query uses the built-in SUM() aggregate function to total the value
of the items belonging to the outstanding orders.

The query includes the orders table because the paid_date column, which
indicates whether the order has been paid, resides only in the orders table.

The query includes the items table because the total_price column, which is
totaled by the SUM() aggregate function, resides only in the items table.

The WHERE clause requires the order_num column to be the same in both the
orders and items tables to join the related rows. The other conditions restrict
the query to the appropriate customer and to unpaid orders.

19 ➤ The fourth query uses the built-in SUM() aggregate function to total the
shipping charges for the unpaid orders.

20 ➤ To calculate the total tax on the unpaid orders, the get_summary() function
fi calls the tax_rates() function with the customer’s state as a parameter.
The tax_rates() function returns the applicable tax rate.

The get_summary() function then calculates the sales tax based on the total
value of the items established in a previous query.

21 ➤ The get_summary() function then adds the total value of the items, the sales
tax on the items, and the total shipping charge on the orders to obtain the
total amount outstanding and saves this figure in the amount_due member
variable of the gr_custsum record. For customers without unpaid orders, the
ELSE clause sets the total to zero.

Example 4 85

The get_summary() Function

15 ➤ FUNCTION get_summary()

DEFINE cust_state LIKE state.code,

item_total MONEY(12),

ship_total MONEY(7),

sales_tax MONEY(9),

tax_rate DECIMAL(5,3)

--* Get customer's company name and state (for later tax evaluation)

16 ➤ SELECT company, state

INTO gr_custsum.company, cust_state

FROM customer

WHERE customer_num = gr_custsum.customer_num

--* Calculate number of unpaid orders for customer

17 ➤ SELECT COUNT(*)

INTO gr_custsum.unpaid_ords

FROM orders

WHERE customer_num = gr_custsum.customer_num

AND paid_date IS NULL

--* If customer has unpaid orders, calculate total amount due

IF (gr_custsum.unpaid_ords > 0) THEN

18 ➤ SELECT SUM(total_price)

INTO item_total

FROM items, orders

WHERE orders.order_num = items.order_num

AND customer_num = gr_custsum.customer_num

AND paid_date IS NULL

19 ➤ SELECT SUM(ship_charge)

INTO ship_total

FROM orders

WHERE customer_num = gr_custsum.customer_num

AND paid_date IS NULL

20 ➤ LET tax_rate = 0.00

CALL tax_rates(cust_state) RETURNING tax_rate

LET sales_tax = item_total * (tax_rate / 100)

21 ➤ LET gr_custsum.amount_due = item_total + sales_tax + ship_total

--* If customer has no unpaid orders, total amount due = $0.00

ELSE

LET gr_custsum.amount_due = 0.00

END IF

86 Displaying a Row on a Form

The dsply_summary() Function

22 ➤ The final query counts the number of customer calls that have not received a
response. The query searches the cust_calls table for rows that contain the
appropriate customer number and a null value in the res_dtime column. The
query saves this value in the open_calls member variable of the gr_custsum
global record.

The dsply_summary() Function
23 ➤ The dsply_summary() function is called by the cust_summary() function.

It opens and displays the f_custsum form.

The customer summary appears in this form. The DISPLAY AT statement
clears the form title from the f_custkey form.

24 ➤ The CALL statement executes the get_summary() function to generate the
summary and place the values in the gr_custsum global record. The call
could return the values, but it is faster to place the values in a record accessi-
ble in both functions.

25 ➤ The DISPLAY BY NAME statement uses the asterisk notation to refer to every
member of the record, assigning the values of the member variables to the
form fi You can use this mechanism only where each member of the
record has a corresponding screen variable with the same name in the form.

The benefit of the asterisk notation is that a change in the record structure
does not require a change to a statement using the record. However, you may
need to change the form specification to accommodate new members.

26 ➤ The dsply_summary() function then prompts the user to determine whether
the user wants to view the summaries for additional customers.

The prompt window operates in much the same way as the message window.
(See “Displaying a Message Window” on page 43.) You assign the text of the
prompt to the ga_dsplymsg global array before calling the prompt_window()
function.

27 ➤ The get_more variable stores the user’s decision. By default, the decision is
TRUE. The IF statement executes a call to the prompt_window() function to
obtain the user’s decision. If prompt_window() returns FALSE, the get_more
variable is also set to FALSE. The value of the get_more variable is then
returned to the cust_summary() function to control repetition of the loop.

The IF statement provides an example of a context in which you can call a
function to generate a value. The statement calls the prompt_window() func-
tion in the same way as the CALL statement calls a function. The only

Example 4 87

The dsply_summary() Function

--* Calculate number of open calls for this customer

22 ➤ SELECT COUNT(*)

INTO gr_custsum.open_calls

FROM cust_calls

WHERE customer_num = gr_custsum.customer_num

AND res_dtime IS NULL

END FUNCTION -- get_summary --

FUNCTION dsply_summary()

DEFINE get_more SMALLINT

23 ➤ OPEN FORM f_custsum FROM "f_custsum"

DISPLAY FORM f_custsum

DISPLAY " "

AT 2, 20

24 ➤ CALL get_summary()

25 ➤ DISPLAY BY NAME gr_custsum.*

26 ➤ LET ga_dsplymsg[1] = "Customer summary for customer ",

gr_custsum.customer_num USING "<<<<<<<<<<<"

LET ga_dsplymsg[2] = " (", gr_custsum.company CLIPPED, ") complete."

27 ➤ LET get_more = TRUE

IF NOT prompt_window("Do you want to see another

summary?",14,12) THEN

LET get_more = FALSE

END IF

RETURN get_more

CLOSE FORM f_custsum

END FUNCTION -- dsply_summary --

88 Displaying a Row on a Form

The prompt_window() Function

difference is that, instead of assigning the return value to a variable using the
RETURNING clause, the IF statement tests the value to see if it is the same as
the TRUE constant.

The tax_rates() Function
28 ➤ The tax_rates() function executes a large CASE statement on the customer’s

state, which is passed as a parameter, and returns the appropriate tax rate for
the state. The tax scheme applied here has been simplified for demonstration
purposes.

For the sake of efficiency, the comparison is done at two levels. The outer
CASE statement uses the substring operator, which is a set of brackets, to
extract the initial letter of the state. The inner CASE statements such as the
ones under A and C compare the second letter when several state abbrevia-
tions start with the same letter. The OTHERWISE clause sets the tax rate to zero
if the rate is not known.

It would be more effi and convenient to store the tax rate in a table. As used
by Example 4, the tax rate could be a column in the state table. Or, more
realistically, the tax rate might appear in a separate table for the county or dis-
trict that would be joined to the customer table separately.

Sometimes, however, a developer must upgrade a program without
modifying the database. The tax_rates() function shows you how to store
static information in a function.

The prompt_window() Function
29 ➤ The prompt_window() function is another generic function that you can

incorporate into your own programs without changes.

Before calling the prompt_window() function, the program defines the global
ga_dsplymsg array and assigns the text of the prompt to the elements of the
global array.

The prompt_window() function is similar to the message_window() function
described in Example 2. An important difference is that prompt_window()
checks the success of opening the window. This feature is deliberately omit-
ted from the message_window() function so you can compare the two.

Another difference is that the prompt_window() function requires an
additional parameter that is used as the prompt string.

Example 4 89

The tax_rates() Function

FUNCTION tax_rates(state_code)

DEFINE state_code LIKE state.code,

tax_rate DECIMAL(4,2)

28 ➤ CASE state_code[1]

WHEN "A"

CASE state_code

WHEN "AK"

LET tax_rate = 0.0

WHEN "AL"

LET tax_rate = 0.0

WHEN "AR"

LET tax_rate = 0.0

WHEN "AZ"

LET tax_rate = 5.5

END CASE

WHEN "C"

CASE state_code

WHEN "CA"

LET tax_rate = 6.5

WHEN "CO"

LET tax_rate = 3.7

WHEN "CT"

LET tax_rate = 8.0

END CASE

WHEN "D"

LET tax_rate = 0.0 -- * tax rate for "DE"

OTHERWISE

LET tax_rate = 0.0

END CASE

RETURN (tax_rate)

END FUNCTION -- tax_rates --

#######################################

29 ➤ FUNCTION prompt_window(question, x,y)
#######################################

DEFINE question CHAR(48),

x,y SMALLINT,

numrows SMALLINT,

rownum,i SMALLINT,

answer CHAR(1),

See source file.

90 Displaying a Row on a Form

The prompt_window() Function

30 ➤ The yes_ans, invalid_resp, and unopen variables are fl set to control
execution of IF and WHILE statements within the prompt_window() function.
As in the message_window() function, the array_sz variable stores a constant
value so that you can later change the value in one location.

31 ➤ As in the message_window() function, the first FOR loop counts the elements
in the array fi with text in the calling function.

32 ➤ The prompt_window() function uses a WHILE statement to permit a second
attempt to open the w_prompt window if there are errors in the first attempt.
The unopen variable controls execution of the loop.

33 ➤ By default, 4GL terminates if an error occurs. The loop forces continuation
after an attempt to open the w_prompt window by preceding the OPEN

WINDOW statement with the WHENEVER ERROR CONTINUE statement. The
WHENEVER ERROR STOP statement restores the termination behavior.

34 ➤ To determine whether the w_prompt window was opened successfully, the
IF statement tests the built-in status variable. The LET statement assigns the
value of status to a local status variable called local_stat. The local variable
enables the program to test the success of the OPEN WINDOW statement even
if any other 4GL statements along the way reset status.

35 ➤ 4GL sets the status variable to -1138 when a window does not fit on the screen
and to -1144 when a top left corner of a window is off the screen. You could
write code to calculate the window size and positioning, but it is easier to let
4GL perform these calculations for you.

The loop recovers from these problems by setting the top left corner of the
w_prompt window to a coordinate that is guaranteed to fit on the screen. The
maximum width of the window is 52 characters and the maximum length of
the window is 9 lines (the sum of the 5 elements of the array and the 4 lines
required for the window margin and borders). The MESSAGE statement noti-
fi the user that the program is recovering from an internal error.

You might consider replacing this message with to a call to the ERRLOG()

function to make a permanent entry in the error log. For more information
about using error logs, see Example 25.

36 ➤ The first ELSE statement executes when the attempt to open the w_prompt
window fails with a negative error number other than -1138 or -1144. The
MESSAGE statement notifies the user that the prompt_window() function
cannot recover from the error. The EXIT PROGRAM statement terminates the
program.

Example 4 91

The prompt_window() Function

30 ➤ yes_ans SMALLINT,

ny_added SMALLINT,

invalid_resp SMALLINT,

ques_lngth SMALLINT,

unopen SMALLINT,

array_sz SMALLINT,

local_stat SMALLINT

LET array_sz = 5

LET numrows = 4 -- * numrows value:

-- * 1 (for the window header)

-- * 1 (for the window border)

-- * 1 (for the empty line before

-- * the first line of message)

-- * 1 (for the empty line after

-- * the last line of message)

31 ➤ FOR i = 1 TO array_sz

IFga_dsplymsg[i] IS NOT NULL THEN

LET numrows = numrows + 1

END IF

END FOR

32 ➤ LET unopen = TRUE

WHILE unopen

33 ➤ WHENEVER ERROR CONTINUE
OPEN WINDOW w_prompt AT x, y

WITH numrows ROWS, 52 COLUMNS

ATTRIBUTE (BORDER, PROMPT LINE LAST)

WHENEVER ERROR STOP

34 ➤ LET local_stat = status

IF (local_stat < 0) THEN

35 ➤ IF (local_stat = -1138) OR (local_stat = -1144) THEN

MESSAGE "prompt_window() error: changing coordinates to 3,3."

SLEEP 2

LET x = 3

LET y = 3

36 ➤ ELSE

MESSAGE "prompt_window() error: ", local_stat USING "-

<<<<<<<<<<<" SLEEP 2

EXIT PROGRAM

END IF

92 Displaying a Row on a Form

The prompt_window() Function

37 ➤ The second ELSE statement executes when the w_prompt window opens
successfully. The unopen variable is set to FALSE to prevent repetition of the
loop.

38 ➤ As in the message_window() function, the rownum variable controls the
vertical placement of text for the prompt. The FOR loop displays the lines in
the array that have text, and it increments the row number.

39 ➤ If the question string has enough room, the function appends the character
string “(n / y):” to this variable. The built-in LENGTH() function determines
the length of the question parameter. The IF statement checks to make sure
that this length is less than the maximum text line in the window (48 charac-
ters) less the appended “(n / y):” string (6 characters) and an additional space.
If the question string already exceeds a length of 41, the function does not
append the “(n / y):” string.

40 ➤ The first LET statement uses the substring brackets to refer to the last six
character positions in the question variable. The “(n / y):” string is stored in
these positions.

41 ➤ This WHILE loop executes until the user enters an answer that can be con-
verted to a TRUE or FALSE value. The invalid_resp variable is the controlling
variable for the loop.

42 ➤ The PROMPT statement then displays the modified question.

43 ➤ The first IF statement following the PROMPT statement uses the MATCHES

operator to guarantee that the user enters a character that falls within the set
of valid characters: a y or n in either upper- or lowercase. The second IF sets
the yes_ans variable to TRUE for a positive answer.

As in the message_window() function, the init_msgs() function initializes the
global array. The w_prompt window is then closed, and the value of the
yes_ans variable is returned. The function that called prompt_window()
must determine what to do with the user’s response.

Example 4 93

The prompt_window() Function

37 ➤ ELSE

LET unopen = FALSE

END IF

END WHILE

DISPLAY " APPLICATION PROMPT" AT 1, 17

ATTRIBUTE (REVERSE, BLUE)

38 ➤ LET rownum = 3 -- * start text display at third line

FOR i = 1 TO array_sz

IF ga_dsplymsg[i] IS NOT NULL THEN

DISPLAY ga_dsplymsg[i] CLIPPED AT rownum, 2

LET rownum = rownum + 1

END IF

END FOR

LET yes_ans = FALSE

39 ➤ LET ques_lngth = LENGTH(question)

IF ques_lngth <= 41 THEN -- * room enough to add "(n/y)" string

40 ➤ LET question [ques_lngth + 2, ques_lngth + 7] = "(n/y):"

END IF

LET invalid_resp = TRUE

41 ➤ WHILE invalid_resp

42 ➤ PROMPT question CLIPPED, " " FOR answer

43 ➤ IF answer MATCHES "[nNyY]" THEN

LET invalid_resp = FALSE

IF answer MATCHES "[yY]" THEN

LET yes_ans = TRUE

END IF

END IF

END WHILE

CALL init_msgs()

CLOSE WINDOW w_prompt

RETURN (yes_ans)

END FUNCTION -- prompt_window --

To locate any function definition, see the Function Index on page 730.

94 Programming a Query by Example

5
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

 5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 5 95

Programming a Query
by Example

This example executes a query by example using form and dynamic SQL

statements. In query by example, the user enters any information known
about the target rows, creating an example of what the query should retrieve.

Query by example is a user interface technique for querying a database.
Because database applications frequently use query by example, 4GL pro-
vides several statements to make it easy to collect criteria from a user and
construct and run a query.

The following form appears in this example:

This example introduces the following 4GL programming techniques:

• Constructing Boolean criteria from a user entry on a form.

• Preparing SQL statements dynamically at runtime.

• Accessing each row within a qualified set of database rows.

• Enabling the Interrupt key as a signal for abandoning entry on a form.

Constructing Criteria from the User’s Entry

96 Programming a Query by Example

Constructing Criteria from the User’s Entry
In this example, the query_cust1() function performs all of the actions
necessary to build and run a query by example.

The first step in query by example is to display a form. You then activate the
form with the CONSTRUCT statement for entry of the query criteria. The
CONSTRUCT statement differs from the INPUT statement as follows:

• The INPUT statement validates the data entered by the user to ensure that
the value is appropriate for the data type of the field.

The CONSTRUCT statement, by contrast, accepts logical operators in any
fi to indicate ranges, comparisons, sets, and partial matches.

• When the user finishes work with the form, the INPUT statement assigns
the value in each fi to a corresponding variable.

The CONSTRUCT statement, by contrast, fi a single variable with a
character string that describes a Boolean expression. The CONSTRUCT

statement creates the Boolean expression by generating a logical expres-
sion for each field with a value and then applying unions (AND relations)
to the fi statements.

As demonstrated in this example, you can create a valid SELECT statement by
concatenating the constructed Boolean expression to other character values
that state the rest of the SELECT statement. You typically use character con-
stants to state the fixed structure of a SELECT statement, including the source
tables, projected columns, and join conditions. You use the constructed Bool-
ean expression for selection criteria that vary under the control of the user.

You must supply the WHERE keyword to convert the Boolean expression into
a complete WHERE clause. This feature gives you the freedom to take advan-
tage of the CONSTRUCT statement anywhere you can use a Boolean expres-
sion stated as a character value. This feature also gives you the ability to
combine join conditions or program-supplied selection criteria with the con-
structed Boolean expression. You must supply the AND operators when com-
bining the constructed Boolean expression with logical expressions in the
WHERE Clause. Make sure that you supply the spaces required to separate
the constructed Boolean expression from the other parts of the SELECT

statement.

Executing an SQL Query Dynamically

Example 5 97

Executing an SQL Query Dynamically
To convert the character value that represents the SELECT statement into an
executable instruction, you use the PREPARE statement. The PREPARE state-
ment is not limited to the SELECT statement. You can specify most of the SQL

statements dynamically at runtime using this statement.

For statements that simply run with no further interaction with your 4GL

function, you can run the prepared statement with the EXECUTE statement.

For query by example, however, one-time execution often is not sufficient.
You need to access one of the rows qualified by the query and perform an
action on that row before going on to the next.

Accessing Multiple Rows with Cursors
To access the qualified rows at the discretion of your function, you declare a
cursor for the query. Like the screen cursor in an editor that shows you the
current line, the query cursor points to the current row within the set of qual-
ified rows.

You create a cursor using the DECLARE CURSOR statement. The DECLARE

CURSOR statement can operate on a SELECT statement that is stated explicitly
in the code or on one that is prepared dynamically at runtime. After declaring
the cursor, you have two choices for accessing the qualified rows:

• You can use the FOREACH statement to state a loop that retrieves each
row into a set of variables and then executes a block of 4GL code.

• You can use the OPEN statement to start accessing the qualified rows, the
FETCH statement to retrieve rows as needed, and the CLOSE statement to
stop accessing the rows.

You can achieve the same effect as the FOREACH statement using the FETCH

statement at the top of a WHILE loop. That is, FETCH gives you greater control
than FOREACH. However, in many cases, FOREACH is more convenient.

The query_cust1() function uses the OPEN and FETCH statements. For each
retrieved row, query_cust1() executes the DISPLAY BY NAME statement to
show the row on the form. Thus, the sequence of the principal commands in
the query is as follows:

• OPEN FORM

• DISPLAY FORM

• CONSTRUCT

98 Programming a Query by Example

Handling User Interrupts

• PREPARE

• OPEN

• DECLARE CURSOR

• OPEN (cursor)

• FETCH

• DISPLAY BY NAME

• CLOSE (cursor)

• CLOSE FORM

Handling User Interrupts
When 4GL receives the Interrupt signal, it immediately stops executing the
program. This behavior means that when the user uses the Interrupt key
(typically CONTROL-C) the program exits. However, often you want to pro-
vide the user with a means of cancelling an action without exiting the pro-
gram.

For example, suppose the user performs a query by example to select a
customer row and begins to update it. The user then realizes that the wrong
customer row is being updated. Unless you add interrupt handling code to
your program, using the Interrupt key will both cancel the update and exit
the program. What the user needs is a way to cancel the update and to remain
in the program.

To provide such capability, you can use the DEFER INTERRUPT statement to
tell 4GL to change how it handles the Interrupt signal. Once a program exe-
cutes a DEFER INTERRUPT statement, 4GL takes the following actions when it
receives the Interrupt signal:

1. Sets a global variable called int_flag to TRUE.

2. Exits the current user interaction statement (INPUT, CONSTRUCT, INPUT

ARRAY, DISPLAY ARRAY, PROMPT, MENU).

3. Continues program execution.

To determine when the user uses the Interrupt key, the program needs to:

1. Include the DEFER INTERRUPT statement in the main program.

2. Initialize the int_flag to FALSE before user interaction statements.

3. Check the setting of the int_flag after each user interaction statement
exits. If int_flag is TRUE, the program needs to perform whatever action
is appropriate for cancelling the current task.

Example 5 99

Handling User Interrupts

The DEFER statement also supports the QUIT keyword so you can change the
way 4GL responds to the Quit signal. Normally, an application just includes
the DEFER INTERRUPT statement so that the Quit key (typically CONTROL-\)
still exits the application in an emergency.

Because 4GL never resets int_flag to FALSE, your program must reset this
variable before the next user interaction statement executes. Otherwise,
int_flag may have been set to TRUE in some other statement, and the program
will incorrectly assume that the user used Interrupt in the statement just com-
pleted.

You should reset int_flag at either of two points in your programs:

• Immediately before each user interaction statement.

• When you check for int_flag after each user interaction statement and
fi that it is currently TRUE.

This example combines the two methods so that you can see how either
might be implemented. However, you only need to use one method to reset
int_flag. Whichever method you choose, you should be consistent through-
out your application.

If you choose the second approach, you can create a function to automatically
reset int_flag when the program checks its value. The following interrupted()
function demonstrates this approach:

FUNCTION interrupted()

DEFINE local_intflg SMALLINT

LET local_intflg = int_flag -- save current value of

-- global int_flag variable

LET int_flag = FALSE -- reset global int_flag

RETURN local_intflg --* return the original

--* value of int_flag

END FUNCTION -- Interrupted --

To check int_flag, you call the function following each user interaction
statement. For example:

CONSTRUCT BY NAME q_cust ON customer_num

IF interrupted() THEN

. . .

END IF

Function Overview

Example 5 101

Utility Functions
This example also introduces some convenient utility functions that display
a single line without opening a new window. The msg() function corresponds
to the message_window() function from Example 2, and the answer_yes()
function corresponds to the prompt_window() function from Example 4.

Function Overview

Function Name Purpose

query_cust1() Executes a query by example using the f_customer form.

answer_yes() Gets a yes or no answer for a single-line question.

msg() Displays a brief, informative message.

To locate any function definition, see the Function Index on page 730.

Utility Functions

100 Programming a Query by Example

The f_customer Form

102 Programming a Query by Example

The f_customer Form
1➤ As with the f_custkey and f_custsum forms from Example 4, the f_customer

form specifies the database and table in order to base the characteristics of
form fi on corresponding database columns. As described in the rest of
the notes on this page, the fi make use of some special formatting
attributes.

2➤ The NOENTRY attribute prevents update of the customer_num field. 4GL

statements can assign a value to the fi but the user cannot move into the
fi to update the value. As with the customer_num fi which is a serial
field, the NOENTRY attribute is typically used with fields for which your 4GL

program or the database server supplies the value.

4GL ignores the NOENTRY attribute when constructing a query because there
is no need to validate query criteria. Thus, the NOENTRY attribute is irrele-
vant in this example. However, you can also use the f_customer form for data
entry; in that case 4GL will apply the NOENTRY attribute.

3➤ The UPSHIFT attribute automatically translates lowercase letters to uppercase
letters. This attribute is particularly useful in code fi such as the state
fi to ensure consistent values. If some New York customers have a state
code of NY and others a state code of Ny or ny, it is difficult to perform actions
such as joins on the state field.

4GL also supplies a DOWNSHIFT attribute.

4➤ The PICTURE attribute states a punctuation format for a character column.
Note that the punctuation is actually stored in the value. This result contrasts
with the FORMAT clause, which states a punctuation format that is not stored
in the value. The FORMAT clause applies only to date and numeric values.

The f_customer Form

Example 5 103

f_customer form file

1➤
DATABASE stores7

SCREEN

 {

 Customer Number

Address: [f002
:[f000

]
] Company Name :[f001]

 [f003]
City : [f004] State:[f5] Zip Code:[f006]

Contact Name: [f007][f008]

Telephone : [f009]

}

TABLES

customer

ATTRIBUTES

2➤ f000 = customer.customer_num, NOENTRY;
f001 = customer.company;

f002 = customer.address1;

f003 = customer.address2;

f004 = customer.city;

3➤ f5 = customer.state, UPSHIFT;
f006 = customer.zipcode;

f007 = customer.fname;

f008 = customer.lname;

4➤ f009 = customer.phone, PICTURE = "###-###-#### XXXXX";

104 Programming a Query by Example

The GLOBALS Statement and MAIN Function

The GLOBALS Statement and MAIN Function
1➤ The program uses the gr_customer global record to access customer

information. In many applications, multiple functions need to access data
retrieved from a table. A global record corresponding to the table row is one
way to make this data available to many functions.

2➤ The program places prompts and messages on different lines so the two types
of displays will not be confused and so that both can appear at the same time.
They occupy lines 14 and 15, which places them immediately under the
f_customer form.

3➤ The DEFER INTERRUPT statement continues execution of the program after
the user uses the Interrupt key (typically CONTROL-C) rather than terminat-
ing the program. Because the program takes this approach, the user can sig-
nal different intentions with the Interrupt and Accept keys.

Note that the Quit key (typically CONTROL-\) still exits the application in an
emergency. You can trap this key as well with the DEFER QUIT statement.

The DEFER statement must appear in the MAIN function and applies to all
subsequent statements executed in the course of a program.

4➤ The MAIN function opens and displays the f_customer form and then uses
the DISPLAY AT statement to give the form an appropriate title.

The MAIN function then calls the query_cust1() function to perform the
actual query. When the query_cust1() function fi accessing the form,
the MAIN function closes the form and clears the screen for the benefit of the
environment that invoked the program.

Example 5 105

The GLOBALS Statement and MAIN Function

DATABASE stores7

GLOBALS

1➤ DEFINE gr_customer RECORD LIKE customer.*

END GLOBALS

MAIN

2➤ OPTIONS

PROMPT LINE 14,

MESSAGE LINE 15

3➤ DEFER INTERRUPT

4➤ OPEN FORM f_customer FROM "f_customer"

DISPLAY FORM f_customer

DISPLAY "CUSTOMER QUERY BY EXAMPLE" AT 2, 25

CALL query_cust1()

CLOSE FORM f_customer

CLEAR SCREEN

END MAIN

4GL source file

106 Programming a Query by Example

The query_cust1() Function

The query_cust1() Function
5➤ Most of the query_cust1() function resides within a WHILE loop that lets the

user query for and view customers any number of times. Note that this
WHILE loop is an infinite loop because the controlling condition is the con-
stant TRUE (it never evaluates to FALSE). The only way to exit this loop is with
an EXIT WHILE statement, as described later in this section.

This type of infinite loop should only be used when the exit conditions are
limited and the programming required to set a control flag to FALSE is exten-
sive. If this example used a control variable, both the IF statement in Note 9
and the IF in Note 20 would need ELSE clauses setting the control variable to
FALSE and preventing the remaining code from being executed.

6➤ The fi act of the loop is to display appropriate instructions to the user for
entering query criteria.

7➤ The LET statement sets the built-in int_flag variable to FALSE immediately
before the CONSTRUCT statement so that it can be tested when CONSTRUCT

exits. See “Handling User Interrupts” on page 98 for more information about
the int_flag variable.

8➤ The CONSTRUCT statement activates the most recently displayed form (the
f_customer form) so the user can enter selection criteria. The q_cust variable
is a large variable that receives the character representation of the criteria.

The CONSTRUCT statement must know which database column corresponds
to each form field to generate a logical statement for the value entered in the
fi The ON clause specifies the database columns. The BY NAME clause is
a shortcut that maps a form field to a database column based on the name of
the screen variable associated with the fi If the names of the screen vari-
ables and database columns differ, you must specify the mapping explicitly
using the FROM clause instead of the BY NAME clause.

The size of the constructed query value depends on the number of fields fi
 in, the size of the values, and the complexity of the criteria. Filling
in
every field of the f_customer form with its maximum value would supply 140
characters. Because the 10 values must be linked with AND operators, a valid
query requires another 45 characters for a total of 185 characters. The user
could increase this total by using logical operators in the fi Unless the
user fills out an extraordinarily detailed query, the 200-character defined stor-
age of the q_cust variable will be adequate.

Example 5 107

The query_cust1() Function

FUNCTION query_cust1()

DEFINE q_cust CHAR(200),

selstmt CHAR(250),

answer CHAR(1),

found_some SMALLINT,

invalid_resp SMALLINT

5➤ WHILE TRUE

6➤ DISPLAY

" Press Accept to search for customer data, Cancel to exit w/out

searching." AT 15,1 ATTRIBUTE (REVERSE, YELLOW)

7➤ LET int_flag = FALSE

8➤ CONSTRUCT BY NAME q_cust ON customer.customer_num,

customer.company,

customer.address1,

customer.address2,

customer.city,

customer.state,

customer.zipcode,

customer.fname,

customer.lname,

customer.phone

108 Programming a Query by Example

The query_cust1() Function

9➤ The test for the int_flag variable checks whether the user used the Interrupt
key to exit the query by example. If so, the EXIT WHILE statement terminates
the loop and executes the first statement after the END WHILE statement. The
remainder of the query_cust1() function cleans up before returning.

The LET statement resets the int_flag variable to FALSE. This approach is an
alternative to setting int_flag to FALSE before a user interaction statement.
This program shows both approaches, but the latter is safer because it does
not depend on good coding practices elsewhere in the program.

10 ➤ The DISPLAY AT statement removes the direction for entering criteria.

11 ➤ The test for the q_cust variable determines whether the user has entered any
criteria. When the user ends the CONSTRUCT statement without entering cri-
teria, all records are qualified by the query, which might take a long time for
a large table. The program gives the user the opportunity to reconsider and
enter more specific selection criteria.

If the user enters no criteria, CONSTRUCT must generate a logical statement
that is valid as a WHERE clause and yet true for all rows. It produces the string
“ 1 =1” (with a leading space), which the program tests for here.

The answer_yes() function displays its argument in a prompt and returns a
TRUE value if the user enters y, or a FALSE value if the user enters n. Because
answer_yes() returns only a single TRUE or FALSE value, the call can be used
as the Boolean expression evaluated by the inner IF statement. If the user
chooses not to select all rows, the CONTINUE WHILE statement restarts the
loop and thus enters the CONSTRUCT statement again.

12 ➤ The assignment to the selstmt variable includes a character constant that
states the basic structure of a SELECT statement that retrieves all columns
from the customer table. The comma operator concatenates the user’s selec-
tion criteria to complete the WHERE clause.

The CLIPPED operator removes trailing spaces from the value of the q_cust
variable. When you name a character variable, you always get its full defined
length, including trailing spaces. Thus, if the user’s selection criteria occupy
150 positions in q_cust, the evaluation includes 50 extra spaces at the end.
The CLIPPED function removes any trailing spaces.

13 ➤ The PREPARE statement converts the character value into an executable SQL

statement. The st_selcust identifier stands for the prepared SELECT state-
ment. You can execute the SQL statement in any function within the module
that is called after you prepare the statement.

Example 5 109

The query_cust1() Function

9➤ IF int_flag THEN

LET int_flag = FALSE

EXIT WHILE

END IF

--* User hasn't pressed Cancel, clear out selection instructions

10 ➤ DISPLAY

" "

AT 15, 1

--* Check to see if user has entered search criteria

11 ➤ IF q_cust = " 1=1" THEN

IF NOT answer_yes("Do you really want to see all customers? (n/y):")

THEN

CONTINUE WHILE

END IF

END IF

--* Create and prepare the SELECT statement

12 ➤ LET selstmt = "SELECT * FROM customer WHERE ", q_cust CLIPPED

13 ➤ PREPARE st_selcust FROM selstmt

110 Programming a Query by Example

The query_cust1() Function

14 ➤ The cust_query1() function immediately declares the c_cust cursor for the set
of rows that the prepared SELECT statement will qualify.

15 ➤ 4GL opens the c_cust cursor and executes the prepared SELECT statement. At
the time the cursor is opened, 4GL does not know whether the query will
yield zero rows, one row, or many rows. In part, this is because the set of rows
qualified by the query can change even after the cursor is opened.

16 ➤ The found_some variable is a fl defined by the program to indicate
whether the program has a row to display to the user. The assignment
assumes that the query has qualified no rows.

The FETCH statement then tests this assumption by trying to retrieve a row
into the gr_customer global record. After the FETCH statement, the status
variable reflects the success or failure of the statement. For FETCH, status has
a value as follows:

• A negative number if an error occurred. Because the program has not
executed the WHENEVER ERROR CONTINUE statement, an error here will
terminate the program.

• The value of the NOTFOUND built-in constant if no qualified rows exist.

• Zero if a row was retrieved. In this case, the gr_customer record contains
a row to display, and found_some is set to TRUE.

Besides retrieving the first database row, the FETCH statement also advances
the database cursor so that it points to the next database row or, if no follow-
ing row exists, to the end of the set of selected rows.

17 ➤ The inner WHILE loop first displays the row that was previously fetched into
the gr_customer record and then attempts to fetch another row. After the loop
displays the last qualified row, the next fetch fails and the inner loop
terminates.

Note that this loop is different from the outer loop, which repeatedly lets the
user enter query criteria and see the qualified customer rows.

18 ➤ The DISPLAY BY NAME statement displays the values of the member
variables of the gr_customer record in the corresponding fi of the
f_customer form. This statement performs the same action as the DISPLAY TO

statement but provides a shortcut by mapping the program variables to the
form screen variables using their names.

19 ➤ The FETCH NEXT statement retrieves the next qualified row and advances the
database cursor.

Example 5 111

The query_cust1() Function

14 ➤ DECLARE c_cust CURSOR FOR st_selcust

--* Execute the SELECT statement and open the cursor to access the rows

15 ➤ OPEN c_cust

--* Fetch first row. If fetch successful, rows found

16 ➤ LET found_some = 0

FETCH c_cust INTO gr_customer.*

IF(status = 0) THEN

LET found_some = 1

END IF

17 ➤ WHILE (found_some = 1)

--* Display first customer

18 ➤ DISPLAY BY NAME gr_customer.*

--* Fetch next customer (fetch ahead)

19 ➤ FETCH NEXT c_cust INTO gr_customer.*

112 Programming a Query by Example

The query_cust1() Function

20 ➤ If the FETCH statement finds no more qualified rows, the status variable has
the same value as the built-in NOTFOUND constant. In this case, the test ter-
minates the inner WHILE loop because there are no more rows to display.

21 ➤ The call to the answer_yes() function answers two needs. First, the
query_cust1() function suspends execution during the prompt so the user can
view the customer row for as long as the user desires.

Second, the user can skip the remaining qualified rows. The IF statement tests
the value returned by answer_yes() and sets the controlling variable for the
loop, found_some, to a value that terminates the loop.

22 ➤ After the inner viewing loop terminates, the CASE statement examines the
found_some variable to determine the reason for termination. Each case calls
the msg() function to report the cause to the user.

See Note 20 for the assignment of the -1 value, Note 16 for the 0 value, and
Note 21 for the -2 value. The actual fl values are arbitrary. For example,
query_cust1() could have used 1 instead of -1 to indicate that no more rows
exist.

23 ➤ After finishing working with the rows, the query_cust1() function closes the
cursor associated with the query. The next cycle of the outer query loop
prompts the user for new selection criteria and opens a new cursor for the
new query.

24 ➤ The outer query loop terminates when the user chooses to stop querying for
customers. The query_cust1() function cleans up by removing the query
instructions with a DISPLAY AT statement and clearing the values from the
form.

Example 5 113

The query_cust1() Function

20 ➤ IF (status = NOTFOUND) THEN

LET found_some = -1

EXIT WHILE

END IF

--* Ask user if going to view next row

21 ➤ IFNOT answer_yes("Display next customer? (n/y):") THEN

LET found_some = -2

END IF

END WHILE

--* Notify user of various "error" conditions

22 ➤ CASE found_some

WHEN -1

CALL msg("End of selected customers.")

WHEN 0

CALL msg("No customers match search criteria.")

WHEN -2

CALL msg("Display terminated at your request.")

END CASE

23 ➤ CLOSE c_cust

END WHILE

24 ➤ DISPLAY

" "

AT 15,1

CLEAR FORM

END FUNCTION -- query_cust1 --

114 Programming a Query by Example

The msg() Function

The answer_yes() Function
25 ➤ The answer_yes() function uses a WHILE loop to prompt until the user

responds affi or negatively. The invalid_resp variable controls
repetition of the loop.

26 ➤ The PROMPT statement displays the parameter from the call to answer_yes()
as the text of the prompt. By applying the CLIPPED character operator to the
value of the parameter, the statement positions the cursor immediately after
the last character other than a SPACE or TAB. Otherwise, 4GL would supply a
space for each unused position in the question parameter, forcing the cursor
out to the end of the line.

27 ➤ The first IF statement uses the MATCHES logical operator to compare the
user’s entry with the valid response characters. The assignment to the
invalid_resp controlling variable guarantees that the loop terminates before
completing another cycle.

The ans_yes variable stores the return value for the answer_yes() function.
The first assignment to the ans_yes variable assumes that the answer is affir-
mative. The inner IF statement corrects this assumption if the user enters
N or n.

The msg() Function
28 ➤ The msg() function displays a brief informative message, which the program

passes to msg() as a parameter. The first MESSAGE statement displays the
text. After three seconds, the second MESSAGE statement clears the text.

By using the msg() function instead of the three statements, you provide
somewhat more compact code. More importantly, you make it possible to
change how the message is displayed in the future by modifying the msg()
function rather than making changes to every location in which the program
displays a message.

Example 5 115

The answer_yes() Function

FUNCTION answer_yes(question)

DEFINE question CHAR(50),

invalid_resp SMALLINT,

answer CHAR(1),

ans_yes SMALLINT

25 ➤ LET invalid_resp = TRUE

WHILE invalid_resp
26 ➤ PROMPT question CLIPPED FOR answer

27 ➤ IF answer MATCHES "[NnYy]" THEN

LET invalid_resp = FALSE

LET ans_yes = TRUE

IF answer MATCHES "[Nn]" THEN

LET ans_yes = FALSE

END IF

END IF

END WHILE

RETURN ans_yes

END FUNCTION -- answer_yes --

FUNCTION msg(str)

DEFINE str CHAR(78)

28 ➤ MESSAGE str

SLEEP 3

MESSAGE ""

END FUNCTION -- msg --

To locate any function definition, see the Function Index on page 730.

116 Querying and Updating

6
1.Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

 6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 6 117

Querying and Updating
Example 6 lets the user modify or delete rows qualified through a query by
example. Over time the data stored in the database may need to be updated
or deleted. You can present the information on a form to make it easier for the
user to perform these data maintenance tasks. The user can then search for a
set of rows that may require modification, and the program can present one
row at a time to the user for modification.

Example 6 uses one form to collect the query criteria, to display a row, and to
collect changes to the values of the columns in the row.

Example 6 introduces the following 4GL programming techniques:

• Using a single form for multiple interactions.

• Using a menu with a form to manage the user’s interaction with a table.

• Preserving referential integrity in the database.

• Updating and deleting database rows.

Modifying the Rows Qualified by a Query
Like Example 5, this example uses a form to collect selection criteria from the
user, prepares a query from the user’s criteria, and (using a database cursor
to keep track of the current row) displays each row qualified by the query.

Checking for Dependent Rows

118 Querying and Updating

Example 6 goes beyond Example 5 in that the user is not restricted to
passively viewing the retrieved row. After displaying the row, this example
activates a menu.

The user can choose menu options to update the displayed row using the
form, or to delete the displayed row. When finished with the row, the user can
display the next row or stop browsing through the qualified rows.

Checking for Dependent Rows
Before deleting a customer, Example 6 checks the orders and cust_calls tables
and refuses to delete any customer who has an order or call. This check
ensures referential integrity: each reference to a customer in the orders and
cust_calls tables must have a corresponding customer row. You must main-
tain referential integrity in your database to prevent meaningless data.

When the user deletes a customer, Example 6 displays the row for the
previous customer as a mechanism of showing the actual sequence of rows.
That is, the user sees the previous row and then the following row without
the intervening deleted row.

Function Overview

Function Name Purpose

query_cust2() Lets the user create a query by example.

browse_custs() Retrieves each row qualified by the query.

next_action() Operates a menu to let the user perform actions on the
current row.

change_cust() Collects changes to current row.

update_cust() Updates the database row to reflect the changes.

delete_cust() Deletes the current row if it does not have dependent rows in
other tables.

verify_delete() Checks for dependent rows in other tables.

clear_lines() Clears any number of lines starting at any line.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description Example 2.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

Function Overview

Example 6 119

prompt_window() Displays a message and prompts the user for affi or
negation. This function is a variation on the
message_window() function that appears in Example 2.
See the description in Example 4.

msg() Displays a brief, informative message.
See the description in Example 5.

To locate any function definition, see the Function Index on page 730.

120 Querying and Updating

The query_cust2() Function

The GLOBALS Statement and MAIN Function
1➤ The GLOBALS statement defines two global records. The program stores the

current customer row in the gr_customer record and the previous customer
row in the gr_workcust record.

2➤ The OPTIONS statement specifies the help file (not shown) that is used by this
example and positions various screen entities at appropriate locations.

3➤ The DEFER INTERRUPT statement lets the program trap the Interrupt key,
thus giving the user a graceful mechanism for aborting an action and, if nec-
essary, terminating the program under program control.

4➤ The OPEN FORM statement opens the f_customer form, and the DISPLAY

FORM statement makes the form visible to the user. Because the program
does not open any other forms, it can display the f_customer form once at the
start of the MAIN function.

5➤ The query_cust2() function manages construction of a query by example. The
query_cust2() function returns the query in the form of a character value,
which is saved in the st_cust local variable. If the query_cust2() function does
not succeed in constructing a query, it returns null.

6➤ If the st_cust variable stores a query, the MAIN function calls the
browse_custs() function to present each qualified row to the user.

7➤ After the user fi working with the qualified rows, the MAIN function
closes the f_customer form, clears the screen to avoid confusion in other
applications, and terminates.

You could integrate the browsing mechanism demonstrated in Example 6
into a larger application. For example, you could execute the query_cust2()
and browse_custs() function calls within a WHILE loop to let the user browse
through the results of several queries. Or, you could create a menu option on
one of the menus in your program that executes all of the statements between
the OPEN FORM statement and the CLOSE FORM statement.

The query_cust2() Function
8➤ The clear_lines() function clears any existing text on line 4 to avoid confusion

with any previous displays on this line.

9➤ This DISPLAY AT statement provides a title for the f_customer form to
indicate that the form is being activated for query by example.

10 ➤ These DISPLAY AT statements provides a caption for the form with detailed
instructions.

The GLOBALS Statement and MAIN Function

Example 6 121

DATABASE stores7

1➤ GLOBALS
DEFINE gr_customer RECORD LIKE customer.*,

gr_workcust RECORD LIKE customer.*

See Example 2.

END GLOBALS

MAIN

DEFINE st_cust CHAR(150)

2➤ OPTIONS

HELP FILE "hlpmsgs",

FORM LINE 5,

COMMENT LINE 5,

MESSAGE LINE 19

3➤ DEFER INTERRUPT

4➤ OPEN FORM f_customer FROM "f_customer"

DISPLAY FORM f_customer

5➤ CALL query_cust2() RETURNING st_cust

6➤ IF st_cust IS NOT NULL THEN

CALL browse_custs(st_cust)

END IF

7➤ CLOSE FORM f_customer

CLEAR SCREEN

END MAIN

FUNCTION query_cust2()

DEFINE q_cust CHAR(100),
 selstmt CHAR(150)

8➤ CALL clear_lines(1,4)

9➤ DISPLAY "CUSTOMER QUERY-BY-EXAMPLE 2" AT 4, 24

CALL clear_lines(2,16)

10 ➤ DISPLAY " Enter search criteria and press Accept. Press CTRL-W for Help."

AT 16,1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY " Press Cancel to exit w/out searching."

AT 17,1 ATTRIBUTE (REVERSE, YELLOW)

4GL source file

122 Querying and Updating

The query_cust2() Function

11 ➤ The LET statement initializes the built-in int_flag variable to FALSE. It is TRUE

after the CONSTRUCT statement only if the user uses the Interrupt key
(typically CONTRL-C).

12 ➤ The CONSTRUCT statement activates the f_customer form so that the user can
create a query by example. The BY NAME clause maps the fi of the form to
the listed database columns using the names of the screen variables asso-
ciated with each field. The CONSTRUCT statement assigns to the q_cust vari-
able the character value stating the criteria. It also includes a HELP clause to
specify the help message to display when the user presses CONTROL-W from
any fi on the form.

13 ➤ The AFTER CONSTRUCT clause of the CONSTRUCT statement, like the
AFTER INPUT clause of the INPUT statement, executes when the user leaves
the form by using either the Interrupt key or the Accept key. Here the AFTER

CONSTRUCT clause checks for an empty query, which qualifies every row in
the target table and thus might take more time and return more rows than the
user intended.

14 ➤ The IF statement testing the int_flag variable makes sure the user has
terminated construction by using the Accept key. If the user uses the
Interrupt key, the query validation code block is skipped.

15 ➤ The FIELD_TOUCHED() built-in function is called with arguments of all of the
screen variables on the f_customer form. If the user did not enter a value in
any of the screen variables, the FIELD_TOUCHED() function returns FALSE,
and the code block displays a prompt window to let the user indicate
whether to continue or revise the query. The CONTINUE CONSTRUCT state-
ment terminates the AFTER CONSTRUCT code block and reactivates the form
in the CONSTRUCT statement.

16 ➤ If the user did use the Interrupt key, the int_flag variable is TRUE and the
msg() function confirms the interruption for the user. Finally, the assignment
to the selstmt variable sets the return value to prevent execution of the
browse_custs() function.

17 ➤ If the user used the Accept key, this assignment appends the user’s criteria to
the static portion of the SELECT statement.

18 ➤ The query_cust2() function concludes by clearing the title and instruction
spaces and returning the constructed SELECT statement.

19 ➤ The function returns the character string with the WHERE clause conditions
for the user’s search criteria. This return string is limited to 150 characters in
size. If user queries become extremely complex, you may need to increase the
size of the selstmt variable. However, keep in mind that you are limited to
returning a maximum of 512 characters.

Example 6 123

The query_cust2() Function

11 ➤ LET int_flag = FALSE

12 ➤ CONSTRUCT BY NAME q_cust ON customer.customer_num, customer.company,

customer.address1, customer.address2,

customer.city, customer.state,

customer.zipcode, customer.fname,

customer.lname, customer.phone

HELP 30

13 ➤ AFTER CONSTRUCT

14 ➤ IF (NOT int_flag) THEN

15 ➤ IF (NOT FIELD_TOUCHED(customer.*)) THEN

LET ga_dsplymsg[1] = "You did not enter any search criteria."

IF NOT prompt_window("Do you really want to see all rows?", 9,

15) THEN

CONTINUE CONSTRUCT

END IF

END IF

END IF

END CONSTRUCT

16 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL clear_lines(2,16)

CALL msg("Customer query terminated.")

LET selstmt = NULL

17 ➤ ELSE

LET selstmt = "SELECT * FROM customer WHERE ", q_cust CLIPPED

END IF

18 ➤ CALL clear_lines(1,4)

CALL clear_lines(2,16)

19 ➤ RETURN (selstmt)

END FUNCTION -- query_cust2 --

124 Querying and Updating

The browse_custs Function

The browse_custs Function
20 ➤ The MAIN function passes the SELECT statement created by query_cust2() as

the selstmt parameter of the browse_custs() function. The PREPARE state-
ment prepares an executable SQL statement from this character value.

The DECLARE statement associates a database cursor with the prepared
statement because the statement may qualify more than one row.

21 ➤ The LET statement initializes two fl variables that are used to determine
what to report to the user. The fnd_custs variable identifies whether or not
the query has qualified any rows. The end_list variable identifies whether or
not the user has reached the end of the list of qualified rows. The initial
assignments assume that no rows were found and that the last row has not
been displayed.

The gr_workcust global record stores the record previous to the currently
displayed record. The INITIALIZE statement sets the members of this variable
to a null value because the fi record displayed will not have a previous
record.

22 ➤ The FOREACH statement executes the user’s query and opens the c_cust
database cursor for the qualified rows. FOREACH then loops by fetching a
qualified row into the gr_customer global record and executing the code
block between the FOREACH and the END FOREACH statements. When the
loop terminates in any way, FOREACH closes the database cursor.

Within the code block, the fnd_custs flag is set to TRUE. If the query does not
fi any rows, the code block never executes and thus the fnd_custs flag
retains the initial value of FALSE.

The DISPLAY BY NAME statement displays the row that was fetched into the
gr_customer record on the f_customer form. The BY NAME clause maps the
members of gr_customer to the screen variables of the form having the same
names.

23 ➤ The browse_custs() function delegates to the next_action() function the
management of the user’s interaction with the displayed row. It returns
FALSE when the user wants to skip the remaining rows.

24 ➤ The next_action() function returns a TRUE value when the user wants to view
the next row. In this case, the ELSE clause sets the end_list fl to TRUE

because, if no following row is found, the last row would have been reached.
The assignment to the gr_workcust row saves the last row displayed before
the FOREACH statement assigns a new row to gr_customer.

Example 6 125

The browse_custs Function

FUNCTION browse_custs(selstmt)

DEFINE selstmt CHAR(150),

fnd_custs SMALLINT,

end_list SMALLINT

20 ➤ PREPARE st_selcust FROM selstmt

DECLARE c_cust CURSOR FOR st_selcust

21 ➤ LET fnd_custs = FALSE

LET end_list = FALSE

INITIALIZE gr_workcust.* TO NULL

22 ➤ FOREACH c_cust INTO gr_customer.*

LET fnd_custs = TRUE

DISPLAY BY NAME gr_customer.*

23 ➤ IF NOT next_action() THEN

LET end_list = FALSE

EXIT FOREACH

24 ➤ ELSE

LET end_list = TRUE

END IF

LET gr_workcust.* = gr_customer.*

END FOREACH

126 Querying and Updating

The next_action() Function

25 ➤ After the FOREACH loop fi the browse_custs() function displays
messages to confirm the cause of the termination:

• If FOREACH did not fi any rows, the loop never executed and the
fnd_custs fl remains FALSE. The msg() function reports the failure of
the query criteria.

• If FOREACH exited because the last qualified row was displayed, the
end_list fl is TRUE. The msg() function reports this condition.

The browse_custs() function does not display a message if the user chose to
skip the remaining rows.

The next_action() Function
26 ➤ The nxt_action variable stores the return status, which controls whether or

not the browse_custs() function exits or continues the FOREACH loop. The
LET statement sets nxt_action to TRUE because the default action is to con-
tinue the loop.

27 ➤ The DISPLAY statement notifies the user that help is available for the current
menu. It displays this information at the third line of the form so it appears
under the active menu.

28 ➤ The next_action() function opens a menu of user options for responding to
the current displayed row. The Next and Exit options both terminate the
menu. The code block for the Next option leaves the nxt_action variable with
its default value, signaling continuation of the FOREACH loop.

29 ➤ The code block for the Update option calls the change_cust() function to
manage input of the changes. If the change_cust() function returns TRUE, the
user entered the changes successfully. The IF statement then calls the
update_cust() function to apply the changes to the database row.

30 ➤ The NEXT OPTION statement positions the user on the Next option when the
menu reactivates to make this option the default for the user’s next action.
Otherwise, the Update option would remain the current position.

31 ➤ The code block for the Delete option calls the delete_cust() function to
manage deletion of the current displayed row.

Example 6 127

The next_action() Function

25 ➤ CALL clear_lines(2,16)

IF NOT fnd_custs THEN

CALL msg("No customers match search criteria.")

END IF

IF end_list THEN

CALL msg("No more customer rows.")

END IF

CLEAR FORM

END FUNCTION -- browse_custs --

FUNCTION next_action()

DEFINE nxt_action SMALLINT

CALL clear_lines(1,16)

26 ➤ LET nxt_action = TRUE

27 ➤ DISPLAY

"---------------------------------------Press CTRL-W for Help----------

" AT 3, 1

28 ➤ MENU "CUSTOMER MODIFICATION"

COMMAND "Next" "View next selected customer." HELP 20

EXIT MENU

29 ➤ COMMAND "Update" "Update current customer on screen." HELP 21

IF change_cust() THEN

CALL update_cust()

CALL clear_lines(1,16)
END IF

30 ➤ NEXT OPTION "Next"

31 ➤ COMMAND "Delete" "Delete current customer on screen." HELP 22

CALL delete_cust()

128 Querying and Updating

The change_cust() Function

32 ➤ After the deletion, the IF statement checks if the gr_workcust global record
contains values. The test checks the customer_num member variable because
this column should have a value in any row. If gr_workcust is not empty,
more than one row has been selected and the program tries to display the pre-
viously selected row. The gr_workcust record contains the previous dis-
played row, unless the deleted row was the fi selected row. The LET

statement assigns the contents of gr_workcust to gr_customer, and the
DISPLAY BY NAME statement displays the gr_customer.

33 ➤ If the gr_workcust record is empty, only one row was selected. In this case,
the program clears the gr_customer record and sets the nxt_action fl to
FALSE. By setting nxt_action to FALSE, the function tells the calling program
that there are no more rows to display.

34 ➤ Before terminating the menu, the code block for the Exit option sets the
nxt_action variable to FALSE and thus signals the browse_custs() function to
terminate the FOREACH loop.

35 ➤ The RETURN statement returns the value of the nxt_action variable so the
browse_custs() function can act on the user’s decision.

The change_cust() Function
36 ➤ The change_cust() function manages updating of a customer row. The

function starts by executing the DISPLAY AT statements to give the user
appropriate instructions.

37 ➤ The INPUT statement activates the f_customer form so the user can modify
the values in the fi The WITHOUT DEFAULTS clause leaves the current
values (those displayed by the browse_cust() function) in the fi rather
than fi the form with default values. The HELP clause specifies the help
message to display when the user presses CONTROL-W from any field on the
form.

38 ➤ The AFTER FIELD clause makes sure that the company field has a value in the
row. Before the user leaves the field, 4GL assigns the value of the field to the
corresponding program variable, which in this case is the company member
of the gr_customer record. The IF statement tests the program variable rather
than directly testing the fi If the value is null, the ERROR statement noti- fies
the user of the problem and the NEXT FIELD statement positions the user back
in the company fi rather than letting the user move to a new field.

39 ➤ When the user uses the Interrupt key, FALSE is returned to signal the
next_action() function not to apply the changes. Otherwise, TRUE is returned
to affi the changes.

Example 6 129

The change_cust() Function

32 ➤ IF gr_workcust.customer_num IS NOT NULL THEN

LET gr_customer.* = gr_workcust.*

DISPLAY BY NAME gr_customer.*

33 ➤ ELSE

INITIALIZE gr_customer.* TO NULL

LET nxt_action = FALSE

EXIT MENU

END IF

NEXT OPTION "Next"

34 ➤ COMMAND "Exit" "Exit the program." HELP 100

LET nxt_action = FALSE

EXIT MENU

END MENU

35 ➤ RETURN nxt_action

END FUNCTION -- next_action --

FUNCTION change_cust()

36 ➤ CALL clear_lines(2,16)

DISPLAY " Press Accept to save new customer data. Press CTRL-W for

Help." AT 16, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY " Press Cancel to exit w/out saving."

AT 17, 1 ATTRIBUTE (REVERSE, YELLOW)

37 ➤ INPUT BY NAME gr_customer.company, gr_customer.address1,

gr_customer.address2, gr_customer.city,

gr_customer.state, gr_customer.zipcode,

gr_customer.fname, gr_customer.lname, gr_customer.phone

WITHOUT DEFAULTS HELP 40

38 ➤ AFTER FIELD company

IF gr_customer.company IS NULL THEN

ERROR "You must enter a company name. Please try again."

NEXT FIELD company

END IF

END INPUT

39 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL clear_lines(2,16)

RETURN (FALSE)

END IF

RETURN (TRUE)

END FUNCTION -- change_cust --

130 Querying and Updating

The delete_cust() Function

The update_cust() Function
40 ➤ The WHENEVER ERROR CONTINUE statement prevents termination of the

program if the database server is not able to execute the UPDATE statement.

The UPDATE statement sets the values of all columns in the row to the values
of the corresponding program variables. The WHERE clause restricts the
update to the row that has the same value in the key column. If you do not
test the key column in the WHERE clause, the update may apply to multiple
rows.

The WHENEVER ERROR STOP statement resumes termination on errors.

41 ➤ The IF statement tests the value of the built-in status variable. While the
WHENEVER CONTINUE statement is in effect, 4GL sets the status variable to
reflect errors after every SQL statement and 4GL screen statement. Thus, the
status variable is negative if the UPDATE statement failed for some reason.
The ERROR statement notifies the user of the problem.

Changes in the database schema since compilation and other circumstances
can cause SQL statements to fail. For safety, it is a very good idea to adopt the
approach demonstrated here as a general rule. For information on resolving
runtime errors, see “Recovering from Runtime Errors” on page 72.

42 ➤ When the update succeeds, the msg() function notifies the user.

The delete_cust() Function
43 ➤ The program asks the user to confirm that the row is to be discarded. Since a

simple slip of the finger could select this menu choice accidentally, an explicit
confirmation is essential.

44 ➤ The verify_delete() function tests whether the current customer row does not
have dependent rows in other tables.

45 ➤ As with the UPDATE statement, WHENEVER statements bracket the DELETE

statement to prevent termination if there is an SQL error. The WHERE clause
matches the row with the same value in the key column. Because SERIAL val-
ues are guaranteed to be unique, this WHERE clause matches only one cus-
tomer row.

46 ➤ If the DELETE statement generates an error, the status variable contains a
negative error number, and the number is reported to the user.

47 ➤ If the DELETE statement succeeds, the msg() function notifies the user, and
the form is cleared, so it no longer displays the nonexistent row.

Example 6 131

The update_cust() Function

FUNCTION update_cust()

40 ➤ WHENEVER ERROR CONTINUE
UPDATE customer SET customer.* = gr_customer.*

WHERE customer_num = gr_customer.customer_num

WHENEVER ERROR STOP

41 ➤ IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to complete customer update."

RETURN

END IF

42 ➤ CALL msg("Customer has been updated.")

END FUNCTION -- update_cust --

FUNCTION delete_cust()

43 ➤ IF (prompt_window("Are you sure you want to delete this?", 10, 15)) THEN

44 ➤ IF verify_delete() THEN

45 ➤ WHENEVER ERROR CONTINUE
DELETE FROM customer

WHERE customer_num = gr_customer.customer_num

WHENEVER ERROR STOP

46 ➤ IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to complete customer delete."

47 ➤ ELSE

CALL msg("Customer has been deleted.")

CLEAR FORM

END IF

132 Querying and Updating

The verify_delete() Function

48 ➤ When the verify_delete() function fi dependent rows, the
message_window() function is used to report the problem.

The verify_delete() Function
49 ➤ The verify_delete() function fi checks for dependent rows in the orders

table by selecting all orders that have this customer number as a foreign key.
The SQL COUNT(*) aggregate function totals the number of orders, and the
INTO clause places the total in the cust_cnt variable.

The SELECT statement identifies the current customer by checking the value
of customer_num in the gr_customer record. Because gr_customer is global,
any function within the application can access its members. To remove this
dependence on a global variable, you could write the verify_delete() function
so that it accepts the customer_num value as a parameter:

FUNCTION verify_delete(cust_num)

DEFINE cust_num LIKE customer.customer_num,

cust_cnt INTEGER

..

SELECT COUNT(*)

INTO cust_cnt

FROM order

WHERE customer_num = cust_num

..

The call to this version of the verify_delete() function (see Note 44) would be:

IF verify_delete(gr_customer.customer_num) THEN

50 ➤ The function ends, returning FALSE IF the SELECT statement found any
orders to count. The delete_cust() function uses the return value to determine
whether or not to delete the customer row.

51 ➤ The same validating action is applied to check for dependent rows in the
cust_calls table.

52 ➤ If neither SELECT statement finds dependent rows, the function returns TRUE

to authorize the deletion of the customer.

Example 6 133

The verify_delete() Function

48 ➤ ELSE

LET ga_dsplymsg[1] = "Customer ",

gr_customer.customer_num USING "<<<<<<<<<<<",

" has placed orders and cannot be"

LET ga_dsplymsg[2] = " deleted."

CALL message_window(7, 8)

END IF

END IF

END FUNCTION -- delete_cust --

FUNCTION verify_delete()

DEFINE cust_cnt INTEGER

LET cust_cnt = 0

49 ➤ SELECT COUNT(*)

INTO cust_cnt

FROM orders

WHERE customer_num = gr_customer.customer_num

50 ➤ IF (cust_cnt IS NOT NULL) AND (cust_cnt > 0) THEN

RETURN (FALSE)

END IF

LET cust_cnt = 0

51 ➤ SELECT COUNT(*)

INTO cust_cnt

FROM cust_calls

WHERE customer_num = gr_customer.customer_num

IF(cust_cnt > 0) THEN

RETURN (FALSE)

END IF

52 ➤ RETURN (TRUE)

END FUNCTION -- verify_delete --

134 Querying and Updating

The clear_lines() Function

The clear_lines() Function
53 ➤ The clear_lines() function uses a FOR loop to clear a block of lines on the

screen. On each loop, the DISPLAY AT statement clears the line and the LET

statement increments the line number. Thus, when the loop has repeated the
requested number of times, the requested block of lines is cleared.

You can use this utility function in your programs without modification.

Example 6 135

The clear_lines() Function

FUNCTION clear_lines(numlines, mrow)

DEFINE numlines SMALLINT,

mrow SMALLINT,

i SMALLINT

53 ➤ FOR i = 1 TO numlines

DISPLAY

" "

AT mrow,1

LET mrow = mrow + 1

END FOR

END FUNCTION -- clear_lines --

To locate any function definition, see the Function Index on page 730.

136 Validating and Inserting a Row

7
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
 7. Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27. Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 7 137

Validating and Inserting
a Row

This example adds a new row to the database using a form to collect the new
information from the user.

This example introduces the following 4GL programming techniques:

• Initializing and validating values using fi actions.

• Confirming a foreign key by looking up descriptive information from the
foreign table.

Validating Data Entry
A database is only useful if the information it contains is valid. One of the
principal tasks of programming a database application is to make sure that
only valid data is put in the database.

This example uses the BEFORE FIELD and AFTER FIELD clauses of the INPUT

statement to verify the columns of a new stock row as the user is creating the
row. The user receives notification of a problem with the value of a field

Retrieving Information from Multiple Tables

138 Validating and Inserting a Row

before creating the value for a new column. Validating each column as it is
completed is less disruptive than notifying the user of several problems after
the row is completed.

Retrieving Information from Multiple Tables
The purpose of this example is to insert a row into the stock table of the
demonstration database. The stock table contains the manu_code column,
which is a foreign key for the manufact table. That is, the purpose of the
manu_code column is to make it possible to join manufacturer information
with stock information.

As with the manu_code column, keys are usually short codes or numbers.
Users often find key values cryptic and difficult to recognize. For that reason,
this example displays the manu_name corresponding to the manu_code in
the hope that the user will recognize the manufacturer’s name and notice the
error if the user has entered the wrong manufacturer code.

Function Overview

Function Name Purpose

input_stock() Collects a new row from the user.

msg() Displays a brief, informative message.
See the description in Example 5.

unique_stock() Determines if combined stock number and manufacturer
code is unique.

insert_stock() Inserts the row into the database.

To locate any function definition, see the Function Index on page 730.

Function Overview

Example 7 139

140 Validating and Inserting a Row

The f_stock Form

The f_stock Form
1➤ This form uses the stock and manufact tables to define screen fi These tables

must exist in the database specified in the DATABASE section of the form
file.

2➤ The UPSHIFT attribute ensures that lowercase characters entered in the
manufacturer code fi will be shifted to uppercase. To the database, the
upper case code is different from the lowercase code. This attribute prevents
the user from entering both cases of the same code.

3➤ The NOENTRY attribute prevents the cursor from entering the manufacturer
name fi The application code displays the name based on the manufac-
turer code specified by the user.

Example 7 141

The f_stock Form

DATABASE stores7

SCREEN

{

STOCK INFORMATION

Stock Number: [f000] Description: [f001]

Manufacturer Code: [f02] Name: [f003]

PRICING INFORMATION

Unit: [f004] Unit Price: [f005]

}

1➤ TABLES
stock

manufact

ATTRIBUTES

f000 = stock.stock_num;

f001 = stock.description;
2➤ f02 = manufact.manu_code, UPSHIFT;
3➤ f003 = manufact.manu_name, NOENTRY;

f004 = stock.unit, UPSHIFT;

f005 = stock.unit_price;

f_stock form file

142 Validating and Inserting a Row

The MAIN Function

The GLOBALS Statement
1➤ The GLOBALS statement defines the gr_stock record containing a member

variable corresponding to each field on the f_stock form. The definition uses
the LIKE clause to assign a data type to the variable based on the data type of
the stated column at the time of compilation.

The MAIN Function
2➤ The COMMENT clause of the OPTIONS statement sets the display line for

descriptions of the form fi during an INPUT statement.

The DEFER INTERRUPT statement instructs 4GL to set the int_flag built-in
variable rather than terminate when the user uses the Interrupt key (typically
CONTROL-C). This uses the Interrupt key as a mechanism for communicating
with the program.

3➤ The OPEN WINDOW statement opens the w_stock window, sizes the window
to the dimensions of the f_stock form, and displays the form within the
window.

This variation of the OPEN WINDOW statement is a shortcut for opening a
window and opening the form with separate statements. Use it when this is
the only time the form will be displayed in the program.

4➤ The MAIN function calls the input_stock() function to collect a new stock row
from the user. If the user fails to create a valid stock row, input_stock() returns
FALSE, and nothing further is done.

Otherwise, the insert_stock() function adds the new row to the database. The
CLEAR FORM statement removes the row from the form because it is no
longer necessary.

In your own programs, you might turn the IF and END IF statements into
WHILE and END WHILE statements to let the user create any number of rows.
You might also want to use forms to perform all of the basic SQL operations
on a table. See Example 9, which adds the insertion functionality demon-
strated in this program to the other functions demonstrated in Example 6.

5➤ The CLOSE WINDOW statement closes the form as well as the window.

Example 7 143

The GLOBALS Statement

DATABASE stores7

1➤ GLOBALS
DEFINE gr_stock RECORD

stock_num LIKE stock.stock_num,

description LIKE stock.description,

manu_code LIKE manufact.manu_code,

manu_name LIKE manufact.manu_name,

unit LIKE stock.unit,

unit_price LIKE stock.unit_price

END RECORD

END GLOBALS

MAIN

2➤ OPTIONS

COMMENT LINE 7,

MESSAGE LINE LAST

DEFER INTERRUPT

3➤ OPEN WINDOW w_stock AT 5, 3

WITH FORM "f_stock"

ATTRIBUTE (BORDER)

DISPLAY "ADD STOCK ITEM" AT 2, 25

4➤ IF input_stock() THEN

CALL insert_stock()

CLEAR FORM

END IF

5➤ CLOSE WINDOW w_stock

CLEAR SCREEN

END MAIN

4GL source file

144 Validating and Inserting a Row

The input_stock() Function

The input_stock() Function
6➤ The DISPLAY AT statement displays instructions for filling in the form with a

new row. Other functions using the form can display other instructions.

7➤ The INPUT statement activates the form for data entry. The BY NAME clause
assigns the values of fi to program variables based on the correspon-
dence between the name of a program variable and the screen variable asso-
ciated with the fi Because the WITHOUT DEFAULTS clause does not
appear, 4GL fi the fi with default values from the syscolval table and
the DEFAULT attribute from the fi specification.

The remainder of the INPUT statement consists of BEFORE FIELD clauses to
initialize fields and AFTER FIELD clauses to validate the value entered by the
user. In part, this strategy works because the sequence of navigation through
the fi is fi If this example used the INPUT WRAP or FIELD ORDER

UNCONSTRAINED settings of the OPTIONS statement, the sequence would
not be known.

8➤ The AFTER FIELD clause for the stock_num fi tests to make sure the user
enters a stock number. If not, the ERROR statement notifies the user of the
problem and the NEXT FIELD statement repositions the user in the stock_num
fi instead of letting the user move to another field.

9➤ The AFTER FIELD clause for the manu_code field first tests to make sure that
the user enters a manufacturer code.

10 ➤ If the user enters a code, the SELECT statement for manu_name attempts to
retrieve the name of the manufacturer that corresponds to the code. If the
query fails to fi a row, 4GL sets the status variable to the value of the
NOTFOUND built-in constant. The ERROR statement notifies the user that the
code does not exist in the database. The invalid input is set to null for safety’s
sake.

11 ➤ If the query does fi a manufacturer for the code, the DISPLAY BY NAME

statement fi the manu_name fi with the name of the manufacturer.

12 ➤ The unique_stock() function determines if the stock number and manufac-
turer code just entered define a unique stock item. This function returns TRUE

if no stock item currently exists with this combination of stock number and
manufacturer code. In this case, the program displays the manufacturer
name on the form and moves the cursor to the next field.

If unique_stock() returns FALSE, the program clears the fields and returns the
cursor to the stock_num fi so the user can redefine the stock item.

Example 7 145

The input_stock() Function

FUNCTION input_stock()

6➤ DISPLAY

" Press Accept to save stock data, Cancel to exit w/out saving."

AT 1, 1 ATTRIBUTE (REVERSE, YELLOW)

7➤ INPUT BY NAME gr_stock.stock_num, gr_stock.description,

gr_stock.manu_code, gr_stock.unit,

gr_stock.unit_price

8➤ AFTER FIELD stock_num

IF gr_stock.stock_num IS NULL THEN

ERROR "You must enter a stock number. Please try again."

NEXT FIELD stock_num

END IF

9➤ AFTER FIELD manu_code

IF gr_stock.manu_code IS NULL THEN

ERROR "You must enter a manufacturer code. Please try again."

NEXT FIELD manu_code

END IF

10 ➤ IF gr_stock.manu_name IS NULL THEN

SELECT manu_name

INTO gr_stock.manu_name

FROM manufact

WHERE manu_code = gr_stock.manu_code

IF (status = NOTFOUND) THEN

ERROR "Unknown manufacturer's code. Please try again."

LET gr_stock.manu_code = NULL

NEXT FIELD manu_code

END IF

11 ➤ DISPLAY BY NAME gr_stock.manu_name

12 ➤ IF unique_stock() THEN

DISPLAY BY NAME gr_stock.manu_code, gr_stock.manu_name

NEXT FIELD unit

ELSE

DISPLAY BY NAME gr_stock.description, gr_stock.manu_code,

gr_stock.manu_name

NEXT FIELD stock_num

END IF

END IF

146 Validating and Inserting a Row

The unique_stock() Function

13 ➤ The BEFORE FIELD clause for the unit field displays instructions for filling in
the field. By using a BEFORE FIELD clause, you can provide different instruc-
tions for the field in different contexts. To provide the same instruction in all
contexts, you can use the COMMENTS clause in the field attributes section in
the form specification file.

14 ➤ The AFTER FIELD clause for the unit fi sets the gr_stock.unit program
variable to a default value if the user has not supplied a value. The DISPLAY

BY NAME statement displays the default value on the form so the user is
aware of the assigned value.

The MESSAGE statement clears the instructions displayed by the BEFORE

FIELD clause. As with the DISPLAY AT statement, if the character expression
to be displayed contains a null value as the fi value, the MESSAGE state-
ment clears the line to the end of the current window or the screen.

15 ➤ The BEFORE FIELD clause for the unit_price field fills the field with 0.00 as the
default price.

16 ➤ The AFTER FIELD clause for the unit_price fi repositions the user in the
fi if the user did not enter a value.

17 ➤ If the user pressed the Interrupt key to cancel insertion of the row, the msg()
function confirms that the row was not inserted.

The RETURN statements return FALSE if the user interrupted the insertion
action and TRUE otherwise.

The unique_stock() Function
18 ➤ The SELECT statement with the COUNT(*) function searches for an existing

stock row with the same values in the stock_num and manu_code columns
because these provide a two-part key for the stock table. That is, type of stock
must have a unique combination of stock number and manufacturer code.

19 ➤ If the query fi a row, the count stored by the stk_cnt variable is greater
than zero. In this case, the ERROR statement notifies the user of the problem,
and the LET statements clear out the fi The function returns FALSE to
indicate that the stock number and manufacturer code are not unique.

Example 7 147

The unique_stock() Function

13 ➤ BEFORE FIELD unit

MESSAGE "Enter a unit or press RETURN for 'EACH'"

14 ➤ AFTER FIELD unit

IFgr_stock.unit IS NULL THEN

LET gr_stock.unit = "EACH"

DISPLAY BY NAME gr_stock.unit

END IF

MESSAGE ""

15 ➤ BEFORE FIELD unit_price

IFgr_stock.unit_price IS NULL THEN

LET gr_stock.unit_price = 0.00

END IF

16 ➤ AFTER FIELD unit_price

IF gr_stock.unit_price IS NULL THEN

ERROR "You must enter a unit price. Please try again."

NEXT FIELD unit_price

END IF

END INPUT

17 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL msg("Stock input terminated.")

RETURN (FALSE)

END IF

RETURN (TRUE)

END FUNCTION -- input_stock --

FUNCTION unique_stock()

DEFINE stk_cnt SMALLINT

18 ➤ SELECT COUNT(*)

INTO stk_cnt

FROM stock

WHERE stock_num = gr_stock.stock_num

AND manu_code = gr_stock.manu_code

19 ➤ IF (stk_cnt > 0) THEN

ERROR "A stock item with stock number ", gr_stock.stock_num,

" and manufacturer code ", gr_stock.manu_code, " exists."

LET gr_stock.stock_num = NULL

LET gr_stock.description = NULL

LET gr_stock.manu_code = NULL

LET gr_stock.manu_name = NULL

RETURN (FALSE)

END IF

148 Validating and Inserting a Row

The insert_stock() Function

20 ➤ If the stock number and manufacturer code are unique, the function returns

TRUE.

The insert_stock() Function
21 ➤ The WHENEVER statements bracketing the INSERT statement prevent

termination of the program for the duration of the INSERT statement. Because
database schema changes or table locks can prevent execution of SQL state-
ments, it is a good idea to use this recovery technique. For a full discussion of
this technique, see Example 4.

The INTO clause specifies the columns of the table. The VALUES clause
generates the values by evaluating the global variables corresponding to
these columns.

22 ➤ The ERROR statement reports a failed insertion. The call to the msg() function
reports a successful insertion.

Example 7 149

The insert_stock() Function

20 ➤ RETURN (TRUE)

END FUNCTION -- unique_stock --

FUNCTION insert_stock()

21 ➤ WHENEVER ERROR CONTINUE
INSERT INTO stock (stock_num, description, manu_code, unit,

unit_price)

VALUES (gr_stock.stock_num, gr_stock.description, gr_stock.manu_code,

gr_stock.unit, gr_stock.unit_price)

WHENEVER ERROR STOP

22 ➤ IF status < 0 THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to save stock item in database."

ELSE

CALL msg("Stock item added to database.")

END IF

END FUNCTION -- insert_stock --

To locate any function definition, see the Function Index on page 730.

150 Displaying a Screen Array in a Popup Window

8
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 8 151

Displaying a Screen Array
in a Popup Window

This example demonstrates how to pop up a window containing an array
form listing the valid values for a fi The user can select a value from the
form, and the program will display the selected value in the fi A popup
array form is one way to display the existing values for a foreign key.

This example builds on Example 7, adding code to support a lookup on the
Manufacturer Code fi from the manufact table. The annotation section
shows differences between the input_stock() function in Example 7 and the
input_stock2() function in this example, and describes the manuf_popup()
function, which has no correlate in Example 7. Both examples use the same
MAIN and insert() functions, so they are omitted from the annotation.

This example introduces the following 4GL programming techniques:

• Filling an array with rows from the database.

• Displaying an array using an array form.

• Using control or function keys to trigger actions on a form.

Displaying Information in an Array Form

152 Displaying a Screen Array in a Popup Window

Displaying Information in an Array Form
An array form displays multiple rows to the user at one time. The advantage
is that the user can view several rows without having to page through the
rows individually. As a result, the user has a better sense of the contents of
the table and can work with the data more conveniently and more efficiently.

The basic technique for implementing a lookup list using an array form is as
follows:

1. Define a program array large enough to store the database rows.

If you cannot anticipate how many rows will be retrieved or if you cannot
reserve enough memory for all of the rows, execute steps 3 through 5 in a
WHILE loop.

2. Open and display the array form in a window.

3. Read the database rows into the program array.

Although you typically populate an array from the database, you can also
populate an array with explicit assignments. For example, you could use
this technique to provide a pulldown menu using an array form.

It is a good idea to read the rows from the database after opening the
window so the user has something new to look at in the interim.

4. Call the built-in SET_COUNT() function to tell 4GL how many rows are
stored in the program array.

5. Execute the DISPLAY ARRAY statement to activate the array form for
viewing the rows in the program array.

6. Call the built-in ARR_CURR() function to find out the row in the program
array that corresponds to the current screen array row at the time the user
exits the DISPLAY ARRAY statement.

7. Close the array form and window.

8. Access the values of the row pointed to by the array element.

You can also use an array form to insert, update, and delete the displayed
rows (see Example 10).

Triggering Form Actions with Keys

Example 8 153

Triggering Form Actions with Keys
In much the same way that you can provide an AFTER FIELD code block for
a form fi you can associate a code block with a CONTROL or FUNCTION key
using the ON KEY clause. When the user presses the key while inputting data
or constructing a query on the form, the ON KEY clause executes.

The program uses an ON KEY clause in an INPUT statement to display the
popup window containing the screen array. Unless the ON KEY clause
includes an EXIT statement to terminate the user’s session with the form, the
form reactivates when the ON KEY code block finishes.

Function Overview

Function Name Purpose

input_stock2() Collects a new row from the user.

insert_stock() Inserts the row into the database.
See the description in Example 7.

manuf_popup() Reads all rows from the manufact table, displays the rows to
the user in an array form, and returns the values of the row
on which the user positioned before leaving the form.

msg() Displays a brief, informative message.
See the description in Example 5.

unique_stock() Determines if combined stock number and manufacturer
code is unique.
See the description in Example 7.

To locate any function definition, see the Function Index on page 730.

154 Displaying a Screen Array in a Popup Window

The f_manufsel Form

The f_manufsel Form
1➤ The specification for an array form differs from the specification for a single-

record form in that the same fi tag is applied to multiple fi in the
SCREEN section.

The set of distinct field tags constitutes a record, and the duplicate sets of field
tags are elements of the form’s array. In the f_manufsel form, the f001 and
f002 tags make up a single record, and there are fi elements in the array.

2➤ The ATTRIBUTES section specifies the characteristics for each unique field tag.
Thus, the f_manufsel form specifies the attributes for the f001 and f002 fields
once. The fi have the same attributes in each element of the array.

3➤ In the INSTRUCTIONS section you must group the array and the screen
variables that make up an element in the array as a SCREEN RECORD. The
number 5 appears in brackets after the name of the array because the SCREEN

section has fi positions for elements of the array.

Although you use the SCREEN RECORD keywords to specify the array, it is
typically called a screen array, not a screen record.

Example 8 155

The f_manufsel Form

DATABASE stores7

1➤ SCREEN
{

Code Name

[f001] [f002]

[f001] [f002]

[f001] [f002]

[f001] [f002]

[f001] [f002]

}

TABLES

manufact

2➤ ATTRIBUTES
f001 = manufact.manu_code;

f002 = manufact.manu_name;

INSTRUCTIONS

3➤ SCREEN RECORD sa_manuf[5] (manufact.manu_code THRU manufact.manu_name)

f_manufsel form file

156 Displaying a Screen Array in a Popup Window

The input_stock2() Function

The input_stock2() Function
1➤ The input_stock2() function differs from the input_stock() function in

Example 7 in the following ways:

• A BEFORE FIELD clause for the manu_code field appears in this function.

• The AFTER FIELD clause associated with the manu_code fi differs.

• An ON KEY clause is associated with the manu_code field in this function.

2➤ The BEFORE FIELD clause displays an instruction for filling in the manu_code
field.

3➤ The SELECT statement validates the manu_code by verifying that this code is
defined in the manufact table.

4➤ The input_stock2() function also revises the error message displayed for an
invalid manufacturer code to remind the user about the lookup key.

5➤ The ON KEY clause contains code that is executed when the user presses the
F5 function key or CONTROL-F. When choosing control keys, avoid control
keys that are reserved for editing in 4GL forms. Also, avoid keys that are used
by the operating system. For example, CONTROL-S often stops output to a
terminal, and CONTROL-J generates the newline character.

The block of code associated with the key ends with another clause of the
INPUT statement or an END INPUT statement.

6➤ The IF statement uses the INFIELD() built-in function to verify that the user
pressed the F5 key or CONTROL-F while positioned in the manu_code field. If
not, these keys do not perform an action. If so, the ON KEY clause calls the
manuf_popup() function to get the code and name for a manufacturer, which
are placed in the member variables of the gr_stock record.

To perform different lookup actions in different fields, you can use a series of
INFIELD() functions as the WHEN clauses of a CASE statement. Each WHEN

clause can execute the appropriate lookup action for the field.

7➤ The IF statement tests the manu_code member of the gr_stock record to find
out whether the user selected a manufacturer. If not, the NEXT FIELD state-
ment positions the cursor back in the manu_code fi because a manufac-
turer is still required.

Example 8 157

The input_stock2() Function

1➤ FUNCTION input_stock2()

2➤ BEFORE FIELD manu_code
See input_stock() in Example 7.

MESSAGE "Enter a manufacturer code or press F5 (CTRL-F) for a list."

AFTER FIELD manu_code

IF gr_stock.manu_code IS NULL THEN

ERROR "You must enter a manufacturer code. Please try again."

NEXT FIELD manu_code

END IF

3➤ SELECT manu_name

INTO gr_stock.manu_name

FROM manufact

WHERE manu_code = gr_stock.manu_code

IF (status = NOTFOUND) THEN

4➤ ERROR

"Unknown manufacturer's code. Use F5 (CTRL-F) to see valid

codes." LET gr_stock.manu_code = NULL

NEXT FIELD manu_code

END IF

DISPLAY BY NAME gr_stock.manu_name

MESSAGE ""

END IF

5➤ ON KEY (F5, CONTROL-F)

6➤ IF INFIELD(manu_code) THEN

See input_stock() in Example 7.

CALL manuf_popup() RETURNING gr_stock.manu_code, gr_stock.manu_name

7➤ IF gr_stock.manu_code IS NULL THEN

NEXT FIELD manu_code

ELSE

DISPLAY BY NAME gr_stock.manu_code

END IF

MESSAGE ""

4GL source file

158 Displaying a Screen Array in a Popup Window

The manuf_popup() Function

8➤ The unique_stock() function determines if the stock number and manufac-
turer code just entered define a unique stock item. This function returns TRUE

if no stock item currently exists with this combination of stock number and
manufacturer code. In this case, the program displays the manufacturer
name on the form and moves the cursor to the next field.

If unique_stock() returns FALSE, the program clears out the fields and returns
the cursor to the stock_num fi so the user can redefine the stock item.

The manuf_popup() Function
9➤ The DEFINE statement creates the pa_manuf local array to store the rows

retrieved from the manufact table. Each element in the array consists of a
record with two member variables: manu_code and manu_name.

10 ➤ The LET statement assigns the size of the pa_manuf array to the local variable
array_sz. The function uses the array size to make sure there is enough room
in the program array to store the selected manufact rows.

11 ➤ The manuf_popup() function opens a new window to display the popup list
on top of the f_stock form. The manuf_popup() function displays the form
with appropriate instructions to the user.

12 ➤ Example 5 introduced the use of cursors for dynamically prepared queries.
As in the manuf_popup() function, you can also state the query in the decla-
ration for the cursor. This technique prepares the query during compilation
and thus executes more efficiently.

The query orders the manufacturers by the code sequence so the listing
appears in a natural sequence. Otherwise, the manufacturers would appear
in their physical sequence in the database table.

Example 8 159

The manuf_popup() Function

8➤ IF unique_stock() THEN

DISPLAY BY NAME gr_stock.manu_name

NEXT FIELD unit

ELSE

DISPLAY BY NAME gr_stock.description, gr_stock.manu_code,

gr_stock.manu_name

NEXT FIELD stock_num

END IF

END IF

END INPUT

IF int_flag THEN

LET int_flag = FALSE

CALL msg("Stock input terminated.")

RETURN (FALSE)

END IF

RETURN (TRUE)

END FUNCTION -- input_stock2 --

FUNCTION manuf_popup()

9➤ DEFINE pa_manuf ARRAY[200] OF RECORD

manu_code LIKE manufact.manu_code,

manu_name LIKE manufact.manu_name

END RECORD,

idx SMALLINT,

manuf_cnt SMALLINT,

array_sz SMALLINT,

over_size SMALLINT

10 ➤ LET array_sz = 200 --* match size of pa_manuf array

11 ➤ OPEN WINDOW w_manufpop AT 7, 13

WITH 12 ROWS, 44 COLUMNS

ATTRIBUTE(BORDER, FORM LINE 4)

OPEN FORM f_manufsel FROM "f_manufsel"

DISPLAY FORM f_manufsel

DISPLAY "Move cursor using F3, F4, and arrow keys."

AT 1,2

DISPLAY "Press Accept to select a manufacturer."

AT 2,2

12 ➤ DECLARE c_manufpop CURSOR FOR

SELECT manu_code, manu_name

FROM manufact

ORDER BY manu_code

160 Displaying a Screen Array in a Popup Window

The manuf_popup() Function

13 ➤ The FOREACH statement retrieves all of the rows from the manufact table and
stores them in the pa_manuf array. The manuf_cnt variable stores the num-
ber of the next unoccupied element of the array. Thus, before the FOREACH

loop starts executing, the next unoccupied element is the first element. Each
iteration of the FOREACH loop increments the manuf_cnt variable before
retrieving the next row into the array.

14 ➤ The array was defined with 200 elements. If the manufact table exceeds 200
rows, the manuf_popup() function cannot store the excess rows in pa_manuf.
To prevent the FOREACH loop from failing at runtime, the program compares
the current loop index (manuf_cnt) with the size of the array (array_sz).
If there is no more room in the pa_manuf array, the function sets the
over_size fl to indicate that the program array only contains the fi 200
manufacturers.

See Example 12 for a technique for displaying an unknown number of rows
in a screen array.

15 ➤ The IF statement tests whether the query retrieved a row. If no rows are
returned, the FOREACH loop is not executed and the manuf_cnt variable
keeps its initial value of 1. The call to the msg() function informs the user of
this problem and the assignments to the idx variable and manu_code array
member ensure that the manuf_popup() function returns a null value.

Ordinarily the query should run without a problem and should return all
rows in the manufact table; however, an unforeseen database problem could
prevent the query from retrieving rows.

16 ➤ After the FOREACH loop retrieves rows, the ELSE clause displays the rows to
the user. If the pa_manuf array is full, the program notifies the user that more
manufact rows exist but are not displayed.

17 ➤ The call to the built-in SET_COUNT() function tells 4GL how many rows are
stored in the array. The call subtracts one from manuf_cnt because, when the
FOREACH loop fi the variable stores the number of the element after
the last element that was filled.

18 ➤ The DISPLAY ARRAY statement displays the contents of the pa_manuf array
in the f_manufsel form. Unlike the DISPLAY BY NAME and DISPLAY TO state-
ments for a single-row form, the DISPLAY ARRAY statement activates the
form so the user can scroll rows into the form from the program array and can
position on the appropriate manufacturer row.

The syntax requires a list of screen variables in the TO clause. That is, the
DISPLAY ARRAY statement requires the asterisk after the name of the screen
record.

Example 8 161

The manuf_popup() Function

13 ➤ LET over_size = FALSE

LET manuf_cnt = 1

FOREACH c_manufpop INTO pa_manuf[manuf_cnt].*

LET manuf_cnt = manuf_cnt + 1

14 ➤ IF manuf_cnt > array_sz THEN

LET over_size = TRUE

EXIT FOREACH

END IF

END FOREACH

15 ➤ IF (manuf_cnt = 1) THEN

CALL msg("No manufacturers exist in the database.")

LET idx = 1

LET pa_manuf[idx].manu_code = NULL

ELSE

16 ➤ IF over_size THEN

MESSAGE "Manuf array full: can only display ",

array_sz USING "<<<<<<"

END IF

17 ➤ CALL SET_COUNT(manuf_cnt-1)

LET int_flag = FALSE

18 ➤ DISPLAY ARRAY pa_manuf TO sa_manuf.*

162 Displaying a Screen Array in a Popup Window

The manuf_popup() Function

19 ➤ The built-in ARR_CURR() function returns the number of the array element on
which the user was positioned when the user accepted or interrupted the
form session. The idx variable stores this number so the manuf_popup()
function can return the values stored in this array element.

Note that the array element is different from the user’s current line number
on the array form. To obtain this number, you can execute the built-in
SCR_LINE() function.

20 ➤ The IF statement tests the int_flag built-in variable to determine whether the
user has cancelled the lookup action by pressing the Interrupt key (typically
CONTROL-C). The msg() function confirms that no row was selected, and the
assignment to the manu_code member variable ensures that manuf_popup()
does not return the value of the row the user happened to be on.

21 ➤ The manuf_popup() function finishes up by closing the popup window and
returning the values of the appropriate array element, which are null if the
manufact table did not have any rows or if the user pressed the Interrupt key
to leave the form.

Example 8 163

The manuf_popup() Function

19 ➤ LET idx = ARR_CURR()

20 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL msg("No manufacturer code selected.")

LET pa_manuf[idx].manu_code = NULL

END IF

END IF

21 ➤ CLOSE WINDOW w_manufpop

RETURN pa_manuf[idx].manu_code, pa_manuf[idx].manu_name

END FUNCTION -- manuf_popup --

To locate any function definition, see the Function Index on page 730.

164 Accessing a Table with a Single-Row Form

9
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27. Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 9 165

Accessing a Table with a
Single-Row Form

This example combines the techniques demonstrated in the previous
examples to provide a menu and form interface for all of the standard SQL

operations on a table. The user can insert, query for, view, update, and delete
customer rows. This example also provides a lookup function so the user can
select a customer’s state from a list displayed in a popup window.

This example also introduces a technique for using a single INPUT statement
to collect data for insertion or update. Because much of the field validation is
likely to be the same whether the row is inserted or updated, this technique
can reduce coding and improve maintainability.

Function Overview

166 Accessing a Table with a Single-Row Form

Function Overview

Function Name Purpose

cust_menu1() Operates a menu so the user can choose whether to add new
customers or query for existing customers.

browse_custs1() Retrieves and displays the rows qualified by the query so the
user can act on the rows.

This function differs from browse_custs() in Example 6 only
in that it calls next_action2() rather than next_action().

next_action2() Operates a menu so the user can choose the appropriate
processing for the current row.

This function differs from next_action() in Example 6 only in
that help is not provided for the menu options and the Up-
date option calls the addup_cust() function rather than the
change_cust() function of Example 6.

addupd_cust() Combines insertion and update functions in a single routine
to eliminate duplication of code.

This function resembles the input_stock2() function in
Example 8.

state_popup() Displays a lookup list of the states from the state table so the
user can choose the appropriate state.

This function resembles the manuf_popup() function in
Example 8.

insert_cust() Adds a new row to the customer table.

This function resembles the insert_stock() function in
Example 7.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

bang() Prompts the user for a command and executes the command.
See the description in Example 3.

prompt_window() Displays a message and prompts the user for affi or
negation. This function is a variation on the
message_window() function that appears in Example 2.
See the description in Example 4.

msg() Displays a brief, informative message.
See the description in Example 5.

query_cust2() Lets the user create a query by example.
See the description in Example 6.

update_cust() Updates the database row to reflect the changes.
See the description in Example 6.

delete_cust() Deletes the current row if it does not have dependent rows in
other tables.
See the description in Example 6.

Function Overview

Example 9 167

verify_delete() Checks for dependent rows in other tables.
See the description in Example 6.

clear_lines() Clears any number of lines starting at any line.
See the description in Example 6.

To locate any function definition, see the Function Index on page 730.

168 Accessing a Table with a Single-Row Form

The f_statesel Form

The f_statesel Form
1➤ This form is used as a popup window to display valid state codes and names.

These state codes are stored in the state table.

2➤ The INSTRUCTIONS section defines the sa_state screen array to hold the state
codes and names. To implement this popup window, the program must list
this screen array in the TO clause of the DISPLAY ARRAY statement.

Example 9 169

The f_statesel Form

DATABASE stores7

SCREEN

{

Code State

[f001] [f002]

[f001] [f002]

[f001] [f002]

[f001] [f002]

[f001] [f002]

[f001] [f002]

[f001] [f002]

[f001] [f002]

}

TABLES

state

1➤ ATTRIBUTES
f001 = state.code;

f002 = state.sname;

2➤ INSTRUCTIONS
SCREEN RECORD sa_state[8] (state.code THRU state.sname)

f_statesel form file

170 Accessing a Table with a Single-Row Form

The cust_menu1() Function

The MAIN Function
1➤ The OPTIONS statement assigns appropriate lines to the top of the form, the

comments for fi from the form specification fi and messages. It also
specifies that help messages used in this example come from the hlpmsgs file.

2➤ The DEFER INTERRUPT statement traps the Interrupt key (typically

CONTROL-C).

3➤ The cust_menu1() function executes SQL actions on the customer table. In
your own applications, you might have a menu of tables at this point and call
the appropriate equivalent to the cust_menu1() function for each table.

4➤ The CLEAR SCREEN statement clears the 4GL display from the monitor for the
benefit of whatever program the user returns to after exiting the program.
While Example 9 does not close the w_main window or the f_customer form
explicitly, 4GL closes all open forms, windows, and cursors when terminating
the program.

The cust_menu1() Function
5➤ The Add menu option calls the addupd_cust() function to collect a new

customer row from the user. The A parameter instructs addupd_cust() to
apply insertion validation to the row.

If addupd_cust() succeeds in creating a valid row, the insert_cust() function
inserts the row. To restore the form to its default state, the CLEAR FORM

statement clears the data from the fields and calls clear_lines() to remove the
instructions.

6➤ The Query menu option calls the query_cust2() function to collect query
criteria from the user. The query_cust2() function returns the criteria to the
st_custs variable. If the st_custs variable is null, query_cust2() failed to
con- struct a query. Otherwise, the Query code block calls the
browse_custs1() function to retrieve and process the qualified rows.

7➤ The unnamed menu option provides an expert option for executing an
operating system command. The bang() function manages the construction
of the command.

Example 9 171

The MAIN Function

MAIN

1➤ OPTIONS

HELP FILE "hlpmsgs",

FORM LINE 5,

COMMENT LINE 5,

MESSAGE LINE LAST

2➤ DEFER INTERRUPT

OPEN WINDOW w_main AT 2,3

WITH 18 ROWS, 75 COLUMNS

ATTRIBUTE (BORDER)

OPEN FORM f_customer FROM "f_customer"

DISPLAY FORM f_customer
3➤ CALL cust_menu1()

4➤ CLEAR SCREEN

END MAIN

FUNCTION cust_menu1()

DEFINE st_custs CHAR(150)

See Example 2 and Example 6.

DISPLAY

"--Press CTRL-W for Help----------"

AT 3, 1

MENU "CUSTOMER"

5➤ COMMAND "Add" "Add new customer(s) to the database." HELP 10

IFaddupd_cust("A") THEN

CALL insert_cust()

END IF

CLEAR FORM

CALL clear_lines(2,16)

CALL clear_lines(1,4)

6➤ COMMAND "Query" "Look up customer(s) in the database." HELP 11

CALL query_cust2() RETURNING st_custs

IFst_custs IS NOT NULL THEN

CALL browse_custs1(st_custs)

END IF

CALL clear_lines(1, 4)

7➤ COMMAND KEY ("!")

CALL bang()

4GL source file

172 Accessing a Table with a Single-Row Form

The next_action2() Function

8➤ The Exit menu option lets the user terminate the menu and, thus, the function
and program. For the convenience of the user, the KEY clause specifies many
accelerator keys for this important command.

The browse_custs1() Function
9➤ The browse_custs1() function prepares the query, declares a cursor, and

executes a FOREACH statement to retrieve the qualified rows one at a time.

The browse_custs1() function is almost identical to the browse_custs()
function. (See “The browse_custs Function” on page 124.) The only difference
is that, within the FOREACH statement, the IF statement calls the
next_action2() function rather than the next_action() function to let the user
act on the current row.

The next_action2() Function
10 ➤ The next_action2() function opens a menu to let the user update or delete the

current row. The next_action2() function returns FALSE, exiting the FOREACH

loop in the browse_custs1() function, if the user does not want to see the rest
of the qualified rows. The next_action2() function returns TRUE if the user
wants to view the next row.

The next_action2() function is almost identical to the next_action() function.
(See “The next_action() Function” on page 126.) The only difference is that
the Update menu option collects the changes to the row by calling the generic
addupd_cust() function rather than the change_cust() function from
Example 6. In the call to addupd_cust(), the U parameter triggers validation
specific to updating rather than inserting.

The row is updated only if the return value of addupd_cust() indicates that
the user accepted the modifications.

Example 9 173

The browse_custs1() Function

8➤ COMMAND KEY ("E","X") "Exit" "Exit the program." HELP 100

EXIT MENU

END MENU

END FUNCTION -- cust_menu1 --

9➤ FUNCTION browse_custs1(selstmt)

FOREACH c_cust INTO gr_customer.*

LET fnd_custs = TRUE

DISPLAY BY NAME gr_customer.*

IF NOT next_action2() THEN

LET end_list = FALSE

EXIT FOREACH

ELSE

LET end_list = TRUE

END IF

LET gr_workcust.* = gr_customer.*

END FOREACH

See browse_custs() in Example 6.

END FUNCTION -- browse_custs1 --

10 ➤ FUNCTION next_action2()

See browse_custs() in Example 6.

MENU "CUSTOMER MODIFICATION"

See next_action() in Example 6.

COMMAND "Next" "View next selected customer." HELP 20

EXIT MENU

COMMAND "Update" "Update current customer on screen." HELP 21

IF addupd_cust("U") THEN

CALL update_cust()

END IF

CALL clear_lines(1,16)

NEXT OPTION "Next"

END MENU

RETURN nxt_action

END FUNCTION -- next_action2 --

174 Accessing a Table with a Single-Row Form

The next_action2() Function

See next_action() in Example 6.

Example 9 175

The addupd_cust() Function

The addupd_cust() Function
11 ➤ The addupd_cust() function enhances the technique used in the

input_stock2() function of Example 9 to handle both inserts and updates.

12 ➤ The LET statement regularizes the parameter value by calling the UPSHIFT()

built-in function to put it in uppercase.

13 ➤ The IF statement makes sure that the calling statement has not called
addupd_cust() with a fl value that is outside the A and U values that
addupd_cust() knows. If so, the ERROR statement notifies the user about this
internal problem and the EXIT PROGRAM statement terminates the program.

It would be too dangerous to continue in this unknown state. Defending
against such programming mistakes is a good practice.

14 ➤ If addupd_cust() is called for insertion, the code block for the IF clause
displays an insertion title and initializes the program variables to null.

If there were appropriate default values for a new row, you could assign them
to the program variables individually.

15 ➤ If addupd_cust() is called for update, the code block for the ELSE clause
displays an update title and places a copy of the current values of the row in
the gr_workcust record in case the row must be restored later.

16 ➤ Before executing the INPUT statement, addupd_cust() sets the int_flag built-
in variable to FALSE so that int_flag can be tested later to see if the user used
the Interrupt key (typically CONTROL-C).

The INPUT statement uses the WITHOUT DEFAULTS clause so that the values
of the program variables are assigned to the fi of the form rather than
defaults from the form specification fi or the syscolval system table.

The individual program variable names are listed so that the cursor will visit
the corresponding screen fi in the specified order. If you did not care
about this particular ordering, you could substitute the gr_customer.* nota-
tion for the variable name list.

17 ➤ The BEFORE FIELD clause saves the current company name to avoid
validating it in the AFTER FIELD clause if the user does not change the name
(see Note 19).

18 ➤ The first IF statement of the company AFTER FIELD clause checks whether the
company fi has a value and, if not, repositions the user in the field.

176 Accessing a Table with a Single-Row Form

The addupd_cust() Function

11 ➤ FUNCTION addupd_cust(au_flag)

DEFINE au_flag CHAR(1),

 cust_cnt

state_code

orig_comp

INTEGER,

LIKE customer.state,

LIKE customer.company

12 ➤ LET au_flag = UPSHIFT(au_flag)

13 ➤ IF au_flag <> "A" AND au_flag <> "U" THEN

ERROR "Incorrect argument to addupd_cust()."

EXIT PROGRAM

END IF

CALL clear_lines(1,4)

14 ➤ IF au_flag = "A" THEN

DISPLAY "CUSTOMER ADD" AT 4, 29

INITIALIZE gr_customer.* TO NULL

15 ➤ ELSE --* au_flag = "U"

DISPLAY "CUSTOMER UPDATE" AT 4, 29

--* save current values of customer; if update is terminated, can

--* then redisplay original values.

LET gr_workcust.* = gr_customer.*

END IF

CALL clear_lines(2, 16)

DISPLAY " Press Accept to save new customer data. Press CTRL-W for Help."

AT 16,1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY " Press Cancel to exit w/out saving."

AT 17,1 ATTRIBUTE (REVERSE, YELLOW)

16 ➤ LET int_flag = FALSE

INPUT BY NAME gr_customer.company, gr_customer.address1,

gr_customer.address2, gr_customer.city,

gr_customer.state, gr_customer.zipcode,

gr_customer.fname, gr_customer.lname, gr_customer.phone

WITHOUT DEFAULTS

17 ➤ BEFORE FIELD company

LET orig_comp = gr_customer.company

18 ➤ AFTER FIELD company

IF gr_customer.company IS NULL THEN

ERROR "You must enter a company name. Please re-enter."

NEXT FIELD company

END IF

LET cust_cnt = 0

Example 9 177

The addupd_cust() Function

The company fi is not the key for the customer table and thus is not
required for the integrity of the database. The field is, however, the most sig-
nificant label for the row. That is, the customer data will not be meaningful if
there are customers without company names.

19 ➤ The next IF statement in the company AFTER FIELD clause verifies that the
company name is unique in the database. The clause always performs the test
when inserting a row but only applies the test if the company has changed
when updating the row.

The prompt_window() function notifies the user of a problem and gives the
user a chance to correct it. If the user chooses to change the company name,
the LET statement restores the original value and the NEXT FIELD statement
repositions the user in the field.

Again, duplicate company names are a problem for the meaningfulness of
the customer data rather than for the integrity of the database.

20 ➤ The BEFORE FIELD clause for the state field displays instructions for looking
up states. An ON KEY clause implements the lookup action (see Note 22).

21 ➤ The AFTER FIELD clause for the state field uses a SELECT statement to verify
that the state exists in the database. If not, the ERROR statement informs the
user, and the NEXT FIELD statement repositions the user in the state field.

178 Accessing a Table with a Single-Row Form

The addupd_cust() Function

19 ➤ IF (au_flag = "A")

OR (au_flag = "U" AND orig_comp <> gr_customer.company)

THEN

SELECT COUNT(*)

INTO cust_cnt

FROM customer

WHERE company = gr_customer.company

IF (cust_cnt > 0) THEN

LET ga_dsplymsg[1] = "This company name already exists in the "

LET ga_dsplymsg[2] = " database."

IF NOT prompt_window ("Are you sure you want to add another?", 9, 15)

THEN

LET gr_customer.company = orig_comp

NEXT FIELD company

END IF

END IF

END IF

AFTER FIELD lname

IF(gr_customer.lname IS NULL) AND (gr_customer.fname IS NOT NULL) THEN

ERROR "You must enter a last name with a first name."

NEXT FIELD fname

END IF

20 ➤ BEFORE FIELD state

MESSAGE

"Enter state code or press F5 (CTRL-F) for a list."

21 ➤ AFTER FIELD state

IF gr_customer.state IS NULL THEN

ERROR "You must enter a state code. Please try again."

NEXT FIELD state

END IF

SELECT COUNT(*)

INTO cust_cnt

FROM state

WHERE code = gr_customer.state

IF(cust_cnt = 0) THEN

ERROR

"Unknown state code. Use F5 (CTRL-F) to see valid codes."

LET gr_customer.state = NULL

NEXT FIELD state

END IF

MESSAGE ""

Example 9 179

The addupd_cust() Function

22 ➤ The ON KEY clause executes when the user presses the F5 function key or
CONTROL-F in any fi on the form. The IF statement uses the INFIELD()

built-in function to restrict the lookup action to the state field. In other fields,
the function key has no effect.

The lookup action calls the state_popup() function to display a list of states.
If the user does not select a state, state_popup() returns null, and the inner IF

statement positions the user in the fi Otherwise, state_popup() returns
the selected state, the DISPLAY BY NAME statement displays the value in the
fi and the NEXT FIELD statement positions the user in the zipcode field.
The explicit NEXT FIELD statement skips the validation in the AFTER FIELD

clause for the state field, which is appropriate because the state_popup() can
only return a valid state.

You could use similar AFTER FIELD and ON KEY actions in your own
programs to provide friendly validation for foreign keys. See Example 8 for
a more detailed description of this technique.

23 ➤ The second ON KEY clause defines field-level help for each of the fields of the
f_customer form. Because CONTROL-W is the default Help key (and the
OPTIONS statement does not redefine the Help key), this ON KEY executes
when the user requests help. The section uses the built-in INFIELD() function
to determine which fi the cursor is in and uses the built-in SHOWHELP()

function to specify which help message to display. These help messages must
exist in the help fi specified in the OPTIONS statement (hlpmsgs in this
example). An alternative to fi help is to use the HELP clause of the
INPUT statement to specify a help message for all fi in the INPUT (see
Example 6). The advantage of defining fi help is that you can cus-
tomize the help message that displays for each field.

24 ➤ The IF statement tests the int_flag built-in variable to check whether the user
left the form by pressing the Interrupt key (typically CONTROL-C).

In this case, the inner IF statement checks to see if the action is an update and,
if so, restores the original version of the row that was saved in the
gr_workcust record (see Note 15). The IF statement returns FALSE to avoid
inserting or updating the row in the calling function.

If the user used the Accept key (typically ESCAPE), the addupd_cust()
function returns TRUE to authorize the insertion or update.

180 Accessing a Table with a Single-Row Form

The addupd_cust() Function

22 ➤ ON KEY (CONTROL-F, F5)

IF INFIELD(state) THEN

CALL state_popup() RETURNING state_code

IFstate_code IS NULL THEN

NEXT FIELD state

END IF

LET gr_customer.state = state_code

DISPLAY BY NAME gr_customer.state

MESSAGE ""

NEXT FIELD zipcode

END IF

23 ➤ ON KEY (CONTROL-W)

IFINFIELD(company) THEN

CALL SHOWHELP(50)

END IF

IFINFIELD(address1) OR INFIELD(address2) THEN

CALL SHOWHELP(51)

END IF

IFINFIELD(city) THEN

CALL SHOWHELP(52)

END IF

IFINFIELD(state) THEN

CALL SHOWHELP(53)

END IF

IFINFIELD(zipcode) THEN

CALL SHOWHELP(54)

END IF

IFINFIELD(fname) OR INFIELD(lname) THEN

CALL SHOWHELP(55)

END IF

IFINFIELD(phone) THEN

CALL SHOWHELP(56)

END IF

END INPUT

24 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL clear_lines(2, 16)

IF au_flag = "U" THEN

LET gr_customer.* = gr_workcust.*

DISPLAY BY NAME gr_customer.*

END IF

CALL msg("Customer input terminated.")

RETURN (FALSE)

END IF

RETURN (TRUE)

END FUNCTION -- addupd_cust --

Example 9 181

The state_popup() Function

The state_popup() Function
25 ➤ The state_popup() function uses the same technique as the manuf_popup()

function of Example 8 to display a popup list of values to the user.

26 ➤ The OPEN WINDOW statement displays the w_statepop window on top of
any existing open windows. The function then opens and displays the
f_statesel array form and displays instructions for using the list.

27 ➤ The DECLARE statement declares a cursor for retrieving all rows from the
state table. The ORDER BY clause of the SELECT statement sorts the retrieved
rows alphabetically by state code.

28 ➤ The FOREACH loop retrieves all of the state rows into the pa_state array.

If more than 200 manufacturers exist in the database, the program prevents
the pa_state array from overflowing and sets the over_size fl to TRUE so
that only the fi 200 manufacturers will display.

29 ➤ The IF statement tests the value of the state_cnt variable. If this variable’s
value is 1, the FOREACH statement did not fi any rows and thus did not
loop. The msg() function notifies the user, and the assignments prepare to
return null.

30 ➤ If the FOREACH clause did retrieve rows, the code block for the ELSE

statement checks the over_size variable to determine if all retrieved rows can
fi into the program array. If not, the program notifies the user that only the
fi 60 will display.

182 Accessing a Table with a Single-Row Form

The state_popup() Function

25 ➤ FUNCTION state_popup()

DEFINE pa_state ARRAY[60] OF RECORD

code LIKE state.code,

sname LIKE state.sname

END RECORD,

idx INTEGER,

state_cnt INTEGER,

array_sz SMALLINT,

over_size SMALLINT

LET array_sz = 60 --* match size of pa_state array

26 ➤ OPEN WINDOW w_statepop AT 7, 3

WITH 15 ROWS, 45 COLUMNS

ATTRIBUTE(BORDER, FORM LINE 4)

OPEN FORM f_statesel FROM "f_statesel"

DISPLAY FORM f_statesel

DISPLAY "Move cursor using F3, F4, and arrow keys."

AT 1,2

DISPLAY "Press Accept to select a state."

AT 2,2

27 ➤ DECLARE c_statepop CURSOR FOR

SELECT code, sname

FROM state

ORDER BY code

28 ➤ LET over_size = FALSE

LET state_cnt = 1

FOREACH c_statepop INTO pa_state[state_cnt].*

LET state_cnt = state_cnt + 1

IFstate_cnt > array_sz THEN

LET over_size = TRUE

EXIT FOREACH

END IF

END FOREACH

29 ➤ IF state_cnt = 1 THEN

CALL msg("No states exist in database.")

LET idx = 1

LET pa_state[idx].code = NULL

30 ➤ ELSE

IF over_size THEN

MESSAGE "State array full: can only display ",

array_sz USING "<<<<<<"

END IF

Example 9 183

The insert_cust() Function

31 ➤ As with any array form, the program fi calls the SET_COUNT() built-in
function to specify the number of filled elements in the array. The assignment
resets the int_flag variable so state_popup() can trap the Interrupt key after
the form session.

The call to the ARR_CURR() built-in function returns the number of the array
element corresponding to the user’s current position in the form.

Once the size of the program array has been defined, the DISPLAY ARRAY

statement then activates the f_statesel form so the user can select a state code.

32 ➤ The IF statement tests the int_flag to determine whether the user left the form
by using the Interrupt key. If so, the assignments prepare to return null.

The RETURN statement at the end of state_popup() returns the chosen row or,
if there have been errors or the user interrupted the form, null.

The insert_cust() Function
33 ➤ The insert_cust() function uses the same technique as the insert_stock()

function of Example 7 to insert a row into the database.

33 ➤ The WHENEVER ERROR CONTINUE and WHENEVER ERROR STOP statements

bracket the INSERT statement to suppress termination of the 4GL program if
the INSERT encounters a runtime error. The IF statement tests the built-in sta-
tus variable to see if the insertion succeeded and notifies the user of the prob-
lem if the insertion failed.

Use of this technique for SQL statements lets the program recover gracefully
from the runtime errors that can arise with dynamic entities such as a
database.

35 ➤ Because the customer_num column is a serial column, the database server
generates a unique customer number when inserting a new customer row.
After the insertion, the server places this number in the second element of the
SQLERRD array, which is a member of the built-in SQLCA record. SQLERRD is
the SQL error detail, and SQLCA is the SQL communication area.

The LET statement assigns this unique number to the customer_num member
of the gr_customer record so that the DISPLAY BY NAME statement can show
the number to the user.

36 ➤ The message_window() reports the successful insertion to the user.

184 Accessing a Table with a Single-Row Form

The insert_cust() Function

31 ➤ CALL SET_COUNT(state_cnt - 1)

LET int_flag = FALSE

DISPLAY ARRAY pa_state TO sa_state.*

LET idx = ARR_CURR()

32 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL msg("No state selected.")

LET pa_state[idx].code = NULL

END IF

END IF

CLOSE WINDOW w_statepop

RETURN pa_state[idx].code

END FUNCTION -- state_popup --

33 ➤ FUNCTION insert_cust()

34 ➤ WHENEVER ERROR CONTINUE
INSERT INTO CUSTOMER

VALUES (0, gr_customer.fname, gr_customer.lname,

gr_customer.company, gr_customer.address1,

gr_customer.address2, gr_customer.city,

gr_customer.state, gr_customer.zipcode,

gr_customer.phone)

WHENEVER ERROR STOP

IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<", ": Unable to complete customer insert."

ELSE

35 ➤ LET gr_customer.customer_num = SQLCA.SQLERRD[2]

DISPLAY BY NAME gr_customer.customer_num

36 ➤ LET ga_dsplymsg[1] = "Customer has been entered in the database."

LET ga_dsplymsg[2] = " Number: ",

gr_customer.customer_num USING "<<<<<<<<<<<",

" Name: ", gr_customer.company

CALL message_window(9, 15)

END IF

END FUNCTION -- insert_cust --

To locate any function definition, see the Function Index on page 730.

184 Accessing a Table with a Multi-Row Form

10
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 10 185

Accessing a Table with a
Multi-Row Form

This example demonstrates how to use an array form to edit database rows.
It uses the INPUT ARRAY WITHOUT DEFAULTS statement to initialize the
form with rows fetched from the manufact table. The user can modify or
delete these rows, or add new rows on the form.

The following form appears in this program:

The program does not perform the database operations while the user is
editing. Instead, it keeps track of the operations performed and, after the user
presses the Accept key (typically ESCAPE), processes the inserts, updates,
and deletes.

Modifying Information in an Array Form

186 Accessing a Table with a Multi-Row Form

Modifying Information in an Array Form
An array form displays multiple rows to the user at one time. This type of
form is introduced in Example 8. Example 8 explains how to display multiple
lines on a form using the DISPLAY ARRAY statement.

The INPUT ARRAY statement allows the user to enter multiple lines on an
array form. The statement provides an Insert key (F1 by default) and Delete
key (F2 by default) to add and delete rows in the array. The INPUT ARRAY

statement, like the INPUT statement, supports the WITHOUT DEFAULTS

clause to initialize form fields. You can use INPUT ARRAY WITHOUT

DEFAULTS to initialize the rows of the array with data fetched from the
database. The user can update or delete these rows as well as add new lines
to the array (and to the database).

The basic technique for programming an array form is as follows:

1. Create a form specification that includes a screen array.

2. Define a program array large enough to store the database rows.

3. Open and display the array form in a window.

4. Query the database and store the rows in the program array.

5. Call the built-in SET_COUNT() function to tell 4GL how many rows are
stored in the program array. You must call SET_COUNT() before using the
WITHOUT DEFAULTS clause of INPUT ARRAY.

6. Execute the INPUT ARRAY WITHOUT DEFAULTS statement to activate the
array form for editing the rows in the program array.

7. Call the built-in ARR_CURR(), SCR_CURR(), and ARR_COUNT() functions
in a BEFORE ROW clause to identify the current cursor position in the
screen and program arrays.

8. Use the other clauses of INPUT ARRAY to perform data validation.

Handling Empty Fields
On any fi in a line of the screen array, the user may choose to:

• Move to another fi (with RETURN or TAB)

• Move to another line (with the up or down arrow)

• Exit the screen array (with Accept or Cancel)

In each of these cases, 4GL executes the AFTER FIELD clause (if there is one)
associated with the current fi Because a program can validate a field’s
value in an AFTER FIELD clause, this clause may need to deal with these three

Identifying Keystrokes

Example 10 187

possible user actions. For fields that require data, an AFTER FIELD clause can
check for a null value. If the field is null, the program can notify the user that
a value is required and return the cursor to the field.

If the user tries to move to another fi on the line (by pressing RETURN or
TAB), and a value is required in the current field, a null value is invalid. The
program should prevent the user from continuing to another field.

However, the fi fi of a line is a special case. When the cursor is on the
last line of the array, a null value in the first field is valid if the user is exiting
the screen array (with Accept or Cancel) or moving to another line (with the
arrow keys). For this reason, the AFTER FIELD clause for the fi fi must
perform additional checking when it encounters a null value. This checking
requires the following built-in functions:

• The ARR_CURR() and ARR_COUNT() functions determine whether the
cursor is on the last line of the array.

• The FGL_LASTKEY() and FGL_KEYVAL() functions determine which key
sequence the user used.

Extensive fi validation should ordinarily appear within a separate
function. The AFTER FIELD clause can call the function when it encounters a
null value. In this example, the valid_null() function performs these tasks. It
returns TRUE or FALSE to indicate whether the null field is valid. If the null is
not valid, AFTER FIELD handles the empty field as it would any other field by
returning the cursor to the fi and notifying the user that a value is
required. If the null is valid, it allows the user to leave the fi blank.

Identifying Keystrokes
A program can take different actions, depending on which key the user
presses. In this example, an empty manufacturer code fi is allowed in
some cases and not allowed in others. The program can determine whether
to allow the user to leave the fi empty based on the key the user pressed
to leave the fi See the preceding section “Handling Empty Fields˙’ for
more information about checking empty fields.

To identify keystrokes, 4GL provides two built-in functions:

• FGL_LASTKEY() returns an integer value that identifies the last key
pressed by the user.

• FGL_KEYVAL() returns the integer value for a specified key name.

188 Accessing a Table with a Multi-Row Form

Function Overview

By using the two functions together, the program need not be concerned with
the actual integer representations of the keys. Instead, it can compare the
return values from the two functions to identify a key.

For example, to see if the user has used the Accept key, a program can call
these two functions as follows:

IF FGL_LASTKEY() = FGL_KEYVAL("accept") THEN

. . .

END IF

The IF statement compares the value that represents the last keystroke with
the value that represents the Accept key to see if they are the same. For por-
table code, it is a good idea to avoid using the actual integer representations.

To check if a keystroke is among a list of keys, assign the return value of
FGL_LASTKEY() to a variable and then include the variable in the compari-
sons:

DEFINE last_key SMALLINT

. . .

LET last_key = FGL_LASTKEY()

IF (last_key = FGL_KEYVAL("return")

OR last_key = FGL_KEYVAL("tab")

OR last_key = FGL_KEYVAL("right"))

THEN

. . .

END IF

By assigning the result of FGL_LASTKEY() to a variable, you only have to call
this function once. Because the user’s key does not change during the execu-
tion of the IF statement, there is no reason to call FGL_LASTKEY() each time
you call FGL_KEYVAL().

For more information on using the FGL_LASTKEY() and FGL_KEYVAL()

functions, see the INFORMIX-4GL Reference.

Example 10 189

Identifying Keystrokes

Function Overview

Function Name Purpose

dsply_manuf() Displays the f_manuf form and controls the array editing.

valid_null() Checks to see if the current key stroke is valid when the
manu_code fi is empty.

reshuffle() Reshuffles the ga_mrowid array when an item is added to or
deleted from the ga_manuf program array.

verify_mdel() Verifies that the manufacturer to be deleted does not current-
ly have items in the stock table.

choose_op() Checks the operation fl (op_flag) in the ga_mrowid array
for updates and inserts to perform. Checks the ga_drows
array for deletes to perform.

insert_manuf() Adds a manufact row to the database.

update_manuf() Updates an existing manufact row.

delete_manuf() Deletes an existing manufact row.

verify_rowid() Verifies that the ROWID of the row to be updated or deleted
has not been deleted by another user.

save_rowid() Saves the ROWID and the manufacturer code of the row to be
deleted in the ga_drows array (before this information is
deleted when the ga_mrowid array is reshuffled).

msg() Displays a brief, informative message.
See the description in Example 5.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

prompt_window() Displays a message and prompts the user for confirmation.
This function is a variation on the message_window()
function that appears in Example 2.
See the description in Example 4.

To locate any function definition, see the Function Index on page 730.

190 Accessing a Table with a Multi-Row Form

The f_manuf Form

The f_manuf Form
1➤ The DATABASE section lists the name of the database that the compiler

should check for the tables listed in the TABLES section. This form can work
with any version of the demonstration database.

2➤ The f00, f01 and f02 fields make up a single record (or line) of the array. Five
lines appear in the screen array, so these tags are repeated for each array line.

3➤ The ATTRIBUTES section defines the special features or attributes for each
screen field. In the f_manuf form, all three fields are associated with the man-
ufact table. The f00 field uses the UPSHIFT attribute to shift all letters entered
in this fi to uppercase. This attribute ensures that all manufacturer codes
are stored in the database in uppercase letters.

4➤ The INSTRUCTIONS section defines the screen array for the form. This screen
array has five elements because five lines appear in the SCREEN section. Each
element is a screen record containing the three manufact fields: manu_code,
manu_name, and lead_time.

Remember to define a program array in your 4GL program with elements
that match those of this screen array.

Example 10 191

The f_manuf Form

1➤ DATABASE stores7

SCREEN

{

Manufacturer Manufacturer Lead Time

Code Name (in days)

2➤ [f00] [f01] [f02]

 [f00] [f01] [f02]

 [f00] [f01] [f02]

 [f00] [f01] [f02]

 [f00] [f01] [f02]
}

TABLES

manufact

3➤ ATTRIBUTES
f00 = manufact.manu_code, UPSHIFT;

f01 = manufact.manu_name;

f02 = manufact.lead_time;

4➤ INSTRUCTIONS
SCREEN RECORD sa_manuf[5] (manu_code THRU lead_time)

f_manuf form file

192 Accessing a Table with a Multi-Row Form

The MAIN Function

The DATABASE and GLOBALS Statements
1➤ The program works with any version of the stores7 database. It uses the

manufact table.

2➤ The ga_manuf global array is the program array for the manufacturer rows.
It is initialized with the manufacturer code, name, and lead_time of each
manufact in the database. It corresponds to the sa_manuf screen array
defined in the f_manuf form file.

3➤ The ga_mrowid global array holds the ROWIDs of the manufact rows. Each
element of ga_mrowid corresponds to a line in the ga_manuf program array.
The ROWIDs are used to quickly access a specified manufact row if the user
modifies the row. This array also holds a fl to indicate the operation per-
formed by the user on the associated line of pa_manuf. The possible values
for this fl are:

• NULL—no operation has been performed on the row

• “I”—a new line has been inserted (mrowid is null)

• “U”—the line has been updated

4➤ The ga_drows global array holds the ROWIDs of the lines the user has deleted
on the f_manuf form. The ROWIDs of deleted rows cannot be stored in the
ga_mrowid array because the ga_mrowid array must maintain a one-to-one
correspondence with ga_manuf. Once a line is deleted from the screen array
on the form, 4GL automatically deletes the line from the ga_manuf program
array, and the program deletes the line from ga_mrowid. Thus, the program
stores the ROWID of each to-be-deleted row in ga_drows.

5➤ The g_idx global variable is an index into the ga_drows array. It indicates the
position of the most recent entry. Before 4GL deletes the line from the screen
array, the program fi increments g_idx and then stores the ROWID and
op_flag of the line in ga_drows[g_idx].

The MAIN Function
6➤ This program redefines the Insert and Delete keys to CONTROL-E and

CONTROL-T, respectively. It also displays a message notifying the user of the
control sequences that perform these tasks.

7➤ The DEFER INTERRUPT statement prevents the Cancel key (typically
CONTROL-C) from terminating the program. Instead, using Cancel sets the
global variable int_flag to TRUE (as discussed in Example 5). This fl is
tested after the INPUT statement to see if the user has used Cancel to exit the
menu.

Example 10 193

The DATABASE and GLOBALS Statements

1➤ DATABASE stores7

GLOBALS

2➤ DEFINE ga_manuf ARRAY[50] OF

RECORD

manu_code LIKE manufact.manu_code,

manu_name LIKE manufact.manu_name,

lead_time LIKE manufact.lead_time

END RECORD,

3➤ ga_mrowid ARRAY[50] OF

RECORD

mrowid INTEGER,

op_flag CHAR(1)

END RECORD,

4➤ ga_drows ARRAY[50] OF

RECORD

mrowid INTEGER,

manu_code LIKE manufact.manu_code

END RECORD,

5➤ g_idx SMALLINT

DEFINE ga_dsplymsg ARRAY[5] OF CHAR(48)

END GLOBALS

MAIN

OPTIONS

FORM LINE 4,

MESSAGE LINE LAST,

COMMENT LINE 2,

6➤ INSERT KEY CONTROL-E,

DELETE KEY CONTROL-T

7➤ DEFER INTERRUPT

4GL source file

194 Accessing a Table with a Multi-Row Form

The dsply_manuf() Function

8➤ The dsply_manuf() function controls the display and update of the manufact
rows on the f_manuf form. It returns TRUE if the user uses the Accept key
(typically ESCAPE) to save the rows and FALSE if the user presses the Cancel
key.

9➤ The choose_op() function cycles through the ga_manuf and ga_drows arrays
to determine the operations to perform on the rows. The ga_manuf array con-
tains lines that have been inserted or updated on the form. The ga_drows
contains lines that have been deleted.

The dsply_manuf() Function
10 ➤ The pr_nullman record is a null record for the ga_manuf array. It has the

same fields as a line of the ga_manuf array, but each field has a null value. To
clear a line in ga_manuf, the program assigns pr_nullman to the appropriate
line (see Notes 16 and 20). This technique is more effi than:

• Using the INITIALIZE statement each time the program must clear out
a line.

• Using a LET statement to assign a null value to each member of the record.

INITIALIZE is easier to code than the LET statements because it can set all
members of a record to null in a single statement. However, it is slightly more
CPU-intensive than setting individual member variables with LET. By using
INITIALIZE only once to initialize pr_nullman (see Note 12), and then taking
advantage of the record.* syntax available with LET (see Note 20), the pro-
gram is able to clear a line most efficiently.

11 ➤ The pr_workman record is a work buffer for the ga_manuf array. It has the
same fields as a single line in ga_manuf. This array stores the original values
in a line before the user begins editing. It is used to determine whether the
user has performed an Insert or an Update (see Note 26) and for restoring the
original values to the screen if the user makes a data entry error (see Note 25).

12 ➤ The program initializes the pr_nullman record to null. When the program
needs to clear out a record, it calls the more efficient LET statement (rather
than INITIALIZE) to assign the contents of pr_nullman to the record being
cleared (see Note 16).

13 ➤ The manufacturer form f_manuf displays in a bordered window called
w_manufs. The DISPLAY statements notify the user of available control keys.

14 ➤ The c_manufs cursor defines the information to select from manufact. It
includes the selection of the ROWID for each manufact row so the program
can quickly locate the row when it needs to be updated or deleted.

Example 10 195

The dsply_manuf() Function

8➤ IF dsply_manuf() THEN

9➤ CALL choose_op()

CALL msg("Manufacturer maintenance complete.")

END IF

END MAIN

FUNCTION dsply_manuf()

DEFINE idx SMALLINT,
 curr_pa SMALLINT,

 curr_sa SMALLINT,

 total_pa SMALLINT,

 manuf_cnt SMALLINT,

10 ➤ pr_nullman RECORD

manu_code LIKE manufact.manu_code,

manu_name LIKE manufact.manu_name,

lead_time LIKE manufact.lead_time

END RECORD,

11 ➤ pr_workman RECORD

manu_code LIKE manufact.manu_code,

manu_name LIKE manufact.manu_name,

lead_time LIKE manufact.lead_time

END RECORD

12 ➤ INITIALIZE pr_nullman.* TO NULL

13 ➤ OPEN WINDOW w_manufs AT 4,5

WITH 13 ROWS, 67 COLUMNS

ATTRIBUTE (BORDER)

OPEN FORM f_manuf FROM "f_manuf"

DISPLAY FORM f_manuf

DISPLAY " Press Accept to save manufacturers, Cancel to exit w/out

saving." AT 1, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY " Press CTRL-E to insert a line, CTRL-T to delete a

line." AT 13, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY "MANUFACTURER MAINTENANCE"

AT 3, 15

14 ➤ DECLARE c_manufs CURSOR FOR

SELECT ROWID, manu_code, manu_name, lead_time FROM manufact

ORDER BY manu_code

LET idx = 1

196 Accessing a Table with a Multi-Row Form

The dsply_manuf() Function

15 ➤ The FOREACH statement opens the c_manufs cursor and stores the selected
data in the ga_manuf and ga_mrowid arrays. The ga_manuf array holds the
data to display in the screen array, and the ga_mrowid array holds the
ROWID for each line of the screen array.

16 ➤ If idx is 1, then no rows exist in the manufact table. The function clears out
the fi line of ga_manuf.

17 ➤ The built-in SET_COUNT() function tells the INPUT ARRAY WITHOUT

DEFAULTS statement the size of the program array it will display. This
statement must know how many lines are in the program array so it can
determine how to control the screen array. The SET_COUNT() function
initializes the value that is returned by the built-in ARR_COUNT() function.

18 ➤ The INPUT ARRAY statement controls cursor movement through the
sa_manuf screen array. The WITHOUT DEFAULTS clause tells 4GL to initialize
the screen array with the contents of the ga_manuf program array. This pro-
gram array contains the manufact rows arranged in alphabetical order
(see Note 15).

19 ➤ 4GL executes the BEFORE ROW clause each time the cursor moves to a new
line of the screen array. This clause obtains the current position of the cursor
in the screen array (SCR_LINE()), the current position in the program array
(ARR_CURR()), and the total number of items in the program array
(ARR_COUNT()). By calling these built-in functions in BEFORE ROW, the
respective variables are evaluated each time the cursor moves to a new line
and are available within other clauses of the INPUT ARRAY.

20 ➤ 4GL executes the BEFORE INSERT clause just after the user uses the Insert key
(CONTROL-E in this example) and before 4GL inserts a new line into the
screen and program arrays. This clause initializes the work buffer,
pr_workman, to null so the program can identify the line as an Insert. Lines
that are updated will have non-null values in pr_workman (see Note 26).

Notes 21 to 23 ➤ The BEFORE DELETE clause performs data validation after the user uses the
Delete key (CONTROL-T in this example) and before 4GL deletes the current
line from the screen and program arrays.

21 ➤ The save_rowid() function saves the ROWID and manufacturer code of the
current line in the ga_drows array. This information is used to delete the
appropriate manufact row once the user exits the INPUT ARRAY with Accept.

Example 10 197

The dsply_manuf() Function

15 ➤ FOREACH c_manufs INTO ga_mrowid[idx].mrowid, ga_manuf[idx].*

LET idx = idx + 1

END FOREACH

16 ➤ IF idx = 1 THEN

LET ga_manuf[1].* = pr_nullman.*

END IF

17 ➤ CALL SET_COUNT(idx - 1)

18 ➤ INPUT ARRAY ga_manuf WITHOUT DEFAULTS FROM sa_manuf.*

19 ➤ BEFORE ROW

LET curr_pa = ARR_CURR()

LET curr_sa = SCR_LINE()

LET total_pa = ARR_COUNT()

LET pr_workman.* = ga_manuf[curr_pa].*

20 ➤ BEFORE INSERT

LET pr_workman.* = pr_nullman.*

BEFORE DELETE

21 ➤ CALL save_rowid(ga_mrowid[curr_pa].mrowid,

ga_manuf[curr_pa].manu_code)

198 Accessing a Table with a Multi-Row Form

The dsply_manuf() Function

22 ➤ The reshuffl function deletes the current line from the ga_mrowid array
and moves the successive lines up one line. 4GL has automatically deleted the
line and reshuffl the ga_manuf array because ga_manuf is the program
array. However, the program must delete the line from ga_mrowid if this
array is to remain parallel with the ga_manuf array.

23 ➤ The program assigns the values of the new current line to the work buffer.

24 ➤ 4GL executes this BEFORE FIELD clause just before the cursor stops in the
manu_code screen fi This LET statement stores the current value of the
manu_code fi in the work buffer. After the cursor leaves the fi the
program can compare the original value (in the work buffer) with the value
in the field (in ga_manuf[curr_pa]). If these values are different, the user has
updated the fi value.

The curr_pa variable serves as the index for the program array. This variable
is evaluated in the BEFORE ROW section by ARR_CURR() (see Note 19) and
contains the line of the program array which corresponds to the cursor’s
current position.

Notes 25 to 30 ➤ The AFTER FIELD clause performs data validation after the cursor has left the
manu_code field.

25 ➤ This IF statement determines whether a null value is valid in the manu_code
fi From this fi the user may choose to:

• Move to the next fi in the current line (with RETURN or TAB).

• Move to another line of the array (with the up or down arrow).

• Exit the screen array (with Accept or Cancel).

In the first case, a null field value is invalid because it means that the user is
defining a manufacturer but has not entered a manufacturer code. However,
in either of the other two cases, a null value is valid if the cursor is on the last
line of the array. The program calls the valid_null() to check for these three
cases. The function returns TRUE if a null value is valid and FALSE otherwise.
If the null is invalid, the program notifies the user that a value must be
entered, redisplays the original value (stored in the work buffer), and then
uses the NEXT FIELD statement to move the cursor back to the manu_code
field. NEXT FIELD prevents the user from moving to the next fi without
fi entering a manufacturer code.

For more information about why these three cases must be handled differ-
ently, see the section “Handling Empty Fields” on page 186.

Example 10 199

The dsply_manuf() Function

22 ➤ CALL reshuffle("D")

23 ➤ LET pr_workman.* = ga_manuf[curr_pa].*

24 ➤ BEFORE FIELD manu_code

LET pr_workman.manu_code = ga_manuf[curr_pa].manu_code

AFTER FIELD manu_code

25 ➤ IF(ga_manuf[curr_pa].manu_code IS NULL) THEN

IF NOT valid_null(curr_pa, total_pa) THEN

ERROR "You must enter a manufacturer code. Please try again."

LET ga_manuf[curr_pa].manu_code = pr_workman.manu_code

NEXT FIELD manu_code

END IF

END IF

The dsply_manuf() Function

Example 10 201

26 ➤ If execution reaches this point, the manu_code fi is not empty. The user
has either entered a new manufacturer code as part of an insert or has modi-
fied an existing one as part of an update. To determine which of these opera-
tions the user is performing, the program checks the value of manu_code in
the work buffer. Before an insert, this field of the work buffer is initialized to
null (see Note 20). Before an update, the work buffer is initialized to the exist-
ing value of the manufacturer code (see Note 24).

27 ➤ If the user is performing an insert, the program verifies that the manufacturer
code just entered is unique. The SELECT statement checks the manufact table
for the new manufacturer code. If this code already exists, the program noti-
fi the user and returns the cursor to the manu_code field.

28 ➤ If the new manufacturer code is unique, then the program calls the reshuffle()
function to create a new line in the ga_mrowid array. 4GL has automatically
added a line to ga_manuf because ga_manuf is the program array. However,
this function must add the line to ga_mrowid if this array is to remain parallel
with the ga_manuf array.

Note that the reshuffle() function is called when the cursor is on any but the
last line of the screen array (curr_pa <> total_pa). There is no need to create
an empty slot in ga_mrowid if the user is simply adding a new line to the end
of the array. No existing lines need to be reshuffl to make room for the
empty line.

29 ➤ In the new line of ga_mrowid (see Note 28) the program sets the op_flag field
to “I” to indicate that this line is the result of an insert operation. An insert
will not have a value in the mrowid field because the ROWID is not assigned
until after the new row is added to the manufact table.

30 ➤ If the condition in Note 26 is FALSE, the user is performing an update on the
current line. However, the program does not permit the user to modify the
value of the manu_code fi because this fi is the key of the manufact
table. The program tells the user to delete the incorrect line and add a new
one with the correct manu_code value. It then restores the manu_code to its
original value (contained in the work buffer) and returns the cursor to the
manu_code field.

31 ➤ This BEFORE FIELD clause stores the original value of the manu_name field
in the work buffer.

The dsply_manuf() Function

200 Accessing a Table with a Multi-Row Form

26 ➤ IF (pr_workman.manu_code IS NULL) --* if doing an Insert

AND (ga_manuf[curr_pa].manu_code IS NOT NULL)
THEN

27 ➤ SELECT COUNT(*)

INTO manuf_cnt

FROM manufact

WHERE manu_code = ga_manuf[curr_pa].manu_code

IFmanuf_cnt > 0 THEN

ERROR

"This manufacturer code already exists. Please choose another code."

LET ga_manuf[curr_pa].manu_code = NULL

NEXT FIELD manu_code

ELSE --* no manufs exist with new code

28 ➤ IF curr_pa <> total_pa THEN --* if not at the last position,

CALL reshuffle("I") --* clear a position in the array

END IF

29 ➤ LET ga_mrowid[curr_pa].op_flag = "I" --* mark the line as new

END IF

30 ➤ ELSE --* else doing an Update

IF (ga_manuf[curr_pa].manu_code <> pr_workman.manu_code) THEN

LET ga_dsplymsg[1] = "You cannot modify the manufacturer code."

LET ga_dsplymsg[2] = " "

LET ga_dsplymsg[3] = "To modify this value, delete the incorrect"

LET ga_dsplymsg[4] = " entry and enter a new one with the correct"

LET ga_dsplymsg[5] = " manufacturer code."

CALL message_window(7,7)

LET ga_manuf[curr_pa].manu_code = pr_workman.manu_code

NEXT FIELD manu_code

END IF

END IF

31 ➤ BEFORE FIELD manu_name

LET pr_workman.manu_name = ga_manuf[curr_pa].manu_name

The dsply_manuf() Function

202 Accessing a Table with a Multi-Row Form

Notes 32 to 33 ➤ The AFTER FIELD clause performs data validation after the cursor leaves the
manu_name field.

32 ➤ The IF statement ensures that the user enters a manufacturer name. Because
manu_name is not the first field of the line, this AFTER FIELD need not check
whether a null is valid (see Note 25). It can assume that an empty fi is
always invalid.

33 ➤ If the user has modified the fi the program checks the corresponding
op_flag field in ga_mrowid. If the user is performing an insert, op_flag is “I”
(see Note 29). If op_flag is null, the user is performing an Update and the pro-
gram sets op_flag to “U”.

Notes 34 to 35 ➤ The BEFORE FIELD clause performs data validation before the cursor stops on
the lead_time field.

34 ➤ The program sets an empty lead_time field to zero and stores this value in the
work buffer.

35 ➤ The MESSAGE statement tells the user how to enter the lead time value.

Because this value is stored in the database in an INTERVAL column, the user
must follow a strict format for its data entry. Unless the interval is entered as
a space followed by three digits 4GL displays an error.

Notes 36 to 38 ➤ The AFTER FIELD clause performs data validation after the cursor leaves the
lead_time field.

36 ➤ If the lead time fi is empty, the program displays a zero in the fi This
assignment guarantees that the lead_time fi will have a non-null value
when it is stored in the database.

Note that to display the new lead_time value from within the AFTER FIELD

clause, the program must use the DISPLAY statement. To display the new
value in the BEFORE FIELD clause, the DISPLAY statement is not needed
because 4GL automatically displays the field value after it finishes executing
the BEFORE FIELD.

37 ➤ If the user modified the lead time, the program sets the op_flag field to “U”.
The op_flag is only set if it does not already contain a value (see Note 33).

38 ➤ The MESSAGE statement clears the message line (see Note 35). Because the
message line is defined as the last line of the window, the text had erased the
user message identifying the key sequences for the insert and delete (see
Note 13). The DISPLAY statement redisplays this information in the last line.

39 ➤ If the user uses the Cancel key (typically CONTROL-C) to terminate the INPUT

ARRAY, 4GL sets the int_flag variable to TRUE. This IF resets the flag and noti-
fi the user that the maintenance has been terminated. The dsply_manuf()
function returns FALSE to indicate that the user has used Cancel (see Note 8).

The dsply_manuf() Function

Example 10 203

AFTER FIELD manu_name

32 ➤ IF ga_manuf[curr_pa].manu_name IS NULL THEN

ERROR "You must enter a manufacturer name. Please try again."

NEXT FIELD manu_name

END IF

33 ➤ IF(ga_manuf[curr_pa].manu_name <> pr_workman.manu_name) THEN

IF ga_mrowid[curr_pa].op_flag IS NULL THEN

LET ga_mrowid[curr_pa].op_flag = "U"

END IF

END IF

BEFORE FIELD lead_time

34 ➤ IF ga_manuf[curr_pa].lead_time IS NULL THEN

LET ga_manuf[curr_pa].lead_time = 0 UNITS DAY

END IF

LET pr_workman.lead_time = ga_manuf[curr_pa].lead_time

35 ➤ MESSAGE "Enter the lead_time in the form ’ ###’ (e.g. ’ 001’)."

AFTER FIELD lead_time

36 ➤ IF ga_manuf[curr_pa].lead_time IS NULL THEN

LET ga_manuf[curr_pa].lead_time = 0 UNITS DAY

DISPLAY ga_manuf[curr_pa].lead_time TO sa_manuf[curr_sa].lead_time

END IF

37 ➤ IF(ga_manuf[curr_pa].lead_time <> pr_workman.lead_time) THEN

IF ga_mrowid[curr_pa].op_flag IS NULL THEN

LET ga_mrowid[curr_pa].op_flag = "U"

END IF

END IF

38 ➤ MESSAGE ""

DISPLAY " Press CTRL-E to insert a line, CTRL-T to delete a line."

AT 13, 1 ATTRIBUTE (REVERSE, YELLOW)

END INPUT

39 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL msg("Manufacturer maintenance terminated.")

RETURN (FALSE)

END IF

204 Accessing a Table with a Multi-Row Form

The valid_null() Function

40 ➤ If execution reaches this point, the user has used Accept (typically ESCAPE)
to leave the INPUT ARRAY. The program prompts the user to confirm that
changes made to the manufact rows should be made in the database. If the
user answers Y, the dsply_manuf() function returns TRUE to indicate that exe-
cution should continue. If the user answers N, dsply_manuf() returns FALSE

to indicate that the maintenance has been cancelled (see Note 8).

The valid_null() Function
41 ➤ The valid_null() function returns TRUE or FALSE to identify whether the first

screen field of a line can be null. Two tests determine the validity of the null:

• Which key did the user press to leave the field?

• Is the cursor on the last line of the screen array?

When the cursor is on the last line, the manu_code field can be null if the user
presses the up arrow or the Accept key. However, this field cannot be null if
the user presses RETURN, TAB, or right arrow to move to the next field. If the
cursor is not on the last line, then the manu_code can never be null. The func-
tion displays a message to explain why the null is invalid. If the user presses
up arrow, down arrow, or Accept, then a null manu_code fi is not valid
because it leaves a gap in the array. If the user presses RETURN, then the null
manu_code fi is invalid because it would allow input of a null value.

42 ➤ The FGL_LASTKEY() and FGL_KEYVAL() functions identify the last key
pressed by the user. FGL_LASTKEY() returns an integer representation of the
key. This value is saved in the last_key variable so it can be compared against
several key values. For more information on using these two functions, see
“Identifying Keystrokes” on page 187.

43 ➤ The LET statement uses the Boolean OR operator to assign a Boolean value to
the next_fld value. If the user presses a key that moves to the next field
(RETURN, TAB, or right arrow), next_fld is set to TRUE. Otherwise, next_fld is
set to FALSE.

44 ➤ The cursor is on the last line of the array if the current cursor position
(array_idx) is the size of the screen array (array_size). The array_idx
argument is returned by the ARR_CURR() built-in function and the array_size
argument is returned by the ARR_COUNT() built-in function.

45 ➤ If the cursor is on the last line of the array, then the function checks which key
the user has pressed. If next_fld is TRUE, the user has tried to move to the next
fi in the screen array line. The function returns FALSE to indicate that a
null fi is not valid in this case.

Example 10 205

The valid_null() Function

40 ➤ IF prompt_window("Are you sure you want to save these changes?", 8,11)

THEN

RETURN (TRUE)

ELSE

RETURN (FALSE)

END IF

END FUNCTION -- dsply_manuf --

41 ➤ FUNCTION valid_null(array_idx, array_size)

DEFINE array_idx

array_size
SMALLINT,

SMALLINT,

 next_fld

last_key
SMALLINT,

INTEGER

42 ➤ LET last_key = FGL_LASTKEY()

43 ➤ LET next_fld = (last_key = FGL_KEYVAL("right"))

OR (last_key = FGL_KEYVAL("return"))

OR (last_key = FGL_KEYVAL("tab"))

44 ➤ IF (array_idx >= array_size) THEN --* cursor is on last, empty line

45 ➤ IF next_fld THEN --* AND user moves to next field

RETURN (FALSE)

END IF

206 Accessing a Table with a Multi-Row Form

The reshuffl Function

46 ➤ If the cursor is not on the last line of the array, then the null fi is invalid.

47 ➤ If next_fld is FALSE, the user has pressed either the Accept key or the up
arrow in an attempt to move out of the “empty” line. The function notifies the
user that empty lines cannot exist in the middle of the array and tells the user
to delete the line or fill in the current line. The manu_code field cannot remain
null, so the function returns FALSE.

48 ➤ If execution reaches this point, the cursor is on the last line of the array and
the user has pressed either Accept or up arrow. The function returns TRUE to
indicate that this condition allows a null manu_code field.

The reshuffle() Function
49 ➤ The direction variable holds one of two possible values: “I” indicates an

insert while “D” indicates a delete. This variable controls the direction that
lines are moved within the ga_mrowid array. The clear_it variable contains
the array index of the line to clear when the reshuffl is complete.

50 ➤ The function calls the ARR_CURR() and ARR_COUNT() functions to obtain the
current cursor position (pcurr) and the current number of lines in the array
(ptotal).

51 ➤ If the user is performing an insert, the function needs to move all lines from
the cursor position to the end of the array down one line to make room for an
empty line in ga_mrowid.

52 ➤ The FOR statement starts with the last line in ga_mrowid, moving data down
one line at a time until it reaches the current cursor position. The STEP clause
defines the increment by which the counter variable (i in this case) is changed
each time the FOR loop iterates. With no STEP clause, the FOR loop increments
the counter variable by one. The STEP -1 clause tells the FOR to decrement the
counting variable, i, by one for each iteration.

53 ➤ The clear_it variable is set to the current cursor position. This line still
contains values and needs to be cleared before the new manufact row can be
stored. The line is cleared by the code described in Note 56.

54 ➤ If the user is performing a delete, the function needs to move all lines from
the current cursor position to the end of the array up one line to remove the
line associated with the line to be deleted. The FOR statement starts with the
line after of the current cursor position, moving the data up by one line until
it reaches the last line of ga_mrowid.

The STEP clause is not required because incrementing the counting variable
by one is the default behavior of FOR.

Example 10 207

The reshuffl Function

46 ➤ ELSE --* cursor is on an empty line

--* within the array

47 ➤

IF NOT next_fld THEN

--*

user presses key that

 --* does NOT move to next field
LET ga_dsplymsg[1] = "You cannot leave an empty line in the middle "

LET ga_dsplymsg[2] = " of the array. To continue, either: "

LET ga_dsplymsg[3] = " - enter a manufacturer in the line"

LET ga_dsplymsg[4] = " - delete the empty line "

CALL message_window(7, 12)

END IF

RETURN (FALSE)

END IF

48 ➤ RETURN (TRUE)

END FUNCTION -- valid_null --

FUNCTION reshuffle(direction)

49 ➤ DEFINE direction CHAR(1),

pcurr, ptotal, i SMALLINT,

clear_it SMALLINT

50 ➤ LET pcurr = ARR_CURR()

LET ptotal = ARR_COUNT()

51 ➤ IF direction = "I" THEN --* reshuffle to create an open

--* position in the array

52 ➤ FOR i = ptotal TO pcurr STEP -1

LET ga_mrowid[i + 1].* = ga_mrowid[i].*

END FOR

53 ➤ LET clear_it = pcurr

END IF

54 ➤ IF direction = "D" THEN --* reshuffle to get rid of the

--* open position in the array

IFpcurr < ptotal THEN FOR

i = pcurr TO ptotal

LET ga_mrowid[i].* = ga_mrowid[i + 1].*

END FOR

END IF

208 Accessing a Table with a Multi-Row Form

The verify_mdel() Function

This FOR loop is only executed if the user is not deleting the last line of the
array. To delete the last line, the program need not shuffl the lines of
ga_mrowid. The program just removes the deleted line (see Note 56).

55 ➤ The clear_it variable is set to the last line of the array. After reshuffl has
moved up all lines of ga_mrowid, the program needs to clear only the last
line. The line is cleared by the code described in Note 56.

56 ➤ These LET statements clear the clear_it line of ga_mrowid.

The verify_mdel() Function
57 ➤ The nested SELECT statement determines if the manufacturer about to be

deleted has any stock items currently defined in the database. It performs this
verification in the following steps:

1. Obtain the ROWID of the row to be deleted from the ga_drows array at the
index location specified by array_idx.

2. Use this ROWID as a WHERE condition for the subquery to fi the
manufacturer code for the row to be deleted.

3. Use the manufacturer code returned by the subquery as a WHERE

condition for the outer SELECT to count the number of rows in the stock
table that have this manufacturer code.

4. Store the result of the query in the stock_cnt variable.

58 ➤ If stock items exist, the program notifies the user that the program cannot
delete the associated manufacturer. The data in the stock table would be
inconsistent if this manufact row was deleted, so the verify_mdel() function
returns FALSE.

59 ➤ If no stock items for this manufacturer exist, verify_mdel() returns TRUE to
indicate that the manufact row can be deleted without leaving inconsistent
data.

Example 10 209

The verify_mdel() Function

55 ➤ LET clear_it = ptotal

END IF

56 ➤ LET ga_mrowid[clear_it].mrowid = 0

LET ga_mrowid[clear_it].op_flag = NULL

END FUNCTION -- reshuffle --

FUNCTION verify_mdel(array_idx)

DEFINE array_idx SMALLINT,

stock_cnt SMALLINT

57 ➤ SELECT COUNT(*)

INTO stock_cnt

FROM stock

WHERE manu_code = (SELECT manu_code

FROM manufact

WHERE ROWID = ga_drows[array_idx].mrowid)

58 ➤ IF stock_cnt > 0 THEN

LET ga_dsplymsg[1] = "Inventory currently has stock items made"

LET ga_dsplymsg[2] = " by manufacturer ", ga_drows[array_idx].manu_code

LET ga_dsplymsg[3] = "Cannot delete manufacturer while stock items"

LET ga_dsplymsg[4] = " exist."

CALL message_window(6,9)

RETURN (FALSE)

END IF

59 ➤ RETURN (TRUE)

END FUNCTION -- verify_mdel --

210 Accessing a Table with a Multi-Row Form

The insert_manuf() Function

The choose_op() Function
60 ➤ The FOR statement moves through the ga_mrowid array, checking the

op_flag fi in each line. This fi indicates what operation to perform on
the row identified by the associated mrowid fi If op_flag is null, no
operation is performed because the user has neither modified nor added data
at this position.

61 ➤ If the op_flag is “I”, the user has added the line. The program calls the
insert_manuf() function to insert a new manufact row. The data for this new
row is stored at the same index location in the ga_manuf array.

62 ➤ If the op_flag is “U”, the user has updated the line. The program calls
update_manuf() to update the row identified by the ROWID in
ga_mrowid[idx] with the data in ga_manuf[idx].

63 ➤ This FOR statement moves through the ga_drows array. Each line of this
array contains the ROWID and manufacturer code of a row to be deleted. The
program calls the delete_manuf() function to delete the row indicated by
ga_drows[idx].

The insert_manuf() Function
64 ➤ The WHENEVER ERROR statements surround INSERT to prevent automatic

error checking. The function does its own error checking to test the success of
the insert (see Note 66).

65 ➤ The INSERT statement adds a new manufact row to the database. To access
the new row’s values, it uses the array_idx variable to index into the
ga_manuf array.

66 ➤ If the insert is not successful, the function displays an error message
containing the error code and the manufacturer code that was not inserted.
The error code identifies the cause of the failure, and the manufacturer code
identifies which manufacturer failed. It is useful to identify which row was
not added because all inserts are performed after the user uses the Accept key
(typically ESCAPE). If the program cannot add one of the manufacturers, the
user needs to know which one failed.

If the insert is successful, the function displays a window notifying the user
of the row that has been added.

The choose_op() Function

Example 10 211

FUNCTION choose_op()

DEFINE idx SMALLINT

60 ➤ FOR idx = 1 TO ARR_COUNT()

CASE ga_mrowid[idx].op_flag

61 ➤ WHEN "I"

CALL insert_manuf(idx)

62 ➤ WHEN "U"

CALL update_manuf(idx)

END CASE

END FOR

63 ➤ FOR idx = 1 TO g_idx

CALL delete_manuf(idx)

END FOR

END FUNCTION -- choose_op --

FUNCTION insert_manuf(array_idx)

DEFINE array_idx SMALLINT

64 ➤ WHENEVER ERROR CONTINUE
65 ➤ INSERT INTO manufact (manu_code, manu_name, lead_time)

VALUES (ga_manuf[array_idx].manu_code,

ga_manuf[array_idx].manu_name,

ga_manuf[array_idx].lead_time)

WHENEVER ERROR STOP

66 ➤ IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to complete manufact insert of ",

ga_manuf[array_idx].manu_code

ELSE

LET ga_dsplymsg[1] = "Manufacturer ",

ga_manuf[array_idx].manu_code, " has been inserted."

CALL message_window(6,6)

END IF

END FUNCTION -- insert_manuf --

212 Accessing a Table with a Multi-Row Form

The delete_manuf() Function

The update_manuf() Function
67 ➤ The program obtains the ROWID for the current row from the ga_mrowid

array and the current row’s manu_code value from the ga_manuf array.
These values are needed as arguments to the verify_rowid() function.

68 ➤ The verify_rowid() function makes sure that the ROWID of the row about to
be updated still correctly identifies the row selected for update. Even though
a ROWID uniquely identifies a row, the ROWIDs in the ga_drows array were
selected from the database at the beginning of the program. In the interven-
ing period, another user may have updated or deleted this row, and the
database server may have reassigned this ROWID to a new row.

In any of these cases, this ROWID no longer contains the desired
manufacturer information. This check prevents the UPDATE statement
(see Note 69) from updating the wrong manufact row.

69 ➤ The UPDATE statement updates the row identified by the ROWID in
ga_mrowid[array_idx]. This row is updated with the values in
ga_manuf[array_idx].

The delete_manuf() Function
70 ➤ The verify_mdel() function verifies that the row about to be deleted does not

have stock items currently defined in the stock table. If stock items exist,
verify_mdel() returns FALSE and the delete_manuf() function does not delete
the row.

71 ➤ The verify_rowid() function makes sure that the ROWID of the row about to
be deleted still correctly identifies the row selected for deletion. See Note 68
for the ways in which the ROWID can become incorrect. This check prevents
the DELETE statement (see Note 72) from removing a row that the user did
not intend to delete.

72 ➤ If ROWID in ga_drows[del_idx] still identifies the desired manufact row, the

DELETE statement deletes this row.

Example 10 213

The update_manuf() Function

FUNCTION update_manuf(array_idx)

DEFINE array_idx SMALLINT,

 mrowid

mcode
INTEGER,

LIKE manufact.manu_code

67 ➤ LET mrowid = ga_mrowid[array_idx].mrowid

LET mcode = ga_manuf[array_idx].manu_code

68 ➤ IF verify_rowid(mrowid, mcode) THEN

WHENEVER ERROR CONTINUE

69 ➤ UPDATE manufact SET (manu_code, manu_name, lead_time) =

(ga_manuf[array_idx].manu_code, ga_manuf[array_idx].manu_name,

ga_manuf[array_idx].lead_time)

WHERE ROWID = mrowid

WHENEVER ERROR STOP

IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to complete manufact update of ", mcode

END IF

LET ga_dsplymsg[1] = "Manufacturer ", mcode, " has been

updated." CALL message_window(6,6)

END IF

END FUNCTION -- update_manuf --

FUNCTION delete_manuf(del_idx)

DEFINE del_idx SMALLINT,

msg_text CHAR(40),

mrowid INTEGER

70 ➤ IF verify_mdel(del_idx) THEN

LET mrowid = ga_drows[del_idx].mrowid

71 ➤ IF verify_rowid(mrowid, ga_drows[del_idx].manu_code) THEN

WHENEVER ERROR CONTINUE

72 ➤ DELETE FROM manufact

WHERE rowid = mrowid

WHENEVER ERROR STOP

IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to complete manufact delete of ",

ga_drows[del_idx].manu_code

END IF

214 Accessing a Table with a Multi-Row Form

The save_rowid() Function

The verify_rowid() Function
73 ➤ The SELECT statement checks for a manufact row with the specified ROWID

(mrowid is passed in as an argument).

74 ➤ If no manufact row has this ROWID, SELECT returns a status of NOTFOUND.
If manu_code has been updated or the ROWID has been reassigned to another
manufact row, then code_on_disk no longer matches
ga_drows[mrowid].manu_code. In any of these cases, the function notifies
the user that the row to be deleted has already been deleted. It returns FALSE

to indicate that the ROWID is no longer valid.

75 ➤ If the manufacturer code of the row identified by mrowid still matches the
manufacturer code of this row on disk, the function returns TRUE.

The save_rowid() Function
76 ➤ The g_idx variable is a global variable to indicate the last line of the ga_drows

array. If this variable is still null, the LET statement initializes it to zero.

77 ➤ The function increments the g_idx index to move to the next available line of
ga_drows. It then stores the ROWID and manufacturer code of the row to be
deleted at this location of ga_drows. This information is now saved so the
rows can be deleted at a later time.

Example 10 215

The verify_rowid() Function

LET ga_dsplymsg[1] = "Manufacturer ",

ga_drows[del_idx].manu_code, " has been deleted."

CALL message_window(6,6)

END IF

END IF

END FUNCTION -- delete_manuf --

FUNCTION verify_rowid(mrowid, code_in_mem)

DEFINE mrowid INTEGER,

code_in_mem LIKE manufact.manu_code,

code_on_disk LIKE manufact.manu_code

73 ➤ SELECT manu_code

INTO code_on_disk

FROM manufact

WHERE ROWID = mrowid

74 ➤ IF (status = NOTFOUND)

OR (code_on_disk <> code_in_mem)

THEN

ERROR "Manufacturer ", code_in_mem,

" has been deleted by another user."

RETURN (FALSE)

END IF

75 ➤ RETURN (TRUE)

END FUNCTION -- verify_rowid --

FUNCTION save_rowid(mrowid, mcode)

DEFINE mrowid INTEGER,

mcode LIKE manufact.manu_code

76 ➤ IF g_idx IS NULL THEN

LET g_idx = 0

END IF

77 ➤ LET g_idx = g_idx + 1

LET ga_drows[g_idx].mrowid = mrowid

LET ga_drows[g_idx].manu_code = mcode

END FUNCTION -- save_rowid --

To locate any function definition, see the Function Index on page 730.

216 Implementing a Master-Detail Relationship

11
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 11 217

Implementing a
Master-Detail Relationship

This example demonstrates a relatively complicated user interaction, one that
involves multiple forms in a master-detail relationship. The INPUT ARRAY

statement controls input to the detail form.

A key usability issue in such an interaction is the provision of a reliable escape
route for the user. The user should have a way of abandoning the interaction at
any point without being required to pass through meaningless input steps and
without risk of entering false or inaccurate data in the database. This program
is designed so that the user can use the Interrupt key (typically CONTROL-C) to
exit cleanly at any point in the interaction.

Program Overview
The program handles the entry of one new sales order for the demonstration
database. An order is associated with a set of items, each with a price, quantity,
and total price. This sort of master-detail relationship is common in business
data processing.

The program executes the following sequence of steps:

1. The program collects the information about the order as a whole (the
customer and purchase order numbers).

2. The program collects multiple items as rows in a scrolling array.

It calculates the total price (line-item extension) automatically and updates
the order subtotal as each item is completed.

3. When the user indicates that all items have been entered, the program
calculates sales tax.

4. The user enters shipping instructions, if necessary, and confirms the final
order, which is then inserted in the database.

Program Overview

218 Implementing a Master-Detail Relationship

Although large and fairly complete, this program would typically be only
one phase of an order-entry system. However, it illustrates most of the
features of this kind of an interaction.

To help you follow the actions of the code, here are sample screens as the
program displays them.

Input begins with entry of a customer number in function input_cust().

Program Overview

Example 11 219

The user can request a list of customer numbers; the cust_popup() function
displays a scrolling list in a new window.

Program Overview

220 Implementing a Master-Detail Relationship

The program automatically supplies the customer name and the current date.
After entry of the purchase order (PO) number, the cursor is positioned to
enter a stock number for the first line item. Each item must be identified with
a stock number and a manufacturer code. The INPUT ARRAY is handled in
the input_items() function.

If the user requests a list of existing stock numbers, stock_popup() displays a
scrolling list of rows joined from the stock and manufact tables.

Program Overview

Example 11 221

The item description is supplied from the database, and the total price is
recalculated when the cursor leaves the Quantity column. The Subtotal field
is updated as each item is completed. The user is allowed to move back to
previous rows with the up and down arrow keys, and to edit previous entries
of stock number, manufacturer, and quantity. If such corrections were not
allowed, the only way to correct a typing error would be to cancel the entire
order and start over, which would not be acceptable to most users.

222 Implementing a Master-Detail Relationship

Function Overview

When the user uses the Accept key (typically ESCAPE) the program asks if the
order is to be shipped now. If the answer is yes, shipping instructions are
taken in another window.

When all input has been gathered, the user is asked to confirm the order
before it is fi recorded in the database.

Function Overview

Function Name Purpose

add_order() Calls routines needed to add an order.

input_cust() Accepts user input for the customer number.

cust_popup() Displays a popup window of customers.

input_order() Accepts user input for date, PO number.

input_items() Accepts user input for order line items.
renum_items() Renumbers the item numbers when an item is added or

deleted in the items array.
stock_popup() Displays a popup window for stock numbers and

manufacturer codes.
dsply_taxes() Displays the retail tax rate and sales tax amount based on the

state in the customer’s address. Also calculates the order’s
total by adding in sales tax amount.

order_amount() Calculates the total cost of the order by summing the items
entered so far.

Example 11 223

Function Overview

tax_rates() Supplies the appropriate tax schedule for a customer.
See the description in Example 4.

ship_order() Opens a window and a form for shipping information.

input_ship() Accepts user input for shipping information. This function
resembles the change_cust() function from Example 6.

order_tx() Performs database operations to insert the order and items in
a single transaction.

insert_order() Adds an order row to the database.

insert_items() Adds associated items rows to the database.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

msg() Displays a brief, informative message.
See the description in Example 5.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

prompt_window() Displays a message and prompts the user for confirmation.
This function is a variation on the message_window()
function that appears in Example 2.
See the description in Example 4.

224 Implementing a Master-Detail Relationship

The f_orders Form

The f_orders Form
1➤ This form is visible at all times, although it is partly covered by popup

windows during some phases of the order-entry process. Its principal feature
is a scrolling array of order items. The INPUT ARRAY statement is used to
connect this screen array to the program array of records, ga_items.

2➤ To construct a screen array, you fi define a repeating set of fi All the
fi with the same tag (for example, all f005 fi must be the same size. They
do not have to be arranged in regular columns, but any other arrange- ment
would be hard for the user to understand.

The same fi tag number must appear in each fi This is only common
sense, but the form compiler does check for this.

3➤ Each field in an array row is described once in the ATTRIBUTES section. Here,
the f005 fi are associated with the item_num column of the items table.
This column of fields is marked NOENTRY; the item numbers are maintained
by the program, not input by the user.

4➤ The SCREEN RECORD statement defines the array of records. It specifies a
name for the array (sa_items), which is used in the INPUT ARRAY statement.
It specifies the number of rows in the array (4). This is the number on the
screen, not the size of the program array that receives the input. In this
program, up to 10 item rows can be entered, and the INPUT ARRAY statement
lets the user scroll through them using the four lines of the screen array.

This statement also specifies which fi are part of a row of the array.
It names them by their table and column, not by the screen fi tags used
earlier.

Example 11 225

The f_orders Form

1➤ DATABASE stores7

SCREEN

{

Customer Number:[f000] Company Name:[f001]

Order No:[f002] Order Date:[f003] PO Number:[f004]

--

Item No. Stock No Manuf Description Quantity Price Total

2➤ [f005] [f006] [f07] [f008] [f009] [f010] [f011]

[f005] [f006] [f07] [f008] [f009] [f010] [f011]

[f005] [f006] [f07] [f008] [f009] [f010] [f011]

[f005] [f006] [f07] [f008] [f009] [f010] [f011]

 Sub-Total: [f012]
Tax Rate [f013]% [f014] Sales Tax: [f015]

--

Order Total: [f016]

}

TABLES

customer orders items stock state

ATTRIBUTES

f000 = orders.customer_num;

f001 = customer.company;

f002 = orders.order_num;

f003 = orders.order_date, DEFAULT = TODAY;

f004 = orders.po_num;

3➤ f005 = items.item_num, NOENTRY;
f006 = items.stock_num;

f07 = items.manu_code, UPSHIFT;

f008 = stock.description, NOENTRY;

f009 = items.quantity;

f010 = stock.unit_price, NOENTRY;

f011 = items.total_price, NOENTRY;

f012 = formonly.order_amount;

f013 = formonly.tax_rate;

f014 = state.code, NOENTRY;

f015 = formonly.sales_tax TYPE MONEY;

f016 = formonly.order_total;

INSTRUCTIONS

4➤ SCREEN RECORD sa_items[4](items.item_num, items.stock_num, items.manu_code,
stock.description, items.quantity, stock.unit_price, items.total_price)

f_orders form file

226 Implementing a Master-Detail Relationship

The f_stocksel Form

The f_custsel Form
1➤ The f_custsel form is used as a popup window to display valid customer

numbers and company names. These customer numbers are stored in the
customer table.

2➤ The form defines the sa_cust screen array to use with this popup window.

The f_stocksel Form
1➤ The f_stocksel form is s used as a popup window to display stock items

defined in the stock table. The form displays related information from the
manufact table as well.

2➤ The screen array for this popup window is sa_stock.

Example 11 227

The f_custsel Form

f_stocksel form file

1➤ DATABASE stores7

SCREEN

{

Customer No. Company Name

[f001] [f002]

[f001] [f002]

[f001] [f002]

[f001] [f002]

[f001] [f002]

}

TABLES

customer

ATTRIBUTES

f001 = customer.customer_num, ZEROFILL;

f002 = customer.company;

2➤ INSTRUCTIONS
SCREEN RECORD sa_cust[5] (customer.customer_num THRU customer.company)

1➤ DATABASE stores7

SCREEN

{

Stock No. Description Manufacturer Code/Name Unit Unit Price

[f001] [f002] [f003][f004] [f005] [f006]

[f001] [f002] [f003][f004] [f005] [f006]

[f001] [f002] [f003][f004] [f005] [f006]

[f001] [f002] [f003][f004] [f005] [f006]

[f001] [f002] [f003][f004] [f005] [f006]

}

TABLES

stock

manufact

ATTRIBUTES

f001 = stock.stock_num;

f002 = stock.description;

f003 = stock.manu_code;

f004 = manufact.manu_name;

f005 = stock.unit;

f006 = stock.unit_price;

2➤ INSTRUCTIONS
SCREEN RECORD sa_stock[5] (stock.stock_num THRU stock.unit_price)

f_custsel form file

228 Implementing a Master-Detail Relationship

The f_ship Form

The f_ship Form
1➤ This form displays the shipping information. In this example, it accepts the

shipping information for the order currently being entered. The customer
number, company name, and order date of the current order display in the
fi at the top of the form. The order number fi is blank because the
order has not yet been saved in the database. Only then is an order assigned
an order number.

2➤ The order_num field is defined as FORMONLY so that it can accept user input
(see Example 21). Because the order_num column is defined as SERIAL, the
database maintains its value. 4GL prevents the user from modifying SERIAL

values by preventing the cursor from entering any fi associated with a
SERIAL column. If the fi were defined as orders.order_num, the user
would be unable to enter search criteria in this field.

3➤ The ship_date fi uses the DEFAULT attribute and the TODAY function to
initialize an empty ship_date fi with today’s date.

4➤ The order_amount fi is defined as NOENTRY because this fi does not require
user entry. The order amount value is calculated by the application
program.

5➤ The form defines the sr_ship screen record so an INPUT statement can access
all input fi on the form using the record.* notation.

Example 11 229

The f_ship Form

1➤ DATABASE stores7

SCREEN

{

Customer Number:[f000] Company Name:[f001]

Order No:[f002] Order Date:[f003]

Ship Date: [f004]

Shipping Instructions:[f005]

Shipping Weight (in lbs.): [f006]

Order Amount (incl. Tax) : [f007]

Shipping Charge ($1.50/lb): [f008]

--

Order Total: [f009]

}

TABLES

customer orders

ATTRIBUTES

f000 = orders.customer_num;

f001 = customer.company;

2➤ f002 = formonly.order_num;
f003 = orders.order_date;

3➤ f004 = orders.ship_date, DEFAULT = TODAY;
f005 = orders.ship_instruct;

f006 = orders.ship_weight, DEFAULT = 0.00;

4➤ f007 = formonly.order_amount, NOENTRY;
f008 = orders.ship_charge;

f009 = formonly.order_total, NOENTRY;

INSTRUCTIONS

5➤ SCREEN RECORD sr_ship(orders.ship_date, orders.ship_instruct,

orders.ship_weight, orders.ship_charge)

f_ship form file

230 Implementing a Master-Detail Relationship

The DATABASE and GLOBALS Statements

The DATABASE and GLOBALS Statements
1➤ Transaction processing is necessary to ensure that the order row and all of the

item rows are inserted successfully, or that none are inserted.

2➤ The gr_customer record holds a row from the customer table.

The gr_orders and ga_items records are used to construct rows for those
tables. Note that ga_items is an array of records. Its size determines how
many line items may be entered for any order.

3➤ The gr_charges record is used to collect tax and shipping charges.

4➤ The gr_ship record is used to collect shipping information. These fields
eventually contribute to the order row.

All these records could, in this program, be module variables. Global
variables are only required when the functions that use a record are in
different modules.

Example 11 231

The DATABASE and GLOBALS Statements

1➤ DATABASE stores7
GLOBALS

2➤ DEFINE gr_customer RECORD LIKE customer.*,

gr_orders RECORD

order_num LIKE orders.order_num,

order_date LIKE orders.order_date,

po_num LIKE orders.po_num,

order_amount MONEY(8,2),

order_total MONEY(10,2)

END RECORD,

ga_items ARRAY[10] OF RECORD

item_num LIKE items.item_num,

stock_num LIKE items.stock_num,

manu_code LIKE items.manu_code,

description LIKE stock.description,

quantity LIKE items.quantity,

unit_price LIKE stock.unit_price,

total_price LIKE items.total_price

END RECORD,

3➤ gr_charges RECORD tax_rateDECIMAL(5,3),

ship_chargeLIKE orders.ship_charge,

sales_taxMONEY(9),

order_totalMONEY(11)

END RECORD,

4➤ gr_ship RECORD

ship_dateLIKE orders.ship_date,

ship_instructLIKE orders.ship_instruct,

ship_weightLIKE orders.ship_weight,

ship_chargeLIKE orders.ship_charge

END RECORD

used by init_msgs(), message_window(), and prompt_window() to allow

user to display text in a message or prompt window.

DEFINE ga_dsplymsg ARRAY[5] OF CHAR(48)

END GLOBALS

4GL source file

232 Implementing a Master-Detail Relationship

The add_order() Function

The MAIN Function
5➤ As in other examples, the Interrupt key (typically CONTROL-C) is deferred so

that its use will not terminate the program. The use of the key is tested after
each input operation, and taken as a signal that the user wants to quit.

6➤ This OPEN WINDOW and the following OPEN FORM and DISPLAY FORM

statements could be combined into a single OPEN WINDOW WITH FORM

statement.

7➤ All the processing for a single order entry has been delegated to this function.

This example program manages only a single order; in a real application the
add_order() function might be called in a loop, or from a vertical menu.

The add_order() Function
8➤ The new order will be constructed in this record. Fields not fi in by the

following code will be null.

9➤ This legend reminds the user that the Cancel (or Interrupt) key is available to
exit the current transaction without saving. It remains on the screen through-
out. It could be part of the form definition, but that would commit any pro-
gram using this form to implement Cancel in the same way.

10 ➤ The input process has been divided for simplicity into three phases, each in
a separate function. The user might choose to cancel in any of the phases. If
the user does so, the subsequent phases should not be performed.

This set of IF statements shows one way to deal with such a serial depen-
dency among functions. Each function returns TRUE when the user does not
cancel. If the user does not cancel in input_cust(), input_order() is called; if
the user does not cancel in that function, input_items() is called; if it returns
TRUE, the remainder of the entry process begins.

When there are more than three sequential dependencies, the IF stack
becomes uncomfortably deep. Another method is to accumulate the status
using AND as in this hypothetical fragment, which can be replicated as
needed.

IF ok_so_far THEN

LET ok_so_far = next_phase()

END IF

Example 11 233

The MAIN Function

MAIN

OPTIONS

HELP FILE "hlpmsgs",

FORM LINE 2,

COMMENT LINE 1,

MESSAGE LINE LAST

5➤ DEFER INTERRUPT

6➤ OPEN WINDOW w_main AT 2,3

WITH 18 ROWS, 76 COLUMNS

ATTRIBUTE (BORDER)

OPEN FORM f_orders FROM "f_orders"

DISPLAY FORM f_orders

7➤ CALL add_order()

CLOSE FORM f_orders

CLOSE WINDOW w_main

CLEAR SCREEN

END MAIN

FUNCTION add_order()

8➤ INITIALIZE gr_orders.* TO NULL

DISPLAY "ORDER ADD" AT 2, 34

CALL clear_lines(2, 16)

9➤ DISPLAY " Press Cancel to exit without saving."

AT 17, 1 ATTRIBUTE (REVERSE, YELLOW)

10 ➤ IF input_cust() THEN

IFinput_order() THEN IF

input_items() THEN

CALL dsply_taxes()

IFprompt_window("Do you want to ship this order now?", 8, 12) THEN

CALL ship_order()

ELSE

LET gr_ship.ship_date = NULL

END IF

CALL clear_lines(2, 16)

LET ga_dsplymsg[1] = "Order entry complete."

234 Implementing a Master-Detail Relationship

The input_cust() Function

11 ➤ A similar technique is used to control the actual insertion process.

Prompt_window() returns TRUE when the user replies Y; order_tx() inserts
the order and returns TRUE when the rows are inserted successfully.

12 ➤ The order number is a SERIAL value, created only when the order row is
inserted. Here it is reported to the user, to be recorded on the entry
documents.

The input_cust() Function
13 ➤ This function assists the user in entering the customer number, and makes

certain that a valid one is entered. A valid customer number is essential
because the customer number is the key that joins the orders and customer
tables.

14 ➤ By clearing the int_flag just before the start of the INPUT statement, then test-
ing it just afterward, the program can tell whether the INPUT was terminated
by the Interrupt key (typically CONTROL-C) or by the Accept key (typically
ESCAPE).

15 ➤ The INPUT statement begins here and extends onto the next page. Only the
single-form fi named in the INPUT statement is accessible to the cursor.

16 ➤ Whenever a fi is entered by the cursor, its BEFORE FIELD clause is exe-
cuted. That includes the initial entry to the fi (and in this case, only) field.

17 ➤ Whenever the cursor leaves a fi either due to a cursor-movement key or
to the Accept key, its AFTER FIELD clause is executed. This is the normal place
to put validation and verification code such as that which follows here.

The AFTER FIELD clause is not executed when the Interrupt key is used.

18 ➤ This test ensures that the user cannot leave this form without entering a
customer number of some kind. Even if the Accept key is used, the NEXT

FIELD statement forces the input process to continue.

If there were truly no exit, of course, users could be very frustrated. However
the message “Press Cancel” is visible, and Interrupt will work.

Example 11 235

The input_cust() Function

11 ➤ IFprompt_window("Are you ready to save this order?", 8, 12) THEN

IF order_tx() THEN

CALL clear_lines(2, 16)

12 ➤ LET ga_dsplymsg[1] = "Order Number: ",

gr_orders.order_num USING "<<<<<<<<<<<"

LET ga_dsplymsg[2] = " has been placed for Customer: ",

gr_customer.customer_num USING "<<<<<<<<<<<"

LET ga_dsplymsg[3] = "Order Date: ", gr_orders.order_date

CALL message_window(9, 13)

CLEAR FORM

END IF

ELSE

CLEAR FORM

CALL msg("Order has been terminated.")

END IF

END IF

END IF

END IF

END FUNCTION -- add_order --

13 ➤ FUNCTION input_cust()

DISPLAY

" Enter the customer number and press RETURN. Press CTRL-W for Help."

AT 16, 1 ATTRIBUTE (REVERSE, YELLOW)

14 ➤ LET int_flag = FALSE

15 ➤ INPUT BY NAME gr_customer.customer_num HELP 60

16 ➤ BEFORE FIELD customer_num

MESSAGE "Enter a customer number or press F5 (CTRL-F) for a list."

17 ➤ AFTER FIELD customer_num

IF gr_customer.customer_num IS NULL THEN

ERROR "You must enter a customer number. Please try again."

18 ➤ NEXT FIELD customer_num

END IF

236 Implementing a Master-Detail Relationship

The input_cust() Function

19 ➤ The number entered by the user is validated against the database. Because
there is a unique index on the customer.customer_num column, this SELECT

can return at most one row, so no cursor is needed.

20 ➤ If the specified customer number is not in the database, the cursor is returned
to the customer_num fi and the user is asked to enter another number.

21 ➤ If the customer number is valid, the program gives visual feedback by filling
in the customer name from the database.

22 ➤ The AFTER FIELD block for the customer number fi ends at this point in
the code.

23 ➤ When the user presses either key during the INPUT, the following code block
is executed. The cust_popup() function displays a list of customers and
returns null only if the user cancels, in which case the NEXT FIELD statement
returns the user to input state. If the user does not cancel, the desired data is
selected from the popup list and saved, and the input is ended.

24 ➤ Following the input, if the Interrupt key was used, this fl contains TRUE.
The cancellation is confirmed with a message, and the function returns
FALSE, signalling its caller to proceed no further (see Note 10).

Note that the user might use the Interrupt key while looking at the popup list
of customers. The cust_popup() function clears the int_flag before returning,
so this IF can be affected only by Interrupt during this INPUT.

Example 11 237

The input_cust() Function

19 ➤ SELECT company, state

INTO gr_customer.company, gr_customer.state

FROM customer

WHERE customer_num = gr_customer.customer_num

IF(status = NOTFOUND) THEN

ERROR

"Unknown Customer number. Use F5 (CTRL-F) to see valid customers."

LET gr_customer.customer_num = NULL

20 ➤ NEXT FIELD customer_num

END IF

21 ➤ DISPLAY BY NAME gr_customer.company

MESSAGE ""

22 ➤ EXIT INPUT

23 ➤ ON KEY (CONTROL-F, F5)

IFINFIELD(customer_num) THEN

CALL cust_popup()

RETURNING gr_customer.customer_num, gr_customer.company

IFgr_customer.customer_num IS NULL THEN

NEXT FIELD customer_num

ELSE

SELECT state

INTO gr_customer.state

FROM customer

WHERE customer_num = gr_customer.customer_num

DISPLAY BY NAME gr_customer.customer_num, gr_customer.company

END IF

END IF

END INPUT

24 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL clear_lines(2, 16)

CLEAR FORM

CALL msg("Order input terminated.")

RETURN (FALSE)

END IF

RETURN (TRUE)

END FUNCTION -- input_cust --

238 Implementing a Master-Detail Relationship

The cust_popup() Function

The cust_popup() Function
25 ➤ The cust_popup() function is called from input_cust() when the user requests

a display of customer numbers. It displays the list of numbers and names. If
the user selects one, it returns both the number and the name. If the user can-
cels with Interrupt, it returns a null customer number.

26 ➤ The function loads all, or as much as will fi of the customer table into the
pa_cust array.

Because the array is a local variable, it exists only while the function is active
and has to be reloaded each time the function is called. In some applications
this could cause performance problems, in which case the array could be
made global and fi just once, when the program starts up. While that
would fix the performance problem, it would mean that the program would
not reflect additions or deletions in the customer table until it was restarted.

27 ➤ This window intentionally covers up the legend “Press Cancel to exit without
saving” in the main window. If the user presses Cancel in this routine it will
not cancel the entire order, but merely the popup display.

28 ➤ The FOREACH loop loads all customer numbers and names into the pa_cust
array for display. The array has a fi size while the size of the table is
unknown. The function counts the rows as they are fetched and if it fi the
array, it ends the loop early.

29 ➤ The IF statement checks for the (remote) possibility that no customers exist in
the database. In that case the program sets up to return a null value and does
not display the popup list.

30 ➤ A more likely event is that the array gets fi before the end of the table is
reached. The display can still be performed, but the user is told that the list is
incomplete.

31 ➤ The SET_COUNT() library function tells DISPLAY ARRAY how many rows of
the array are valid.

32 ➤ The ARR_CURR() library function returns the row number where the cursor
rested when the display ended.

Example 11 239

The cust_popup() Function

25 ➤ FUNCTION cust_popup()

26 ➤ DEFINE pa_cust ARRAY[200] OF RECORD

customer_num LIKE customer.customer_num,

company LIKE customer.company

END RECORD,

idx INTEGER,

cust_cnt INTEGER,

array_sz SMALLINT,

over_size SMALLINT

LET array_sz = 200 --* match size of pa_cust array

27 ➤ OPEN WINDOW w_custpop AT 7, 5

WITH 12 ROWS, 44 COLUMNS

ATTRIBUTE(BORDER, FORM LINE 4)

OPEN FORM f_custsel FROM "f_custsel"

DISPLAY FORM f_custsel

DISPLAY "Move cursor using F3, F4, and arrow keys."

AT 1,2

DISPLAY "Press Accept to select a company."

AT 2,2

DECLARE c_custpop CURSOR FOR

SELECT customer_num, company

FROM customer

ORDER BY customer_num

LET over_size = FALSE

LET cust_cnt = 1

28 ➤ FOREACH c_custpop INTO pa_cust[cust_cnt].*

LET cust_cnt = cust_cnt + 1

IF cust_cnt > array_sz THEN

LET over_size = TRUE

EXIT FOREACH

END IF

END FOREACH

IF cust_cnt = 1 THEN

29 ➤ CALL msg("No customers exist in the database.")

LET idx = 1

LET pa_cust[idx].customer_num = NULL

ELSE

IF over_size THEN

30 ➤ MESSAGE "Customer array full: can only display ",

array_sz USING "<<<<<<"

END IF

31 ➤ CALL SET_COUNT(cust_cnt - 1)

LET int_flag = FALSE

DISPLAY ARRAY pa_cust TO sa_cust.*

32 ➤ LET idx = ARR_CURR()

240 Implementing a Master-Detail Relationship

The input_order() Function

33 ➤ An Interrupt at this stage of the program cancels only this interaction and not
the entire order entry. The int_flag is cleared so that it will not affect the call-
ing function. A null value is forced into the current row of the array.

34 ➤ The customer_num value in this row will be null in two cases: if the customer
table was empty, and if the display ended with Interrupt. Otherwise, the cus-
tomer number reflects the user’s choice and input_cust() can terminate.

The input_order() Function
35 ➤ The input_order() function collects the rest of the order header fields: the date

and the customer’s purchase order number. It returns TRUE normally, or
FALSE to indicate that the user cancelled.

36 ➤ The BEFORE FIELD clause is executed when the cursor enters a field. It enters
the order_date fi as soon as the INPUT statement begins, because it is the
fi fi listed in the BY NAME clause. Thus today’s date, the most likely
choice, is displayed initially.

37 ➤ When the cursor leaves the fi it can only be null if the user has cleared it
with CONTROL-D. In that case, today’s date is again supplied to make sure
that a valid date is available.

38 ➤ Handling of Interrupt is similar to that in the input_cust() function.

Example 11 241

The input_order() Function

IF int_flag THEN

33 ➤ LET int_flag = FALSE

CLEAR FORM

CALL msg("No customer selected.")

LET pa_cust[idx].customer_num = NULL

END IF

END IF

CLOSE WINDOW w_custpop

34 ➤ RETURN pa_cust[idx].customer_num, pa_cust[idx].company

END FUNCTION -- cust_popup --

35 ➤ FUNCTION input_order()

CALL clear_lines(1, 16)

DISPLAY

" Enter the order information and press RETURN. Press CTRL-W for Help."

AT 16, 1 ATTRIBUTE (REVERSE, YELLOW)

LET int_flag = FALSE

INPUT BY NAME gr_orders.order_date, gr_orders.po_num HELP 61

36 ➤ BEFORE FIELD order_date

IFgr_orders.order_date IS NULL THEN

LET gr_orders.order_date = TODAY

END IF

37 ➤ AFTER FIELD order_date

IFgr_orders.order_date IS NULL THEN

LET gr_orders.order_date = TODAY

END IF

END INPUT

38 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL clear_lines(2, 16)

CLEAR FORM

CALL msg("Order input terminated.")

RETURN (FALSE)

END IF

RETURN (TRUE)

END FUNCTION -- input_order --

242 Implementing a Master-Detail Relationship

The input_items() Function

The input_items() Function
39 ➤ The input_items() function manages the input of the line items. Item rows are

entered into the ga_items array of records. The user is allowed to go back and
change item rows previously entered.

As with input_cust() and input_order(), if the user cancels the operation, the
function returns FALSE as a signal.

40 ➤ The BEFORE ROW block is executed each time the cursor moves to a new row,
including the move to the fi row when the INPUT ARRAY begins. Two
important indexes are captured here: curr_pa gets the row in the program
array, ga_items, and curr_sa gets the current screen row.

41 ➤ The BEFORE INSERT block is executed each time a new row is added to the
array. This can happen at the bottom of the array or at another position. The
renum_items() function revises the item row numbers and redisplays them.

42 ➤ The stock number is the primary piece of information in an item row.

Nothing else can be determined without a valid stock number. This block
executes whenever the cursor leaves the stock number field of a row. This can
be caused by several different key signals, processed as follows:

Accept The user claims to be fi so a stock number is not
required for this row. However, at least one item row must
be entered for the order to be valid; if none has been, the user
is returned to the form to enter one.

Up / down The user wants to move to a different row, so it is not
essential that the current row have a stock number.

Other keys The user is required to enter a stock number.

The library function FGL_LASTKEY() is used to get the code for the last key
pressed, and FGL_KEYVAL() is used to translate from words like up to the
codes used in this particular implementation.

Example 11 243

The input_items() Function

39 ➤ FUNCTION input_items()

DEFINE curr_pa INTEGER,
 curr_sa INTEGER,

 stock_cnt INTEGER,

 stock_item LIKE stock.stock_num,

 popup SMALLINT,

 keyval INTEGER,

 valid_key SMALLINT

CALL clear_lines(1, 16)

DISPLAY

" Enter the item information and press Accept. Press CTRL-W for Help."

AT 16, 1 ATTRIBUTE (REVERSE, YELLOW)

LET int_flag = FALSE

INPUT ARRAY ga_items FROM sa_items.* HELP 62

40 ➤ BEFORE ROW

LET curr_pa = ARR_CURR()

LET curr_sa = SCR_LINE()

41 ➤ BEFORE INSERT

CALL renum_items()

BEFORE FIELD stock_num

MESSAGE

"Enter a stock number or press F5 (CTRL-F) for a list."

LET popup = FALSE

42 ➤ AFTER FIELD stock_num

IFga_items[curr_pa].stock_num IS NULL THEN

LET keyval = FGL_LASTKEY()

IF keyval = FGL_KEYVAL("accept") THEN

IF curr_pa = 1 THEN --* empty items array

LET int_flag = TRUE--* code simulates a Cancel

EXIT INPUT

END IF

ELSE --* FGL_LASTKEY() <> FGL_KEYVAL("accept")

LET valid_key = (keyval = FGL_KEYVAL("up"))

OR (keyval = FGL_KEYVAL("prevpage"))

IF NOT valid_key THEN

ERROR "You must enter a stock number. Please try again."

NEXT FIELD stock_num

END IF

END IF

244 Implementing a Master-Detail Relationship

The input_items() Function

43 ➤ The cursor is leaving the stock number fi and the fi is not null. The
following IF ensures that the user entered a valid number by counting the
rows of the stock table that have this number. Multiple rows may appear in
the table because the manufacturer code is needed for uniqueness, but the
user’s entry is invalid unless SELECT retrieves at least one row.

The popup variable is set when the stock_popup() function is used to select
a stock number and manufacturer code. Because that function returns only
good values, validation is not required.

44 ➤ This statement marks the end of the AFTER FIELD block for the stock number.

The cursor will typically enter the manu_code fi from stock number.

45 ➤ Like stock number, a manufacturer code is required to make an item valid.
When the cursor leaves the fi this code ensures that something has been
entered.

46 ➤ Something was entered to manu_code. This passage validates it in
combination with the previously entered stock number by selecting other
stock information using these values as the key. As before, if stock_popup()
was used to obtain the value, validation is not needed. If no row was found,
something is wrong, and the user is forced to enter another manufacturer
code.

It is possible that the user entered an invalid stock number. However, the
stock number is known to exist in the table. A corresponding manu_code
exists and stock_popup() can be used to fi it.

47 ➤ The stock number and manufacturer have proved valid. Visual feedback is
given by filling in the item description and unit price. The cursor is then sent
to the quantity field.

Example 11 245

The input_items() Function

43 ➤ ELSE --* stock number is not null, continue

IF NOT popup THEN

LET stock_cnt = 0

SELECT COUNT(*)

INTO stock_cnt

FROM stock

WHERE stock_num = ga_items[curr_pa].stock_num

IF(stock_cnt = 0) THEN

ERROR

"Unknown stock number. Use F5 (CTRL-F) to see valid stock

numbers." LET ga_items[curr_pa].stock_num = NULL

NEXT FIELD stock_num

END IF

END IF

END IF

MESSAGE ""

44 ➤ BEFORE FIELD manu_code

MESSAGE

"Enter the manufacturer code or press F5 (CTRL-F) for a list."

45 ➤ AFTER FIELD manu_code

IFga_items[curr_pa].manu_code IS NULL THEN

ERROR

"You must enter a manufacturer code. Use F5 (CTRL-F) to see valid

codes." LET ga_items[curr_pa].manu_code = NULL

NEXT FIELD manu_code

46 ➤ ELSE

IF NOT popup THEN

SELECT description, unit_price

INTO ga_items[curr_pa].description, ga_items[curr_pa].unit_price

FROM stock

WHERE stock_num = ga_items[curr_pa].stock_num

AND manu_code = ga_items[curr_pa].manu_code

IF(status = NOTFOUND) THEN

ERROR

"Unknown manuf code for this stock number. Use F5 (CTRL-F) to see valid

codes." LET ga_items[curr_pa].manu_code = NULL

NEXT FIELD manu_code

END IF

47 ➤ DISPLAY ga_items[curr_pa].description, ga_items[curr_pa].unit_price

TO sa_items[curr_sa].description, sa_items[curr_sa].unit_price

MESSAGE ""

NEXT FIELD quantity

END IF

END IF

MESSAGE ""

246 Implementing a Master-Detail Relationship

The input_items() Function

48 ➤ When the cursor enters the quantity fi in this row for the fi time, the
fi is initialized to 1.

49 ➤ When the cursor leaves the quantity field, the program validates that the user
has entered a reasonable value. If appropriate, the cursor is returned to the
field. Otherwise, the total price (often called the extension of the line item) is
calculated and displayed.

50 ➤ Once the total price for a line is known, the program can generate the order
subtotal. The order_amount() function performs this operation.

51 ➤ When a new array row has been completed, this block ensures that the order
subtotal is up to date.

This block is probably redundant because it could hardly be executed unless
the AFTER FIELD for quantity was executed first.

52 ➤ When a row is deleted, the item rows must be renumbered, and the order
subtotal must be recalculated and displayed.

53 ➤ The user can request a display of stock numbers and manufacturer codes at
any time during input. If the cursor is in the quantity column, the key is
ignored. If the cursor is in the stock or manu_code column, the stock_popup()
function is called to display a list and return a selected stock item.

54 ➤ The stock_popup() function can present all stock items, or only the stock with
a particular stock number. If the cursor is in the stock number fi the pro-
gram assumes the user does not know a stock number, and sets up to display
all. If the cursor is not in the stock number field, it must be in the manu_code
fi the program assumes the user is interested only in the stock number
that was already entered.

55 ➤ The stock_popup() function returns a null stock_num and manu_code if the
user cancels a popup initiated from the stock_num fi It returns a null
manu_code if the user cancels a popup initiated from the manu_code field.
In any event, the program returns the user to input in the fi that was
active.

Example 11 247

The input_items() Function

48 ➤ BEFORE FIELD quantity

IFga_items[curr_pa].quantity IS NULL THEN

LET ga_items[curr_pa].quantity = 1

END IF

49 ➤ AFTER FIELD quantity

IF ga_items[curr_pa].quantity IS NULL

OR ga_items[curr_pa].quantity < 0

THEN

ERROR "Quantity must be greater than 0. Please try again."

NEXT FIELD quantity

END IF

LET ga_items[curr_pa].total_price = ga_items[curr_pa].quantity

* ga_items[curr_pa].unit_price

DISPLAY ga_items[curr_pa].total_price TO sa_items[curr_sa].total_price

50 ➤ CALL order_amount() RETURNING gr_orders.order_amount

DISPLAY BY NAME gr_orders.order_amount

51 ➤ AFTER INSERT

CALL order_amount() RETURNING gr_orders.order_amount

DISPLAY BY NAME gr_orders.order_amount

52 ➤ AFTER DELETE

CALL renum_items()

CALL order_amount() RETURNING gr_orders.order_amount

DISPLAY BY NAME gr_orders.order_amount

AFTER INPUT

CALL clear_lines(1, 16)

MESSAGE ""

53 ➤ ON KEY (CONTROL-F, F5)

IF INFIELD(stock_num) OR INFIELD(manu_code) THEN

54 ➤ IF INFIELD(stock_num) THEN

LET stock_item = NULL

ELSE

LET stock_item = ga_items[curr_pa].stock_num

END IF

CALL stock_popup(stock_item)

RETURNING ga_items[curr_pa].stock_num, ga_items[curr_pa].manu_code,

ga_items[curr_pa].description, ga_items[curr_pa].unit_price

55 ➤ IF ga_items[curr_pa].stock_num IS NULL THEN

NEXT FIELD stock_num

ELSE

IFga_items[curr_pa].manu_code IS NULL THEN

NEXT FIELD manu_code

END IF

END IF

248 Implementing a Master-Detail Relationship

The renum_items() Function

56 ➤ The user made a choice in stock_popup(), and now everything is known
about the stock number. The information is displayed on the form, and the
cursor is sent to the quantity field.

57 ➤ As with input_cust() and input_order(), this function returns FALSE if the
user has cancelled with Interrupt, or TRUE otherwise.

The renum_items() Function
58 ➤ This function maintains the line numbers in the left-most column of the line

item display. It is called each time a line is inserted or deleted. It resets the line
numbers from the current row to the end of the array. There is no need to
revise numbers on lines preceding the current line.

59 ➤ The ARR_CURR() function returns the index into the current array row. The
ARR_COUNT() function returns the total number of rows created during the
INPUT ARRAY.

60 ➤ Items can be inserted in the middle of the array, so the last lines of the array
might be off the screen. The function updates the screen display of lines that
are on the screen.

There is no function to return the line number of the last row of the screen
array. This limit must be written into the program.

Example 11 249

The renum_items() Function

56 ➤ DISPLAY ga_items[curr_pa].stock_num TO sa_items[curr_sa].stock_num

DISPLAY ga_items[curr_pa].manu_code TO sa_items[curr_sa].manu_code

DISPLAY ga_items[curr_pa].description TO

sa_items[curr_sa].description

DISPLAY ga_items[curr_pa].unit_price TO

sa_items[curr_sa].unit_price

NEXT FIELD quantity

END IF

END INPUT

57 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL clear_lines(2, 16)

CLEAR FORM

CALL msg("Order input terminated.")

RETURN (FALSE)

END IF

RETURN (TRUE)

END FUNCTION -- input_items --

58 ➤ FUNCTION renum_items()

DEFINE pcurr INTEGER,
 ptotal INTEGER,

 scurr INTEGER,

 stotal INTEGER,

 k INTEGER

59 ➤ LET pcurr = ARR_CURR()

LET ptotal = ARR_COUNT()

LET scurr = SCR_LINE()

LET stotal = 4

60 ➤ FOR k = pcurr TO ptotal

LET ga_items[k].item_num = k

IF scurr <= stotal THEN

DISPLAY k TO sa_items[scurr].item_num

LET scurr = scurr + 1

END IF

END FOR

END FUNCTION -- renum_items --

250 Implementing a Master-Detail Relationship

The stock_popup() Function

The stock_popup() Function
61 ➤ This function is much like cust_popup(). (See “The cust_popup() Function”

on page 238.) It is called from input_items() to display a list of stock items and
to let the user make a selection.

The user may have specified a stock number. If so, only rows with that
number are shown. Otherwise, all rows (that will fi the array) are shown.
This means that the SELECT statement must use a different WHERE clause,
depending on whether the argument, stock_item, is null.

62 ➤ This window intentionally covers up the legend “Press Cancel to exit without
saving.” If the user presses Cancel in this routine, it will only end the popup
display, not the entire order.

63 ➤ The SELECT statement that will retrieve stock items from the database is
initialized here.

64 ➤ When the function argument is null, all stock numbers are wanted and the

WHERE clause contains only a join condition.

65 ➤ When the function argument is not null, only rows with that number are
wanted and the WHERE clause has two conditions.

66 ➤ The SELECT statement is prepared and associated with a cursor.

Example 11 251

The stock_popup() Function

61 ➤ FUNCTION stock_popup(stock_item)

DEFINE stock_item INTEGER,

pa_stock ARRAY[200] OF RECORD

stock_num LIKE stock.stock_num,

description LIKE stock.description,

manu_code LIKE stock.manu_code,

manu_name LIKE manufact.manu_name,

unit LIKE stock.unit,

unit_price LIKE stock.unit_price

END RECORD,

idx INTEGER,

stock_cnt INTEGER,

st_stock CHAR(300),

array_sz SMALLINT,

over_size SMALLINT

LET array_sz = 200 --* match size of pa_stock array

62 ➤ OPEN WINDOW w_stockpop AT 7, 4

WITH 12 ROWS, 73 COLUMNS

ATTRIBUTE(BORDER, FORM LINE 4)

OPEN FORM f_stocksel FROM "f_stocksel"

DISPLAY FORM f_stocksel

DISPLAY "Move cursor using F3, F4, and arrow keys."

AT 1,2

DISPLAY "Press Accept to select a stock item."

AT 2,2

63 ➤ LET st_stock =

"SELECT stock_num, description, stock.manu_code, manufact.manu_name,

", "unit, unit_price FROM stock, manufact"

64 ➤ IF stock_item IS NOT NULL THEN

LET st_stock = st_stock CLIPPED, " WHERE stock_num = ",

stock_item, " AND stock.manu_code = manufact.manu_code",

" ORDER BY 1, 3"

65 ➤ ELSE

LET st_stock = st_stock CLIPPED,

" WHERE stock.manu_code = manufact.manu_code",

" ORDER BY 1, 3"

END IF

66 ➤ PREPARE slct_run FROM st_stock

DECLARE c_stockpop CURSOR FOR slct_run

LET over_size = FALSE

LET stock_cnt = 1

252 Implementing a Master-Detail Relationship

The dsply_taxes() Function

67 ➤ The FOREACH loop loads stock items into the pa_stock array. The array has a
fi size while the size of the table is unknown. The function counts the
rows as it loads them, and if the array fi up, it ends the loop early.

68 ➤ There is a remote possibility that no rows will be found. Rather than present
the user with an empty list, the function displays a message and returns a
null stock number to its caller.

69 ➤ The remainder of the function closely follows the pattern of the cust_popup()
function.

70 ➤ If the user chooses to cancel the popup window, the function indicates the
cancel by setting return values to null. If the user initiated the popup from the
stock_num field, the function sets both stock_num and manu_code to null. If
the user initiated this popup from the manu_code field, the function only sets
the manu_code fi to null. The stock_num fi must retain the value cur-
rently displaying on the form.

The dsply_taxes() Function
71 ➤ The dsply_taxes() function updates the order total to reflect the sales tax rate.

Example 11 253

The dsply_taxes() Function

67 ➤ FOREACH c_stockpop INTO pa_stock[stock_cnt].*

LET stock_cnt = stock_cnt + 1

IFstock_cnt > array_sz THEN

LET over_size = TRUE

EXIT FOREACH

END IF

END FOREACH

68 ➤ IF stock_cnt = 1 THEN

CALL msg("No stock data in the database.")

LET idx = 1

LET pa_stock[idx].stock_num = NULL

ELSE

69 ➤ IF over_size THEN

MESSAGE "Stock array full: can only display ",

array_sz USING "<<<<<<"

END IF

CALL SET_COUNT(stock_cnt - 1)

LET int_flag = FALSE

DISPLAY ARRAY pa_stock TO sa_stock.*

LET idx = ARR_CURR()

70 ➤ IF int_flag THEN

LET int_flag = FALSE

CLEAR FORM

CALL msg("No stock item selected.")

LET pa_stock[idx].manu_code = NULL

IF stock_item IS NULL THEN

LET pa_stock[idx].stock_num = NULL

END IF

END IF

END IF

CLOSE WINDOW w_stockpop

RETURN pa_stock[idx].stock_num, pa_stock[idx].manu_code,

pa_stock[idx].description, pa_stock[idx].unit_price

END FUNCTION -- stock_popup --

71 ➤ FUNCTION dsply_taxes()

LET gr_charges.tax_rate = tax_rates(gr_customer.state)

DISPLAY gr_customer.state TO code

DISPLAY BY NAME gr_charges.tax_rate

LET gr_charges.sales_tax = gr_orders.order_amount

* (gr_charges.tax_rate / 100)

DISPLAY BY NAME gr_charges.sales_tax

254 Implementing a Master-Detail Relationship

The ship_order() Function

The order_amount() Function
72 ➤ The function updates the order subtotal to reflect the sum of all items.

It is called from input_items() each time the order subtotal might have
changed: when line items are inserted or deleted and whenever the cursor
leaves the quantity field.

The ship_order() Function
73 ➤ This function is called when the user replies yes to the question, “Do you

want to ship this order now?” It presents a form containing the data fields
related to shipping and accepts input for them.

74 ➤ The w_ship subwindow also covers up the message about Cancel in the main
window. Cancelling from this input phase will only cancel the entry of ship-
ping information.

75 ➤ For clarity, the details of the INPUT statement are located in the input_ship()
function. It returns TRUE normally, or FALSE if the user uses the Interrupt key
(typically CONTROL-C).

Example 11 255

The order_amount() Function

LET gr_charges.order_total = gr_orders.order_amount +

gr_charges.sales_tax

DISPLAY BY NAME gr_charges.order_total

END FUNCTION -- dsply_taxes --

72 ➤ FUNCTION order_amount()

DEFINE ord_amount MONEY(8),
 idx INTEGER

LET ord_amount = 0.00

FOR idx = 1 TO ARR_COUNT()

IF ga_items[idx].total_price IS NOT NULL THEN

LET ord_amount = ord_amount + ga_items[idx].total_price

END IF

END FOR

RETURN (ord_amount)

END FUNCTION -- order_amount --

73 ➤ FUNCTION ship_order()

CALL clear_lines(1, 1)

74 ➤ OPEN WINDOW w_ship AT 7, 6

WITH FORM "f_ship"

ATTRIBUTE (BORDER, COMMENT LINE 3, FORM LINE 4)

DISPLAY " Press Accept to save shipping information."

AT 1, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY " Press Cancel to exit w/out saving. Press CTRL-W for

Help." AT 2, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY "SHIPPING INFORMATION"

AT 4, 20

DISPLAY BY NAME gr_orders.order_num, gr_orders.order_date,

gr_customer.customer_num, gr_customer.company

INITIALIZE gr_ship.* TO NULL

75 ➤ IF input_ship() THEN

CALL msg("Shipping information entered.")

END IF

CLOSE WINDOW w_ship

END FUNCTION -- ship_order --

256 Implementing a Master-Detail Relationship

The input_ship() Function

The input_ship() Function
Notes 76 to 83 ➤ The input_ship() function displays the financial information generated by the

calc_order() function and allows changes on the values stored in the gr_ship
global variable. It encapsulates the details of the INPUT statement so that the
logic of function ship_order() can be seen more clearly.

76 ➤ The DISPLAY TO statement displays the subtotal for the order before the
addition of the shipping charges. DISPLAY BY NAME displays the grand total
with the addition of the shipping charges.

77 ➤ The INPUT statement lets the user change any of the shipping information
stored in the orders table. The WITHOUT DEFAULTS clause is necessary to ini-
tialize the fields with the values of the variables rather than the default values
from the form specification fi or the syscolval table.

This INPUT statement does not activate the fi displaying the customer
number, company, order, order date, order subtotal, and order grand total.
The customer and order information should not change when the order is
shipped, and the totals cannot be updated because they are aggregates.

78 ➤ As with the date field in input_order(), the date is initialized to TODAY when
the cursor fi enters it, and any time the user presses CONTROL-D to clear
the field.

79 ➤ The BEFORE FIELD clause initializes the null numeric fi to zero. This
initialization prevents future numeric calculations involving this value from
evaluating to null. A null value in a numeric expression makes the entire
expression yield a null value. The program could initialize this fi (along
with the ship_date and ship_charge fi before the INPUT statement is
entered by setting values in gr_ship and using DISPLAY to show them.
However, the program would still need to test for nulls in the AFTER FIELD

blocks.

80 ➤ The AFTER FIELD clause checks for a null value and resets the fi to the
default. It then makes sure that the user did not enter a negative value for the
shipping weight.

81 ➤ If the shipping charge field is $0.00, the program initializes a standard charge
(1.5 * shipping weight) based on the value previously entered in the shipping
weight field.

In a real application this calculation would involve a table search based on
the customer’s postal code, the shipping weight, or both.

Example 11 257

The input_ship() Function

FUNCTION input_ship()

76 ➤ DISPLAY gr_charges.order_total TO order_amount

IF gr_charges.ship_charge IS NULL THEN

LET gr_charges.ship_charge = 0.00

END IF

LET gr_ship.ship_charge = gr_charges.ship_charge

LET gr_charges.order_total = gr_charges.order_total

+ gr_charges.ship_charge

DISPLAY BY NAME gr_charges.order_total

77 ➤ LET int_flag = FALSE

INPUT BY NAME gr_ship.ship_date, gr_ship.ship_instruct,

gr_ship.ship_weight, gr_ship.ship_charge

WITHOUT DEFAULTS HELP 63

78 ➤ BEFORE FIELD ship_date

IFgr_ship.ship_date IS NULL THEN

LET gr_ship.ship_date = TODAY

END IF

AFTER FIELD ship_date

IFgr_ship.ship_date IS NULL THEN

LET gr_ship.ship_date = TODAY

DISPLAY BY NAME gr_ship.ship_date

END IF

79 ➤ BEFORE FIELD ship_weight

IFgr_ship.ship_weight IS NULL THEN

LET gr_ship.ship_weight = 0.00

END IF

80 ➤ AFTER FIELD ship_weight

IFgr_ship.ship_weight IS NULL THEN

LET gr_ship.ship_weight = 0.00

DISPLAY BY NAME gr_ship.ship_weight

END IF

IFgr_ship.ship_weight < 0.00 THEN

ERROR

"Shipping Weight cannot be less than 0.00 lbs. Please try again."

LET gr_ship.ship_weight = 0.00

NEXT FIELD ship_weight

END IF

BEFORE FIELD ship_charge

IF gr_ship.ship_charge = 0.00 THEN

81 ➤ LET gr_ship.ship_charge = 1.5 * gr_ship.ship_weight

END IF

258 Implementing a Master-Detail Relationship

The order_tx() Function

82 ➤ In the ship_charge field, the AFTER FIELD clause recalculates the grand total
based on the new shipping charge and displays this new value.

83 ➤ The input_ship() function tests to see if the user ended the input session with
the Interrupt key, and then takes one of the following actions:

• If so, input_ship() returns FALSE to prevent the calling function from
updating the order.

• If not, input_ship() returns TRUE to authorize updating the order.

The order_tx() Function
84 ➤ The name of this function means order transaction, not order taxes, as you

might suppose. It takes all the rows that make up the order and inserts them
into the database.

85 ➤ This statement starts a database transaction. It is not required, and will
produce an error if issued in an ANSI-compliant database.

86 ➤ The first step of the transaction must be to insert the row of the orders table.
That creates the order number that appears in each row of the items table. If
the order row is inserted successfully the item rows are inserted.

87 ➤ If either step fails the ROLLBACK WORK statement ensures that all the
inserted items and the orders row are removed. An orders row with no items
will not appear in the database, and neither will items with no corresponding
order.

88 ➤ Ordinarily, all rows are inserted and COMMIT WORK ensures that they are
safely written to disk.

Example 11 259

The order_tx() Function

AFTER FIELD ship_charge

IFgr_ship.ship_charge IS NULL THEN

LET gr_ship.ship_charge = 0.00

DISPLAY BY NAME gr_ship.ship_charge

END IF

IF gr_ship.ship_charge < 0.00 THEN

ERROR "Shipping Charge cannot be less than $0.00. Please try again."

LET gr_ship.ship_charge = 0.00

NEXT FIELD ship_charge

END IF

82 ➤ LET gr_charges.order_total = gr_charges.order_total + gr_ship.ship_charge

DISPLAY BY NAME gr_charges.order_total

END INPUT

83 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL msg("Shipping input terminated.")

RETURN (FALSE)

END IF

RETURN (TRUE)

END FUNCTION -- input_ship --

84 ➤ FUNCTION order_tx()

DEFINE tx_stat INTEGER,

tx_table CHAR(5)

85 ➤ BEGIN WORK

LET tx_table = "order"

86 ➤ LET tx_stat = insert_order()

IF (tx_stat = 0) THEN--* insert into "orders" was

--* successful

LET tx_table = "items"

LET tx_stat = insert_items()

END IF

87 ➤ IF (tx_stat < 0) THEN --* insert into "orders" or

--* "items" failed

ROLLBACK WORK

ERROR tx_stat USING "-<<<<<<<<<<<",

": Unable to save order: ", tx_table, " insert failed."

RETURN (FALSE)

END IF

88 ➤ COMMIT WORK

RETURN (TRUE)

END FUNCTION -- order_tx --

260 Implementing a Master-Detail Relationship

The insert_items() Function

The insert_order() Function
89 ➤ The insert_order() function inserts the new row into the orders table. When

the INSERT statement succeeds, the function captures the SERIAL value of the
new row, which is the order number.

It also displays the order number on the form, an action that might more
properly be performed in the order_tx() function.

The insert_items() Function
90 ➤ The insert_items() function inserts all of the items rows for the order.

It uses the ARR_COUNT() library function to fi out how many rows were
input during the INPUT ARRAY statement. It is possible for the user to create
empty rows in the ga_items array, but any array row that has a non-null stock
number contains a valid item.

Example 11 261

The insert_order() Function

89 ➤ FUNCTION insert_order()

DEFINE ins_stat INTEGER

LET ins_stat = 0

WHENEVER ERROR CONTINUE

INSERT INTO orders (order_num, order_date, customer_num, po_num,

ship_date, ship_instruct, ship_weight, ship_charge)

VALUES (0, gr_orders.order_date, gr_customer.customer_num,

gr_orders.po_num, gr_ship.ship_date, gr_ship.ship_instruct,

gr_ship.ship_weight, gr_ship.ship_charge)

WHENEVER ERROR STOP

IF status < 0 THEN

LET ins_stat = status

ELSE

LET gr_orders.order_num = SQLCA.SQLERRD[2]

DISPLAY BY NAME gr_orders.order_num

ATTRIBUTE (REVERSE, BLUE)

END IF

RETURN (ins_stat)

END FUNCTION -- insert_order --

90 ➤ FUNCTION insert_items()

DEFINE idx INTEGER,
 ins_stat INTEGER

LET ins_stat = 0

FOR idx = 1 TO ARR_COUNT()

IF ga_items[idx].stock_num IS NOT NULL THEN

WHENEVER ERROR CONTINUE

INSERT INTO items

VALUES (ga_items[idx].item_num, gr_orders.order_num,

ga_items[idx].stock_num, ga_items[idx].manu_code,

ga_items[idx].quantity, ga_items[idx].total_price)

WHENEVER ERROR STOP

IF status < 0 THEN

LET ins_stat = status

EXIT FOR

END IF

END IF

END FOR

RETURN (ins_stat)

END FUNCTION -- insert_items --

To locate any function definition, see the Function Index on page 730.

262 Displaying an Unknown Number of Rows

12
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 12 263

Displaying an Unknown
Number of Rows

This example implements lookup lists that can handle any number of rows.
This technique is essential to provide lookups for tables that may grow indef-
initely during the use of the application.

The example also demonstrates an interface for updating a subset of the
columns in the row. The particular application is a shipping module, where
the shipping data-entry staff updates a row created earlier by the order-entry
staff.

Paging Through Rows Using Array Form

264 Displaying an Unknown Number of Rows

Paging Through Rows Using Array Form
To display an indeterminate number of rows in a single-row form, you
retrieve one row at a time and display the row in the form.

To display an indeterminate number of rows in an array form, you adopt a
similar approach. Instead of retrieving one row, however, you retrieve and
display one group of rows at a time. The number of rows in the group
depends on the size of the program array that stores them. The user pages
from one group of rows to the next. Here is an overview of the technique:

1. Declare and open a cursor for a query that selects the rows.

2. Repeat the paging action using a WHILE loop.

3. Populate the array with a set of rows using an inner WHILE loop with a
FETCH statement.

4. Show the rows in the array form with a DISPLAY ARRAY statement.

5. Provide a key to using an ON KEY clause that leaves the form and sets a
fl to trigger repetition of the paging action.

6. Return the current row if the user leaves the form with the Accept key
(typically ESCAPE).

7. Return a null value if the user leaves the form with the Interrupt key
(typically CONTROL-C).

You could enhance this example to permit paging backward as well as
forward through the list. You would declare a scroll cursor rather than a
standard cursor. You would provide an ON KEY clause for backward paging
as well as for forward paging, setting a flag in the ON KEY clauses to indicate
the direction of paging. In the inner WHILE loop, you would execute a FETCH

NEXT or FETCH PREVIOUS statement based on the value of the paging flag.

This example retrieves more rows than can display in the form. To display the
additional rows, the user scrolls the rows using the arrow keys and can only
page forward on the last row. You might size the program array to the array
form and let the user page forward or backward from any row.

One fi enhancement pertains to the SELECT statement, which selects all
rows in the table. If the table is large, this action can be time consuming. You
might consider letting the user enter partial criteria in the fields for which the
popup form lists the values (the customer_num and company fi You
could then pass the value of the fi to the popup function as a parameter.
Within the popup function, you would state the SELECT clause as a character
value, using the MATCHES operator in the WHERE clause to the target

Function Overview

Example 12 265

column. The user could still select all rows from the table by not providing
criteria but could also restrict the selection. If the criteria qualified a single
row, you would want to return it rather than display it in the array form.

Function Overview

Function Name Purpose

find_order() Prompts the user for an order, providing lookup lists to help
the user select the customer and order.

cust_popup2() Retrieves all customers and displays them in an array form
so the user can choose the appropriate customer.

This function is a variation on the manuf_popup() function
from Example 8.

order_popup() Retrieves all orders for a customer and displays them in an
array form so the user can choose the appropriate order.

This function is a variation on the cust_popup() function.

calc_order() Selects information from multiple tables to summarize an
order.
This function resembles the get_summary() function from
Example 4.

input_ship() Accepts user input for shipping information. This function
resembles the change_cust() function from Example 6.
See the description in Example 11.

upd_order() Applies shipping changes to an order.

This function resembles the update_cust() function from
Example 6.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

tax_rates() Supplies the appropriate tax schedule for a customer.
See the description in Example 4

msg() Displays a brief, informative message.
See the description in Example 5.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

266 Displaying an Unknown Number of Rows

The f_ordersel File

The f_ordersel File
1➤ The f_ordersel form is used as a popup window for order information.

2➤ This form defines the sa_order screen array for use with the DISPLAY ARRAY

statement.

Example 12 267

The f_ordersel File

1➤ DATABASE stores7

SCREEN

{

Order Number Order Date PO Number Date Shipped Date Paid

[f001] [f002] [f003] [f004] [f005]

[f001] [f002] [f003] [f004] [f005]

[f001] [f002] [f003] [f004] [f005]

[f001] [f002] [f003] [f004] [f005]

[f001] [f002] [f003] [f004] [f005]

}

TABLES

orders

ATTRIBUTES

f001 = orders.order_num;

f002 = orders.order_date;

f003 = orders.po_num;

f004 = orders.ship_date;

f005 = orders.paid_date;

INSTRUCTIONS

2➤ SCREEN RECORD sa_order[5] (orders.order_num THRU orders.paid_date)

f_ordersel form file

268 Displaying an Unknown Number of Rows

The MAIN Function

The GLOBALS Statement
1➤ The GLOBALS statement declares three records. Although these records all

contain order information, they are defined separately for convenience. For
example, the gr_charges record is used by the calc_order() function, which
appears in several examples. The gr_ship record is used in a SELECT state-
ment with the asterisk notation.

The GLOBALS statement also defines the ga_dsplymsg array used by the
message_window() function.

The MAIN Function
2➤ The MAIN function displays the f_ship form in the w_main window. The

program activates different fields of this form at different times to prompt the
user for selection criteria or update information.

Example 12 269

The GLOBALS Statement

DATABASE stores7

1➤ GLOBALS
DEFINE gr_ordship RECORD

customer_num LIKE customer.customer_num,

company LIKE customer.company,

order_num INTEGER,

order_date LIKE orders.order_date

END RECORD,

gr_charges RECORD

tax_rate DECIMAL(5,3),

ship_charge LIKE orders.ship_charge,

sales_tax MONEY(9),

order_total MONEY(11)

END RECORD,

gr_ship RECORD

ship_date LIKE orders.ship_date,

ship_instruct LIKE orders.ship_instruct,

ship_weight LIKE orders.ship_weight,

ship_charge LIKE orders.ship_charge

END RECORD

DEFINE ga_dsplymsg ARRAY[5] OF CHAR(48)

END GLOBALS

MAIN

DEFINE upd_stat INTEGER

OPTIONS

HELP FILE "hlpmsgs",

COMMENT LINE 1,

MESSAGE LINE LAST

DEFER INTERRUPT

2➤ OPEN WINDOW w_main AT 2,3

WITH 19 ROWS, 76 COLUMNS

ATTRIBUTE (BORDER)

OPEN FORM f_ship FROM "f_ship"

DISPLAY FORM f_ship

4GL source file

270 Displaying an Unknown Number of Rows

The find_order() Function

3➤ The find_order() function activates the f_ship form to prompt the user for
a customer and order number. These fi identify an order. If the user
succeeds in identifying a valid order, find_order() returns TRUE.

4➤ The calc_order() function calculates a fi summary for the order.

5➤ The SELECT statement retrieves the columns of the order row that store
shipping information.

6➤ The input_ship() function activates the f_ship form to prompt the user for
changes to the shipping information. If the user succeeds in changing the
information, input_ship() returns TRUE, and the upd_order() function
updates the row.

The inner IF statement tests the upd_stat variable to notify the user whether
the upd_order() function succeeded in updating the row.

7➤ The MAIN function finishes by closing the form and window and clearing the
screen for the benefit of the environment from which the 4GL program was
invoked.

The find_order() Function
8➤ The calls to the clear_lines() function clear existing information before

executing the DISPLAY AT statement to display a title and instructions for the
input session.

9➤ The LET statement resets the built-in int_flag variable so that after the input
session, the variable will have a value of TRUE only if the user used the
Interrupt key (typically CONTROL-C).

The INPUT statement prompts the user for a customer number and order
number that uniquely identify the order. Other fields on the f_ship form are
not activated. That is, the user cannot position in these fields.

Example 12 271

The find_order() Function

3➤ IF find_order() THEN

DISPLAY

" Press Accept to save shipping info. Press CTRL-W for Help."

AT 17, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY

" Press Cancel to exit w/out saving."

AT 18, 1 ATTRIBUTE (REVERSE, YELLOW)

4➤ CALL calc_order(gr_ordship.order_num)

5➤ SELECT ship_date, ship_instruct, ship_weight, ship_charge

INTO gr_ship.*

FROM orders

WHERE order_num = gr_ordship.order_num

6➤ IF input_ship() THEN

LET upd_stat = upd_order(gr_ordship.order_num)

IF (upd_stat < 0) THEN

ERROR upd_stat USING "-<<<<<<<<<<<",

": Unable to update the order."

ELSE

CALL msg("Order updated with shipping information.")

END IF

END IF

END IF

7➤ CLOSE FORM f_ship

CLOSE WINDOW w_main

CLEAR SCREEN

END MAIN

FUNCTION find_order()

DEFINE cust_num LIKE customer.customer_num,
 last_key SMALLINT

8➤ CALL clear_lines(1, 3)

DISPLAY "ORDER SEARCH" AT 2, 34

CALL clear_lines(2, 17)

DISPLAY " Enter customer number and order number then press

Accept." AT 17, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY " Press Cancel to exit without searching. Press CTRL-W for

Help." AT 18, 1 ATTRIBUTE (REVERSE, YELLOW)

9➤ LET int_flag = FALSE

INPUT BY NAME gr_ordship.customer_num, gr_ordship.order_num

HELP 110

BEFORE FIELD customer_num

MESSAGE

"Enter a customer number or press F5 (CTRL-F) for a list."

272 Displaying an Unknown Number of Rows

The find_order() Function

Notes 10 to 16 ➤ The customer_num and order_num fi each have a BEFORE FIELD clause that
displays instructions for the fi and an AFTER FIELD clause that vali- dates
the value entered by the user.

10 ➤ The AFTER FIELD clause for the customer_num field first verifies that the user
supplied a value. If not, the NEXT FIELD statement repositions the user in the
customer_num fi and resumes the input session.

11 ➤ The SELECT statement attempts to retrieve the company name for the
customer. If the SELECT statement cannot locate a row for the customer
number, 4GL sets the status variable to the same value as the NOTFOUND con-
stant. The IF statement notifies the user, resets the customer_num variable,
and repositions the user in the customer_num field.

If the SELECT statement locates the row, the DISPLAY BY NAME statement
places the company name in the corresponding field, and the MESSAGE state-
ment clears the message from the BEFORE FIELD clause.

12 ➤ The first statements of the AFTER FIELD clause for the order_num field check
whether the user is returning to the customer_num field. In this case, the user
has abandoned the current contents of the order_num field to change the cus-
tomer number, so validation is not appropriate.

The FGL_LASTKEY() built-in function returns the internal identifier for the
last key pressed by the user. Because this value must be compared with two
different values, find_order() saves the value in the last_key local variable to
avoid the ineffi of calling the same function twice.

The calls to the FGL_KEYVAL() built-in function return the internal identifiers
corresponding to the left or up arrow key. The up arrow key performs the
same action as the left arrow key because the default fi order
(CONSTRAINED) applies.

13 ➤ If the user did not enter a value, the IF statement repositions the user in the
order_num field.

14 ➤ The SELECT statement attempts to retrieve the order date and customer
number from the order’s row.

15 ➤ If the built-in status variable indicates that the SELECT statement could not
locate a row with the stated order number, the IF statement resets the order
number and repositions the user in the order_num field.

Example 12 273

The find_order() Function

10 ➤ AFTER FIELD customer_num

IF gr_ordship.customer_num IS NULL THEN

ERROR "You must enter a customer number. Please try again."

NEXT FIELD customer_num

END IF

11 ➤ SELECT company

INTO gr_ordship.company

FROM customer

WHERE customer_num = gr_ordship.customer_num

IF (status = NOTFOUND) THEN

ERROR

"Unknown customer number. Use F5 (CTRL-F) to see valid customers."

LET gr_ordship.customer_num = NULL

NEXT FIELD customer_num

END IF

DISPLAY BY NAME gr_ordship.company

MESSAGE ""

BEFORE FIELD order_num

MESSAGE

"Enter an order number or press F5 (CTRL-F) for a list."

12 ➤ AFTER FIELD order_num

LET last_key = FGL_LASTKEY()

IF (last_key <> FGL_KEYVAL("left"))

AND (last_key <> FGL_KEYVAL("up"))
THEN

13 ➤ IF gr_ordship.order_num IS NULL THEN

ERROR "You must enter an order number. Please try again."

NEXT FIELD order_num

END IF

14 ➤ SELECT order_date, customer_num

INTO gr_ordship.order_date, cust_num

FROM orders

WHERE order_num = gr_ordship.order_num

15 ➤ IF(status = NOTFOUND) THEN

ERROR

"Unknown order number. Use F5 (CTRL-F) to see valid orders."

LET gr_ordship.order_num = NULL

NEXT FIELD order_num

END IF

274 Displaying an Unknown Number of Rows

The find_order() Function

16 ➤ If the customer number in the order row differs from the customer number
entered previously in the customer_num fi the IF statement resets the
order number, clears the order_num fi and repositions the user in the
order_num field.

17 ➤ If the order number passes all validations, the DISPLAY BY NAME statement
shows the order date to the user.

18 ➤ If the user is returning to the customer_num fi (with the up arrow or left
arrow key), the ELSE clause resets the order_num variable and clears the
order_num fi By returning to the customer_num fi the user has
indi- cated that any value in the order_num fi will have to be validated
again.

If the user is not repositioned in the order_num fi with the NEXT FIELD

statement, the MESSAGE statement clears the instructions from the
BEFORE FIELD clause.

19 ➤ The ON KEY clause traps the F5 key or CONTROL-F as a lookup signal.

20 ➤ If the user was positioned in the customer_num fi the IF statement calls
the cust_popup2() function for a customer lookup. The cust_popup2() func-
tion returns a customer number or, if the user does not select a customer, null.

When cust_popup2() returns a null customer_num, a second IF statement
tests the company field. If both these variables are null, then the lookup func-
tion was unable to locate any customers. If only the customer_num variable
is null, the user did not select a customer from the popup window. In either
case, the function returns the cursor to the customer_num field.

If the user did select a customer from the popup window, the function
displays the selected customer number and company name. It then clears the
message line, and positions the cursor in the order_num field.

21 ➤ If the user was positioned in the order_num fi the IF statement calls the
order_popup() function for an order lookup.

Notes 22 to 24 ➤ The return value of order_popup() indicates the appropriate action.

22 ➤ The order_popup() function returns a null value for the order_num and
order_date fields to indicate that the customer specified in the customer_num
fi does not have any orders. The inner IF statement resets the
customer_num and company variables, clears the company fi and repo-
sitions the user in the customer_num field.

23 ➤ The order_popup() function returns a null value for the order_num field and
a non-null value for the order_date fi to indicate that the user left the
popup list without choosing an order. The NEXT FIELD statement repositions
the user in the order_num field.

Example 12 275

The find_order() Function

16 ➤ IF (cust_num <> gr_ordship.customer_num) THEN

ERROR "Order ", gr_ordship.order_num USING "<<<<<<<<<<<",

" is not for customer ",

gr_ordship.customer_num USING "<<<<<<<<<<<"

LET gr_ordship.order_num = NULL

DISPLAY BY NAME gr_ordship.order_num

NEXT FIELD customer_num

END IF

17 ➤ DISPLAY BY NAME gr_ordship.order_date

18 ➤ ELSE

LET gr_ordship.order_num = NULL

DISPLAY BY NAME gr_ordship.order_num

END IF

MESSAGE ""

19 ➤ ON KEY (F5, CONTROL-F)

20 ➤ IF INFIELD(customer_num) THEN

CALL cust_popup2()

RETURNING gr_ordship.customer_num, gr_ordship.company

IFgr_ordship.customer_num IS NULL THEN

IF gr_ordship.company IS NULL THEN

LET ga_dsplymsg[1] = "No customers exist in the database!"

CALL message_window(11, 12)

END IF

NEXT FIELD customer_num

END IF

DISPLAY BY NAME gr_ordship.customer_num, gr_ordship.company

MESSAGE ""

NEXT FIELD order_num

END IF

21 ➤ IF INFIELD(order_num) THEN

CALL order_popup(gr_ordship.customer_num)

RETURNING gr_ordship.order_num, gr_ordship.order_date

22 ➤ IF gr_ordship.order_num IS NULL THEN

IF gr_ordship.order_date IS NULL THEN

LET ga_dsplymsg[1] = "No orders exists for customer ",

gr_ordship.customer_num USING "<<<<<<<<<<<", "."

CALL message_window(11, 12)

LET gr_ordship.customer_num = NULL

LET gr_ordship.company = NULL

DISPLAY BY NAME gr_ordship.company

NEXT FIELD customer_num

23 ➤ ELSE

NEXT FIELD order_num

END IF

END IF

276 Displaying an Unknown Number of Rows

The cust_popup2() Function

24 ➤ If the order_popup() function returns non-null values for both order_num
and order_date, the DISPLAY BY NAME statement displays the values.
Because the validation has guaranteed a valid customer number and order
number, the action fi by executing the EXIT INPUT statement to skip
further validation in the AFTER FIELD and AFTER INPUT clauses.

25 ➤ The AFTER INPUT clause verifies that the user has fi in both
the customer_num and the order_num fields.

26 ➤ If the user used the Interrupt key (typically CONTROL-C), the int_flag built-
in variable evaluates to TRUE and the code block for the IF statement returns
FALSE. If the user used the Accept key (typically ESCAPE), the final RETURN

statement returns TRUE. The return value notifies the MAIN function whether
to continue the shipment-entry routine.

The cust_popup2() Function
27 ➤ The array_size variable stores a constant value representing the number of

elements in the array. Because the cust_popup2() function makes frequent
reference to the array size, this variable makes the code more maintainable.
To redefine the size of the program array, you only have to change the size of
pa_cust in the DEFINE statement and the value assigned to the array_size
variable.

28 ➤ The fetch_custs variable is the controlling variable for the WHILE loop that
pages through the qualified rows (see Note 34). The LET statement sets
fetch_custs to FALSE on the assumption that the query will fail to retrieve any
rows. The cust_popup2() function resets fetch_custs if the query succeeds
(see Note 33).

29 ➤ The SELECT statement counts the number of rows in the customer table. If no
rows exist, the function returns null values for customer_num and company.

Example 12 277

The cust_popup2() Function

24 ➤ DISPLAY BY NAME gr_ordship.order_num, gr_ordship.order_date

MESSAGE ""

EXIT INPUT

END IF

25 ➤ AFTER INPUT

IF NOT int_flag THEN

IF (gr_ordship.customer_num IS NULL)

OR (gr_ordship.order_num IS NULL) THEN

ERROR

"Enter the customer and order numbers or press Cancel to exit."

NEXT FIELD customer_num

END IF

END IF

END INPUT

26 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL clear_lines(2, 17)

CALL msg("Order search terminated.")

RETURN (FALSE)

END IF

CALL clear_lines(2, 17)

RETURN (TRUE)

END FUNCTION -- find_order --

FUNCTION cust_popup2()

DEFINE pa_cust ARRAY[10] OF RECORD

customer_num LIKE customer.customer_num,

company LIKE customer.company

END RECORD,

idx SMALLINT,

i SMALLINT,

cust_cnt SMALLINT,

fetch_custs SMALLINT,

array_size SMALLINT,

total_custs INTEGER,

number_to_see INTEGER,

curr_pa SMALLINT

27 ➤ LET array_size = 10

28 ➤ LET fetch_custs = FALSE

29 ➤ SELECT COUNT(*)

INTO total_custs

FROM customer

278 Displaying an Unknown Number of Rows

The cust_popup2() Function

30 ➤ The cust_popup2() function opens the w_custpop window and the f_custsel
array form to display the customer list.

31 ➤ While the total_custs variable contains the total number of customers, the
number_to_see variable contains the total number of customers left to view.
At first, these two values are identical, but as the user pages through the cus-
tomers, the value of the number_to_see variable decreases.

32 ➤ The idx variable counts the customer rows as they are fetched into the pro-
gram array (see Note 35). The LET statement sets idx to zero because no rows
have been fetched yet.

33 ➤ The DECLARE statement declares the c_custpop cursor for a query that
selects the customer_num and company columns from every row. The
ORDER BY clause sorts the customers by customer number.

If the OPEN statement successfully opens the c_custpop cursor, the LET state-
ment resets the fetch_custs variable to TRUE so the WHILE loop can start
paging through the rows. Otherwise, the function displays an error and sets
both return values to null. Because fetch_custs remains FALSE, the WHILE

loop never executes.

34 ➤ The WHILE statement that tests the fetch_custs variable loops through the
action of filling the pa_cust array with customer rows, activating the f_custsel
form so the user can choose a row or press a key to repeat the loop.

35 ➤ The inner WHILE statement retrieves as many rows as the pa_cust array can
hold. The idx index variable reflects the number of rows retrieved.

On each repetition, the LET statement increments idx to indicate the next
unoccupied array element. The FETCH statement attempts to assign a row to
this unoccupied array element.

If there are no more rows in the table, the FETCH statement sets the status
built-in variable to the value of the NOTFOUND constant. The code block for
the IF statement resets the fetch_custs variable to prevent further paging by
the outer WHILE loop and decrements the idx variable because the array
element was not filled.

Example 12 279

The cust_popup2() Function

IF total_custs = 0 THEN

LET pa_cust[1].customer_num = NULL

LET pa_cust[1].company = NULL

RETURN pa_cust[1].customer_num, pa_cust[1].company

END IF

30 ➤ OPEN WINDOW w_custpop AT 8, 13

WITH 12 ROWS, 50 COLUMNS

ATTRIBUTE(BORDER, FORM LINE 4)

OPEN FORM f_custsel FROM "f_custsel"

DISPLAY FORM f_custsel

DISPLAY "Move cursor using F3, F4, and arrow keys."

AT 1,2

DISPLAY "Press Accept to select a customer."

AT 2,2

31 ➤ LET number_to_see = total_custs

32 ➤ LET idx = 0

33 ➤ DECLARE c_custpop CURSOR FOR

SELECT customer_num, company

FROM customer

ORDER BY customer_num

WHENEVER ERROR CONTINUE

OPEN c_custpop

WHENEVER ERROR STOP

IF (status = 0) THEN

LET fetch_custs = TRUE

ELSE

CALL msg("Unable to open cursor.")

LET idx = 1

LET pa_cust[idx].customer_num = NULL

LET pa_cust[idx].company = NULL

END IF

34 ➤ WHILE fetch_custs

35 ➤ WHILE (idx < array_size)

LET idx = idx + 1

FETCH c_custpop INTO pa_cust[idx].*

IF(status = NOTFOUND) THEN --* no more orders to see

LET fetch_custs = FALSE

LET idx = idx - 1

EXIT WHILE

END IF

END WHILE

280 Displaying an Unknown Number of Rows

The cust_popup2() Function

36 ➤ If the number_to_see variable exceeds the array_size variable, there are more
customer rows to store in the pa_cust array. The MESSAGE statement notifies
the user about the key used to trigger the next repetition of the paging loop.

You could enhance this message to display the number of qualified rows (the
value of total_custs) and the number of rows remaining (the value of idx
subtracted from number-to-see).

37 ➤ The idx variable is zero only if the inner WHILE loop could not retrieve a row
on the fi execution of the loop. The IF statement sets up cust_popup2() to
return null to indicate that the user did not choose a row.

38 ➤ If idx is greater than zero, the inner WHILE loop retrieved some rows, and
cust_popup2() activates the f_custsel form so the user can view the rows.

The SET_COUNT() built-in function tells 4GL how many elements of the array
were populated. All elements will be filled except on the last execution of the
paging WHILE loop.

The LET statement resets the int_flag built-in variable so the cust_popup2()
function can trap the Interrupt key (see Note 44).

39 ➤ The ON KEY clause traps the F5 function key or CONTROL-B to give the user
a mechanism for advancing to the next page of customer rows.

40 ➤ The cust_popup2() function allows paging to the next set of rows only from
the last row of the current set. This restriction forces the user to view all rows
and thus prevents skipping over a row that might be the desired row.

The ARR_CURR() function returns the number of the array element
corresponding to the row on which the cursor is currently positioned. The IF

clause executes only when the cursor is on the last element.

41 ➤ The assignment to number_to_see subtracts the number of rows displayed in
this execution of the paging WHILE loop to find the new number remaining.

If there are rows remaining, the IF clause resets the idx variable and ends the
display session. Resetting idx to zero indicates that no row has been selected
(see Note 43) so the function needs to retrieve the first row of the next set into
the first array element (see Note 35). If no rows remain, the ELSE clause noti-
fi the user.

42 ➤ If the user is not positioned on the last row in the current set, the ELSE clause
notifies the user and then restores the paging instructions.

Example 12 281

The cust_popup2() Function

36 ➤ IF (number_to_see > array_size) THEN

MESSAGE "On last row, press F5 (CTRL-B) for more customers."

END IF

37 ➤ IF (idx = 0) THEN

CALL msg("No customers exist in the database.")

LET idx = 1

LET pa_cust[idx].customer_num = NULL

ELSE

38 ➤ CALL SET_COUNT(idx)

LET int_flag = FALSE

DISPLAY ARRAY pa_cust TO sa_cust.*

39 ➤ ON KEY (F5, CONTROL-B)

40 ➤ LET curr_pa = ARR_CURR()

IF (curr_pa = idx) THEN

41 ➤ LET number_to_see = number_to_see - idx

IF(number_to_see > 0) THEN

LET idx = 0

EXIT DISPLAY

ELSE

CALL msg("No more customers to see.")

END IF

42 ➤ ELSE

CALL msg("Not on last customer row.")

MESSAGE

"On last row, press F5 (CTRL-B) for more customers."

END IF

END DISPLAY

282 Displaying an Unknown Number of Rows

The order_popup() Function

43 ➤ The idx variable is zero only if the ON KEY clause has reset it to prepare for
another repetition of the paging WHILE loop (see Note 41). Otherwise, the
user ended the form session with the Accept or Interrupt key. In this case, the
ARR_CURR() function returns the number of the array element corresponding
to the row on which the user was positioned. The program sets fetch_custs to
FALSE to exit the outer paging WHILE loop.

44 ➤ The IF clause executes if the user uses the Interrupt key. The msg() function
confirms the interrupt for the user and the assignments prepare to return a
null value as after the last row (see Note 37).

45 ➤ The cust_popup2() function finishes by closing the popup form and window
and returning the customer and company values. The return values of
cust_popup2() have to distinguish a chosen customer, no rows in the cus-
tomer table, and voluntary exit without choosing a customer.

The order_popup() Function
Notes 46 to 56 ➤ The logic of the order_popup() function is essentially similar to the

cust_popup2() function. The main difference is, instead of qualifying all
order rows, the order_popup() function restricts the query to rows belonging
to a customer for whom the customer number is passed by parameter. As the
customer table is smaller than the orders table, it is effi to restrict the
selected rows for the larger table. In addition, as customers have a one-to-
many relationship with orders, this hierarchical approach is intuitive.

46 ➤ The SELECT saves the count of the total number of orders for the customer in
the total_orders variable. If the customer does not have any orders, the test
returns all null values to indicate this condition to the calling function.

Example 12 283

The order_popup() Function

43 ➤ IF (idx <> 0) THEN

LET idx = ARR_CURR()

LET fetch_custs = FALSE

END IF

44 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL msg("No customer number selected.")

LET pa_cust[idx].customer_num = NULL

END IF

END IF

END WHILE

45 ➤ CLOSE FORM f_custsel

CLOSE WINDOW w_custpop

RETURN pa_cust[idx].customer_num, pa_cust[idx].company

END FUNCTION -- cust_popup2 --

FUNCTION order_popup(cust_num)

DEFINE cust_num LIKE customer.customer_num,

 pa_order ARRAY[10] OF RECORD
order_num LIKE orders.order_num,

order_date LIKE orders.order_date,

po_num LIKE orders.po_num,

ship_date LIKE orders.ship_date,

paid_date LIKE orders.paid_date

END RECORD,

idx SMALLINT,

i SMALLINT,

order_cnt SMALLINT,

fetch_orders SMALLINT,

array_size SMALLINT,

total_orders INTEGER,

number_to_see INTEGER,

curr_pa SMALLINT

LET array_size = 10

LET fetch_orders = FALSE

46 ➤ SELECT COUNT(*)

INTO total_orders

FROM orders

WHERE customer_num = cust_num

284 Displaying an Unknown Number of Rows

The order_popup() Function

47 ➤ The order_popup() function opens a window and form in which to display
the popup list and instructions to the user.

48 ➤ The assignments set the variables that keep track of the number of rows
remaining to be viewed and the number of rows retrieved in the current
execution of the paging WHILE loop.

The function then declares a cursor and query, opens the cursor, and verifies
that the server did not encounter any problems in attempting to open the cur-
sor. If the OPEN fails, the function returns null values for order_num and
order_date.

49 ➤ The outer WHILE loop shows the user a different set of rows on each
repetition.

The inner WHILE loop fetches as many rows as the array will hold,
terminating prematurely only after the last row has been retrieved. After the
loop finishes, the idx variable stores the number of elements in the array that
are populated.

Example 12 285

The order_popup() Function

IF total_orders = 0 THEN

LET pa_order[1].order_num = NULL

LET pa_order[1].order_date = NULL

RETURN pa_order[1].order_num, pa_order[1].order_date

END IF

47 ➤ OPEN WINDOW w_orderpop AT 9, 5

WITH 12 ROWS, 71 COLUMNS

ATTRIBUTE(BORDER, FORM LINE 4)

OPEN FORM f_ordersel FROM "f_ordersel"

DISPLAY FORM f_ordersel

DISPLAY "Move cursor using F3, F4, and arrow keys."

AT 1,2

DISPLAY "Press Accept to select an order."

AT 2,2

48 ➤ LET number_to_see = total_orders

LET idx = 0

DECLARE c_orderpop CURSOR FOR

SELECT order_num, order_date, po_num, ship_date, paid_date

FROM orders

WHERE customer_num = cust_num

ORDER BY order_num

WHENEVER ERROR CONTINUE

OPEN c_orderpop

WHENEVER ERROR STOP

IF (status = 0) THEN

LET fetch_orders = TRUE

ELSE

CALL msg("Unable to open cursor.")

LET idx = 1

LET pa_order[idx].order_num = NULL

LET pa_order[idx].order_date = NULL

END IF

49 ➤ WHILE fetch_orders

WHILE (idx < array_size)

LET idx = idx + 1

FETCH c_orderpop INTO pa_order[idx].*

IF(status = NOTFOUND) THEN --* no more orders to see

LET fetch_orders = FALSE

LET idx = idx - 1

EXIT WHILE

END IF

END WHILE

286 Displaying an Unknown Number of Rows

The order_popup() Function

50 ➤ If the outer WHILE loop has not reached the last set of rows, a message tells
the user how to advance to the next set.

51 ➤ If no further rows existed for retrieval, the assignment sets up the return
values to indicate that the user did not select a row.

52 ➤ If rows were retrieved, the ELSE clause displays the populated subset of the
array in the f_ordersel form.

53 ➤ The ON KEY clause traps the paging key:

• If the user was positioned on the last row of the current set before press-
ing the key and the current set is not the last set, the idx variable is reset
to zero to read a new set of rows starting with the fi array element.

• If the current set is the last set, a message notifies the user.

• If the user was not on the last row, a message notifies the user.

54 ➤ If the user did not press the paging key, the assignment sets idx to the row on
which the user positioned and sets fetch_orders to FALSE to prevent repeti-
tion of the paging WHILE loop.

55 ➤ If the user used the Interrupt key, the assignment sets the returned order
number to null but not the order date, which is used in the calling function to
distinguish customers without orders from leaving without selecting an
order.

56 ➤ The order_popup() function finishes by closing the popup form and window
and returning the appropriate values.

Example 12 287

The order_popup() Function

50 ➤ IF (number_to_see > array_size) THEN

MESSAGE "On last row, press F5 (CTRL-B) for more orders."

END IF

51 ➤ IF (idx = 0) THEN

CALL msg("No orders exist in the database.")

LET idx = 1
LET pa_order[idx].order_num = NULL

52 ➤ ELSE

CALL SET_COUNT(idx)

LET int_flag = FALSE

DISPLAY ARRAY pa_order TO sa_order.*

53 ➤ ON KEY (F5, CONTROL-B)

LET curr_pa = ARR_CURR()

IF (curr_pa = idx) THEN

LET number_to_see = number_to_see - idx

IF (number_to_see > 0) THEN

LET idx = 0

EXIT DISPLAY

ELSE

CALL msg("No more orders to see.")

END IF

ELSE

CALL msg("Not on last order row.")

MESSAGE "On last row, press F5 (CTRL-B) for more orders."

END IF

END DISPLAY

54 ➤ IF idx <> 0 THEN

LET idx = ARR_CURR()

LET fetch_orders = FALSE

END IF

55 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL msg("No order number selected.")

LET pa_order[idx].order_num = NULL

END IF

END IF

END WHILE

56 ➤ CLOSE FORM f_ordersel

CLOSE WINDOW w_orderpop

RETURN pa_order[idx].order_num, pa_order[idx].order_date

END FUNCTION -- orders_popup --

288 Displaying an Unknown Number of Rows

The upd_order() Function

The calc_order() Function
Notes 57 to 59 ➤ The calc_order() function uses a series of SELECT statements to retrieve

summary information for an order from several tables in much the same
manner as the get_summary() function. See Example 4 for a more complete
description of the techniques used in this function.

57 ➤ The fi query uses a join to get the ship_charges column from the orders
table and the state code from the customer table. The join is necessary to
identify the customer based on the order. If the ship_charges column is empty
(null), the function sets the ship_charges variable to zero.

58 ➤ The second query totals the charges associated with the order from the items
table. Again, if the total is null the default is zero.

59 ➤ The tax_rates() function returns the percentage of sales tax applied within the
state (simplifying the real sales tax structures for demonstration purposes).

The assignment to the sales_tax variable calculates the sales tax on the total
item charges. The assignment to the order_total variable subtotals the order
charges (the shipping charges are added in the input_ship() function).

The upd_order() Function
60 ➤ The upd_order() function updates the order row in the database. As in

previous examples, upd_order() supports recovery from an SQL error at
runtime by:

• Suppressing termination on errors with the WHENEVER ERROR

CONTINUE statement.

• Executing the SQL statement.

The UPDATE statement updates only those columns that were accessed
by the input_ship() function.

• Resuming termination on errors with the WHENEVER ERROR STOP

statement.

• Evaluating the status variable to determine whether an error occurred.

The upd_order() function returns the status to the MAIN function, which
notifies the user of the error or of the success of the update.

Example 12 289

The calc_order() Function

FUNCTION calc_order(ord_num)

DEFINE ord_num LIKE orders.order_num,

 state_code LIKE customer.state

57 ➤ SELECT ship_charge, state

INTO gr_charges.ship_charge, state_code

FROM orders, customer

WHERE order_num = ord_num

AND orders.customer_num = customer.customer_num

IFgr_charges.ship_charge IS NULL THEN

LET gr_charges.ship_charge = 0.00

END IF

58 ➤ SELECT SUM(total_price)

INTO gr_charges.order_total

FROM items

WHERE order_num = ord_num

IFgr_charges.order_total IS NULL THEN

LET gr_charges.order_total = 0.00

END IF

59 ➤ CALL tax_rates(state_code) RETURNING gr_charges.tax_rate

LET gr_charges.sales_tax = gr_charges.order_total *

(gr_charges.tax_rate / 100)

LET gr_charges.order_total = gr_charges.order_total +

gr_charges.sales_tax

END FUNCTION -- calc_order --

60 ➤ FUNCTION upd_order(ord_num)

DEFINE ord_num LIKE orders.order_num

WHENEVER ERROR CONTINUE

UPDATE orders SET (ship_date, ship_instruct, ship_weight, ship_charge)

= (gr_ship.ship_date, gr_ship.ship_instruct,

gr_ship.ship_weight, gr_ship.ship_charge)

WHERE order_num = ord_num

WHENEVER ERROR STOP

RETURN (status)

END FUNCTION -- upd_order --

To locate any function definition, see the Function Index on page 730.

290 Calling a C Function

13
1.Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

 13.Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 13 291

Calling a C Function
When something cannot easily be done in 4GL, you can code that operation
in a C function and call it from the 4GL program. This example displays a C
function of moderate size and shows how it is invoked from a 4GL program
compiled with either the INFORMIX-4GL C Compiler or the INFORMIX-4GL

Rapid Development System.

The fglgets.c module examined here enhances 4GL with the ability to write
command-line utility programs in addition to interactive applications more
typical of 4GL. It allows, for example, programs driven by data in text files.

The Interface Between C and 4GL
This section provides a brief, conceptual overview of the interface between
4GL and C. For further detail, see Chapter 2 of the INFORMIX-4GL Reference
manual.

The Argument Stack
Within a 4GL program, arguments are passed to functions and results are
returned on a pushdown stack of values. When a function is called, its
arguments are pushed on the stack. Upon entry to the function, the argu-
ments are popped into local variables. When a function executes the RETURN

statement, copies of the returned value or values are pushed on the stack.
Upon return to the point of call, returned values are popped from the stack.

The Interface Between C and 4GL

292 Calling a C Function

Each value on the argument stack carries its data type as well as its contents.
As a result, values can be type-converted as they are popped. This explains
how a function can define its arguments with a different type than its caller
may have passed. The types are converted when the arguments are popped.
In the same way, a function can return a value of a type different from what
the caller receives. Any conversion supported by the LET statement is
allowed.

Passing Arguments to a C Function
A function written in C and linked with a 4GL program must also receive its
arguments from the argument stack. A function receives exactly one formal
parameter by the normal C calling conventions. This is an integer that con-
tains a count of the number of arguments that were pushed on the 4GL argu-
ment stack when the function was called. The number of arguments pushed
can differ from one call to the next.

The C function acquires the actual values of its arguments by popping them
from the argument stack. It does this by calling one of the pop functions built
into 4GL. There is one pop function for each data type. For example, popint()
pops the top stack item as an integer. The type popped need not be the same
as the type pushed by the caller, so long as type conversion is possible.

Returning Values from a C Function
A C function can return one or more values to the calling 4GL program. The
number of values it returns must agree with the number expected by the
caller.

To return a value, the C function uses a return function built into 4GL. There
is one return function for each data type. For example, retquote() pushes a
character string onto the stack. The return functions make a copy of the value,
so that the function can return the contents of local variables that will disap-
pear when it terminates. The type pushed need not be the same as what the
caller will pop, so long as type conversion is possible.

The formal value returned from the C function using the RETURN statement
must be an integer giving the number of values pushed on the argument
stack. Thus a function that returns no values on the stack should exit with the
statement return(0). One that pushed a single value before terminating
should end with return(1), and so on.

The fglgets.c Module

Example 13 293

The fglgets.c Module
The C function in this example is named fglgets(). Its purpose is to read lines
from text fi It is named after the C library routine fgets(), which it uses.

The fglgets() function adds considerable new power to 4GL. The usual
strengths of 4GL are in interactive applications, where menus and screen
forms make it easy to build an attractive user interface. With fglgets() you can
use 4GL to write command-line utility programs. That is, programs that are
driven by data in text files or data produced by other command-line utilities.
You can write database-access programs that can be used in a command
pipeline with other utility programs.

Using fglgets()
The fglgets() function takes one argument, the name of a text file. It reads the
next line of input from that file and returns the line as a parameter to the call-
ing function. A return code is available by calling fglgetret(). The following
program fragment shows how a 4GL program can use these two functions.

DEFINE fname CHAR(80), fline CHAR(255)

PROMPT "Enter file pathname: " FOR fname

CALL fglgets(fname) RETURNING fline -- read first line

WHILE fglgetret() = 0 -- while not end-of-file or error

DISPLAY fline

CALL fglgets(fname) RETURNING fline

END WHILE

Each call to fglgets() returns the next line of text from the specified fi The
fglgetret() function returns a nonzero value at end-of-file. The code in the pre-
ceding example merely displays the data, but any kind of processing is pos-
sible. For example, each input line could have been:

• Inserted into a table in a database.

• Used as the key to retrieve a row from a database.

• Prepared as an SQL statement and executed.

294 Calling a C Function

The fglgets.c Module

Access to the standard input stream is provided by fglgets() as a special case.
When the filename is omitted, or contains a null string or the string “stdin,”
fglgets() reads from stdin. A 4GL program that reads from standard input can
be used in a command pipeline, processing data that is generated by another
program. The DISPLAY statement writes to standard output, so processed
data can be passed on to the next program in the pipeline.

As many as eight named files can be open simultaneously, in addition to the
standard input.

The Design of fglgets()
The function maintains a list of up to eight standard C fi pointers (that is,
FILE * values as returned by fopen()). Each one is associated with a character
string containing the pathname associated with it.

When it is called, the function checks the number of arguments that were
pushed for it. If there were none (that is, if it was called with an empty
argument list), or if the argument proves to be an empty string, it uses stdin.
Otherwise it looks for that string in its list of filenames. If it does not appear
there, fopen() is called to open the file. If it succeeds, the resulting file pointer
is saved, along with its name.

After identifying the fi the function reads a line from the fi with fgets()
and returns it by pushing it on the argument stack.

Returning Both a Value and a Code
The fglgets() function has two pieces of information to return to its caller. One
is the line of text from the fi the other is a return code. Six codes are possi-
ble:

0 success; a line was read from the file.

100 end-of-file was reached.

-1 error opening file.

-2 too many fi open at once.

-3 unable to allocate space to store fi string.

-4 wrong number of arguments passed (more than one).

Three ways of returning such codes were examined during the coding of this
example. They are described in the following sections.

Example 13 295

The fglgets.c Module

Using a Global Variable

The first method is to store the return code in some global variable and let the
4GL program fetch it from there. Unfortunately, a 4GL program can refer to C
global variables only when it has been compiled by the C Compiler. When the
same program is compiled under the Rapid Development System, it can no
longer access C external global variables.

In order to make fglgets() usable from all 4GL programs, its return code must
be returned in a different way.

Returning Two Values

When a 4GL function has two values to return, it may simply return two
values. The 4GL RETURN statement accepts a list of one or more values,
separated by commas. Any C function, too, may return two or more values
by pushing them on the argument stack. So fglgets() could have been written
to return both a string of text and an integer return code.

The only problem with returning two values is that it restricts the form of a
CALL statement. If fglgets() returned two values, it could only be called in a
statement like the following one.

CALL fglgets(fname) RETURNING text_line, ret_code

So long as the function returns a single value, it may also be used in a LET

statement or in an expression, as in the following examples.

LET text_line = fglgets()

…or…

WHILE LENGTH(fglgets(fname)) <> 0

DISPLAY "flushing..."

END WHILE

Using an Access Function

The third method is to provide a function that will retrieve the return code.
This is the method used in this example. A small function, fglgetret(), picks
up the most recent return code and stacks it as its return value.

This solution works in all versions of 4GL, and allows both the input function
and the return code to be used in LET statements and expressions.

296 Calling a C Function

The fglgets.c Module

Handling Arguments
C functions have only incomplete control over the number of arguments that
will be passed to them on the 4GL argument stack. When a function is used
with the Rapid Development System, the maximum number of arguments it
permits is defined in the fglusr.c file (this is discussed in the next section). 4GL

functions cannot call it with more arguments. However, the C Compiler has
no information about the interface to an external function. It will permit a 4GL

function to call a C function (or a 4GL function in a different source module)
with any number of arguments. The only restriction is that the same number
of arguments must be used in every call within one source module.

As a result the C function must be prepared to handle different numbers of
arguments. It can insist on an exact number, or it can define defaults for omit-
ted arguments.

The fglgets() function accepts either zero or one argument. If no argument is
passed, it assumes “stdin”. One argument is taken to be a fi If more
than one argument is passed, the function sets an error code and returns an
empty string.

A function is always supposed to clear the argument stack before pushing
return values. When too many arguments are passed, it faces a problem: how
to pop arguments of unknown type. If it pops an argument using a type that
is incompatible with the stacked value, 4GL will stop with a runtime error.
The simplest policy is to pop unknown arguments as character strings. Any
data type except BYTE or TEXT can be converted to a character string, and if
the string is too long, 4GL will truncate it without error.

Example 13 297

Running the Example

Running the Example
All examples in this manual can run in both the Rapid Development System
(r4gl) and the C Compiler (i4gl) environments. However, these two environ-
ments differ in the way they call a 4GL program that uses C functions. To
enable Example 13 to run the fglgets() function in either environment, this
example is divided into two 4GL programs:

• The ex13.4gl fi is a front-end menu-driven program that asks:

• Whether to run the example under i4gl or r4gl.

• Whether to expect the input lines from an ASCII file or from the screen
(stdin).

• The ex13a.4gl file is the program that actually calls the C function fglgets()
to read and display the input lines.

The ex13.4gl fi displays menus to gather the information it needs to deter-
mine how to call the ex13a.4gl program. The actual command to execute
ex13a.4gl is stored in a shell script. For i4gl, this script is the ex13i.sh file and
for r4gl, this script is called ex13r.sh. The ex13.4gl program builds a string
with the appropriate executable files and then uses the RUN command to the
appropriate shell script.

To run this example, you must:

1. Compile the two 4GL source files. To create the ex13.4go (or ex13.4gi) and
ex13a.4go (or ex13a.4gi) fi follow the same procedure you have used
to compile the other examples in this manual.

2. Create the executable fi that recognize the fglgets() C function. This
procedure depends on the environment you are using. It is described in
the following section.

3. Run the ex13.4gl program using the same procedure you have used to run
the other examples in this manual.

298 Calling a C Function

Running the Example

Creating the Executable Files
You must link the binary executable form of the C function with the 4GL

program before you can use it. This procedure depends on the programming
environment you are using:

i4gl Add the C source fi to the definition of a program, using the
Program Modify menu. The C source file will be included when the
program is compiled.

c4gl List the C source file along with the 4GL source files as an argument
to the c4gl command.

fglpc Compile 4GL source files as usual. Create a custom program runner
to link the C module with fglgo.

r4gl Compile 4GL modules as usual. Create a custom runner program
and then use the Program Modify menu to specify this custom run-
ner for the program.

This section outlines the procedure to follow to compile and run Example 13.
Refer to Chapter 1 of the INFORMIX-4GL Reference manual for more detailed
information.

Note: To create the executable files, you must have a C compiler installed on your
system.

Using r4gl or fglpc

When you compile the 4GL modules with r4gl (or fglpc), the resulting
program is executed by a “runner,” or execution module. The standard run-
ner, fglgo, supports only the built-in functions that are standard with 4GL.
However, if your program calls a C function, that function must be linked
into the runner.

You compile and link the program in two steps:

1. Add lines that describe the C function (or functions) in the fgiusr.c file.
This step has been done in the fgiusr.c fi that is released with these
examples.

2. Use the cfglgo (compile fglgo) command to compile and link the fgiusr.c
file and the C source files with the base code of the runner. The result is a

Example 13 299

Running the Example

custom runner, that is, a version of fglgo that contains your C functions as
well as the standard ones.

To create the custom runner for Example 13, use the command:

cfglgo fgiusr.c fglgets.c -o fglgo13

This command creates the fglgo13 custom runner to run the ex13a.4go
(or ex13a.4gi) file.

Note: Because the name of the custom runner (fglgo13) is hard-coded in the
ex13.4gl file, you must use this name to execute this example.

Using i4gl or c4gl

When you compile the 4GL modules with i4gl (or with c4gl), the resulting
program can be executed directly. To compile and link modules, you just list
the module names as arguments to the c4gl command. No custom runner is
required.

You compile in a single step:

• The c4gl command compiles 4GL and C source fi and links them to
produce an executable program.

To create the executable program for Example 13, use the command:

c4gl ex13a.4gl fglgets.c -o ex13a.4ge

This command creates the ex13a.4ge executable file.

Note: Because the name of the executable file (ex13a.4ge) is hardcoded in the
ex13.4gl file, you must use this name to execute this example.

Calling the Executable File
The fglgets() function accepts at most one argument. If it receives no
argument, fglgets() reads input lines from standard input (stdin). If it receives
an argument, it reads input lines from this file.

Function Overview

Example 13 301

The program menu treats it as a filename and asks the user to choose whether
input lines are to come from standard input (Stdin) or an ASCII fi (Ascii):

• If you select the Stdin option, ex13.4gl calls the appropriate executable file
without an argument:

• i4gl and c4gl:

ex13a.4ge

• r4gl and fglgo:

fglgo13 ex13a

• If you select the Ascii option, ex13.4gl provides a form for the entry of the
filename. It then calls the appropriate executable file with the filename as
an argument:

• i4gl and c4gl:

ex13a.4ge filename

• r4gl and fglgo:

fglgo13 ex13a filename

C Module Overview

C Module Purpose

fgiusr.c Used to make a custom runner including fglgets.c

fglgets.c Defines a C function for reading stream input using the
fgets() function from the standard C library.

C Module Overview

300 Calling a C Function

Function Overview

Function Name Purpose

fdump() Displays an error message if the pathname cannot be saved
or opened, or if the fi is empty.

getquote() Gets an argument from the stack as a character string.

fglgetret() Gets the most recent return code and stacks it as its return
value.

fglgets() Reads lines from text fi using the C library routine.

To locate any function definition, see the Function Index on page 730.

The f_name Form

302 Calling a C Function

The f_name Form
1➤ This form does not need to specify a specific database because it does not

contain fi defined like database columns.

2➤ The form contains a single 50-character fi The TYPE CHAR keywords
define the type of data accepted in this field.

The f_name Form

Example 13 303

1➤ DATABASE formonly

SCREEN

{

Name:[f000]

}

ATTRIBUTES

2➤ f000 = formonly.a_char TYPE CHAR;

f_name form file

304 Calling a C Function

The MAIN Function

The MAIN Function
1➤ NUM_ARGS() is a 4GL built-in function that returns a count of the command-

line arguments to the program. When the program is given no command-line
arguments, it passes an empty fi which fglgets() interprets as mean-
ing stdin.

2➤ Each command-line argument is fetched by culling the built-in function
ARG_VAL() and is passed in turn to the fdump() subroutine. If that function
returns a status other than NOTFOUND the loop ends.

3➤ If the loop ends because error status is returned, the error is displayed to the
user. Note the use of \n to get additional line spaces in the output. The
PROMPT start lets the user read the error message before the screen is cleared
by the end of the program.

Example 13 305

The MAIN Function

MAIN

DEFINE arg SMALLINT,
 fstat SMALLINT,

 anarg CHAR(80)

IF NUM_ARGS() = 0 THEN

1➤ LET anarg = " "

CALL fdump(anarg) RETURNING fstat

ELSE

2➤ FOR arg = 1 TO NUM_ARGS()

LET anarg = ARG_VAL(arg)

CALL fdump(anarg) RETURNING fstat

IF fstat <> NOTFOUND THEN

EXIT FOR

END IF

END FOR

END IF

3➤ IF fstat <> NOTFOUND THEN -- quit due to a problem, diagnose

CASE fstat

WHEN -1

DISPLAY "\nUnable to open file ", anarg CLIPPED, ".\n"

WHEN -2

DISPLAY "\nToo many files open in fglgets().\n"

WHEN -3

DISPLAY "\nCall to malloc() failed. Couldn’t open the file.\n"

WHEN -4

DISPLAY "\nToo many parameters to fglgets().\n"

OTHERWISE

DISPLAY "\nUnknown return ",fstat," from fglgets().\n"

END CASE

PROMPT "Press RETURN to continue." FOR anarg

END IF

END MAIN

4GL source file

306 Calling a C Function

The fdump() Function

The fdump() Function
4➤ Errors are diagnosed when fglgets() is fi called with a new fi If

fglgets() cannot save the pathname or cannot open it, a call to fglgetret() will
return a negative number. Also, if the file is empty, the end-of-file code of 100
is returned after this fi use.

Example 13 307

The fdump() Function

FUNCTION fdump(fname)

DEFINE fname CHAR(80),
 inline CHAR(255),

 ret SMALLINT

4➤ CALL fglgets(fname) RETURNING inline

LET ret = fglgetret()

IF ret = 0 THEN -- successful read of first line

IF fname <> " " THEN

DISPLAY "-------------- dumping file ",

fname CLIPPED,

"----------------"

END IF

WHILE ret = 0

DISPLAY inline CLIPPED

CALL fglgets(fname) RETURNING inline

LET ret = fglgetret()

END WHILE

IF ret = NOTFOUND AND fname <> " " THEN

DISPLAY "\n-------------- end file ",

fname CLIPPED,

"----------------\n"

SLEEP 3

END IF

END IF

RETURN ret

END FUNCTION -- fdump --

308 Calling a C Function

The fgiusr.c Module

The fgiusr.c Module
1➤ By special arrangement you are allowed to read the following material.

2➤ Forward declarations of the functions make it possible to compile their
addresses into the table that follows.

3➤ Each row of the table consists of the name of the function (in characters), its
address, and the limit on arguments. Because fglgets() allows zero or one
argument, its limit is given as a negative number.

Example 13 309

The fgiusr.c Module

/***

*

* INFORMIX SOFTWARE, INC.

*

* PROPRIETARY DATA

*

1➤ * THIS DOCUMENT CONTAINS TRADE SECRET DATA WHICH IS THE PROPERTY OF

* INFORMIX SOFTWARE, INC. THIS DOCUMENT IS SUBMITTED TO RECIPIENT IN

* CONFIDENCE. INFORMATION CONTAINED HEREIN MAY NOT BE USED, COPIED OR

* DISCLOSED IN WHOLE OR IN PART EXCEPT AS PERMITTED BY WRITTEN AGREEMENT

* SIGNED BY AN OFFICER OF INFORMIX SOFTWARE, INC.

*

* THIS MATERIAL IS ALSO COPYRIGHTED AS AN UNPUBLISHED WORK UNDER

* SECTIONS 104 AND 408 OF TITLE 17 OF THE UNITED STATES CODE.

* UNAUTHORIZED USE, COPYING OR OTHER REPRODUCTION IS PROHIBITED BY LAW.

*

* Title: fgiusr.c

* Sccsid: @(#)fgiusr.c 7.2 7/8/90 13:50:19

* Description: definition of user C functions

*

*** */

/***

* This table is for user-defined C functions.

* Each initializer has the form:

* "name", name, nargs,

* Variable # of arguments:

* set nargs to -(maximum # args)

*

* Be sure to declare name before the table and to leave the

* line of 0’s at the end of the table.

*

* Example:

* You want to call your C function named "mycfunc" and it expects

* 2 arguments. You must declare it:

* int mycfunc();

* and then insert an initializer for it in the table:

* "mycfunc", mycfunc, 2,

*** */

#include "fgicfunc.h"

2➤ int fglgets(); /* declaring the names of the function */

int fglgetret();

cfunc_t usrcfuncs[] =

{

3➤ "fglgets", fglgets, -1,

"fglgetret", fglgetret, 0,

0, 0, 0

};

The fgiusr.c source file

310 Calling a C Function

The fglgets.c Module

The fglgets.c Module
1➤ fglgets() never closes a fi It does not support rereading of fi nor can it

reuse entries in its array of file pointers. It would not be difficult to add these
abilities. Possible methods include:

• Close a file whenever end-of-file is seen. This would present the problem
that, if the caller does not note the end-of-file status when it appears, the
next call would reopen the same fi and start reading it from the top
again.

• Require two arguments on every call: a filename string and an operation
code (perhaps O, R, and C for open, read, and close).

• Provide a separate function that closes a fi given its name string.

You might want to enhance this module along one of these lines.

2➤ Static variables are used to record the files that fglgets() has opened. The vari-
able nfiles represents the number of files open at any given time. Pointers to
their name strings are in fnames[0…nfiles-1]. File pointers returned by
fopen() are in fi [0…-1].

The fglgets.c Module

Example 13 311

/* ==

This module defines a C function for reading stream input using

the fgets() function from the standard C library. The main

use intended is to read from standard input so that a 4GL

program can act as a UNIX filter; however any ascii file may be

read.

In 4GL notation the interface to this module is

DEFINE input_line, file_pathname CHAR(255)

CALL fglgets(file_pathname) RETURNING input_line

fglgets() returns the next input line, to a maximum of 255

bytes, from the specified file.

The input file will be standard input in any of three cases:

* the filename parameter is not specified

* the filename parameter is a null string (or all-blank)

* the filename parameter is "stdin"

Otherwise the specified file is opened mode "r" (if necessary).

A file is only opened once. Its name and file pointer are

saved and used on subsequent calls for that name. Several files

1➤ may be opened concurrently (see MAXOPEN below).

The function returns the line of data as a string result. The

terminating newline is not returned. Thus a blank string is

returned where the file contains a null line.

This function should not be used for interactive input. The

reason is that stdout is not flushed prior to input, so a

prompt string written with DISPLAY may not be seen by the user.

For interactive applications use PROMPT or INPUT.

The function has a result code which can have any of the

following values:

0 successful read

100 end of file

-1 UNIX would not open the file (fopen returned NULL)

-2 too many files open (MAXOPEN exceeded)

-3 malloc failed, we couldn’t save the filename

-4 too many parameters to fglgets()

When the return code is other than 0, the returned string is

always null (all-blank). However, to retrieve the return code

the 4GL program must call fglgetret(), which returns an integer.

== */

#include <stdio.h>

#include <strings.h>

#define MAXOPEN 8

#define MAXSTR 256 /* includes the null - max data is 255!!! */

2➤ static short nfiles = 0; /* how many filenames we know about */

static char *fnames[MAXOPEN]; /* ->saved filename strings for compares */

static FILE *files[MAXOPEN]; /* saved fileptrs for open files */

The fglgcts.c source file

312 Calling a C Function

The fglgetret() Function

The getquote() Function
3➤ The getquote() function gets an argument from the 4GL argument stack as a

character string. The built-in function popquote() does this; however,
popquote() always extends the popped value to the size of the receiving
buffer. The remaining code strips the trailing blanks so that, if an empty
string is passed, it will have zero length.

Note that 4GL versions 4.1 and later include the built-in function popvchar(),
which does precisely this: popping a value as a character string with no trail-
ing spaces. It could be used in place of this function.

The fglgetret() Function
4➤ The fglgetret() function returns the value last stored in the static retcode

variable. It does not test the number of arguments passed to it. If it is passed
any, they will remain on the stack when it returns and the program will
probably terminate with a 4GL error message.

5➤ The built-in function retshort() pushes a short integer on the argument stack.

The formal return value is the count of return values pushed, namely 1.

Example 13 313

The getquote() Function

static short retcode = 100; /* return code with initial value */

/* ===

This function performs a 4gl "popquote" or argument fetch.

*/

3➤ void getquote(str,len)
char *str; /* place to put the string */

int len; /* length of string expected */

{

register char *p;

register int n;

popquote(str,len);

for(p = str, n = len-1 ;

(n >= 0) && (p[n] <= ’ ’);

--n)

;

p[n+1] = ’\0’;

}

/* ===

This function returns the last retcode, using 4GL conventions.

*/

4➤ int fglgetret(numargs)
int numargs; /* number of parameters (ignored) */

{

5➤ retshort(retcode);

return(1); /* number of values pushed */

}

314 Calling a C Function

The fglgets() Function

The fglgets() Function
6➤ The C switch statement is very useful for determining the number of

arguments. First, set up appropriate default values. In this instance a default
null string is placed in astring. Then, enter a switch in which the acceptable
numbers of arguments are listed as cases in descending order. In each case,
pop one argument. Because there is then one fewer argument on the stack,
control can fall through into the next case.

7➤ The default is reached when an unknown number of arguments has been
passed. Because their types are not known, the safest thing is to pop them as
character strings.

8➤ A fi string is looked up in the list of known fi and opened if
necessary. The structure of this passage is described in C commentary on the
preceding page.

This code assumes that all elements of the arrays fi and fnames from
0 through nfiles-1 are in use. If this module is enhanced to close fi (as
discussed in Note 1), the close function must maintain this invariant,
probably by compacting the arrays.

Example 13 315

The fglgets() Function

/* ===

The steps of the fglgets operation are as follows:

1. check number of parameters; if >1 return null & -4

2. get filename string to scratch string space

3. if we do not have stdin,

a. if we have never seen this filename before,

i. if we have our limit of files, return null & -2

ii. if unix will not open it, return null & -1

iii. if we cannot save the filename string, return null & -3

iv. else save filename and matching FILE*

b. else pick up FILE* matching filename

4. else pick up FILE* of stdin

5. apply fgets(astring,MAXSTR,file) and note result

6. if fgets() returned NULL, return null & 100

7. check for and zap the trailing newline, return line & 0

*/

int fglgets(numargs)

int numargs; /* number of parameters in 4gl call */

{

register int ret; /* running success flag --> sqlcode */

register int j; /* misc index */

register char *ptr; /* misc ptr to string space */

FILE* afile; /* selected file */

char astring[MAXSTR]; /* scratch string space */

astring[0] = ’\0’; /* default parameter is null string */

ret = 0; /* default result is whoopee */

afile = stdin; /* default file is stdin */

6➤ switch (numargs)

{

case 1: /* one parameter, pop as string */

getquote(astring,MAXSTR);

case 0: /* no parameters, ok, astring is null */

break;
default: /* too many parameters, clear stack */

7➤ for(j = numargs; j; --j)

popquote(astring,MAXSTR);

ret = -4;

}

if ((ret == 0) /* parameters ok and.. */

&& (astring[0])/* ..non-blank string passed.. */

&& (strcmp(astring,"stdin")))/* ..but not "stdin".. */

{ /* ..look for string in our list */

8➤ for (j = nfiles-1;

(j >= 0) && (strcmp(astring,fnames[j]));

--j)

;

if (j >= 0) /* it was there (strcmp returned 0) */

afile = files[j];

else /* it was not; try to open it */

{

316 Calling a C Function

The fglgets() Function

9➤ If control reaches this point without error, afile contains a valid fi handle
and a line can be read.

10 ➤ If control reaches this point without error, a line has been read. If not, this
statement prepares an empty string to be returned.

11 ➤ Because one value, a string, is always pushed on the stack, the function
always exits with a formal return value of 1.

Example 13 317

The fglgets() Function

if ((j = nfiles) < MAXOPEN)

{ /* not too many files, try fopen */

afile = fopen(astring,"r");

if (afile == NULL)

ret = -1;

}

else ret = -2;

if (ret == 0)/* fopen worked, get space for name */

{

ptr = (char *)malloc(1+strlen(astring));

if (ptr == NULL) ret = -3;

}

if (ret == 0)/* have space, copy name & save */

{

files[j] = afile;

fnames[j] = ptr;

strcpy(ptr,astring);

++nfiles;

}

}

}

9➤ if (ret == 0) /* we have a file to use */

{

ptr = fgets(astring,MAXSTR,afile);

if (ptr != NULL)/* we did read some data */

{ /* check for newline, remove */

ptr = astring + strlen(astring) -1;

if (’\n’ == *ptr) *ptr = ’\0’;

}

else ret = 100; /* set eof return code */

}

10 ➤ if (ret) /* not a success */

astring[0] = ’\0’;/* .. ensure null string return */

retcode = ret; /* save return for fglgetret() */

retquote(astring);/* set string RETURN value.. */

11 ➤ return(1); /* .. and tell 4gl how many pushed */

}

To locate any function definition, see the Function Index on page 730.

318 Generating a Report

14
1.Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
 14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27. Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 14 319

Generating a Report
This example shows you how to produce a basic report. The 4GL report tools
are among the most important for database application development because
they let you view and analyze the data stored in the database.

This example introduces the following 4GL programming techniques:

• Sending rows to a report.

• Setting page margins.

• Providing headers and footers for the page.

• Formatting database columns as columns in the report.

• Sending the report to the screen.

The Program Model

320 Generating a Report

The Program Model
4GL contains extensive facilities for generating reports based upon a two-part
program model:

database row producer report generator report

The row producer provides a supply of rows of data. The report generator
(which is a single function) formats those rows into a pleasing report with
pagination, group headings, and other features.

This two-part model allows you to structure your report programs in the
following ways:

• The row producer, which comprises the MAIN function and most of the
functions in the program, is concerned only with the content of the data.
It does not format the information.

This portion of the program essentially fetches rows and passes them, a
row at a time, to the report generator.

• The report generator is concerned only with the format of the data. It need
not be concerned with the source of the data or with its content, except as
it relates to the format.

Steps in Generating a Report
The basic sequence of actions in the row producer portion of the 4GL program
is as follows:

DECLARE

CURSOR

You declare a cursor for the query that qualifies the
appropriate rows for the report.

The column list for the SELECT statement should specify
only those columns needed for the report, because the
unneeded columns will slow down the report generation.

The ORDER BY clause of the SELECT statement is extremely
important because it determines the sorting sequence of

...

...

...

...

...

Basic Parts of a Report

Example 14 321

rows in the report. The WHERE clause is also important if the
report covers a subset of the rows.

START REPORT You prepare the report generator to run the report.

FOREACH You retrieve the rows qualified by the query one at a time
into variables of the report driver function. You can also use
a WHILE loop that executes a FETCH statement, but the
FOREACH statement is more convenient in many cases.

OUPUT TO

REPORT

Within the FOREACH loop, you use the OUTPUT TO REPORT

statement to pass the data, one row at a time, to the report
generator function.

The OUTPUT TO REPORT statement is to a report generator
function what the CALL statement is to a standard 4GL func-
tion. As with any function call, the report generator must
define a parameter for each value passed by the OUTPUT TO

REPORT statement.

FINISH REPORT You signal the report generator to end the report after
passing the last row.

So long as each row sent to the report has the same structure, you can make
variations in this basic procedure.

For example, you could declare two different queries on the same table, start
the report, send the rows from the fi query to the report, send the rows
from the second query to the report, and then close the report.

Alternatively, you could retrieve all rows into an array and traverse the array
in a special sequence, sending each row to the report as visited.

Basic Parts of a Report
A report generator function cannot execute SQL statements or 4GL screen
interaction statements. Instead, the report generator is dedicated to specify-
ing the format of the report. The following sections control the layout of the
report on the page:

OUTPUT You define the page size and margins. The space available
for printing report data is the space within the margins.

The right margin is specified as an offset from the left edge
of the page rather than from the right edge of the page,
which keeps you from having to specify the page width and
right margin separately.

322 Generating a Report

Directing a Report to the Screen

FORMAT You define the blocks that make up the report. A report block
consists of the text and data that is output in response to
rows passed by the row producer portion of the program.

Right Margin

Page

Length

The basic report blocks are as follows:

PAGE HEADER Appears at the top of every page under the top margin. The
page header typically contains the page number, the date,
and heading text for columns within the report.

ON EVERY

ROW

Appears for each row passed to the report. This block for-
mats the body of the report. Be sure to leave enough space
between the page header and page footer for at least one ON

EVERY ROW block.

PAGE FOOTER Appears at the bottom of each page above the bottom
margin. The report generator inserts empty lines between
the last ON EVERY ROW block and the PAGE FOOTER block
so that the PAGE FOOTER block is fl against the bottom
margin. The PAGE FOOTER is also a good place to display the
page number or date.

Top Margin

Left

Margin

Page Header

On Every Row

Page Footer

Bottom Margin

Example 14 323

Basic Parts of a Report

Directing a Report to the Screen
By default, reports go to the screen, though you can also use the OUTPUT

section of the report generator function to send the report to a printer, file, or
operating system command. When sending reports to the screen, you can use
the PAUSE function in the PAGE HEADER or PAGE FOOTER block to let the
user view the current page before displaying the next.

Function Overview

Function Name Purpose

manuf_listing() Retrieves manufacturer information and sends it to the
report.

manuf_rpt() Formats the manufacturer information as a report.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

prompt_window() Displays a message and prompts the user for confirmation.
This function is a variation on the message_window()
function that appears in Example 2.
See the description in Example 4.

324 Generating a Report

The manuf_listing() Function

The MAIN Function
1➤ The MAIN function calls the prompt_window() function to confirm that the

report should be generated. The reason for this caution is that if the number
of rows sent to the report is very large, the report might prevent other activ-
ities for some time. If the number of rows is small or the user generates
reports frequently, you might want to omit this test.

The manuf_listing() Function
2➤ The DECLARE statement declares a cursor for a query to retrieve

manufacturers. No WHERE clause appears in the SELECT statement because
the report covers all manufacturers and no other tables are joined with the
manufact table.

The ORDER BY clause ensures the intelligibility of the report by sorting the
rows on the manufacturer code. Without the ORDER BY clause, the sequence
of rows in the report would be that of the physical order in which the manu-
facturer rows are stored.

3➤ The START REPORT statement invokes the report generator to prepare the
manuf_rpt report.

You can use the START REPORT statement to send a report to a file, printer, or
operating system command. If the START REPORT statement does not specify
the destination, the report generator uses the destination from the OUTPUT

section of the report function. If the destination is not specified explicitly, the
report goes to the screen.

4➤ The FOREACH statement opens the cursor at the start of the loop, fetches the
next row into the pa_manuf record on each iteration of the loop, and closes
the cursor at the end of the loop.

Within the loop, the OUTPUT TO REPORT statement sends the row currently
stored in the pa_manuf record to the report generator to be formatted accord-
ing to the specification in the manuf_rpt() report function and added to the
report.

5➤ The FINISH REPORT statement terminates the report generator and ends the
report.

Example 14 325

The MAIN Function

DATABASE stores7

GLOBALS

DEFINE ga_dsplymsg ARRAY[5] OF CHAR(48)

END GLOBALS

MAIN

1➤ LET ga_dsplymsg[1] = " Manufacturer Listing Report"

IF prompt_window("Do you want to display this report?", 5, 10)

THEN

CALL manuf_listing()

END IF

END MAIN

FUNCTION manuf_listing()

DEFINE pa_manuf RECORD

manu_code LIKE manufact.manu_code,

manu_name LIKE manufact.manu_name,

lead_time LIKE manufact.lead_time

END RECORD

2➤ DECLARE c_manuf CURSOR FOR

SELECT manu_code, manu_name, lead_time

FROM manufact

ORDER BY manu_code

3➤ START REPORT manuf_rpt

4➤ FOREACH c_manuf INTO pa_manuf.*

OUTPUT TO REPORT manuf_rpt(pa_manuf.*)

END FOREACH

5➤ FINISH REPORT manuf_rpt

END FUNCTION -- manuf_listing --

4GL source file

326 Generating a Report

The manuf_rpt() Report Function

The manuf_rpt() Report Function
6➤ As with all report functions, the definition of manuf_rpt starts with the

REPORT keyword rather than the FUNCTION keyword.

7➤ The OUTPUT section of the manuf_rpt() report function specifies no right and
left margins because the destination of the report is the screen. The top and
bottom margins are 1 line for readability. The page length is 23 lines so that,
on a standard 24-line screen, the paging prompt will not scroll the display.

8➤ The FORMAT section specifies the formatting applied to the rows passed to
the manuf_rpt() report function.

9➤ The PAGE HEADER block specifies the layout generated at the top of each
page. The specification for the block extends to the start of the next block,
which in the manuf_rpt() report function is the ON EVERY ROW block.

The page header block does not consume a row but rather appears in addi-
tion to the ON EVERY ROW block that appears for the fi row on the page.

The SKIP statement inserts empty lines, while the PRINT statement starts a
new line containing text or a value. The COLUMN clause specifies the offset
of the fi character from the fi position after the left margin.

The complete page header occupies 13 lines. In your own reports, you may
prefer a more terse header to leave more space for the rows.

10 ➤ The page header uses the built-in TODAY function to generate the current
date and the built-in PAGENO function to generate the page number of the
current page. The USING clauses format these values. The USING clause
employs the same formatting tokens as form fields.

11 ➤ The PRINT statement can have multiple COLUMN clauses, which all print on
the same line.

12 ➤ The page header uses hyphens to place a separator line between the page
header and the rows displayed below the header. Another common character
for a separator line is the equals sign. The semicolon at the end of the first
PRINT statement suppresses the new line so the two sets of hyphens appear
on a single line.

13 ➤ The ON EVERY ROW block specifies the layout generated for each row. As in
the manuf_rpt() report function, you would typically keep this block to one
line if possible so that data can be read more easily.

14 ➤ The PAGE TRAILER block specifies the layout generated at the bottom of each
page. The SKIP statement puts an empty line under the last row, and the
PAUSE statement displays a prompt and suspends output until the user
presses a key.

Example 14 327

The manuf_rpt() Report Function

6➤ REPORT manuf_rpt(pa_manuf)

DEFINE pa_manuf RECORD

manu_code LIKE manufact.manu_code,

manu_name LIKE manufact.manu_name,

lead_time LIKE manufact.lead_time

END RECORD

7➤ OUTPUT

LEFT MARGIN 0

RIGHT MARGIN 0

TOP MARGIN 1

BOTTOM MARGIN 1

PAGE LENGTH 23

8➤ FORMAT

9➤ PAGE HEADER

SKIP 3 LINES

PRINT COLUMN 30, "MANUFACTURER LISTING"

10 ➤ PRINT COLUMN 31, TODAY USING "ddd. mmm dd, yyyy"

PRINT COLUMN 31, "Screen Number: ", PAGENO USING "##&"

SKIP 5 LINES

11 ➤ PRINT COLUMN 2, "Manufacturer",

COLUMN 17, "Manufacturer",

COLUMN 34, "Lead Time"

PRINT COLUMN 6, "Code",

COLUMN 21, "Name",

COLUMN 36, "(in days)"

12 ➤ PRINT "--";

PRINT "--"

SKIP 1 LINE

13 ➤ ON EVERY ROW

PRINT COLUMN 6, pa_manuf.manu_code,

COLUMN 16, pa_manuf.manu_name,

COLUMN 36, pa_manuf.lead_time

14 ➤ PAGE TRAILER

SKIP 1 LINE

PAUSE "Press RETURN to display next screen."

END REPORT -- manuf_rpt --

To locate any function definition, see the Function Index on page 730.

328 Reporting Group Totals

15
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

 15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18.Using TEXT and VARCHAR Data

Types
19.Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 15 329

Reporting Group Totals
This example demonstrates more advanced 4GL report features. It extends
the order-entry program of Example 11 (see “Implementing a Master-Detail
Relationship” on page 217) to produce a printed invoice. The invoice is
generated as a report.

This example program has the following simple structure:

1. Accept input for a single customer order.

2. Store the order in the database.

3. Generate an invoice report.

In a real application, the program would be designed to accept more than one
customer order. Either the order-entry function would be called repeatedly,
or else order entry would be one option in a menu. Because the logic for
entering one order is isolated in a single function, it can be used in either of
these ways.

The invoice report at the heart of this example would also be used differently
in a real application. Rather than printing an invoice immediately after an
order is entered, a real application might print all new orders, or a range of
new orders, in a batch. The invoice logic is isolated to two functions here, so
it could be adapted in this way.

Other examples that concentrate on reports include “Generating a Report”
on page 319 and “Generating Mailing Labels” on page 657.

Choosing a Report Destination
A report is a series of lines of text. These lines can be directed to one of four
destinations:

• The screen (the default destination)

• The default printer

• A disk file

Choosing a Report Destination

330 Reporting Group Totals

• Another program using a “pipe” (UNIX only)

You can specify the report destination in one of two ways:

• You can code it directly into the report using the REPORT TO statement in
the OUTPUT section.

This is the least fl method, because no way exists to override the
choice at execution time. The only way to change the report destination is
to alter the REPORT TO statement and recompile the module.

• You can specify a destination on the START REPORT statement.

Because this statement is executable (not declarative like REPORT TO), the
program can start the report to different destinations under different
circumstances.

This example allows the user to specify the report destination. After an order
has been inserted in the database, the invoice() function is called to manage
the production of the invoice report. It displays a three-item menu in a popup
window and prompts the user to choose a report destination.

Based on the user’s response, the program executes one of three START

REPORT statements. When file output is chosen, the program generates a file
name from the order number.

The use of the MENU statement is discussed in the annotation of the
report_output() function.

The Report Contents

Example 15 331

The Report Contents
The following is a sample of an invoice report.

W E S T C O A S T W H O L E S A L E R S , I N C .

1400 Hanbonon Drive

Menlo Park, CA 94025

Tue. Apr 30, 1991

Invoice Number: 00000001029 Bill To: Customer Number 104

Invoice Date: Tue.Apr30,1991 Play Ball!

PO Number: ZZ99099 East Shopping Cntr.

422 Bay Road

Redwood City, CA 94026

Ship Date: Tue. Apr 30, 1991

Ship Weight: 32.00 lbs. ATTN: Anthony Higgins

Shipping Instructions: UPS Blue

--

Item Stock Manuf Unit Item

Number Number Code Description Qty Unit Price Total

------ ------ ---- --------------- --- ---- ------ --------

1 000005 ANZ tennis racquet 3 each $19.80 $59.40

2 000103 PRC frnt derailleur 2 each $20.00 $40.00

3 000104 PRC rear derailleur 2 each $58.00 $116.00

4 000009 ANZ volleyball net 1 each $20.00 $20.00

--

Sub-total: $235.40
Sales Tax (6.500%): $19.72

Shipping Charge: $48.00

Total: $371.12

The heading (name and address of “West Coast Wholesalers”) is constant
data generated in the report function. In a real application it might not be
necessary, because pre-printed forms would normally be used.

The “Bill To” and “Attn” information is selected from the customer table. The
invoice number, date, PO number, and shipping information are selected
from the orders table. The item information is selected from the items, stock,
and manufact tables.

332 Reporting Group Totals

Function Overview

Function Overview

Function Name Purpose

add_order2() Allows the user to add an order to the database. It is similar
to add_order() in Example 11, except it also calls the invoice()
routine to print an invoice after the order is inserted.

invoice() Manages the process of generating the invoice report: selects
data from the database, starts the report, calls the report func-
tion, fi the report.

report_output() Displays the Report Destination menu and returns a flag
indicating the user’s choice.

invoice_rpt() The report function, called once for each detail row, generates
the report output.

input_cust() Accepts user input for the customer number.
See the description in Example 11.

cust_popup() Displays a popup window of customers.
See the description in Example 11.

input_order() Accepts user input for the date and PO number.
See the description in Example 11.

input_items() Accepts user input for order line items.
See the description in Example 11.

renum_items() Renumbers the item numbers when an item is added or
deleted in the items array.
See the description in Example 11.

stock_popup() Displays a popup window for stock numbers and
manufacturer codes.
See the description in Example 11.

order_amount() Calculates the total cost of the order by summing the items
entered so far.
See the description Example 11.

ship_order() Opens a window and a form for shipping information.
See the description in Example 11.

input_ship() Accepts user input for shipping information. This function
resembles the change_cust() function from Example 6.
See the description in Example 11.

order_tx() Performs database operations to insert the order and items in
a single transaction.
See the description in Example 11.

insert_order() Adds an order row to the database.
See the description in Example 11.

insert_items() Adds associated items rows to the database.
See the description in Example 11.

tax_rates() Supplies the appropriate tax schedule for a customer.
See the description in Example 4.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

Example 15 333

Function Overview

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

msg() Displays a brief, informative message.
See the description in Example 5.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

prompt_window() Displays a message and prompts the user for confirmation.
This function is a variation on the message_window()
function that appears in Example 2.
See the description in Example 4.

334 Reporting Group Totals

The MAIN Function

The DATABASE and GLOBALS Statements
1➤ This program must be used with a version of the demonstration database

that supports transactions.

2➤ For a discussion of the uses of these global records and arrays, see “The
DATABASE and GLOBALS Statements” on page 230.

The MAIN Function
3➤ This MAIN program section is identical to that in Example 11, except that it

calls the add_order2() function. See “The MAIN Function” on page 232.

Example 15 335

The DATABASE and GLOBALS Statements

1➤ DATABASE stores7

GLOBALS

2➤ DEFINE gr_customer RECORD LIKE customer.*,

gr_orders RECORD

order_num LIKE orders.order_num,

order_date LIKE orders.order_date,

po_num LIKE orders.po_num,

order_amount MONEY(8,2),

order_total MONEY(10,2)

END RECORD,

ga_items ARRAY[10] OF RECORD

item_num LIKE items.item_num,

stock_num LIKE items.stock_num,

manu_code LIKE items.manu_code,

description LIKE stock.description,

quantity LIKE items.quantity,

unit_price LIKE stock.unit_price,

total_price LIKE items.total_price

END RECORD,

gr_charges RECORD

tax_rate DECIMAL(5,3),

ship_charge LIKE orders.ship_charge,

sales_tax MONEY(9),

order_total MONEY(11)

END RECORD,

gr_ship RECORD

ship_date LIKE orders.ship_date,

ship_instruct LIKE orders.ship_instruct,

ship_weight LIKE orders.ship_weight,

ship_charge LIKE orders.ship_charge

END RECORD

DEFINE ga_dsplymsg ARRAY[5] OF CHAR(48)

END GLOBALS

3➤ MAIN

OPTIONS

HELP FILE "hlpmsgs",

FORM LINE 2,

COMMENT LINE 1,

MESSAGE LINE LAST

4GL source file

336 Reporting Group Totals

The add_order2() Function

The add_order2() Function
4➤ The add_order2() function is the same as the version in Example 11 (see the

“The add_order() Function” on page 232) with one addition. When an order
has been completely entered and inserted in the database, add_order2() calls
the invoice() function to generate the invoice.

Example 15 337

The add_order2() Function

DEFER INTERRUPT

OPEN WINDOW w_main AT 2,3

WITH 18 ROWS, 76 COLUMNS

ATTRIBUTE (BORDER)

OPEN FORM f_orders FROM "f_orders"

DISPLAY FORM f_orders

CALL add_order2()

CLEAR SCREEN

END MAIN

4➤ FUNCTION add_order2()

INITIALIZE gr_orders.* TO NULL

DISPLAY "ORDER ADD" AT 2, 34

CALL clear_lines(2, 16)

DISPLAY " Press Cancel to exit without saving."

AT 17, 1 ATTRIBUTE (REVERSE, YELLOW)

IF input_cust() THEN

IFinput_order() THEN IF

input_items() THEN

CALL dsply_taxes()

IFprompt_window("Do you want to ship this order now?", 8, 12) THEN

CALL ship_order()

ELSE

LET gr_ship.ship_date = NULL

END IF

CALL clear_lines(2, 16)

LET ga_dsplymsg[1] = "Order entry complete."

IFprompt_window("Are you ready to save this order?", 8, 12) THEN

IF order_tx() THEN

CALL clear_lines(2, 16)

LET ga_dsplymsg[1] = "Order Number: ",

gr_orders.order_num USING "<<<<<<<<<<<"

LET ga_dsplymsg[2] = " has been placed for Customer: ",

gr_customer.customer_num USING "<<<<<<<<<<<"

LET ga_dsplymsg[3] = "Order Date: ", gr_orders.order_date

CALL message_window(9, 13)

CLEAR FORM

CALL invoice()

END IF

338 Reporting Group Totals

The invoice() Function

The invoice() Function
5➤ The invoice() function manages the production of the invoice for an order.

The function is almost completely independent of the other functions in this
program. It depends on a small number of values prepared by add_orders()
and its subroutines: gr_customer.customer_num (for the customer key) and
gr_orders.order_num (for the order number). It reads all other data out of the
database. It also depends on gr_charges.sales_tax, but this dependency only
exists because there is no column for sales tax in the orders table in the dem-
onstration database.

When few dependencies exist between functions, they can easily be moved
to other programs.

6➤ All information about one line of one order is collected in the pr_invoice
record. The fields of the record must agree one-for-one with the columns that
are listed in a SELECT statement that follows (see Note 13). The record is also
passed as an argument to the invoice_rpt() report function, which must
define it identically.

7➤ The report_output() function queries the user for a report destination and
returns a fl indicating the choice.

8➤ An “F” indicates that the user specified file output. A filename is constructed
from the order number, and the report is started to that destination. No
pathname is used, so the fi will be in the current working directory.

You could redesign this portion of the program to specify a different
directory.

9➤ A “P” indicates that the user specified printer output. In this and the previous
case, nothing will be visible on the screen while the report is being written,
so a message is displayed.

10 ➤ An “S” indicates that the user specified screen output. A message is
displayed because the report may take a few moments to appear on the
screen.

Example 15 339

The invoice() Function

ELSE

CLEAR FORM

CALL msg("Order has been terminated.")

END IF

END IF

END IF

END IF

END FUNCTION -- add_order2 --

5➤ FUNCTION invoice()

6➤ DEFINE pr_invoice RECORD

order_num LIKE orders.order_num,

order_date LIKE orders.order_date,

ship_instruct LIKE orders.ship_instruct,

po_num LIKE orders.po_num,

ship_date LIKE orders.ship_date,

ship_weight LIKE orders.ship_weight,

ship_charge LIKE orders.ship_charge,

item_num LIKE items.item_num,

stock_num LIKE items.stock_num,

description LIKE stock.description,

manu_code LIKE items.manu_code,

manu_name LIKE manufact.manu_name,

quantity LIKE items.quantity,

total_price LIKE items.total_price,

unit LIKE stock.unit,

unit_price LIKE stock.unit_price

END RECORD,

file_name CHAR(20),

inv_msg CHAR(40),

print_option CHAR(1),

scr_flag SMALLINT

7➤ LET print_option = report_output("ORDER INVOICE", 13, 10)

CASE (print_option)

8➤ WHEN "F"

LET file_name = "inv", gr_orders.order_num USING "<<<<&",".out"

START REPORT invoice_rpt TO file_name

MESSAGE "Writing invoice to ", file_name CLIPPED," -- please wait."

9➤ WHEN "P"

START REPORT invoice_rpt TO PRINTER

MESSAGE "Sending invoice to printer -- please wait."

10 ➤ WHEN "S"

START REPORT invoice_rpt

MESSAGE "Preparing invoice for screen -- please wait."

END CASE

340 Reporting Group Totals

The report_output() Function

11 ➤ Since this SELECT retrieves a single customer row, no cursor is needed.

12 ➤ The scr_flag variable is passed as an argument to the report function. For its
use, see Note 29.

13 ➤ This cursor produces the rows that will be passed to the report function. Each
row represents one line item of the order. Each row contains the data unique
to that line item (stock number, quantity, and so on) as well as data common
to the entire order (order number, date, and so on).

The SELECT statement joins four tables: orders, items, stock (for unit of
measure and description) and manufact (for manufacturer name). The order
number in gr_orders.order_num determines which order is retrieved. The
stock number and manu_code in each item select appropriate rows from
stock and manufact.

The ORDER BY 8 clause causes the rows to be returned in ascending order
based on the value in the eighth selected column, the item number. Because
the item number corresponds to the order in which the items were inserted
into the database, they would probably be retrieved in that sequence even
without the ORDER BY clause, but it would be unwise to depend on it. The
database server is not required to return rows in their physical sequence, and
in fact in a multi-table join like this one, it might produce them in an order
other than the insertion order.

14 ➤ After fetching the row, all the information for one item of the order is
available. It is passed to the report function for output.

15 ➤ 4GL “finishes” a report by writing any fi output, including output
generated by an AFTER GROUP OF block, and closing the output file.

16 ➤ A confirmation message is prepared and displayed before the function ends.

The report_output() Function
17 ➤ The report_output() function prompts the user for a choice of report destina-

tions and returns the “S”, “F”, or “P” for screen, fi or printer respectively.
The choices are presented using a MENU statement in a popup window that
is just large enough to contain the menu title, options, and option descrip-
tions. This is a good general technique for prompting the user to make a
choice. For another method, see “The answer() Function” in Example 20 and
Example 27.

Example 15 341

The report_output() Function

11 ➤ SELECT *

INTO gr_customer.*

FROM customer

WHERE customer_num = gr_customer.customer_num

LET gr_charges.ship_charge = gr_ship.ship_charge

12 ➤ IF print_option = "S" THEN

LET scr_flag = TRUE

ELSE

LET scr_flag = FALSE

END IF

13 ➤ DECLARE c_invoice CURSOR FOR

SELECT o.order_num, o.order_date, o.ship_instruct, o.po_num,

o.ship_date, o.ship_weight, o.ship_charge, i.item_num,

i.stock_num, s.description, i.manu_code, m.manu_name,

i.quantity, i.total_price, s.unit, s.unit_price

FROM orders o, items i, stock s, manufact m

WHERE ((o.order_num = gr_orders.order_num) AND

(i.order_num = o.order_num) AND

(i.stock_num = s.stock_num AND i.manu_code = s.manu_code) AND

(i.manu_code = m.manu_code))

ORDER BY 8

FOREACH c_invoice INTO pr_invoice.*

14 ➤ OUTPUT TO REPORT

invoice_rpt (gr_customer.*, pr_invoice.*, gr_charges.*, scr_flag)

END FOREACH

15 ➤ FINISH REPORT invoice_rpt

16 ➤ CASE (print_option)

WHEN "F"

LET inv_msg = "Invoice written to file ", file_name CLIPPED

WHEN "P"

LET inv_msg = "Invoice sent to the printer."

WHEN "S"

LET inv_msg = "Invoice sent to the screen."

END CASE

CALL msg(inv_msg)

END FUNCTION -- invoice --

17 ➤ FUNCTION report_output(menu_title, x,y)

DEFINE menu_title CHAR(15),
 x SMALLINT,

 y SMALLINT,

rpt_out CHAR(1)

342 Reporting Group Totals

The invoice_rpt() Report Function

18 ➤ The coordinates of the upper left corner of the window are passed as
arguments to the function.

19 ➤ The menu title is also passed as an argument to the function. This approach
gives the calling function control over the title of the menu, but not the
choices in it.

20 ➤ Because choices are displayed in a menu, you can include an explanation
(option description) along with the choice.

21 ➤ If the user chooses Screen output, the function requests confirmation.

Two LET statements calculate the location of the prompt window relative to
the screen coordinates of the menu window. If the user has second thoughts,
the menu continues with the File option highlighted. If the user is sure of the
choice of Screen, the menu ends.

The invoice_rpt() Report Function
22 ➤ A report function is similar to other 4GL functions, except that it contains

sections such as OUTPUT and AFTER GROUP. A report function is never called
directly using the CALL statement. Its sections are invoked automatically
when 4GL executes the OUTPUT TO REPORT statement.

This function receives three records and a character fl as function
arguments.

With a normal function you often have to make a design choice: should you
pass all data to the function as arguments, or should you put the data in glo-
bal variables for the function to access? With a report function, the use of glo-
bal variables is not always an option. When the BEFORE GROUP and AFTER

GROUP clauses are used, as they are in this report, all data must pass into the
report as arguments. Otherwise the grouping logic will not work correctly.

Example 15 343

The invoice_rpt() Report Function

18 ➤ OPEN WINDOW w_rpt AT x, y

WITH 2 ROWS, 41 COLUMNS

ATTRIBUTE (BORDER)

19 ➤ MENU menu_title

COMMAND "File" "Save report output in a file. "

LET rpt_out = "F"

EXIT MENU

20 ➤ COMMAND "Printer" "Send report output to the printer. "

LET rpt_out = "P"

EXIT MENU

21 ➤ COMMAND "Screen" "Send report output to the screen. "

LET ga_dsplymsg[1] = "Output is not saved after it is sent to "

LET ga_dsplymsg[2] = " the screen."

LET x = x - 1

LET y = y + 2

IF prompt_window("Are you sure you want to use the screen?", x, y)

THEN

LET rpt_out = "S"

EXIT MENU

ELSE

NEXT OPTION "File"

END IF

END MENU

CLOSE WINDOW w_rpt

RETURN rpt_out

END FUNCTION -- report_output --

22 ➤ REPORT invoice_rpt(pr_cust, pr_invoice, pr_charges, scr_flag)

DEFINE pr_cust RECORD LIKE customer.*,

pr_invoice RECORD

order_num LIKE orders.order_num,

order_date LIKE orders.order_date,

ship_instruct LIKE orders.ship_instruct,

po_num LIKE orders.po_num,

ship_date LIKE orders.ship_date,

ship_weight LIKE orders.ship_weight,

ship_charge LIKE orders.ship_charge,

item_num LIKE items.item_num,

stock_num LIKE items.stock_num,

description LIKE stock.description,

manu_code LIKE items.manu_code,

manu_name LIKE manufact.manu_name,

quantity LIKE items.quantity,

total_price LIKE items.total_price,

unit LIKE stock.unit,

unit_price LIKE stock.unit_price

END RECORD,

344 Reporting Group Totals

The invoice_rpt() Report Function

23 ➤ The OUTPUT section of a report function is static and declarative. These
choices cannot be changed at execution time.

24 ➤ The FORMAT section of a report specifies actions to be performed at certain
times during the report. These actions are in blocks of code headed by such
clauses as ON EVERY ROW, BEFORE GROUP OF, and the like.

25 ➤ The BEFORE GROUP OF clause is invoked each time the value of the order
number group changes from one row to the next. In this program only one
order is printed, so this code will be called just once, on the fi row of out-
put. However, if the report function were moved to another program it could
be used for a series of orders, and this code would be executed each time the
order number changed. That is, the code would be executed at the beginning
of each order.

To help you follow the actions of the code, the lines of a sample report
heading produced by this code follow:

W E S T C O A S T W H O L E S A L E R S , I N C .

1400 Hanbonon Drive

Menlo Park, CA 94025

Tue. Apr 30, 1991

Invoice Number: 00000001029 Bill To: Customer Number 104

Invoice Date: Tue.Apr30,1991 Play Ball!

PO Number: ZZ99099 East Shopping Cntr.

422 Bay Road

Redwood City, CA 94026

Ship Date: Tue. Apr 30, 1991

Ship Weight: 32.00 lbs. ATTN: Anthony Higgins

Shipping Instructions: UPS Blue

--

Item Stock Manuf

Unit Item
Number Number Code Description Qty Unit Price Total
------ ------ ---- --------------- --- ---- ------ --------

Example 15 345

The invoice_rpt() Report Function

23 ➤ OUTPUT

pr_charges RECORD

tax_rate DECIMAL(5,3),

ship_charge LIKE orders.ship_charge,

sales_tax MONEY(9),

order_total MONEY(11)

END RECORD,

scr_flag SMALLINT,

name_str CHAR(37),

sub_total MONEY(10,2)

LEFT MARGIN 0

RIGHT MARGIN 0

TOP MARGIN 1

BOTTOM MARGIN 1

PAGE LENGTH 48

24 ➤ FORMAT

25 ➤ BEFORE GROUP OF pr_invoice.order_num

LET sub_total = 0.00

SKIP TO TOP OF PAGE

SKIP 1 LINE

PRINT 10 SPACES,

" W E S T C O A S T W H O L E S A L E R S , I N C ."

PRINT 30 SPACES, " 1400 Hanbonon Drive"

PRINT 30 SPACES, "Menlo Park, CA 94025"

PRINT 32 SPACES, TODAY USING "ddd. mmm dd, yyyy"

SKIP 4 LINES

PRINT COLUMN 2, "Invoice Number: ",

pr_invoice.order_num USING "&&&&&&&&&&&",

COLUMN 46, "Bill To: Customer Number ", pr_cust.customer_num

USING "<<<<<<<<<<&"

PRINT COLUMN 2, "Invoice Date:",

COLUMN 18, pr_invoice.order_date USING "ddd. mmm dd, yyyy",

COLUMN 55, pr_cust.company

PRINT COLUMN 2, "PO Number:",

COLUMN 18, pr_invoice.po_num,

COLUMN 55, pr_cust.address1

IF(pr_cust.address2 IS NOT NULL) THEN

PRINT COLUMN 55, pr_cust.address2

ELSE

PRINT COLUMN 55, pr_cust.city CLIPPED, ", ",

pr_cust.state CLIPPED, " ", pr_cust.zipcode CLIPPED

END IF

IF (pr_cust.address2 IS NOT NULL) THEN

PRINT COLUMN 55, pr_cust.city CLIPPED, ", ",

pr_cust.state CLIPPED, " ", pr_cust.zipcode CLIPPED

ELSE

PRINT COLUMN 55, " "

END IF

346 Reporting Group Totals

The invoice_rpt() Report Function

Example 15 347

The invoice_rpt() Report Function

IF (pr_cust.lname IS NOT NULL) THEN

LET name_str = "ATTN: ", pr_cust.fname CLIPPED, " ",

pr_cust.lname CLIPPED

ELSE

LET name_str = " "

END IF

PRINT COLUMN 2, "Ship Date:";

IF(pr_invoice.ship_date IS NULL) THEN

PRINT COLUMN 15, "Not Shipped";

ELSE

PRINT COLUMN 15, pr_invoice.ship_date USING "ddd. mmm dd, yyyy";

END IF

IF(pr_cust.address2 IS NOT NULL) THEN

PRINT COLUMN 55, " "

ELSE

PRINT COLUMN 49, name_str CLIPPED

END IF

PRINT COLUMN 2, "Ship Weight: ";

IF(pr_invoice.ship_weight IS NULL) THEN

PRINT "N/A";

ELSE

PRINT pr_invoice.ship_weight USING "<<<<<<<&.&&", " lbs.";

END IF

IF(pr_cust.address2 IS NOT NULL) THEN

PRINT COLUMN 49, name_str CLIPPED

ELSE

PRINT COLUMN 55, " "

END IF

PRINT COLUMN 2, "Shipping Instructions:";

IF (pr_invoice.ship_instruct IS NULL) THEN

PRINT COLUMN 25, "None"

ELSE

PRINT COLUMN 25, pr_invoice.ship_instruct

END IF

SKIP 1 LINE

PRINT "--";

PRINT "---------------------------------------"

PRINT COLUMN 2, "Item",

COLUMN 10, "Stock",

COLUMN 18, "Manuf",

COLUMN 56, "Unit"

PRINT COLUMN 2, "Number",

COLUMN 10, "Number",

COLUMN 18, "Code",

COLUMN 24, "Description",

COLUMN 41, "Qty",

COLUMN 49, "Unit",

COLUMN 56, "Price",

COLUMN 68, "Item Total"

PRINT " ------ ------ ----- --------------- ------ ---- --------";

348 Reporting Group Totals

The invoice_rpt() Report Function

--

26 ➤ This comment appears in the program as a convenient reference while coding
the PRINT statement that appears in the following ON EVERY ROW block.

27 ➤ The ON EVERY ROW block is invoked as a result of any OUTPUT TO REPORT

statement.

28 ➤ The AFTER GROUP OF block is invoked following the last row of each order
group. It is entered prior to the BEFORE GROUP block if more than one order
is printed.

In this program, it only is entered as a result of the FINISH REPORT statement
because the report consists of a single order. A sample of its output follows.

Sub-total: $235.40
Sales Tax (6.500%): $19.72

Shipping Charge: $48.00

Total: $371.12

29 ➤ The scr_flag variable contains the user’s choice of report destination. It is
passed on every call, but is only tested in the AFTER GROUP OF block. If out-
put is to the screen, the program pauses before the end of the report, at which
time the screen is cleared.

Example 15 349

The invoice_rpt() Report Function

26 ➤ {

PRINT " ----------"

Item Stock Manuf Unit
Number Number Code Description Qty Unit Price Item Total
------ ------ ----- --------------- ------ ---- -------- -----------
XXXXXX XXXXXX XXX XXXXXXXXXXXXXXX XXXXXX XXXX $X,XXX.XX $XXX,XXX.XX

}

27 ➤ ON EVERY ROW

PRINT COLUMN 2, pr_invoice.item_num USING "#####&",

COLUMN 10, pr_invoice.stock_num USING "&&&&&&",

COLUMN 18, pr_invoice.manu_code,

COLUMN 24, pr_invoice.description,

COLUMN 41, pr_invoice.quantity USING "#####&",

COLUMN 49, pr_invoice.unit,

COLUMN 56, pr_invoice.unit_price USING "$,$$&.&&",

COLUMN 68, pr_invoice.total_price USING "$$$,$$&.&&"

LET sub_total = sub_total + pr_invoice.total_price

28 ➤ AFTER GROUP OF pr_invoice.order_num

SKIP 1 LINE

PRINT "--";

PRINT "---------------------------------------"

PRINT COLUMN 53, "Sub-total: ",

COLUMN 65, sub_total USING "$$,$$$,$$&.&&"

PRINT COLUMN 43, "Sales Tax (",

pr_charges.tax_rate USING "#&.&&&", "%): ",

COLUMN 66, pr_charges.sales_tax USING "$,$$$,$$&.&&"

IF(pr_invoice.ship_charge IS NULL) THEN

LET pr_invoice.ship_charge = 0.00

END IF

PRINT COLUMN 47, "Shipping Charge: ",

COLUMN 70, pr_invoice.ship_charge USING "$,$$&.&&"

PRINT COLUMN 64, "--------------"

PRINT COLUMN 57, "Total: ",

pr_charges.order_total USING "$$$,$$$,$$&.&&"

29 ➤ IF scr_flag THEN

PAUSE "Press RETURN to continue."

END IF

END REPORT {invoice_rpt}

To locate any function definition, see the Function Index on page 730.

350 Creating Vertical Menus

16
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

 16.Creating Vertical Menus
17.Using the DATETIME Data Type

18.Using TEXT and VARCHAR Data

Types
19.Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 16 351

Creating Vertical Menus
This example demonstrates two ways to create vertical menus using 4GL.
A vertical menu is one in which the menu options are presented vertically
(one under the other) on the screen. For example, the form fi used in
Example 16a displays the following vertical menu:

You can automatically create a horizontal ring menu with the 4GL MENU

statement. Example 3 demonstrates the MENU statement.

This example consists of two parts:

• Example 16a contains a vertical menu implemented with a form file and
a simple INPUT statement.

• Example 16b contains a generic vertical menu implemented with an

INPUT ARRAY statement.

Both programs accept the option number entered by the user and, using a
CASE statement, execute the appropriate function.

A Hard-Coded Vertical Menu—Example 16a

352 Creating Vertical Menus

A Hard-Coded Vertical Menu—Example 16a
Example 16a implements a vertical menu whose menu options are
hard-coded in the f_menu form specification fi That is, each menu option
is entered as text on the form file.

The form has a single input fi for the menu option number. To select a
menu option, the user enters the number of the option to execute in this field.
The example performs input validation on this option number to ensure that
it is a valid menu option.

The advantage of this method is that it is very straightforward to code. It is
just a simple INPUT statement on a single numeric field.

The following functions appear in the Example 16a program:

Function Name Purpose

main_menu() Displays the f_menu form that contains the vertical menu.

cust_maint() Displays a message indicating that the routine called was
under the Customer Maintenance menu option.

stock_maint() Displays a message indicating that the routine called was
under the Stock Maintenance menu option.

order_maint() Displays a message indicating that the routine called was
under the Order Maintenance menu option.

manuf_maint() Displays a message indicating that the routine called was
under the Manufacturer Maintenance menu option.

ccall_maint() Displays a message indicating that the routine called was
under the Customer Call Maintenance menu option.

state_maint() Displays a message indicating that the routine called was
under the State Maintenance menu option.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

A Generic Vertical Menu—Example 16b

Example 16 353

A Generic Vertical Menu—Example 16b
Example 16b uses the f_menu2 form specification file to implement a generic
vertical menu. This menu is generic because the same form fi can be used to
display any vertical menu in an application.

The form fi defines a screen array with fi for the option number and
option name. The example fi a corresponding program array with the
desired option names and displays them in this screen array using INPUT

ARRAY WITHOUT DEFAULTS. To select a menu option, the user moves the
cursor to the desired option and uses the Accept key (typically ESCAPE).

Because the menu options are not hard-coded on the f_menu2 form, the form
can be used to implement all menus in the application. You would just need
to write the necessary initialization routine for each vertical menu.

While coding for this menu is more complex than Example 16a, this version
provides the following additional features:

• Because the example uses a screen array, the user can scroll through the
menu options. This feature allows the menu to contain more options than
can be displayed at one time on the screen.

• Each menu option is highlighted when the cursor is on it.

This example uses an INPUT ARRAY WITHOUT DEFAULTS statement to
simulate the behavior of DISPLAY ARRAY and to highlight the current line.
To simulate DISPLAY ARRAY, the INPUT ARRAY statement has the following
features “turned off”:

• Inserting and deleting lines of the array.

• Scrolling past the end of the items in the array.

• Moving to each fi in one line of the screen array.

• Modifying fi input.

The following functions appear in the Example 16b program:

Function Name Purpose

dsply_menu() Displays the f_menu2 form that contains the generic vertical
menu form.

init_menu() Initializes the global menu structure with the names of the
menu options to be displayed.

init_opnum() Initializes the global menu structure with the option num-
bers of the menu options to be displayed.

choose_option() Implements the INPUT ARRAY statement that simulates
DISPLAY ARRAY and the vertical menu selection.

354 Creating Vertical Menus

A Generic Vertical Menu—Example 16b

cust_maint() Displays a message indicating that the routine called was
under the Customer Maintenance menu option.
See the description in Example 16a.

stock_maint() Displays a message indicating that the routine called was
under the Stock Maintenance menu option.
See the description in Example 16a.

order_maint() Displays a message indicating that the routine called was
under the Order Maintenance menu option.
See the description in Example 16a.

manuf_maint() Displays a message indicating that the routine called was
under the Manufacturer Maintenance menu option.
See the description in Example 16a.

ccall_maint() Displays a message indicating that the routine called was
under the Customer Call Maintenance menu option.
See the description in Example 16a.

state_maint() Displays a message indicating that the routine called was
under the State Maintenance menu option.
See the description in Example 16a.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

Example 16 355

A Generic Vertical Menu—Example 16b

356 Creating Vertical Menus

Example 16a: The f_menu Form

Example 16a: The f_menu Form
1➤ The f_menu form is not designed to work with a particular database. The

single form field is defined as formonly, as is the database in the DATABASE

statement.

2➤ The items on the vertical menu are text strings that appear in the form
specification. This compares with the use of a screen record in the f_menu2
form in Example 16b.

3➤ The f1 fi accepts the menu choice.

Example 16 357

Example 16a: The f_menu Form

1➤ DATABASE formonly

2➤ SCREEN
{

4GL Test MAIN MENU 1

1) Customer Maintenance

2) Order Maintenance

3) Stock Maintenance

4) Manufacturer Maintenance

5) Customer Calls Maintenance

6) State Maintenance

7) Exit MAIN MENU

Menu Selection: [f1]

}

ATTRIBUTES

3➤ f1 = formonly.option_num;

INSTRUCTIONS

DELIMITERS " "

f_menu form file

358 Creating Vertical Menus

The main_menu() Function

The DATABASE and GLOBALS Statements
1➤ Any version of the stores7 database can be used here.

2➤ The ga_dsplymsg array is used as input to the message_window() function
as described in Example 2.

The MAIN Function
3➤ The OPTIONS statement establishes the hlpmsgs fi as the help fi for the

program. It also establishes screen lines for the menu: FORM LINE sets the
fi line of the form to line 1 of the window, and COMMENT LINE sets the
comment line to be the blank line after the menu title. This COMMENT LINE

setting prevents form text from being erased when the comment line is
cleared after the cursor leaves the input field.

4➤ The DEFER INTERRUPT statement prevents use of the Interrupt key (typically
CONTROL-C) from terminating the program. Instead, it sets the global vari-
able int_flag (as discussed in Example 5). The int_flag variable is tested fol-
lowing the INPUT statement in the main_menu() function to see if the user
has chosen to exit the menu.

5➤ The main_menu() function displays the vertical menu and accepts user input.

The main_menu() Function
6➤ The LET statement sets the Boolean fl dsply to TRUE. This fl is used to

determine whether to reprompt the user for a menu option. The program
redisplays the menu selection prompt in the following cases:

• If the user enters an invalid menu option number.

• If the user enters no option number.

• After the completion of a menu task.

7➤ The OPEN WINDOW statement opens a window and displays the vertical
menu contained in the f_menu for the specification fi Usage instructions
are then displayed.

Example 16 359

The DATABASE and GLOBALS Statements

1➤ DATABASE stores7

GLOBALS

2➤ DEFINE ga_dsplymsg ARRAY[5] OF CHAR(48)

END GLOBALS

MAIN

3➤ OPTIONS

HELP FILE "hlpmsgs",

FORM LINE FIRST,

COMMENT LINE 2

4➤ DEFER INTERRUPT

5➤ CALL main_menu()

END MAIN

FUNCTION main_menu()

DEFINE dsply SMALLINT,
 option_num SMALLINT

6➤ LET dsply = TRUE

7➤ OPEN WINDOW w_menu AT 2, 3

WITH 19 ROWS, 70 COLUMNS

ATTRIBUTE (BORDER, MESSAGE LINE LAST)

OPEN FORM f_menu FROM "f_menu"

DISPLAY FORM f_menu

DISPLAY

" Enter a menu option number and press Accept or RETURN."

AT 18, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY

" Choose option 7 to exit the menu. Press CTRL-W for Help."

AT 19, 1 ATTRIBUTE (REVERSE, YELLOW)

4GL source file

360 Creating Vertical Menus

The Remaining maint() Functions

8➤ The WHILE loop controls user input of the menu option number. Because
dsply is initially set to TRUE, execution initially enters this loop to allow the
user to enter a menu choice. If the user either uses the Interrupt key or
chooses the Exit option, dsply is set to FALSE and this loop exits.

9➤ The int_flag fl is set to FALSE before INPUT begins. The INPUT statement
accepts the user input from the form’s option_num fi and stores it in the
option_num variable.

10 ➤ If the user exits the INPUT statement by using the Interrupt key (typically
CONTROL-C), the program automatically sets int_flag to TRUE. The LET state-
ment then sets dsply to FALSE. This exits the WHILE loop and leaves the
menu. Otherwise, the option number entered by the user determines which
function is called in a CASE statement.

11 ➤ When the user selects option 1, Customer Maintenance, the program calls the
cust_main() function. The CASE statement contains a WHEN clause for each
of the menu’s valid menu options. Each clause invokes the function to per-
form the associated menu task. When the function completes execution, the
program redisplays the f_menu menu and the user can select another item
from the menu (because dsply remains TRUE).

12 ➤ When the user selects option 7, Exit, the dsply flag is set to FALSE. This exits
the WHILE loop and the function.

13 ➤ If the user enters a number not on the menu, an ERROR statement displays a
message. Because dsply remains TRUE, the WHILE statement iterates and the
user is allowed to enter another option number.

The cust_maint() Function
14 ➤ Two LET statements load strings containing a message into the ga_dsplymsg

array. The call to the message_window() function displays the message. This
function would ordinarily contain statements to perform customer
maintenance.

The Remaining maint() Functions
15 ➤ The stock_maint(), order_maint(), manuf_maint(), ccall_maint(), and

state_maint() functions are nearly identical to the cust_maint() function
described above.

The text of the functions appears in the on-line example code.

Example 16 361

The cust_maint() Function

8➤ WHILE dsply

9➤ LET int_flag = FALSE

INPUT BY NAME option_num HELP 120

10 ➤ IF int_flag THEN

LET dsply = FALSE

ELSE

CASE option_num

WHEN 1

11 ➤ CALL cust_maint()

WHEN 2

CALL order_maint()

WHEN 3

CALL stock_maint()

WHEN 4

CALL manuf_maint()

WHEN 5

CALL ccall_maint()

WHEN 6

CALL state_maint()

12 ➤ WHEN 7

LET dsply = FALSE

13 ➤ OTHERWISE

ERROR "Invalid menu choice. Please try again."

END CASE

END IF

END WHILE

CLOSE FORM f_menu

CLOSE WINDOW w_menu

END FUNCTION -- main_menu --

FUNCTION cust_maint()

14 ➤ LET ga_dsplymsg[1] = "This function would contain the statements to"

LET ga_dsplymsg[2] = " implement the Customer Maintenance option."

CALL message_window(6,12)

END FUNCTION -- cust_maint --

15 ➤
See the source file for the text of the remaining maint() functions.

362 Creating Vertical Menus

Example 16b: The f_menu2 Form

Example 16b: The f_menu2 Form
1➤ The f_menu2 form is not designed to work with a particular database. All

form fi are defined as formonly, as is the database in the DATABASE

statement.

2➤ All information displayed on the vertical menu will be passed to the form by
the calling program. This includes the title, the number of each option, and
the name of each option.

This compares with the use of literal text in the f_menu form in Example 16a.

3➤ The f000 fi displays the menu title.

4➤ The fi that comprise the menu options are grouped into a screen array.

Example 16 363

Example 16b: The f_menu2 Form

1➤ DATABASE formonly

2➤ SCREEN
{

[f000]

[x|f1] [f02]

[x|f1] [f02]

[x|f1] [f02]

[x|f1] [f02]

[x|f1] [f02]

}

3➤ ATTRIBUTES
f000 = formonly.menu_title;

x = formonly.x;

f1 = formonly.option_num, NOENTRY;

f02 = formonly.option_name, NOENTRY;

INSTRUCTIONS

DELIMITERS " "

4➤ SCREEN RECORD sa_menu[5](formonly.x THRU formonly.option_name)

f_menu2 form file

364 Creating Vertical Menus

The dsply_menu() Function

The DATABASE and GLOBALS Statements
1➤ Any version of the stores7 database can be used here.

2➤ The ga_menu array is used to contain the menu option information: the
menu option name and number. This array of records is the program array
used with the INPUT ARRAY statement.

3➤ The g_menutitle variable contains the name of the menu. This variable is
initialized in the init_menu() function and displayed in the dsply_menu()
function.

4➤ The ga_dsplymsg array is used as input to the message_window() function
as described in Example 2.

The MAIN Function
5➤ The OPTIONS statement establishes the screen lines for the menu: FORM LINE

sets the first line of the form to line 1 of the window, and COMMENT LINE sets
the comment line to be the blank line after the menu title. This COMMENT

LINE setting prevents form text from being erased when the comment line is
cleared after the cursor leaves the input field.

6➤ The DEFER INTERRUPT statement prevents the Interrupt key from
terminating the program. Instead, it sets the global variable int_flag (as dis-
cussed in Example 5). The int_flag variable is tested following the INPUT

ARRAY statement in the choose_option() function to see if the user wants to
exit the menu.

7➤ The dsply_menu() function displays the vertical menu and accepts user input.

The dsply_menu() Function
8➤ The OPEN WINDOW statement opens a window and displays the vertical

menu contained in the f_menu2 form specification fi Two DISPLAY

statements display the menu usage instructions.

Example 16 365

The DATABASE and GLOBALS Statements

1➤ DATABASE stores7

GLOBALS

2➤ DEFINE ga_menu ARRAY[20] OF RECORD

x CHAR(1),

option_num CHAR(3),

option_name CHAR(35)

END RECORD,

3➤ g_menutitle CHAR(25)

4➤ DEFINE ga_dsplymsg ARRAY[5] OF

CHAR(48) END GLOBALS

MAIN

5➤ OPTIONS

HELP FILE "hlpmsgs",

COMMENT LINE FIRST,

MESSAGE LINE LAST,

FORM LINE 2

6➤ DEFER INTERRUPT

7➤ CALL dsply_menu()

END MAIN

FUNCTION dsply_menu()

DEFINE dsply SMALLINT,
 option_no SMALLINT,

 total_options SMALLINT

8➤ OPEN WINDOW w_menu2 AT 3,3

WITH 16 ROWS, 75 COLUMNS

ATTRIBUTE (BORDER)

OPEN FORM f_menu FROM "f_menu2"

DISPLAY FORM f_menu

DISPLAY " Use F3, F4, and arrow keys to move cursor to desired

option." AT 15, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY

" Press Accept to choose option, Cancel to exit menu. Press CTRL-W for

Help." AT 16, 1 ATTRIBUTE (REVERSE, YELLOW)

4GL source file

366 Creating Vertical Menus

The init_menu() Function

9➤ The init_menu() function initializes the ga_menu program array with the
names and numbers of the menu options, along with the menu title. The
function returns total_options, the number of options in the menu.

10 ➤ The menu title is displayed to the menu_title fi on the current form.

11 ➤ The WHILE loop controls user input of the menu option number. Because
dsply is initially set to TRUE, execution initially enters this loop to allow the
user to enter a menu choice. If the user either uses the Interrupt key or
chooses the Exit option, dsply is set to FALSE and the loop exits.

12 ➤ The option_no variable is set to the value returned by the choose_option()
function. The choose_option() function allows the user to enter the INPUT

ARRAY statement. It expects the number of valid menu options
(total_options) as an argument and returns the menu number selected by the
user. A more detailed explanation of this function begins with Note 21.

13 ➤ When the user selects option 1, Customer Maintenance, the program calls the
cust_main() function. The CASE statement contains a WHEN clause for each
of the menu’s valid menu options. Each clause invokes the function to per-
form the associated menu task. When the function completes execution, the
program redisplays the f_menu2 menu and the user can select another item
from the menu (because dsply remains TRUE).

14 ➤ When the user selects option 7, Exit, the dsply flag is set to FALSE. This exits
the WHILE loop and the function.

15 ➤ If the user chooses Cancel from the menu, the choose_option() function
returns zero (0) and the program sets the dsply flag to FALSE. This terminates
the WHILE loop.

The init_menu() Function
16 ➤ The LET statement assigns the menu title to the g_menutitle global variable.

The title will be displayed at the top of the f_menu2 form.

17 ➤ The series of LET statements assigns the option names to the option_name
fi in the ga_menu array. Options must be assigned in the order in which
they are to be displayed on the screen. For example, the name of Option 1 is
stored in ga_menu[1].option_name. Option names are restricted in length to
the size of the option_name fi (35 characters).

Example 16 367

The init_menu() Function

9➤ CALL init_menu() RETURNING total_options

10 ➤ DISPLAY g_menutitle TO menu_title

LET dsply = TRUE
11 ➤ WHILE dsply

12 ➤ LET option_no = choose_option(total_options)

IF(option_no > 0) THEN

CASE option_no

13 ➤ WHEN 1

CALL cust_maint()

WHEN 2

CALL order_maint()

WHEN 3

CALL stock_maint()

WHEN 4

CALL manuf_maint()

WHEN 5

CALL ccall_maint()

WHEN 6

CALL state_maint()

14 ➤ WHEN 7 --* Exit option

LET dsply = FALSE

END CASE
ELSE

15 ➤ LET dsply = FALSE

END IF

END WHILE

CLOSE FORM f_menu

CLOSE WINDOW w_menu2

END FUNCTION -- dsply_menu --

FUNCTION init_menu()

DEFINE total_options SMALLINT

16 ➤ LET g_menutitle = "4GL Test MAIN MENU 2"

17 ➤ LET ga_menu[1].option_name = "Customer Maintenance"

LET ga_menu[2].option_name = "Order Maintenance"

LET ga_menu[3].option_name = "Stock Maintenance"

LET ga_menu[4].option_name = "Manufacturer Maintenance"

LET ga_menu[5].option_name = "Customer Calls Maintenance"

LET ga_menu[6].option_name = "State Maintenance"

LET ga_menu[7].option_name = "Exit MAIN MENU"

368 Creating Vertical Menus

The choose_option() Function

18 ➤ The call to the init_opnum() function initializes the option_num fields of the
ga_menu array with the option numbers.

19 ➤ The init_opnum() function returns the total number of options initialized in
the ga_menu array.

The init_opnum() Function
20 ➤ The FOR loop initializes the option_num fi of the ga_menu array. The IF

statement checks the number of digits in the option number to ensure that the
numbers display as right-justified. Doing a straight string assignment of the
number (i) to the fi would cause numbers to be left-justified.

The choose_option() Function
21 ➤ To highlight the current line of the menu, the choose_option() function uses

an INPUT ARRAY statement to simulate the DISPLAY ARRAY statement.
Because the DISPLAY ARRAY statement does not have the Insert and Delete
key functionality, this OPTIONS statement “disables” these keys in INPUT

ARRAY. The OPTIONS statement assigns to each of these keys the control
sequence of CONTROL-A. Because CONTROL-A is one of the special editing
features of the 4GL input statements (INPUT, CONSTRUCT, DISPLAY, INPUT

ARRAY, DISPLAY ARRAY), 4GL interprets it as an editing command. The
sequence never executes the Insert or Delete function because it is always
interpreted as an editing command.

22 ➤ Before the DISPLAY ARRAY statement can display the program array, you
must initialize the ARR_COUNT() function with the number of items to be dis-
played. The call to the SET_COUNT() function initializes the number of items
in the ga_menu array. This number is the number of menu options.

23 ➤ The INPUT ARRAY statement displays the current menu options on the
screen. The WITHOUT DEFAULTS clause simulates the behavior of the
DISPLAY ARRAY statement.

24 ➤ Before the cursor moves to a new line in the array, the BEFORE ROW clause
calculates the current position in the program array (curr_pa), the total num-
ber of lines in the program array (total_pa), and the current position in the
screen array (curr_sa). These values are needed to determine the line to
display.

Example 16 369

The init_opnum() Function

LET total_options = 7

18 ➤ CALL init_opnum(total_options)

19 ➤ RETURN total_options

END FUNCTION -- init_menu --

FUNCTION init_opnum(total_options)

DEFINE total_options SMALLINT,

i SMALLINT

20 ➤ FOR i = 1 TO total_options

IF i < 10 THEN

LET ga_menu[i].option_num[2] = i

ELSE

LET ga_menu[i].option_num[1,2] = i

END IF

LET ga_menu[i].option_num[3] = “)”

END FOR

END FUNCTION -- init_opnum --

FUNCTION choose_option(total_options)

DEFINE total_options SMALLINT,

21 ➤ OPTIONS

curr_pa SMALLINT,

curr_sa SMALLINT,

total_pa SMALLINT,

lastkey SMALLINT

DELETE KEY CONTROL-A,

INSERT KEY CONTROL-A

22 ➤ CALL SET_COUNT(total_options)

LET int_flag = FALSE

23 ➤ INPUT ARRAY ga_menu WITHOUT DEFAULTS FROM sa_menu.* HELP 121

BEFORE ROW

24 ➤ LET curr_pa = ARR_CURR()

LET total_pa = ARR_COUNT()

LET curr_sa = SCR_LINE()

370 Creating Vertical Menus

The choose_option() Function

25 ➤ The current line of the program array (ga_menu[curr_pa].*) is displayed to
the current line of the screen array (sa_menu[curr_sa].*) in reverse video.
This statement causes the current option in the menu to be highlighted.

26 ➤ The x field appears in both the program array and the screen array. It serves
as a “resting point” for the cursor and as a position for the “highlight” char-
acter that displays the line in reverse video. If the user enters input in this
fi these statements erase the input.

27 ➤ The IF statement prevents the cursor from scrolling beyond the end of the
menu. This scrolling capability is another of the INPUT ARRAY features that
must be disabled to adequately simulate the behavior of the DISPLAY ARRAY

statement.

The FGL_LASTKEY() function returns the ASCII code of the last key the user
entered. The FGL_KEYVAL() function generates the ASCII code associated
with the specified character strings:

• Down arrow (down)

• Carriage return (return)

• Tab (tab)

• Right arrow (right)

If the user has pressed one of these keys, the cursor would normally move to
the next empty line of the array. To prevent this behavior, the code checks for
these keys and, if any one of them has been pressed, it notifies the user that
no more menu options are available. The NEXT FIELD statement returns the
cursor to the x fi of the last line.

28 ➤ Just before the cursor leaves the current line, the AFTER ROW clause recalcu-
lates the current positions in the program array (curr_pa) and screen array
(curr_sa) and displays the current menu option in normal display (turns off
the highlight).

29 ➤ If the user uses the Cancel key (typically CONTROL-C), 4GL sets the int_flag
to TRUE. In this case, the program resets int_flag to FALSE and returns a value
of zero (0). A zero return value indicates to the calling function that the user
wants to exit the menu.

30 ➤ The RETURN statement returns the current position of the cursor in the menu.
This position corresponds to the option number of the menu option the user
has selected by using the Accept key (typically ESCAPE) from within the
INPUT ARRAY statement.

Example 16 371

The choose_option() Function

25 ➤ DISPLAY ga_menu[curr_pa].* TO sa_menu[curr_sa].*

ATTRIBUTE (REVERSE)

AFTER FIELD x

26 ➤ IFga_menu[curr_pa].x IS NOT NULL THEN

LET ga_menu[curr_pa].x = NULL

DISPLAY BY NAME ga_menu[curr_pa].x

END IF

27 ➤ IF curr_pa = total_pa THEN

LET lastkey = FGL_LASTKEY()

IF ((lastkey = FGL_KEYVAL("down"))

OR (lastkey = FGL_KEYVAL("return"))

OR (lastkey = FGL_KEYVAL("tab"))

OR (lastkey = FGL_KEYVAL("right")))

THEN

ERROR “No more menu options in this direction.”

NEXT FIELD x

END IF

END IF

AFTER ROW

28 ➤ LET curr_pa = ARR_CURR()

LET curr_sa = SCR_LINE()

DISPLAY ga_menu[curr_pa].* TO sa_menu[curr_sa].*

END INPUT

29 ➤ IF int_flag THEN

LET int_flag = FALSE

RETURN (0)

END IF

30 ➤ RETURN (curr_pa)

END FUNCTION -- choose_option --

To locate any function definition, see the Function Index on page 730.

372 Using the DATETIME Data Type

17
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
 17.Using the DATETIME Data Type

18.Using TEXT and VARCHAR Data

Types
19.Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 17 373

Using the DATETIME
Data Type

This example demonstrates how to handle DATETIME data in a 4GL program.
It uses the DATETIME data in the call_dtime and res_dtime columns of the
cust_calls table. To access the cust_calls table, this example adds a “Calls”
feature to the CUSTOMER MODIFICATION menu implemented in Example 9.

Redefining the DATETIME Data Entry
To enter a DATETIME value, the user must follow a very strict format. 4GL can
only accept a DATETIME value in the form:

yyyy-mon-ddd hh:mm:ss.fff

where yyyy is the year, mon is the month, ddd is the day, hh is the hour, mm is
the minutes, ss is the seconds, and fff is the fraction of a second. The spaces
and the hyphens, colons, and decimal point must be entered exactly as
shown.

The DATETIME columns in the cust_calls table are defined as YEAR TO

MINUTE. Unless the 4GL program manipulates the input values, the user
must enter the time 3:24 PM 2 / 25 / 98 as:

1998-2-25 15:24

Redefining the DATETIME Data Entry

374 Using the DATETIME Data Type

Any other format will generate a 4GL system error notifying the user of an
invalid format. Advantages of using this default DATETIME format is that
4GL can automatically perform the following data verification for the user:

• A month: between 1 and 12

• A day:

• Between 1 and 28: if the month is February

• Between 1 and 30 if the month is April, June, September, or November

• Between 1 and 31 for all other months

• An hour value: between 0 and 23 (24-hour notation)

• A minute: between 0 and 59

The disadvantage is that this form is not very user-friendly for the novice
user.

To provide a friendlier data entry format, this program breaks entry of the
DATETIME value into three screen fields:

• The call_time field is a CHAR(5) field that accepts the hours and minutes
in the form:

hh:mm

It uses a PICTURE attribute “##:##” in the screen form fi to display the
colon between the hour and minute values and to limit entry of these val-
ues to numeric characters (0-9).

• The am_pm field is a CHAR(2) field that accepts an AM or PM specification
so the user does not have to use 24-hour notation. It also uses a PICTURE

attribute “XM” in the screen form fi to display the “M” as the second
character. This attribute also limits data entry of the fi character to a
letter (A-Z). The UPSHIFT screen attribute ensures that this first character
is always an uppercase letter.

• The yr_mon fi is a DATE fi that accepts the date in the form:

mon/dd/yy OR mon/dd/yyyy

Conserving Screen Space

Example 17 375

These screen fi are defined on the f_custcall form and display after the
headings “Call Received at” and “Call Resolved on”:

This new data entry format necessitates that the program:

• Perform the data verification for the first two screen fields (call_time and
am_pm) that 4GL would automatically have performed for the DATETIME

field. 4GL can perform data verification on the month, day, and year val-
ues because the yr_mon fi is defined as DATE.

• Convert these screen fi to a DATETIME value before the time can be
added to the appropriate column of cust_calls.

• Convert the DATETIME value to these screen field values before the time
can be displayed on the f_custcall form.

This fi task is performed within the INPUT statement of the input_call()
function. The get_timeflds() function performs conversions from screen
fi and the get_datetime() function performs conversions from screen
fi to DATETIME.

Conserving Screen Space
The program implements an additional data entry feature on the input of the
call_descr and res_descr columns of cust_calls. Both these columns are
defined as CHAR(240). However, displaying both these columns would

376 Using the DATETIME Data Type

Function Overview

require two fi of 240 characters each. So, for each of these columns, the
program displays a single-character fl to indicate whether or not a value
currently exists for each of these fields:

• If the flag is “Y” the associated CHAR(240) field contains a non-null value.

• If the fl is “N” the associated CHAR(240) fi is null.

Using a single-character fi the f_custcall form is able to save space for
other columns of cust_calls.

To access the actual value for the column, the user presses either the F2

function key or CONTROL-E from within the flag field. These keys initiate the
edit_descr() function to display the CHAR(240) value in a special form
(f_edit).

Function Overview

Function Name Purpose

cust_menu2() Displays the CUSTOMER menu and allows the user to
choose whether to add a new customer or query for an exist-
ing customer. Differs from cust_menu() in Example 9 by call-
ing browse_cust2() instead of browse_custs().

bang() Prompts the user for a command and executes the command.
See the description in Example 3.

query_cust2() Lets the user create a query by example.
See the description in Example 6.

browse_custs2() Displays results of a query on screen, one at a time and calls
next_action3() to allow the user to choose the next action. Dif-
fers from browse_custs() in Example 9 by calling
next_action3() instead of next_action2().

next_action3() Displays a menu that allows the user to choose the action to
take on the current customer row: see the next row, update
the current row, delete the current row, or see customer calls.

addupd_cust() Combines insertion and update functions in a single routine
to eliminate duplication of code.
See the description in Example 9.

state_popup() Displays a lookup list of the states from the state table so the
user can choose the appropriate state.
See the description in Example 9.

insert_cust() Adds a new row to the customer table.
See the description in Example 9.

update_cust() Updates the database row to reflect the changes.
See the description in Example 6.

delete_cust() Deletes the current row if it does not have dependent rows in
other tables.
See the description in Example 6.

Example 17 377

Function Overview

verify_delete() Checks for dependent rows in other tables.
See the description in Example 6.

open_calls() Opens the window and displays the form for the customer
calls (f_custcall).

call_menu() Displays the CUSTOMER CALLS menu that allows the user
to choose whether to receive a new call or update an existing
call.

addupd_call() Combines the Add and Update operations on the cust_calls
table into a single routine. This enables the required field val-
idation to be contained in a single routine.

input_call() Accepts user input for customer call information.

browse_calls() Displays customer call information on the screen, one at a
time, and then calls nxtact_call() to allow the user to choose
the next action.

nxtact_call() Displays the CUSTOMER CALL MODIFICATION menu and
allows user to choose whether to view the next call or update
the currently displayed call.

get_timeflds() Breaks a DATETIME value into three fi time, AM / PM
fl and date.

get_datetime() Creates a DATETIME value from three fields: time, AM / PM
fl and date.

init_time() Initializes the time and AM / PM fields to the current system
time.

edit_descr() Displays a form (f_edit) to allow the user to edit a CHAR(240)
field.

insert_call() Adds a new cust_calls row to the database.

update_call() Performs a database UPDATE on cust_calls.
init_msgs() Initializes the members of the ga_dsplymsg array to null.

See the description in Example 2.
message_window() Opens a window and displays the contents of the

ga_dsplymsg global array.
See the description in Example 2.

prompt_window() Displays a message and prompts the user for confirmation. This
function is a variation on the message_window() func- tion
that appears in Example 2.
See the description in Example 4.

msg() Displays a brief, informative message.
See the description in Example 5.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

378 Using the DATETIME Data Type

The f_custcall Form

The f_custcall Form
1➤ Because this form contains fi connected to database columns, it must

specify which database to look up the column definition. This form will work
with any version of the stores7 database.

2➤ This form uses columns from two tables: customer and cust_calls.

3➤ The f000 and f001 screen fields display the customer number and name of the
current customer. The current customer is the one the user has selected from
the CUSTOMER menu.

Notes 4 to 6➤ Describe how the three screen fi implement the data entry for the call
receipt time. The 4GL program combines the data in these fields to create the
DATETIME value stored in the call_dtime column of cust_calls.

4➤ The call_time fi accepts the call receipt time in the form: hh:mm where hh
is the hour and mm is the number of minutes. The PICTURE attribute simpli-
fi user entry by specifying that this CHAR fi consists of two sets of two
digits separated by a semicolon. The AUTONEXT attribute automatically
moves the cursor to the next screen fi when this fi is filled.

Because this screen fi is defined as CHARACTER, 4GL cannot perform
much data validation on the hour and minute values. The “##” specification
in the PICTURE attribute does limit the character entry to only numeric char-
acters (0-9) but it cannot ensure that an hour value is between 0 and 23 or that
a minute value is between 0 and 59. These checks must be made by the 4GL

program.

5➤ The am_pm1 fi displays either “AM” or “PM” to indicate the time of day for
an hour. The PICTURE attribute simplifies user entry by specifying that the fi
character of this CHAR fi must be a letter (A-Z) and the second char- acter
will always be “M”. The AUTONEXT attribute automatically moves the
cursor to the next screen fi when this fi is filled.

This screen field does not limit entry of the first character to either “A” or “P”.
The “X” specification in the PICTURE attribute limits the character entry to a
letter (A-Z) and the UPSHIFT attribute ensures that this character is always in
uppercase. But no attributes can ensure that this fi is either “A” or “P”.
This check must be made by the 4GL program.

6➤ The yr_mon1 fi accepts the date that the call was received. Because this
field is defined as type DATE, the 4GL program can ensure that the user enters
valid date values for the month, day, and year. The DEFAULT attribute initial-
izes an empty fi to today’s date.

Example 17 379

The f_custcall Form

1➤ DATABASE stores7

SCREEN

{

Customer Number: [f000] Company Name :[f001]

Call Received at: [f002][f3] [f004]

Received By: [f005]

Call Code (B/D/I/L/O): [a]

Call Description: [b]

Call Resolved on: [f006][f7] [f008]

Call Resolution: [c]

}

2➤ TABLES
customer

cust_calls

ATTRIBUTES

3➤ f000 = cust_calls.customer_num;
f001 = customer.company;

4➤ f002 = formonly.call_time TYPE CHAR, AUTONEXT, PICTURE = "##:##";
5➤ f3 = formonly.am_pm1 TYPE CHAR, AUTONEXT, UPSHIFT, PICTURE = "XM";
6➤ f004 = formonly.yr_mon1 TYPE DATE, DEFAULT = TODAY;

f_custcall form file

380 Using the DATETIME Data Type

The f_edit Form

7➤ The user_id fi accepts the name of the person entering the call. This field
is initialized by the 4GL program with the name of the person currently run-
ning the program.

8➤ The call_code fi accepts a single character code that identifies the reason
for the customer call. The INCLUDE attribute limits valid input to only those
letters that represent valid codes, and the UPSHIFT attribute ensures that
these codes are always uppercase. The AUTONEXT attribute automatically
moves the cursor to the next screen fi after this code is entered.

Notes 9 to 11 ➤ The three screen fields described implement the data entry for the call receipt
time. The 4GL program combines the data in these fi to create the
DATETIME value stored in the call_dtime column of cust_calls.

9➤ The call_flag field indicates whether the current customer call has a non-null
value for the call description. The call description is stored in the call_descr
column of cust_calls. If this column is not null, then the call_flag fi dis-
plays a “Y”. Otherwise, call_descr is null and the call_flag fi displays a
“N”. The INCLUDE attribute limits fi input to either a “Y” or an “N”.

10 ➤ The res_time fi accepts the call resolution time. It is defined in the same
way as the call_time fi See Note 4 for more information.

11 ➤ The am_pm2 fi displays either “AM” or “PM” to indicate the time of day
for an hour. This fi is defined in the same way as the am_pm1 fi See
Note 5 for more information.

12 ➤ The yr_mon2 fi accepts the date that the call was received. This fi is
defined in the same way as the yr_mon1 fi See Note 6 for more informa-
tion.

13 ➤ The res_flag field indicates whether the current customer call has a non-null
value for the call resolution description. This field is defined in the same way
as the call_flag fi See Note 9 for more information.

14 ➤ Setting the DELIMITERS to blanks means that the f_custcall form uses blank
spaces to indicate the data entry fi This assignment has the effect of not
displaying the width of the input fields.

The f_edit Form
1➤ The f000 fi is made up of six lines of 40 characters for a total of

240 characters.

2➤ The TYPE attribute defines the f000 fi as CHARACTER. The WORDWRAP

attribute (with the COMPRESS option) specifies that data exceeding 40 char-
acters (the size of one line) will “wrap” to the next line of the f000 field.

Example 17 381

The f_edit Form

f_edit form file

7➤ f005 = cust_calls.user_id;
8➤ a = cust_calls.call_code, INCLUDE = ("B", "D", "I", "L", "O"),

UPSHIFT, AUTONEXT;

9➤ b = formonly.call_flag TYPE CHAR, INCLUDE = ("Y", "N"), UPSHIFT;

10 ➤ f006 = formonly.res_time TYPE CHAR, AUTONEXT, PICTURE = "##:##";
11 ➤ f7 = formonly.am_pm2 TYPE CHAR, AUTONEXT, UPSHIFT, PICTURE = "XM";
12 ➤ f008 = formonly.yr_mon2 TYPE DATE, DEFAULT = TODAY;

13 ➤ c = formonly.res_flag TYPE CHAR, INCLUDE = ("Y", "N"), UPSHIFT;

INSTRUCTIONS

14 ➤ DELIMITERS " "

DATABASE formonly

SCREEN

{

1 ➤ Description :[f000]

[f000]

[f000]

[f000]

[f000]

[f000]

}

ATTRIBUTES

2➤ f000 = formonly.edit_str TYPE CHAR, WORDWRAP COMPRESS;

382 Using the DATETIME Data Type

The DATABASE and GLOBALS Statements

The DATABASE and GLOBALS Statements
1➤ Any version of the stores7 database may be used here. This example uses the

customer and cust_calls tables.

2➤ The global record gr_custcalls holds the column values for a row in the
cust_calls table. Throughout this example, this record will be referred to as
the table record.

3➤ The global record gr_viewcall holds the screen fi values for information
about a single cust_calls row. The screen fi do not match the columns
in the table because the screen:

• Breaks each DATETIME column (call_dtime and res_dtime) into three
screen fields so the user does not have to use the DATETIME entry format:

• Time (hours and minutes)

• An AM / PM fl (for 24-hour notation)

• A date (month, day, and year)

• Displays each description column (call_descr and res_descr) as a single
character so the entire column of CHAR(240) does not display on the
f_custcall screen. A “Y” indicates that the corresponding description col-
umn has a non-null value and an “N” indicates that this column is empty
(NULL). For more information on the f_custcall.per fi see Note 19.
Throughout this example, this record will be referred to as the screen field
record.

4➤ The gr_workcall record is a second copy of the gr_viewcall record. It serves
as a work buffer for the screen information. If the user decides to cancel an
update after having changed values on the screen, this working copy restores
the original fi values. If, after input completes, the work buffer is empty, then
the user must be performing an Add. See the function addupd_call() for the
implementation.

5➤ The ga_dsplymsg array is used as input to the message_window() function
as described in Example 1.

Example 17 383

The DATABASE and GLOBALS Statements

1➤ DATABASE stores7

GLOBALS

DEFINE gr_customer RECORD LIKE customer.*, -- table record

gr_workcust RECORD LIKE customer.*, -- screen field record
2➤ gr_custcalls RECORD LIKE cust_calls.*,

3➤ gr_viewcall RECORD

customer_num LIKE customer.customer_num,

company LIKE customer.company,

call_time CHAR(5),

am_pm1 CHAR(2),

yr_mon1 DATE,

user_id LIKE cust_calls.user_id,

call_code LIKE cust_calls.call_code,

call_flag CHAR(1),

res_time CHAR(5),

am_pm2 CHAR(2),

yr_mon2 DATE,

res_flag CHAR(1)

END RECORD,

4➤ gr_workcall RECORD

customer_num LIKE customer.customer_num,

company LIKE customer.company,

call_time CHAR(5),

am_pm1 CHAR(2),

yr_mon1 DATE,

user_id LIKE cust_calls.user_id,

call_code LIKE cust_calls.call_code,

call_flag CHAR(1),

res_time CHAR(5),

am_pm2 CHAR(2),

yr_mon2 DATE,

res_flag CHAR(1)

END RECORD

5➤ DEFINE ga_dsplymsg ARRAY[5] OF

CHAR(48) END GLOBALS

4GL source file

384 Using the DATETIME Data Type

The cust_menu2() Function

The MAIN Function
6➤ The OPTIONS statement establishes the hlpmsgs fi as the help fi for the

program. It also establishes screen lines for the menu: FORM LINE sets the
fi line of the form to line 5 of the window, COMMENT LINE sets the com-
ment line to be the blank line after the menu title, and MESSAGE LINE sets the
message line to the last line of the window. This setting prevents message text
from overwriting the screen.

7➤ The DEFER INTERRUPT statement prevents use of the Cancel key (typically
CONTROL-C) from terminating the program. Instead, using Cancel sets the
global variable int_flag to TRUE, AS discussed in Example 5. This flag is tested
after INPUT to see if the user has used Cancel to exit the menu.

8➤ The customer form f_customer displays in a bordered window called
w_main.

9➤ The cust_menu2() function displays the CUSTOMER menu. See Note 11 for
more information about this menu.

10 ➤ When the program exits, you should deallocate the resources used and then
clear the screen. The CLOSE FORM statement deallocates the memory for the
f_customer form and CLOSE WINDOW deallocates the memory for the
w_main window, causing it to disappear.

The cust_menu2() Function
11 ➤ The CUSTOMER menu allows the user to choose the customer maintenance

task to perform: add a new customer (Add), query for an existing customer
(Query), or exit the menu (Exit). This menu is almost the same CUSTOMER

menu as implemented in Example 9 by the cust_menu1() function. This ver-
sion calls the browse_custs2() function (instead of browse_custs1()) to dis-
play the CUSTOMER MODIFICATION menu with the Calls option.

12 ➤ The query_cust2() function implements a query by example on the customer
table. This function is described in Example 6.

13 ➤ If the user has entered search criteria, the browse_cust2() function locates the
matching customer rows and displays the fi matching row on the
f_customer form. This function also displays the CUSTOMER MODIFICATION

menu to allow the user to choose the next action to take on the customer. See
Note 17 for more information about this menu.

Example 17 385

The MAIN Function

MAIN

6➤ OPTIONS

HELP FILE "hlpmsgs",

FORM LINE 5,

COMMENT LINE 5,

MESSAGE LINE LAST

7➤ DEFER INTERRUPT

8➤ OPEN WINDOW w_main AT 2,3

WITH 18 ROWS, 76 COLUMNS

ATTRIBUTE (BORDER)

OPEN FORM f_customer FROM "f_customer"

DISPLAY FORM f_customer

9➤ CALL cust_menu2()

10 ➤ CLOSE FORM f_customer

CLOSE WINDOW w_main

CLEAR SCREEN

END MAIN

FUNCTION cust_menu2()

DEFINE st_custs CHAR(150)

11 ➤ MENU "CUSTOMER"

See cust_menu1() in Example 9.

COMMAND "Query" "Look up customer(s) in the database." HELP 11

12 ➤ CALL query_cust2() RETURNING st_custs

IF st_custs IS NOT NULL THEN

13 ➤ CALL browse_custs2(st_custs)

END IF

CALL clear_lines(1, 4)

END MENU

END FUNCTION -- cust_menu2 --

See cust_menu1() in Example 9.

4GL source file

386 Using the DATETIME Data Type

The next_action3() Function

The browse_custs2() Function
14 ➤ The browse_custs2() function is based on the browse_custs1() function

of Example 9. The only difference between the two functions is that
browse_custs2() calls the next_action3() function (instead of next_action2())
to display the CUSTOMER MODIFICATION menu. The next_action3() version
of this menu has an additional menu option for Customer Calls.

15 ➤ If next_action3() returns FALSE, then the user has chosen the Exit option from
the CUSTOMER MODIFICATION menu. The program sets the end_list flag to
FALSE and exits the c_cust FOREACH loop. Because the FOREACH loop exits
before the last selected row, the end_list variable is set to FALSE to prevent the
“No more customer rows” message from displaying.

16 ➤ If next_action3() returns TRUE, then the user has chosen the Next option from
the CUSTOMER MODIFICATION menu. The program sets the end_list flag and
saves the current row values in the working buffer gr_workcust. In case this
is the last row in the FOREACH loop, the end_list variable is set to TRUE so
that the “No more customer rows” message displays.

The next_action3() Function
17 ➤ The next_action3() function is based on the next_action2() function in

Example 9. The function was modified to add a Calls menu option to the
CUSTOMER MODIFICATION menu. This option provides the user with access
to calls received from the current customer. These calls are stored in the
cust_calls table.

18 ➤ The Calls option calls the open_calls() function to allow the user access to the
customer calls for the current customer.

Example 17 387

The browse_custs2() Function

14 ➤ FUNCTION browse_custs2(selstmt)

FOREACH c_cust INTO gr_customer.*

LET fnd_custs = TRUE

DISPLAY BY NAME gr_customer.*

15 ➤ IF NOT next_action3() THEN

LET end_list = FALSE

EXIT FOREACH

16 ➤ ELSE

LET end_list = TRUE

END IF

LET gr_workcust.* = gr_customer.*

END FOREACH

See browse_custs() in Example 6.

IF end_list THEN

CALL msg("No more customer rows.")

END IF

CLEAR FORM

END FUNCTION -- browse_custs2 --

17 ➤ FUNCTION next_action3()

DEFINE nxt_action SMALLINT

LET nxt_action = TRUE

MENU "CUSTOMER MODIFICATION"

See browse_custs() in Example 6.

See next_action2() in Example 9.

18 ➤ COMMAND "Calls" "View this customer’s calls." HELP 23

IF gr_customer.customer_num IS NULL THEN

CALL msg("No customer is current. Please use 'Query'.")

ELSE

CALL open_calls()

END IF

See next_action2() in Example 9.

END FUNCTION -- next_action3 --

388 Using the DATETIME Data Type

The call_menu() Function

The open_calls() Function
19 ➤ The f_custcall displays in a bordered window called w_call.

20 ➤ The two DISPLAY statements display a form heading and initialize the form
with the current customer’s number and name.

21 ➤ The call_menu() function displays the CUSTOMER CALLS menu. See Note 23
for more information about this menu.

22 ➤ The program closes the f_custcall form and the w_call window so that the
customer form (f_customer) is again visible.

The call_menu() Function
23 ➤ The CUSTOMER CALLS menu allows the user to perform the customer calls

maintenance tasks: receive a new call (Receive), look at existing calls for this
customer (View), and exit the menu (Exit).

24 ➤ The Receive option calls the addupd_call() function to receive a new call for
the current customer. Because this function can handle both an Add and an
Update on the f_custcall form, the add / update fl is set to “Add” (“A”).
This function is modeled after the addupd_cust() function implemented in
Example 9.

25 ➤ The View option calls the browse_calls() function to view existing calls for the
current customer. To identify the current customer, the function call sends the
current customer number as an argument to browse_calls(). This function is
modeled after the browse_custs() function in Example 9.

26 ➤ The bang() function implements the “bang” (“!”) escape to the operating
system. The “bang” escape is explained in Example 3. The Exit option
provides the user with a way out of the menu.

Example 17 389

The open_calls() Function

FUNCTION open_calls()

19 ➤ OPEN WINDOW w_call AT 2,3

WITH 18 ROWS, 76 COLUMNS

ATTRIBUTE (BORDER)

OPEN FORM f_custcall FROM "f_custcall"

DISPLAY FORM f_custcall

20 ➤ DISPLAY "CUSTOMER CALLS" AT 4, 29
DISPLAY BY NAME gr_customer.customer_num, gr_customer.company

21 ➤ CALL call_menu()

22 ➤ CLOSE FORM f_custcall

CLOSE WINDOW w_call

END FUNCTION -- open_calls --

FUNCTION call_menu()

DISPLAY

"--Press CTRL-W for Help----------

" AT 3, 1
23 ➤ MENU "CUSTOMER CALLS"

24 ➤ COMMAND "Receive" "Add a new customer call to the database."

HELP 70

CALL addupd_call("A")

25 ➤ COMMAND "View" "Look at calls for this customer." HELP 71

CALL browse_calls(gr_customer.customer_num)

26 ➤ COMMAND KEY ("!")

CALL bang()

COMMAND KEY ("E","X") "Exit" HELP 72

"Return to the CUSTOMER MODIFICATION menu."

EXIT MENU

END MENU

END FUNCTION -- call_menu --

390 Using the DATETIME Data Type

The addupd_call() Function

The addupd_call() Function
27 ➤ If the user is receiving a new call, then the au_flag is “A”. The global customer

call records are initialized to NULL, and the date fi in the screen field
record (gr_viewcall) is initialized to today’s date.

28 ➤ If the user is updating an existing call, then the au_flag is “U”. The global
work buffer record gr_workcall saves the current values on the screen. If the
user terminates an update, these values are used to restore the original col-
umn values to the screen.

29 ➤ The input_call() function accepts the user input values for the customer call.
It returns TRUE if the user has entered values, and FALSE if the user has
terminated the input with the Cancel key (typically CONTROL-C).

30 ➤ If input_call() returns TRUE, then the user has entered values (not used
Cancel) on the f_custcall form. The prompt_window() function then prompts
for a confirmation to save the call in the database.

31 ➤ If the user confirms the save, then the setting of the au_flag determines which
database operation to perform. If this call is new, the insert_call() function
performs an INSERT. If this call is being updated, the update_call() function
performs an UPDATE.

32 ➤ If the user does not confirm the save, the keep_going fl is set to FALSE to
indicate that the original values should be restored to the screen.

33 ➤ If input_call() returns FALSE, then the user used Cancel during the data entry
on f_custcall. The keep_going flag is set to FALSE to indicate that the original
values should be restored to the screen.

34 ➤ If keep_going is FALSE, then the data on the f_custcall form has not been
saved. If the user was receiving a new call, clear the screen fields. If the user
was updating a call, restore the original values to the screen fields. These val-
ues were saved in the work buffer gr_workcall before the INPUT statement
began.

Example 17 391

The addupd_call() Function

FUNCTION addupd_call(au_flag)

DEFINE au_flag CHAR(1),

 keep_going SMALLINT

DISPLAY

" Press Accept to save call. Press CTRL-W for Help."

AT 16, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY

" Press Cancel to exit w/out saving."

AT 17, 1 ATTRIBUTE (REVERSE, YELLOW)

27 ➤ IF au_flag = "A" THEN

INITIALIZE gr_custcalls.* TO NULL

INITIALIZE gr_viewcall.* TO NULL

INITIALIZE gr_workcall.* TO NULL

LET gr_viewcall.yr_mon1 = TODAY

28 ➤ ELSE --* au_flag = "U"

LET gr_workcall.* = gr_viewcall.*

END IF

LET gr_viewcall.customer_num = gr_customer.customer_num

LET keep_going = TRUE

29 ➤ IF input_call() THEN
LET ga_dsplymsg[1] = "Customer call entry complete."

30 ➤ IF prompt_window("Are you ready to save this customer call?",

14, 14)

THEN

31 ➤ IF (au_flag = "A") THEN

CALL insert_call()

CLEAR call_time, am_pm1, yr_mon1, user_id, call_code,

call_flag, res_time, am_pm2, yr_mon2, res_flag

ELSE --* au_flag = “U”

CALL update_call()

END IF

32 ➤ ELSE --* user doesn’t want to update

LET keep_going = FALSE

END IF

33 ➤ ELSE --* user pressed Cancel/Interrupt

LET keep_going = FALSE

END IF

34 ➤ IF NOT keep_going THEN

IF au_flag = "A" THEN

CLEAR call_time, am_pm1, yr_mon1, user_id, call_code,

call_flag, res_time, am_pm2, yr_mon2, res_flag

ELSE --* au_flag = "U"

LET gr_viewcall.* = gr_workcall.*

DISPLAY BY NAME gr_viewcall.*

392 Using the DATETIME Data Type

The input_call() Function

The input_call() Function
35 ➤ The pr_calltime record holds the call receipt time; the pr_restime record holds

the call resolution time. These local records hold the screen fi values for
the integer representation of the time values.

36 ➤ The edit_fld variable contains the description of either the call or the call
resolution; call_cnt contains the number of calls that exist for this customer
and have been received at the same time as the current call; fld_flag indicates
whether edit_fld contains the call description (fld_flag = “C”) or the call
resolution description (fld_flag = “R”); new_flag is the value of the call_flag
or res_flag screen fi after the user has edited the call description or call
resolution description.

37 ➤ The INPUT statement lets the user enter values in the screen fi on the
f_custcall form. The THRU keyword limits data entry to the fi in the
gr_viewcall record, starting with call_time and ending with res_flag. The
customer_num and company fields in this record do not require input values
because they have already been initialized with the number and name of the
current customer (see Note 20).

38 ➤ Before the user can enter data in the call_time field, the program checks if the
fi is empty (NULL). If so, it uses the init_time() function to initialize the
fi to the current system time.

Notes 39 to 44 The AFTER FIELD clause performs data validation after the cursor leaves the
call_time field.

39 ➤ If the user has cleared the field, the program restores the default time (current
system time) and returns the user to the field. This test ensures that the user
enters a call receipt time.

40 ➤ This LET statement uses data conversion to assign the character
representation of the hours in the call receipt time to the integer variable
pr_calltime.hrs. An integer value makes the data validation in the next step
easier.

41 ➤ The hour value must be between 0 and 23 to be valid. This validation is
required because the time field is defined as CHAR, not DATETIME. The only
validation that 4GL performs is to verify that the input is numeric characters.
This numeric validation is specified by the PICTURE attribute of the call_time
fi in the form file, f_custcall.per.

Example 17 393

The input_call() Function

END IF

CALL msg("Customer call input terminated.")

END IF

CALL clear_lines(2,16)

END FUNCTION -- addupd_call --

FUNCTION input_call()

35 ➤ DEFINE pr_calltime RECORD

hrs SMALLINT,

mins SMALLINT

END RECORD,

pr_restime RECORD

hrs SMALLINT,

mins SMALLINT

END RECORD,

36 ➤ edit_fld LIKE cust_calls.call_descr,

call_cnt SMALLINT,

fld_flag CHAR(1),

new_flag CHAR(1)

INITIALIZE pr_calltime.* TO NULL

INITIALIZE pr_restime.* TO NULL

LET int_flag = FALSE

37 ➤ INPUT BY NAME gr_viewcall.call_time THRU gr_viewcall.res_flag

WITHOUT DEFAULTS

BEFORE FIELD call_time

38 ➤ IF gr_viewcall.call_time IS NULL THEN

CALL init_time() RETURNING gr_viewcall.call_time,

gr_viewcall.am_pm1

DISPLAY BY NAME gr_viewcall.am_pm1

END IF

AFTER FIELD call_time

39 ➤ IF gr_viewcall.call_time IS NULL THEN

CALL init_time() RETURNING gr_viewcall.call_time,

gr_viewcall.am_pm1

DISPLAY BY NAME gr_viewcall.call_time
ELSE

40 ➤ LET pr_calltime.hrs = gr_viewcall.call_time[1,2]

41 ➤ IF (pr_calltime.hrs < 0) OR (pr_calltime.hrs > 23) THEN

ERROR "Hour must be between 0 and 23. Please try again."

LET gr_viewcall.call_time[1,2] = "00"

NEXT FIELD call_time

END IF

394 Using the DATETIME Data Type

The input_call() Function

42 ➤ This LET statement uses data conversion to assign the character
representation of the minutes in the call receipt time to an integer variable
pr_calltime.mins. An integer value makes the data validation in the next step
easier.

43 ➤ The minute value must be between 0 and 59 to be valid. Once again, this
validation is required because the time fi is defined as CHAR, not
DATETIME (See Note 41).

44 ➤ If the hour is between 13 and 23, then the user entered a time in 24-hour
notation that is between 1:00 PM and 11:59 PM. The am_pm1 fi displays
“PM” and the cursor skips over this field. If the hour is between 0 and 12, then
it could be either “AM” or “PM” so the cursor must continue to the am_pm1
field.

45 ➤ After the cursor leaves the am_pm1 fi the program verifies that the field
is not empty and that the input is valid.

46 ➤ Before the user can enter data in the yr_mon1 field, the program checks if the
fi is empty. If so, it initializes the fi with today’s date.

Notes 47 to 51 ➤ The AFTER FIELD clause performs data validation after the cursor leaves the
yr_mon1 field.

47 ➤ If the user has cleared the fi the program reinitializes the fi with
today’s date. This test ensures that the call receipt date fi always has a
value.

48 ➤ The cust_calls table stores the call receipt time in a DATETIME column called
call_dtime. However, because the data entry format for DATETIME can be dif-
fi for the user to remember, the f_custcall form accepts the call time in
three different fields: call_time (time in hours and minutes), am_pm1 (“AM”
or “PM”), and yr_mon1 (month, day, and year). The get_datetime() function
converts these three screen fi values to a single DATETIME value.

Example 17 395

The input_call() Function

42 ➤ LET pr_calltime.mins = gr_viewcall.call_time[4,5]

43 ➤ IF (pr_calltime.mins < 0) OR (pr_calltime.mins > 59) THEN

ERROR "Minutes must be between 0 and 59. Please try again."

LET gr_viewcall.call_time[4,5] = "00"

NEXT FIELD call_time

END IF

44 ➤ IF pr_calltime.hrs > 12 THEN

LET gr_viewcall.am_pm1 = "PM"

DISPLAY BY NAME gr_viewcall.am_pm1

NEXT FIELD yr_mon1

END IF

END IF
AFTER FIELD am_pm1

45 ➤ IF (gr_viewcall.am_pm1 IS NULL)

OR (gr_viewcall.am_pm1[1] NOT MATCHES "[AP]")

THEN

ERROR "Time must be either AM or PM."

LET gr_viewcall.am_pm1[1] = "A"

NEXT FIELD am_pm1

END IF

BEFORE FIELD yr_mon1

46 ➤ IF gr_viewcall.yr_mon1 IS NULL THEN

LET gr_viewcall.yr_mon1 = TODAY

END IF

AFTER FIELD yr_mon1

47 ➤ IF gr_viewcall.yr_mon1 IS NULL THEN

LET gr_viewcall.yr_mon1 = TODAY

DISPLAY BY NAME gr_viewcall.yr_mon1

END IF

48 ➤ CALL get_datetime(pr_calltime.*, gr_viewcall.am_pm1,

gr_viewcall.yr_mon1)

RETURNING gr_custcalls.call_dtime

396 Using the DATETIME Data Type

The input_call() Function

49 ➤ This IF statement tests whether the INPUT statement is executed as a result of
an Add operation (receiving a new call) or an Update operation (changing an
existing call). If the customer_num field of the work buffer is NULL, then the
gr_custcalls record was empty before the data entry began. An initial empty
record indicates that the user is receiving a new call, rather than updating an
existing call (see Notes 27 and 28).

50 ➤ If this is an Add operation, the program verifies whether the cust_calls table
already contains a row for the current customer that has the same receipt time
as the current call. The stores7 database has a UNIQUE index on the
customer_num and call_dtime columns of cust_calls. This index ensures that
two calls are not logged at the same time for the same customer. The receipt
time must be unique.

If an INSERT statement attempted to insert a cust_calls row with a customer
number and receipt time that already existed in the table, the INSERT would
fail. To prevent this error, this SELECT statement counts the number of rows
in the cust_calls table that have the same customer number and receipt time
as the current call.

51 ➤ If the SELECT statement in Note 50 fi any rows with the same customer
number and receipt time as the current call, then this call will not be unique
and cannot be inserted into the database. The program notifies the user of the
error, reinitializes the time fields to the current time and day, and returns the
cursor to the call_time fi so the user can reenter the time.

52 ➤ Before the user can enter data in the user_id fi the program checks if the field
is empty. If so, it initializes the field with the current user’s ID. To obtain the
user ID, the program uses the USER function of the SELECT statement.
This “dummy” SELECT does not actually select data from the database. It just
runs the USER function. Because the SELECT statement must specify a table,
it uses the systables system catalog, and to ensure that it yields only one row,
the SELECT statement includes a WHERE clause to specify the row having the
“systables” table name.

53 ➤ If the user has cleared the field, the program returns the cursor to the user_id
fi This test ensures that the user enters a user ID value.

54 ➤ Before the user can enter data in the call_code field, the program notifies the
user of the valid call code values.

55 ➤ The IF statement ensures that the call_code variable has a value.

56 ➤ This MESSAGE statement clears the message line once the cursor leaves the
field. Leaving this message on the screen could confuse the user because the
codes it lists apply only to the call_code field.

Example 17 397

The input_call() Function

49 ➤ IF gr_workcall.customer_num IS NULL THEN

50 ➤ SELECT COUNT(*)

INTO call_cnt

FROM cust_calls

WHERE customer_num = gr_custcalls.customer_num

AND call_dtime = gr_custcalls.call_dtime

51 ➤ IF (call_cnt > 0) THEN

ERROR "This customer already has a call entered for: ",

gr_custcalls.call_dtime

CALL init_time() RETURNING gr_viewcall.call_time,

gr_viewcall.am_pm1

NEXT FIELD call_time

END IF

END IF

BEFORE FIELD user_id

52 ➤ IF gr_viewcall.user_id IS NULL THEN

SELECT USER

INTO gr_viewcall.user_id

FROM informix.systables

WHERE tabname = "systables"

END IF

AFTER FIELD user_id

53 ➤ IF gr_viewcall.user_id IS NULL THEN

ERROR "You must enter the name of the person logging the call."

NEXT FIELD user_id

END IF

BEFORE FIELD call_code

54 ➤ MESSAGE "Valid call codes: B, D, I, L, O "

AFTER FIELD call_code

55 ➤ IF gr_viewcall.call_code IS NULL THEN

ERROR "You must enter a call code. Please try again."

NEXT FIELD call_code

END IF

56 ➤ MESSAGE ""

398 Using the DATETIME Data Type

The input_call() Function

Notes 57 to 60 ➤ The BEFORE FIELD clause performs fi initialization before the user can
enter data in the call_flag field.

57 ➤ The program notifies the user how to use the special feature to edit the call
description. See Notes 73 to 76 for a description of the ON KEY section that
implements this feature.

58 ➤ This IF statement determines whether the current call is a new call or an
existing call. See Note 49 for more information about this test.

59 ➤ If this is a new customer call, the f_edit form displays automatically so the
user can enter the new call’s description. Calling the edit_descr() function
with the “C” argument tells this function to assign input from f_edit for the
call description fi call_descr. With an argument of “R”, this function can
also assign input to the call resolution description, res_descr (see Note 71).

The edit_descr() function returns the setting for call_flag. If the user has
entered input for the call description, then gr_custcalls.call_descr is not null
and call_flag remains set to “Y”. If the user has not entered input for
call_descr, then call_flag is set to “N”.

60 ➤ This DISPLAY statement initializes the call_flag field. It displays the call_flag
value in the screen fi of the same name.

Notes 61 to 64 ➤ The AFTER FIELD clause performs data validation after the cursor leaves the
call_flag field.

61 ➤ If no call description exists for this call but the user has entered “Y”, the call
description fi needs to be corrected by changing the its value to “N”.

62 ➤ If a call description exists for this call but the user has entered “N”, the call
description fi needs to be corrected by changing its value to “Y”.

63 ➤ This MESSAGE statement clears the message line once the cursor leaves the
field. Leaving the message on the screen could confuse the user because this
editing feature is only valid from within the call_flag field.

64 ➤ The user is asked whether to continue on to the call resolution fi If the
user wants to continue, the cursor moves to the next fi res_time. If the
user does not want to continue, data entry is complete so the INPUT

statement exits.

65 ➤ This BEFORE FIELD section performs the same fi initialization on the
res_time field as was performed on the call_time field. See Note 38 for more
information.

66 ➤ This AFTER FIELD section performs the same data validation on the res_time
fi as was performed on the call_time fi See Notes 39 to 44 for more
information.

Example 17 399

The input_call() Function

BEFORE FIELD call_flag

57 ➤ MESSAGE "Press F2 (CTRL-E) to edit call description."

58 ➤ IF gr_workcall.customer_num IS NULL THEN --* doing an insert

59 ➤ LET gr_viewcall.call_flag = edit_descr("C")

60 ➤ DISPLAY BY NAME gr_viewcall.call_flag

END IF

AFTER FIELD call_flag

61 ➤ IF gr_custcalls.call_descr IS NULL

AND (gr_viewcall.call_flag = "Y")

THEN

ERROR "No call description exists: changing flag to ’N’."

LET gr_viewcall.call_flag = "N"

DISPLAY BY NAME gr_viewcall.call_flag

END IF

62 ➤ IF gr_custcalls.call_descr IS NOT NULL

AND (gr_viewcall.call_flag = "N")

THEN

ERROR "A call description exists: changing flag to ’Y’."

LET gr_viewcall.call_flag = "Y"

DISPLAY BY NAME gr_viewcall.call_flag

END IF

63 ➤ MESSAGE ""

64 ➤ LET ga_dsplymsg[1] = "Call receiving information complete."

IFprompt_window("Enter call resolution now?", 14, 14) THEN

NEXT FIELD res_time

ELSE

EXIT INPUT

END IF

65 ➤ BEFORE FIELD res_time

IF gr_viewcall.res_time IS NULL THEN

CALL init_time() RETURNING gr_viewcall.res_time,

gr_viewcall.am_pm2

DISPLAY BY NAME gr_viewcall.am_pm2

END IF

66 ➤ AFTER FIELD res_time

IF gr_viewcall.res_time IS NULL THEN

CALL init_time() RETURNING gr_viewcall.res_time,

gr_viewcall.am_pm2

ELSE

LET pr_restime.hrs = gr_viewcall.res_time[1,2]

IF(pr_restime.hrs < 0) OR (pr_restime.hrs > 23) THEN ERROR

"Hour must be between 0 and 23. Please try again." LET

gr_viewcall.res_time[1,2] = "00"

NEXT FIELD res_time

END IF

The input_call() Function

Example 17 401

67 ➤ This AFTER FIELD clause performs the same data validation on the am_pm2
fi as was performed on the am_pm1 fi See Note 45 for more
information.

68 ➤ This BEFORE FIELD clause performs the same fi initialization on the
yr_mon2 field as was performed on the yr_mon1 field. See Note 46 for more
information.

Notes 69 to 70 ➤ The AFTER FIELD clause performs data validation after the cursor leaves the
yr_mon2 field.

69 ➤ This test ensures that the call resolution date fi always has a value.

70 ➤ This test ensures that the call resolution date is not before the call receipt date.

71 ➤ This BEFORE FIELD clause performs the same fi initialization on the
res_flag fi as was performed on the call_flag fi See Notes 57 to 60 for
more information.

The input_call() Function

400 Using the DATETIME Data Type

LET pr_restime.mins = gr_viewcall.res_time[4,5]

IF (pr_restime.mins < 0) OR (pr_restime.mins > 59) THEN

ERROR "Minutes must be between 0 and 59. Please try again."

LET gr_viewcall.res_time[4,5] = "00"

NEXT FIELD res_time

END IF

IF pr_restime.hrs > 12 THEN

LET gr_viewcall.am_pm2 = "PM"

DISPLAY BY NAME gr_viewcall.am_pm2

NEXT FIELD yr_mon2

END IF

END IF

67 ➤ AFTER FIELD am_pm2

IF (gr_viewcall.am_pm2 IS NULL)

OR (gr_viewcall.am_pm2[1] NOT MATCHES "[AP]")

THEN

ERROR "Time must be either AM or PM."

LET gr_viewcall.am_pm2[1] = "A"

NEXT FIELD am_pm2

END IF

68 ➤ BEFORE FIELD yr_mon2

IFgr_viewcall.yr_mon2 IS NULL THEN

LET gr_viewcall.yr_mon2 = TODAY

END IF

AFTER FIELD yr_mon2

69 ➤ IF gr_viewcall.yr_mon2 IS NULL THEN

LET gr_viewcall.yr_mon2 = TODAY

DISPLAY BY NAME gr_viewcall.yr_mon2

END IF

70 ➤ IF gr_viewcall.yr_mon2 < gr_viewcall.yr_mon1 THEN

ERROR "Resolution date should not be before call date."

LET gr_viewcall.yr_mon2 = TODAY

NEXT FIELD yr_mon2

END IF

71 ➤ BEFORE FIELD res_flag

MESSAGE "Press F2 (CTRL-E) to edit resolution description."

IFgr_workcall.customer_num IS NULL THEN --* doing an insert

LET gr_viewcall.res_flag = edit_descr("R")

DISPLAY BY NAME gr_viewcall.res_flag

END IF

The input_call() Function

402 Using the DATETIME Data Type

72 ➤ The AFTER FIELD clause performs data validation on the res_flag fi It is
similar to the AFTER FIELD clause associated with the call_flag fi See
Notes 61 to 63 for more information about that clause.

The AFTER FIELD clause does not include a call to the prompt_window()
function as was found with the AFTER FIELD clause associated with the
call_flag fi (see Note 64). This is because the call resolution information
has, at this point, already been entered into the form.

Notes 73 to 76 ➤ The ON KEY clause is executed when the user presses CONTROL-E or the F2

function key. These keys initiate a feature to display a form in which to edit
the CHAR(240) columns: call_descr and res_descr. This features allows the
f_custcall form to omit these columns and instead, to only display a single-
character “Y” or “N” fl for each of them.

73 ➤ The built-in function INFIELD() determines the current fi If the cursor is
currently in either the call_flag or the res_flag fi then the editing feature
can be used. If the cursor is in any other fi on the form, then these key
sequences have no effect and the cursor remains in the current field.

74 ➤ The fld_flag variable is set to “C” when the cursor is in the call_flag field. This
value tells the edit_descr() function to edit the call_descr column for the cur-
rent row. If the cursor is not in call_descr, it must be in the res_flag fi A
setting of “R” tells edit_descr() to edit the res_descr column.

75 ➤ The edit_descr() function displays the f_edit form with the appropriate
column value. If fld_fl is “C”, then the f_edit form displays the call_descr
column value so the user can edit it. If fld_flag is “R”, then the form displays
and edits the res_descr column. The result of edit_descr() is the flag value to
display (“Y” if call_descr is not null and “N” otherwise).

76 ➤ The value of fld_flag determines which field to set and display: “C” displays
the call_flag fi while “R” displays the res_flag field.

77 ➤ If the user has interrupted the INPUT statement, 4GL sets int_flag to TRUE.
The user has terminated input on the f_custcall form, so the input_call()
function returns FALSE.

78 ➤ Three of the fi in the table record (gr_custcalls) have already been
assigned values from within the INPUT statement: call_dtime, call_descr,
res_descr (see Notes 48, 59, 76, and 119). These LET statements copy the
customer_num, user_id, and call_code values from the screen fi record
(gr_viewcall) to the table record.

The input_call() Function

Example 17 403

72 ➤ AFTER FIELD res_flag

IF gr_custcalls.res_descr IS NULL

AND (gr_viewcall.res_flag = "Y")

THEN

ERROR "No resolution description exists: changing flag to ’N’."

LET gr_viewcall.res_flag = "N"

DISPLAY BY NAME gr_viewcall.res_flag

END IF

IF gr_custcalls.res_descr IS NOT NULL

AND (gr_viewcall.res_flag = "N")

THEN

ERROR "A resolution description exists: changing flag to ’Y’."

LET gr_viewcall.res_flag = "Y"

DISPLAY BY NAME gr_viewcall.res_flag

END IF

MESSAGE ""

ON KEY (F2, CONTROL-E)

73 ➤ IF INFIELD(call_flag) OR INFIELD(res_flag) THEN

74 ➤ IF INFIELD(call_flag) THEN

LET fld_flag = "C"

ELSE --* user pressed F2 (CTRL-E) from res_flag

LET fld_flag = "R"

END IF

75 ➤ LET new_flag = edit_descr(fld_flag)

76 ➤ IF fld_flag = "C" THEN

LET gr_viewcall.call_flag = newflag

DISPLAY BY NAME gr_viewcall.call_flag

ELSE --* fld_flag = "R", editing Call Resolution

LET gr_viewcall.res_flag = newflag

DISPLAY BY NAME gr_viewcall.res_flag

END IF

END IF

ON KEY (CONTROL-W)

see addupd_cust() in Example 6.

END INPUT

77 ➤ IF int_flag THEN

LET int_flag = FALSE

RETURN (FALSE)

END IF

78 ➤ LET gr_custcalls.customer_num = gr_viewcall.customer_num

LET gr_custcalls.user_id = gr_viewcall.user_id

LET gr_custcalls.call_code = gr_viewcall.call_code

404 Using the DATETIME Data Type

The browse_calls() Function

79 ➤ The call to get_datetime() converts the screen fi containing the call
resolution time (res_time, am_pm2, and yr_mon2) to a DATETIME value. The
res_dtime column of cust_calls stores the resolution time as a DATETIME

value. See Note 48 for more information on this conversion.

80 ➤ Because the user has not terminated the INPUT statement, the input_call()
function returns TRUE.

The browse_calls() Function
81 ➤ Local error message flags are initialized: fnd_calls indicates whether any calls

exist for the current customer, and end_list indicates whether the user has
reached the last selected cust_calls row. These fl are tested after the
FOREACH loop. See Note 92 to determine if an error message is printed.

82 ➤ The c_calls cursor locates calls for the current customer, ordered by time of
receipt. The cursor reads a selected row into the gr_custcalls global record.

83 ➤ If execution reaches inside the FOREACH loop, then the c_calls cursor has
found one or more cust_calls rows for the current customer. The fnd_calls
fl is set to TRUE to indicate that rows have been found.

Notes 84 to 88 ➤ This series of statements initialize the screen fi record (gr_viewcall) for
display.

84 ➤ The values from the table record (gr_custcalls) that do not need conversion
are copied into the corresponding fi in gr_viewcall.

85 ➤ The DATETIME call receipt time (in call_dtime) is converted to the format
used by the screen fi call_time, am_pm1, and yr_mon1. The screen field
record displays this DATETIME value as “hh:mm AM mo / dd / yr” to simplify
data entry. See Note 48 for more information about this conversion.

86 ➤ The setting of the call_flag field is based on whether the current call has a call
description (a non-null value in the call_descr column).

87 ➤ If the call receipt time has not yet been entered, the time fields are initialized
to a blank time and today’s date. Otherwise, the DATETIME call resolution
time is converted to the format “hh:mm AM mo / dd / yr”. This value displays
in the res_time, am_pm2, and yr_mon2 fields. See Note 48 for more informa-
tion about this conversion.

Example 17 405

The browse_calls() Function

79 ➤ CALL get_datetime(pr_restime.*, gr_viewcall.am_pm2,

gr_viewcall.yr_mon2)

RETURNING gr_custcalls.res_dtime

80 ➤ RETURN (TRUE)

END FUNCTION -- input_call --

FUNCTION browse_calls(cust_num)

DEFINE cust_num LIKE customer.customer_num,

fnd_calls SMALLINT,

end_list SMALLINT

81 ➤ LET fnd_calls = FALSE

LET end_list = FALSE

82 ➤ DECLARE c_calls CURSOR FOR

SELECT *

FROM cust_calls

WHERE customer_num = cust_num

ORDER BY call_dtime

FOREACH c_calls INTO gr_custcalls.*

83 ➤ LET fnd_calls = TRUE

84 ➤ LET gr_viewcall.customer_num = gr_customer.customer_num

LET gr_viewcall.company = gr_customer.company

LET gr_viewcall.user_id = gr_custcalls.user_id

LET gr_viewcall.call_code = gr_custcalls.call_code

85 ➤ CALL get_timeflds(gr_custcalls.call_dtime)

RETURNING gr_viewcall.call_time, gr_viewcall.am_pm1,

gr_viewcall.yr_mon1

86 ➤ IF gr_custcalls.call_descr IS NULL THEN

LET gr_viewcall.call_flag = "N"

ELSE

LET gr_viewcall.call_flag = "Y"

END IF

87 ➤ IF gr_custcalls.res_dtime IS NULL THEN

LET gr_viewcall.res_time = NULL

LET gr_viewcall.am_pm2 = "AM"

LET gr_viewcall.yr_mon2 = TODAY

ELSE

CALL get_timeflds(gr_custcalls.res_dtime)

RETURNING gr_viewcall.res_time, gr_viewcall.am_pm2,

gr_viewcall.yr_mon2

END IF

406 Using the DATETIME Data Type

The nxtact_call() Function

88 ➤ The setting of the res_flag fi is based on whether the current call has
a resolution description (a non-null value in the res_descr column).

89 ➤ Once the screen fi record is initialized, it is displayed on the f_custcall
form.

90 ➤ If nxtact_call() returns FALSE, the user has chosen the Exit option from the
CUSTOMER CALL MODIFICATION menu. Setting the end_list fl to FALSE

indicates that the user chose to exit before reaching the last selected row in
the loop. The EXIT FOREACH statement closes the c_calls cursor.

91 ➤ If nxtact_call() returns TRUE, then the user has chosen the Next option from
the CUSTOMER CALL MODIFICATION menu. The end_list flag is set to TRUE

because the current row may be the last one selected by the c_calls cursor. If
this is the last row, then FOREACH exits and the program displays “No more
customer calls.” If the current row is not the last one, the FOREACH statement
fetches the next row and then calls nxtact_call() to display the CUSTOMER

CALL MODIFICATION menu. In this case, end_list is reset based on the value
returned by nxtact_call().

92 ➤ Each error fl (fnd_calls and end_list) indicates the status of a particular
error condition. If one of these error conditions has occurred, the program
displays the appropriate message.

93 ➤ The f_custcall form fi are cleared.

The nxtact_call() Function
94 ➤ The CUSTOMER CALL MODIFICATION menu allows the user to display the

next customer call (Next), update information in the current call (Update), or
exit the menu (Exit).

95 ➤ The Next option exits the menu with nxt_action set to TRUE. Program
execution returns to the c_calls FOREACH loop (in browse_calls()) to obtain
the next selected cust_calls row (see Note 91).

96 ➤ The Update option calls the addupd_call() function to update the current
customer call. Because this function can handle both an Add or an Update on
the f_custcall form, the add / update flag is set to Update (“U”). This function
is modeled after the addupd_cust() function implemented in Example 9.

97 ➤ The bang() function implements the bang (“!”) escape to the operating
system. This feature is described in Example 3.

Example 17 407

The nxtact_call() Function

88 ➤ IF gr_custcalls.res_descr IS NULL THEN

LET gr_viewcall.res_flag = "N"

ELSE

LET gr_viewcall.res_flag = "Y"

END IF

89 ➤ DISPLAY BY NAME gr_viewcall.*

90 ➤ IF NOT nxtact_call() THEN

LET end_list = FALSE

EXIT FOREACH

91 ➤ ELSE

LET end_list = TRUE

END IF

END FOREACH

92 ➤ IF NOT fnd_calls THEN

CALL msg("No calls exist for this customer.")

END IF

IF end_list THEN

CALL msg("No more customer calls.")

END IF

93 ➤ CLEAR call_time, am_pm1, yr_mon1, user_id, call_code,

call_flag, res_time, am_pm2, yr_mon2, res_flag

END FUNCTION -- browse_calls --

FUNCTION nxtact_call()

DEFINE nxt_action SMALLINT

LET nxt_action = TRUE

94 ➤ MENU "CUSTOMER CALL MODIFICATION"

95 ➤ COMMAND "Next" "View next selected customer call." HELP 90

EXIT MENU

96 ➤ COMMAND "Update" "Update current customer call on screen."

HELP 91

CALL addupd_call("U")

NEXT OPTION "Next"

97 ➤ COMMAND KEY ("!")

CALL bang()

408 Using the DATETIME Data Type

The get_timeflds() Function

98 ➤ The Exit option exits the menu with nxt_action set to FALSE. Program
execution returns to the browse_calls() function where it encounters the EXIT

FOREACH statement to exit the c_calls FOREACH loop (see Note 90).

The get_timeflds() Function
99 ➤ If the_dtime is NULL, all time screen fi are set to NULL.

100 ➤ If the_dtime is non-null, the program converts it to the time screen field
value: time_fld, am_pm, and yr_mon. The LET statement uses data conver-
sion to assign the current date as the DATETIME value to the DATE yr_mon
field.

101 ➤ The built-in function EXTEND() extracts the hour and minute values from
the_dtime. This system function uses field qualifiers to adjust the precision of
a DATETIME value. In this case, it returns the hour (HOUR TO HOUR) and the
minutes (MINUTE TO MINUTE) values.

The LET statements convert the hour and minute values to their character
representations and then store them in the appropriate position of the
character time string, time_fld: the hours value in positions 1 and 2; the
minutes value in positions 4 and 5. Position 3 contains the colon so that the
fi value has the format “hh:mm”.

102 ➤ The LET statement uses data conversion to convert the hours value to an
integer value so that the numeric comparison is simplified. Because the
DATETIME format uses 24-hour time notation, all PM hours have an hour
value greater than or equal to 12, and all AM hours have an hour value less
then 12. Therefore, the size of the hour value determines the setting of the
am_pm field.

The program also converts the 24-hour PM time to a time between 12:00 PM

and 11:59 PM and a time of 00:00 as 12:00 AM.

103 ➤ The get_timeflds() function returns the screen fi values of the DATETIME

value.

Example 17 409

The get_timeflds() Function

98 ➤ COMMAND KEY ("E","X") "Exit" "Return to CUSTOMER CALLS Menu"

HELP 92

LET nxt_action = FALSE

EXIT MENU

END MENU

RETURN nxt_action

END FUNCTION -- nxtact_call --

FUNCTION get_timeflds(the_dtime)

DEFINE the_dtime DATETIME YEAR TO MINUTE,

am_pm CHAR(2),

yr_mon DATE,

time_fld CHAR(5),

num_hrs SMALLINT

99 ➤ IF the_dtime IS NULL THEN

LET time_fld = NULL

LET am_pm = NULL

LET yr_mon = NULL

100 ➤ ELSE

LET yr_mon = the_dtime

101 ➤ LET time_fld = "00:00"

LET time_fld[1,2] = EXTEND(the_dtime, HOUR TO HOUR)

LET time_fld[4,5] = EXTEND(the_dtime, MINUTE TO MINUTE)

102 ➤ LET num_hrs = time_fld[1,2]

IF num_hrs >= 12 THEN

LET am_pm = "PM"

LET num_hrs = num_hrs - 12

IF num_hrs > 9 THEN

LET time_fld[1,2] = num_hrs

ELSE

LET time_fld[1] = "0"

LET time_fld[2] = num_hrs

END IF

ELSE

LET am_pm = "AM"

IF num_hrs = 0 THEN

LET time_fld[1,2] = "12"

END IF

END IF

END IF

103 ➤ RETURN time_fld, am_pm, yr_mon

END FUNCTION -- get_timeflds --

410 Using the DATETIME Data Type

The init_time() Function

The get_datetime() Function
104 ➤ A null yr_mon screen fi indicates that all screen fi are null, so the

DATETIME value for these screen fi is set to null.

105 ➤ If the screen fields are not null, then they must be combined into a DATETIME

value. The LET statement uses data conversion to assign the current DATE

value (in yr_mon) to a DATETIME value.

106 ➤ In 24-hour notation (used by DATETIME values), times from 12:00 AM to 12:59
AM are written as 00:00 to 00:59. If the time is an AM value (hour value is
between 0 and 12) and it is midnight (12:00 AM), then the hours value must
be reset to zero (0) for the 24-hour time representation, 00:00.

107 ➤ In 24-hour notation (used by DATETIME values), times from 1:00 PM to 11:59
PM are written as 13:00 to 23:59. If the time is a PM value, any hour after 12:00
PM must be converted to 24-hour time notation by adding 12 to the value.

108 ➤ The addition operator combines the year / month, the hours, and the minutes
into a single DATETIME value. The built-in function UNITS is necessary to
convert to the INTERVAL values to the integer representation of the hour and
minute values. You cannot add integers to a DATETIME value but you can
add INTERVAL values.

109 ➤ The get_datetime() function returns the DATETIME representation of the
screen fi values.

The init_time() Function
110 ➤ The CURRENT built-in function returns a DATETIME value of the current

system time. The qualifiers HOUR TO MINUTE limit this return value to only
a time value. The LET statement then uses data conversion to convert the
DATETIME value to a CHARACTER value.

111 ➤ If the current system time is past 12:59, the time value is in 24-hour notation.
The IF block converts the 24-hour time to a 12-hour time, setting the AM / PM

fl to the appropriate value.

The get_datetime() Function

Example 17 411

FUNCTION get_datetime(pr_time, am_pm, yr_mon)

DEFINE pr_time RECORD

hrs SMALLINT,

mins SMALLINT

END RECORD,

am_pm CHAR(2),

yr_mon DATE,

the_dtime DATETIME YEAR TO MINUTE

104 ➤ IF yr_mon IS NULL THEN

LET the_dtime = NULL

ELSE

105 ➤ LET the_dtime = yr_mon --* use 4GL convertion to

--* convert DATE to DATETIME

106 ➤ IF am_pm[1] = "A" THEN

IFpr_time.hrs = 12 THEN

LET pr_time.hrs = 0

END IF

ELSE --* am_pm = "P"

107 ➤ IF pr_time.hrs < 12 THEN

LET pr_time.hrs = pr_time.hrs + 12 --* convert PM to 24-hour time

END IF

END IF

108 ➤ LET the_dtime = the_dtime + pr_time.hrs UNITS HOUR

+ pr_time.mins UNITS MINUTE --* add in time (hours and minutes)

--* to DATETIME value

END IF

109 ➤ RETURN (the_dtime)

END FUNCTION -- get_datetime --

FUNCTION init_time()

DEFINE new_time CHAR(5),
 am_pm CHAR(2),

 hrs SMALLINT

110 ➤ LET new_time = CURRENT HOUR TO MINUTE

111 ➤ IF new_time > "12:59" THEN -- if 24-hour notation, convert to

LET hrs = new_time[1,2] -- 12-hour and AM/PM flag

LET hrs = hrs - 12

412 Using the DATETIME Data Type

The edit_descr() Function

112 ➤ The function returns the character representation of the current system time
and the AM / PM flag.

The edit_descr() Function
113 ➤ The character editing form, f_edit, displays in a bordered window called

w_edit. This window has redefined the FORM LINE and COMMENT LINE

options to customize the appearance of f_edit.

114 ➤ The fi line of the window displays instructions for using this form.

115 ➤ The value of edit_flg determines the appropriate form title and character field
initialization.

116 ➤ This INPUT statement accepts user input in the character edit fi The
WITHOUT DEFAULTS clause ensures that the fi is initialized with any
existing value. The value has been determined by the code described in
Note 115.

117 ➤ The has_value fl indicates whether the edited CHAR(240) value is null

(it has a value) or contains a value. If this field is null, then has_value is set to
“N”. Otherwise, has_value remains set to “Y”.

Example 17 413

The edit_descr() Function

IFhrs > 9 THEN -- need to put two digits in

LET new_time[1,2] = hrs

ELSE -- need to put only 1 digit in

LET new_time[1] = 0

LET new_time[2] = hrs

END IF

LET am_pm = "PM"

ELSE

LET am_pm = "AM"

END IF

112 ➤ RETURN new_time, am_pm

END FUNCTION -- init_time --

FUNCTION edit_descr(edit_flg)

DEFINE edit_flg CHAR(1),

 edit_str

edit_ret

has_value

LIKE cust_calls.call_descr,

SMALLINT,

CHAR(1)

113 ➤ OPEN WINDOW w_edit AT 3,11

WITH 12 ROWS, 60 COLUMNS

ATTRIBUTE (BORDER, FORM LINE 4, COMMENT LINE 2)

OPEN FORM f_edit FROM "f_edit"

DISPLAY FORM f_edit

114 ➤ DISPLAY " Press Accept to save, Cancel to exit w/out saving."

AT 1, 1 ATTRIBUTE (REVERSE, YELLOW)

115 ➤ IF edit_flg = "C" THEN

DISPLAY "CALL DESCRIPTION"

AT 3, 24

LET edit_str = gr_custcalls.call_descr

ELSE --* edit_flg = “R”

DISPLAY "CALL RESOLUTION"

AT 3, 24

LET edit_str = gr_custcalls.res_descr

END IF

LET int_flag = FALSE

116 ➤ INPUT BY NAME edit_str

WITHOUT DEFAULTS

117 ➤ LET has_value = "Y"

IFedit_str IS NULL THEN

LET has_value = "N"

END IF

414 Using the DATETIME Data Type

The insert_call() Function

118 ➤ If the user uses the Cancel key (typically CONTROL-C), the INPUT statement
exits and the changes to the edit_fld are not saved.

119 ➤ If the user uses the Accept key (typically ESCAPE), the contents of the
character edit fi is saved in the appropriate fi of the table record,
gr_custcalls.

120 ➤ Neither the w_ edit window nor the f_edit form are used until the user
initiates the edit_descr() function again. For this reason, the memory used by
the window and form is deallocated.

121 ➤ The edit_descr() function returns the value of the has_value flag. This flag is
“Y” if the edited CHAR(240) fi is non-null, and “N” otherwise.

The insert_call() Function
122 ➤ The INSERT statement inserts the current values of the table record,

gr_custcalls, as a row in the cust_calls table.

The INSERT is surrounded with the WHENEVER ERROR statements to control
how 4GL responds to errors. The WHENEVER ERROR CONTINUE statement
sets a compiler fl so that the program does not include code to check for
runtime errors. Execution of all statements after this WHENEVER statement
will not stop if the program encounters a runtime error unless the program
explicitly checks for errors. The WHENEVER ERROR STOP statement sets a
compiler fl so that the program does include code to check for runtime
errors. Execution of all statements after this WHENEVER statement will stop
if the program encounters a runtime error.

123 ➤ If the INSERT statement is successful, then 4GL sets the global variable status
to zero. If an error has occurs, the status variable has a negative value. In the
case of an error, the function notifies the user and exits.

124 ➤ If execution reaches this point, the INSERT has been successful. The call to
msg() notifies the user that the cust_calls row has been added to the database.

Example 17 415

The insert_call() Function

118 ➤ IF int_flag THEN

LET int_flag = FALSE

ELSE

119 ➤ IF edit_flg = "C" THEN

LET gr_custcalls.call_descr = edit_str

ELSE

LET gr_custcalls.res_descr = edit_str

END IF

END IF

120 ➤ CLOSE FORM f_edit

CLOSE WINDOW w_edit

121 ➤ RETURN has_value

END FUNCTION -- edit_descr --

FUNCTION insert_call()

WHENEVER ERROR CONTINUE

122 ➤ INSERT INTO cust_calls

VALUES (gr_custcalls.*)

WHENEVER ERROR STOP

123 ➤ IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<", ": Unable to complete customer call

", "insert."

ELSE

CALL msg("Customer call has been entered in the database.")

END IF

124 ➤ CALL msg("Customer call has been entered in the database.")

END FUNCTION -- insert_call --

416 Using the DATETIME Data Type

The update_call() Function

The update_call() Function
125 ➤ The WHENEVER ERROR CONTINUE statement sets a compiler flag so that the

program does not include code to check for runtime errors. Execution of all
statements after this WHENEVER statement will not stop if the program
encounters a runtime error, unless the program explicitly checks for errors.
This WHENEVER statement allows this function to perform its own error
checking after the database operation statement.

126 ➤ The UPDATE statement updates the cust_calls row associated with the
current call for the current user with the values of the table record,
gr_custcalls.

127 ➤ The WHENEVER ERROR STOP statement sets a compiler fl so that the
program does include code to check for runtime errors. Execution of all
statements after this WHENEVER statement will stop if the program encoun-
ters a runtime error. This WHENEVER statement causes the program to
assume that any errors encountered past this point are unexpected and pro-
gram execution needs to stop.

128 ➤ If the UPDATE statement is successful, then 4GL sets the global variable status
to zero. If an error has occurs, the status variable has a negative value. In the
case of an error, the function notifies the user and exits.

129 ➤ If execution reaches this point, the UPDATE has been successful. The call to
msg() notifies the user that the current cust_calls row has been updated in the
database.

Example 17 417

The update_call() Function

FUNCTION update_call()

125 ➤ WHENEVER ERROR CONTINUE
126 ➤ UPDATE cust_calls SET cust_calls.* = gr_custcalls.*

WHERE customer_num = gr_custcalls.customer_num

AND call_dtime = gr_custcalls.call_dtime

127 ➤ WHENEVER ERROR STOP

128 ➤ IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to complete customer call update."

RETURN

END IF

129 ➤ CALL msg("Customer call has been updated.")

END FUNCTION -- update_call --

To locate any function definition, see the Function Index on page 730.

418 Using TEXT and VARCHAR Data Types

18
1.Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 18 419

Using TEXT and
VARCHAR Data Types

This example demonstrates how to handle VARCHAR and TEXT data types
in a 4GL program. It uses the cat_advert (VARCHAR) and cat_descr (TEXT)
columns of the catalog table.

Note: These data types and the catalog table are only available if you are using an
Informix Dynamic Server database. The catalog table does not exist in the
INFORMIX-SE version of the demonstration database.

Verifying the Database Type
Because this program can only work on the catalog table if the application is
using Informix Dynamic Server, it first checks the type of database server. To
do this, the program checks the status of the second element of the
SQLAWARN array. This array is part of the global SQLCA record. After
executing the DATABASE statement, Informix Dynamic Server sets the
SQLCA.SQLAWARN[2] fi to “W”. This verification is performed by the
is_online() function, which returns TRUE if the current database is Informix
Dynamic Server and FALSE if it is INFORMIX-SE.

Positioning the DATABASE Statement in a Program
The DATABASE statement specifies the name of the current database. This
information is needed at compile time and runtime:

• At compile time the 4GL compiler needs to know which database to use
when resolving variable definitions containing the LIKE clause.

• At runtime the application needs to know which database to use when
executing an SQL statement.

Positioning the DATABASE Statement in a Program

420 Using TEXT and VARCHAR Data Types

The location of the DATABASE statement within your program is determined
by these two uses. It must appear in the code so that:

• The compiler encounters it before any DEFINE statements that use LIKE.

• Program execution encounters it before any SQL statements execute
(program execution may not occur sequentially in the file).

In this example, if none of the global definitions used the LIKE clause, the
DATABASE statement could appear just before the DECLARE statement (see
Note 19 on page 437) because this is the first SQL statement executed. How-
ever, placing the DATABASE statement as the fi line of the fi is the most
common usage: this location is an easy, consistent place to fi the applica-
tion’s database and it satisfies both the compile time and the runtime condi-
tions.

However, you may fi a situation where you need to open the database
at some later point in program execution. You can place the DATABASE

statement anywhere in the program as long as the compiler and runtime con-
ditions mentioned above are met.

When execution begins, the program initializes the ga_catrows, ga_catrids,
and ga_catadv arrays with the data from the catalog table in the load_arrays()
function. It then waits for the user to indicate which data to view.

From the catalog number fi the user can choose to:

• View the VARCHAR value (cat_adv): CONTROL-V

• View the TEXT value (cat_descr): CONTROL-T

• Exit the form: CONTROL-E

Using Parallel Arrays to Manage Information

Example 18 421

Using Parallel Arrays to Manage Information
This example program uses a screen array form to access the information in
the catalog table. Each line of the form displays information about a single
catalog item:

The program uses three global arrays to manage the catalog information:

• The ga_catrows array stores the information that appears in the screen
array.

• The ga_catrids array contains the ROWID for each selected item from the
catalog table. A ROWID is an internal record number associated with a
row in a database table. It uniquely identifies a row and provides a very
effi means of accessing the row.

• The ga_catadv array contains the VARCHAR data for each selected catalog
item.

The same index value can be used on all three arrays to access all information
about a single catalog item.

422 Using TEXT and VARCHAR Data Types

Handling BYTE Data

Handling VARCHAR Data
The VARCHAR value for a given catalog row appears in a form displayed in
a separate window. This window overlays the screen array form. The only
special coding required for the VARCHAR data is to:

• Define a multi-line screen field large enough to hold the VARCHAR value.

• Include the WORDWRAP attribute on this screen fi to allow text to
wrap to the next line of the field. The COMPRESS option removes RETURN

spaces inserted in the text by the multi-line editor.

Handling TEXT Data
Unlike the VARCHAR data, the TEXT data for catalog rows is not read into a
global array. Implementing such a design would necessitate the creation of a
global array with each element defined as a TEXT value.

Because a BLOB column can contain a very large amount of data, a 4GL

program does not allocate space for a BLOB variable as it does other variable
types. Instead of containing the actual value, a BLOB variable contains a
pointer to the location where this data is stored. This location can be in
memory, in a temporary fi created by the program, or in a specified file
named by the programmer. The LOCATE statement initializes the BLOB vari-
able with the location of the BLOB value.

This program does not define a global array for the TEXT data because:

• The global array of TEXT variables would require a great deal of memory
to store each of the 200 TEXT variable entries.

• The program would need to initialize each TEXT variable with LOCATE.

• The program would need to allocate storage, on disk or in memory, for
each of the 200 rows’ TEXT values.

For these reasons, the program instead reads in a TEXT value for a particular
row only when the user chooses to view this data. The disadvantage of this
design is that it takes a little longer to display the TEXT value than it does to
display the VARCHAR value: the program must obtain the TEXT value from
the database while the VARCHAR values are already available within the pro-
gram array. However, this loss of speed is made up for by the smaller amount
of resources needed to store only one TEXT variable and one TEXT value at a
time.

Example 18 423

Handling VARCHAR Data

This program stores the pointer to the TEXT data in the g_txtblob global
variable. To access the TEXT value, the program must:

1. Use the LOCATE statement to assign a storage location for the TEXT data.

2. Use a SELECT statement to assign the TEXT value to this location.

3. Use an INPUT statement to display the TEXT value on a screen.

4. Allow the user to modify the TEXT value by pressing the exclamation
point (“!”) from the TEXT field of f_catdescr to access a text editor: the “!”
is a standard feature of TEXT fields and the text editor is specified as “vi”
by the PROGRAM attribute in the f_catdescr form.

5. Use the UPDATE statement to update the TEXT column with the new
value if the user modifies the field.

6. Use the FREE statement to deallocate the storage used by the TEXT data.

The location of the LOCATE and FREE statements within the program are not
fi However, LOCATE must be executed before the TEXT variable is first
accessed (assigned a value or displayed). Trying to access a TEXT variable
before it has been located yields a runtime error. Similarly, the FREE statement
must follow all accesses of the variable. Otherwise, the program will encoun-
ter a runtime error when it tries to access a deallocated TEXT variable.

Handling BYTE Data
Although the main form lists whether or not a given catalog item has an
associated catalog picture, this example does not demonstrate use of
accessing BYTE information. BYTE values can only be effectively displayed on
a graphical user interface, and the program must know the specific graphical
interface being used.

The steps for defining, locating, and selecting BYTE data are the same as those
for TEXT data. However, the step of displaying the value to the user depends
on the nature of the data, and usually involves running a program that is
external to the application.

424 Using TEXT and VARCHAR Data Types

Function Overview

Function Overview

Function Name Purpose

is_online() Checks to see if the current database is an Informix Dynamic
Server or SE database. Dynamic Server data types are not
available with an SE database.

load_arrays() Loads the contents of the “catalog” table into global arrays:
ga_catrows and ga_catrids. Instead of reading the values of
the catalog TEXT columns (cat_descr), this program marks a
character fi as “Y” or “N”, indicating the presence of the
TEXT value.

open_wins() Opens all windows used in the program.

close_wins() Closes all windows used in the program.

dsply_cat() Displays the contents of the catalog program array
(ga_catrows) on the form f_catalog.

show_advert() Displays the contents of the VARCHAR column (cat_advert)
on the form f_catadv.

show_descr() Displays the contents of the TEXT column (cat_descr) on the
form f_catdescr.

upd_err() Reports an error if one occurs during an UPDATE.

msg() Displays a brief, informative message.
See the description in Example 5.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

Example 18 425

Function Overview

426 Using TEXT and VARCHAR Data Types

The f_catalog Form

The f_catalog Form
1➤ This form compiles and runs with any version of the stores7 database. Only

the Informix Dynamic Server version contains the catalog table.

2➤ The top portion of the f_catalog form contains the screen array that displays
the catalog information. The bottom portion displays instructions for using
the form.

3➤ This form uses descriptive fi names (cnum and snum) as fi tags.

4➤ Fields on this form display information about a stock item retrieved from
several database tables. The NOENTRY attribute prevents the cursor from
entering all fi except cnum.

Example 18 427

The f_catalog Form

1➤ DATABASE stores7

2➤ SCREEN
{

+---+

| Catalog # Pic? Txt? Stock # Stock Description Manufacturer |

3➤ | [cnum] [p] [t] [snum] [sdesc] [manu] |

 | [cnum] [p] [t] [snum] [sdesc] [manu] |

 | [cnum] [p] [t] [snum] [sdesc] [manu] |

 | [cnum] [p] [t] [snum] [sdesc] [manu] |

 | [cnum] [p] [t] [snum] [sdesc] [manu] |

| ACTIONS KEY SEQUENCES |

| To exit Accept twice or CONTROL-E |

| To scroll up and down Arrow keys |

| To view or update: |

| catalog advertising (varchar) F4 or CONTROL-V |

| catalog description (text) F5 or CONTROL-T |

+---+

}

END

TABLES

END

catalog, stock, manufact

ATTRIBUTES

4➤ cnum = catalog.catalog_num;

p = FORMONLY.has_pic TYPE CHAR, NOENTRY;

t = FORMONLY.has_desc TYPE CHAR, NOENTRY;

snum = catalog.stock_num, NOENTRY;

sdesc = stock.description, NOENTRY;

manu = manufact.manu_name, NOENTRY;

INSTRUCTIONS

SCREEN RECORD sa_cat[5] (catalog_num, stock_num, manu_name,

has_pic, has_desc, description)

END

f_catalog form file

428 Using TEXT and VARCHAR Data Types

The f_catadv Form

The f_catadv Form
1➤ This form compiles and runs with an Informix Dynamic Server version of the

stores7 database. Only the Informix Dynamic Server version contains the
catalog table.

2➤ Catalog information for the current item displays at the top of the form in the
cnum, sdesc, and man fields.

The NOENTRY attribute prevents the cursor from entering these fi in an
INPUT statement.

3➤ The copy field displays the VARCHAR value (cat_advert) for the catalog row.

This fi consists of four lines of 64 characters each. The WORDWRAP

attribute enables the multi-line editor so the user can enter text in the field
without having to press RETURN at the end of each line. The COMPRESS

option prevents blanks produced by the editor from being included as part
of the input.

4➤ The xn and xu fields do not actually accept input text. Rather they serve as a
resting point for the cursor so that the user can choose the action to take on
the VARCHAR value. The program defines CONTROL-E so that:

• If the user presses CONTROL-E from within xn, the program exits this
form without saving the VARCHAR data.

• If the user presses CONTROL-E from within xu, the program saves the

VARCHAR data in the catalog table and then exits the form.

The COMMENTS attribute defines text displayed in the form’s comment line.
This text notifies the user of the CONTROL-E feature.

Example 18 429

The f_catadv Form

1➤ DATABASE stores7

SCREEN

{

Ad copy for cat# [cnum], [sdesc] from [man]

[copy]

[copy]

[copy]

[copy]

}

END

Exit w/o changes [xn] Update current ad copy [xu]

TABLES

catalog, stock, manufact

END

ATTRIBUTES

2➤ cnum = catalog.catalog_num, NOENTRY;

sdesc = stock.description, NOENTRY;

man = manufact.manu_name, NOENTRY;

3➤ copy = catalog.cat_advert, WORDWRAP COMPRESS
COMMENTS = "Press RETURN for next field.";

4➤ xn = FORMONLY.xn TYPE CHAR,

COMMENTS = "Press CONTROL-E now to exit with no changes." ;

xu = FORMONLY.xu TYPE CHAR,

COMMENTS = "Press CONTROL-E now to update the ad copy.";

END

f_catadv form file

430 Using TEXT and VARCHAR Data Types

The f_catdescr Form

The f_catdescr Form
1➤ This form compiles and runs with an Informix Dynamic Server version of the

stores7 database. Only the Informix Dynamic Server version contains the
catalog table.

2➤ Catalog information for the current item displays at the top of the form in the
cnum, sdesc, and man fields.

3➤ The copy fi displays the TEXT value (cat_descr) for the catalog row. This field
consists of seven lines of 64 characters each. The WORDWRAP attribute
allows the form to display the TEXT value over several lines. To edit the TEXT

value, the user must type an exclamation point (“!”) from the copy field. The
PROGRAM attribute specifies that the “vi” text editor is used to edit the field.
Because vi is the default text editor, this attribute specification is not actually
required. The COMMENTS attribute defines the comment line text to tell the
user how to edit the TEXT field.

4➤ The xn and xu fi serve as a resting point for the cursor so the user can
choose whether to save the TEXT value in the catalog table.

Example 18 431

The f_catdescr Form

f_catdescr form file

1➤
DATABASE stores7

 SCREEN

{

Description for cat# [cnum], [sdesc

] from [man

]

[copy]

[copy]

[copy]

[copy]

[copy]

[copy]

[copy]

}

END

TABLES

END

Exit w/o changes [xn] Update current ad copy [xu]

catalog, stock, manufact

ATTRIBUTES

2➤ cnum = catalog.catalog_num, NOENTRY;

sdesc = stock.description, NOENTRY;

man = manufact.manu_name, NOENTRY;

3➤ copy = catalog.cat_descr, WORDWRAP, PROGRAM="vi",
COMMENTS = "Press ! to invoke an editor, RETURN for next field";

4➤ xn = formonly.xn TYPE CHAR,

COMMENTS = "Press CONTROL-E now to exit with no changes." ;

xu = formonly.xu TYPE CHAR,

COMMENTS = "Press CONTROL-E now to update the catalog description.";

END

432 Using TEXT and VARCHAR Data Types

The MAIN Function

The DATABASE and GLOBALS Statements
1➤ This DATABASE statement tells the compiler which database to use when

resolving variable definitions that contain the LIKE clause. For example,
the ga_catadv array is defined to contain elements LIKE the column
catalog.cat_advert. For the compiler to correctly process this definition, it first
must encounter the DATABASE statement.

2➤ Three parallel global arrays manage the information about each catalog item:

• The ga_catrows global array holds the data to be displayed on the
f_catalog form. This record structure must match the screen record
defined in the form.

• The ga_catadv global array holds the VARCHAR column values of the
catalog table. It is in a separate array because it is not displayed on the
form.

• The ga_catrids global array holds the ROWIDs of the catalog rows. The
ROWIDs are used to quickly access the TEXT or VARCHAR data for a
specified catalog row on the f_catalog form.

The same index into each array is used to retrieve complete information
about a single catalog item.

3➤ The ga_dsplymsg array is used as input to the message_window() function,
as described in Example 2, and the prompt_window() function, as described
in Example 4.

The MAIN Function
4➤ The OPTIONS statement sets up the screen options for the form.

5➤ The is_online() function checks whether the current database is an Informix
Dynamic Server database. If it is not, the program exits because the catalog
table does not exist in the demonstration database for the INFORMIX-SE

server.

6➤ The g_arraysz variable contains the size of the global program arrays used in
this program. When the code needs to reference the array size to check index
limits, it uses this variable rather than a constant value of 200.

If, in the future, the size of these arrays needs to be changed, you only need
to change the actual array definitions (the DEFINE statements) and the value
assigned to this variable. You do not need to search through the code for
occurrences of the constant value.

Example 18 433

The DATABASE and GLOBALS Statements

1➤ DATABASE stores7

GLOBALS

DEFINE g_txflag CHAR(1), -- TRUE if database uses transactions g_arraysz

SMALLINT, -- size of arrays used in ARRAY stmts g_txtblob

TEXT, -- cat_descr value, located in memory

2➤ ga_catrows ARRAY[200] OF RECORD

catalog_num LIKE catalog.catalog_num,

stock_num LIKE stock.stock_num,

manu_name LIKE manufact.manu_name,

has_pic CHAR(1),

has_desc CHAR(1),

description CHAR(15)

END RECORD,

ga_catadv ARRAY[200] OF LIKE catalog.cat_advert,

ga_catrids ARRAY[200] OF INTEGER,

3➤ DEFINE ga_dsplymsg ARRAY[5] OF

CHAR(48) END GLOBALS

MAIN

DEFINE cat_cnt SMALLINT -- count of rows actually read

DEFER INTERRUPT -- ...do not stop cold on error or ^C

4➤ OPTIONS

MESSAGE LINE LAST,

PROMPT LINE LAST,

COMMENT LINE FIRST,

FORM LINE FIRST+1

5➤ IF NOT is_online() THEN

EXIT PROGRAM

END IF

6➤ LET g_arraysz = 200

4GL source file

434 Using TEXT and VARCHAR Data Types

The is_online() Function

7➤ All the forms are opened at this point in the program, as opposed to opening
the forms only when the form is accessed. Although this method requires
more time in the beginning of the program and more memory to store all
forms at once, it saves time when the individual form is accessed because the
form is already opened.

8➤ The LOCATE statement defines a temporary fi to store the value of the
cat_descr TEXT column.

9➤ The load_arrays() function loads the rows of the catalog table into the
ga_catrows, ga_catadv, and ga_catrids global arrays. It returns the number of
rows stored in these arrays.

10 ➤ The open_wins() function opens the windows needed to display the catalog
information. This is an alternative to opening the windows only when the
window is to display. Although this method requires more time in the begin-
ning of the program to open up all windows and more memory to store all
windows at once, it saves time when the individual window is to display
because the window is already open.

11 ➤ The dsply_cat() function displays the contents of the ga_catrows array on the
form f_catalog and allows the user to view the data for the catalog rows.

12 ➤ The close_wins() function closes all windows used by the example.

The is_online() Function
13 ➤ To check whether the program is working with an Informix Dynamic Server

database, the function opens the database. The CLOSE DATABASE statement
is issued because an attempt to open a database when one is already open
produces an error (-917) if the application is communicating with a remote
machine.

However, if the application is not using a remote database, an attempt to
close a database when none is open produces an error (-349) as well. To
prevent the program from terminating at this point, the WHENEVER ERROR

statements surround CLOSE DATABASE. Automatic error checking is turned
off before CLOSE DATABASE and turned back on after CLOSE DATABASE is
performed. Because automatic checking is off when CLOSE DATABASE is exe-
cuted, the program must perform its own error checking to determine the
success of the statement.

14 ➤ The IF statement checks the status in SQLCA.SQLCODE to determine the
success of the CLOSE DATABASE statement. An SQLCODE value of zero
(success) or -349 (database is not open) is expected. Any other SQLCODE

value indicates that an error has occurred.

Example 18 435

The is_online() Function

7➤ OPEN FORM f_catalog FROM "f_catalog"

OPEN FORM f_catadv FROM "f_catadv"

OPEN FORM f_catdescr FROM "f_catdescr"

8➤ LOCATE g_txtblob IN FILE -- ...locate the blob variable

9➤ CALL load_arrays()RETURNING cat_cnt

10 ➤ CALL open_wins()

11 ➤ CALL dsply_cat(cat_cnt)

12 ➤ CALL close_wins()

CLEAR SCREEN

END MAIN

FUNCTION is_online()

13 ➤ WHENEVER ERROR CONTINUE
CLOSE DATABASE

WHENEVER ERROR STOP

14 ➤ IF sqlca.sqlcode <> 0 AND sqlca.sqlcode <> -349 THEN

ERROR "Error ",sqlca.sqlcode," closing current database."

RETURN (FALSE)

END IF -- either 0 or -349 is OK here

436 Using TEXT and VARCHAR Data Types

The load_arrays() Function

15 ➤ This (second) DATABASE statement allows the program to check the values
in the SQLCA record. By placing this DATABASE statement within the code
instead of before the MAIN program block at the top of the module, the func-
tion can check the values of SQLCA immediately after the statement is
executed. The program cannot check for these values after a DATABASE

statement located at the top of the fi because 4GL statements, like IF, can
only appear within a program block.

16 ➤ The SQLCA record contains a fi named SQLAWARN. SQLAWARN is an
eight-character string in which the individual characters signal various
warning conditions. In this example, the second and fourth characters are of
interest:

• SQLCA.SQLAWARN[2] is set to “W” if the database just opened uses
transactions. It is set to blank (“ ”) otherwise.

• SQLCA.SQLAWARN[4] is set to “W” if the database just opened is an
Informix Dynamic Server database. It is set to blank (“ ”) otherwise.

The value of the g_txflag indicates whether the current database uses
transactions. This flag is used throughout the program to determine whether
or not to execute the BEGIN WORK, COMMIT WORK, and ROLLBACK WORK

statements. If a database uses transactions, these statements are required to
delimit transactions. However, if the database does not use transactions, then
executing these transaction statements generates a runtime error.

17 ➤ If SQLCA.SQLAWARN[4] is not “W”, then the current database is not an
Informix Dynamic Server database. The function uses the ga_dsplymsg array
with the message_window() function to notify the user that this example can-
not continue and then returns a value of FALSE.

18 ➤ If execution reaches this point, the current database is an Informix Dynamic
Server version of the stores7 database. Because the catalog table exists, the
example can continue.

The load_arrays() Function
19 ➤ The c_cat cursor selects the rows of the catalog table. It does a three-way join

between the catalog, manufact, and stock tables to obtain the data for the
f_catalog form. This SELECT statement also selects the ROWID for each row of
the catalog table. For more information about ROWID, see Example 10.

20 ➤ As the program loads the arrays, it displays a window with a message telling
the user to expect a pause in execution. This message lets the user know that
this pause is not a slow response time.

Example 18 437

The load_arrays() Function

15 ➤ DATABASE stores7

16 ➤ LET g_txflag = FALSE

IFSQLCA.SQLAWARN[2] = "W" THEN -- get use of transaction

LET g_txflag = TRUE

END IF

17 ➤ IF SQLCA.SQLAWARN[4] <> "W" THEN

LET ga_dsplymsg[1] = "This database is not an INFORMIX OnLine"

LET ga_dsplymsg[2] = " database. You cannot run this example

because" LET ga_dsplymsg[3] = " it accesses a table containing data

types"

LET ga_dsplymsg[4] = " specific to OnLine (VARCHAR, TEXT,

BYTE)." CALL message_window(4,4)

CLEAR SCREEN

RETURN (FALSE)

END IF

18 ➤ RETURN (TRUE)

END FUNCTION -- is_online --

FUNCTION load_arrays()

DEFINE idx SMALLINT

19 ➤ DECLARE c_cat CURSOR FOR

SELECT catalog.catalog_num, catalog.stock_num,

manufact.manu_name, stock.description,

catalog.cat_advert, catalog.ROWID

FROM catalog,manufact,stock

WHERE catalog.stock_num = stock.stock_num

AND catalog.manu_code = manufact.manu_code

AND stock.manu_code = manufact.manu_code

ORDER BY 1

20 ➤ OPEN WINDOW w_msg AT 5,5

WITH 4 ROWS, 60 COLUMNS

ATTRIBUTE (BORDER)

DISPLAY "ACCESSING OnLine DATA TYPES"

AT 1, 20

DISPLAY "Loading catalog data into arrays, please wait..."

AT 3, 2

LET idx = 1 { invariant: idx-1 rows have been loaded }

438 Using TEXT and VARCHAR Data Types

The load_arrays() Function

21 ➤ The FOREACH statement opens the c_cat cursor and fetches the data into the
associated program variables:

• The ga_catrows array stores information to display on the f_catalog form
(catalog number, stock number, manufacturer name, and stock
description).

• The ga_catadv array stores the VARCHAR catalog advertising column
(cat_advert).

• The ga_catrids array stores the catalog row’s ROWID.

The information for a single row of the cursor is stored in each array at the
same index location.

22 ➤ The FOREACH statement loads into global arrays all catalog data except the
TEXT value. This value is not loaded now because it would take too much
memory and because it is not displayed on the f_catalog form. However, it is
useful to tell the user if the current row has values for the TEXT and BYTE col-
umns. The f_catalog form displays an “N” or “Y” in two fi one for the
TEXT value and one for the BYTE value.

To set the has_desc fi the function initializes the has_desc array fl for
the current row to “N” and then selects a literal value of “Y” over it only if
the value of the cat_descr column is not null. Using the row’s ROWID for the
search makes this access very effi The function follows the same
procedure to set the has_pic field.

Notice that the user cannot access the BYTE value from this example.

23 ➤ The idx variable is the index into each global array. It counts the number of
elements in these arrays and consequently the number of rows selected. This
variable is incremented after the arrays are filled so that the next row fetched
can be stored at the next location of the arrays.

Because the global arrays are limited to 200 elements (the value of g_arraysz),
the program must check that room is available for the next catalog row. If no
room exists, the program exits the FOREACH loop and fetches no more rows.

24 ➤ Because idx is incremented after the arrays are fi to prepare for the next
iteration of FOREACH, it contains one more than the actual number of rows
loaded when the FOREACH loop exits. The LET statement decrements idx by
one to obtain the correct number of rows selected.

25 ➤ Once the arrays are loaded, the function closes the message window and
returns the number of elements in these arrays.

Example 18 439

The load_arrays() Function

21 ➤ FOREACH c_cat INTO ga_catrows[idx].catalog_num,

ga_catrows[idx].stock_num,

ga_catrows[idx].manu_name,

ga_catrows[idx].description,

ga_catadv[idx],

ga_catrids[idx]

22 ➤ LET ga_catrows[idx].has_desc = "N"

SELECT "Y"

INTO ga_catrows[idx].has_desc

FROM catalog

WHERE rowid = ga_catrids[idx]

AND cat_descr IS NOT NULL

LET ga_catrows[idx].has_pic = "N"

SELECT "Y"

INTO ga_catrows[idx].has_pic

FROM catalog

WHERE ROWID = ga_catrids[idx]

AND cat_picture IS NOT NULL

23 ➤ LET idx = idx + 1

IFidx > g_arraysz THEN -- make sure we don’t run overfill arrays

EXIT FOREACH

END IF

END FOREACH

24 ➤ LET idx = idx - 1 -- actual number of rows loaded

25 ➤ CLOSE WINDOW w_msg

RETURN (idx)

END FUNCTION -- load_arrays --

440 Using TEXT and VARCHAR Data Types

The dsply_cat() Function

The open_wins() Function
26 ➤ The open_wins() function opens a window for each form used in this

example:

• The f_catadv form appears in the w_advert window.

• The f_catdescr form appears in the w_descr window.

• The f_catalog form appears in the w_cat window.

Windows are opened in the reverse order of their use so that the first window
to be used appears “on top” of all others, thereby hiding the others from view
until they are needed.

The close_wins() Function
27 ➤ The close_wins() function closes each of the windows used in the example.

The dsply_cat() Function
28 ➤ The CURRENT WINDOW statement ensures that the w_cat window is the

current window before displaying the f_catalog form. For a more complete
example of using the CURRENT WINDOW statement, see Example 26.

29 ➤ The built-in function SET_COUNT() initializes the built-in function

ARR_COUNT() with the number of catalog rows that have been selected.

30 ➤ The DISPLAY ARRAY statement displays the first five items of the ga_catrows
program array in the sa_cat screen array. DISPLAY ARRAY must be preceded
by a call to SET_COUNT() to know how many rows to display.

An ON KEY clause allows the user to press CONTROL-E to exit the DISPLAY

ARRAY (and the f_catalog form). The Cancel key (typically CONTROL-C) also
will exit the array.

Example 18 441

The open_wins() Function

FUNCTION open_wins()

26 ➤ OPEN WINDOW w_advert AT 6, 6

WITH 11 ROWS, 68 COLUMNS

ATTRIBUTE(BORDER, COMMENT LINE LAST)

OPEN WINDOW w_descr AT 4, 4

WITH 13 ROWS, 72 COLUMNS

ATTRIBUTE(BORDER, COMMENT LINE LAST)

OPEN WINDOW w_cat AT 2, 2

WITH 20 ROWS, 77 COLUMNS

END FUNCTION -- open_wins --

FUNCTION close_wins()

27 ➤ CLOSE WINDOW w_advert

CLOSE WINDOW w_descr

CLOSE WINDOW w_cat

END FUNCTION -- close_wins --

FUNCTION dsply_cat(cat_cnt)

DEFINE cat_cnt SMALLINT

28 ➤ CURRENT WINDOW IS w_cat

DISPLAY FORM f_catalog

29 ➤ CALL SET_COUNT(cat_cnt)

LET int_flag = FALSE

DISPLAY ARRAY ga_catrows TO sa_cat.*

30 ➤ ON KEY (CONTROL-E)

EXIT DISPLAY

442 Using TEXT and VARCHAR Data Types

The show_advert() Function

31 ➤ This ON KEY clause defines a special feature for the CONTROL-V or F4 key.
The user can press either key to view the VARCHAR advertising copy for the
current catalog row.

The show_advert() function implements this feature. The function accepts as
an argument the index position of the cursor (returned by the ARR_CURR()

function) so it can tell which catalog item is the current row. Before
show_advert() begins execution, 4GL evaluates ARR_CURR() and passes its
result as the argument to show_advert().

32 ➤ This ON KEY clause defines a special feature for the CONTROL-T or F5 key.
The user can press either key to view the TEXT catalog item description for
the current catalog row.

The show_descr() function implements this feature. Like the show_advert()
function, this function accepts as an argument the current cursor position.

33 ➤ Once the user has exited the screen array, the FREE statement releases the
space used to store the TEXT value.

The show_advert() Function
34 ➤ The CURRENT WINDOW statement ensures that the w_advert window is the

current window before the f_catadv form is displayed. For a more complete
example of using the CURRENT WINDOW statement, see Example 26.

35 ➤ The DISPLAY statement initializes the f_catadv form with the catalog
information for the current catalog row.

36 ➤ The LET statement assigns the VARCHAR value stored in the ga_catadv array
to a local variable. It uses the current cursor position as an index into the
array.

37 ➤ The exit_fld and upd_fld variables initialize the screen fi xn and xu,
respectively, to an underscore character (“_”). These fi are not used to
accept user input but rather to receive the user’s exit command. If the user
presses CONTROL-E from exit_fld, execution leaves the f_catadv form with-
out saving the contents of advert (the current catalog item’s advertising
copy). If the user presses CONTROL-E from the upd_fld field, execution saves
the current advert value in the catalog table and then leaves f_catadv.

38 ➤ The upd_advert flag is tested after the INPUT statement to see whether or not
to perform the update of the cat_advert column. It is initialized here to FALSE

and set to TRUE in the BEFORE FIELD section for the xu fi (see Note 40).

Example 18 443

The show_advert() Function

31 ➤ ON KEY (CONTROL-V,F4)

CALL show_advert(ARR_CURR())

32 ➤ ON KEY (CONTROL-T,F5)

CALL show_descr(ARR_CURR())

END DISPLAY

33 ➤ FREE g_txtblob -- free temp file

END FUNCTION -- dsply_cat --

FUNCTION show_advert(rownum)

DEFINE rownum INTEGER,

upd_advert SMALLINT,

advert LIKE catalog.cat_advert,

exit_fld CHAR(2),

upd_fld CHAR(2)

34 ➤ CURRENT WINDOW IS w_advert

DISPLAY FORM f_catadv

35 ➤ DISPLAY ga_catrows[rownum].catalog_num, ga_catrows[rownum].description,

ga_catrows[rownum].manu_name

TO catalog_num, description, manu_name

36 ➤ LET advert = ga_catadv[rownum]

37 ➤ LET exit_fld = " "

LET upd_fld = " "

38 ➤ LET upd_advert = FALSE

LET int_flag = FALSE

444 Using TEXT and VARCHAR Data Types

The show_advert() Function

39 ➤ The INPUT statement displays the initialized input fi and accepts user
input from the cat_advert fi The input fi are initialized with the
values of the variables advert, exit_fld, and upd_fld, respectively, because
this INPUT statement contains a WITHOUT DEFAULTS clause.

40 ➤ These BEFORE FIELD sections set the value of the update fl upd_advert.
This flag is only set to TRUE when the cursor reaches the xu field. If the user
presses CONTROL-E from this fi the catalog row will be updated. If the
user presses CONTROL-E from either the cat_advert or the xn field,
upd_advert is set to FALSE.

41 ➤ The AFTER FIELD section performs a wraparound function. If the user presses

RETURN, the cursor loops back to the cat_advert field.

42 ➤ The ON KEY clause defines a special feature for the CONTROL-E or ESC key
sequences. The user can press either key to exit the f_catadv form.

43 ➤ If the user has exited the INPUT from the xu fi upd_advert is TRUE

and the function updates the cat_advert column of the catalog table.

44 ➤ The setting of the g_txflag variable determines whether or not to execute the
BEGIN WORK statement. If the database uses transactions (stores7 does), then
BEGIN WORK marks the beginning of a new transaction. If the database does
not use transactions, the program skips over the BEGIN WORK to avoid gen-
erating a runtime error. In such a database, each SQL statement is a singleton
transaction. For a description of how g_txflag is set, see Note 16.

45 ➤ The UPDATE statement updates the cat_advert column of the current catalog
row. The WHENEVER ERROR CONTINUE statement prevents the function
from terminating if the UPDATE generates an error. The function does its own
error checking by testing the value of the global status variable.

46 ➤ If the status is negative, the UPDATE statement has failed and the function
calls the upd_err() function to notify the user of the cause.

47 ➤ If the status is zero, the UPDATE statement is successful. The setting of the
g_txflag variable determines whether or not to execute the COMMIT WORK

statement. If the database uses transactions (stores7 does), then COMMIT

WORK saves the database changes and ends the current transaction. If the
database does not use transactions, the program skips over COMMIT WORK

to avoid generating a runtime error. For a description of how g_txflag is set,
see Note 16.

Example 18 445

The show_advert() Function

39 ➤ INPUT advert, exit_fld, upd_fld

WITHOUT DEFAULTS FROM cat_advert, xn, xu

40 ➤ BEFORE FIELD cat_advert

LET upd_advert = FALSE

BEFORE FIELD xn

LET upd_advert = FALSE

BEFORE FIELD xu

LET upd_advert = TRUE

41 ➤ AFTER FIELD xu

NEXT FIELD cat_advert

42 ➤ ON KEY(CONTROL-E, ESC)

EXIT INPUT

END INPUT

43 ➤ IF upd_advert THEN -- user wants to update field

44 ➤ IF g_txflag THEN

BEGIN WORK

END IF

45 ➤ WHENEVER ERROR CONTINUE
UPDATE catalog SET cat_advert = advert

WHERE rowid = ga_catrids[rownum]

WHENEVER ERROR STOP

46 ➤ IF (status < 0) THEN

CALL upd_err()

ELSE

47 ➤ IFg_txflag THEN

COMMIT WORK

END IF

446 Using TEXT and VARCHAR Data Types

The show_descr() Function

48 ➤ If the advert fi has been updated, then the value in the global VARCHAR

array needs to be updated. This LET statement assigns the new advert value
to the appropriate element of the ga_catadv array.

49 ➤ When this function is done, the w_advert window no longer needs to be
current. This CURRENT WINDOW statement makes the window containing
the f_catalog form the current window.

The show_descr() Function
50 ➤ The show_descr() function is almost identical to the show_advert() function.

While show_advert() displays the current row’s VARCHAR value on the
f_catadv form, show_descr() displays the current row’s TEXT value on the
f_catdescr form. Only steps that differ significantly from the behavior of
show_advert() are described here. Refer to the description of show_advert()
if you have questions about unmarked sections of this function.

51 ➤ The SELECT statement selects the current catalog item’s description from the
catalog table. This TEXT value is stored in the temporary file pointed to by the
g_txtblob variable. This variable must be initialized with the location to store
the TEXT value before it can store the TEXT value (see Note 8).

To optimize the access of the TEXT column, the SELECT uses the row’s ROWID.
The ROWID for each catalog row is stored in the ga_catrids array. When
show_descr() is called, the program passes in the result of the ARR_CURR()

function. This value is the index into the ga_catrids array where the current
row’s ROWID is stored.

52 ➤ The upd_descr flag is tested after the INPUT statement to determine whether
to perform the update of the cat_descr column. It is initialized here to FALSE

and set to TRUE in the BEFORE FIELD xu program block (see Note 53).

53 ➤ The INPUT statement displays the initialized input fi and accepts user
input from the cat_descr field. The input fields xn and xu are initialized with
the values of the variables exit_fld and upd_fld, respectively. The cat_descr
fi is initialized with the value pointed to by the g_txtblob variable.

Notice that to edit the value in the cat_descr fi the user must escape to a
system editor with the exclamation point (“!”). The editor brings up the value
pointed to by the g_txtblob variable and, if the user saves changes, writes the
new value to the location indicated by g_txtblob.

Example 18 447

The show_descr() Function

48 ➤ LET ga_catadv[rownum] = advert

END IF

END IF

49 ➤ CURRENT WINDOW IS w_cat

END FUNCTION -- show_advert --

50 ➤ FUNCTION show_descr(rownum)

DEFINE rownum INTEGER,

upd_descr SMALLINT,

exit_fld CHAR(2),

upd_fld CHAR(2)

CURRENT WINDOW IS w_descr

DISPLAY FORM f_catdescr

DISPLAY ga_catrows[rownum].catalog_num, ga_catrows[rownum].description,

ga_catrows[rownum].manu_name

TO catalog_num, description, manu_name

51 ➤ SELECT cat_descr

INTO g_txtblob

FROM catalog

WHERE ROWID = ga_catrids[rownum]

LET exit_fld = " "

LET upd_fld = " "

52 ➤ LET upd_descr = FALSE

LET int_flag = FALSE

53 ➤ INPUT g_txtblob, exit_fld, upd_fld WITHOUT DEFAULTS FROM cat_descr, xn, xu

BEFORE FIELD xn

LET upd_descr = FALSE

BEFORE FIELD xu

LET upd_descr = TRUE

AFTER FIELD xu

NEXT FIELD cat_descr

ONKEY(ESC,CONTROL-E)

EXIT INPUT

END INPUT

IFupd_descr THEN -- user wants to update field

IF g_txflag THEN

BEGIN WORK

END IF

448 Using TEXT and VARCHAR Data Types

The upd_err() Function

54 ➤ The UPDATE statement updates the cat_descr column of the current catalog
row. The WHENEVER ERROR CONTINUE statement prevents the function
from terminating if UPDATE generates an error. The function does its own
error checking by testing the value of the global status variable.

The upd_err() Function
55 ➤ The scode variable stores the status of the most recently executed SQL

statement. By containing the value of SQLCA.SQLCODE instead of the status
variable, this variable is guaranteed to reflect the status of the most recently
executed SQL statement. The status variable contains the value of the most
recently executed 4GL statement. The icode variable stores the current ISAM

error code. 4GL stores the ISAM error code in SQLCA.SQLERRD[2] after an SQL

statement.

56 ➤ The g_txflag variable determines whether or not to execute the ROLLBACK

WORK statement. If the database uses transactions (stores7 does), then ROLL-

BACK WORK cancels the changes made to the database by the current trans-
action and ends the current transaction. If the database does not use
transactions, the program skips over ROLLBACK WORK and avoids generat-
ing a runtime error. In such a database, each SQL statement is a singleton
transaction. For a description of how g_txflag is set, see Note 16.

57 ➤ The function notifies the user of the failed database operation with the
ga_dsplymsg array and the message_window() function. This message
includes both the SQLCA.SQLCODE code and the ISAM error code.

Example 18 449

The upd_err() Function

54 ➤ WHENEVER ERROR CONTINUE
UPDATE catalog SET cat_descr = g_txtblob

WHERE ROWID = ga_catrids[rownum]

WHENEVER ERROR STOP

IF(status < 0) THEN

CALL upd_err()

ELSE

IFg_txflag THEN

COMMIT WORK

END IF

END IF

END IF

CURRENT WINDOW IS w_cat

END FUNCTION -- show_descr --

FUNCTION upd_err()

DEFINE scode, icode INTEGER

55 ➤ LET scode = SQLCA.SQLCODE

LET icode = SQLCA.SQLERRD[2] -- isam error code

56 ➤ IF g_txflag THEN

ROLLBACK WORK

END IF

57 ➤ LET ga_dsplymsg[1] = "Update failed, sql code=",scode,", isam code=",icode

LET ga_dsplymsg[2] = "Database not changed."

CALL message_window(2,2)

END FUNCTION -- upd_err --

To locate any function definition, see the Function Index on page 730.

450 Browsing with a Scroll Cursor

19
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18.Using TEXT and VARCHAR Data

Types
 19.Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27. Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 19 451

Browsing with a Scroll
Cursor

This example demonstrates how to use a scroll cursor to browse through a
selection of rows. The response time of the application is minimized by
“reading ahead”; that is, by fetching the next row after displaying the current
row, while the user is busy viewing the current data.

The Main Function
The main program contains a two-step loop. In the first step, the user is asked
to enter selection criteria in a query-by-example form. If the user interrupts
this step, the program ends. This step is the same as that in Example 6.

The Browsing Function

452 Browsing with a Scroll Cursor

In the second step, the user’s criteria are assembled into a SELECT statement
that is associated with a scroll cursor. The cursor is opened and the browsing
function is called. It returns a Boolean fl to indicate whether the user
selected the Exit menu choice. If so, the program ends.

The Browsing Function
The purpose of the browsing function is to display a menu across the top of
the familiar “customer” form and to execute the choices in that menu. The
following choices appear on the menu:

Query Stop browsing and return to the query-by-example phase
to specify new selection criteria.

Exit Stop browsing and end the program.

First Display the fi row in the selected set.

Next Display the next row in the set.

Prior Display the prior row in the set.

Last Display the last row in the set.

The Browsing Function

Example 19 453

A Simple Approach to Scrolling
The simplest way to implement the scrolling choices would be to translate
each choice into a corresponding FETCH statement. The code would read like
the following:

COMMAND "First"

FETCH FIRST cust_row INTO curr_cust.*

DISPLAY BY NAME curr_cust.*

COMMAND "Next"

FETCH NEXT cust_row INTO curr_cust.*

IF SQLCA.SQLCODE = 0 THEN

DISPLAY BY NAME curr_cust.*

ELSE

ERROR "There are no further rows in the selected set."

END IF

COMMAND "Prior"

FETCH PRIOR cust_row INTO curr_cust.*

IF SQLCA.SQLCODE = 0 THEN

DISPLAY BY NAME curr_cust.*

ELSE

ERROR "There are no preceding rows in the selected set."

END IF

COMMAND "Last"

FETCH LAST cust_row INTO curr_cust

DISPLAY BY NAME curr_cust.*

This approach works well and takes advantage of the features of a scroll
cursor. (An ordinary cursor supports only FETCH NEXT operations.) How-
ever, it has at least two drawbacks:

• It does not warn the user when the end of the list is reached. The user only
discovers it by asking for a next or prior record and receiving an error
message. This presents a minor usability problem.

• The desired row is fetched at the point when the user asks for it. If the
fetch takes more than half a second to execute, the user will perceive a
delay between choosing the menu option and seeing the display. Some
users may experience the delay as dead time.

Fetching Ahead
This example demonstrates methods for resolving each of these potential
problems. Both objections can be met if the program can stay one row ahead
of the user. When the user chooses Next or Prior, a row that was previously
fetched is displayed. While the user is looking at the current row, a FETCH

454 Browsing with a Scroll Cursor

Function Overview

statement is executed to retrieve the next row in the same direction. In most
instances, the fetch is completed before the user is ready to enter another
menu choice.

Manipulating the Menu
The first objection, that the user is not warned of the end of the list, is handled
by hiding all but the usable menu options. The following cases occur:

• When the selection produces no rows at all, only the Query and Exit
menu options are displayed.

• When no next row exists, the Next option is hidden.

• When no prior row exists, the Prior option is hidden.

In addition to hiding irrelevant options, the default menu option is
manipulated to anticipate the user’s likely next action:

• When the selection produces no rows or only a single row, Query is the
default option. When multiple rows are retrieved, Next is the default.

• When the user reaches the end of the set going forward, First is made the
default option. A user can press RETURN and cycle through the list.

• When the user reaches the fi record by going backward, Last is made
the default option.

Error Handling
This program contains no WHENEVER statement; it does not trap errors. If an
SQL statement produces a negative return code, the program terminates with
a message. In this program, no error conditions are expected. The only likely
error is one showing that a row is locked by another user. The simplest way
to minimize the risk of a locking conflict is to execute SET LOCK MODE TO

WAIT early in the program. You could insert the statement just after DEFER

INTERRUPT in the MAIN section. An alternative method of handling locked
rows is demonstrated in Example 23.

Example 19 455

Error Handling

Function Overview

Function Name Purpose

scroller_1() Runs the browsing menu, fetching rows on request

query_cust2() Lets the user create a query by example.
See the description in Example 6.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

prompt_window() Displays a message and prompts the user for affi or
negation. This function is a variation on the
message_window() function that appears in Example 2.
See the description in Example 4.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

msg() Displays a brief, informative message.
See the description in Example 5.

456 Browsing with a Scroll Cursor

The MAIN Function

The DATABASE and GLOBALS Statements
1➤ This example works with any version of the demonstration database.

2➤ The ga_dsplymsg array is used as input to the message_window() function,
as discussed in Example 2.

The MAIN Function
3➤ The more variable controls the main loop. As long as it is TRUE, more work

remains.

4➤ The DEFER INTERRUPT statement prevents the Interrupt key (typically
CONTROL-C) from terminating the program. Instead, it sets the global vari-
able int_flag, as discussed in Example 5. It is tested following a CONSTRUCT

statement to see if the user cancelled the statement. Also, the Interrupt key is
associated with the Exit option of the browsing menu.

The program would still work if this statement were removed, but using
Interrupt would terminate the program immediately.

5➤ These options are used with the f_customer form, as described in Example 6.

6➤ The query_cust2() function, introduced in Example 6, executes a
CONSTRUCT statement using the f_customer form and returns a character
string that holds a SELECT statement. If the user cancels CONSTRUCT, the
function returns a null string, which is a signal to end the program.

7➤ The SELECT statement is prepared, associated with a scroll cursor, and
opened. Because no WHENEVER statement has been executed, any error in
these three statements terminates the program. An error could only occur on
PREPARE if the SELECT statement were syntactically invalid. An error on
DECLARE at this stage of a program is almost impossible.

An error might occur on the OPEN statement because the table or a column
could not be found. That would usually indicate that the wrong database had
been selected or the database schema had been changed. OPEN would also
fail if the table were locked by another user.

Example 19 457

The DATABASE and GLOBALS Statements

1➤ DATABASE stores7

GLOBALS

2➤ DEFINE ga_dsplymsgs ARRAY[5] OF CHAR(48)

END GLOBALS

MAIN

DEFINE stmt CHAR(150), -- select statement from CONSTRUCT

3➤ more SMALLINT -- continue flag

4➤ DEFER INTERRUPT

5➤ OPTIONS

HELP FILE "hlpmsgs",

FORM LINE 5,

COMMENT LINE 3,

MESSAGE LINE 19

OPEN FORM f_customer FROM "f_customer"

DISPLAY FORM f_customer

LET more = TRUE

WHILE more

6➤ CALL query_cust2() RETURNING stmt

IF stmt IS NOT NULL THEN

7➤ PREPARE prep_stmt FROM stmt

DECLARE cust_row SCROLL CURSOR FOR prep_stmt

OPEN cust_row

LET more = scroller_1()-- Query returns TRUE, Exit returns FALSE

CLOSE cust_row

ELSE-- query was cancelled

LET more = FALSE

END IF

END WHILE

CLOSE FORM f_customer

CLEAR SCREEN

END MAIN

4GL source file

458 Browsing with a Scroll Cursor

The scroller_1() Function

The scroller_1() Function
8➤ The scroller_1() function controls the order in which rows are fetched and

displayed to the user. It is called by the MAIN function and returns only when
the user chooses the Exit or Query menu option.

9➤ Three records contain cached rows that can be shown to the user. In general,
moving forward in the selection set involves:

• Copying curr_cust into prior_cust.

• Copying next_cust into curr_cust.

• Displaying curr_cust.

• Fetching the following record into next_cust.

Moving backward in the selection set is the same process, with the roles of
next_cust and prior_cust reversed. This simple picture is complicated by two
considerations:

• A following record may not exist in the current direction. This end-of-list
condition requires special handling.

• The position of the cursor, relative to the three row records, depends on
which menu choice was used most recently. When the Next option is
selected, the cursor is used to fetch the row in next_cust. When the Prior
option is selected, the cursor is used to fetch the row in prior_cust. This
introduces complications when the user reverses the direction of travel.
For example, the user selects Next and then Prior, or Prior and then Next.

10 ➤ The fetch_dir flag shows the direction in which the user is displaying records,
that is, which menu option was executed most recently (Next or Prior). Its
value reveals the relationship between the cursor and the three cached rows,
as discussed in the preceding note.

11 ➤ 4GL currently does not support a means of declaring constant values with
names, so read-only fl values like these must be defined as variables and
assigned.

12 ➤ The MENU statement begins here and extends through the END MENU

statement at the end of this function.

13 ➤ The BEFORE MENU block is executed before the menu options are displayed
on the screen. It determines whether the selected set of rows contains zero,
one, or many rows and sets the menu options accordingly.

14 ➤ If NOTFOUND IS signalled on the very first fetch, the menu is reduced to two
options: Exit and Query; Query is the default option.

Example 19 459

The scroller_1() Function

8➤ ##
FUNCTION scroller_1()

9➤ DEFINE curr_cust, -- the row now being displayed

next_cust, -- the row to display when Next is chosen

prior_cust -- the row to display when Prior is chosen

RECORD LIKE customer.*,

retval, -- value to RETURN from function

10 ➤ fetch_dir, -- flag showing direction of travel in list

toward_last -- flag values: going Next-wise,

toward_first, -- ...going Prior-wise, or at

at_end SMALLINT -- ...(either) end of the list

11 ➤ LET toward_last = +1

LET toward_first = -1

LET at_end = 0

DISPLAY

"--Press CTRL-W for Help----------

" AT 3, 1

12 ➤ MENU "View Customers"

13 ➤ BEFORE MENU -- Set up as for First, but with chance of zero rows

FETCH FIRST cust_row INTO curr_cust.*

IF SQLCA.SQLCODE = NOTFOUND THEN

14 ➤ ERROR "There are no rows that satisfy this query."

HIDE OPTION ALL

SHOW OPTION "Query"

SHOW OPTION "Exit"

NEXT OPTION "Query"

460 Browsing with a Scroll Cursor

The scroller_1() Function

15 ➤ The ELSE portion of the IF statement is executed when the fetch returns one
row. It is displayed to the user immediately. Because it is the fi row, no
prior record exists, and the Prior menu option is hidden. While the user
views this row, the next row is fetched.

16 ➤ If the fetch is successful, the second row is read into next_cust, and the Next
menu option, which is visible because it has not been hidden, is made the
default choice.

17 ➤ The ELSE is executed only when the query returns a single row. The Next
option is hidden. Only Query, Exit, First, and Last remain visible, and Query
is made the default.

18 ➤ The KEY keyword associates the ESCAPE key with the Query option. Users
should be told about such hidden accelerator keys in the program
documentation.

19 ➤ The First and Last choices perform a fetch while the user waits. In certain rare
cases, the fi or last row may be sitting in the prior_cust or the curr_cust
record. The program could be modified to detect these cases and avoid this
FETCH Operation, but the extra code does not seem to be justified.

20 ➤ The IF statement checks for a situation very similar to that present in the
BEFORE MENU section, (see Notes 16 and 17). The difference is that, before
the menu was displayed, the Next option was sure to be visible. In this
instance, the previous operation might have been Last, which hides the Next
choice, so the SHOW OPTION statement is used to make certain that Next is
visible.

21 ➤ The Next option is visible only when a next record exists. The option is stored
in the next_cust record. The rows are shuffl around in the cache, and the
new current row is displayed.

22 ➤ The CASE statement uses the value of fetch_dir to fetch the row that the user
probably wants to see next.

23 ➤ The previous operation used the cursor to fetch the row that is now in
curr_cust, so fetching the following row requires only FETCH NEXT.

24 ➤ The previous operation used the cursor to fetch the row that is now in
prior_cust. It tried to fetch a row prior to that one, but there was none. The
row now in curr_cust is relative +1 to that; the one needed in next_cust is
relative +2.

25 ➤ The previous operation used the cursor to fetch the row that was in
prior_cust and has since been discarded. The row now in prior_cust was
relative +1 to that; the one needed in next_cust is +3.

Example 19 461

The scroller_1() Function

ELSE -- found at least one row

15 ➤ DISPLAY BY NAME curr_cust.*

HIDE OPTION "Prior"

LET fetch_dir = toward_last

FETCH NEXT cust_row INTO next_cust.*

IF SQLCA.SQLCODE = 0 THEN -- at least 2 rows

16 ➤ NEXT OPTION "Next"

ELSE -- only 1 row in set

17 ➤ HIDE OPTION "Next"

NEXT OPTION "Query"

END IF

END IF

18 ➤ COMMAND KEY(ESC,Q) "Query"

"Query for a different set of customers" HELP 130

LET retval = TRUE

EXIT MENU

COMMAND "First" "Display first customer in selected set"

HELP 133

19 ➤ FETCH FIRST cust_row INTO curr_cust.* -- this cannot return 100

DISPLAY BY NAME curr_cust.* -- give user something to look at

HIDE OPTION "Prior" -- can’t back up from #1

LET fetch_dir = toward_last

FETCH NEXT cust_row INTO next_cust.*

20 ➤ IF SQLCA.SQLCODE = 0 THEN -- at least 2 rows

SHOW OPTION "Next" -- it might be hidden

NEXT OPTION "Next"

ELSE -- only 1 row in set

HIDE OPTION "Next"

NEXT OPTION "Query"

END IF

COMMAND "Next" "Display next customer in selected set"

HELP 134

21 ➤ LET prior_cust.* = curr_cust.*

SHOW OPTION "Prior"

LET curr_cust.* = next_cust.*

DISPLAY BY NAME curr_cust.*

22 ➤ CASE (fetch_dir)
WHEN toward_last

23 ➤ FETCH NEXT cust_row INTO next_cust.*

WHEN at_end

24 ➤ FETCH RELATIVE +2 cust_row INTO next_cust.*

LET fetch_dir = toward_last

WHEN toward_first

25 ➤ FETCH RELATIVE +3 cust_row INTO next_cust.*

LET fetch_dir = toward_last

END CASE

462 Browsing with a Scroll Cursor

The scroller_1() Function

26 ➤ No row exists after curr_cust. The Next option is hidden and First is made the
default.

27 ➤ The logic of the Prior option is just like the logic of the Next option, with the
roles of the cache records and the relative fetch offsets reversed.

28 ➤ The logic of Last is just like the logic of First, but with the roles of the cache
records reversed and with PRIOR replacing NEXT in both the FETCH and
HIDE OPTION statements.

29 ➤ The Interrupt signal is associated with the Exit menu choice. As a result, if the
user interrupts the display function, the program terminates quietly.

Example 19 463

The scroller_1() Function

IF SQLCA.SQLCODE = NOTFOUND THEN

LET fetch_dir = at_end

26 ➤ HIDE OPTION "Next"

NEXT OPTION "First"

END IF

COMMAND "Prior" "Display previous customer in selected set"

HELP 135

27 ➤ LET next_cust.* = curr_cust.*

SHOW OPTION "Next"

LET curr_cust.* = prior_cust.*

DISPLAY BY NAME curr_cust.*

CASE (fetch_dir)

WHEN toward_first

FETCH PRIOR cust_row INTO prior_cust.*

WHEN at_end

FETCH RELATIVE -2 cust_row INTO prior_cust.*

LET fetch_dir = toward_first

WHEN toward_last

FETCH RELATIVE -3 cust_row INTO prior_cust.*

LET fetch_dir = toward_first

END CASE

IF SQLCA.SQLCODE = NOTFOUND THEN

LET fetch_dir = at_end

HIDE OPTION "Prior"

NEXT OPTION "Last"

END IF

COMMAND "Last" "Display final customer in selected set"

HELP 136

28 ➤ FETCH LAST cust_row INTO curr_cust.* -- this cannot return 100

DISPLAY BY NAME curr_cust.* -- give user something to look at

HIDE OPTION "Next"-- can’t go onward from here

LET fetch_dir = toward_first

FETCH PRIOR cust_row INTO prior_cust.*

IF SQLCA.SQLCODE = 0 THEN-- at least 2 rows

SHOW OPTION "Prior" -- it might be hidden

NEXT OPTION "Prior"

ELSE -- only 1 row in set

HIDE OPTION "Prior"

NEXT OPTION "Query"

END IF

29 ➤ COMMAND KEY(INTERRUPT,"E", "X") "Exit" "Exit program." HELP 100

LET retval = FALSE

EXIT MENU

END MENU

RETURN retval

END FUNCTION - scroller_1 -

To locate any function definition, see the Function Index on page 730.

464 Combining Criteria from Successive Queries

20
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27. Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 20 465

Combining Criteria from
Successive Queries

This example builds on Example 19. It gives its user the new ability to revise
a query, adding constraints to exclude rows from the selected set. This is done
by performing a subsequent CONSTRUCT operation and combining the new
conditions with those produced in prior CONSTRUCT operations.

The Main Function
The main program contains a two-step loop. In the first step, the user is asked
to enter selection criteria in a query-by-example form. The code is similar to
that of Example 6 and Example 19, but it differs in that it does not assemble
a complete SELECT statement. Instead, it returns only the conditional

The Browsing Function

466 Combining Criteria from Successive Queries

expression output from CONSTRUCT. If the user cancels the CONSTRUCT

operation, a null string is returned and the main loop takes this as a signal to
end the program.

In the second step, the conditional expression is passed to a browsing
function. The function prepares a SELECT statement, associates it with a
cursor, and opens it. A browsing menu like the one in Example 19 is
displayed. However, the menu includes a Revise option and a Show_cond
option.

If the user selects Revise, the program allows entry of additional selection
criteria. These new criteria are added to the previous conditional expression,
a new SELECT statement is prepared and opened, and browsing resumes.

The main program ends when the browsing function returns a Boolean value
indicating that the user chose the Exit menu option or pressed the Interrupt
key (typically CONTROL-C).

The Browsing Function
The browsing function, scroller_2(), is based on the scroller_1() function
found in Example 19. You should understand the read-ahead logic used in
Example 19 before studying scroller_2().

The browsing function supports the following menu choices:

Query Stop browsing and return to the query phase to choose a
new selection of rows.

Revise Place additional conditions on the current query.

Show_cond Display the conditional expression for the current query.

First Display the fi row of the selected set.

Next Display the next row in the set.

Prior Display the prior row in the set.

Last Display the last row in the set.

Exit Stop browsing and end the program.

The Query, Exit, and First through Last options are identical to those in
Example 19. The Revise and Show_cond options are new in this example.

The Browsing Function

Example 20 467

Revising a Query
The user completes a query by example to specify additional criteria. The 4GL

code that supports the query by example is the same as used in the initial
query, except for some informational messages. See the section “The Query
By Example Functions” on page 468. The new criteria are appended to the
existing criteria, creating a new conditional expression. A new SELECT state-
ment, incorporating the enhanced conditional expression, is prepared and
opened.

Note that the new set of selected rows might have no rows in it, or only one
row. The BEFORE MENU section of the browsing function checks for these
conditions.

The code to prepare, declare, and open a cursor already precedes the start of
the menu operation. Instead of repeating the same logic as part of the Revise
option, the program simply collects the new conditional expression, exits the
menu, and starts over again as if the extended condition had been the original
one.

This restart could be done in either of two ways:

• Cursor management could appear in the main loop. When Revise is
chosen, the browsing function could terminate, returning a fl so that
the main loop could tell the difference between the Query, Exit, and
Revise choices. It would be up to the main loop to close and reopen the
cursor and restart the browse.

• Cursor management could appear in the browsing function. When Revise
is chosen, it could close and reopen the cursor and resume the menu
execution.

This example uses the second design. You might try rewriting the example
using the fi design.

Displaying the Search Criteria
The menu option Show_cond displays the current search criteria as a text
string in a new window.

This feature is primarily a debugging aid while the program is being
developed. Whether it should appear in a fi application depends on
the audience for the program. It would be very useful to some kinds of users
and meaningless to others.

468 Combining Criteria from Successive Queries

Function Overview

The Query By Example Functions
This program contains two functions that execute CONSTRUCT statements
and collect query conditions. The fi query_cust3a(), is the same as the
query_cust2() function of Example 6, except that it returns only the condi-
tional expression and not a complete SELECT statement. This allows the
calling function to store the conditions apart from the SELECT statement, so
they can be used in other statements or modified. In Example 27, the same
conditional expression will be used with two different SELECT statements
and with UPDATE and DELETE statements.

The second query function, query_cust3b(), is almost identical. It differs in
the prompting messages it displays on the form (“Enter additional condi-
tions” instead of “Enter query conditions”) and, more significantly, in the
way it handles a null response.

When query_cust3a() sees a null response to CONSTRUCT, it reminds the user
that an empty condition will select all rows. That is not the case when addi-
tional conditions are being collected; then, an empty condition merely leaves
the query unchanged. The prompt in query_cust3b() reflects this difference.

The answer() Function
This example introduces another general-purpose subroutine for warning or
prompting the user. The answer() function (as described in Note 15) takes a
message string and three answer strings, which may be null. The user is
shown the message and prompted for a choice from among the answers. The
MATCHES operator is used in an unusual way to detect valid responses.

Example 20 469

The Query By Example Functions

Function Overview

Function Name Purpose

scroller_2() Runs the browsing menu, fetching rows on request.

query_cust3a() Executes a CONSTRUCT statement and returns the resulting
conditional expression.

query_cust3b() Like query_cust3a(), but with a different prompt message
and a different treatment of the null query.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

answer() A user-alert subroutine that takes one to three possible user
responses and returns the one the user chooses.

msg() Displays a brief, informative message.
See the description in Example 5.

470 Combining Criteria from Successive Queries

The f_answer Form

The f_answer Form
1➤ The f_answer form displays an alert message and takes a one-character

response from a short list of possible responses.

2➤ The msg fi is a multi-line fi that displays the alert message.

Example 20 471

The f_answer Form

1➤ DATABASE formonly

SCREEN

{

[msg]

[msg]

[msg]

[msg]

}

ATTRIBUTES

2➤ msg = formonly.msgtext, WORDWRAP;

INSTRUCTIONS

DELIMITERS " "

f_answer form file

472 Combining Criteria from Successive Queries

The scroller_2() Function

The MAIN Function
1➤ Any version of the demonstration database may be used with this example.

2➤ DEFER INTERRUPT prevents the Interrupt key (typically CONTROL-C) from
terminating the program. Instead, it sets the global variable int_flag, which is
tested following CONSTRUCT to see if the user cancelled the statement. The
Interrupt key also is used with the Exit option of the browsing menu.

The program will still work if this statement is removed, but using Interrupt
will terminate the program immediately.

3➤ This function is described in “The query_cust3a() Function” on page 476.

It uses CONSTRUCT to generate a conditional expression. If the user cancels
the operation, query_cust3a() returns a null string, which terminates the
WHILE loop and ends the program.

The scroller_2() Function
4➤ The second variable stores the current query condition. It is initialized from

cond, the function argument. When conditions are added by the Revise
operation, they are appended to recond. The full SELECT statement is stored
in selstmt.

5➤ The read-ahead scroll logic uses three records to cache customer rows. This is
discussed in the section “Fetching Ahead” on page 453.

Example 20 473

The MAIN Function

1➤ DATABASE stores7

MAIN

DEFINE cond CHAR(250), -- conditional clause from CONSTRUCT

more SMALLINT -- continue flag

2➤ DEFER INTERRUPT

OPTIONS

HELP FILE "hlpmsgs",

FORM LINE 5,

COMMENT LINE 5,

MESSAGE LINE 19

OPEN FORM f_customer FROM "f_customer"

DISPLAY FORM f_customer

LET more = TRUE

WHILE more

3➤ CALL query_cust3a() RETURNING cond

IF cond IS NOT NULL THEN

LET more = scroller_2(cond) -- Query = TRUE, Exit = FALSE

ELSE -- query was cancelled

LET more = FALSE

END IF

END WHILE

CLOSE FORM f_customer

CLEAR SCREEN

END MAIN

FUNCTION scroller_2(cond)

DEFINE cond CHAR(250), -- initial query condition

4➤ recond, -- query as extended/contrained

selstmt CHAR(500), -- full SELECT statement

5➤ curr_cust, -- curr_cust: the row now being displayed

next_cust, -- the row to display when Next is chosen

prior_cust -- the row to display when Prior is chosen

RECORD LIKE customer.*,

retval, -- value to RETURN from function

fetch_dir, -- flag showing direction of travel in list

using_next, -- flag values: going fwd using fetch next,

using_prior, -- ...going bwd using fetch prior, or

at_end SMALLINT -- ...at either end of the list

4GL source file

474 Combining Criteria from Successive Queries

The scroller_2() Function

6➤ The Exit menu option sets retval to FALSE; the Query option sets it to TRUE.

The WHILE loop remains in control until one of them is chosen.

7➤ Note that the SELECT statement contains an ORDER BY clause. This contrasts
with Example 19, in which the ordering was physical.

8➤ The View Customers menu is similar to the menu present in Example 19. The
Revise and Show_cond options are new.

9➤ A discussion of this BEFORE MENU logic appears in “The scroller_1() Func-
tion” on page 458, in Note 13.

Example 20 475

The scroller_2() Function

LET using_next = +1

LET using_prior = -1

LET at_end = 0

LET recond = cond-- initialize query condition

LET retval = 99-- neither TRUE nor FALSE

6➤ WHILE retval <> TRUE AND retval <> FALSE -- ie while not Query or Exit

7➤ LET selstmt = "SELECT * FROM customer WHERE ",

recond CLIPPED, " ORDER BY customer_num"

PREPARE prep_stmt FROM selstmt

DECLARE cust_row SCROLL CURSOR FOR prep_stmt

OPEN cust_row

DISPLAY

"--Press CTRL-W for Help----------

" AT 3, 1

8➤ MENU "View Customers"

9➤ BEFORE MENU -- Set up as for First, but with chance of zero rows

SHOW OPTION ALL

FETCH FIRST cust_row INTO curr_cust.*

IF SQLCA.SQLCODE = NOTFOUND THEN

ERROR "There are no rows that satisfy this query."

HIDE OPTION ALL

SHOW OPTION "Query"

SHOW OPTION "Exit"

NEXT OPTION "Query"

ELSE-- found at least one row

DISPLAY BY NAME curr_cust.*

HIDE OPTION "Prior"

LET fetch_dir = using_next

FETCH NEXT cust_row INTO next_cust.*

IF SQLCA.SQLCODE = 0 THEN-- at least 2 rows

NEXT OPTION "Next"

ELSE -- only 1 row in set

HIDE OPTION "Next"

NEXT OPTION "Query"

END IF

END IF

COMMAND KEY(ESC,Q) "Query"

"Query for a different set of customers." HELP 130

LET retval = TRUE

EXIT MENU

COMMAND "Revise" "Apply more conditions to current query."

HELP 131

476 Combining Criteria from Successive Queries

The query_cust3a() Function

10 ➤ The query_cust3b() function allows the user to specify additional selection
criteria. If the user interrupts the CONSTRUCT operation or enters no criteria
it returns a null string. This function is very similar to the query_cust3a()
function that appears later in this example.

11 ➤ The LET statement is executed when the user entered some criteria. The new
criteria are appended (along with the AND operator) to the previous condi-
tional expression. The EXIT MENU statement ends the menu.

Because retval has not been changed, the loop continues. The SELECT

statement is recreated, the cursor reopened, and the menu starts up again.

12 ➤ The answer() function uses the WORDWRAP option to display a string
(the CLIPPED recond variable) in a sub-window. The three null strings tell
answer() to display no choices and wait for the user to press the RETURN key.

The query_cust3a() Function
13 ➤ This function collects the initial criteria at the start of the program and when

the user chooses the Query menu option.

The query_cust3b() function is not displayed. It is identical except for the text
of the messages it displays, for example where this function asks, “Did you
really want to accept all rows?” the other asks, “Did you mean to add no new
conditions?”

14 ➤ The answer() function is called with two nonempty responses. The function
returns the response the user selects.

Example 20 477

The query_cust3a() Function

10 ➤ CALL query_cust3b() RETURNING cond

IF cond IS NOT NULL THEN -- some condition entered

11 ➤ LET recond = recond CLIPPED, " AND ", cond CLIPPED

EXIT MENU -- close and re-open the cursor

ELSE -- construct clears form, refresh the display

DISPLAY BY NAME curr_cust.*

END IF

COMMAND "Show-cond" "Display the current query conditions."

HELP 132

12 ➤ CALL answer(recond CLIPPED,"","","")

See Example 19.

13 ➤ FUNCTION query_cust3a() -- used for initial query

DEFINE q_cust CHAR(120),
 msgtxt CHAR(150)

CALL clear_lines(1,4)

DISPLAY "CUSTOMER QUERY-BY-EXAMPLE 2"

AT 4, 24

CALL clear_lines(2, 16)

DISPLAY

" Enter search criteria and press Accept. Press CTRL-W for Help."

AT 16,1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY " Press Cancel to exit w/out searching."

AT 17,1 ATTRIBUTE (REVERSE, YELLOW)

LET int_flag = FALSE

CONSTRUCT BY NAME q_cust ON customer.customer_num,

customer.company, customer.address1,

customer.address2, customer.city,

customer.state,

customer.zipcode, customer.fname,

customer.lname, customer.phone

HELP 30

AFTER CONSTRUCT

IF (NOT int_flag) THEN

IF (NOT FIELD_TOUCHED(customer.*)) THEN

LET msgtxt = "You did not enter any search criteria. ",

"Do you really want to select all rows?"

14 ➤ IF "No-revise" = answer(msgtxt,"Yes-all","No-revise","") THEN

CONTINUE CONSTRUCT

END IF

END IF

END IF

END CONSTRUCT

IF int_flag THEN

LET int_flag = FALSE

478 Combining Criteria from Successive Queries

The answer() Function

The answer() Function
15 ➤ The answer() function is a general-purpose routine for displaying a message

to the user and getting a simple answer. Example 20 calls answer() at three
points in the program:

• The Show_cond menu option, to display the current query criteria.

• The query_cust3a() function, to determine whether the user wants to
select all rows.

• The query_cust3b() function, to determine whether the user wants to add
criteria to the query.

16 ➤ The f_answer form has a four-line character fi with the WORDWRAP

option. It displays the message text.

17 ➤ The initial letters of the one, two, or three valid responses are converted to
uppercase and combined into a character class list in the form supported by
the MATCHES predicate (that is, three elements enclosed in brackets).

18 ➤ When the caller supplies no valid responses, the function simply displays the
message and waits for RETURN. In this case it returns no value to the caller.

19 ➤ When the caller supplies a response, the function sets up a prompt string that
reads either “Choose A or B” or else “Choose A, B or C.”

Example 20 479

The answer() Function

CALL clear_lines(2,16)

CALL msg("Customer query terminated.")

LET q_cust = NULL

END IF

CALL clear_lines(1,4)

CALL clear_lines(2,16)

RETURN (q_cust)

END FUNCTION {query_cust3a}

15 ➤ FUNCTION answer(msg,ans1,ans2,ans3)

DEFINE msg CHAR(255), -- input text for display
 ans1,ans2,ans3 CHAR(10), -- possible user responses or nulls

 inp CHAR(1), -- user’s one-character reply

 j SMALLINT, -- misc index

 codes CHAR(5), -- match string [abc]

 choose CHAR(50) -- prompt string

16 ➤ OPEN WINDOW ans_win AT 10,10

WITH FORM "f_answer"

ATTRIBUTE(BORDER,PROMPT LINE LAST,FORM LINE FIRST)

DISPLAY msg TO msgtext

17 ➤ LET codes = "[",UPSHIFT(ans1[1]),

UPSHIFT(ans2[1]),

UPSHIFT(ans3[1]), "]" -- make a class

18 ➤ IF LENGTH(ans1) = 0 THEN -- all-blank or null

PROMPT "Press RETURN to continue: " FOR inp
ELSE

19 ➤ LET choose = "Choose ",ans1 CLIPPED

IF(LENGTH(ans2) * LENGTH(ans3)) <> 0 THEN -- both given

LET choose = choose CLIPPED, ", ", ans2 CLIPPED,

" or ", ans3 CLIPPED

ELSE -- not both ans2 and ans3, possibly neither

IF LENGTH(ans2) <> 0 THEN

LET choose = choose CLIPPED, " or ", ans2 CLIPPED

END IF

END IF

LET inp = "\n" -- one thing a user cannot enter at a prompt

480 Combining Criteria from Successive Queries

The answer() Function

20 ➤ The character class expression (see Note 17) is used to test the user’s
response. Many people overlook the fact that MATCHES can be used in 4GL

statements, and that its comparison pattern need not be a literal string, but
can be a variable.

Example 20 481

The answer() Function

20 ➤ WHILE NOT UPSHIFT(inp) MATCHES codes

PROMPT choose CLIPPED, " ",codes,": " FOR inp

END WHILE

END IF

CLOSE WINDOW ans_win

IFLENGTH(ans1) <> 0 THEN

CASE

WHEN UPSHIFT(inp) = UPSHIFT(ans1[1])

LET choose = ans1

WHEN UPSHIFT(inp) = UPSHIFT(ans2[1])

LET choose = ans2

WHEN UPSHIFT(inp) = UPSHIFT(ans3[1])

LET choose = ans3

END CASE

RETURN choose

END IF

END FUNCTION

To locate any function definition, see the Function Index on page 730.

482 Using an Update Cursor

21
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
 21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 21 483

Using an Update Cursor
This example demonstrates the use of an update cursor. An update cursor
allows you to lock rows as the cursor selects them from the database. You can
then use the WHERE CURRENT CLAUSE of the UPDATE or DELETE statement
to update or delete the row. This example uses an UPDATE WHERE CURRENT

statement to allow the user to specify which orders to update with a paid
date.

Displaying Multiple Forms
Suppose that the stores7 database only tracked the orders that have been
paid; a different database contained the actual accounting tables. The user of
stores7 receives a Paid Orders report from the Accounting department after
orders are paid in the accounting database. This report lists the orders to be
paid, sorted by date of payment and, within a single date by customer num-
ber. The user goes through this report and updates the orders.

To update an order, the user enters information in three steps:

1. The date the orders were paid is entered on the f_date form.

2. The customer number or company name of the customer whose orders
have been paid is entered on the f_custkey form.

3. Confirmation of the update of the order (currently displaying on the
f_payord form) is entered in a confirmation window.

Updating Rows

484 Using an Update Cursor

To assist the user in following these steps, this example leaves each of the
three forms on the screen:

f_date Form

f_custkey Form

f_payord Form

Because none of these forms is closed until data entry is complete, the user is
able to see all entered information at once.

Updating Rows
4GL provides two methods of updating or deleting rows:

• Using a WHERE clause in an UPDATE or DELETE statement to specify
which row or rows to affect as a group.

• Using a WHERE CURRENT OF clause in an UPDATE or DELETE statement
in conjunction with an update cursor to affect rows one at a time.

Using the WHERE clause in an UPDATE or DELETE statement is demonstrated
in Example 9. You specify the WHERE clause condition and the statement
updates or deletes all matching rows. If UPDATE (or DELETE) fails on one of
the rows, the entire UPDATE (or DELETE) statement fails. Any successful
updates performed on rows before the failure are cancelled, and any rows
after the failure are not processed. The update cursor provides a way to con-
trol an update on a row-by-row basis.

Using an Update Cursor

Example 21 485

Using an Update Cursor
With an update cursor, the SELECT statement requests an exclusive lock on
the row as it is fetched. The program can then update this row by using the
WHERE CURRENT OF clause of the UPDATE statement.

The update cursor offers the following advantages:

• The UPDATE or DELETE statement with the WHERE CURRENT OF clause
will not fail due to a locking conflict because the program has already
obtained a lock on each selected row.

• The user can page through the selected set of rows without being
concerned that the data within these rows will change. The exclusive lock
prevents other users from modifying or deleting the row.

• The program can test whether to update or delete each of the selected
rows specified. For example, the program can allow the user to choose
whether to reject or accept the update of a row.

• The program can test the success of the UPDATE or DELETE operation for
each selected row. If the operation fails, the program can choose to con-
tinue on to the next selected row, to exit the cursor, or to skip over the row.

The disadvantages of the update cursor are:

• The application loses some concurrency because an exclusive lock is
obtained on each selected row when it is fetched. No other user can mod-
ify the selected rows until the locks are released.

• When this exclusive lock is released depends upon whether or not the
database supports transactions:

• If the database supports transactions: the row lock is released when
the transaction ends (with COMMIT WORK or ROLLBACK WORK) if the
row has been updated, or when the next row is fetched if the row has
not been updated.

• If the database does not support transactions: the row lock is released
when the update cursor is closed (with CLOSE) or when the next row
is fetched (whichever occurs first), regardless of whether the row has
been updated.

• The SELECT statement of the cursor cannot include the ORDER BY clause
and is limited to a single table.

• An update cursor cannot be a scrolling cursor.

For these reasons, you should not usually use an update cursor to just select
and view data. In such cases, use a normal cursor or a scrolling cursor
because they do not obtain locks as they fetch rows.

486 Using an Update Cursor

Function Overview

Handling Locked Rows
This example does not check the locking status of rows found by the update
cursor. If this update cursor encounters a lock on one of the selected rows,
this program exits with a runtime error (ISAM = -107). To perform this check-
ing, the program should either:

• Replace the FOREACH statement with the FETCH statement within a loop
and check the status variable after the fetch for a possible locking error.

• Execute the SET LOCK MODE TO WAIT statement.

For more information on checking for locking errors, see Example 23.

Example 21 487

Handling Locked Rows

Function Overview

Function Name Purpose

input_date() Accepts user input for the date to mark the orders as paid.

open_ckey() Opens the f_custkey form.

close_ckey() Closes the f_custkey form.

find_cust() Accepts user input of a customer number or company name
and then fi a customer based on either of these values.

cust_popup2() Retrieves all customers and displays them in an array form
so the user can choose the appropriate customer.
See the description in Example 12.

find_unpaid() Determines the number of unpaid orders for the specified
customer.

pay_orders() Finds, displays, and updates the unpaid orders for the cur-
rent customer with the specified paid date. This function uses
an update cursor.

calc_order() Selects information from multiple tables to summarize an
order.
See the description in Example 12.

tax_rates() Supplies the appropriate tax schedule for a customer.
See the description in Example 4.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

prompt_window() Displays a message and prompts the user for confirmation. This
function is a variation on the message_window() func- tion
that appears in Example 2.
See the description in Example 4.

msg() Displays a brief, informative message.
See the description in Example 5.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

488 Using an Update Cursor

The f_payord Form

The f_date Form
1➤ Because this form does not contain a field based on columns of the database,

no database is specified. Therefore, the DATABASE statement specifies
formonly. Note that no TABLE section has been defined.

2➤ The SCREEN section of the form fi contains the image displayed on the
screen when the f_date form is open and displaying.

3➤ This form contains a single field: a date. Because the field is not connected to
a column of the database table, it needs to have its field type defined. By not
connecting the fi to a column, this form can accept input for any date
value.

The f_payord Form
1➤ This form contains fields connected to a database column; it must specify the

database that contains the column definition. This form will work with any
version of the stores7 database.

2➤ The SCREEN section of the form fi contains the image displayed on the
screen when the f_payord form is open and displaying.

3➤ This form uses columns from a single table: orders.

4➤ All fi on this form are defined as NOENTRY. This attribute prevents the
cursor from stopping in these fi during data entry. The effect of this
attribute is to create a display-only form: one that can display information
but that does not allow the user to enter input.

Because program execution will not stop on this form, the program must
have a way to pause to allow the user to see the data. In this example, the
pay_orders() function displays a confirmation window to allow the user to
see the order data and then decide whether or not to update this order with
a paid date.

5➤ Because the order amount is not stored in the database, the f005 field must be
defined as FORMONLY. The program calculates the order amount using the
calc_order() function and displays it in this field.

Example 21 489

The f_date Form

1➤ DATABASE formonly

2➤ SCREEN
{

Date:[f000]

}

ATTRIBUTES

3➤ f000 = formonly.a_date TYPE DATE;

1➤ DATABASE stores7

2➤ SCREEN
{

Customer’s total number of orders currently unpaid:[f000]

OrderNo:[f001] Order Date:[f002] PO Number:[f003]

Ship Date:[f004] Order Total: [f005]

}

3➤ TABLES
orders

ATTRIBUTES

4➤ f000 = FORMONLY.total_unpaid, NOENTRY;

f001 = orders.order_num, NOENTRY;

f002 = orders.order_date, NOENTRY;

f003 = orders.po_num, NOENTRY;

f004 = orders.ship_date, NOENTRY;

5➤ f005 = FORMONLY.order_total, NOENTRY;

f_date form file

f_payord form file

490 Using an Update Cursor

The MAIN Function

The DATABASE and GLOBALS Statements
1➤ This program uses the stores7 database which supports transactions.

2➤ The global record gr_customer holds the column values for a row in the
customer table.

3➤ The global record gr_payord holds the columns values from the orders table
that are displayed on the f_payord form.

4➤ The global record, gr_charges, holds the values needed to calculate the order
total for a single order. This record is used by the calc_order() function.

5➤ The ga_dsplymsg array is used as input to the message_window() function,
described in Example 2, and the prompt_window() function, described in
Example 3.

The MAIN Function
6➤ The input_date() function accepts user input of a date from the f_date form.

It returns TRUE if the user enters a date and FALSE if the user terminates the
input with the Cancel key (typically CONTROL-C). This date is the date of
payment for the orders, and it defaults to the current date.

7➤ The open_ckey() function opens a bordered window called w_custkey and
displays the f_custkey form in this window.

8➤ The WHILE loop enables the user to update order dates for several customers.

As long as the keep_going fl is TRUE, the program calls the find_cust()
function to allow the user to enter a new customer number.

9➤ The fi function accepts user input for the customer number or
company name of the customer whose orders are to be marked as paid. It
returns TRUE if the user enters the customer information and FALSE if the
user terminates the INPUT operation with the Cancel key.

10 ➤ Because the fi function stores the user input in the gr_customer
record, these LET statements copy this information into gr_payord global
record, which stores the order paid data.

11 ➤ The find_unpaid() function determines the number of unpaid orders for the
specified customer.

Example 21 491

The DATABASE and GLOBALS Statements

1➤ DATABASE stores7

GLOBALS

2➤ DEFINE gr_customer RECORD LIKE customer.*,

3➤ gr_payord RECORD

paid_date LIKE orders.paid_date,

customer_num LIKE orders.customer_num,

company LIKE customer.company,

order_num LIKE orders.order_num,

order_date LIKE orders.order_date,

po_num LIKE orders.po_num,

ship_date LIKE orders.ship_date

END RECORD,

4➤ gr_charges RECORD

tax_rate DECIMAL(5,3),

ship_charge LIKE orders.ship_charge,

sales_tax MONEY(9),

order_total MONEY(11)

END RECORD

5➤ DEFINE ga_dsplymsg ARRAY[5] OF

CHAR(48) END GLOBALS

MAIN

DEFINE keep_going SMALLINT,
 num_unpaid SMALLINT

OPTIONS

FORM LINE FIRST,

MESSAGE LINE LAST

DEFER INTERRUPT

6➤ IF input_date() THEN

LET keep_going = TRUE

7➤ CALL open_ckey()

8➤ WHILE keep_going

9➤ IF find_cust() THEN

10 ➤ LET gr_payord.customer_num = gr_customer.customer_num

LET gr_payord.company = gr_customer.company

11 ➤ LET num_unpaid = find_unpaid()

4GL source file

492 Using an Update Cursor

The input_date() Function

12 ➤ If the specified customer has unpaid orders, then the pay_orders() function is
called to control the selection and update of these orders. The total number
of unpaid orders is passed to pay_orders() as an argument to be displayed on
the f_payord form.

13 ➤ If the user has terminated customer input with the Cancel key (typically
CONTROL-C), then keep_going is FALSE, terminating the WHILE loop (see
Note 8).

14 ➤ The close_ckey() function deallocates the memory used by the f_custkey
form and its window.

The input_date() Function
15 ➤ The f_date form displays in a bordered window called w_paydate. At the top

of this window, the program displays instructions for the user on how to
enter data on the form.

16 ➤ The INPUT statement accepts the date from the screen field a_date and stores
it in the program variable gr_payord.paid_date. This date is the date of
payment for the orders.

17 ➤ Before the user can enter data, the program initializes the date with today’s
date if the fi is currently empty.

18 ➤ If the user has cleared the fi the program moves the cursor back to
the paid_date fi This test ensures that a value exists in the
gr_payord.paid_date field.

19 ➤ The clear_lines() function clears the form instructions from the screen. These
instructions no longer apply once execution has left the f_date form.

20 ➤ If the user uses the Cancel key (typically CONTROL-C), the function resets the
int_flag variable, closes the form and window, and returns FALSE.

21 ➤ If execution reaches this point, the user has entered a paid date so the
function returns TRUE. Note that the f_date form is left on the screen so the
user can see the specified paid date as the data entry continues.

Example 21 493

The input_date() Function

12 ➤ IF (num_unpaid > 0) THEN

CALL pay_orders(num_unpaid)

END IF

ELSE

13 ➤ LET keep_going = FALSE

END IF

END WHILE

END IF

14 ➤ CALL close_ckey()

CLEAR SCREEN

END MAIN

FUNCTION input_date()

15 ➤ OPEN WINDOW w_paydate AT 2,3

WITH 6 ROWS, 76 COLUMNS

ATTRIBUTE (BORDER, COMMENT LINE 2)

OPEN FORM f_date FROM "f_date"

DISPLAY FORM f_date

DISPLAY "ORDER PAY DATE" AT 1,24

CALL clear_lines(1, 6)

DISPLAY " Enter order paid date and press Accept. Press Cancel to

exit." AT 6, 1 ATTRIBUTE (REVERSE, YELLOW)

16 ➤ INPUT gr_payord.paid_date FROM a_date

17 ➤ BEFORE FIELD a_date

IFgr_payord.paid_date IS NULL THEN

LET gr_payord.paid_date = TODAY

END IF

18 ➤ AFTER FIELD a_date

IF gr_payord.paid_date IS NULL THEN

ERROR "You must enter a Paid Date for the orders."

NEXT FIELD paid_date

END IF

END INPUT

19 ➤ CALL clear_lines(1, 6)

20 ➤ IF int_flag THEN

LET int_flag = FALSE

CLOSE FORM f_date

CLOSE WINDOW w_paydate

RETURN (FALSE)

END IF

21 ➤ RETURN (TRUE)

END FUNCTION -- input_date --

494 Using an Update Cursor

The fi Function

The open_ckey() Function
22 ➤ The f_custkey form displays in a bordered window called w_custkey. This

window redefines the COMMENT LINE and the FORM LINE statements so that
the f_custkey form displays at the top of the w_custkey window. By default,
FORM LINE is 3 and the f_custkey form would display on the third line of
w_custkey.

The close_ckey() Function
23 ➤ The close_ckey() function closes the f_custkey form and its window

w_custkey. These statements deallocate memory resources used by these two
screen structures.

The find_cust() Function
24 ➤ The program displays the user instructions for the f_custkey form at the top

of the w_custkey window. The call to clear_lines() clears out the instruction
lines so any previous text is removed before the new instructions display.

25 ➤ The INPUT statement accepts input for the customer number and company
name. The user can select a customer by entering either of these values.

26 ➤ Before the user can enter the customer number, the program displays a
message indicating the presence of a popup window. If desired, the user can
press either F5 or CONTROL-F to see the numbers and names of all customers
defined in the database.

27 ➤ If the gr_customer.customer_num variable has a non-null value, then the
user has entered the customer number in the customer_num fi The pro-
gram checks that a customer with this number exists in the database.

Note that if gr_customer.customer_num is null, execution is allowed to con-
tinue to the company fi This feature allows the user to select a customer
by entering either the customer number or the company name. See Note 32
for more information.

28 ➤ If the SELECT statement in Note 27 does not fi a customer row for the
specified customer number, then the user entered an invalid number. The
program notifies the user of the error, clears out the customer number field,
and returns the cursor to this fi so the user can enter another number.

Example 21 495

The open_ckey() Function

FUNCTION open_ckey()

22 ➤ OPEN WINDOW w_custkey AT 6,3

WITH 5 ROWS, 76 COLUMNS

ATTRIBUTE (BORDER, COMMENT LINE 2, FORM LINE FIRST)

OPEN FORM f_custkey FROM "f_custkey"

DISPLAY FORM f_custkey

END FUNCTION -- open_ckey --

FUNCTION close_ckey()

23 ➤ CLOSE FORM f_custkey

CLOSE WINDOW w_custkey

END FUNCTION -- close_ckey --

FUNCTION find_cust()

DEFINE cust_cnt SMALLINT

24 ➤ CALL clear_lines(2, 3)

DISPLAY " Enter customer number or company name."

AT 3, 1 ATTRIBUTE (REVERSE, YELLOW)

DISPLAY " Press Accept to continue or Cancel to exit."

AT 4, 1 ATTRIBUTE (REVERSE, YELLOW)

25 ➤ LET int_flag = FALSE

INPUT BY NAME gr_customer.customer_num, gr_customer.company

26 ➤ BEFORE FIELD customer_num

MESSAGE "Enter a customer number or press F5 (CTRL-F) for a list."

27 ➤ AFTER FIELD customer_num

IFgr_customer.customer_num IS NOT NULL THEN

SELECT company

INTO gr_customer.company

FROM customer

WHERE customer_num = gr_customer.customer_num

28 ➤ IF (status = NOTFOUND) THEN

ERROR

"Unknown Customer number. Use F5 (CTRL-F) to see valid

customers." LET gr_customer.customer_num = NULL

NEXT FIELD customer_num

END IF

496 Using an Update Cursor

The fi Function

29 ➤ If the SELECT statement in Note 27 fi a customer row for the specified
customer number, it selects the company name into the gr_customer.com-
pany variable. The program displays this variable on the f_custkey form.

30 ➤ If the user has entered a valid customer number, execution need not continue
to the company fi because the program has already selected this name
from the database and displayed it on the form. The EXIT INPUT statement
exits this INPUT statement and execution resumes after the END INPUT.

31 ➤ If execution continues to the company fi the user has not entered a
customer number. Before the user can enter this value, the program displays
a message indicating the presence of a popup window. If desired, the user
can press either F5 or CONTROL-F to see the numbers and names of all
customers defined in the database.

32 ➤ This test ensures that the user enters a company name. Unlike the
customer_num fi the company fi cannot be left empty. The program
must have either the customer number or the company name to select a cus-
tomer from the database. If the user omits the customer number, execution
can continue to the company fi (see Note 27). However, if the user omits
the company name as well, the program cannot locate the customer.

33 ➤ The program checks that a customer with the specified name exists in the
database. When it verified the existence of a customer based on a customer
number, the program was able to assume that, if this customer existed, one
and only one customer row would have this number. This assumption is
valid because the customer number is the primary key of the customer table.

The SELECT statement in Note 27 is able to select the company name at the
same time it determines whether a matching customer row exists, because
this SELECT statement is guaranteed to return at most only one row. If the row
exists, then gr_customer.company is initialized with the company name, and
if it does not exist, gr_customer.company is null.

However, when the program verifies the existence of a customer based on a
company name, it cannot make this assumption about uniqueness. Several
customers in the database could have the same company name because this
column does not have to be unique. For this reason, the program cannot
select the customer number while it checks for the existence of the row. Such
a SELECT statement could possibly return more than one row, generating a
runtime error. To prevent such an error, the program breaks the verification
into two steps:

1. Count how many customer rows have a matching company name.

2. Select the customer number when the program can guarantee the
uniqueness of the company name.

Example 21 497

The fi Function

29 ➤ DISPLAY BY NAME gr_customer.company

30 ➤ MESSAGE ""

EXIT INPUT

END IF

31 ➤ BEFORE FIELD company

MESSAGE "Enter a company name or press F5 (CTRL-F) for a list."

AFTER FIELD company

32 ➤ IF gr_customer.company IS NULL THEN

ERROR "You must enter either a customer number or company name."

NEXT FIELD customer_num

END IF

33 ➤ SELECT COUNT(*)

INTO cust_cnt

FROM customer

WHERE company = gr_customer.company

498 Using an Update Cursor

The fi Function

To perform this fi step, this SELECT statement uses the COUNT(*)

aggregate. The code in Note 34 guarantees that a company name is unique so
the code in Note 36 can select the customer number.

34 ➤ If the SELECT statement in Note 33 fi more than one customer row with
this company name, the program must notify the user that the company
name is not unique. It suggests choosing the customer from the popup list
because this form cannot handle a non-unique company name.

A possible enhancement to this function would be to display the customer
numbers of all customer rows with this company name and allow the user to
select the one that is desired.

35 ➤ If the SELECT statement in Note 33 does not fi any customers with the
specified company name, then this name is invalid. The program notifies the
user of the error, clears the company name field, and returns the cursor to this
fi so the user can enter another name.

36 ➤ If execution reaches this point, the SELECT statement in Note 33 has found
only one customer row with the specified company name. It is now possible
to select the customer number without using a cursor because the SELECT

statement is guaranteed to return only one row. See Note 33 for more
information.

37 ➤ The user can display the customer popup window from either the
customer_num fi or the company fi The built-in function INFIELD()

returns TRUE or FALSE, indicating whether the cursor is currently in the spec-
ified field. If the cursor is in either of these fields, then CONTROL-F and F5 ini-
tiate a popup window. If the cursor is in any other fi these keys have no
effect.

38 ➤ The cust_popup2() function displays the customer popup window on the
f_custsel form. It returns the customer number and company name of the
customer that the user selected. This function is described in detail in
Example 12.

39 ➤ If gr_customer.customer_num is null, then the user terminated the customer
popup with the Cancel key (typically CONTROL-C), and no customer has
been selected. This LET statement initializes the gr_customer.company vari-
able to null so that the company field on f_custkey is empty when the cursor
enters it.

40 ➤ If the user selects a customer from the popup window, the program displays
the customer number and company name on the f_custkey form. Note that it
is not necessary to verify the customer number in the ON KEY clause because
the values have come from the popup window, which only displays valid
customers.

Example 21 499

The fi Function

34 ➤ IF (cust_cnt > 1) THEN

ERROR "Company name is not unique. Press F5 (CTRL-F) for a

list." NEXT FIELD company

END IF

35 ➤ IF (cust_cnt = 0) THEN

ERROR "Unknown company name. Press F5 (CTRL-F) for a list."

NEXT FIELD company

END IF

36 ➤ SELECT customer_num

INTO gr_customer.customer_num

FROM customer

WHERE company = gr_customer.company

DISPLAY BY NAME gr_customer.customer_num

MESSAGE ""

ON KEY (F5, CONTROL-F)

37 ➤ IF INFIELD(customer_num) OR INFIELD(company) THEN

38 ➤ CALL cust_popup2()

RETURNING gr_customer.customer_num, gr_customer.company

39 ➤ IF gr_customer.customer_num IS NULL THEN

LET gr_customer.company = NULL

40 ➤ ELSE

DISPLAY BY NAME gr_customer.customer_num, gr_customer.company

EXIT INPUT

END IF

END IF

The fi Function

Example 21 501

41 ➤ This AFTER INPUT clause ensures that the user does not press the Accept key
(typically ESCAPE) before selecting a customer:

• If gr_customer.customer_num is null, then no customer has been selected
when the INPUT statement exits.

• If int_flag is FALSE, then AFTER INPUT is being executed because the user
has used the Accept key to exit INPUT. The int_flag variable would be
TRUE if the user had used the Cancel key (typically CONTROL-C).

Execution cannot continue to the next form until the user selects a customer.

42 ➤ If the user has terminated INPUT with Cancel, then the program resets the
int_flag variable, erases the form’s instructions, and returns FALSE.

43 ➤ If the user has exited INPUT with Accept, or RETURN from the last field, this
function returns TRUE. Note that the f_custkey form is left on the screen so
the user can see the selected customer as data entry continues. The f_date
form also remains open so that the paid date displays.

The find_unpaid() Function
44 ➤ This SELECT statement uses the COUNT(*) aggregate to determine the

number of unpaid orders for the current customer. An unpaid order is one
that has a null value in the paid_date fi of the orders table.

45 ➤ If the current customer has no unpaid orders, then the function notifies the
user. It then returns zero to indicate that no orders can be paid for the speci-
fi customer.

46 ➤ If the current customer has unpaid orders, then the function prompts the user
to confirm whether to begin marking orders as paid.

47 ➤ If the user confirms the update, then the function returns the number of
unpaid orders. Otherwise, the function returns zero to indicate that no orders
should be paid for the specified customer.

The fi Function

500 Using an Update Cursor

41 ➤ AFTER INPUT

IF(gr_customer.customer_num IS NULL) AND (NOT int_flag) THEN

ERROR

"Cannot display the summary yet. Enter the customer or press Cancel to

exit." NEXT FIELD customer_num

END IF

END INPUT

42 ➤ IF int_flag THEN

LET int_flag = FALSE

CALL clear_lines(1, 4)

RETURN (FALSE)

END IF

43 ➤ RETURN (TRUE)

END FUNCTION -- find_cust --

FUNCTION find_unpaid()

DEFINE unpaid_cnt SMALLINT

44 ➤ SELECT COUNT(*)

INTO unpaid_cnt

FROM orders

WHERE customer_num = gr_payord.customer_num

AND paid_date IS NULL

45 ➤ IF (unpaid_cnt = 0) THEN

LET ga_dsplymsg[1] = "Customer: ",

gr_payord.customer_num USING "<<<<<<<<<<<",

" (", gr_payord.company CLIPPED, ")"

LET ga_dsplymsg[2] = " has no unpaid orders."

CALL message_window(8,14)

RETURN (0)

END IF

46 ➤ LET ga_dsplymsg[1] = "This customer has ", unpaid_cnt USING "<<<<<<",

" unpaid order(s)."

47 ➤ IF prompt_window("Are you ready to begin paying these orders? ", 8,14)

THEN

RETURN (unpaid_cnt)

ELSE

RETURN (0)

END IF

END FUNCTION -- find_unpaid --

The pay_orders() Function

502 Using an Update Cursor

The pay_orders() Function
48 ➤ The f_payord form displays in a bordered window called w_payord. The

total_unpaid field of this form is initialized with the total number of unpaid
orders, as determined by the fi function (see Note 47) and
passed in as an argument to this function.

49 ➤ This DECLARE statement declares an update cursor for the update of order
paid dates. It finds all unpaid orders for the current customer and selects only
those columns whose values display on the f_payord form.

Note that the FOR UPDATE clause is what makes this cursor an update cursor.
The update cursor uses the FOR UPDATE OF clause to restrict update of the
orders table to only the paid_date column.

50 ➤ Because the stores7 database uses transactions and is not MODE ANSI, the
entire update cursor must be within a transaction. This BEGIN WORK state-
ment precedes the opening of the update cursor.

51 ➤ The FOREACH statement opens the c_payord update cursor in the first
iteration, obtains an exclusive lock on the first matching row, and then places
the values into the corresponding variables in the gr_payord record. In sub-
sequent iterations, FOREACH obtains the exclusive lock, then places the val-
ues into the program variables. Note that these locks are not released until the
transaction is either committed or rolled back (see Note 60).

52 ➤ The calc_order() function calculates the total amount of the order. This
amount is displayed on the f_payord form so the user can check the paid
amount in the database against the paid amount on the hard-copy report.

This function does not include code to handle what happens if the selected
row is already locked by another user. The program exits with a runtime error
if it encounters such a locked row. See “Handling Locked Rows” on page 486
for more information about this limitation.

53 ➤ The CLEAR statement clears out the specified fi on the f_payord form.
The program does not use the CLEAR FORM statement because the field
containing the number of unpaid orders does not need to be cleared. These
DISPLAY statements display the new order information on the f_payord
form.

54 ➤ The prompt_window() function prompts for confirmation before updating
the displayed order with the paid date.

55 ➤ As each row is selected by the cursor, upd_cnt is incremented by one. This
variable keeps the running total of the number of orders that have been
updated.

The pay_orders() Function

Example 21 503

FUNCTION pay_orders(total_unpaid)

DEFINE total_unpaid SMALLINT,

 upd_cnt

msg_txt

success

SMALLINT,

CHAR(10),

SMALLINT

48 ➤ OPEN WINDOW w_payord AT 8, 3

WITH 6 ROWS, 76 COLUMNS

ATTRIBUTE (BORDER)

OPEN FORM f_payord FROM "f_payord"

DISPLAY FORM f_payord

DISPLAY BY NAME total_unpaid

LET success = TRUE

49 ➤ DECLARE c_payord CURSOR FOR

SELECT order_num, order_date, po_num, ship_date

FROM orders

WHERE customer_num = gr_payord.customer_num

AND paid_date IS NULL

FOR UPDATE OF paid_date

50 ➤ BEGIN WORK

LET upd_cnt = 0

51 ➤ FOREACH c_payord INTO gr_payord.order_num,

gr_payord.order_date,

gr_payord.po_num,

gr_payord.ship_date

52 ➤ CALL calc_order(gr_payord.order_num)

53 ➤ CLEAR order_num, order_date, po_num, ship_date, order_total

DISPLAY BY NAME gr_payord.order_num

ATTRIBUTE (REVERSE, YELLOW)

DISPLAY BY NAME gr_payord.order_date, gr_payord.po_num,

gr_payord.ship_date, gr_charges.order_total

54 ➤ IF prompt_window("Update this order’s paid date?", 13, 14) THEN

55 ➤ LET upd_cnt = upd_cnt + 1

The pay_orders() Function

504 Using an Update Cursor

56 ➤ The UPDATE statement is surrounded by the WHENEVER ERROR statement
to turn off automatic error checking before the update and to turn it back on
after the update has been performed. Because the automatic checking is off
when the update is executed, the program must perform its own error check-
ing to determine the success of the statement (see Note 58).

57 ➤ If the user confirms the update, the program updates the current order with
the paid date. The UPDATE statement uses the WHERE CURRENT OF clause to
access the update cursor’s current row. This row has already been locked by
the cursor. Note that the update can only change the paid_date column
because the update cursor has restricted update access to this column with
the FOR UPDATE OF paid_date clause (see Note 49).

58 ➤ If the UPDATE statement is successful, 4GL sets the global variable status to
zero. If an error occurs, the status variable has a negative value. In the case of
an error, the function notifies the user and sets the success flag to FALSE. This
fl is checked after the FOREACH loop closes to determine whether to com-
mit or rollback the current transaction (see Note 60).

Note that this program chose to exit completely when it encountered an error.
However, because you can handle the success of the update on a row-by-row
basis, your program could instead perform a retry or skip to the next row
without generating an error.

59 ➤ This CLOSE statement closes the cursor. Even though open cursors are closed
by ROLLBACK WORK and COMMIT WORK, you should explicitly close an
update cursor when it is no longer needed so that resources allocated to the
cursor can be released. Since the stores7 database has transactions, but is not
MODE ANSI, this CLOSE statement must be issued from within a transaction
before the COMMIT WORK or ROLLBACK WORK statement.

60 ➤ Because the stores7 database uses transactions and is not MODE ANSI, the
program must end the transaction started by the BEGIN WORK statement (see
Note 50). The value of the success variable determines how to handle the cur-
rent transaction. If success is TRUE, then the COMMIT WORK statement saves
the changes in the database. Otherwise, the ROLLBACK WORK statement ter-
minates the transaction, without saving the changes. Both the COMMIT

WORK and the ROLLBACK WORK statements release all row and table locks
obtained by the update cursor. Either of these statements would also close
any open cursors, except WITH HOLD cursors, so neither can exist within the
FOREACH loop.

61 ➤ These statements deallocate the memory used by the f_payord form by
closing the form and its window.

The pay_orders() Function

Example 21 505

56 ➤ WHENEVER ERROR CONTINUE
57 ➤ UPDATE orders SET paid_date = gr_payord.paid_date

WHERE CURRENT OF c_payord

WHENEVER ERROR STOP

58 ➤ IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to update order with paid date. No changes saved."

LET success = FALSE

LET upd_cnt = 0

EXIT FOREACH

END IF

END IF

END FOREACH

59 ➤ CLOSE c_payord

60 ➤ IF success THEN

COMMIT WORK

ELSE

ROLLBACK WORK

END IF

61 ➤ CLOSE FORM f_payord

CLOSE WINDOW w_payord

The pay_orders() Function

506 Using an Update Cursor

62 ➤ Once the order update is complete, the program notifies the user of the
number of orders updated. If no orders have been updated (upd_cnt is zero),
then a message string called msg_txt is assigned the string “0”. For non-zero
numbers, the msg_txt string is formatted with a USING clause to left align the
numeric string. An upd_cnt of zero requires special formatting because the
“<<<<<< ” notation displays a blank for a zero value.

The msg_txt string is then concatenated with text and stored in the
ga_dsplymsg global array for use with the message_window() function.

The pay_orders() Function

Example 21 507

62 ➤ IF upd_cnt = 0 THEN

LET msg_txt = "0"

ELSE

LET msg_txt = upd_cnt USING "<<<<<<"

END IF

LET ga_dsplymsg[1] = "Paid date updated for ", msg_txt CLIPPED,

" order(s)."

CALL message_window(10,12)

END FUNCTION -- pay_orders --

To locate any function definition, see the Function Index on page 730.

508 Determining Database Features

22
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

 22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 22 509

Determining Database
Features

This example demonstrates how the features of a database are made
available in the SQLCA.SQLAWARN array immediately after the database is
opened, and how a program can save and use this information.

The SQLAWARN Array
The SQL Communications Area, or SQLCA, is updated by the database server
after any SQL operation. One component of the SQLCA is an array of eight
characters, the SQLAWARN array. In 4GL, the array is indexed starting from
1. (In an ESQL / C program, it is indexed starting from zero; this sometimes
causes confusion.) Full details on the settings of SQLCA fields are in your SQL

reference material.

Whenever the server opens a new database—that is, whenever it executes the
DATABASE or CREATE DATABASE statement—it sets the SQLAWARN charac-
ters to reflect the features of the database and the server. The values set at this
time are:

SQLAWARN[2] Contains W only if the database has a transaction log. If so,
use of the COMMIT WORK statement is necessary; if not,
COMMIT WORK will cause an error.

SQLAWARN[3] Contains W if the database is ANSI-compliant. When this is
the case, the use of some Informix extensions to SQL cause a
warning (a W in SQLAWARN[6]) and some will cause an
error.

SQLAWARN[4] Contains W if the database server is Informix Dynamic
Server. Different servers use different syntax for a few
statements.

Opening the Database

510 Determining Database Features

SQLAWARN[5] Contains W if the database server stores FLOAT values in
DECIMAL format. This only affects a few desktop systems
that lack FLOAT support.

The SQLAWARN values can be saved and used to guide the operations of the
program. They must be captured immediately after the DATABASE statement
because the next SQL statement will overwrite them.

Opening the Database
The heart of this example is a function named open_db(). It opens a database
dynamically and stores the facts about it into a global record. It captures the
values from SQLAWARN as well as whether the server supports the SET LOCK

MODE statement.

The open_db() function takes a database name as its argument. The name
string may include the word EXCLUSIVE, so that the function may be used to
get exclusive access to a database as well as normal access. The name string
may also include a site name if the application is communicating with a
remote machine.

When it succeeds in opening the database, open_db() returns TRUE, other-
wise FALSE. When it fails to open the database, it uses the ERROR statement
to display information about the reason.

Conditional Transactions
Once the SQLAWARN values have been captured, the program can modify its
operations based on them. One area where knowledge of the database is
helpful is transaction processing.

A database can be switched from logging to not logging, and ANSI

compliance can be added after the database has been created and is in use.
This leaves your program open to the following kinds of problems:

• Every program that modifies data should specify explicit transactions.
They help to organize the application design and to ensure data integrity.
But if the program executes COMMIT WORK in a database without a log,
an SQL error results.

• If the ANSI database has a transaction log and the program does not use
explicit transactions, performance problems can occur. For example,
Informix Dynamic Server can run out of locks, or a logical log can fill up,

Function Overview

Example 22 511

if a transaction goes on too long without an explicit COMMIT WORK

statement.

• In most databases the program should mark the start of each transaction
with BEGIN WORK. However, in an ANSI-compliant database the use of
BEGIN WORK is not allowed. Only COMMIT WORK and ROLLBACK WORK

are used.

These problems can be resolved with relative ease by writing short functions
that conditionally perform transaction statements based on the database
information left behind by open_db(). This example contains three such
functions:

begin_wk() Performs a BEGIN WORK statement if the current database
has a transaction log and is not ANSI-compliant.

commit_wk() Performs a COMMIT WORK statement if the current database
has a transaction log.

rollback_wk() Performs a ROLLBACK WORK statement if the current
database has a transaction log.

Calls to these functions can be written where transactions should logically
begin or end. If transactions are supported by the database, the correct
statements are executed.

Function Overview

Function Name Purpose

open_db() Opens a database using dynamic SQL and saves information
about it for later use. Returns TRUE or FALSE.

begin_wk() Executes a BEGIN WORK statement provided that
open_db() says the database uses Informix-style transactions.

commit_wk() Executes a COMMIT WORK statement provided that
open_db() says the database uses transactions.

rollback_wk() Executes a ROLLBACK WORK statement provided that
open_db() says the database uses transactions.

512 Determining Database Features

The GLOBALS Statement and MAIN Function

The GLOBALS Statement and MAIN Function
1➤ The open_db() function fi in the fi of the gr_database record. The

transaction functions such as begin_wk() test the fi especially has_log.
The fi are declared as SMALLINT rather than CHARACTER so that they
can be used directly in conditional expressions: “IF gr_database.has_log
THEN” instead of “IF gr_database.has_log = “W” THEN.”

2➤ If it encounters an error, open_db() documents it with an ERROR statement.
ERROR is a screen-oriented statement, and does not mix well with simple
DISPLAY statements. This use of DISPLAY…AT puts the program into full-
screen mode so that ERROR will display properly. You can run the program
without the AT clause, naming a nonexistent database, to see what happens.
A real program would ordinarily be in full-screen mode as a result of display-
ing a form.

3➤ The return value from open_db() is Boolean; it returns TRUE when the data-
base is open. The remaining statements in the function display in words the
implications of the information that has been captured in the gr_database
record.

Example 22 513

The GLOBALS Statement and MAIN Function

GLOBALS

1➤ DEFINE gr_database RECORD

db_known SMALLINT, -- following fields are usable
has_log SMALLINT, -- based on SQLAWARN[2]
is_ansi SMALLINT, -- based on SQLAWARN[3]
is_online SMALLINT, -- based on SQLAWARN[4]
can_wait SMALLINT -- supports "set lock mode to wait"

END GLOBALS

END RECORD

MAIN

DEFINE db CHAR(50),

ret INTEGER

2➤ DISPLAY "Example 22, testing open_db function." AT 1,1

OPTIONS PROMPT LINE 3

PROMPT "Enter name of database to try: " FOR db

3➤ IF open_db(db) THEN

DISPLAY "Database is open."

IF gr_database.is_online THEN

DISPLAY "The server is Informix Dynamic Server."

DISPLAY "It supports SET LOCK MODE TO WAIT [n]"

ELSE

DISPLAY "The server is Informix-SE."

IF gr_database.can_wait THEN

DISPLAY "It supports SET LOCK MODE TO WAIT."

ELSE

DISPLAY "It does not support SET LOCK MODE."

END IF

END IF

IF gr_database.is_ansi THEN

DISPLAY "The database is ANSI-compliant, that is,"

IF gr_database.is_online THEN

DISPLAY " it was created with LOG MODE ANSI."

ELSE

DISPLAY " START DATABASE...MODE ANSI was used on it."

END IF

DISPLAY "A transaction is always in effect; COMMIT WORK ends."

ELSE

DISPLAY "The database uses Informix extensions to ANSI SQL."

IF gr_database.has_log THEN

DISPLAY "It has a transaction log; BEGIN/COMMIT WORK used."

ELSE

DISPLAY "The database does not have a transaction log."

END IF

END IF

4GL source file

514 Determining Database Features

The open_db() Function

4➤ In a real application, if the database fails to open, this would probably be the
best action: pause for a few seconds to allow reading the error message and
then to end the program.

The open_db() Function
5➤ The variable dbname is sized to accommodate a sitename and, optionally, the

word EXCLUSIVE. Possible arguments range from “stores7” up to
“uk_dossier@london exclusive”.

6➤ It is not usually necessary to close the current database before executing
DATABASE, and if there is no database open at present, this statement will
return error -349. However, when the current database is in another server,
you must close the current database before opening another one. So here the
database is closed and the program tests for the expected error code.

7➤ Because 4GL allows you to supply the database name in a program variable
when you execute the DATABASE statement, it would have been possible to
write simply:

DATABASE dbname

A more elaborate method using PREPARE and EXECUTE is employed for two
reasons:

• It allows the word EXCLUSIVE to be passed as part of the database name
string. The alternative would be to have two DATABASE statements, one
with and one without EXCLUSIVE, and a second function argument to
choose between them.

• The PREPARE statement checks the syntax of the contents of dbname. This
makes it possible to diagnose and report bad name syntax apart from
other errors.

8➤ A database has been opened successfully. When a prepared DATABASE

statement is successfully executed, the statement is automatically freed. An
attempt to free it will return an error. This passage of code can proceed to
record the information in SQLAWARN.

Example 22 515

The open_db() Function

4➤ ELSE -- error opening db?

DISPLAY "Database did not open correctly." AT 4,1

SLEEP 10 -- leave error message visible before program end

END IF

END MAIN

#######################################

FUNCTION open_db(dbname)

#######################################

5➤ DEFINE dbname CHAR(50),

 dbstmt

sqlr
CHAR(60), -- "DATABASE " plus the above

SMALLINT

LET gr_database.db_known = FALSE -- initialize with safe values

LET gr_database.has_log = FALSE

LET gr_database.is_ansi = FALSE

LET gr_database.is_online = FALSE

LET gr_database.can_wait = FALSE

WHENEVER ERROR CONTINUE

6➤ CLOSE DATABASE

IF SQLCA.SQLCODE <> 0 AND SQLCA.SQLCODE <> -349 THEN

ERROR "Error ",SQLCA.SQLCODE," closing current database."

RETURN FALSE

END IF -- either 0 or -349 is OK here

LET dbstmt = "DATABASE ",dbname

7➤ PREPARE prepdbst FROM dbstmt

IFSQLCA.SQLCODE <> 0 THEN -- big syntax trouble in "dbname"

ERROR "Not an acceptable database name: ",dbname

RETURN FALSE

END IF

EXECUTE prepdbst

LET sqlr = SQLCA.SQLCODE

WHENEVER ERROR STOP

IF sqlr = 0 THEN-- we have opened the database

8➤ LET gr_database.db_known = TRUE

IF SQLCA.SQLAWARN[2] = "W" THEN

LET gr_database.has_log = TRUE

END IF

IF SQLCA.SQLAWARN[3] = "W" THEN

LET gr_database.is_ansi = TRUE

END IF

IF SQLCA.SQLAWARN[4] = "W" THEN

LET gr_database.is_online = TRUE

ELSE -- not online, check lock support

SET LOCK MODE TO WAIT

IF SQLCA.SQLCODE = 0 THEN -- didn’t get -527 or -513

LET gr_database.can_wait = TRUE

END IF

SET LOCK MODE TO NOT WAIT -- restore default, ignore return code

END IF

516 Determining Database Features

The begin_wk() Function

9➤ If the prepared DATABASE statement was not successful, it was not
automatically freed, and the program should do it. An analysis of the most
likely errors that can follow a DATABASE statement then takes place.

The begin_wk() Function
10 ➤ The begin_wk() function issues a BEGIN WORK statement if the database uses

transactions and is not ANSI-compliant. In an ANSI-compliant database a
transaction is always in effect and the program only marks the ends of trans-
actions, not their beginnings.

Example 22 517

The begin_wk() Function

ELSE -- the database did not open; display a message

9➤ FREE prepdbst -- since not freed automatically when stmt fails

CASE

WHEN (sqlr = -329 OR sqlr = -827)

ERROR dbname CLIPPED,

": Database not found or no system permission."

WHEN (sqlr = -349)

ERROR dbname CLIPPED,

" not opened, you do not have Connect privilege."

WHEN (sqlr = -354)

ERROR dbname CLIPPED,

": Incorrect database name format."

WHEN (sqlr = -377)

ERROR "open_db() called with a transaction still incomplete."

WHEN (sqlr = -512)

ERROR "Unable to open in exclusive mode, db probably in use."

OTHERWISE

ERROR dbname CLIPPED,

": error ",sqlr," on DATABASE statement."

END CASE

END IF

RETURN gr_database.db_known

END FUNCTION -- open_db --

#######################################

10 ➤ FUNCTION begin_wk()
#######################################

IF gr_database.db_known

AND NOT gr_database.is_ansi

AND gr_database.has_log

THEN

WHENEVER ERROR CONTINUE

BEGIN WORK

IF SQLCA.SQLCODE <> 0 THEN

ERROR "Error ", SQLCA.SQLCODE,

" on BEGIN WORK (isam #", SQLCA.SQLERRD[2], ")"

END IF

WHENEVER ERROR STOP

END IF

END FUNCTION -- begin_wk --

518 Determining Database Features

The rollback_wk() Function

The commit_wk() Function
11 ➤ The commit_wk() function makes COMMIT WORK conditional on whether

the database uses transactions.

The rollback_wk() Function
12 ➤ The rollback_wk() function makes ROLLBACK WORK conditional on whether

the database uses transactions.

Example 22 519

The commit_wk() Function

#######################################

11 ➤ FUNCTION commit_wk()
#######################################

IF gr_database.db_known

AND gr_database.has_log

THEN

WHENEVER ERROR CONTINUE

COMMIT WORK

IF SQLCA.SQLCODE <> 0 THEN

ERROR "Error ", SQLCA.SQLCODE,

" on COMMIT WORK (isam #", SQLCA.SQLERRD[2], ")"

END IF

WHENEVER ERROR STOP

END IF

END FUNCTION -- commit_wk --

#######################################

12 ➤ FUNCTION rollback_wk()
#######################################

IF gr_database.db_known

AND gr_database.has_log

THEN

WHENEVER ERROR CONTINUE

ROLLBACK WORK

IF SQLCA.SQLCODE <> 0 THEN

ERROR "Error ", SQLCA.SQLCODE,

" on ROLLBACK WORK (isam #", SQLCA.SQLERRD[2], ")"

END IF

WHENEVER ERROR STOP

END IF

END FUNCTION -- rollback_wk --

To locate any function definition, see the Function Index on page 730.

520 Handling Locked Rows

23
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

 23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 23 521

Handling Locked Rows
This example demonstrates how to handle a failed row fetch when the row is
locked by another process. If a fetch fails due to a locked row, the program
can repeat the fetch a specified number of times. If the lock is released during
these fetch attempts, the program can access the row. By distinguishing
between a locked row and other fetch errors, the program is able to retry the
fetch instead of exiting with an error:

Locks and Transactions

522 Handling Locked Rows

Locks and Transactions
A transaction is the unit the database uses to group modifications made
to data. The database makes sure that all modifications made within a
transaction are either saved (committed to disk) or are rejected (the changes
are rolled back) as a group. To provide this capability, the database locks all
rows altered during a transaction and holds all locks until the transaction
ends. Locks prevent other processes from modifying the data.

The following 4GL statements acquire locks:

• UPDATE

• DELETE

• INSERT

• FETCH or FOREACH (if the cursor is declared as FOR UPDATE)

• LOCK TABLE

The stores7 database uses transactions, so programs that access this database
must execute these statements within a transaction. For more information on
starting and ending transactions, see Example 11.

One of the benefits of transactions is that database changes can be grouped.
The disadvantage is that other programs are likely to encounter a locked row
because other programs are retaining locks until the transaction ends. For
this reason, it is important to test for locked rows.

If your database is not MODE ANSI or does not use transactions, locks are
released as soon as an operation completes:

• For an INSERT, UPDATE, or DELETE operation, locks are released when the
statement completes.

• For a FETCH (or FOREACH) operation of an update cursor, the lock is
released when the next row is fetched.

• For a LOCK TABLE statement, the lock is released with an UNLOCK TABLE

statement.

Even though locks are released more quickly in a database without
transactions, a program should still test for lock conflicts as they can occur.

Testing for Locked Rows

Example 23 523

Testing for Locked Rows
If another transaction holds a lock on a row when your program tries to
access it, 4GL returns an error. A program can anticipate locked rows in a
couple of ways:

• Use the SET LOCK MODE statement so 4GL waits on any locked row until
the competing process releases the lock.

• Perform a “retry” for the locked row.

This example demonstrates the second solution. Although the SET LOCK

MODE statement requires much less programming, it has the disadvantage
that a program may appear to “hang” if it must wait for a long time before
the desired row is unlocked. Informix Dynamic Server supports a SET LOCK

MODE option that allows you to specify the number of seconds to wait for a
lock to be released. However, this option is not supported by INFORMIX-SE.

Performing a retry for a locked row has the following advantages:

• It works with both Informix Dynamic Server and INFORMIX-SE.

• It notifies the user that the program is attempting the lock retries.

This solution waits for the lock to be released but then “gives up” if it fails to
obtain the lock after a specified number of tries.

Running the Lock Test
To see how the program repeatedly attempts to fetch a locked row, you must
run this program at the same time on two different terminals. On one termi-
nal, you lock the customer table in shared mode. Shared mode allows other
transactions to read the table but prevents them from modifying the table
with updates or deletes. On the second terminal, you attempt to update a row
in this table. Because the customer table is locked by another transaction, you
can see the program trying to repeatedly fetch the row. If the lock is not
released before the specified number of retries, the update fails.

Run this program at two terminals as follows:

1. On Terminal 1, run the example and choose the Lock Table option.

This option places a shared lock on the customer table.

524 Handling Locked Rows

Function Overview

2. On Terminal 2, run the example and choose the Lock Table option.

The response to this option depends on the type of database server you
are using:

• If you are using INFORMIX-SE, this second Lock Table request fails
because only one process can have a shared lock on a single table. The
option notifies you that another user has already locked the table.

• If you are using Informix Dynamic Server, this second Lock Table
request is successful. Both Terminal 1 and Terminal 2 can hold a
shared lock on the customer table. The option notifies you that the
lock is successful. However, even though Terminal 2 is able to obtain
a shared lock on the table, it will still encounter a lock conflict when
attempting to update a row, as described in step 5. Recall that a shared
lock allows a process to read rows in a table but prevents it from
updating or deleting these rows.

3. On Terminal 2, choose the Try Update option and specify the number of
times to retry a failed fetch. A good value to start with is 5.

4. On Terminal 2, enter the customer number or company name of the
customer to update and use the Accept key (typically ESCAPE).

The customer information displays on the screen because Terminal 1 has
locked the table in SHARE MODE.

5. On Terminal 2, make a change to a fi on the customer form and then
use the Accept key.

Because the table is locked by another user, the program cannot update
the customer row. It performs the specified number of retrys to acquire
the lock, waiting for the lock to be released. Because the lock is not
released from Terminal 1 within the time taken by these retries, the
update fails.

6. On Terminal 2, choose the Try Update option a second time. At the
prompt, specify a large number of retries (10 or more), and then enter the
desired customer number or name. Modify the data in one of the cus-
tomer fi but do not use the Accept key yet.

7. On Terminal 2, use the Accept key; then immediately return to Terminal 1.

8. On Terminal 1, choose the Release Lock option and immediately look at
the screen of Terminal 2.

9. On Terminal 2 you will see the Retry messages stop once the lock is
released at Terminal 1.

With the lock released, the program is able to update the customer row
with the new information.

Example 23 525

Running the Lock Test

Function Overview

Function Name Purpose

lock_menu() Displays the LOCK DEMO menu to allow the user to choose
whether to lock the customer table, try to update a customer
row, or release the lock on the customer table.

bang() Prompts the user for a command and executes the command.
See the description in Example 3.

lock_cust() Tries to obtain a lock on the customer table (SHARE MODE).

try_update() Finds a specified customer and then tries to update this
customer row.

get_repeat() Accepts user input for the number of repeats to perform in
getting the lock before giving up.

open_ckey() Opens the f_custkey form.
See the description in Example 21.

close_ckey() Closes the f_custkey form.
See the description in Example 21.

find_cust() Accepts user input of a customer number or company name
and then fi a customer based on either of these values.
See the description in Example 21.

cust_popup2() Retrieves all customers and displays them in an array form
so the user can choose the appropriate customer.
See the description in Example 12.

change_cust() Collects changes to current row.
See the description in Example 6.

update_cust2() Checks for a locked row before updating a customer row. If a
locked row is found, the function performs the specified
number of retries to acquire the lock before giving up and re-
turning an error.

test_success() Tests the “status” value and returns 1 if the update was
successful, 0 if the update failed with a non-locking error, or
-1 if the update failed with a locking error).

row_locked() Checks the value of SQLCA.SQLERRD[2] to see if the status
value is negative due to a locking conflict. ISAM errors: -107,
-113, -134, -143, -144, and -154 are treated as locking conflicts.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

msg() Displays a brief, informative message.
See the description in Example 5.

526 Handling Locked Rows

The lock_menu() Function

The DATABASE Statement and MAIN Function
1➤ This example requires the stores7 database.

2➤ The lock_menu() function displays the menu that allows the user to run the
locking tests. Notes about this menu begin with Note 6.

The lock_menu() Function
3➤ The another_user variable indicates whether the customer table is locked by

another user. This variable is initialized to “U” (Unknown) because the state
of the table lock is unknown until the user chooses the Lock Table option.
Once this option executes, another_user is set to either “Y” or “N” (see
Notes 8 and 12).

4➤ The BEGIN WORK statement appears before the MENU statement because
each menu option performs a task that must be performed within a
transaction.

5➤ The curr_tx flag indicates whether an active transaction exists. It is initialized
to TRUE because the preceding BEGIN WORK statement starts a new transac-
tion. Because the program has no way of knowing which option the user has
previously chosen, each option must check the setting of curr_tx to determine
whether or not to begin or end the transaction.

6➤ The LOCK DEMO menu allows the user to choose a locking task to: lock (Lock
Table) the customer table, unlock this table (Release Lock), or attempt an
update on this table (Try Update). Each option checks the setting of curr_tx
to determine whether or not a transaction is active.

7➤ The Lock Table option requests a lock on the customer table. A lock request
needs to have a transaction active before it can lock the customer table, so this
option tests the curr_tx variable. (For more information about curr_tx, see
Note 5.) If curr_tx is TRUE, a transaction is current. However, if curr_tx is
FALSE no transaction is current, and the option issues the BEGIN WORK

statement to begin a new transaction. Once this new transaction begins, the
curr_tx fl is set to TRUE.

Example 23 527

The DATABASE Statement and MAIN Function

1➤ DATABASE stores7

GLOBALS

DEFINE gr_customer RECORD LIKE customer.*,

gr_workcust RECORD LIKE customer.*

END GLOBALS

MAIN

OPTIONS

HELP FILE "hlpmsgs",

COMMENT LINE LAST-3,

MESSAGE LINE LAST,

FORM LINE 5

DEFER INTERRUPT

OPEN WINDOW w_locktst AT 2,3

WITH 18 ROWS, 76 COLUMNS

ATTRIBUTE (BORDER)

2➤ CALL lock_menu()

CLOSE WINDOW w_locktst

CLEAR SCREEN

END MAIN

FUNCTION lock_menu()

DEFINE curr_tx SMALLINT,

another_user CHAR(1)

3➤ LET another_user = "U"

4➤ BEGIN WORK

5➤ LET curr_tx = TRUE

DISPLAY

"--Press CTRL-W for Help----------

" AT 3, 1

6➤ MENU "LOCK DEMO"
COMMAND "Lock Table" "Lock the customer table." HELP 140

7➤ IF NOT curr_tx THEN

BEGIN WORK

LET curr_tx = TRUE

END IF

4GL source file

528 Handling Locked Rows

The lock_menu() Function

8➤ The lock_cust() function attempts to lock the customer table. This function
returns a single character status code in the another_user variable to indicate
the success of the lock request. If the lock request fails because another user
has already locked the table, lock_cust() returns “Y”. If the lock request is suc-
cessful, lock_cust() returns “N”. See Note 3 for more information about the
another_user variable.

9➤ The Try Update option attempts to update a row of the customer table.
Because the row is selected with an update cursor, the update must occur
within an active transaction. If curr_tx is FALSE, the option begins a new
transaction with BEGIN WORK and resets curr_tx to TRUE.

10 ➤ The try_update() function actually attempts the customer row update. If the
function returns TRUE, the update was successful and the current transac-
tion’s work is saved in the database with COMMIT WORK. If the function
returns FALSE, the update was not successful and the transaction’s work is
not saved.

11 ➤ Once the current transaction is ended (with either COMMIT WORK or

ROLLBACK WORK), the curr_tx fl is set to FALSE.

12 ➤ The Release Lock option attempts to unlock the customer table. To determine
the state of the customer table lock, the Release Lock option needs to be pre-
ceded by the Lock Table option, so the lock_cust() function is called. If the
another_user variable is still “U”, lock_cust() has not been called. See Note 8.

13 ➤ If the lock_cust() function has been called, then the Release Lock option
checks whether the current table is locked by another user or locked by the
current user. If the table is locked by another user, this user cannot release the
lock.

14 ➤ If this user has locked the table, then the lock can be released. However, an
unlock request must occur within an active transaction so this option tests the
curr_tx variable. (For more information about curr_tx, see Note 5). If curr_tx
is TRUE, then the program executes a COMMIT WORK statement to release all
locks and then sets the curr_tx fl to FALSE. If curr_tx is FALSE, then no
tables are locked because a lock can only be granted within a transaction.

15 ➤ The Exit option ends an active transaction with a COMMIT WORK. The call to
COMMIT WORK explicitly ends the transaction even though active transac-
tions are ended when the program exits.

Example 23 529

The lock_menu() Function

8➤ CALL lock_cust() RETURNING another_user

NEXT OPTION "Try Update"

COMMAND "Try Update" "Find and try updating a customer row."

HELP 141

9➤ IF NOT curr_tx THEN

BEGIN WORK

LET curr_tx = TRUE

END IF

10 ➤ IF try_update() THEN

COMMIT WORK

CALL msg("Customer has been updated.")

ELSE

ROLLBACK WORK

CALL msg("Customer has not been updated.")

END IF

11 ➤ LET curr_tx = FALSE

CLEAR WINDOW w_locktst

COMMAND "Release Lock" "Release lock on customer table."

HELP 142

12 ➤ IF another_user = "U" THEN

CALL msg("Status of table lock is unknown. Run ’Lock’ option.")

NEXT OPTION "Lock Table"

ELSE

13 ➤ IF another_user = "Y" THEN

CALL msg("Cannot release another user’s lock.")

ELSE

14 ➤ IF curr_tx THEN

COMMIT WORK

LET curr_tx = FALSE

CALL msg("Lock on customer table has been released.")

END IF

END IF

END IF

COMMAND KEY ("!")

CALL bang()

COMMAND KEY ("E","X") "Exit" "Exit program."

HELP 100

15 ➤ IF curr_tx THEN

COMMIT WORK

END IF

EXIT MENU

END MENU

END FUNCTION -- lock_menu --

530 Handling Locked Rows

The try_update() Function

The lock_cust() Function
16 ➤ The another_user variable indicates whether or not the customer table is

locked. The state of the table lock is determined by the status variable after
the LOCK TABLE executes (see Note 18).

17 ➤ The LOCK TABLE statement requests a shared lock on the customer table.
A shared lock allows other users to read rows in this table but prevents them
from updating or deleting these rows. This statement is surrounded by
WHENEVER ERROR statements to turn off automatic error checking before
LOCK TABLE and to turn it back on afterward. Because the automatic check-
ing is off when the LOCK TABLE executes, the program must perform its own
error checking to determine the success of the statement.

18 ➤ If the LOCK TABLE is not successful, the function checks the cause of the
failure. If another user has already locked the table (status=-289), it sets the
another_user variable to “Y”. Otherwise, it displays an error message to
notify the user of the cause of the failure.

19 ➤ If the LOCK TABLE is successful, the function notifies the user that the
customer table is now locked.

20 ➤ The lock_cust() function returns the setting of the another_user variable so
that the calling program can determine whether another user has a lock on
the customer table (see Note 13).

The try_update() Function
21 ➤ The get_repeat() function prompts the user for the number of retries (the

number of times that the program tries to obtain the lock before giving up).
If a desired row is locked, it cannot be fetched by the cursor. This function
returns the specified number of retries or zero (0).

22 ➤ If the user uses the Cancel key (typically CONTROL-C) at the prompt,
get_repeat() returns zero. The program exits the Try Update option and
returns to the LOCK DEMO menu.

23 ➤ The open_ckey() function displays the f_custkey form in the w_custkey
window. This function is described in Example 21.

Example 23 531

The lock_cust() Function

FUNCTION lock_cust()

DEFINE another_user CHAR(1)

16 ➤ LET another_user = "N"

17 ➤ WHENEVER ERROR CONTINUE
LOCK TABLE customer IN SHARE MODE

WHENEVER ERROR STOP

18 ➤ IF (status < 0) THEN

IF status = -289 THEN

CALL msg("Table is currently locked by another user.")

LET another_user = "Y"

ELSE

ERROR status USING "-<<<<<<<<<<<",

": Unable to lock customer table."

END IF

19 ➤ ELSE

CALL msg("Customer table is now locked.")

END IF

20 ➤ RETURN another_user

END FUNCTION -- lock_cust --

FUNCTION try_update()

DEFINE success SMALLINT,

number_of_trys SMALLINT

21 ➤ LET number_of_trys = get_repeat()

22 ➤ IF number_of_trys = 0 THEN

RETURN FALSE

END IF

23 ➤ CALL open_ckey()

LET success = FALSE

532 Handling Locked Rows

The get_repeat() Function

24 ➤ The fi function allows the user to select a customer by entering
either a customer number or a company name. This function is described in
Example 21. If fi returns TRUE, the user has specified a valid
customer.

25 ➤ The close_ckey() function closes the f_custkey form. This function is
described in Example 21.

26 ➤ The program displays the customer information for the specified customer
on the f_customer form. A copy of the selected customer row is saved in the
gr_workcust global record so that the program can restore the original row
values to the screen if the user cancels the update (see Note 28).

27 ➤ If the user exits the f_customer form with the Accept key (typically ESCAPE),
the program calls the update_cust2() function. The update_cust2() function
uses an update cursor to lock the desired row. If the row is already locked,
update_cust2() tries to get the row for the specified number of retries. The
change_cust() function is described in Example 6.

28 ➤ If the update_cust2() function returns TRUE, the specified row has been
updated and the program clears the form. If update_cust2() returns FALSE,
the row has not been updated; either the row was locked or the update failed.
In either case, the program restores the original values of the row to the form.

29 ➤ The try_update() function returns TRUE if the row was updated and FALSE

otherwise.

The get_repeat() Function
30 ➤ The trys variable is defined as type CHAR so that the user can enter any

character (numbers, letters, or symbols) without incurring a data type error.

Example 23 533

The get_repeat() Function

24 ➤ IF find_cust() THEN

25 ➤ CALL close_ckey()

26 ➤ OPEN FORM f_customer FROM "f_customer"

DISPLAY FORM f_customer

SELECT *

INTO gr_customer.*

FROM customer

WHERE customer_num = gr_customer.customer_num

LET gr_workcust.* = gr_customer.*

DISPLAY BY NAME gr_customer.*

27 ➤ IF change_cust() THEN

CALL update_cust2(number_of_trys) RETURNING success

28 ➤ IF success THEN

CLEAR FORM

ELSE

LET gr_customer.* = gr_workcust.*

DISPLAY BY NAME gr_customer.*

END IF

END IF

CLOSE FORM f_customer

ELSE

CALL close_ckey()

END IF

29 ➤ RETURN success

END FUNCTION -- try_update --

FUNCTION get_repeat()

DEFINE invalid_resp SMALLINT,

trys CHAR(2),

numtrys SMALLINT

OPEN WINDOW w_repeat AT 6,7

WITH 3 ROWS, 65 COLUMNS

ATTRIBUTE (BORDER, PROMPT LINE 3)

DISPLAY

" Enter number of retries and press Accept. Press CTRL-W for

Help." AT 1, 1 ATTRIBUTE (REVERSE, YELLOW)

LET invalid_resp = TRUE

WHILE invalid_resp
LET int_flag = FALSE

30 ➤ PROMPT "How many times should I try getting a locked row? "

FOR trys HELP 143

534 Handling Locked Rows

The update_cust2() Function

31 ➤ These WHENEVER statements use the ANY clause keyword to ensure that the
status variable is set, and execution does not stop, after each 4GL statement.
Without this keyword, status is only set after SQL and screen statements, in
i4gl, or after most statements, in r4gl.

32 ➤ The LET statement attempts to assign the input received from the PROMPT to
an integer variable. This assignment should execute without error because
4GL can convert the character representation of a number to an integer value,
and the user should have entered an integer value. However, if the user
entered letters or symbols, this conversion fails because 4GL cannot convert
these characters to an integer. The WHENEVER ANY ERROR statement pre-
vents the program from encountering a runtime error if such a conversion is
attempted.

33 ➤ If the data conversion in the LET statement fails, 4GL sets the status variable
to a negative value. The program tells the user the desired type of data and
reprompts for input.

34 ➤ If the user used the Cancel key (typically CONTROL-C) at the prompt, the
program interprets the key as a signal to exit the Try Update menu option. It
resets the int_flag, sets the number of retries to zero to indicate that the user
does not want to continue, and exits the WHILE loop.

35 ➤ Because a negative value or zero is not valid, the program tells the user the
desired type of data and prompts for input.

36 ➤ If execution reaches this point, the data entered is valid. The program sets the
invalid_resp fl to FALSE to exit the WHILE loop.

37 ➤ This function returns the specified number of lock retries. If the user has
cancelled the PROMPT, the function returns zero. See Note 34.

The update_cust2() Function
38 ➤ This function declares an update cursor to select the specified customer row.

This update cursor locks the selected row as it is fetched. If the fetch is suc-
cessful, the UPDATE operation should succeed (a locking error was not
encountered). See Note 43.

Example 23 535

The update_cust2() Function

31 ➤ WHENEVER ANY ERROR CONTINUE --* convert character answer to

32 ➤ LET numtrys = trys --* an integer and check for

WHENEVER ANY ERROR STOP --* conversion errors

33 ➤ IF (status < 0) THEN --* encountered conversion error

ERROR "Please enter a positive integer number"

CONTINUE WHILE

END IF

34 ➤ IF int_flag THEN

LET int_flag = FALSE

LET numtrys = 0

EXIT WHILE

END IF

35 ➤ IF (numtrys <= 0) THEN --* integer < 0

ERROR "Please enter a positive integer number"

CONTINUE WHILE

END IF

36 ➤ LET invalid_resp = FALSE

END WHILE

CLOSE WINDOW w_repeat

37 ➤ RETURN numtrys

END FUNCTION -- get_repeat --

FUNCTION update_cust2(number_of_trys)

DEFINE number_of_trys SMALLINT,

try_again SMALLINT,

try SMALLINT,

cust_num LIKE customer.customer_num,

success SMALLINT,

msg_txt CHAR(78)

38 ➤ DECLARE c_custlck CURSOR FOR

SELECT customer_num

FROM customer

WHERE customer_num = gr_customer.customer_num

FOR UPDATE

LET success = FALSE

LET try_again = TRUE

LET try = 0

536 Handling Locked Rows

The update_cust2() Function

39 ➤ A WHILE loop controls the fetch of the customer row. If the fetch fails due to
a locking error, try_again is set to TRUE and the WHILE loops to retry the
fetch.

40 ➤ The example uses the OPEN, FETCH, and CLOSE statements instead of
FOREACH, so it can test the status of each row as it is fetched. The FOREACH

statement executes the statements within the FOREACH block if the status is
zero. If the status is not zero, FOREACH exits the loop and closes the cursor.
By using FETCH, the program can distinguish between a fetch that failed due
to a locked row and one that failed for some other reason, and it can perform
the appropriate actions.

41 ➤ The FETCH statement is surrounded by the WHENEVER ERROR statement so
the program can perform its own checking of the status variable.

42 ➤ The test_success() function examines the status variable and returns:

• 1 if status is zero (the fetch was successful).

• 0 if status indicates that the fetch failed due to some non-locking error.

• -1 if status indicates that the fetch failed due to a locked row.

43 ➤ If the fetch was successful, the desired customer row is fetched and locked.

The program updates the row with the new customer information. The
success variable is set to TRUE to indicate that the customer update was
successful.

44 ➤ If the fetch failed because the program encountered some non-locking error,
the program notifies the user of the cause of the error and sets the success
variable to FALSE.

45 ➤ If the fetch failed because the desired row is locked, the program increments
its count of the number of retries performed and checks to see if this count
exceeds the number of retries specified by the user. If not, the program noti-
fies the user that it is going to try again to obtain the lock. It sets the try_again
fl to TRUE and the WHILE loop reiterates. If it has already attempted the
specified number of retries, the program sets the success variable to FALSE to
indicate that the update failed.

46 ➤ The program closes the update cursor so that cursor resources can be
reallocated. Notice that any lock held on the customer row is not released
because the current transaction has not yet ended. See Note 10.

47 ➤ The function returns TRUE or FALSE, indicating whether or not the update
was successful.

Example 23 537

The update_cust2() Function

39 ➤ WHILE try_again

40 ➤ OPEN c_custlck

LET try_again = FALSE

41 ➤ WHENEVER ERROR CONTINUE
FETCH c_custlck INTO cust_num

WHENEVER ERROR STOP

42 ➤ CALL test_success(status) RETURNING success

CASE success

43 ➤ WHEN 1 --* FETCH was successful

WHENEVER ERROR CONTINUE

UPDATE customer SET customer.* = gr_customer.*

WHERE CURRENT OF c_custlck

WHENEVER ERROR STOP

IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to update current customer."

ELSE

LET success = TRUE

END IF

44 ➤ WHEN 0 --* FETCH encountered non-locking error

ERROR status USING "-<<<<<<<<<<",

": Unable to open customer cursor for update."

SLEEP 3

LET success = FALSE

45 ➤ WHEN -1 --* FETCH encountered locked row

LET try = try + 1

IF (try <= number_of_trys) THEN

LET msg_txt = "Customer row is locked. Retry #", try USING "<<<"

CALL msg(msg_txt CLIPPED)

CLOSE c_custlck

LET try_again = TRUE

ELSE

LET success = FALSE

END IF

END CASE

END WHILE

46 ➤ CLOSE c_custlck

47 ➤ RETURN success

END FUNCTION -- update_cust2 --

538 Handling Locked Rows

The row_locked() Function

The test_success() Function
48 ➤ The test_success() function expects to receive the status variable as an

argument. A negative value indicates an error.

49 ➤ The row_locked() function examines the ISAM error code to determine
whether a locked row caused the fetch to fail. If so, it returns TRUE, and
otherwise it returns FALSE.

50 ➤ The function sets the return code so that it returns 1 if the status variable is
zero, 0 if the status variable indicates a non-locking error, and -1 if the status
variable indicates a locking error.

The row_locked() Function
51 ➤ The CASE statement tests the value of the SQLCA.SQLERRD[2] variable. If the

fetch (see Note 41) fails, the status variable indicates a failure and the ISAM

error code indicates the cause of the failure.

ISAM error code values of -107, -113, -134, -143, -144, and -154 indicate that
a lock request cannot be granted. In this case, the function returns TRUE.
Otherwise, it returns FALSE.

Example 23 539

The test_success() Function

FUNCTION test_success(db_status)

DEFINE db_status SMALLINT,

success SMALLINT

48 ➤

IF (db_status < 0) THEN
49 ➤ IFrow_locked() THEN

LET success = -1

ELSE

--* encountered locked row

--* encountered non-locking error
LET success = 0

END IF

ELSE --* didn’t encounter error

LET success = 1

END IF

50 ➤ RETURN success

END FUNCTION -- test_success --

FUNCTION row_locked()

DEFINE locked SMALLINT

51 ➤ CASE SQLCA.SQLERRD[2]

WHEN -107

LET locked = TRUE

WHEN -113

LET locked = TRUE

WHEN -134

LET locked = TRUE

WHEN -143

LET locked = TRUE

WHEN -144

LET locked = TRUE

WHEN -154

LET locked = TRUE

OTHERWISE

LET locked = FALSE

END CASE

RETURN locked

END FUNCTION -- row_locked --

To locate any function definition, see the Function Index on page 730.

540 Using a Hold Cursor

24
1.Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
 24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 24 541

Using a Hold Cursor
This example demonstrates how to:

• Use 4GL to write a batch-oriented program, as opposed to the interactive,
screen-oriented programs in the other examples.

• Use an update journal to shift database updates to off-peak hours.

• Use a cursor WITH HOLD statement to maintain a table scan position
across transaction boundaries.

To demonstrate the processing of a journal of updates, a table of update
requests (referred to as the journal) must exist. A fi of simulated updates
against the orders table accompanies this example. A driver program loads
this into a table before running the example code.

This example completes the following actions:

1. Opens the database dynamically to check for the use of transactions, as in
Example 22.

2. Makes a temporary copy of the orders table so that the updates will not
have a permanent effect.

3. Creates an update journal table and loads it from a source file.

4. Performs the updates in the journal, generating a report as it goes.

5. Saves the contents of the update journal table in the ex24.out file.

6. Restores the original contents of the orders table.

The Update Journal

542 Using a Hold Cursor

The Update Journal
You can use an update journal to defer updates of a heavily used table to off-
peak hours so that the updates will have less impact on the performance of
interactive queries.

A table update is a disk-intensive operation. Not only must the row of data
be replaced on disk, but at least one page of each index on the table must be
rewritten. While these operations take place, rows of data and index pages
are locked. This can cause delays in the execution of interactive queries.

One way to avoid these effects is to write the updated information into a table
of updates rather than the original table. Each row of such an update journal
reflects one pending update. After peak hours, when interactive queries are
few and the hardware is no longer operating at full capacity, the deferred
updates can be applied in a single batch process.

One problem with this scheme is that updates are not recorded in the
updated table at the time they are entered. In many applications this does not
matter; it is acceptable for the appearance of new data to be delayed by a day.
It is also possible to write the query applications so that they test the update
journal, and either display the latest information from it, or display an indi-
cation that there are updates pending against a displayed record.

Contents of an Update Journal
An update journal is a table. Each row describes one deferred update,
containing all the information needed to validate the update, apply it, and
trace the source of the problem if the update cannot be applied.

In this example, the orders table in the demonstration database is the subject
of the updates. The update journal contains the following columns:

journal_id A SERIAL fi that gives each update request a unique ID.

upd_status A fi containing letter code N for a new update, or D for
one that has been applied.

order_num A foreign key to the orders table, giving the order to which
the update applies.

entered_by The USER value of the user who entered the update.
Essential for follow-up in the event the order is erroneous.

enter_date A timestamp showing the time the update was logged in the
journal, giving the time to the second.

Using a Cursor WITH HOLD

Example 24 543

org_xx Copies of the updatable columns of the original row of
orders as they were when the update was entered. For
example, org_si contains the original of the ship_instruct
column.

upd_xx New values for updatable columns, or null if a column is not
to be updated. For example, a new value for ship_instruct
would appear in upd_si.

The upd_status column is used to separate updates that have been applied
from those that have not. The cursor that selects each journal row uses a
WHERE clause that tests for N in this column. The last step in applying an
update is to change this column of the journal row to D for done. Then, if the
updating program is interrupted for some reason, it can be run again without
fear that it will apply an update twice.

Transaction processing is essential to make this update-status check work
reliably. That is, the update of a row of the orders table and the change of
upd_status in the corresponding row of the journal must be part of the same
transaction. That ensures that both will take place or that neither will.
Without this assurance the program could update the orders table but be
interrupted before setting upd_status to D. Then an update might be applied
twice.

The journal record contains two copies of any changed column: one as the
row should be prior to the update, the other as it should be after the update.
The program tests the existing row against the original values before apply-
ing the update. This is an essential safeguard to ensure that the update is
applied to the same data that the human operator saw. This check guards
against a variety of unlikely but still plausible errors. For example, if some-
one uses interactive SQL or some other means to enter a change to the orders
table manually, this test will prevent a journalled update from overriding that
change.

Using a Cursor WITH HOLD
Normally the end of a transaction forces all cursors to close and releases all
locks. These requirements make it easier to implement the database and log
operations that are necessary to ensure all updates are committed to disk
safely.

While you cannot avoid releasing all locks, it is not essential to close all
cursors. You can declare a non-scrolling cursor WITH HOLD, which will
remain open and retain its position across a transaction boundary.

544 Using a Hold Cursor

Function Overview

A hold cursor is especially convenient for processing an update journal. Each
update should be handled as a single transaction in these steps:

1. Read the next unapplied row in the journal.

2. Read and lock the target row of the table.

3. Verify the update against the current contents of the table row.

4. Update the table row.

5. Change the status in the row of the journal table.

6. Commit the transaction.

If the last step closed the cursor on the journal table, it would have to be
opened again prior to each update. These frequent reopenings would be
ineffi and time consuming.

Comparisons in the Presence of Nulls
Null values present an interesting case when completing the steps just out-
lined. By definition, null values are not equal to anything, including other
null values. The reason is that a null value is an unknown value. The only
reasonable result of a comparison between an unknown and anything else, is
unknown. Neither TRUE nor FALSE is a reasonable answer.

The 4GL language treats a Boolean expression that involves an unknown
value as being equivalent to FALSE. For example, an IF statement that com-
pares a null will always execute its ELSE part.

IF A = B THEN -- if A and/or B is null, result is always false

DISPLAY "true"

ELSE

DISPLAY "false"
END IF

The preceding statement will display false when A is null, when B is null,
and when both are null. This does not accord with most people’s expectations.

This example needs to compare values that may be null, and recognize when
they are alike, meaning that either both are null or else they are equal. The
like() subroutine performs this comparison. It returns TRUE if the two values
are “like” each other in this sense.

Example 24 545

Using a Cursor WITH HOLD

Function Overview

Function Name Purpose

update_driver() A model of the central logic of a batch update program: reads
rows from the update journal, and then validates and applies
them.

upd_rep() Documents the operations of upd_driver(), printing a line for
each update transaction.

open_db() Opens a database using dynamic SQL and saves information
about it for later use. Returns TRUE or FALSE.
See the description in Example 22.

begin_wk() Executes a BEGIN WORK statement provided that
open_db() says the database uses Informix-style transactions.
See the description in Example 22.

commit_wk() Executes a COMMIT WORK statement provided that
open_db() says the database uses transactions.
See the description in Example 22.

rollback_wk() Executes a ROLLBACK WORK statement provided that
open_db() says the database uses transactions.
See the description in Example 22.

save_orders() Makes a copy of the orders table in a temporary table.

restore_orders() Restores the rows of the orders table that appear in the up-
date journal.

build_journal() Creates the simulated update journal table and loads it from
an ASCII file.

save_journal() Saves the contents of the update journal table (upd_journal)
in the fi ex24.out before dropping this table.

like() Returns TRUE when two values are either equal or both null,
FALSE otherwise.

check_db_priv() Returns TRUE if the current user has a specified level of
database privilege, FALSE otherwise.

546 Using a Hold Cursor

The MAIN Function

The GLOBALS Statement
1➤ The fi in the gr_database record are set by the open_db() function. They

are used by begin_wk() and related functions introduced in Example 22.
These functions deal with transaction management.

2➤ The jrn record matches the initial fi columns of the upd_journal table.
Because that table is not part of the stores7 database when this program is
compiled, the record cannot be defined using LIKE.

3➤ The ver (verify) and set records receive the two copies of updatable columns
from a journal row. The original values are held in ver and the new values in
set. The current contents of a row of orders is read into cur. An update can
only be performed when the fi of cur are like those of ver.

The MAIN Function
4➤ The program uses a DISPLAY statement and a PROMPT statement to ask the

user for the database name. Because PROMPT is a user interface statement,
the program also initializes the int_flag built-in variable to FALSE.

5➤ If the user uses the Cancel key (typically CONTROL-C), the program resets the
int_flag variable and performs no further action. The program sets the
default database name to “stores7” if the user does not enter a name.

Resetting the int_flag is not required in this case, because the program ends
when the user uses Cancel. However, it is good programming practice to
always reset the int_flag in case you change the program at some future
point.

6➤ Because the program opens the database dynamically (open_db() analyzes it
while performing this function) it provides the user with the opportunity to
name a different database. In case of error, the program ends, leaving the
error message from open_db() on the screen.

7➤ The check_db_priv() function (described in Note 36 on page 560) returns
TRUE if the current user has at least the indicated level of privilege in the cur-
rent database. This example needs the Resource privilege in order to rename
the orders table and create the upd_journal table.

Example 24 547

The GLOBALS Statement

DATABASE stores7

GLOBALS

1➤ DEFINE gr_database RECORD

db_known SMALLINT, -- following fields are usable

has_log SMALLINT, -- based on SQLAWARN[2]

is_ansi SMALLINT, -- based on SQLAWARN[3]

is_online SMALLINT, -- based on SQLAWARN[4]

can_wait SMALLINT -- supports "set lock mode to wait"

END RECORD

END GLOBALS

2➤ DEFINE jrn RECORD

journal_id INTEGER,

upd_status CHAR(1),

order_num INTEGER,

entered_by CHAR(8),

enter_date DATETIME YEAR TO SECOND

END RECORD,

3➤ ver, -- table values BEFORE update

set, -- new updated table values

cur RECORD LIKE orders.* -- table values currently in db

MAIN

DEFINE reppath CHAR(80),
 dbname CHAR(10),

 valid_db SMALLINT

DEFER INTERRUPT

LET valid_db = FALSE

4➤ DISPLAY "Enter the name of the example database, or simply press"

LET int_flag = FALSE

PROMPT "RETURN to use ’stores7’: " FOR dbname

5➤ IF int_flag THEN

LET int_flag = FALSE

ELSE

IF LENGTH(dbname) = 0 THEN

LET dbname = "stores7"

END IF
6➤ IF open_db(dbname) THEN

7➤ IF NOT check_db_priv("R") THEN

DISPLAY "Sorry, you must have at least Resource privilege"

DISPLAY "in that database for this example to work."

DISPLAY "Run the program again with a different database."

4GL source file

548 Using a Hold Cursor

The update_driver() Function

8➤ If both open_db() and check_db_priv() complete successfully, the program
sets the valid_db variable to TRUE so that the body of the program will be
executed, (see Note 9).

9➤ If valid_db is TRUE, the user has entered a valid database that has been
opened. The program can now perform the journal updates. The
save_orders() function saves the current contents of the orders table in a tem-
porary table. The build_journal() function then creates and loads the
upd_journal table used to hold the journal update information.

10 ➤ At this point the preliminary work is complete and the update_driver()
function (the main routine) is called. The update_driver() function checks the
upd_journal table and performs the appropriate updates to the orders table.

Following completion of the routine, the program calls the restore_orders()
function to drop the updated orders, restoring the example database to its
prior state.

11 ➤ The save_journal() function saves the contents of the upd_journal table in the
ex24.out file. The program drops the upd_journal table when it finishes. You
can inspect the ex24.out file after the program finishes to view the contents of
the upd_journal table.

12 ➤ The program drops the copy of the orders table (qsave_orders) so the
database is returned to its state before the program executed.

The update_driver() Function
13 ➤ The function uses the length of its argument to determine where to send the

report output. If no argument exists, the length is zero, and the function
directs report output to the screen. If an argument does exist, the function
directs report output to the fi named by this argument.

14 ➤ The keywords WITH HOLD establish jrnlupd as a hold cursor, one that will
not close automatically when a transaction ends. The use of FOR UPDATE

makes this an update cursor as well as a hold cursor. When a row of the
update journal is fetched, it is locked. The lock is released at the end of a
transaction, however. Note that the many columns of an update journal row
are read into three different variables.

Example 24 549

The update_driver() Function

ELSE

8➤ LET valid_db = TRUE

END IF

END IF

END IF

9➤

IF valid_db THEN

 CALL save_orders() -- save contents of orders table

 IF build_journal() THEN -- create the upd_journal

DISPLAY ""

DISPLAY "Enter a pathname to receive the update report output."

DISPLAY "For output to the screen, just press RETURN."

LET int_flag = FALSE

PROMPT "Report pathname or null: " FOR reppath

IF int_flag THEN

LET int_flag = FALSE

ELSE

10 ➤ CALL update_driver(reppath)-- run the real example

CALL restore_orders() -- fix updated orders table

END IF

11 ➤ CALL save_journal()

END IF

12 ➤ DROP TABLE qsave_orders

END IF

END MAIN

FUNCTION update_driver(rep)

 DEFINE rep CHAR(80),

oops, num SMALLINT

13 ➤ IF LENGTH(rep) = 0 THEN

START REPORT upd_rep

ELSE

START REPORT upd_rep TO rep

END IF

14 ➤ DECLARE jrnlupd CURSOR WITH HOLD FOR

SELECT * INTO jrn.*,

ver.ship_instruct THRU ver.paid_date,

set.ship_instruct THRU set.paid_date

FROM upd_journal

WHERE upd_status = "N"

FOR UPDATE

550 Using a Hold Cursor

The update_driver() Function

15 ➤ The ordupd cursor fetches and locks each row of the orders table as needed.

Because it is not a hold cursor, it is automatically closed when a transaction
ends, and has to be reopened for the next transaction.

16 ➤ The BEGIN WORK statement must be executed outside the FOREACH loop to
ensure that a transaction exists before the jrnlupd update cursor performs the
fi fetch.

17 ➤ The FOREACH loop (which ends at Note 23) controls the batch update pro-
cess. It requests a lock on an upd_journal row and, if the request is successful,
reads the contents of this row into the jrn, ver, and set module records.

18 ➤ The ordupd cursor fetches the row in the orders table. This row will be
updated with the entries in the current upd_journal row.

The oops variable accumulates errors throughout a single update. If oops
contains zero at the bottom of the loop, the transaction is committed; if not, it
is rolled back.

19 ➤ The arguments to the upd_rep() function are four strings, which the function
prints in four columns across the page. In most cases the columns, from left
to right, contain the following information:

• The name of a column in orders.

• A verify (original) value.

• A set (update) value.

• A diagnostic message when required.

The report prints “(null)” for a null value, so the statement passes a string
consisting of one blank to display a blank column.

20 ➤ The logic in this IF statement is repeated for each updatable fi The
logic can be paraphrased as follows:

IF there have been no errors so far,
AND an update value was given for this column THEN

IF the table has not changed since the update was journalled THEN
save the updating value, count it, and log it in the report

ELSE
log an error

21 ➤ When all the fi have been validated, the cur record contains a mix of
existing column values and updated values. When it is known that at least
one update fi existed and there were no errors, all the columns are
updated and the journal record is stamped “done.” Because errors are not
being trapped, any error will end the program, automatically rolling back the
transaction.

Example 24 551

The update_driver() Function

15 ➤ DECLARE ordupd CURSOR FOR

SELECT * INTO cur.* FROM orders

WHERE order_num = jrn.order_num

FOR UPDATE

16 ➤ CALL begin_wk()

17 ➤ FOREACH jrnlupd

18 ➤ OPEN ordupd

FETCH ordupd

LET oops = SQLCA.SQLCODE

IFoops = 0 THEN

LET num = 0
ELSE

19 ➤ OUTPUT TO REPORT upd_rep(" "," "," ","order_num not found")

END IF

20 ➤ IF oops = 0 AND NOT like(ver.ship_instruct,set.ship_instruct) THEN

IFlike(ver.ship_instruct,cur.ship_instruct) THEN

LET cur.ship_instruct = set.ship_instruct

LET num = num+1

OUTPUT TO REPORT upd_rep("ship_instruct",

ver.ship_instruct,

set.ship_instruct,

" ")

ELSE

LET oops = 1

OUTPUT TO REPORT upd_rep("ship_instruct",

ver.ship_instruct,

cur.ship_instruct,

"no match: orig & current")

END IF

END IF

IF oops = 0 AND NOT like(ver.backlog,set.backlog) THEN

END IF

IFoops = 0 THEN

IF num > 0 THEN

WHENEVER ERROR CONTINUE

21 ➤ UPDATE orders SET (ship_instruct,backlog,

po_num,ship_date,ship_weight,ship_charge,paid_date)

= (cur.ship_instruct THRU cur.paid_date)

WHERE CURRENT OF ordupd

WHENEVER ERROR STOP

IF status < 0 THEN

OUTPUT TO REPORT upd_rep("orders table not updated",

" "," ",status)

See Note 20.

LET oops = 1

ELSE

WHENEVER ERROR CONTINUE

UPDATE upd_journal SET upd_status = "D"

WHERE CURRENT OF jrnlupd

WHENEVER ERROR STOP

552 Using a Hold Cursor

The upd_rep() Report Function

22 ➤ If the two UPDATE statements are successful, commit the current transaction.
Otherwise, roll back this transaction. Ending the transaction in either way
closes the ordupd cursor, releases the lock on the orders row, and releases the
lock on the upd_journal row. Because the jrnlupd cursor is a WITH HOLD

cursor, this cursor is not closed.

23 ➤ The call to begin_wk() starts a new transaction for the next iteration of the
FOREACH loop. A transaction must be current before the FOREACH attempts
to lock the upd_journal now.

24 ➤ When the FOREACH loop exits, the program must end the current transac-
tion. If rows have been updated, the oops variable is zero and the current
transaction is committed. If the program encountered errors during the
updates or if the FOREACH loop did not find upd_journal rows, oops is non-
zero and the transaction is rolled back.

The upd_rep() Report Function
25 ➤ The upd_rep() report function documents the action of the update loop.

A more comprehensive approach to documenting a batch of updates would
capitalize on the upd_status column, setting it to a code letter for each type
of error, or to D for done. A separate program could then print a report of the
results. Such a program would select completed updates (those with
upd_status not equal to N). It could sort and group on the entered_by
column.

Yet another variation would be to supply the user with an interactive screen
form with which to check the status of the user’s updates for errors.

Example 24 553

The upd_rep() Report Function

IF status < 0 THEN

OUTPUT TO REPORT upd_rep("upd_journal not updated",

" "," ",status)

LET oops = 1

ELSE

OUTPUT TO REPORT upd_rep(" ",

" "," ","orders table updated")

END IF

END IF

ELSE

OUTPUT TO REPORT upd_rep(" "," "," ","no changed fields")

LET oops = 1

END IF

END IF

22 ➤ IF oops = 0 THEN

CALL commit_wk()

ELSE

CALL rollback_wk()

END IF

23 ➤ CALL begin_wk()

END FOREACH

24 ➤ IF oops = 0 THEN

CALL commit_wk()

ELSE

CALL rollback_wk()

END IF

FINISH REPORT upd_rep

END FUNCTION -- update_driver --

25 ➤ REPORT upd_rep(f,v1,v2,x)

DEFINE f,v1,v2,x CHAR(25),

 prev_upd INTEGER

OUTPUT

LEFT MARGIN 0

FORMAT

FIRST PAGE HEADER

PRINT 20 SPACES, "UPDATE JOURNAL REPORT"

PRINT 20 SPACES, "Run on: ", TODAY

LET prev_upd = 0

554 Using a Hold Cursor

The upd_rep() Report Function

26 ➤ At the start of each journal row, the report prints the update header
information. Then for each requested column, it is called to print the column
name and old and new values (or an error message).

27 ➤ If the second argument is blank, the report prints out a blank line. Otherwise,
the argument contains the old value (before the update) for a column. The
report prints out this value following the “BEFORE:” header.

Example 24 555

The upd_rep() Report Function

26 ➤ ON EVERY ROW

IFjrn.journal_id <> prev_upd THEN

LET prev_upd = jrn.journal_id

PRINT

PRINT 2 SPACES, "UPDATE ",

jrn.journal_id USING "####",

" against Order ",

jrn.order_num USING "#####"

PRINT 4 SPACES, "Entered by ",

jrn.entered_by,

" on ", jrn.enter_date

END IF

PRINT 6 SPACES, f;

27 ➤ IF v1[1] = " " THEN

PRINT " ";

ELSE

PRINT 1 SPACE, "BEFORE: ";

IF v1 IS NULL THEN

PRINT "(null)"

ELSE

PRINT v1

END IF

END IF

PRINT 32 SPACES;

IFv2[1] = " " THEN

PRINT " "

ELSE

PRINT "AFTER: ";

IF v2 IS NULL THEN

PRINT "(null)"

ELSE

PRINT v2

END IF

END IF

PRINT 6 SPACES;

IFx[1] = " " THEN

PRINT " "

ELSE

PRINT "STATUS: ", x CLIPPED

END IF

SKIP 1 LINE

END REPORT -- upd_rep --

556 Using a Hold Cursor

The build_journal() Function

The save_orders() Function
28 ➤ This function preserves the original contents of the orders table by storing the

current contents of this table in a temporary table. The point is to preserve the
original contents of the demonstration database. This is not part of the dem-
onstration of an update journal, only an example of using data definition
statements.

The restore_orders() Function
29 ➤ Rather than restore the orders table wholesale, this function restores only the

rows whose numbers appear in the update journal.

The build_journal() Function
30 ➤ The build_journal() function prepares the upd_journal table that is used in

this example.

31 ➤ If the upd_journal table exists in the database, the program uses the DROP

TABLE statement to remove it.

Example 24 557

The save_orders() Function

28 ➤ FUNCTION save_orders()

DEFINE j SMALLINT

SELECT COUNT(*)

INTO j

FROM informix.systables

WHERE tabname = "qsave_orders"

IF j = 0 THEN -- the table has not yet been saved

CREATE TABLE qsave_orders (order_num INTEGER, order_date DATE,

customer_num INTEGER, ship_instruct CHAR(40),

backlog CHAR(1), po_num CHAR(10),

ship_date DATE, ship_weight DECIMAL(8,2),

ship_charge MONEY(6), paid_date DATE)

INSERT INTO qsave_orders SELECT * FROM orders

DISPLAY "Contents of orders table saved in temp table: qsave_orders."

ELSE

DISPLAY "Copy of orders table ('qsave_orders') exists."

END IF

END FUNCTION -- save_orders --

29 ➤ FUNCTION restore_orders()

DELETE FROM orders

WHERE order_num IN

(SELECT DISTINCT order_num FROM upd_journal)

INSERT INTO orders

SELECT * FROM qsave_orders

WHERE order_num IN

(SELECT DISTINCT order_num FROM upd_journal)

END FUNCTION -- restore_orders --

30 ➤ FUNCTION build_journal()

DEFINE fpath, afile CHAR(80),

j SMALLINT

31 ➤ SELECT COUNT(*)

INTO j

FROM systables

WHERE tabname = "upd_journal"

558 Using a Hold Cursor

The build_journal() Function

32 ➤ The CREATE TABLE statement adds the upd_journal table to the database.

To execute this CREATE TABLE statement and the one in save_orders(), you
must have the Resource privilege in the database. The columns with the pre-
fi org_ contain the values of the row before the update. The columns with
the upd_ prefix contain the row values after the update. These columns are
grouped so that they can be read into a record defined as “LIKE orders”.

33 ➤ After creating the table, the function uses the LOAD command to fill it with a
few examples of update requests. You can add or change lines in that text file
to test the program operation.

Example 24 559

The build_journal() Function

IFj <> 0 THEN -- one exists, may be updated, drop it

DROP TABLE upd_journal
END IF

32 ➤ CREATE TABLE upd_journal (

journal_id SERIAL, -- unique id of update item

upd_status CHAR(1), -- N=new, X=error, A=applied

order_num INTEGER, -- foreign key to orders

entered_by CHAR(8), -- user who entered update

enter_date DATETIME YEAR TO SECOND, -- ...and when

org_si CHAR(40), -- org_si = original_ship_instruct

org_bl CHAR(1), -- backlog

org_po CHAR(10), -- po_num

org_sd DATE, -- ship_date

org_sw DECIMAL(8,2), -- ship_weight

org_sc MONEY(6), -- ship_charge

org_pd DATE, -- paid_date

upd_si CHAR(40), -- upd_si = update_ship_instruct

upd_bl CHAR(1), -- backlog

upd_po CHAR(10), -- po_num

upd_sd DATE, -- ship_date

upd_sw DECIMAL(8,2), -- ship_weight

upd_sc MONEY(6), -- ship_charge

upd_pd DATE -- paid_date

)

33 ➤ DISPLAY "Simulated update journal table upd_journal created."

DISPLAY ""

DISPLAY "To load the simulated update journal we need a file

pathname" DISPLAY "for the file ex24.unl ."

DISPLAY "It came in the same directory as the source file of this

program." DISPLAY ""

DISPLAY "Enter a pathname, including the final slash (or

backslash)." DISPLAY "For the current working directory just press

RETURN." DISPLAY ""

LET int_flag = FALSE

PROMPT "Path to ex24.unl file: " FOR fpath

IF int_flag THEN

RETURN (FALSE)

END IF

LET afile = fpath CLIPPED, "ex24.unl"

DISPLAY "Loading from ",afile CLIPPED

LOAD FROM afile INSERT INTO upd_journal

DISPLAY "Update journal table loaded."

DISPLAY ""

RETURN (TRUE)

END FUNCTION -- build_journal --

560 Using a Hold Cursor

The check_db_priv() Function

The save_journal() Function
34 ➤ The save_journal() function saves the contents of the upd_journal table in the

ex24.out file. By saving the image of this table after the updates complete, you
can examine the updates performed on the table. You cannot query the data-
base for the upd_journal table because the program drops the table.

The like() Function
35 ➤ The like() function compares two character strings. If the two strings match,

the function returns TRUE. Otherwise, it returns FALSE. It treats two null
values as equal.

The check_db_priv() Function
36 ➤ The check_db_priv() function returns TRUE if the current user has at least a

certain level of privilege in the current database. The privilege level, in this
case, ‘‘R’’ for Resource, is passed into the function as an argument by the
MAIN function.

Example 24 561

The save_journal() Function

34 ➤ FUNCTION save_journal()

UNLOAD TO "ex24.out" SELECT * FROM upd_journal

IF status < 0 THEN

DISPLAY "Unable to store contents of journal table in ex24.out file."

ELSE

DISPLAY "New contents of journal table stored in ex24.out file."

DROP TABLE upd_journal

IF status < 0 THEN

DISPLAY "Unable to drop journal table."

END IF

END IF

DISPLAY "Dropped journal table: upd_journal."

END FUNCTION -- save_journal --

35 ➤ FUNCTION like(a,b)

DEFINE a,b CHAR(255)

IF(a IS NULL) AND (b IS NULL) THEN

RETURN TRUE

ELSE

IFa = b THEN

RETURN TRUE

ELSE

RETURN FALSE

END IF

END IF

END FUNCTION -- like --

36 ➤ FUNCTION check_db_priv(wanted)

DEFINE wanted CHAR(1),

actual CHAR(1),

retcode SMALLINT

LET retcode = FALSE -- assume failure

WHENEVER ERROR CONTINUE -- no need to crash program on error

here LET actual = "?" -- ..just make sure we have usable data

DECLARE dbgrant CURSOR FOR

SELECT usertype INTO actual

FROM informix.sysusers

WHERE username = USER

OR username = "public" -- alway lowercase

562 Using a Hold Cursor

The check_db_priv() Function

37 ➤ Because a user may have been granted privileges by more than one other
user, and because grants to “public” apply, the function needs a cursor to
loop over an unknown number of rows from the sysusers catalog table. How-
ever, it abandons the search as soon as it fi the desired level of privilege.

38 ➤ The program frees its cursor because cursors are sometimes in short supply,
and this one will probably not be used more than once in a program.

Example 24 563

The check_db_priv() Function

37 ➤ FOREACH dbgrant

CASE wanted

WHEN "C"

IF actual <> "?" THEN

LET retcode = TRUE-- any privilege includes "C"

END IF

WHEN "R"

IF actual <> "C" AND actual <> "?" THEN

LET retcode = TRUE -- "D" or "R" is ok for "R"

END IF

WHEN "D"

IF actual = "D" THEN

LET retcode = TRUE -- the only real "D" is "D"

END IF

END CASE

IFretcode THEN

EXIT FOREACH

END IF

END FOREACH

38 ➤ FREE dbgrant

RETURN retcode

WHENEVER ERROR STOP

END FUNCTION -- check_db_priv --

To locate any function definition, see the Function Index on page 730.

564 Logging Application Errors

25
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21. Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

 25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 25 565

Logging Application
Errors

This program demonstrates how to create and operate an error log file using
three 4GL library functions:

STARTLOG() Creates the log file.

ERR_GET() Gets the error message text associated with a particular SQL

or 4GL error number.

ERRORLOG() Writes a line to an error log file.

The actual operations of the program are a reprise of the customer-table
maintenance operations documented in Example 17 (which in turn is built on
Example 9). The program allows the user to query for a display of customer
rows. While one row is visible, the user may choose to update or delete the
row, or add a new row.

This example differs from Example 9 (see “Accessing a Table with a Sin-
gle-Row Form” on page 165) in three ways.

First, the MAIN block installs a unique index on the company column of the
customer table. The demonstration database does not normally have such an
index. The reason is that a single customer company might have multiple
divisions or multiple retail outlets, each with its own address and person to
contact. The company name would be the same in these rows, but the value
in customer_num would make them unique.

The unique index on the company column affords a simple, repeatable
method for causing an SQL error, thus testing the operation of the error log.

The MAIN block drops the index at the end of the program, restoring the
database to its normal condition.

The 4GL Error Log

566 Logging Application Errors

Second, the functions that contain the SQL statements have been changed in
two ways:

• They use THE WHENEVER ERROR CONTINUE statement so that the
program continues when an SQL error is returned.

• They report such errors by calling an error-logging function.

Finally, functions have been added to initialize the error log and write to it.

The 4GL Error Log
Every 4GL program writes to an error log fi but by default it is the screen.
4GL itself writes only one kind of message to the error log: the message that
describes an error that terminates a program.

A program can call the STARTLOG() function to initialize a permanent error
log fi The argument to STARTLOG() is a fi or a complete fi path-
name of the error log. If the program ends due to an error, 4GL will write the
terminating error display into the log. In addition, you can use the
ERRORLOG() function to write lines into the error log.

If the error log fi exists when a program calls STARTLOG(), output is
appended to the file. Thus one file could contain the logged output of multi-
ple program runs. However the error log cannot be shared; it may be open to
only one program at a time.

There are a number of possible uses for the error log fi This example
demonstrates a common one: logging all SQL errors in detail, as they occur.

Another possible use is debugging, especially debugging of errors that occur
unpredictably or at long intervals. You can seed a program with calls to
ERRORLOG() so that it leaves a trail of its operations in the error log. Instruct
the users that, when the error occurs, they are to terminate the program and
copy the error log fi for later analysis.

Debug logging is one instance of instrumenting a program: adding code to
record the operations of a program so they can be analyzed. You can instru-
ment a program in order to analyze its performance or to analyze patterns of
usage. For example, you can determine which program features are heavily
used, and which are little used or perhaps not used at all. You can instrument
a program so as to record work habits or to detect attempts to breach security.

The 4GL Error Log

Example 25 567

For all these uses, the key function is ERRORLOG(), which writes one line to
the log fi A simple debugging call might resemble the following.

CALL ERRORLOG("now entering update routine")

However, ERRORLOG() typically needs assistance in at least two ways:

• A typical log entry for any purpose contains several pieces of
information. For example, it might contain the name of a function and one
or two of its argument values, or an error code and a statement type. But
ERRORLOG() accepts only a single character string as its argument.

• Logging takes time and may impair the speed of the program. Before you
build instrumentation into a program, you need a way to turn it on and
off, preferably without recompiling the program.

The solution to all these problems lies in creating your own logging function.
This example does just that. (See “The log_entry() Function” on page 580).
The purpose of a logging function is to receive one or more arguments that
are specific to a situation, to format them into one or more lines of text, and
to write these with the built-in ERRORLOG() function. When all log output is
centralized in your logging function, you can add features to it.

The logging function can do such things as:

• Insert the program name in each entry, if more than one program appends
data to the same error log file.

• Format different types of entries in different ways, based on a type-of-
entry argument. For example, debugging log entries might be code “D”
while SQL errors might be code “S”; these could be formatted differently.

• Check a global variable to see if log entries are enabled, and do nothing
when they are not.

The last point answers the performance problem mentioned earlier. A global
variable that controls logging can be initialized when the program starts up,
possibly from a table in the database. Alternatively, you could put logging
under user control through a menu choice. The global variable that controls
logging need not be a simple on / off choice.

You could classify log entries on a numerical scale of urgency; then the global
variable could be an integer showing the urgency level an entry must have
before it can be logged. Or the global variable could be a character string
specifying a class of entry codes; then the logging function could use the

568 Logging Application Errors

Function Overview

MATCHES operator to test the type of an entry against the global variable to
see if it should be logged. For example, if the global contained [S], only SQL

errors might be logged, but [SD] would enable debugging entries also.

In general, the simple facility of the error log can be put to many uses if the
other features of 4GL are used with imagination to supplement it.

SQLCODE Versus Status
Immediately after a program executes an SQL statement, the status variable
contains the SQL error code associated with the execution of the statement.
However, the status variable is also used to report the success or failure of
other 4GL statements, including common ones such as DISPLAY and OPEN

WINDOW.

Except immediately following an SQL statement, it is best to refer to the SQL

error code in its actual location, SQLCA.SQLCODE. This field is changed only
by SQL statements. In this example, all calls to log_entry() pass it SQLCA.SQL-

CODE and not status.

Function Overview

Function Name Purpose

create_index() Installs a unique index on the customer table. This creates a
reliable means of causing an SQL error that can be logged.

drop_index() Drops the unique index on the customer table, restoring the
database to normal.

init_log() Initializes an error log of the specified name.

cust_menu3() Displays the customer menu and allows the user to choose
whether to add a new customer or query for an existing cus-
tomer. Differs from cust_menu2() in Example 17 only in call-
ing browse_custs3() instead of browse_custs2().

browse_custs3() Displays results of a query on the screen one row at a time,
calling next_action4() to allow the user to choose an action.
Differs from browse_custs2() in Example 17 only in calling
next_action4() instead of next_action3().

next_action4() Displays a menu that allows the user to choose the action to
take: see the next row, update the current row, or delete the
current row. Calls addupd_cust() for both an insert and an
update and uses error logging in the insert, update, and de-
lete functions.

insert_cust2() Inserts a customer row. Uses error logging to record database
errors occurring during INSERT.

Example 25 569

SQLCODE Versus Status

update_cust3() Updates a customer row. Uses error logging to record
database errors occurring during UPDATE.

delete_cust2() Deletes a customer row. Uses error logging to list database
errors occurring during DELETE.

log_entry() Creates an error log entry noting that an error has occurred
in a specified function.

get_user() Returns the user-ID of the current user.

addupd_cust() Combines insertion and update functions in a single routine
to eliminate duplication of code.
See the description in Example 9.

bang() Prompts the user for a command and executes the command.
See the description in Example 3.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

message_window() Opens a window and displays the contents of the
ga_dsplymsg global array.
See the description in Example 2.

msg() Displays a brief, informative message.
See the description in Example 5.

query_cust2() Lets the user create a query by example.
See the description in Example 6.

state_popup() Displays a lookup list of the states from the state table so the
user can choose the appropriate state.
See the description in Example 9.

verify_delete() Checks for dependent rows in other tables.
See the description in Example 6.

570 Logging Application Errors

The create_index() Function

The DATABASE Statement and MAIN Function
1➤ This program can be used with any version of the demonstration database.

It uses only the customer table.

2➤ See the discussion of this and the next statement in Example 17, “The MAIN
Function” on page 384.

3➤ When an error log is used, it should be initialized as early as possible in the
program, so it is available to record errors in other initialization steps.

For example, in an early version of this program, init_log() was not called
until create_index() had fi but then create_index() had no way to
report an error that it encountered.

4➤ The program adds a unique index on the customer.company column. This
gives you a simple way to cause an SQL error that can be logged: by adding
a customer that has a duplicate company name.

5➤ For discussion of this and the following statement see Example 17.

6➤ When the program ends, it drops the unique index on customer.company
and restores the demonstration database to its normal condition.

The create_index() Function
7➤ The create_index() function creates the index mentioned in Note 4. If the

CREATE INDEX statement ends with an error, the function checks for one
common case: that the index already exists. This could occur, for example, if
you run the program under the Debugger and exit without completing all the
statements. If another error occurs, the function documents it on the error log
and returns FALSE, signalling that the program cannot continue.

Example 25 571

The DATABASE Statement and MAIN Function

1➤ DATABASE stores7

GLOBALS

DEFINE gr_customer RECORD LIKE customer.*,

gr_workcust RECORD LIKE customer.*,

g_username CHAR(8)

DEFINE ga_dsplymsg ARRAY[5] OF CHAR(48)

END GLOBALS

MAIN

2➤ OPTIONS

HELP FILE "hlpmsgs",

FORM LINE 5,

COMMENT LINE 5,

MESSAGE LINE LAST

DEFER INTERRUPT

3➤ CALL init_log("errlog")

4➤ IF create_index() THEN

5➤ OPEN WINDOW w_main AT 2,3

WITH 18 ROWS, 75 COLUMNS

ATTRIBUTE (BORDER)

OPEN FORM f_customer FROM "f_customer"

DISPLAY FORM f_customer

CALL cust_menu3()

CLEAR SCREEN

6➤ CALL drop_index()

ELSE

LET ga_dsplymsg[1] = "Unable to create a unique index on the"

LET ga_dsplymsg[2] = " company column. Please check the 'errlog'"

LET ga_dsplymsg[3] = " file for more detailed information."

CALL message_window(9, 15)

END IF

END MAIN

7➤ FUNCTION create_index()

WHENEVER ERROR CONTINUE

CREATE UNIQUE INDEX comp_ix ON customer (company)

WHENEVER ERROR STOP

4GL source file

572 Logging Application Errors

The cust_menu3() Function

The drop_index() Function
8➤ At the conclusion of the program, it calls the drop_index() function to drop

the unique index on the company column. Errors are reported to the error
log.

9➤ At this point the status variable contains the result of the DROP INDEX

statement.

10 ➤ At this point the status variable contains the result of executing the ERROR

statement. The error code returned by DROP INDEX has been replaced.
However, the SQL error code is still present in SQLCA.SQLCODE, where it will
remain until the program executes the next SQL statement.

The init_log() Function
11 ➤ The init_log() function uses the built-in STARTLOG() function to initialize the

4GL log fi The fi is passed as an argument. In this program, it is a
simple character constant in the MAIN block. Other options include taking it
from the command line or from the database.

The cust_menu3() Function
12 ➤ The cust_menu3() function is identical to the cust_menu2() function in

Example 17, except that it calls browse_cust3() instead of browse_cust2(). For
more information see “The cust_menu2() Function” on page 384.

Example 25 573

The drop_index() Function

IF (status < 0) THEN

IF (status <> -316) THEN --* if index already exists: OK

CALL log_entry(SQLCA.SQLCODE, "create_index()")

RETURN (FALSE)

END IF

END IF

RETURN (TRUE)

END FUNCTION -- create_index --

8➤ FUNCTION drop_index()

WHENEVER ERROR CONTINUE

DROP INDEX comp_ix

WHENEVER ERROR STOP

9➤ IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to drop company column index."

10 ➤ CALL log_entry(SQLCA.SQLCODE, "drop_index()")

END IF

END FUNCTION -- drop_index --

11 ➤ FUNCTION init_log(logname)

DEFINE logname CHAR(10)

CALL STARTLOG(logname)

CALL get_user() RETURNING g_username

END FUNCTION -- init_log --

12 ➤ FUNCTION cust_menu3()

DEFINE st_custs CHAR(150)

DISPLAY

"--Press CTRL-W for Help----------"

AT 3, 1

MENU "CUSTOMER"

See cust_menu1() in Example 9.

574 Logging Application Errors

The browse_custs3() Function

The browse_custs3() Function
13 ➤ After customer rows are selected, the browse_custs3() function manages the

user’s access to them. It is identical to browse_custs2() in Example 17, except
that it calls next_action4() instead of next_action3(). See “The
browse_custs2() Function” on page 386 for more information.

14 ➤ This version of the browse function displays the number of customer rows
selected. It gets this number from an element in the SQLERRD array of global
SQLCA record. The database fills SQLERRD[3] with the number of rows pro-
cessed. After a SELECT statement, this value is the number of rows selected.

Example 25 575

The browse_custs3() Function

COMMAND "Query" "Look up customer(s) in the database." HELP 11

CALL query_cust2() RETURNING st_custs

IFst_custs IS NOT NULL THEN

CALL browse_custs3(st_custs)

END IF

CALL clear_lines(1,4)

END MENU

END FUNCTION -- cust_menu3 --

13 ➤ FUNCTION browse_custs3(selstmt)

DEFINE selstmt CHAR(150),

fnd_custs SMALLINT,

end_list SMALLINT,

num_found SMALLINT

See cust_menu1() in Example 9.

See browse_custs() in Example 6.

FOREACH c_cust INTO gr_customer.*

14 ➤ LET num_found = SQLCA.SQLERRD[3]

IF num_found IS NULL THEN

LET num_found = 0

END IF

DISPLAY " Number of Customers Selected: ", num_found USING

"<<<<<<" AT 14,1 ATTRIBUTE (REVERSE, YELLOW)

LET fnd_custs = TRUE

DISPLAY BY NAME gr_customer.*

IFNOT next_action4() THEN

LET end_list = FALSE

EXIT FOREACH

ELSE

LET end_list = TRUE

END IF

LET gr_workcust.* = gr_customer.*

END FOREACH

CALL clear_lines(4, 14)

IF end_list THEN

CALL msg("No more customer rows.")

END IF

See browse_custs() in Example 6.

576 Logging Application Errors

The next_action4() Function

The next_action4() Function
15 ➤ After a customer record is located and displayed, the next_action4() function

presents a menu of possible next actions. It is quite similar to the
next_action() function in Example 6. See “The next_action() Function” on
page 126. It differs from Example 6 and from other similar functions in
Example 9 and Example 17 only in the names of the subfunctions it calls to
perform the user’s actions.

Example 25 577

The next_action4() Function

CLEAR FORM

END FUNCTION -- browse_custs3 --

15 ➤ FUNCTION next_action4()

DEFINE nxt_action SMALLINT

LET nxt_action = TRUE

MENU "CUSTOMER MODIFICATION"

COMMAND "Next" "View next selected customer." HELP 20

EXIT MENU

COMMAND "Update" "Update current customer on screen."

HELP 21

CALL clear_lines(1,14) -- clear out "Number Selected" message

IF addupd_cust("U") THEN

CALL update_cust3()

END IF

CALL clear_lines(2,16)

NEXT OPTION "Next"

COMMAND "Delete" "Delete current customer on screen."

HELP 22

CALL clear_lines(1,14) -- clear out "Number Selected" message

CALL delete_cust2()

IF gr_workcust.customer_num IS NOT NULL THEN

-- * there was a previous customer in the list: restore it to the screen

LET gr_customer.* = gr_workcust.*

DISPLAY BY NAME gr_customer.*

END IF

NEXT OPTION "Next"

COMMAND KEY ("E","X") "Exit" "Return to CUSTOMER Menu"

HELP 24

LET nxt_action = FALSE

EXIT MENU

END MENU

RETURN nxt_action

END FUNCTION -- next_action4 --

578 Logging Application Errors

The update_cust3() Function

The insert_cust2() Function
16 ➤ The insert_cust2() function is called from add_upd_cust() to insert a new

customer record. It differs from very similar functions in Example 9 and
Example 17 (see “The insert_cust() Function” on page 182) in that it reports
errors by calling log_entry(). The earlier versions of this function report an
SQL error with the ERROR statement, which appears on the screen only.

17 ➤ As before, this statement, and any other that involves screen or disk activity,
resets the contents of the status variable. This explains why in the following
statement, the SQL error code is passed by naming SQLCA.SQLCODE, not
status.

The update_cust3() Function
18 ➤ The update_cust3() function is called from add_upd_cust() to update a

customer record. It differs from very similar functions in Example 6 and
others in that it reports errors by calling log_entry(). (See “The update_cust()
Function” on page 130.) The earlier versions of this function report an SQL

error with the ERROR statement, which appears on the screen only.

Example 25 579

The insert_cust2() Function

16 ➤ FUNCTION insert_cust2()

WHENEVER ERROR CONTINUE

INSERT INTO CUSTOMER

VALUES (0, gr_customer.fname, gr_customer.lname,

gr_customer.company, gr_customer.address1,

gr_customer.address2, gr_customer.city,

gr_customer.state, gr_customer.zipcode,

gr_customer.phone)

WHENEVER ERROR STOP

IF (status < 0) THEN

17 ➤ ERROR status USING "-<<<<<<<<<<<", ": Unable to complete customer insert."

CALL log_entry(SQLCA.SQLCODE, "insert_cust2()")

ELSE

LET gr_customer.customer_num = SQLCA.SQLERRD[2]

DISPLAY BY NAME gr_customer.customer_num

LET ga_dsplymsg[1] = "Customer has been entered in the database."

LET ga_dsplymsg[2] = " Number: ",

gr_customer.customer_num USING "<<<<<<<<<<<",

" Name: ", gr_customer.company

CALL message_window(9, 15)

END IF

END FUNCTION -- insert_cust2 --

18 ➤ FUNCTION update_cust3()

WHENEVER ERROR CONTINUE

UPDATE customer SET customer.* = gr_customer.*

WHERE customer_num = gr_customer.customer_num

WHENEVER ERROR STOP

IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to complete customer update."

CALL log_entry(SQLCA.SQLCODE, "update_cust3()")

END IF

END FUNCTION -- update_cust3 --

580 Logging Application Errors

The log_entry() Function

The delete_cust2() Function
19 ➤ This function is called to delete a customer record. It differs from very similar

functions in Example 6 and others in that it reports errors by calling
log_entry(). (See “The delete_cust() Function” on page 130.) The earlier ver-
sions of this function report an SQL error with the ERROR statement, which
appears on the screen only.

The log_entry() Function
20 ➤ The log_entry() function reports an SQL error by writing several lines into the

error log fi This error log fi was initialized with the 4GL STARTLOG()
function. See Notes 3 and 11. Here is a sample of its output:

Date: 06/28/1991 Time: 09:45:20

User: nerfball Function: insert_cust2()

Error Number: -239 ISAM Error: -100

Error: Could not insert new row - duplicate value in a UNIQUE INDEX column.

Example 25 581

The delete_cust2() Function

19 ➤ FUNCTION delete_cust2()

IF(prompt_window("Are you sure you want to delete this?", 10, 15)) THEN

IF verify_delete() THEN

WHENEVER ERROR CONTINUE

DELETE FROM customer

WHERE customer_num = gr_customer.customer_num

WHENEVER ERROR STOP

IF (status < 0) THEN

ERROR status USING "-<<<<<<<<<<<",

": Unable to complete customer delete."

CALL log_entry(SQLCA.SQLCODE, "delete_cust2()")

ELSE

CALL msg("Customer has been deleted.")

CLEAR FORM

END IF

ELSE

LET ga_dsplymsg[1] = "Customer ",

gr_customer.customer_num USING "<<<<<<<<<<<",

" has placed orders and cannot be"

LET ga_dsplymsg[2] = " deleted."

CALL message_window(7, 8)

END IF

END IF

END FUNCTION -- delete_cust2 --

#######################################

20 ➤ FUNCTION log_entry(errstat, fname)
#######################################

DEFINE errstat

fname
INTEGER,

CHAR(20),

 isam_err

errtxt

errline

uname

INTEGER,

CHAR(70),

CHAR(225),

CHAR(8)

582 Logging Application Errors

The get_user() Function

21 ➤ The parts of the log entry come from the following sources:

• The date and time are supplied by 4GL.

• The user name is acquired by calling the get_user() function.

• The function name and the error number are passed as arguments.

• The ISAM error number is retrieved from the SQL Communications Area
(the function assumes that no other SQL statement has been executed
since the error occurred).

• The error message text is retrieved from the 4GL ERR_GET() library
function.

These elements are formatted into a single character variable with newlines
(indicated by “\n”) to divide the three lines.

The get_user() function performs a SELECT statement to retrieve the user
name, thus updating the error codes in the SQL Communications Area. The
function must save the ISAM error code before calling get_user().

22 ➤ The built-in ERRORLOG() function makes the actual entry to the 4GL error log.
It sends the entry to the error log initialized by the STARTLOG() function. See
Note 11. In this example, the error log is the errlog file.

The get_user() Function
23 ➤ The get_user() function returns the user ID of the current user. Because the

USER function is not available in 4GL, a SELECT statement is used to retrieve
the user ID of the current user. The FROM and WHERE clauses in the SELECT

statement reference a row in a table that always exists.

In order not to have to use a cursor, the SELECT statement must be written so
that it returns only one row. This function selects the row of systables that
names itself (systables); it is sure to exist and sure to be unique. The owner
name “informix” is required only in an ANSI-compliant database.

Example 25 583

The get_user() Function

21 ➤ LET isam_err = SQLCA.SQLERRD[2] -- save it before it vanishes

CALL ERR_GET(errstat) RETURNING errtxt

LET errline = "User: ", g_username, " Function: ",

fname CLIPPED, "\n", "Error Number: ",

errstat USING "-<<<<<<<<<<<", " ISAM Error: ",

isam_err USING "-<<<<<<<<<<<", "\n", "Error: ",

errtxt CLIPPED, "\n",

"--"

22 ➤ CALL ERRORLOG(errline CLIPPED)

END FUNCTION -- log_entry --

23 ➤ FUNCTION get_user()

DEFINE uid LIKE informix.sysusers.username

SELECT USER INTO uid

FROM informix.systables -- table guaranteed to exist

WHERE tabname = "systables" -- row sure to exist and be singular

RETURN uid

END FUNCTION -- get_user --

To locate any function definition, see the Function Index on page 730.

584 Managing Multiple Windows

26
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21. Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

 26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 26 585

Managing Multiple
Windows

This example shows how you can put more than one window on the screen.
The program uses the windows to “tile” the screen instead of overlapping
them. When the program starts, the screen looks like this:

Window w_app;
displays time
and program name.

Window w_menu;
displays menus.

Window w_form;
displays forms.

Managing Windows

586 Managing Multiple Windows

Managing Windows
Tiling windows gives you more control over the layout of the display. The
MENU command creates a menu that fills the window from left to right. This
program displays both a logo and the time to the left of the menu because the
logo and the menu appear in separate windows.

Windows can overlap to any extent. The CURRENT WINDOW statement
brings one window to the front and makes it the focus of keyboard input.
Although these windows appear to join neatly, their borders overlap by one
character, so that the vertical line between “Demo” and “MAIN” is composed
of the right border of window w_app and the left border of w_menu.

When a MENU statement or a DISPLAY FORM statement is executed, its
output goes to the current window. The current window is the one named in
the most recent CURRENT WINDOW or OPEN WINDOW statement. This
example is careful to make the menu window current before entering a
MENU statement, and to make the form window current before displaying a
form.

The forms displayed by this program are the same forms used in the other
examples. A form is not tied to any particular window or program; it can be
displayed in any window so long as the window has enough rows and
columns to hold it.

4GL does not offer multitasking, so it is not possible to operate the time
display asynchronously from the other windows. The clock will not advance
while the user is away from the keyboard. A function named new_time()
updates the time display. Calls to new_time() are inserted following each
point at which user input is requested.

Using Dummy Functions
While this program offers a two-level hierarchy of menus, neither menu
actually does anything. All functions that would add, update, query, or
report have been left undefined. Instead, each menu command calls a dummy
function to display the string “Function not implemented yet.”

This is a valid and useful design technique: it permits you to design the inter-
face to an application, including forms, and to test it and get feedback from
the user population early in the development process. Then you can add
functions one at a time, concentrating on each function in isolation. Many of
the functions from other examples could be slotted into the framework of this
program. For instance, the query by example from Example 5 could be
dropped in with little change.

Function Overview

Example 26 587

Function Overview

Function Name Purpose

dsply_logo() Displays the logo form with the current date.
See the description in Example 1.

dsply_screen() Opens the three application windows.

close_screen() Closes the three application windows.

curr_wndw() Makes a new application window current.

new_time() Makes the application window (w_app) current and displays
the updated system time in it.

dummymsg() Development routine: displays the message “Function not
implemented yet.”

menu_main() Makes the menu window (w_menu) current and displays the
MAIN menu in it.

sub_menu() Displays the requested sub_menu (CUSTOMER, ORDERS,
or STOCK) and opens the appropriate form in the form
window (w_form).

bang() Prompts the user for a command and executes the com-
mand.
See the description in Example 3.

msg() Displays a brief, informative message.
See the description in Example 5.

588 Managing Multiple Windows

The close_screen() Function

The MAIN Function
1➤ The dsply_logo() function, which appears in Example 1, fills the screen with

a decorative application logo for the specified number of seconds.

2➤ The dsply_screen() function opens all windows. The call to menu_main()
starts the real business of the program.

The dsply_screen() Function
3➤ The OPEN WINDOW statement creates the small decorative window in the

upper-left corner. Two fi strings, the program name and the legend
“Time:”, are displayed in it.

An alternate way to initialize the contents of a static window is to display a
small form in it. This puts the text of the window outside the program and in
a form where it can be maintained separately.

4➤ Each call to new_time() updates the time display in the w_app window.

These calls are scattered throughout the program in an attempt to keep the
time display reasonably current.

5➤ The left border of the w_menu window overlaps the right border of w_app.
On some terminals, the upper-left and upper-right corners of window bor-
ders are drawn with distinct symbols. On such a terminal the corner symbol
at row 2, column 22 will switch between left and right orientations as the
windows are alternately made current.

6➤ Window w_form is sized to hold most of the forms used in other examples.
Its upper border overlaps the lower borders of the other windows. It is not
essential to overlap borders in this way, but every row and column is
precious on most terminals.

The close_screen() Function
7➤ This function cleans up all windows at the termination of the program.

Example 26 589

The MAIN Function

MAIN

DEFER INTERRUPT

1➤ CALL dsply_logo(3)

CLEAR SCREEN

2➤ CALL dsply_screen()

CALL menu_main()

CALL close_screen()

CLEAR SCREEN

END MAIN

FUNCTION dsply_screen()

3➤ OPEN WINDOW w_app AT 2,3

WITH 2 ROWS, 19 COLUMNS

ATTRIBUTE(BORDER, MESSAGE LINE LAST)

DISPLAY " INFORMIX-4GL Demo " -- blank before “I” allows for SG#1

AT 1, 1 ATTRIBUTE(REVERSE, RED) -- terminals
DISPLAY "Time:" AT 2, 2

4➤ CALL new_time()

5➤ OPEN WINDOW w_menu AT 2,23

WITH 2 ROWS, 56 COLUMNS

ATTRIBUTE(BORDER)

6➤ OPEN WINDOW w_form AT 5,3

WITH 16 ROWS, 76 COLUMNS

ATTRIBUTE(BORDER, FORM LINE 1,

MESSAGE LINE LAST, PROMPT LINE LAST)

END FUNCTION -- dsply_screen --

7➤ FUNCTION close_screen()

CLOSE WINDOW w_form

CLOSE WINDOW w_menu

CLOSE WINDOW w_app

END FUNCTION -- close_screen --

4Gl menu file

590 Managing Multiple Windows

The menu_main() Function

The curr_wndw() Function
8➤ This function encapsulates the process of switching windows so that the

names of the windows do not have to be propagated throughout the applica-
tion. Window names are not known outside the source module containing
the OPEN WINDOW statement, so a function in a different module could not
execute the CURRENT WINDOW statement in any event. This function is also
a convenient place for a breakpoint when debugging.

The new_time() Function
9➤ The new_time() function updates the time display. It is called from every-

where that a delay completes. No practical way is available to update the
time concurrently with other activities.

10 ➤ The time is displayed using row and column coordinates. This approach has
the disadvantage that knowledge of the window layout is incorporated into
the program. Another approach would be to initialize w_app with a very
small form containing a form-only field for the time, and to use DISPLAY TO

field name for the time. Then the function would not be dependent on the lay-
out of the window; they could be changed independently.

The dummymsg() Function
11 ➤ The dummymsg() function is called wherever a feature has not yet been

coded. It makes the form window current before displaying its message. If it
did not, the message might appear on top of the menu or might be truncated
within the time window.

The menu_main() Function
12 ➤ The menu_main() function displays and executes the main menu. It first

makes the menu window current; otherwise the menu would appear in
whichever window is current at the time.

When a menu command is selected, it calls the sub_menu() function and
passes a parameter indicating the selected menu command. When control
returns from sub_menu(), 4GL makes current the menu window.

Example 26 591

The curr_wndw() Function

8➤ FUNCTION curr_wndw(wndw)

DEFINE wndw CHAR(1)

CASE wndw

WHEN "M"

CURRENT WINDOW IS w_menu

WHEN "F"

CURRENT WINDOW IS w_form

WHEN "A"

CURRENT WINDOW IS w_app

END CASE

END FUNCTION -- curr_wndw --

9➤ FUNCTION new_time()

DEFINE the_time DATETIME HOUR TO MINUTE

CALL curr_wndw("A")

LET the_time = CURRENT

10 ➤ DISPLAY the_time AT 2,8

END FUNCTION -- new_time --

11 ➤ FUNCTION dummymsg()

CALL curr_wndw("F")

CALL msg("Function Not Implemented Yet")

END FUNCTION -- dummymsg --

12 ➤ FUNCTION menu_main()

CALL curr_wndw("M")

MENU "MAIN"

COMMAND "Customer" "Enter and maintain customer data."

CALL sub_menu("C")

CALL curr_wndw("M")

COMMAND "Orders" "Enter and maintain orders."

CALL sub_menu("O")

CALL curr_wndw("M")

592 Managing Multiple Windows

The sub_menu() Function

13 ➤ The KEY clause in the MENU statement allows you to associate a maximum
of four keys with a menu option.

The sub_menu() Function
14 ➤ The sub_menu() function is called from the main menu. It displays the

appropriate menu and form for each menu choice.

The function takes advantage of the fact that the MENU statement accepts
variables for the menu title, command names, and command option descrip-
tions. It also uses a variable to specify the name of the form that appears in
the w_form window.

15 ➤ The menu_opt variable receives the parameter passed to the function. It acts
as a flag to set the appropriate form and sets the index into the s_menu array.

The s_menu array holds the information about each submenu. The
appropriate record in the array is then passed to a MENU statement.

The idx variable serves as the index into the array.

16 ➤ The series of LET statements loads the menu information into the array.

Example 26 593

The sub_menu() Function

COMMAND "Stock" "Enter and maintain stock list."

CALL sub_menu("S")

CALL curr_wndw("M")

13 ➤ COMMAND KEY("!")

CALL bang()

CALL curr_wndw("M")

COMMAND KEY ("E","X") "Exit"

"Exit program and return to operating system."

EXIT MENU

END MENU

END FUNCTION -- menu_main --

14 ➤ FUNCTION sub_menu(menuopt)

15 ➤ DEFINE menuopt CHAR(1),

s_menu ARRAY[3] OF RECORD

menuname CHAR(10),

option1 CHAR(15),

optdesc1 CHAR(50),

option2 CHAR(15),

optdesc2 CHAR(50),

option3 CHAR(15),

optdesc3 CHAR(50)

END RECORD,

idx SMALLINT,

form_name CHAR(10)

16 ➤ LET s_menu[1].menuname = "CUSTOMERS"

LET s_menu[1].option1 = "Add"

LET s_menu[1].optdesc1 = "Add new customer(s) to the database."

LET s_menu[1].option2 = "Query"

LET s_menu[1].optdesc2 = "Look up customers information."

LET s_menu[1].option3 = "Report"

LET s_menu[1].optdesc3 = "Create customer reports."

LET s_menu[2].menuname = "ORDERS"

LET s_menu[2].option1 = "Place"

LET s_menu[2].optdesc1 = "Add new order to database and print

invoice." LET s_menu[2].option2 = "Query"

LET s_menu[2].optdesc2 = "Look up and display order

information." LET s_menu[2].option3 = "Report"

LET s_menu[2].optdesc3 = "Create order reports."

LET s_menu[3].menuname = "STOCK"

LET s_menu[3].option1 = "Add"

LET s_menu[3].optdesc1 = "Add new stock item(s) to the

database." LET s_menu[3].option2 = "Query"

594 Managing Multiple Windows

The sub_menu() Function

17 ➤ The current window is set to w_form.

18 ➤ The value of menuopt determines the setting of the form_name variable,
which is used in the following OPEN FORM statement, and the idx index into
the s_menu array, which loads the submenu.

19 ➤ Once the function displays the appropriate form in the w_form window, the
call to curr_wndw() resets the current window. The following MENU state-
ment will display in the w_menu window.

20 ➤ The menu title, list of options, and list of option descriptions are contained in
one row in the s_menu array. The idx index into the array was set in the
previous CASE statement.

Some menu commands are set using variables, while others use literal
strings. Because all submenus include an Exit option and a “bang” option,
they are hard-coded into the statement and are not passed to the statement as
variables.

The 4GL MENU statement allows you to use variables for the name of the
menu, for command names, and for command descriptions. However, you
cannot use a variable for the help number associated with a command.

21 ➤ After each menu choice, the time display is updated.

Example 26 595

The sub_menu() Function

LET s_menu[3].optdesc2 = "Look up and display stock information."

LET s_menu[3].option3 = "Report"

LET s_menu[3].optdesc3 = "Create stock reports."

17 ➤ CALL curr_wndw("F")

18 ➤ CASE menuopt

WHEN "C"

LET form_name = "f_customer"

LET idx = 1

WHEN "O"

LET form_name = "f_orders"

LET idx = 2

WHEN "S"

LET form_name = "f_stock"

LET idx = 3

END CASE

OPEN FORM the_option FROM form_name

DISPLAY FORM the_option

19 ➤ CALL curr_wndw("M")

20 ➤ MENU s_menu[idx].menuname

COMMAND s_menu[idx].option1 s_menu[idx].optdesc1

CALL dummymsg()

COMMAND s_menu[idx].option2 s_menu[idx].optdesc2

CALL dummymsg()

COMMAND s_menu[idx].option3 s_menu[idx].optdesc3

CALL dummymsg()

COMMAND KEY ("!")

CALL bang()

COMMAND KEY ("E","X") "Exit" "Return to MAIN Menu."

CLEAR WINDOW w_form

EXIT MENU

END MENU

21 ➤ CALL new_time()

END FUNCTION -- sub_menu --

To locate any function definition, see the Function Index on page 730.

596 Displaying Menu Options Dynamically

27
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
 27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 27 597

Displaying Menu Options
Dynamically

This example shows how to use a scroll cursor to modify the database (insert,
update, and delete rows) while allowing concurrent updates. It is based on
Example 20. You should understand the read-ahead scrolling and query revi-
sion features of Example 20 before reading this program.

The Scroll Cursor and Volatile Data
The benefit of a scroll cursor is that it can fetch any row in a selected (active)
set of rows. In a static database, the contents of the selected set remains con-
stant. However, when multiple programs can modify the database concur-
rently, the set of selected rows may change from one moment to the next. At
any instant, another program might:

• Add a row that should be part of the selected set.

• Delete a row that was part of the selected set.

• Update a row that was part of the selected set in such a way that it should
no longer be selected.

• Update a row that was not selected in such a way that it now should be
included in the set of rows returned by the query.

The scroll cursor commands such as FETCH PRIOR, FETCH ABSOLUTE n, and
FETCH LAST require that the selected set remains constant until the cursor is
closed. If the set of rows can change from moment to moment, the very con-
cept of the next, the last, or the nth row becomes confused, particularly when
the rows being fetched are the result of a join.

To make FETCH work predictably and repeatably, the database server creates
a stable selection set by saving the rows in a temporary table as it fi finds
them. This saved set of rows—a snapshot of the original data as it was when
fi fetched—is retained until the cursor is closed.

The Scroll Cursor and Volatile Data

598 Displaying Menu Options Dynamically

You can use the program in Example 20 to test this aspect of a scroll cursor:

1. Start the program and view several rows.

2. From a different user session, open the same database and delete one of
the rows you viewed.

3. Return to the ex20 program. You will still be able to see the row that was
deleted. It has been cached in the temporary table.

4. Now use the Query option and enter the same criteria. When the cursor
is closed and reopened, the deleted row will be absent from the set.

This illustrates two things about a scroll cursor:

• It can display stale data, that is, rows that no longer accurately reflect the
database contents.

• It can be resynchronized by closing it and opening it again with the same
selection criteria. The set of rows found on reopening may be somewhat
different than they were before and will reflect the current state of the
database.

Resynchronizing a Scroll Cursor
The scroll cursor should be resynchronized whenever the program finds that
the database no longer matches the cached rows. This can happen whenever
the program displays a row, and will happen whenever a user modifies a row.

In this example, the loop that supports scrolling starts by opening the scroll
cursor. Next comes a MENU statement, followed by a close of the cursor.
When a menu option fi that the cursor is showing stale data, it forces
resynchronization by exiting the MENU statement. The cursor is closed at the
bottom of the loop, and then reopened at the top.

One problem exists with this plan: it may frustrate the user. If the set of
selected rows is large, the user may spend a lot of time fi a particular
row. It would be confusing for the program to suddenly reset the cursor to
the fi row of the set. After closing and reopening the cursor, the program
must try to position the cursor on, or at least near to, its previous position.

This is done by maintaining a count of the current scroll position in the
selected set. This scroll position is not the same as the row ID; the row ID is
relative to the whole table, while the scroll position is relative to the particu-
lar set of rows that match the current query.

The scroll position can be precisely maintained across most menu choices. It
is set to 1 at the start and whenever First is chosen. Each use of Next
increments it; each use of Prior decrements it. When the cursor is reopened,

Updating Rows Fetched Through a Scroll Cursor

Example 27 599

a FETCH ABSOLUTE command can set the cursor to the desired row in the set,
or nearly to it. The nth now in the current set may not be the same nth row as
before the cursor was closed. Rows might have been inserted or deleted, but
at least the cursor will be close to its former row.

There is one operation under which the scroll position cannot be maintained
exactly. When the user chooses Last, the program uses FETCH LAST to display
the last record in the set. But because the program does not know how many
rows are in the set, it cannot tell what scroll position it has reached.

However, the program does know its position relative to the last row. So the
program assigns the scroll position zero to the last row. The Prior choice dec-
rements this; the row prior to the last is row -1 relative to the last row. The
Next choice increments it, still maintaining the correct relative position with
respect to the last row.

Thus when the program reopens the cursor and finds that the scroll position
is a negative number, it can reestablish that position by performing a FETCH

LAST command followed by a FETCH RELATIVE of the desired row.

Updating Rows Fetched Through a Scroll Cursor
Because a scroll cursor does not necessarily show the database as it really is,
you cannot declare a scroll cursor for update. A cursor used to modify rows
(that is, either update or delete them) must be an ordinary cursor.

Then how can you modify a row that was fetched through a scroll cursor?
The answer is that you must use a regular cursor to fetch the row and modify
it through that cursor. However, you should keep in mind that when a row is
subsequently fetched through the update cursor, time has elapsed since it
was originally fetched through the scroll cursor. Various changes may take
place during this interim period such as:

• The row might have been modified by another program.

• The row might no longer exist.

Obviously, if the row is deleted, it cannot be modified. But if a row has been
changed, it should not be modified, because it is possible that the modifica-
tion is no longer applicable to the changed row.

At a high level, the method of modifying a row fetched with a scroll cursor is
as follows:

1. Fetch the row with the scroll cursor.

2. Declare a second cursor for an update and associate it with a SELECT

statement that returns only the desired row.

Checking User Authorization

Example 27 601

3. Open the cursor and fetch the row, locking it for exclusive use.

If the row is not found, it has been deleted or changed so that it no longer
fi the selection criteria.

4. Compare the column values to those returned through the scroll cursor.

If there is any difference, the modification might no longer be applicable
and the row should not be modified.

5. Perform the UPDATE or DELETE operation using WHERE CURRENT OF

the update cursor.

In every case, the scroll cursor is now stale; at least for this one row, it no
longer reflects the actual table. Hence it should be resynchronized by closing
and reopening it.

Using the Row ID
This example relies on the row ID, a unique integer that is associated with
every row of a table. The row ID may be thought of as another column in each
table, a column that is initialized with random integer values when the table
is created. A row retains its row ID as long as it exists. You can select ROWID

as if it were a column in the table, and you can use a comparison to ROWID

in a WHERE clause in order to retrieve a specific row.

Here are some cautions related to the use of the row ID. First, row ID values
are reassigned when rows are deleted and other rows inserted. Second, row
ID values change when a table is unloaded and reloaded. Thus, you can never
assume that a row will retain its row ID permanently. In particular, you
should never store row ID values in a table as foreign keys to other tables.
However, the row ID is extremely useful for keeping track of specific rows
during the life of a single cursor.

In this example, the scroll cursor selects only the row ID value and nothing
else. The scroll cursor is used to generate a list of the row IDs of the rows that
meet the query criteria.

When it is time to display a row to the user, the row is fetched using an
ordinary cursor. ROWID is appended to the other query conditions when
building the WHERE clause. This prevents the unlikely case in which the
original row has been deleted and another, unrelated row inserted at the
same row ID. Including both the ROWID value and the user-specified query
conditions ensures that the query returns the intended row— or no row at all.
If the row is no longer found, it has been deleted and the scroll cursor needs
to be resynchronized. If it is found, the column values fetched are the very
latest ones; they reflect any update up to the present time.

Using the Row ID

600 Displaying Menu Options Dynamically

When the user asks to update a row, the row is re-fetched using an update
cursor, thus locking it for exclusive use. All fi of the returned row are
checked against the row as it fi was displayed to make sure it has not
changed.

Similarly, when the user asks to delete a row, the test of ROWID and the other
query conditions are used in a DELETE statement. This is a less stringent test
than is applied prior to UPDATE, when all the columns are tested to make
sure none has changed. It is possible to delete a row that had recently been
updated by a different user.

A fetch using the row ID is very fast; the row ID encodes the physical address
of the row on the disk, so not even an index lookup is needed. The fetches and
re-fetches take little time.

Checking User Authorization
This example permits the user to insert, update, or delete new rows.
However, not all users are authorized to do these things.

The program looks up the user’s privileges in the systabauth system catalog
when it starts up. Then it only displays menu choices for the actions permit-
ted the user.

The get_tab_auth() function performs this task. It returns a character string in
the format used in systabauth, which contains one character for each table-
level privilege. The program checks the second character to see if the user has
the Update privilege, and the fifth character to see if the Delete privilege has
been granted. It hides the menu choices that are not allowed.

Function Overview

602 Displaying Menu Options Dynamically

Function Overview

Function Name Purpose

scroller_3() Runs the browsing menu, fetching and modifying rows on
request. Uses row IDs to track rows.

query_cust3a() Executes a CONSTRUCT statement and returns the resulting
conditional expression.
See the description in Example 20.

query_cust3b() Like query_cust3a(), but with a different prompt message
and a different treatment of the null query.
See the description in Example 20.

disp_row() Displays a row given its row ID, checking that it still exists
and matches the query constraints.

del_row() Deletes a row given its row ID, checking that it still exists and
matches the query constraints.

upd_row() Updates a row given its row ID, checking that it exists and is
unchanged from when it fi displays.

get_user() Returns the user ID of the current user.
See the description in Example 25

get_tab_auth() Returns the current user’s privileges on a specified table.

sel_merged_auth() Selects all privileges and returns the superset of privileges.
Because the key to systabauth is grantor+grantee+tabid, a
given grantee may have multiple grants for a given table.

merge_auth() Returns the superset of two tabauth strings, retaining any let-
ter in preference to a hyphen, and uppercase letters in prefer-
ence to lowercase.

like() Returns TRUE when two values are either equal or both null,
FALSE otherwise.
See the description in Example 24.

open_db() Opens a database using dynamic SQL and saves information
about it for later use. Returns TRUE or FALSE.
See the description in Example 22.

begin_wk() Executes a BEGIN WORK statement provided that
open_db() says the database uses Informix-style transactions.
See the description in Example 22.

commit_wk() Executes a COMMIT WORK statement provided that
open_db() says the database uses transactions.
See the description in Example 22.

rollback_wk() Executes a ROLLBACK WORK statement provided that
open_db() says the database uses transactions.
See the description in Example 22.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

Function Overview

Example 27 603

answer() A user-alert subroutine that takes one to three possible user
responses and returns the one the user chooses.
See the description in Example 20.

msg() Displays a brief, informative message.
See the description in Example 5.

604 Displaying Menu Options Dynamically

The GLOBALS Statement and MAIN Function

The GLOBALS Statement and MAIN Function
1➤ Any version of the example database may be used here.

2➤ The gr_database record is set by the open_db() function to reflect the features
of the database.

3➤ The program prompts the user for the name of the database to use. Because
the database will be opened dynamically, the example gives the user the
opportunity to name a different database.

Example 27 605

The GLOBALS Statement and MAIN Function

1➤ DATABASE stores7

GLOBALS

2➤ DEFINE gr_database RECORD

db_known SMALLINT, -- following fields are usable
has_log SMALLINT, -- based on sqlawarn[2]
is_ansi SMALLINT, -- based on sqlawarn[3]
is_online SMALLINT, -- based on sqlawarn[4]
can_wait SMALLINT -- supports "set lock mode to wait"

END GLOBALS

END RECORD

Module variables shared by scroller_3() and disp_row()

DEFINE m_querycond CHAR(500), -- current query condition text

mr_currcust RECORD LIKE customer.* -- current row contents

MAIN

DEFINE cond CHAR(150), -- conditional clause from CONSTRUCT
 more SMALLINT, -- continue flag

 dbname CHAR(10)

DEFER INTERRUPT

OPTIONS

HELP FILE "hlpmsgs",

FORM LINE 5,

COMMENT LINE 5,

MESSAGE LINE 19

OPEN WINDOW w_db AT 2, 3

WITH 4 ROWS, 65 COLUMNS

ATTRIBUTE (BORDER, PROMPT LINE 3)

3➤ DISPLAY "Enter name of standard demo database, or press RETURN to"

AT 2,2

LET int_flag = FALSE

PROMPT " use ’stores7’ database: " FOR dbname

IF int_flag THEN

LET int_flag = FALSE

CLOSE WINDOW w_db

EXIT PROGRAM

END IF

CLOSE WINDOW w_db

IF LENGTH(dbname)=0 THEN

LET dbname = "stores7"

END IF

4GL source file

606 Displaying Menu Options Dynamically

The scroller_3() Function

4➤ The open_db() function attempts to open the specified database. It returns
FALSE only if it fails to open the database requested. This function is dis-
cussed in Example 24.

The scroller_3() Function
5➤ The cust_priv variable will receive the output of the get_tab_auth() function.

See Note 45. It is unconventional but valid to define a variable LIKE a column
of a system catalog. The name of the system catalog table systabauth is qual-
ified with the owner name informix. This is allowed anywhere, but would
only be required in an ANSI-compliant database.

6➤ The variables curr_rid, next_rid, and prior_rid are used in this program the
same way the variables curr_cust, next_cust, and prior_cust were used in
Example 19 and Example 20: to hold the row currently being displayed and
the adjacent ones. However, in this program only a row ID is kept for each
row.

7➤ See “The get_tab_auth() Function” on page 624. It returns a string of charac-
ters that encodes the current user’s privileges with respect to the given table.

8➤ The scroll_pos variable contains the scroll position, here initialized to 1
because the fi time this routine is entered, the fi row of the selected set
should be displayed to the user.

9➤ As in Example 19 and Example 20, the program remains in this loop (which
ends on page 617) until the user selects the Query or Exit menu choices. Each
time through the loop, the scroll cursor c_custrid is opened and then closed.
Thus the code for any other menu choice can force resynchronization of the
cursor simply by exiting the menu and thus iterating the loop.

Example 27 607

The scroller_3() Function

4➤ IF open_db(dbname)=FALSE THEN -- open db, find out about logging

DISPLAY "Unable to open that database, sorry." AT 20,1

EXIT PROGRAM

END IF

Remainder of function is identical to that in Example 20, except it calls scroller_3() instead of scroller_2().

END MAIN

FUNCTION scroller_3(start_cond)

5➤ DEFINE start_cond CHAR(150),-- initial query condition

cust_priv LIKE informix.systabauth.tabauth, -- privilege in table

scroll_sel CHAR(500), -- SELECT statement for scroll cursor

6➤ curr_rid, -- row id of row now being displayed,

next_rid, -- ..of row to display when Next is chosen,

prior_rid INTEGER, -- ..of row to display when Prior is chosen

-- (row-ids are integers)

fetch_dir, -- flag showing direction of travel in list

using_next, -- flag values: going fwd using fetch next,

using_prior, -- ...going bwd using fetch prior, or

at_end, -- ...at either end of the list

retval, -- value to RETURN from function

misc SMALLINT, -- scratch number

scroll_pos SMALLINT -- abs or rel position in selection set

-- no one can manually scroll > 32K records

LET using_next = +1

LET using_prior = -1

LET at_end = 0

LET m_querycond = start_cond -- initialize query condition

7➤ LET cust_priv = get_tab_auth("customer") -- our user’s privileges

8➤ LET scroll_pos = 1 -- initial position is First

LET retval = 99 -- neither TRUE nor FALSE

9➤ WHILE retval <> TRUE AND retval <> FALSE -- ie while not Query or Exit

LET scroll_sel = "SELECT ROWID FROM customer WHERE ",m_querycond

CLIPPED PREPARE scroll_prep FROM scroll_sel

DECLARE c_custrid SCROLL CURSOR FOR scroll_prep

OPEN c_custrid

DISPLAY

"--Press CTRL-W for Help----------

" AT 3, 1

608 Displaying Menu Options Dynamically

The scroller_3() Function

10 ➤ The MENU statement ends just before Note 27.

11 ➤ The set of selected rows could turn out to be empty for the following reasons:

• The initial query selected no rows.

• The conditions added following a Revise menu choice qualified no rows.

• The selected rows have all been deleted or updated so they no longer
meet the conditions following a resynchronization.

12 ➤ The time needed to resynchronize depends on the previous scroll position.
If it is 1 or a small absolute number, only a few rows will have to be read. But
if it was Last, or relative to Last, the program will have to use FETCH LAST,
causing the server to read all rows and save them. Because some time may
pass, a message is displayed to warn the user.

13 ➤ Because at least one row exists, it is time to display or hide the Update and
Delete menu choices, based on the user’s privileges in this table.

14 ➤ A scroll position greater than 1 indicates that the absolute position is known
and is not First. The following code tries to establish the prior, current, and
next rows as they would have been. However, any of these rows may no
longer be part of the selected set. These lines try to read the “prior” and
“current” rows; if they are found, the SQLCODE will be zero.

15 ➤ If the program gets this far, prior and current rows are known. The Next
menu choice is enabled, depending on whether a “next” row can also be
found. If it cannot be found, the current row is also the last in the set.

16 ➤ If the “prior” or “current” row is no longer in the set, the set has become
smaller. The program sets a scroll position of Last. See Note 17.

17 ➤ A negative scroll position is relative to the last row in the set. The following
lines try to establish the “current” and “next” rows. Success in fetching both
are reflected in SQLCODE. The FETCH LAST operation forces the database
server to fi and cache all selected rows, and could take a long time to
perform.

18 ➤ The current row, or a row at the same position, has been restored. Now the
Prior menu choice is enabled or disabled, depending on the existence of a
row in the prior position.

Example 27 609

The scroller_3() Function

10 ➤ MENU "View Customers"

BEFORE MENU -- Set up as for First, but with chance of zero rows

SHOW OPTION ALL -- should *not* be needed, see problem 8734

FETCH FIRST c_custrid INTO curr_rid -- test for empty set

IF SQLCA.SQLCODE = NOTFOUND THEN

11 ➤ ERROR "There are no rows that satisfy this query."

HIDE OPTION ALL

SHOW OPTION "Query"

SHOW OPTION "Exit"

NEXT OPTION "Query"
ELSE -- set contains at least one row

12 ➤ MESSAGE "Setting cursor position, be patient"

13 ➤ IF cust_priv[2] = "-" THEN

HIDE OPTION "Update"

END IF

IFcust_priv[5] = "-" THEN

HIDE OPTION "Delete"

END IF

IF scroll_pos > 1 THEN -- try for former absolute position

14 ➤ LET misc = scroll_pos - 1 -- start with "prior" row

FETCH ABSOLUTE misc c_custrid INTO prior_rid

IFSQLCA.SQLCODE = 0 THEN -- that worked, get current

FETCH NEXT c_custrid INTO curr_rid

END IF

IF SQLCA.SQLCODE = 0 THEN -- got current row, set up "Next"

15 ➤ LET fetch_dir = using_next

FETCH NEXT c_custrid INTO next_rid

IF SQLCA.SQLCODE = 0 THEN

NEXT OPTION "Next"

ELSE

HIDE OPTION "Next"

NEXT OPTION "First"

END IF

ELSE -- current row unavailable, go for "Last"

16 ➤ LET scroll_pos = 0

END IF

END IF -- scroll_pos > 1

IF scroll_pos < 0 THEN -- try for former relative position

17 ➤ FETCH LAST c_custrid INTO curr_rid -- establish position

LET misc = scroll_pos + 1 -- start with "next" row

FETCH RELATIVE misc c_custrid INTO next_rid

IFSQLCA.SQLCODE = 0 THEN -- ok, try for current

FETCH PRIOR c_custrid INTO curr_rid

END IF

IF SQLCA.SQLCODE = 0 THEN -- got current, set up "Prior"

18 ➤ LET fetch_dir = using_prior

FETCH PRIOR c_custrid INTO prior_rid

IF SQLCA.SQLCODE = 0 THEN

NEXT OPTION "Prior"

610 Displaying Menu Options Dynamically

The scroller_3() Function

19 ➤ If the “current” or “next” row is no longer in the set, the set has become
smaller. The program sets a scroll position of First. See Note 20.

20 ➤ The scroll position was, or has been forced to, Last. Fetch the last row (which
must exist because the set has been shown to contain at least one row) and
make it current. Display the Prior choice if more than one row exists.

21 ➤ The scroll position was, or has been forced to, First. Fetch the first row. It may
already have been fetched, but if that is the case, this fetch will take little time.
Display the Next choice if more than one row exists.

22 ➤ As described in “The disp_row() Function” on page 616, column values are
fetched for a given row ID and are displayed in the form. If the row is no
longer part of the selected set, the function returns FALSE.

This IF statement appears in several menu commands. Whenever disp_row()
returns FALSE, the program exits the menu, thus forcing the cursor to
resynchronize.

The scroller_3() Function

Example 27 611

ELSE

HIDE OPTION "Prior"

NEXT OPTION "Last"

END IF

ELSE -- current row unavailable, go for "First"

19 ➤ LET scroll_pos = 1

END IF

END IF -- scroll_pos < 0

20 ➤ IF scroll_pos = 0 THEN -- do just as for "Last" choice

FETCH LAST c_custrid INTO curr_rid

HIDE OPTION "Next" -- can’t go onward from here

LET fetch_dir = using_prior

FETCH PRIOR c_custrid INTO prior_rid

IFSQLCA.SQLCODE = 0 THEN-- at least 2 rows in set

NEXT OPTION "Prior"

ELSE -- only 1 row in set

HIDE OPTION "Prior"

NEXT OPTION "Query"

END IF
END IF -- scroll_pos = 0 = last

21 ➤ IF scroll_pos = 1 THEN -- do just as for "First" choice

FETCH FIRST c_custrid INTO curr_rid

HIDE OPTION "Prior" -- can’t back up from #1

LET fetch_dir = using_next

FETCH NEXT c_custrid INTO next_rid

IFSQLCA.SQLCODE = 0 THEN -- at least 2 rows

NEXT OPTION "Next"

ELSE -- only 1 row in set

HIDE OPTION "Next"

NEXT OPTION "Query"

END IF

END IF -- scroll_pos = 1 = First

MESSAGE "" -- clear "please wait" message

22 ➤ IF disp_row(curr_rid) = FALSE THEN

EXIT MENU

END IF

END IF

COMMAND KEY(ESC,Q) "Query" "Query for a different set of

customers." HELP 130

LET retval = TRUE

EXIT MENU

COMMAND "Revise" "Restrict the current query by adding

conditions." HELP 131

CALL query_cust3b() RETURNING start_cond

IF start_cond IS NOT NULL THEN -- some condition entered

LET m_querycond = m_querycond CLIPPED, " AND ", start_cond

CLIPPED EXIT MENU -- close and re-open the cursor

The scroller_3() Function

612 Displaying Menu Options Dynamically

23 ➤ When the First choice is made, an absolute scroll position is established. The
remainder of the code in this section is essentially the same as that in the
scroller_1() function in Example 19, with row IDs replacing entire customer
rows.

24 ➤ When the Next choice is made, the scroll position can be incremented. This is
true regardless of whether it is an absolute position counting from First or a
relative position counting from Last. The remainder of this section is essen-
tially the same as that in the scroller_1() function in Example 19.

The scroller_3() Function

Example 27 613

ELSE -- construct clears form, refresh the display

IF disp_row(curr_rid) = FALSE THEN

EXIT MENU

END IF

END IF

COMMAND "First" "Display first customer in selected set."

HELP 133

FETCH FIRST c_custrid INTO curr_rid -- this cannot return

NOTFOUND IF disp_row(curr_rid) = FALSE THEN

EXIT MENU

END IF

23 ➤ LET scroll_pos = 1 -- know an absolute position

HIDE OPTION "Prior" -- can’t back up from #1

LET fetch_dir = using_next

FETCH NEXT c_custrid INTO next_rid

IFSQLCA.SQLCODE = 0 THEN -- at least 2 rows

SHOW OPTION "Next"-- it might be hidden

NEXT OPTION "Next"

ELSE -- only 1 row in set

HIDE OPTION "Next"

NEXT OPTION "Query"

END IF

COMMAND "Next" "Display next customer in selected set."

HELP 134

LET prior_rid = curr_rid

LET curr_rid = next_rid

IFdisp_row(curr_rid) = FALSE THEN

EXIT MENU
END IF

24 ➤ LET scroll_pos = scroll_pos+1

SHOW OPTION "Prior"

CASE (fetch_dir)

WHEN using_next

FETCH NEXT c_custrid INTO next_rid

WHEN at_end

FETCH RELATIVE +2 c_custrid INTO next_rid

WHEN using_prior

FETCH RELATIVE +3 c_custrid INTO next_rid

END CASE

IF SQLCA.SQLCODE = NOTFOUND THEN

LET fetch_dir = at_end

HIDE OPTION "Next"

NEXT OPTION "First"

ELSE

LET fetch_dir = using_next

END IF

The scroller_3() Function

614 Displaying Menu Options Dynamically

25 ➤ When the Prior choice is made, the scroll position can be decremented. This
is true regardless of whether it is an absolute position counting from First or
a relative position counting from Last. The remainder of this section is essen-
tially the same as that in the scroller_1() function in Example 19.

26 ➤ When the Last choice is made, the program no longer knows an absolute
position, because it never knows exactly how many rows are selected. This
statement establishes a relative position with respect to the last row. The
remainder of this section is essentially the same as that in the scroller_1()
function in Example 19.

The scroller_3() Function

Example 27 615

COMMAND "Prior" "Display previous customer in selected set."

HELP 135

LET next_rid = curr_rid

LET curr_rid = prior_rid

IFdisp_row(curr_rid) = FALSE THEN

EXIT MENU

END IF

25 ➤ LET scroll_pos = scroll_pos-1

SHOW OPTION "Next"

CASE (fetch_dir)

WHEN using_prior

FETCH PRIOR c_custrid INTO prior_rid

WHEN at_end

FETCH RELATIVE -2 c_custrid INTO prior_rid

WHEN using_next

FETCH RELATIVE -3 c_custrid INTO prior_rid

END CASE

IF SQLCA.SQLCODE = NOTFOUND THEN

LET fetch_dir = at_end

HIDE OPTION "Prior"

NEXT OPTION "Last"

ELSE

LET fetch_dir = using_prior

END IF

COMMAND "Last" "Display final customer in selected set."

HELP 136

FETCH LAST c_custrid INTO curr_rid

IF disp_row(curr_rid) = FALSE THEN

EXIT MENU

END IF

26 ➤ LET scroll_pos = 0 -- position now relative to last row

HIDE OPTION "Next" -- can’t go onward from here

FETCH PRIOR c_custrid INTO prior_rid

LET fetch_dir = using_prior

IFSQLCA.SQLCODE = 0 THEN -- at least 2 rows in set

SHOW OPTION "Prior" -- it might have been hidden

NEXT OPTION "Prior"

ELSE -- only 1 row in set

HIDE OPTION "Prior"

NEXT OPTION "Query"

END IF

COMMAND "Update" "Modify contents of current row."

HELP 137

CALL upd_row(curr_rid)

EXIT MENU -- force cursor to reopen

616 Displaying Menu Options Dynamically

The disp_row() Function

The disp_row() Function
27 ➤ The disp_row() function takes a row ID, fetches the column values for that

row, and displays them in the screen form. The function checks for stale data
and, if it is found, displays nothing and returns FALSE. The caller function
then knows that the scroll cursor should be resynchronized.

28 ➤ The SELECT statement combines the query condition with a request for a
specific row ID. The row ID was produced using the same initial query
conditions. If the row no longer matches this condition, it must have been
updated by another user.

29 ➤ This is the expected and usual result: a return code of zero from the FETCH

indicates that the row was found.

30 ➤ An SQL code of NOTFOUND means that one of the WHERE clauses failed.

Either there is no row with this row ID (it must have been deleted) or else it
does not match the criteria it matched previously, when the scroll cursor was
opened.

Example 27 617

The disp_row() Function

COMMAND "Delete" "Delete the current row."

HELP 138

IF "Yes" = answer("Are you sure you want to delete this?",

"Yes","No","")

THEN

CALL del_row(curr_rid)

CLEAR FORM

END IF

CLOSE c_custrid

NEXT OPTION "Query"

COMMAND KEY(INTERRUPT,"E") "Exit" "Exit program."

HELP 100

LET retval = FALSE

EXIT MENU

END MENU

CLOSE c_custrid

END WHILE -- while retval neither FALSE nor TRUE

RETURN retval

END FUNCTION -- scroller_3 --

27 ➤ FUNCTION disp_row(rid)

DEFINE rid INTEGER,

 err, ret

get_sel
SMALLINT,

CHAR(500)

28 ➤ LET get_sel = "SELECT * FROM customer",

" WHERE ROWID = ", rid,

" AND ", m_querycond CLIPPED

PREPARE prep_get FROM get_sel

DECLARE c_getrow CURSOR FOR prep_get

OPEN c_getrow

WHENEVER ERROR CONTINUE

FETCH c_getrow INTO mr_currcust.*

LET err = SQLCA.SQLCODE

WHENEVER ERROR STOP

CLOSE c_getrow

FREE c_getrow

LET ret = TRUE -- assume it will work
CASE err

29 ➤ WHEN 0 -- good, got the data

DISPLAY BY NAME mr_currcust.*

30 ➤ WHEN NOTFOUND -- row deleted or changed beyond recognition

ERROR "Selected row no longer exists -- resynchronizing"

SLEEP 2

LET ret = FALSE

618 Displaying Menu Options Dynamically

The upd_row() Function

31 ➤ Negative return codes are unlikely. However, if one occurs, this function
should not return FALSE. To do so would cause the cursor to be closed and
reopened, after which this function would be called again with the same row
ID, possibly resulting in an endless loop.

The del_row() Function
32 ➤ The del_row() function accepts a row ID and deletes it, provided that it still

matches the original query criteria. It does not impose a stringent test. (The
original criteria might be no more than “customer_num > 1”). Furthermore,
it takes no account of the dependencies in other tables on rows of this table.
Before a customer row is deleted, any orders with the same customer number
should be deleted, and before an order is deleted, its items should be deleted.

33 ➤ As in the preceding function, the prior query condition is appended to the
row ID value to create the WHERE clause.

34 ➤ Because of the use of the row ID, the DELETE operation will affect either one
row or none. Testing this number for 1 is equivalent to testing SQLCODE for
zero.

35 ➤ Use of either COMMIT WORK or ROLLBACK WORK will close all cursors,
including the scroll cursor.

The upd_row() Function
36 ➤ The upd_row() function lets the user update a row. It performs the following

actions:

1. Input is accepted in all fi except the primary key.

2. The user is asked for confirmation.

3. The row is fetched again and verified as unchanged.

4. The update is performed.

Example 27 619

The del_row() Function

31 ➤ OTHERWISE -- locked row? hardware error?

ERROR "SQL error ",err," fetching row."

SLEEP 2 -- leave screen unchanged, return TRUE, avoiding a loop

END CASE

RETURN ret

END FUNCTION -- disp_row --

32 ➤ FUNCTION del_row(rid)

DEFINE rid INTEGER,

ret SMALLINT,

del_stm CHAR(500)

33 ➤ LET del_stm = "DELETE FROM customer",

" WHERE ROWID = ", rid,

" AND ", m_querycond CLIPPED

PREPARE prep_del FROM del_stm

CALL begin_wk() -- do BEGIN WORK if supported

WHENEVER ERROR CONTINUE

EXECUTE prep_del

34 ➤ LET ret = SQLCA.SQLERRD[3] -- count of rows deleted, should be 1
WHENEVER ERROR STOP

IF ret = 1 THEN -- good, deleted that row

35 ➤ CALL commit_wk() -- make it official

ELSE -- bad, no row deleted

ERROR "SQL problem, delete not done -- resynchronizing"

CALL rollback_wk() -- end failed transaction

SLEEP 3

END IF

FREE prep_del

END FUNCTION -- del_row --

36 ➤ FUNCTION upd_row(rid)

DEFINE rid INTEGER,

reject, touched SMALLINT,

rejmsg CHAR(80),

pr_updcust RECORD LIKE customer.*,

pr_testcust RECORD LIKE customer.*,

cust_cnt SMALLINT

LET pr_updcust.* = mr_currcust.*

LET int_flag = 0

CALL clear_lines(2, 16)

DISPLAY " Enter new data and press Accept to update."

AT 16, 1 ATTRIBUTE (REVERSE, YELLOW)

620 Displaying Menu Options Dynamically

The upd_row() Function

37 ➤ The user is explicitly not allowed to enter a new customer number.

38 ➤ This AFTER FIELD clause performs a very simple validation for the state code.
A more complete verification might provide a popup window with a list of
valid codes from the state table. See the AFTER FIELD clause for the state field
in the addupd_cust() function in Example 9 for this more complete
verification.

39 ➤ The built-in FIELD_TOUCHED() function takes a list of screen fi and
returns TRUE if any were modified.

40 ➤ A series of tests within an IF statement ensures that the update is valid and
sets reject to TRUE if it is not. The first test is to see if the user ended the INPUT

operation with the Accept key (typically ESCAPE) rather than Interrupt
(typically CONTROL-C). The second is to make sure at least one fi was
modified. If these are so, then the user is asked for confirmation.

41 ➤ If those tests succeed, a transaction is begun and the row is fetched once
more. This SELECT statement tests only the row ID. The column values will
be checked later using program code. The cursor specifies FOR UPDATE, so
the server locks the row that is fetched.

Example 27 621

The upd_row() Function

DISPLAY " Press Cancel to exit without changing database."

AT 17, 1 ATTRIBUTE (REVERSE, YELLOW)

37 ➤ INPUT BY NAME pr_updcust.company, pr_updcust.address1, pr_updcust.address2,

pr_updcust.city, pr_updcust.state, pr_updcust.zipcode,

pr_updcust.fname, pr_updcust.lname, pr_updcust.phone

WITHOUT DEFAULTS

38 ➤ AFTER FIELD state

IF pr_updcust.state IS NULL THEN

ERROR "You must enter a state code. Please try again."

NEXT FIELD state

END IF

SELECT COUNT(*)

INTO cust_cnt

FROM state

WHERE code = pr_updcust.state

IF(cust_cnt = 0) THEN

ERROR

"Unknown state code. Please try again."

LET pr_updcust.state = NULL

NEXT FIELD state

END IF

AFTER INPUT

39 ➤ LET touched = FIELD_TOUCHED(fname,lname,company,

address1,address2,

city,state,

zipcode,phone)

END INPUT

40 ➤ IF int_flag THEN

LET rejmsg = "Update cancelled at your request -

resynchronizing." LET reject = TRUE

ELSE

IFNOT touched THEN

LET rejmsg =

"No data entered so database unchanged - resynchronizing."

LET reject = TRUE

ELSE

IF "No" = answer("OK to go ahead and update the database?",

"Yes","No","")

THEN

LET rejmsg = "Database not changed - resynchronizing."

LET reject = TRUE

END IF

END IF

END IF

IF NOT reject THEN

41 ➤ CALL begin_wk()

622 Displaying Menu Options Dynamically

The upd_row() Function

42 ➤ This IF statement applies two tests:

• The fi part tests whether the row was successfully fetched for update.

• The second part tests whether the fetched row is identical in every field
to the row that previously was displayed.

The second test requires a verbose expression. 4GL does not allow compari-
son between whole record variables. Neither pr_testcust=mr_currcust nor
pr_testcust.*=mr_currcust.* is permitted, so the fi must be compared
individually. In this case, some of the fi may contain null values, and
nulls do not compare as equal. Therefore the like() function from Example 24
is used to find out if the fields are both null or else equal in non-null contents.

43 ➤ The UPDATE statement assigns the values in the pr_updcust record to the
current customer row. When you use the * notation in an update statement,
the program knows not to update the serial column.

44 ➤ An error at this point is very unlikely because the row was successfully
fetched and locked previously, and the user is known to have the Update
privilege. The UPDATE statement is not covered by WHENEVER ERROR CON-

TINUE, so if it should fail, the program would terminate and the transaction
would be rolled back automatically. Hence the unconditional call to
commit_wk() is valid.

Example 27 623

The upd_row() Function

WHENEVER ERROR CONTINUE

DECLARE c_updrow CURSOR FOR

SELECT * INTO pr_testcust.* FROM customer

WHERE ROWID = rid

FOR UPDATE

OPEN c_updrow

FETCH c_updrow

WHENEVER ERROR STOP

42 ➤ IF SQLCA.SQLCODE = 0

AND pr_testcust.customer_num = mr_currcust.customer_num

AND like(pr_testcust.fname,mr_currcust.fname)

AND like(pr_testcust.lname,mr_currcust.lname)

AND like(pr_testcust.company,mr_currcust.company)

AND like(pr_testcust.address1,mr_currcust.address1)

AND like(pr_testcust.address2,mr_currcust.address2)

AND like(pr_testcust.city,mr_currcust.city)

AND like(pr_testcust.state,mr_currcust.state)

AND like(pr_testcust.zipcode,mr_currcust.zipcode)

AND like(pr_testcust.phone,mr_currcust.phone)

THEN

UPDATE customer SET fname = pr_updcust.fname,

lname = pr_updcust.lname,

company = pr_updcust.company,

address1 = pr_updcust.address1,

address2 = pr_updcust.address2,

city = pr_updcust.city,

state = pr_updcust.state,

zipcode = pr_updcust.zipcode,
phone = pr_updcust.phone

43 ➤ WHERE CURRENT OF c_updrow

44 ➤ CALL commit_wk()

MESSAGE "Database updated - resynchronizing."

ELSE

LET rejmsg = "SQL problem updating row - not done -

resynchronizing" LET reject = TRUE

CALL rollback_wk()

END IF

END IF

CALL clear_lines(2, 16)

IF reject THEN

ERROR rejmsg

END IF

END FUNCTION -- upd_row --

624 Displaying Menu Options Dynamically

The get_tab_auth() Function

The get_tab_auth() Function
45 ➤ The get_tab_auth() function returns the table-level privileges of the current

user for a specified table (or view). Privileges are encoded in the table systab-
auth. See the Informix Guide to SQL: Reference for details on the system catalogs
and the schema of the systables and systabauth tables.

Briefly, the privileges are encoded as a string of seven letters. Each letter
stands for one privilege. If the user lacks the privilege, there is a hyphen
rather than a letter in that position. A user might have more than one grant
of privileges, and also inherits any privileges granted to the public. This func-
tion produces the logical superset of all grants that apply to the current user
on the specified table.

46 ➤ In an ANSI-compliant database, table names may be qualified with owner
names. The following passage checks the function argument for an owner
name and pulls it out to a separate variable.

47 ➤ The systables table maps owner names and table names to table ID numbers.
The following lines try to retrieve theTabid for the table name in the
argument.

48 ➤ No owner name was given, and if the database is not ANSI-compliant, none
is needed; table names will be unique. But in an ANSI-compliant database
there could be two or more tables with the same name and different owners.
In this case SELECT would cause an error by producing more than one row.
To prevent this, select the MIN of what is expected to be a set of 1.

49 ➤ The name tabname is both a variable and a column in systables. The prefix @

specifies that the column is intended here.

50 ➤ The combination of owner name and table name is unique in any database,
so no MIN is needed here.

51 ➤ Table ID numbers for user-defined tables start at 100. If theTabid is less, either
the caller passed the name of a system table or, more likely, the table name
was not found so the initial value of -1 in theTabid has not been changed.
Definitions of the two functions called in this statement follow.

Example 27 625

The get_tab_auth() Function

45 ➤ FUNCTION get_tab_auth(tabname)

DEFINE tabname CHAR(32), -- allow "owner.tabname"

theTable LIKE informix.systables.tabname, -- tablename part of above

theOwner LIKE informix.systables.owner, -- ownerid part, if any

theTabid LIKE informix.systables.tabid, -- tabid from systables

auth LIKE informix.systabauth.tabauth, -- final authorization string

j,k SMALLINT

46 ➤ LET theOwner = NULL -- assume owner not included

FOR j = 1 to LENGTH(tabname) - 1

IFtabname[j] = "." THEN

EXIT FOR

END IF

END FOR

IFtabname[j] = "." THEN -- is an "owner." part, extract

LET theOwner = tabname[1,j-1] -- save "owner" omitting "."

LET k = LENGTH(tabname) -- not allowed in subscript!

LET tabname = tabname[j+1,k] -- drop "owner."

END IF

LET theTable = tabname CLIPPED

LET auth = "-------" -- assume no privileges at all

LET theTabid = -1 -- sentinel value in case no such table

47 ➤ IF theOwner IS NULL THEN

48 ➤ SELECT MIN(tabid) INTO theTabid

FROM informix.systables

49 ➤ WHERE @tabname = theTable

ELSE

50 ➤ SELECT tabid INTO theTabid

FROM informix.systables

WHERE @tabname = theTable

AND owner = theOwner

END IF

51 ➤ IF theTabid >= 100 THEN -- table exists & is user-defined

LET auth = merge_auth(sel_merged_auths(get_user(), theTabid),

sel_merged_auths("public", theTabid))

END IF

RETURN auth

END FUNCTION -- get_tab_auth --

626 Displaying Menu Options Dynamically

The merge_auth() Function

The sel_merged_auths() Function
52 ➤ The primary key of systabauth is composed of grantor, grantee, and table

name. That is, a given grantee may have more than one grant of privilege
with respect to a given table. For example, one from the table’s owner and
one from a database administrator. This function finds all grants for one user
and one table and returns their superset. It uses a FOREACH loop to retrieve
the rows of systabauth.

The merge_auth() Function
53 ➤ The merge_auth() function merges two privilege strings. In its output it

preserves letters in preference to hyphens (privileges over lack of privilege)
and uppercase letters in preference to lowercase (privileges WITH GRANT

OPTION over those without).

Example 27 627

The sel_merged_auths() Function

52 ➤ FUNCTION sel_merged_auths(userid,theTabid)

DEFINE userid LIKE informix.sysusers.username,

theTabid LIKE informix.systables.tabid,

allAuth, oneAuth LIKE informix.systabauth.tabauth

LET allAuth = "-------"

DECLARE c_authval CURSOR FOR

SELECT tabauth INTO oneAuth

FROM informix.systabauth

WHERE grantee = userid

AND tabid = theTabid

FOREACH c_authval

LET allAuth = merge_auth(allAuth,oneAuth)

END FOREACH

CLOSE c_authval

RETURN allAuth

END FUNCTION -- sel_merged_auths --

53 ➤ FUNCTION merge_auth(oldauth,newauth)

DEFINE oldauth, newauth LIKE informix.systabauth.tabauth,

k SMALLINT

FOR k = 1 to LENGTH(oldauth)

IF (oldauth[k] = "-") -- no privilege in this position

OR (UPSHIFT(oldauth[k]) = newauth[k]) -- new is "with grant option"

THEN

LET oldauth[k] = newauth[k]

END IF

END FOR

RETURN oldauth

END FUNCTION -- merge_auth --

To locate any function definition, see the Function Index on page 730.

628 Writing Recursive Functions

28
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

 28.Writing Recursive Functions

29.Generating Mailing Labels
30.Generating a Schema Listing

Example 28 629

Writing Recursive
Functions

4GL supports recursion, although with some restrictions. The program in this
example demonstrates recursion with two different algorithms related to
“bill of materials processing,” that is, processing items that have a parent-
child relationship.

Representing Hierarchical Data
Many kinds of data have a naturally hierarchical structure: family bloodlines,
business organizations, computer subroutine libraries, and assemblies of
manufactured parts. Such data is often displayed as a tree, as in the following
example.

The component parts of a product appear in the diagram. The product is a
large red wagon, which is composed of a wagon handle assembly, an 18-inch fixed
axle, and so on. The boxes represent objects; the vertical lines represent the
relationship “is contained in” or “contains,” depending on the direction of
travel. Some of the parts are themselves assemblies, although not all parts are
shown here.

Representing Hierarchical Data

630 Writing Recursive Functions

Red

R
ed

Red

Large red
wagon

Wagon handle
assembly

18-in fixed axle 18-in swivelling
axle assembly

Red wagon
decal kit

Large wagon
body pan

Wheel pair
assembly

18-in axle rod

With a few changes, the same figure could represent the table of organization
of the personnel of a bank. Then the vertical lines would represent “super-
vises” or “reports to.”

The same data can be represented in a table that specifies parent-child
relationships.

Representing Hierarchical Data

Example 28 631

Parent

Large red wagon
Child

Wagon handle assembly
Count

1
Large red wagon 18-inch fixed axle 1
18-inch fixed axle Wheel pair assembly 1
Wheel pair assembly 9-inch rubber wheel 2
Wheel pair assembly Plastic end cap 2
18-inch fixed axle 18-inch axle rod 1
Large red wagon 18-inch swivelling axle assembly 1
Large red wagon Large wagon body pan 1
Large red wagon Red wagon decal kit 1

This table contains more information than the preceding diagram; it contains
a count of the number of child parts of each type. A large red wagon contains
one 18-inch fixed axle, which contains one wheel pair assembly, which in turn
contains two 9-inch rubber wheel parts.

In a relational database, a table such as this is the natural way to represent
hierarchical data. As a practical matter, it would be a waste of space to store
so many redundant copies of a title such as “Large red wagon.” But that prob-
lem is easily handled by giving each unique part a numeric key, and storing
the descriptive titles just once in a table with other descriptive data.

Parent

76566
Child

76549
Count

1
76566 76561 1 (table PARTREE)
76561 76559 1
76559
…

76547 2

Part Description

76566 Large red wagon (table PARTS)
76569
…

Wagon handle assembly

It is easy to formulate some queries against this type of table. For example,
what are the top-level assemblies? They are the ones that are not part of any
other assembly; that is, they never appear in the Child column.

SELECT part, description FROM PARTS

WHERE 0 = (

SELECT COUNT(*) FROM PARTREE

WHERE PARTS.part = PARTREE.child)

632 Writing Recursive Functions

The Parts Explosion Problem

The unit parts (the ones that have no components) are the parts that never
appear in the Parent column. A similar query could list them.

The Parts Explosion Problem
It is also simple to ask a question such as, what are the components of a large
red wagon? They are the parts that have large red wagon as their parent.

SELECT part, description FROM PARTS main, PARTREE

WHERE main.part = PARTREE.child

AND PARTREE.parent = (

SELECT part FROM PARTS sub

WHERE sub.description = "Large red wagon")

But this only lists the parts that are the immediate children of 76566, “Large
red wagon.” The immediate children are the ones that are directly connected
to large red wagon in the tree, the five that appear on the second row of the
tree diagram. In order to list all the parts of a large red wagon you must list
not only its immediate children, but also their immediate children, and the
children of those parts, and so on through the generations until only unit
parts remain. Here is a portion of such a list, as generated by this example.

076566 (1) large red wagon

076549 (1) wagon handle assembly

076540 (1) speed nut #8
076542 (1) plastic end cap
076550 (1) wagon handle
076551 (1) handle clevis pin

076561 (1) 18-in fixed axle

076559 (1) wheel pair assembly

t

076560 (1) 18-in axle rod

076563 (1) 18-in swivelling axle assembly

076556 (1) swivel mount kit

076546 (2) bracket mount kit

076543 (2) stove bolt

076541 (2) speed nut #2
076542 (2) plastic end cap
076546 (2) bracket mount kit

076543 (2) stove bolt
076544 (2) flat washer
076545 (2) nut

076547 (2) 9-in rubber wheel
076557 (1) axle bracket left
076558 (1) axle bracket righ

Example 28 633

The Parts Explosion Problem

The Parts Explosion in 4GL
A listing of this sort is called a parts explosion. Producing a parts explosion is
a recursive task. Its logic could be sketched as follows.

Function explode(part,level)

List the details of part, indented by level

For each child of part

call explode(child,level+1)

End for

End function

A call to explode(76566,0) would produce an explosion of the parts in a large
red wagon. It remains only to implement the two lines “List the details of
part…” and “For each child of part…” The first can be done most simply with
a report function.

Given the tables shown on page 631, the natural way to implement “For each
child of part…” would seem to be with a cursor and a FOREACH loop, some-
thing like this fragment (which will not work).

DECLARE c_kid CURSOR FOR

SELECT child FROM PARTREE WHERE parent = part

FOREACH c_kid

CALL explode(kid,level+1)

This is not a workable solution. The reason is that the data structures used to
implement a cursor are static objects. Even though the cursor is declared
within the body of a function, it is not local to that function; it is a module
variable.

If this function were actually implemented, it would fail in the following
way: on the first call, the FOREACH statement would open the cursor and
produce the first child of the top-level part. The function would then call
itself. The FOREACH statement would again OPEN the cursor. Opening a
cursor that is open causes it to be closed (losing the position of the top-level
function) and reopened.

The second-level function would read its first child number and call itself at
a third level, where the cursor would be closed and reopened, and so on until
a level was reached at which there were no child parts. Here the FOREACH

loop would find no data on the first fetch, and would end, closing the cursor.

Each calling function would then get an error when its copy of the FOREACH

loop tried to fetch the next row from a closed cursor.

634 Writing Recursive Functions

The Parts Inventory

To summarize this explanation: When using a cursor within a recursive
function, you cannot keep the cursor open across the recursive function call.
It must be used in one of two ways:

1. Opened before the first recursive call and not closed until the recursion
has ended.

2. Opened, used completely, and closed again at each level of the recursion.

In this example, the second method is used for the parts explosion. At each
level, before the recursive call takes place, the cursor is opened, all relevant
rows are fetched and saved in an array, and the cursor is closed.

The Parts Inventory
The parts explosion answers the question, what are the component parts of a
large red wagon? As an assembly list, it shows all the parts in the order they
would be assembled, and it shows sub-assemblies. A related question is,
what is the inventory of parts that compose a large red wagon? The inventory
is a summary of the parts explosion. It shows only the unit parts required,
along with a total of the number of times each is used. For example, the parts
explosion shows the use of a fixed axle and a swivelling axle assembly, each
containing two 9-inch rubber wheel parts. The parts inventory would show
only that a total of four of the wheels are needed somewhere in the product.
Here is part of an inventory report as generated by the example:

Unit parts used in large red wagon (076566)

1 of speed nut #8 (076540)

4 of speed nut #2 (076541)

5 of plastic end cap (076542)

12 of stove bolt (076543)

12 of flat washer (076544)

12 of nut (076545)

4 of 9-inch rubber wheel (076547)

1 of wagon handle (076550)

Example 28 635

The Parts Inventory

One way to produce an inventory is to “walk” the tree recursively using logic
that can be sketched as follows:

FUNCTION inventory(part,count)

IF part has children THEN

FOR each child of part which is used child-count times,

CALL inventory(child,count * child-count)

END FOR

ELSE it is a unit part,

Tally the use of count units of part.

END IF

END FUNCTION

The Inventory Report in 4GL
The method of implementing the loop over all child parts is the same as in
the parts explosion. In this problem, the interesting question is, how best to
keep a tally of parts? The units will be found in the order they appear in the
parts explosion. It will be as if you were keeping a tally on a pad while an
assistant called out numbers to you: “A speed nut…two wheels…four
bolts…another speed nut.”

The parts will not be encountered in any particular order. Neither the number
of total entries nor the number of unique parts can be known in advance.
Indeed, in some applications there might be hundreds of each. After all the
unit parts have been tallied, it will be necessary to sort them by part and accu-
mulate the totals.

The usual programming solution to a problem of this kind is to list all the unit
parts in an array as they are found, and then to sort the array. However, sort-
ing and summing are particular skills of the SQL database server. Why not
call upon them? So this example stores each unit part in a temporary table in
the database. When the entire tree has been scanned, a final phase of the pro-
gram opens a cursor on the temporary table. It uses a SELECT statement with
the GROUP BY and ORDER BY clauses so that it can simply read the summary
lines from the table in the order they should be printed.

This approach clearly takes more time to execute than would a program with
an in-memory table. The clause WITH NO LOG is used when creating the tem-
porary table to ensure the minimum amount of disk activity. Even so, there is
a call to the database server for each item to be tallied, and this is many times
as lengthy as an assignment to an array. The compensating benefits are

636 Writing Recursive Functions

Function Overview

program simplicity and the speed with which the example is implemented.
Nevertheless, a production program to be used repeatedly would probably
implement an in-memory array and sort.

Function Overview

Function Name Purpose

explode_all() Starts the report for the parts explosion listing, then calls the
recursive function explode() once for each top-level part.

explode() Recursive function that writes a parts explosion for one part.

kaboom() Report function that produces the parts explosion listing.

inventory_all() Starts the report for the inventory listing, then calls the
recursive function inventory() once for each top-level part.

inventory() Recursive function that writes an inventory for one part.

inven_rep() Report function that produces the inventory listing.

pushkids() Finds all child parts of a given part and pushes their numbers
and use counts onto a stack in memory. Returns the number
of child parts stacked for use as a loop count.

pop_a_kid() Pops one child part number and count from stack.

set_up_tables() Creates and loads the PARTS and PARTREE tables used by
the code example.

tear_down_tables() Removes PARTS and PARTREE tables so as to restore the
database to its original condition.

Example 28 637

Function Overview

638 Writing Recursive Functions

The explode_all() Function

The MAIN Function
1➤ The ma_kidstack array is a stack that holds the unprocessed child parts for

all recursive levels. The index m_nextkid points to top-of-stack. The function
pushkids() (Note 20) adds parts to the stack, and pop_a_kid() (Note 23)
removes one. These are module variables (variables defined outside any
function but not in a GLOBALS section). If the functions were in a separate
source module, which would probably be the case if they were used in more
than one program, the variables would be global.

2➤ The set_up_tables() function prompts the user for the name of a database,
creates the PARTS and PARTREE tables, and loads them from a text file
distributed with the source.

3➤ The c_parent cursor is used to drive both functions. The method of identify-
ing top-level parts by using a subquery to count the number of rows in which
each candidate part appears as a child, is not as slow as might be supposed.
An index should be placed on the child column in a production database. The
database server will read only the index while executing the subquery.
Because index pages are often found in page buffers in memory, many, if not
most, of the subqueries will require no disk I / O.

The explode_all() Function
4➤ The first part of the explode_all() function starts the explosion report to a

user-specified destination. If the user does not enter a filename, the program
sends the report output to the screen.

Example 28 639

The MAIN Function

--*Module variables

1➤ DEFINE ma_kidstack ARRAY[200] OF INTEGER, -- two items per pushed kid

m_nextkid SMALLINT, -- MUST BE INITIALIZED TO ZERO

m_theDb, m_fpath CHARACTER(80)

MAIN

2➤ CALL set_up_tables() -- exits program unless tables are ok

LET m_nextkid = 0

3➤ DECLARE c_parent CURSOR FOR

SELECT DISTINCT mainq.parent

FROM PARTREE mainq

WHERE 0 = (SELECT COUNT(*)

FROM PARTREE subq

WHERE subq.child=mainq.parent)

CALL explode_all() -- parts explosion for all parents

CALL inventory_all() -- parts inventory for all parents

CALL tear_down_tables() -- offers to remove tables & does

END MAIN

4➤ FUNCTION explode_all()

DEFINE dada INTEGER

DISPLAY ""

DISPLAY ""

DISPLAY "DEMONSTRATING PARTS EXPLOSION"

DISPLAY ""

DISPLAY "Specify a filename to receive the parts explosion

report" DISPLAY " file or just press RETURN for report to the

screen." DISPLAY ""

PROMPT "File: " FOR m_fpath

DISPLAY ""

DISPLAY “Generating the file “, m_fpath CLIPPED, “. Please

wait...” DISPLAY ""

IFLENGTH(m_fpath) = 0 THEN

START REPORT kaboom

ELSE

START REPORT kaboom TO m_fpath

END IF

4GL source file

640 Writing Recursive Functions

The explode() Function

5➤ The function opens the c_parent cursor declared in the MAIN program, and
then calls the explode() recursive function for each top-level part.

The explode() Function
6➤ The explode() function works with the kaboom() report function to

implement the recursive display of the parts explosion.

7➤ The function finds the description for the current part and then sends the part
information to the kaboom() report function to be printed.

6➤ The pushkids() function finds all the child parts of the current part. It
“pushes” these parts onto the stack, implemented by the ma_kidstack array.
This function returns the number of child parts.

The pushkids() function uses a cursor over the PARTREE table to find all child
parts of part pn. If a cursor was an object with local scope, it could be defined
here and the following loop would use a FOREACH loop. Because this is not
the case, as discussed in “The Parts Explosion in 4GL” on page 633, it is nec-
essary to open the cursor, read all the rows it finds (child parts), save them on
a stack, and close the cursor before beginning the recursion.

9➤ For each of the child parts, the explode() function:

1. Calls the pop_a_kid() function to take a single part off the top of the
ma_kidstack array and return the part number and the number of times
this part is used.

2. Decrements the number of child parts remaining on the stack.

3. Calls itself (the recursive call) to perform the same procedure on the child
part.

The recursion on a top-level part stops when there are no more child parts left
for this part.

Example 28 641

The explode() Function

5➤ FOREACH c_parent INTO dada

CALL explode(dada,1,0) -- used once at level 0

END FOREACH

FINISH REPORT kaboom

END FUNCTION -- explode_all --

6➤ FUNCTION explode(pn,pu,ln)

DEFINE pn INTEGER, -- this part number

pu INTEGER, -- number of times used at this level

ln INTEGER, -- level in the tree

nkids SMALLINT, -- number of children pn has

kn INTEGER, -- part number of one kid

ku INTEGER, -- its usage count

pdesc CHAR(40) -- description of pn

7➤ SELECT descr INTO pdesc

FROM PARTS

WHERE partnum = pn

OUTPUT TO REPORT kaboom(pn,pdesc,pu,ln) -- list current part

8➤ CALL pushkids(pn) RETURNING nkids -- get, save all its children

9➤ WHILE nkids > 0

CALL pop_a_kid() RETURNING kn, ku

LET nkids = nkids - 1

CALL explode(kn,ku,ln+1) -- here’s the recursion!

END WHILE

END FUNCTION -- explode --

642 Writing Recursive Functions

The inventory_all() Function

The kaboom() Report Function
10 ➤ The report function uses the recursive level in two ways. In this statement,

it prints an extra line of space before a top-level part. In the next, it prints
indenting spaces to match the level number.

The inventory_all() Function
11 ➤ Like the explode_all() function, the inventory _all() function starts the report

to a user-specified destination and then applies the recursive function, in
turn, to each top-level part.

12 ➤ The function opens the c_parent cursor declared in the MAIN program a
second time, and then calls the inventory() recursive function for each top-
level part.

Example 28 643

The kaboom() Report Function

REPORT kaboom(part,desc,use,level)

DEFINE part INTEGER,
 desc CHAR(40),

 use INTEGER,

 level

j

INTEGER,

SMALLINT

FORMAT

PAGE HEADER

PRINT COLUMN 20, "PARTS EXPLOSION REPORT - PAGE",

PAGENO USING "###"

PRINT COLUMN 30, TODAY

SKIP 3 LINES

ON EVERY ROW

10 ➤ IF level = 0 THEN

PRINT -- blank line before each parent

END IF

FOR j = 1 TO level

PRINT 4 SPACES; -- indent to show recursive levels

END FOR

PRINT part USING "&&&&&&","

(",use USING "---",") ",desc CLIPPED

END REPORT

11 ➤ FUNCTION inventory_all()

DEFINE papa INTEGER

DISPLAY "DEMONSTRATING PARTS USAGE INVENTORY"

DISPLAY ""

DISPLAY "Specify a filename to receive the inventory report"

DISPLAY " file or just press RETURN for report to the screen."

DISPLAY ""

PROMPT "File: " FOR m_fpath

DISPLAY "Generating the file ", m_fpath CLIPPED, ". Please

wait..." DISPLAY ""

IFLENGTH(m_fpath) = 0 THEN

START REPORT inven_rep

ELSE

START REPORT inven_rep TO m_fpath

END IF

12 ➤ FOREACH c_parent INTO papa-- for each top-level part

CALL inventory(papa,0)-- this assembly used 0 times

END FOREACH

644 Writing Recursive Functions

The inventory() Function

The inventory() Function
13 ➤ The input to the inventory() function is a part number and the count of that

part that is needed. If the part proves to be a unit part, it must be tallied in the
temp table. If not, this function should be applied to each of its component
parts.

14 ➤ The tally must be initialized for each top-level part. A part count of zero is
passed as a flag, alerting the function that this is a top-level part and it should
initialize the temporary table at the start, and produce the report at the end.
Such special cases are not aesthetically pleasing. You might prefer to rewrite
this function, moving the setup and reporting passages out to the
inventory_all() function where they arguably belong.

15 ➤ This is the point at which a unit part is tallied by inserting a row in the table.

16 ➤ The recursion for a composite part takes place at this point in the code.

17 ➤ After processing a top-level part so all recursions have been unwound, lines
are generated for the inventory report. First a heading for the top-level part
is generated, and then the summarized rows of the table.

18 ➤ All of the work in this report is being done in the SELECT statement. Note that
the temporary table is being joined to the PARTS table to pick up descriptions.

Suppose that the PARTS table also contained a cost field. It would be simple
to select a total cost for each unique unit part.

Example 28 645

The inventory() Function

FINISH REPORT inven_rep

END FUNCTION -- inventory_all --

13 ➤ FUNCTION inventory(pn,un)

DEFINE pn INTEGER, -- major assembly to inventory
 un INTEGER, -- quantity needed (0 means top level)

nkids SMALLINT, -- number of progeny of pn

mulfac SMALLINT,-- quantity of part pn needed

kn INTEGER, -- one child

ku INTEGER, -- number of parts kn in one part pn

desc CHAR(40) -- one descriptor

14 ➤

LET mulfac = un

-- usually true except for kludge:

 IF un = 0 THEN -- this is top-level call, initialize temp table
CREATE TEMP TABLE invenTemp (partnum INTEGER, used INTEGER)

WITH NO LOG

LET mulfac = 1 -- even parent is used once

END IF

CALL pushkids(pn) RETURNING nkids-- stack all children

IF nkids = 0 THEN -- part pn is noncomposite: count it

15 ➤ INSERT INTO invenTemp VALUES(pn,mulfac)

ELSE -- part pn is an assembly, inventory it

WHILE nkids > 0 -- by inventorying each of its kids

CALL pop_a_kid() RETURNING kn, ku

LET nkids = nkids - 1

16 ➤ CALL inventory(kn,ku*mulfac) -- recurse!

END WHILE

END IF

IF un = 0 THEN -- this is a top level call, now do the report

17 ➤ SELECT descr INTO desc

FROM PARTS

WHERE partnum = pn

OUTPUT TO REPORT inven_rep(pn,0,desc)

18 ➤ DECLARE c_unitpart CURSOR FOR -- scanning the temp table

SELECT t.partnum, SUM(t.used), p.descr

INTO kn,ku,desc

FROM invenTemp t, PARTS p

WHERE t.partnum = p.partnum

GROUP BY t.partnum, p.descr

ORDER BY t.partnum

FOREACH c_unitpart

OUTPUT TO REPORT inven_rep(kn,ku,desc)

END FOREACH

646 Writing Recursive Functions

The pushkids() Function

The inven_rep() Report Function
19 ➤ The inven_rep() function receives rows passed by the inventory() function

and prints a line of the Inventory report.

The pushkids() Function
20 ➤ The pushkids() function pushes the component parts of a given part on a

stack. It would benefit from some additional code:

• You could add safeguards against running off the end of the stack.

• You could add code to measure and report the stack high-water mark so
that you could tune the size of the global array over time.

21 ➤ The c_kid cursor obtains the child parts for a specified parent part. In a
production system there should be an index on at least the parent column. In
that case, the set of rows with parent=pn could be found very quickly. The
ORDER BY clause is not strictly necessary at this point. It ensures that child
parts are pushed from largest to smallest number, and hence that they are
popped by the calling function in numeric sequence. This makes the reports
come out sorted. However, it would be better to remove the sort from such a
heavily used SQL operation if possible. The sorting could be done at other
stages of processing.

The simplest solution might be to sort the numbers on the stack in this very
function. The number of child parts pushed at any level is not likely to be
large, so a simple insertion sort would be satisfactory, and probably much
faster than invoking the database server’s sort module on a small set of data.

Example 28 647

The inven_rep() Report Function

DROP TABLE invenTemp

END IF

END FUNCTION -- inventory --

19 ➤ REPORT inven_rep(part,use,desc)

DEFINE part, use INTEGER,
 desc CHAR(40)

FORMAT

PAGE HEADER

PRINT COLUMN 26, "INVENTORY REPORT - PAGE ",

PAGENO USING "###"

PRINT COLUMN 36, TODAY

SKIP 3 LINES

ON EVERY ROW

IFuse > 0 THEN-- not the top level part

PRINT use USING "####", " of ",desc,"

(", part USING "&&&&&&",")"

ELSE -- top level, do a control break

PRINT

PRINT "Base parts used in ",desc,

" (",part USING "&&&&&&",")"

PRINT

END IF

END REPORT -- inven_rep --

20 ➤ FUNCTION pushkids(pn)

DEFINE pn, -- parent number

kn, -- kid number

ku INTEGER, -- kid usage

oldtop SMALLINT -- save old stack top for counting number pushed

21 ➤ DECLARE c_kid CURSOR FOR -- all children of part pn

SELECT child, used INTO kn, ku

FROM PARTREE

WHERE parent = pn

ORDER BY child DESC

LET oldtop = m_nextkid

648 Writing Recursive Functions

The set_up_tables() Function

22 ➤ The c_kid cursor is opened, used, and closed again at each recursive level.

The pop_a_kid() Function
23 ➤ The pop_a_kid() function pops a single part from the stack implemented by

the ma_kidstack array. These parts are pushed onto this stack by the push-
kids() function.

This function would benefit from additional code that checks for popping
from an empty stack.

The set_up_tables() Function
24 ➤ The function prompts for the name of the database containing the PARTS and

PARTREE tables. These tables contain the part information used by this exam-
ple. If the user does not enter a database name, the program assumes it will
need to create these tables, so it prompts the user for the name of the database
in which to create them. By default, the program uses the stores7 database.

Example 28 649

The pop_a_kid() Function

22 ➤ FOREACH c_kid

LET m_nextkid = m_nextkid + 1

LET ma_kidstack[m_nextkid] = kn

LET m_nextkid = m_nextkid + 1

LET ma_kidstack[m_nextkid] = ku

END FOREACH

RETURN (m_nextkid - oldtop)/2

END FUNCTION -- pushkids --

23 ➤ FUNCTION pop_a_kid()

DEFINE kn, -- kid number from stack
 ku INTEGER -- kid usage from stack

LET ku = ma_kidstack[m_nextkid]

LET m_nextkid = m_nextkid - 1

LET kn = ma_kidstack[m_nextkid]

LET m_nextkid = m_nextkid - 1

RETURN kn, ku

END FUNCTION -- pop_a_kid --

FUNCTION set_up_tables()

DEFINE j, k SMALLINT,

afile CHAR(80)

WHENEVER ERROR CONTINUE -- don't crash if things don't exist

24 ➤ DISPLAY "DEMONSTRATING A RECURSIVE FUNCTION"

DISPLAY ""

DISPLAY "This program uses two tables named PARTS and PARTREE."

DISPLAY ""

DISPLAY "Please enter the name of a database where these tables"

DISPLAY " now exist. If they do not exist now, just press RETURN."

DISPLAY ""

PROMPT "Database name: " FOR m_theDb

DISPLAY ""

IF LENGTH(m_theDb CLIPPED) = 0 THEN

DISPLAY "Please enter the name of a database where we can create"

DISPLAY " those two tables. Press RETURN to use the stores7"

DISPLAY " database."

DISPLAY ""

PROMPT "Database name: " FOR m_theDb

DISPLAY ""

IF LENGTH(m_theDb) = 0 THEN

LET m_theDb = "stores7"

END IF

650 Writing Recursive Functions

The set_up_tables() Function

25 ➤ The DATABASE statement attempts to open the specified database. If this
open fails because the database does not exist (status = -329), the function
asks the user whether to create this database. If the user wants a new data-
base, the CREATE DATABASE statement creates it.

If the specified database exists but the DATABASE statement cannot open it,
the program notifies the user and exits.

26 ➤ Once the database is open, the program checks for the existence of the PARTS

and PARTREE tables. If these tables exist, the program prompts for the path-
name of the directory where the example’s load files can be found. These load
files are called ex28pa.unl for the PARTS table, and ex28pt.unl for the
PARTREE table. By default these files exist in the same directory as the other
application files.

Example 28 651

The set_up_tables() Function

25 ➤ DATABASE m_theDb

IF SQLCA.SQLCODE = -329 THEN

DISPLAY "Database ", m_theDb CLIPPED,

" does not exist (or if it does, you"

DISPLAY " do not have Connect privilege in it). We will try to"

DISPLAY " create the database."

DISPLAY ""

LET SQLCA.SQLCODE = 0 -- does create db not set this?

CREATE DATABASE m_theDb

IF SQLCA.SQLCODE = 0 THEN

DISPLAY "Database has been created."

DISPLAY ""

END IF

END IF

ELSE

DATABASE m_theDb

END IF

IF SQLCA.SQLCODE <> 0 THEN

DISPLAY "Sorry, error ",SQLCA.SQLCODE,

" opening or creating the database ",m_theDb CLIPPED

EXIT PROGRAM

END IF

26 ➤ LET j = 0 -- in case no table is there

LET k = 0

SELECT COUNT(*)

INTO j

FROM PARTS

SELECT COUNT(*)

INTO k

FROM PARTREE

IF 0 < (j*k) THEN -- both tables exist, have rows

DISPLAY "The needed tables do exist in this database. Thank you."

RETURN

END IF

-- at least one table does not exist or is empty

DISPLAY "To load the tables we need the file pathname for two files:"

DISPLAY " ex28pa.unl and ex28pt.unl"

DISPLAY " They came in the same directory as this program file."

DISPLAY ""

DISPLAY " Enter a pathname, including the final slash or backslash."

DISPLAY " If it is the current working directory just press RETURN."

DISPLAY ""

PROMPT "Path to those files: " FOR m_fpath

652 Writing Recursive Functions

The tear_down_tables() Function

27 ➤ If the PARTS and PARTREE tables do not exist, the program uses the CREATE

TABLE statement to create them. Because the WHENEVER ERROR STOP

statement precedes these CREATE TABLE statements, any error encountered
creates a runtime error.

This function could be enhanced to check for possible causes of failure for
each CREATE TABLE statement and to recover from them. This enhancement
would require moving the WHENEVER statement after the CREATE TABLE

statements and adding the appropriate error checking code to the program.

28 ➤ The LOAD statements load the data in the ex28pa.unl and ex28pt.unl files into
the PARTS and PARTREE tables.

The tear_down_tables() Function
29 ➤ The function asks the user whether to drop the PARTS and PARTREE tables

from the database. By dropping these tables, the program restores the data-
base to its state before this example was run.

30 ➤ If the database is empty once these two tables are dropped, the program asks
the user whether to drop the entire database. It determines whether the data-
base is empty by counting the number of tables defined in the system catalog
systables with table IDs greater than 99. User-defined tables have table IDs
that start with 100.

Example 28 653

The tear_down_tables() Function

WHENEVER ERROR STOP

27 ➤ CREATE TABLE PARTS(partnum INTEGER, descr CHAR(40))

DISPLAY "Table PARTS has been created."

CREATE TABLE PARTREE(parent INTEGER, child INTEGER, used INTEGER)

DISPLAY "Table PARTREE has been created."

DISPLAY ""

LET afile = m_fpath CLIPPED, "ex28pa.unl"

DISPLAY "Loading PARTS from ",afile CLIPPED

28 ➤ LOAD FROM afile INSERT INTO PARTS

DISPLAY "Table PARTS has been loaded."

DISPLAY ""

LET afile = m_fpath CLIPPED, "ex28pt.unl"

DISPLAY "Loading PARTREE from ",afile CLIPPED

LOAD FROM afile INSERT INTO PARTREE

DISPLAY "Table PARTREE has been loaded."

DISPLAY ""

END FUNCTION -- set_up_tables --

FUNCTION tear_down_tables()

DEFINE ans CHAR(1),
 j SMALLINT

DISPLAY "We can leave the PARTS and PARTREE tables for use again"

DISPLAY " (or for you to modify and experiment with), or we can"

DISPLAY " drop them from the database."
DISPLAY ""

29 ➤ PROMPT "Do you want to drop the two tables? (y/n): " FOR ans

IFans MATCHES "[yY]" THEN

DROP TABLE PARTS

DROP TABLE PARTREE

DISPLAY "Tables dropped."

30 ➤ SELECT COUNT(*) INTO j

FROM informix.systables

WHERE tabid > 99

IF j = 0 THEN -- no more tables left

DISPLAY "Database ",m_theDb CLIPPED," is empty now."

PROMPT "Do you want to drop the database also? (y/n): " FOR ans

654 Writing Recursive Functions

The tear_down_tables() Function

31 ➤ If the user chooses to drop the database, the program provides a confirmation
prompt. Dropping a database destroys all data and cannot be undone.

32 ➤ If the user does not want to drop the PARTS and PARTREE tables, the program
just exits.

Example 28 655

The tear_down_tables() Function

IFans MATCHES "[yY]" THEN

DISPLAY ""

31 ➤ DISPLAY "You have chosen to REMOVE the ", m_theDb CLIPPED,

" database. This step cannot be undone."

PROMPT "Are you sure you want to drop this database? (y/n): "

FOR ans

IF ans MATCHES "[yY]" THEN

CLOSE DATABASE

WHENEVER ERROR CONTINUE

DROP DATABASE m_theDb

WHENEVER ERROR STOP

IF (status < 0) THEN

DISPLAY "Sorry, error ", SQLCA.SQLCODE,

" while trying to drop the database ", m_theDb CLIPPED

EXIT PROGRAM

END IF

DISPLAY ""

DISPLAY "The ", m_theDb CLIPPED, " database has been dropped."

ELSE

DISPLAY "The ", m_theDb CLIPPED, " database has not been dropped."

END IF

END IF

END IF

32 ➤ ELSE

DISPLAY "Tables PARTS and PARTREE remain in database ",

m_theDb CLIPPED, "."

END IF

END FUNCTION -- tear_down_tables --

To locate any function definition, see the Function Index on page 730.

656 Generating Mailing Labels

29
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

 29.Generating Mailing Labels
30.Generating a Schema Listing

Example 29 657

Generating Mailing Labels
This example demonstrates the use of several report functions. The report in
this example prints “three-up” address labels; that is, labels in three columns
across the page. For a general discussion on reports in 4GL see Example 14.

The row producer portion of the program simply scans the customer table in
the demonstration database; it has no idea what format will be used for the
report. Any changes to the format, such as from three-up format to single col-
umn, are confined to the report generator; no changes are necessary to the
row producer.

Label Stationery
In the United States, multi-column label stock is printed on sheets 8.5 by 11
inches (21.5 by 29 cm). Printers usually print at 10 characters per inch,
making an 85-character line. 4GL only supports fixed-pitch printers; it does
not yet make provision for proportionally-spaced fonts.

These numbers may require adjustment to suit other paper sizes and other
printers. Such adjustments should be confined strictly to the report generator.
They should not be allowed to affect the logic of the row-producing parts of
the program.

The code in this example produces three uniform columns on an 85-character
line. Because 3 does not divide 85 evenly, each column consists of a
3-character “gutter” (blank space) and a 24-column label width, leaving a
4-character margin on the right.

Printing a Multi-Column Report

658 Generating Mailing Labels

3 24

3

24

3

24
spaces characters spaces characters spaces characters

The code of the report function explicitly sets these parameters. They can be
adapted easily to new formats.

Printing a Multi-Column Report
4GL includes no built-in support for multi-column reports. You must design
the logic for creating one into the report generator function. While the basic
idea is simple, the implementation can be tricky.

A report function contains a section headed ON EVERY ROW, which is
executed for each new row of data that comes out of the row producer. To
produce a three-column report, the report function must include a variable
containing the current column number (colno in this example). Then the ON

EVERY ROW section can proceed as shown in the following pseudo-code:

ON EVERY ROW

Increment colno

Save the current row’s data in an array based on colno

IF colno = 3 THEN

print the accumulated data

set colno to 0

END IF

Printing a Multi-Column Report

Example 29 659

This approach requires that you resolve two additional complications:

• First, the variable colno must be initialized.

That can be done in the FIRST PAGE HEADER section of the report
function.

• Second, one or two rows may remain to be printed at the end of the
program.

4GL provides an ON LAST ROW section in which these residual rows can
be displayed.

You can save the rows as they arrive in two ways. They can be saved as data
in program variables of the same types (INTEGER, MONEY, and so on), or they
can be formatted and saved as characters.

Under the first scheme, the report function might contain code like the
following fragment:

DEFINE troika ARRAY[3] OF RECORD LIKE …

ON EVERY ROW

LET colno = colno + 1

LET troika[colno] = a global record variable

IF colno = 3 THEN

statements to print data from troika[1 to 3]

LET colno = 0

END IF

While this method is conceptually simple, it turns out that the PRINT

statements needed to print fields from three records across multiple lines
become quite convoluted. Therefore, this example presents a different
approach.

In the second method, each data row is formatted for printing as it is
received. However, instead of using the PRINT statement, the data is
converted to character strings and assigned to columns within page-wide
character strings. When the third row has been formatted, the wide strings

660 Generating Mailing Labels

Function Overview

contain an image of the print lines of the report. They can then be written
with very simple PRINT statements. For the full details, see the code listing.
The essence can be seen in this fragment.

DEFINE margins ARRAY[3] OF SMALLINT,

lines ARRAY[6] OF CHAR(85)

ON EVERY ROW

LET colno = colno + 1

LET j = margins[colno]

LET k = j + 27

LET lines[1][j,k] = first data field

LET lines[2][j,k] = second data field

...

These statements rely on two 4GL features. First, 4GL supports assignment
to a substring, even to a substring of an array element. In the example, the
variables j and k define a substring in the page-width character strings. The
expression on the right of the LET statement will be padded to the necessary
width. Second, functions such as USING, which are normally thought of in
connection with the PRINT statement, can actually be used in any expression.
Hence the formatting of the lines can be done in assignment statements.

Function Overview

Function Name Purpose

three_up() The report function to print mailing labels.

Example 29 661

Function Overview

662 Generating Mailing Labels

The three_up() Report Function

The MAIN Function
1➤ The report generator is initialized with the START REPORT statement. One of

two forms of the statement is used, depending on whether output is to the
screen or to a file.

2➤ Each execution of an OUTPUT TO REPORT statement sends the data, a row at
a time, to the three_up() report function.

3➤ The FINISH REPORT statement ends the report, including any LAST ROW

processing, and closes the output file.

The three_up() Report Function
4➤ The current_column variable stores the current column from zero to three.

The columnar format of the report is encoded in the column_width,
gutter_width, and margins variables.

5➤ As an extra feature, the report function keeps track of the lowest (lo_zip) and
highest (hi_zip) zip codes displayed on each page and prints them in the
page footer.

Example 29 663

The MAIN Function

DATABASE stores7

GLOBALS

DEFINE gr_customer RECORD LIKE customer.*

END GLOBALS

MAIN

DEFINE repfile CHAR(80) -- report pathname

DISPLAY "Enter a filename to receive the labels, or for"

DISPLAY "output to the screen (stdout) just press RETURN."

DISPLAY ""

PROMPT "Filename: " FOR repfile

DISPLAY ""

1➤ IF LENGTH(repfile)=0 THEN -- null response

START REPORT three_up

DISPLAY "Preparing labels for screen display..."

ELSE -- filename

START REPORT three_up TO repfile

DISPLAY "Writing labels to file ", repfile CLIPPED,"..."

END IF

DECLARE c_cust CURSOR FOR

SELECT * INTO gr_customer.*

FROM customer

ORDER BY zipcode,company

FOREACH c_cust

2➤ OUTPUT TO REPORT three_up()

END FOREACH

3➤ FINISH REPORT three_up

CLEAR SCREEN

END MAIN

REPORT three_up() -- the report function

4➤ DEFINE current_column, -- current column, from 0 to 3

column_width, -- width of any label column

gutter_width SMALLINT,-- gap between columns

margins ARRAY[3] OF SMALLINT, -- starting margin of each column

pageno SMALLINT, -- current page number

5➤ lo_zip, -- lowest zipcode on current page

hi_zip LIKE customer.zipcode, -- highest ditto

4GL source file

664 Generating Mailing Labels

The three_up() Report Function

6➤ The lines array of strings holds the image of a row of address labels. The
variables are made wide enough to allow for 12-character-per-inch printing.

The j and k variables are used as subscripts into each string. The city_fld
variable holds the size of the city in the address and is used to determine the
position of the state and zip code values on the same line. The line_num
variable is the current line of the lines array and is used to keep track of
whether the address has one line (address2 is null) or two.

7➤ The OUTPUT section specifies the page dimensions along with the margins.

The left margin is set to zero. In this report it proved simpler to divide the
page into three uniform columns, each with its own left margin.

8➤ The FIRST PAGE HEADER allows you to print special material on the first
report page. While no page header appears on the first or any other page in
this report, this is the most convenient place to initialize the following
variables:

pageno A report must count pages explicitly; there is no system
count of pages.

current_column This starts the column-counter off before the first row
arrives.

lo_zip, hi_zip These are initialized the same way in the PAGE TRAILER

section, which follows.

column_width Here is encoded the columnar format, a repetition of
gutter_width gutter_width spaces followed by column_width data

across the page.

margins The decision encoded in the previous variables is
implemented as the starting point for each column.

9➤ At this point, j and k are the starting and ending points for a substring that
spans the data portion of the current column. In the following assignments,
the company name and the first two lines of the address (address1 and
address2) of the current row are assigned, if they are not null, to various lines
of the lines array. 4GL will automatically convert values of other types to
character, and pad short strings to length. The USING function can also be
employed to format the values.

Example 29 665

The three_up() Report Function

6➤ lines ARRAY[6] of CHARACTER(127), -- one row of labels

j, k SMALLINT, -- misc indexes
city_fld SMALLINT, -- size of city field
line_num SMALLINT -- current line in lines array

OUTPUT

PAGE LENGTH 66

7➤ LEFT MARGIN 0 -- these must be tuned to match the

 TOP MARGIN 4 -- label stock in use

 BOTTOM MARGIN 4
FORMAT

8➤ FIRST PAGE HEADER -- initialize some variables

LET pageno = 0

LET current_column = 0

LET lo_zip = NULL

LET hi_zip = "00000"

LET column_width = 25

LET gutter_width = 3

LET margins[1] = gutter_width

LET margins[2] = margins[1]+column_width+gutter_width

LET margins[3] = margins[2]+column_width+gutter_width

FOR j = 1 TO 6

LET lines[j] = " "

END FOR

ON EVERY ROW

IF(lo_zip IS NULL) THEN -- starting new page

LET lo_zip = gr_customer.zipcode

END IF

IF(hi_zip < gr_customer.zipcode) THEN

LET hi_zip = gr_customer.zipcode

END IF

LET current_column = current_column + 1

LET j = margins[current_column]

9➤ LET k = j + column_width - 1

IFgr_customer.company IS NOT NULL THEN

LET lines[2][j,k] = gr_customer.company

END IF

IFgr_customer.address1 IS NOT NULL THEN

LET lines[3][j,k] = gr_customer.address1

END IF

666 Generating Mailing Labels

The three_up() Report Function

10 ➤ If the second line of the address is null, the program sets the line_num
variable to 4 so that the next line (city, state, and zip code) will print in line 4.
There is no need to assign a value to the lines array because this array is
already initialized with blanks. (See Note 14.) If the second address line is not
null, the program assigns the address to the fourth line of the lines array and
then sets line_num to 5 so that the city, state, and zip code will not overwrite
this line.

11 ➤ If the city column is null, skip past the space reserved for the city in the lines
array, which is 15 characters as defined in the database. If the city column is
not null, print out the city name in the lines array at the line specified by
line_num. (See Note 10.) The city_fld variable keeps the length of the current
city name plus the trailing “, ” string (a comma and a blank). If this name is
null, the variable stores the maximum length of 15 plus the two additional
characters.

12 ➤ If the state column is null, skip past the space reserved for the state code by
incrementing the j index variable. This index now indicates the starting posi-
tion of the zip code. If the state column has a non-null value, assign this value
at the end of the city name and then increment the j index to the beginning of
the zipcode field.

13 ➤ The program assigns the zipcode value to the lines array only if it is non-null.

If this value is null, the blanks already in the array can be printed.

14 ➤ If the program has completed the third and final column of the line, it clears
out the lines array to prepare this array for the next iteration.

15 ➤ The code in the ON LAST ROW section is called after the ON EVERY ROW code
for the final row.

You might simply dump the lines array, but it may be empty. If the lines array
is empty, it will cause the program to print an extra, blank report page. Test-
ing for column_number greater than zero averts printing a blank page.

Example 29 667

The three_up() Report Function

10 ➤ IF gr_customer.address2 IS NULL THEN

LET line_num = 4 -- move city, state up one line

ELSE

LET lines[4][j,k] = gr_customer.address2

LET line_num = 5

END IF

11 ➤ IF gr_customer.city IS NULL THEN

LET city_fld = j + 15 -- move to 1st position past city

LET k = city_fld + 1 -- make room for 2 chars (", ")

LET lines[line_num][city_fld,k] = ", "

LET city_fld = 17 -- 15 for city, 2 for ", "

ELSE

LET city_fld = LENGTH(gr_customer.city) + 2

LET k = j + city_fld -- make room for city name and ", "

LET lines[line_num][j,k] = gr_customer.city CLIPPED, ", "

END IF

12 ➤ IF gr_customer.state IS NULL THEN

LET j = j + city_fld + 3 -- increment past state field

ELSE

LET j = j + city_fld + 1 -- move to 1st position past ", "

LET k = j + 2 -- make room for 2 chars (state)

--... plus 1 char (blank)

LET lines[line_num][j,k] = gr_customer.state, " "

LET j = k + 1 -- increment past state field

END IF

13 ➤ IF gr_customer.zipcode IS NOT NULL THEN

LET k = j + 4 -- make room for 5 chars (zip)

LET lines[line_num][j,k] = gr_customer.zipcode

END IF

14 ➤ IF current_column = 3 THEN -- time to print lines and clear

FOR j = 1 to 6

PRINT lines[j]

LET lines[j] = " "

END FOR

LET current_column = 0 -- ready for next set

END IF

ON LAST ROW

15 ➤ IF current_column > 0 THEN -- print short last line

FOR j = 1 TO 6

PRINT lines[j]

END FOR

END IF

668 Generating Mailing Labels

The three_up() Report Function

16 ➤ The code in the Page Trailer section is called each time the page fills up. In
this case, the program prints a footer containing the low and high zip codes.

Example 29 669

The three_up() Report Function

PAGE TRAILER

16 ➤ LET pageno = pageno + 1

PRINT

PRINT

PRINT

PRINT "page",pageno USING "-----",

COLUMN 50,

"Customers in zipcode ",lo_zip," to ",hi_zip

LET lo_zip = NULL

LET hi_zip = "00000"

END REPORT -- three_up --

To locate any function definition, see the Function Index on page 730.

670 Generating a Schema Listing

30
1. Writing a Simple 4GL Program

2.Displaying a Message Window

3.Populating a Ring Menu with Options
4.Displaying a Row on a Form

5.Programming a Query by Example

6.Querying and Updating
7.Validating and Inserting a Row

8.Displaying a Screen Array in

a Popup Window
9. Accessing a Table with a Single-Row

Form

10. Accessing a Table with a
Multi-Row Form

11.Implementing a Master-Detail

Relationship
12. Displaying an Unknown

Number of Rows

13. Calling a C Function
14.Generating a Report

15.Reporting Group Totals

16.Creating Vertical Menus
17.Using the DATETIME Data Type

18. Using TEXT and VARCHAR Data

Types
19. Browsing with a Scroll Cursor

20.Combining Criteria from Successive

Queries
21.Using an Update Cursor

22.Determining Database Features

23.Handling Locked Rows
24.Using a Hold Cursor

25.Logging Application Errors

26.Managing Multiple Windows
27.Displaying Menu Options Dynamically

28.Writing Recursive Functions

29.Generating Mailing Labels

 30.Generating a Schema Listing

Example 30 671

Generating a Schema
Listing

This example demonstrates how to decode some of the contents of the system
catalog tables. Using these techniques, a program can discover at execution
time the names of the tables and columns in a database, as well as the data
types of the columns. This information is then prepared as a report.

The System Catalogs
The system catalogs are a group of tables that exist in every database and
describe the contents of the database. The database server creates the tables
when it creates a new database. It updates the tables each time it executes
data definition statements such as CREATE TABLE or ALTER INDEX. It uses
the tables to process queries.

The system catalogs are not hidden from applications, and a program is free
to query them to learn about the contents of the database. This program takes
the catalog information and produces a schema listing.

The organization of the system catalogs is covered in depth in your SQL or
4GL reference documentation. Briefly, the following tables are the most
important:

systables Contains a basic definition of all permanent tables. The
primary key consists of owner name and table name. The
most important column is tabid, a serial number that repre-
sents each table in all other tables. All user-defined tables
have tabid values >100.

syscolumns Contains the data type of each column. The primary key
consists of tabid and column number. Much of the code
in this example is devoted to decoding the data type
information.

Program Overview

672 Generating a Schema Listing

sysindexes Defines each index. The primary key consists of owner and
index names.

sysusers Lists the names of users who have been granted database
privileges. The primary key is user name.

systabauth Lists table-level privileges that have been granted. The
primary key consists of the user names of grantor and
grantee.

This example retrieves information from the systables and syscolumns
tables. For an example of how to decode systabauth, see “The get_tab_auth()
Function” on page 624.

Program Overview
The heart of this program is a very ordinary FOREACH loop. The program
declares a cursor joining systables with syscolumns as follows:

DECLARE c_schema CURSOR FOR

SELECT tabname, nindexes, colname, colno, coltype, collength

FROM informix.systables st, informix.syscolumns sc

WHERE st.tabtype = "T" -- tables, not views

AND st.tabid > 99 -- user tables, not system tables

AND st.tabid = sc.tabid -- join condition

ORDER BY st.tabname, sc.colno

Note that the names of system catalog tables are qualified with the owner
name informix. This is only necessary in ANSI-compliant databases, where an
owner name is required whenever you query a table you do not own. The
owner name can be omitted in noncompliant databases, which is the usual
case.

This cursor produces all the necessary information about each table, one row
per column. In the central FOREACH loop the program decodes the data type
information from the coltype and collength columns to produce a character
string such as “INTERVAL YEAR TO MONTH” or “DECIMAL(3,8)”. The code
needed to do this occupies more than half the module. Then it displays the
information about a column with an OUTPUT TO REPORT statement.

Decoding Data Type Information

Example 30 673

Decoding Data Type Information
When you define the data type of a column, you use keywords, as in this
example:

CREATE TABLE examp(

uneek SERIAL,

dough MONEY(9,2) NOT NULL)

The keywords are encoded for the server’s reference in the coltype and
collength columns of the syscolumns table. Each is a SMALLINT. The value of
coltype is a number between 0 and 16, giving the basic data type. 256 (hexa-
decimal 100) is added to this encoding when the NOT NULL clause is used.
The value in collength specifies the length or precision of the column. The fol-
lowing table shows how these columns are used for each datatype. MSB

means “most significant byte”; LSB means “least significant byte.

Data type

CHARACTER
Coltype value

0
Collength value

length
SMALLINT 1 n.a.
INTEGER 2 n.a.
FLOAT 3 n.a.
SMALLFLOAT 4 n.a
DECIMAL 5 precision in MSB, scale in LSB
SERIAL 6 n.a.
DATE 7 n.a.
MONEY 8 precision in MSB, scale in LSB
(not used) 9 n.a.
DATETIME 10 qualifier, see text
BYTE 11 n.a.
TEXT 12 n.a.
VARCHAR 13 reserve size in MSB, max in LSB
INTERVAL 14 qualifier, see text

The qualifiers for DATETIME and INTERVAL types are encoded in
hexadecimal digits in the collength column. The four digits of the 16-bit
column can be labelled 0pls, where

digit 0 is the leading digit and is always zero.

digit p is the precision of the first field of an INTERVAL, from 1 to 5.
Remember that an INTERVAL, but not a DATETIME, has a
specified precision for its first field, as in DAY(4) TO HOUR.

674 Generating a Schema Listing

Function Overview

digit l stands for the left, or larger, qualifier word (the YEAR in
YEAR TO DAY).

digit s stands for the second or smaller qualifier word, treating
FRACTION(1) through FRACTION(5) as separate keywords.

4GL is not particularly well suited to dissecting a bit field like this into
hexadecimal digits, so the example code includes functions to do it.

Displaying Indexes
This example only reports the number of indexes on each table, a fact
recorded in systables. The sysindexes table contains the names of indexes and
their characteristics, but this information is not selected or displayed in the
program. It would not be difficult to write a program to report on all indexes.
The following cursor would select the important items for display.

DECLARE c_index CURSOR FOR

SELECT idxname -- char(18)

,owner -- char(8)

,tabname -- char(18)

,idxtype -- char(1), "U"=unique, "D"=dups

,clustered -- char(1), "C"=clustered, else " "

FROM informix.sysindexes si, informix.systables st

WHERE si.tabid > 99 -- user tables, not sys catalog

AND si.tabid = st.tabid -- join to get tabname

ORDER BY tabname, idxname

After reading the program in this example, you should be able to use this
cursor definition to compose a program that prints a report listing all indexes.

The sysindexes table also contains a series of columns named partn, one for
each possible column that may be used in a composite index. These columns
specify which columns are covered by the index. If you understand the
design of relational databases you may be surprised to see that this table is
not normalized. A normalized table has no groups of repeated columns.
However, the system catalog was designed to meet specific needs of the
database server, not to support general queries.

Each partn column specifies one column from the indexed table. It contains
the colno value from syscolumns, as a positive number if the column has an
ascending index, and as a negative number if the column has a descending
index.

Example 30 675

Displaying Indexes

For example, if the following statement is executed in the usual demonstra-
tion database it will create a test index on two columns of the customer table:

CREATE test_ix ON customer (fname,lname DESC)

If you then display all columns of sysindexes for the row where idxname is
test_ix, you will find that:

• The part1 column contains 2, the column number of fname in
the customer table.

• The part2 column contains -3, the negative of the column number lname
in the customer table.

• The remaining partn columns contain zero.

Informix Dynamic Server allows up to 16 columns in a composite index, so it
builds a sysindexes entry with columns part1 through part16. Other Informix
servers support only eight columns, and in a database managed by one of
those servers the columns part9 through part16 do not exist. If you need to
select these columns you can detect which database server you are using at
the time of opening a database. See Example 22.

Function Overview

Function Name Purpose

get_dbname() Accepts user input of the name of a database whose schema
is to be printed, using the f_name form.

schema() Gathers the schema information from the system tables and
sends it to the report for formatting.

convert_type() Converts the integer column type and length information
stored in syscolumns into a string representation of the
column’s data type.

cnvrt_varch() Converts the integer column length of a VARCHAR field
(“clngth”) into the maximum and minimum column lengths.

cnvrt_dt() Converts the integer column length of a DATETIME field
(“clngth”) into qualifier keywords (YEAR, MONTH, …).

cnvrt_intvl() Converts the integer column length of an INTERVAL field
(“clngth”) into qualifier keywords (YEAR, MONTH, …).

qual_fld() Converts a hex digit “fvalue” into the corresponding field
qualifier (YEAR, MONTH, …).

intvl_lngth() Converts the field qualifier range values (“large_lngth” and
“small_lngth”) into qualifiers (YEAR, MONTH, …).

676 Generating a Schema Listing

Function Overview

to_hex() Converts a decimal number into a string representation of a
hex number.

hex_digit() Converts a decimal digit into a hex character 0-9, A-F.

dec_digit() Converts a hex character (0-9, A-F) into a decimal value 0-15.

schema_rpt() Report to create the schema listing.

report_output() Displays the Report Destination menu and returns a flag
indicating the user’s choice.
See the description in Example 15.

init_msgs() Initializes the members of the ga_dsplymsg array to null.
See the description in Example 2.

open_db() Opens a database using dynamic SQL and saves information
about it for later use. Returns TRUE or FALSE.
Seethe description in Example 22.

prompt_window() Displays a message and prompts the user for confirmation. This
function is a variation on the message_window() func- tion
that appears in Example 2.
See the description in Example 4.

msg() Displays a brief, informative message.
See the description in Example 5.

clear_lines() Clears any number of lines, starting at any line.
See the description in Example 6.

Example 30 677

Function Overview

678 Generating a Schema Listing

The get_dbname() Function

The GLOBALS Statement
1➤ This program contains no DEFINE LIKE statements and does not depend on

a database schema, so it does not begin with a DATABASE statement.

2➤ The gr_database record is filled by the open_db() function when it opens the
database. The is_online field is copied and displayed in the first report line.

3➤ This variable is used when communicating with the init_msgs() function.

The MAIN Function
4➤ The get_dbname() function asks the user to supply the name of a database.

If the user does not cancel with the Interrupt key (typically CONTROL-C), a
name is returned.

5➤ If the open_db() function succeeds in opening the database, it returns TRUE.

6 ➤ Once the database is open, the program calls a function to generate the
report.

7➤ If the open_db() function encounters an error it displays a message. If the
program ended immediately at that point, the screen would clear before the
user could read the error message, so the SLEEP statement leaves the message
visible for three seconds.

The get_dbname() Function
8➤ The f_name form is described in Example 13.

Example 30 679

The GLOBALS Statement

1➤ GLOBALS
2➤ DEFINE gr_database RECORD

db_known SMALLINT, -- following fields are usable
has_log SMALLINT, -- based on SQLAWARN[2]
is_ansi SMALLINT, -- based on SQLAWARN[3]
is_online SMALLINT, -- based on SQLAWARN[4]
can_wait SMALLINT -- supports "set lock mode to wait"

END RECORD

3➤ DEFINE ga_dsplymsg ARRAY[5] OF CHAR(48)

END GLOBALS

#######################################

MAIN

#######################################

DEFINE dbname CHAR(50),
 msg_txt CHAR(110),

 answer CHAR(1)

OPTIONS

FORM LINE 2,

COMMENT LINE 3,

MESSAGE LINE 6,

ERROR LINE LAST - 1

OPEN WINDOW w_schema AT 2,3

WITH 9 ROWS, 76 COLUMNS

ATTRIBUTE (BORDER, COMMENT LINE 3)

4➤ CALL get_dbname() RETURNING dbname

IF dbname IS NOT NULL THEN
CALL clear_lines(5, 4)

5➤ IF open_db(dbname) THEN

6➤ CALL schema(dbname)

7➤ ELSE -- unable to open specified db,

SLEEP 3 -- give user time to read open_db()’s error msg

END IF

END IF

CLOSE WINDOW w_schema

CLEAR SCREEN

END MAIN

#######################################

FUNCTION get_dbname()

#######################################

DEFINE dbname CHAR(50)

8➤ OPEN FORM f_name FROM "f_name"

DISPLAY FORM f_name

4GL source file

680 Generating a Schema Listing

The schema() Function

9➤ The purpose of this function is to get a database name from the user. Here it
reads input from the one field of the f_name form.

10 ➤ The user is not allowed to exit the field without providing a database name.
This AFTER FIELD block is also executed when the user uses the Accept key
(typically ESCAPE).

The schema() Function
11 ➤ The pr_schema record receives the items fetched from the systables and

syscolumns tables. This record is passed as an argument to the report
function.

12 ➤ The report_output() function is discussed in Example 15. It offers the user
three choices for the destination of a report: the screen, the printer, or a file. It
returns the single letter S, or P, or F, respectively.

Example 30 681

The schema() Function

DISPLAY "DATABASE SCHEMA LISTING"

AT 2, 20

DISPLAY " Press Accept to print schema or Cancel to exit w/out printing."

AT 8, 1 ATTRIBUTE (REVERSE, YELLOW)

LET int_flag = FALSE

9➤ INPUT dbname FROM a_char

BEFORE FIELD a_char

MESSAGE " Enter the name of the database."

10 ➤ AFTER FIELD a_char

IF dbname IS NULL THEN

ERROR "You must enter a database name."

NEXT FIELD a_char

END IF

END INPUT

IF int_flag THEN

LET int_flag = FALSE

LET dbname = NULL -- input ended with ^C, take the hint

END IF

CLOSE FORM f_name

RETURN (dbname)

END FUNCTION -- get_dbname --

#######################################

FUNCTION schema(dbname)

#######################################

DEFINE dbname CHAR(50),

11 ➤ pr_schema RECORD

dbname CHAR(50),

is_online SMALLINT,

tabname CHAR(18),

nindexes SMALLINT,

colname CHAR(18),

colno SMALLINT,

coltype SMALLINT,

collength SMALLINT

END RECORD,

coltypename CHAR(50),

print_option CHAR(1),

file_name CHAR(20)

12 ➤ LET print_option = report_output("SCHEMA LISTING", 5, 10)

682 Generating a Schema Listing

The schema() Function

13 ➤ The CASE statement constructs a filename that should be unique for the
database name, so that you can display the schema of several databases, each
to its file. You need to modify the form of the filename for PC / DOS.

14 ➤ The dbname and is_online elements of the pr_schema record are constant for
all rows of the report. They are included in the record only for convenience
in passing them to the report function.

15 ➤ This cursor definition drives the report. As discussed in the overview,
it returns one row for each column of each non-catalog table.

16 ➤ The FOREACH loop processes the rows selected by the cursor.

17 ➤ All information about a column of a table is returned by the cursor, but the
data type is encoded. The convert_type() function converts it to a string of
keywords and numbers, just as would be used in a CREATE TABLE statement.

18 ➤ The report destination is passed as an argument to the report function so that
if output is to the screen, it can stop after each 22 lines of output and wait for
the user to press the RETURN key.

Example 30 683

The schema() Function

CASE (print_option)

13 ➤ WHEN "F" -- build filename "DBxxx.lst" where "xxx" is the name

-- of the database whose schema is being listed

LET file_name = "DB"

IFLENGTH(dbname) > 10 THEN -- limit length of name

LET file_name = file_name CLIPPED, dbname[1,10]

ELSE

LET file_name = file_name CLIPPED, dbname CLIPPED

END IF

LET file_name = file_name CLIPPED, ".lst"

START REPORT schema_rpt TO file_name

MESSAGE " Writing schema report to ", file_name CLIPPED,

" -- please wait."

SLEEP 2

WHEN "P"

START REPORT schema_rpt TO PRINTER

MESSAGE "Sending schema report to printer -- please wait."

SLEEP 2

WHEN "S"

START REPORT schema_rpt

MESSAGE "Preparing report for screen -- please wait."

END CASE

14 ➤ LET pr_schema.dbname = dbname

LET pr_schema.is_online = gr_database.is_online

15 ➤ DECLARE c_schema CURSOR FOR

SELECT tabname, nindexes, colname, colno, coltype, collength

FROM informix.systables st, informix.syscolumns sc

WHERE st.tabtype = "T" -- tables, not views

AND st.tabid > 99 -- user tables, not system tables

AND st.tabid = sc.tabid -- join condition

ORDER BY st.tabname, sc.colno

16 ➤ FOREACH c_schema INTO pr_schema.tabname THRU pr_schema.collength

17 ➤ CALL convert_type(pr_schema.coltype, pr_schema.collength)

RETURNING coltypename

18 ➤ OUTPUT TO REPORT schema_rpt (pr_schema.*, coltypename, print_option)

END FOREACH

FINISH REPORT schema_rpt

END FUNCTION -- schema --

684 Generating a Schema Listing

The convert_type() Function

The convert_type() Function
19 ➤ This function controls the translation into words of the values from the

coltype and collength columns.

See the section “Decoding Data Type Information” on page 673 for a
description of how these columns store information.

20 ➤ The string not_null is appended to each data type display in the report.

It contains “NOT NULL” when a column has been defined as such.

The IF statement initializes the variable to null, and then sets it to the string
only if the NOT NULL clause was used.

21 ➤ The CASE statement decodes all the coltype values once the NOT NULL flag
is stripped. WHEN clauses handle the easier cases internally and relegate
others to subroutines.

22 ➤ CHAR is a relatively easy case. The length from collength needs only to be
formatted for display inside parentheses.

23 ➤ The next few cases are easier still.

24 ➤ For DECIMAL, the precision and scale values must be extracted from the
individual bytes of collength. The LET statement divides by 256 to accom-
plish this. That is a safe procedure so long as the value in the most significant
byte is certain to be less than 128. 4GL always does signed division, and if the
MSB contained is in excess of 128, the result of the division would be negative.
However, the precision of DECIMAL never exceeds 32, so the value is always
positive.

25 ➤ The column is SERIAL when coltype_name is 6.

26 ➤ MONEY values are recorded much like DECIMAL values. However, MONEY

has a default scale value of 2, which DECIMAL does not. When the scale is
omitted from a DECIMAL declaration, a floating decimal is assumed. Here the
display of scale is suppressed unless it is other than the default.

Example 30 685

The convert_type() Function

#######################################

19 ➤ FUNCTION convert_type(coltype_num, col_length)
#######################################

DEFINE coltype_num

col_length
SMALLINT,

SMALLINT,

 msize

nsize

coltype_name

dt_length

intv_length

not_null

max_length

min_length

SMALLINT,

SMALLINT,

CHAR(50),

CHAR(35),

CHAR(35),

CHAR(9),

SMALLINT,

SMALLINT

20 ➤ LET not_null = NULL

IF coltype_num >= 256 THEN

LET coltype_num = coltype_num - 256

LET not_null = " NOT NULL"

END IF

21 ➤ CASE coltype_num

WHEN 0

22 ➤ LET coltype_name = "CHAR(",

col_length USING "<<<<<<<<<<<", ")"

23 ➤ WHEN 1

LET coltype_name = "SMALLINT"

WHEN 2

LET coltype_name = "INTEGER"

WHEN 3

LET coltype_name = "FLOAT"

WHEN 4
LET coltype_name = "SMALLFLOAT"

24 ➤ WHEN 5

LET msize = col_length / 256

LET nsize = col_length mod 256

LET coltype_name = "DECIMAL(", msize USING "<<<<<",

",", nsize USING "<<<<<", ")"

25 ➤ WHEN 6 -- in the SERIAL field: no account has been made of serials

-- with starting values

LET coltype_name = "SERIAL"

WHEN 7

LET coltype_name = "DATE"

26 ➤ WHEN 8

LET msize = col_length / 256

LET nsize = col_length mod 256

LET coltype_name = "MONEY(", msize USING "<<<<<"

IF nsize <> 2 THEN -- scale not default 2, show it

LET coltype_name = coltype_name CLIPPED,

",", nsize USING "<<<<<"

END IF

LET coltype_name = coltype_name CLIPPED, ")"

686 Generating a Schema Listing

The cnvrt_varch() Function

27 ➤ The extraction of the qualifier of DATETIME is too complicated to fit in a

WHEN block. The cnvt_dt() function performs this operation.

28 ➤ The extraction of the maximum and reserved sizes of VARCHAR is also
consigned to a subroutine. The reserved-size number is only included in the
output when it is different from the default of zero.

The cnvrt_varch() Function
29 ➤ The cnvrt_varch() function extracts the sizes of a VARCHAR column. The two

sizes are in the most and least significant bytes of collength. Because they can
exceed 127, it is not safe to extract them by division.

30 ➤ The to_hex() function converts a SMALLINT value to four hexadecimal digits
and returns them as a character string.

31 ➤ The dec_digit() function returns the decimal value of a single hexadecimal
digit. Here the decimal values of the two digits of each byte are used to recon-
struct the byte value. This is one way to avoid the problems posed by signed
division.

Example 30 687

The cnvrt_varch() Function

WHEN 9 -- should not occur

LET coltype_name = "PLAN 9"

27 ➤ WHEN 10 -- datetime, handle in subroutine

CALL cnvrt_dt(col_length) RETURNING dt_length

LET coltype_name = "DATETIME ", dt_length CLIPPED

WHEN 11

LET coltype_name = "BYTE"

WHEN 12
LET coltype_name = "TEXT"

28 ➤ WHEN 13 -- varchar, handle in subroutine

CALL cnvrt_varch(col_length) RETURNING max_length, min_length

LET coltype_name = "VARCHAR(", max_length CLIPPED

IF min_length > 0 THEN -- min not default of zero, show it

LET coltype_name = coltype_name CLIPPED, ",", min_length CLIPPED

END IF

LET coltype_name = coltype_name CLIPPED, ")"

WHEN 14 -- interval, handle in subroutine

CALL cnvrt_intvl(col_length) RETURNING intv_length

LET coltype_name = "INTERVAL ", intv_length CLIPPED

OTHERWISE -- ???

LET coltype_name = "UNDEFINED: ", coltype_num

END CASE

LET coltype_name = coltype_name CLIPPED, not_null

RETURN (coltype_name)

END FUNCTION -- convert_type --

#######################################

29 ➤ FUNCTION cnvrt_varch(clngth)
#######################################

DEFINE clngth SMALLINT,

hex_length CHAR(4),

min_length SMALLINT,

max_length SMALLINT

30 ➤ LET hex_length = to_hex(clngth, 4)

31 ➤ LET min_length = dec_digit(hex_length[1]) * 16

+ dec_digit(hex_length[2])

LET max_length = dec_digit(hex_length[3]) * 16

+ dec_digit(hex_length[4])

RETURN max_length, min_length

END FUNCTION -- cnvrt_varch --

688 Generating a Schema Listing

The cnvrt_intvl() Function

The cnvrt_dt() Function
32 ➤ The cnvrt_dt() function decodes the qualifier of a DATETIME column.

Some typical qualifiers include YEAR TO DAY, HOUR TO FRACTION, and
FRACTION TO FRACTION(4).

33 ➤ The qualifier of a DATETIME column is encoded in the hexadecimal digits 0pls

of the collength value. The to_hex() function returns the digits.

34 ➤ The qual_fld() function converts one digit to its corresponding keyword,
returning the word as a character string, saved here in large_fld. The function
also returns a default precision, which is not used here. It is needed only
when decoding an INTERVAL value.

35 ➤ The keyword for the smaller or second field is saved. The first argument to
qual_fld() tells it which field it is decoding, because there are a few differ-
ences in representation between the larger and smaller keywords.

The cnvrt_intvl() Function
36 ➤ The cnvrt_intvl() function decodes an INTERVAL qualifier. The procedure

is similar to that for DATETIME but with one additional step. When the
precision of the larger field is different from the default precision, it has to be
displayed. That is, INTERVAL HOUR TO SECOND uses the default precision
of 2 for the larger field, HOUR. INTERVAL HOUR(4) TO SECOND uses a non-
default precision and the string “(4)” has to be produced and inserted in the
output.

37 ➤ The second value returned by qual_fld(), the default precision of the
keyword, is saved. (It was not significant when decoding DATETIME

columns. See Note 34.)

38 ➤ The task of deciding the default and actual precisions of the INTERVAL value
is deferred to the function intvl_lngth(). It returns zero if the actual precision
is the default precision; otherwise, it returns the number to be displayed with
the larger field.

Example 30 689

The cnvrt_dt() Function

#######################################

32 ➤ FUNCTION cnvrt_dt(clngth)
#######################################

DEFINE clngth

large_fld

SMALLINT,

CHAR(11),

 small_fld CHAR(11),

 dt_size CHAR(35),

 hex_length CHAR(3),

 null_size SMALLINT

33 ➤ LET hex_length = to_hex(clngth, 3)

34 ➤ CALL qual_fld("l", hex_length[2])

RETURNING large_fld, null_size

35 ➤ CALL qual_fld("s", hex_length[3])

RETURNING small_fld, null_size

LET dt_size = large_fld CLIPPED, " TO ", small_fld CLIPPED

RETURN (dt_size CLIPPED)

END FUNCTION -- cnvrt_dt --

#######################################

36 ➤ FUNCTION cnvrt_intvl(clngth)
#######################################

DEFINE clngth SMALLINT,
 large_fld CHAR(11),

 large_size SMALLINT,

 small_fld CHAR(11),

 small_size SMALLINT,

 intv_size CHAR(35),

 hex_length CHAR(3),

 fld_lngth SMALLINT,

 i SMALLINT

LET hex_length = to_hex(clngth,3)

37 ➤ CALL qual_fld("l", hex_length[2])

RETURNING large_fld, large_size

CALL qual_fld("s", hex_length[3])

RETURNING small_fld, small_size

38 ➤ LET fld_lngth = intvl_lngth(hex_length, large_size, small_size)

IF fld_lngth > 0 THEN

LET i = LENGTH(large_fld) + 1

LET large_fld[i, i + 2] = "(", fld_lngth USING "<", ")"

END IF

LET intv_size = large_fld CLIPPED, " TO ", small_fld CLIPPED

RETURN (intv_size)

END FUNCTION -- cnvrt_intvl --

690 Generating a Schema Listing

The qual_fld() Function

The qual_fld() Function
39 ➤ The qual_fld() function uses a CASE statement to decode one hexadecimal

digit from collength as a DATETIME or INTERVAL qualifier keyword. Note
two things about the encoding:

• Separate codes are devoted to each of the possible precisions of

FRACTION(1) through FRACTION(5).

• The encodings are so designed that subtracting the code of the larger
keyword from the code for the smaller, as in p=s-l+2, yields the number of
digits in the total qualifier. For example, a qualifier YEAR TO DAY has
6=4-0 digits.

40 ➤ The MATCHES operator is used just in case the hexadecimal translation
function is changed to generate lowercase instead of uppercase letters.

41 ➤ If the hexadecimal digit is a “C” (decimal 12), the data type contains a
FRACTION(2) field qualifier. The way this FRACTION field is printed depends
on whether it is the first or the second qualifier. If it is the first qualifier, then
fvalue is “l” and the qualifier is printed without the precision because an
INTERVAL value cannot specify precision on the first qualifier. If FRACTION

is the second qualifier, then the precision of 2 is specified. (The default preci-
sion for the second qualifier is 3).

42 ➤ If the hexadecimal digit is a “C” (decimal 12), the data type contains a
FRACTION(3) field qualifier. Because the default precision for the second
qualifier is 3, this qualifier does not specify the precision in the schema
listing.

Example 30 691

The qual_fld() Function

#######################################

39 ➤ FUNCTION qual_fld(ftype, fvalue)
#######################################

DEFINE ftype, fvalue CHAR(1),

fld_name CHAR(11),

fld_size SMALLINT

CASE

WHEN (fvalue = "0") --* YEAR qualifier

LET fld_name = "YEAR"

LET fld_size = 4

WHEN (fvalue = "2") --* MONTH qualifier

LET fld_name = "MONTH"

LET fld_size = 2

WHEN (fvalue = "4") --* DAY qualifier

LET fld_name = "DAY"

LET fld_size = 2

WHEN (fvalue = "6") --* HOUR qualifier

LET fld_name = "HOUR"

LET fld_size = 2

WHEN (fvalue = "8") --* MINUTE qualifier

LET fld_name = "MINUTE"

LET fld_size = 2

40 ➤ WHEN (fvalue MATCHES "[Aa]") --* SECOND qualifier

LET fld_name = "SECOND"

LET fld_size = 2

WHEN (fvalue MATCHES "[Bb]") --* FRACTION(1) qualifier

LET fld_name = "FRACTION(1)"

LET fld_size = 1

WHEN (fvalue MATCHES "[Cc]") --* FRACTION(2) qualifier

41 ➤ LET fld_size = 2 --* (default for 1st qualifier)

IF ftype = "l" THEN

LET fld_name = "FRACTION"

ELSE

LET fld_name = "FRACTION(2)"

END IF

WHEN (fvalue MATCHES "[Dd]") --* FRACTION(3) qualifier

42 ➤ LET fld_name = "FRACTION" --* (default for 2nd qualifier)

LET fld_size = 3

WHEN (fvalue MATCHES "[Ee]") --* FRACTION(4) qualifier

LET fld_name = "FRACTION(4)"

LET fld_size = 4

692 Generating a Schema Listing

The intvl_lngth() Function

43 ➤ The returned fld_name string contains the keyword for the qualifier. The
fld_size number is used only for calculating the precision of the larger field
of an INTERVAL.

The intvl_lngth() Function
44 ➤ The intvl_lngth() function examines the two qualifier keywords and the total

precision of an INTERVAL to decide whether the first field of the INTERVAL

uses a non-default precision. If it does, the function returns that precision so
it can be included in the output.

45 ➤ Because the hexadecimal values for field qualifiers are sequential, the
difference between the first and second qualifiers indicates the number
of fields being tracked by the INTERVAL.

46 ➤ If num_flds is zero, the same qualifier keyword is in both the first and the
second qualifiers. If the internal length (hex_lngth[1]) matches the default
length (large_lngth), the function returns zero to indicate that the field uses
the default precision. Otherwise, it returns the non-default precision.

47 ➤ The only combination for which the hexadecimal values of the two qualifiers
differ by one is FRACTION(2) TO FRACTION(3). Because these are the default
precisions for each qualifier, the function returns zero.

48 ➤ The hexadecimal values for the qualifiers FRACTION(2) to FRACTION(1)
differ by a value of -1. Because FRACTION(2) is the default precision for the
first qualifier, the function returns zero.

49 ➤ For all other INTERVAL qualifiers, the function calculates the default length
required for the field. If this default length does not match the internal length
(hex_lngth[1]), then the function returns the non-default precision used by
the first qualifier.

Example 30 693

The intvl_lngth() Function

WHEN (fvalue MATCHES "[Ff]") --* FRACTION(5) qualifier

LET fld_name = "FRACTION(5)"

LET fld_size = 5

OTHERWISE

LET fld_name = "uh oh: ", fvalue

LET fld_size = 0

END CASE

43 ➤ RETURN fld_name, fld_size

END FUNCTION -- qual_fld --

#######################################

44 ➤ FUNCTION intvl_lngth(hex_lngth, large_lngth, small_lngth)
#######################################

DEFINE hex_lngth

large_lngth

small_lngth

CHAR(3),

SMALLINT,

SMALLINT,

 dec_lngth

default_lngth

num_flds

ret_lngth

SMALLINT,

SMALLINT,

SMALLINT,

SMALLINT

LET dec_lngth = dec_digit(hex_lngth[1])

45 ➤ LET num_flds = dec_digit(hex_lngth[3]) - dec_digit(hex_lngth[2])

CASE num_flds

46 ➤ WHEN 0 -- intvl has only 1 field

IFdec_lngth = large_lngth THEN

LET ret_lngth = 0

ELSE

LET ret_lngth = dec_lngth

END IF

47 ➤ WHEN 1 -- intvl is FRACTION(2) to FRACTION(3) (default)

LET ret_lngth = 0

48 ➤ WHEN -1 -- intvl is FRACTION(2) to FRACTION(1)

LET ret_lngth = 0

OTHERWISE -- intvl has 2,3,4, or 5 fields

49 ➤ LET default_lngth = (large_lngth + small_lngth) + (num_flds - 2)

IFdefault_lngth = dec_lngth THEN

LET ret_lngth = 0

ELSE

LET ret_lngth = large_lngth + (dec_lngth - default_lngth)

END IF

END CASE

RETURN ret_lngth

END FUNCTION -- intvl_lngth --

694 Generating a Schema Listing

The hex_digit() Function

The to_hex() Function
50 ➤ The to_hex() function converts a binary value to hexadecimal characters. The

argument dec_number contains the binary value. It is assumed to be a 16-bit
value. It is defined as an INTEGER because there are some 16-bit values that
are not valid when stored in a SMALLINT variable (for example, -32768). In
this program it is always called to convert a value from systables.collength,
which is a SMALLINT column. The power argument specifies how many dig-
its to convert. Its output is a string of power characters representing the least
significant power digits of the input.

51 ➤ 4GL does not support unsigned numbers. If this number appears to be
negative, the function assumes that it started out as a 16-bit value with
the most significant bit = 1. This sign bit would be propagated when the
SMALLINT is assigned to the INTEGER, dec_number. Subtracting 216 cancels
the sign bits, leaving an unsigned 16-bit value.

52 ➤ By initializing the output to zero characters, the function is made free to stop
converting as soon as only zero is left in the_number.

53 ➤ The digits are produced, from most significant to least, in this loop. The
method is similar to the hand method: divide by the largest power of 16 that
will fit, take the quotient as the current digit, and use the remainder for the
next iteration. For example, convert dec_number=8194 for power=4:

1. Divide by 163=4096; quotient is 2, remainder 2. Convert the quotient into
the character and leave in hex_number[1].

2. the_num=2 is less than 162; leave hex_number[2] set to zero.

3. the_num=2 is less than 161; leave hex_number[3] set to zero.

4. the_num=2 is greater than 160; convert to character and leave in
hex_number[4]. Result is “2002.”

The hex_digit() Function
54 ➤ The hex_digit() function converts a number in the range of 0 to 15 into the

corresponding hexadecimal digit character. It uses a CASE statement to select
the letter-digits from 10 to 15. In the OTHERWISE clause, 4GL automatic data
conversion is used to convert values 0-9 into the corresponding character.

Example 30 695

The to_hex() Function

#######################################

50 ➤ FUNCTION to_hex(dec_number, power)
#######################################

DEFINE dec_number

power
INTEGER,

SMALLINT,

 the_num

i,j

hex_power

hex_number

INTEGER,

SMALLINT,

INTEGER,

CHAR(4)

LET the_num = dec_number

51 ➤ IF the_num < 0 THEN -- greater than 0x7fff, force to unsigned status

LET the_num = 65536 + the_num

END IF
LET hex_power = 16 ** power

52 ➤ LET hex_number = "0000"

53 ➤ FOR i = 1 TO power

IF the_num = 0 THEN

EXIT FOR

END IF

LET hex_power = hex_power / 16

IF the_num >= hex_power THEN

LET hex_number[i] = hex_digit(the_num / hex_power)

LET the_num = the_num MOD hex_power

END IF

END FOR

RETURN (hex_number[1,power])

END FUNCTION -- to_hex --

#######################################

54 ➤ FUNCTION hex_digit(dec_num)
#######################################

DEFINE dec_num SMALLINT,

 hex_char CHAR(1)

CASE dec_num

WHEN 10

LET hex_char = "A"

WHEN 11

LET hex_char = "B"

WHEN 12

LET hex_char = "C"

WHEN 13

LET hex_char = "D"

WHEN 14

LET hex_char = "E"

WHEN 15

LET hex_char = "F"

696 Generating a Schema Listing

The schema_rpt() Report Function

The dec_digit() Function
55 ➤ The function converts a single hexadecimal digit character into its numeric

value. A CASE statement is used for the digits A-F, while 4GL automatic data
conversion is used to convert characters 0-9 into the corresponding number.

The schema_rpt() Report Function
56 ➤ The report function is very ordinary. The program sends each row of data

to the report function after the data type has been converted to a character
string. Rows arrive ordered by table name.

Example 30 697

The dec_digit() Function

OTHERWISE

LET hex_char = dec_num

END CASE

RETURN hex_char

END FUNCTION -- hex_digit --

#######################################

FUNCTION dec_digit(hex_char)

#######################################

DEFINE hex_char CHAR(1),

 dec_num SMALLINT

55 ➤ IF hex_char MATCHES "[ABCDEF]" THEN

CASE hex_char

WHEN "A"

LET dec_num = 10

WHEN "B"

LET dec_num = 11

WHEN "C"

LET dec_num = 12

WHEN "D"

LET dec_num = 13

WHEN "E"

LET dec_num = 14

WHEN "F"

LET dec_num = 15

END CASE

ELSE

LET dec_num = hex_char

END IF

RETURN dec_num

END FUNCTION -- dec_digit --

#######################################

56 ➤ REPORT schema_rpt(r, coltypname, print_dest)
#######################################

DEFINE r RECORD

dbname CHAR(50),

is_online SMALLINT,

tabname CHAR(18),

nindexes SMALLINT,

colname CHAR(18),

colno SMALLINT,

coltype SMALLINT,

collength SMALLINT

END RECORD,

coltypname CHAR(50),

print_dest CHAR(1)

698 Generating a Schema Listing

The schema_rpt() Report Function

57 ➤ The OUTPUT section does not include a PAGE LENGTH specification. The
default page length (66) is used for all three kinds of output: to the printer, to
a file, and to the screen, even though the screen at least needs a shorter page.
The reason is that there is no way to specify page length dynamically. The
PAGE LENGTH statement only accepts a constant that is evaluated at compile
time. The special case of the screen is handled by EVERY ROW code.

58 ➤ Because the rows are passed to the report function in order by table name, a
change of table name can be recognized as a group boundary. In the BEFORE

GROUP section, the report prints lines describing the table as a whole.

59 ➤ After printing the data for one column, the EVERY ROW section checks the
report destination, which is passed in as an argument. When output is to the
screen, and when the line count exceeds a common screen size, the report
pauses. After the pause it forces the start of a new page. No way exists to find
out the actual screen size at runtime.

The problem of a dynamic report page size could be generalized through the
use of a global variable. The ON EVERY ROW code could compare the built-
in LINENO function to the global variable, and force a new page whenever it
is exceeded. That would permit the program to take a desired page size from
the user at the same time the user selects the report destination.

Example 30 699

The schema_rpt() Report Function

57 ➤ OUTPUT

LEFT MARGIN 0

RIGHT MARGIN 80

FORMAT

FIRST PAGE HEADER

PRINT COLUMN 40, "DATABASE SCHEMA LISTING FOR ",

r.dbname CLIPPED

PRINT COLUMN 42, "INFORMIX-";

IF r.is_online THEN

PRINT COLUMN 51, "OnLine Database"

ELSE

PRINT COLUMN 51, "SE Database"

END IF

PRINT COLUMN 50, today

SKIP 3 LINES

PAGE HEADER

PRINT COLUMN 60, "PAGE ", PAGENO USING "#&"

SKIP 2 LINES

58 ➤ BEFORE GROUP OF r.tabname

NEED 6 LINES

PRINT "TABLE: ", r.tabname CLIPPED,

COLUMN 30, "NUMBER OF INDEXES: ", r.nindexes USING "&<<<<"

PRINT "--";

PRINT "--"

PRINT COLUMN 4, "Column", COLUMN 27, "Type"

PRINT "--";

PRINT "--"

AFTER GROUP OF r.tabname

SKIP 2 LINES

59 ➤ ON EVERY ROW

PRINT COLUMN 4, r.colname, COLUMN 27, coltypname CLIPPED

IF (print_dest = "S") AND (LINENO > 22) THEN

PAUSE "Press RETURN to see next screen"

SKIP TO TOP OF PAGE

END IF

END REPORT -- schema_rpt --

To locate any function definition, see the Function Index on page 730.

The schema_rpt() Report Function

The Demonstration Database 701

700 Generating a Schema Listing

Appendix A

702 Appendix A

The Demonstration
Database

The stores7 demonstration database contains a set of tables that describe a
fictitious sporting-goods business. The examples in this book are based on
this database.

This appendix contains four sections:

• The first section describes the structure of the tables in the stores7
database and lists the name and the data type of each column. The
indexes on individual columns or on multiple columns are identified and
classified as unique or as allowing duplicate values.

• The second section shows a map of the tables in the stores7 database and
indicates potential join columns.

• The third section describes the join columns that link some of the tables
in the stores7 database, and illustrates how you can use these relation-
ships to obtain information from multiple tables.

• The final section shows the data contained in each table of the stores7
database.

If you have modified or deleted some or all of the data in these tables, you
can restore the stores7 database to its original form by running the sqldemo
script. See the section “The Demonstration Database and Application Files”
on page 19 for information about how to create the database.

The Demonstration Database 703

Structure of the Tables

Structure of the Tables
The stores7 database contains information about a fictitious sporting-goods
distributor that services stores in the western United States. This database
includes the following tables:

• customer

• orders

• items

• stock

• catalog

• cust_calls

• manufact

• state

The customer Table
The customer table contains information about the retail stores that place
orders from the distributor. The columns of the customer table are as follows.

Column
Name

Data
Type

Description

customer_num
fname
lname
company
address1
address2
city
state
zipcode
phone

SERIAL(101)
CHAR(15)
CHAR(15)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(15)
CHAR(2)
CHAR(5)
CHAR(18)

system-generated customer number
first name of store’s representative
last name of store’s representative
name of store
first line of store’s address
second line of store’s address
city
state
zip code
phone number

The customer_num column is indexed and must contain unique values. The

zipcode and state columns are indexed to allow duplicate values.

704 Appendix A

Structure of the Tables

The orders Table
The orders table contains information about orders placed by the
distributor’s customers. The columns of the orders table are as follows.

Column
Name

Data
Type

Description

order_num SERIAL(1001) system-generated order number
order_date DATE date order entered
customer_num INTEGER customer number (from customer table)
ship_instruct CHAR(40) special shipping instructions
backlog CHAR(1) indicates order cannot be filled because the item

 is backlogged:

po_num

CHAR(10)

y = yes
n = no

customer purchase order number
ship_date DATE shipping date
ship_weight DECIMAL(8,2) shipping weight
ship_charge MONEY(6) shipping charge
paid_date DATE date order paid

The order_num column is indexed and must contain unique values. The
customer_num column is indexed to allow duplicate values.

The items Table
An order can include one or more items. There is one row in the items table
for each item in an order. The columns of the items table are as follows.

Column
Name

Data
Type

Description

item_num SMALLINT sequentially assigned item number for an order
order_num INTEGER order number (from orders table)
stock_num SMALLINT stock number for item (from stock table)
manu_code CHAR(3) manufacturer’s code for item ordered (from

 manufact table)
quantity
total_price

SMALLINT
MONEY(8,2)

quantity ordered
quantity ordered unit price = total price of item

The order_num column is indexed and allows duplicate values. A multi-
column index for the stock_num and manu_code columns also permits
duplicate values.

The Demonstration Database 705

Structure of the Tables

The stock Table
The distributor carries 41 different types of sporting goods from various
manufacturers. More than one manufacturer can supply a particular item.
For example, the distributor offers racer goggles from two manufacturers
and running shoes from six manufacturers.

The stock table is a catalog of the items sold by the distributor. The columns
of the stock table are as follows.

Column
Name

Data
Type

Description

stock_num
manu_code
description
unit_price
unit

SMALLINT
CHAR(3)
CHAR(15)
MONEY(6,2)
CHAR(4)

stock number that identifies type of item
manufacturer’s code (from manufact table)
description of item
unit price
unit by which item is ordered:

each
pair
case
box

unit_descr CHAR(15) description of unit

The stock_num and manu_code columns are indexed and allow duplicate
values. A multi-column index for both the stock_num and the manu_code
columns allows only unique values.

The catalog Table
The catalog table describes each of the items in stock. Retail stores use this
catalog when placing orders with the distributor. The columns of the catalog
table are as follows.

Column
Name

Data
Type

Description

catalog_num
stock_num
manu_code
cat_descr
cat_picture
cat_advert

SERIAL(10001)
SMALLINT

CHAR(3)
TEXT

BYTE

VARCHAR(255, 65)

system-generated catalog number
distributor’s stock number (from stock table)
manufacturer’s code (from manufact table)
description of item
picture of item (binary data)
tag line underneath picture

The catalog_num column is indexed and must contain unique values. The
stock_num and manu_code columns allow duplicate values. A multi-column
index for the stock_num and manu_code columns allows only unique values.

706 Appendix A

Structure of the Tables

The catalog table appears only if you are using Informix Dynamic Server.

The cust_calls Table
All customer calls for information on orders, shipments, or complaints are
logged. The cust_calls table contains information about these types of cus-
tomer calls. The columns of the cust_calls table are as follows.

Column Data
Name Type Description

customer_num INTEGER customer number (from customer
table)

call_dtime DATETIME YEAR TO MINUTE date and time call received
user_id CHAR(18) name of person logging call
call_code CHAR(1) type of call:

B = billing error
D = damaged goods
I = incorrect merchandise sent
L = late shipment
O = other

call_descr CHAR(240) description of call
res_dtime DATETIME YEAR TO MINUTE date and time call resolved
res_descr CHAR(240) description of how call was resolved

A multi-column index for both the customer_num and the call_dtime
columns allows only unique values. The customer_num column also has an
index that allows duplicate values.

The Demonstration Database 707

Structure of the Tables

The manufact Table
Information about the nine manufacturers whose sporting goods are handled
by the distributor is stored in the manufact table. The columns of the
manufact table are as follows.

Column Data
Name Type Description

manu_code CHAR(3) manufacturer’s code
manu_name CHAR(15) name of manufacturer
lead_time INTERVAL DAY(3) TO DAY lead time for shipment of orders

The manu_code column has an index that requires unique values.

The state Table
The state table contains the names and postal abbreviations for the 50 states
of the United States. It includes the following two columns.

Column
Name

Data
Type

Description

code
sname

CHAR(2)
CHAR(15)

state code
state name

The code column is indexed as unique.

708 Appendix A

Join Columns That Link the Database

The stores7 Database Map
Figure 1 displays the column names of the tables in the stores7 database.
Shading connecting a column in one table to a column in another table
indicates columns that contain the same information.

orders

items
catalog

Figure 1 Tables in the stores7 database

Join Columns That Link the Database
The tables of the stores7 database are linked together by the join columns
shown in Figure 1 and identified in this section. You can use these columns
to retrieve and display information from several tables at once, as if the
information had been stored in a single table. Figures 1 through 8 show the
join relationships among tables, and how information stored in one table
supplements information stored in others.

code

sname

 item_num

customer cust_calls
order_num order_num stock catalog_num

manufact order_date stock_num stock_num stock_num
customer_num customer_num customer_num manu_code manu_code manu_code manu_code

fname call_dtime ship_instruct quantity description cat_descr manu_name
lname user_id backlog total_price unit_price cat_picture lead_time

company call_code po_num unit cat_advert
address1 call_descr ship_date unit_descr
address2 res_dtime ship_weight

city res_descr ship_charge
state state paid_date

zipcode
phone

The Demonstration Database 709

The stores7 Database Map

Join Columns in the customer and orders Tables
The customer_num column joins the customer table and the orders table,
as shown in Figure 2.

order_num order_date

1001 05 / 20 / 1994

1002 05 / 21 / 1994

1003 05 / 22 / 1994

1004 05 / 22 / 1994

customer table c

(detail) u
s

orders table
(detail)

Figure 2 Tables joined by the customer_num column

The customer table contains a customer_num column that holds a number
identifying a customer, along with columns for the customer’s name, com-
pany, address, and telephone number. For example, the row with informa-
tion about Anthony Higgins contains the number 104 in the customer_num
column. The orders table also contains a customer_num column that stores
the number of the customer who placed a particular order.

According to Figure 2, customer 104 (Anthony Higgins) has placed two
orders because his customer number appears in two rows of the orders table.
Because the join relationship lets you select information from both tables, you
can retrieve Anthony Higgins’ name and address and information about his
orders at the same time.

customer_num

104

101

104

106

customer_num fname lname
101 Ludwig Pauli
102 Carole Sadler
103 Philip Currie
104 Anthony Higgins

710 Appendix A

Join Columns That Link the Database

Join Columns in the orders and items Tables
The orders and items tables are linked by an order_num column that contains
an identification number for each order. If an order includes several items,
the same order number appears in several rows of the items table. Figure 3
shows this relationship.

order_date customer_num

05 / 20 / 1994 104

05 / 21 / 1994 101

05 / 22 / 1994 104

manu_code

HRO

HSK

HSK

ANZ

ANZ

ANZ

orders table
(detail)

items table
(detail)

Figure 3 Tables joined by the order_num column

Join Columns in the items and stock Tables
The items table and the stock table are joined by two columns: the stock_num
column stores a stock number for an item, and the manu_code column stores
a code that identifies the manufacturer. You need both the stock number and
the manufacturer code to uniquely identify an item. For example, the item
with the stock number 1 and the manufacturer code HRO is a Hero baseball
glove, while the item with the stock number 1 and the manufacturer code
HSK is a Husky baseball glove.

order_num

1001

1002

1003

item_num order_num stock_num
1 1001 1
1 1002 4
2 1002 3
1 1003 9
2 1003 8
3 1003 5

The Demonstration Database 711

Join Columns That Link the Database

1

stock_num manu_code

1 HRO

1 HSK

SMTbaseball gloves

stock table
(detail)

The same stock number and manufacturer code can appear in more than one
row of the items table, if the same item belongs to separate orders, as
illustrated in Figure 4.

item_num order_num

1 1001

1 1002

2 1002

1 1003

2 1003

3 1003

1 1004

items table
(detail)

description

baseball gloves

baseball gloves

Figure 4 Tables joined by the stock_num and manu_code columns

Join Columns in the stock and catalog Tables
The catalog table and the stock table are joined by two columns: the
stock_num column stores a stock number for an item, and the manu_code
column stores a code that identifies the manufacturer. You need both of these
columns to uniquely identify an item. Figure 5 shows this relationship.

description

baseball gloves

baseball gloves

baseball gloves

stock table
(detail)

catalog table
(detail)

stock_num manu_code

1 HRO

4 HSK

3 HSK

9 ANZ

8 ANZ

5 ANZ

1 HRO

stock_num manu_code

1 HRO

1 HSK

1 SMT

catalog_num stock_num manu_code
10001 1 HRO
10002 1 HSK
10003 1 SMT
10004 2 HRO

712 Appendix A

Join Columns That Link the Database

Figure 5 Tables joined by the stock_num and manu_code columns

The Demonstration Database 713

Join Columns That Link the Database

Join Columns in the stock and manufact Tables
The stock table and the manufact table are joined by the manu_code column.
The same manufacturer code can appear in more than one row of the stock
table if the manufacturer produces more than one piece of equipment. This
relationship is illustrated in Figure 6.

stock table
(detail)

manufact table
(detail)

Figure 6 Tables joined by the manu_code column

stock_num

1
manu_code

HRO
description

baseball gloves
1 HSK baseball gloves
1 SMT baseball gloves

manu_code

NRG

HSK

HRO

manu_name

Norge

Husky

Hero

714 Appendix A

Join Columns That Link the Database

Join Columns in the cust_calls and customer Tables
The cust_calls table and the customer table are joined by the customer_num
column. The same customer number can appear in more than one row of the
cust_calls table if the customer calls the distributor more than once with a
problem or question. This relationship is illustrated in Figure 7.

customer table c

(detail) u
s

cust_calls table

(detail)

Figure 7 Tables joined by the customer_num column

customer_num

101
fname

Ludwig
lname

Pauli
102 Carole Sadler
103 Philip Currie
104 Anthony Higgins
105 Raymond Vector
106 George Watson

customer_num

106

call_dtime

1994-06-12 08:20

user_id

maryj
127 1994-07-31 14:30 maryj
116 1994-11-28 13:34 mannyh
116 1989-12-21 11:24 mannyh

The Demonstration Database 715

Data in the stores7 Database

Join Columns in the state and customer Tables
The state table and the customer table are joined by a column that contains
the state code. This column is called code in the state table and state in the
customer table. If several customers live in the same state, the same state code
will appear in several rows of the table, as shown in Figure 8.

customer table c

(detail) u
s

state table
(detail)

Figure 8 Tables joined by the state/code column

Data in the stores7 Database
The tables that follow display the data in the stores7 database.

customer_num

101
fname

Ludwig
lname

Pauli
...

...
state

CA
102 Carole Sadler ... CA
103 Philip Currie ... CA

code

AK

AL

AR

AZ

CA

sname

Alaska

Alabama

Arkansas

Arizona

California

customer Table
customer_num fname lname company address1 address2 city state zipcode phone

101 Ludwig Pauli All Sports Supplies 213 Erstwild Court Sunnyvale CA 94086 408-789-8075

102 Carole Sadler Sports Spot 785 Geary St San Francisco CA 94117 415-822-1289

103 Philip Currie Phil’s Sports 654 Poplar P. O. Box 3498 Palo Alto CA 94303 415-328-4543

104 Anthony Higgins Play Ball! East Shopping Cntr. 422 Bay Road Redwood City CA 94026 415-368-1100

105 Raymond Vector Los Altos Sports 1899 La Loma Drive Los Altos CA 94022 415-776-3249

106 George Watson Watson & Son 1143 Carver Place Mountain View CA 94063 415-389-8789

107 Charles Ream Athletic Supplies 41 Jordan Avenue Palo Alto CA 94304 415-356-9876

108 Donald Quinn Quinn’s Sports 587 Alvarado Redwood City CA 94063 415-544-8729

109 Jane Miller Sport Stuff Mayfair Mart 7345 Ross Blvd. Sunnyvale CA 94086 408-723-8789

110 Roy Jaeger AA Athletics 520 Topaz Way Redwood City CA 94062 415-743-3611

111 Frances Keyes Sports Center 3199 Sterling Court Sunnyvale CA 94085 408-277-7245

112 Margaret Lawson Runners & Others 234 Wyandotte Way Los Altos CA 94022 415-887-7235

113 Lana Beatty Sportstown 654 Oak Grove Menlo Park CA 94025 415-356-9982

114 Frank Albertson Sporting Place 947 Waverly Place Redwood City CA 94062 415-886-6677

115 Alfred Grant Gold Medal Sports 776 Gary Avenue Menlo Park CA 94025 415-356-1123

116 Jean Parmelee Olympic City 1104 Spinosa Drive Mountain View CA 94040 415-534-8822

117 Arnold Sipes Kids Korner 850 Lytton Court Redwood City CA 94063 415-245-4578

118 Dick Baxter Blue Ribbon Sports 5427 College Oakland CA 94609 415-655-0011

119 Bob Shorter The Triathletes Club 2405 Kings Highway Cherry Hill NJ 08002 609-663-6079

120 Fred Jewell Century Pro Shop 6627 N. 17th Way Phoenix AZ 85016 602-265-8754

121 Jason Wallack City Sports Lake Biltmore Mall 350 W. 23rd Street Wilmington DE 19898 302-366-7511

122 Cathy O’Brian The Sporting Life 543 Nassau Street Princeton NJ 08540 609-342-0054

123 Marvin Hanlon Bay Sports 10100 Bay Meadows Rd Suite 1020 Jacksonviille FL 32256 904-823-4239

124 Chris Putnum Putnum’s Putters 4715 S.E. Adams Blvd Suite 909C Bartlesville OK 74006 918-355-2074

125 James Henry Total Fitness Sports 1450 Commonwealth Av Brighton MA 02135 617-232-4159

126 Eileen Neelie Neelie’s Discount Sp 2539 South Utica Str Denver CO 80219 303-936-7731

127 Kim Satifer Big Blue Bike Shop Blue Island Square 12222 Gregory Street Blue Island NY 60406 312-944-5691

128 Frank Lessor Phoenix University Athletic Department 1817 N. Thomas Road Phoenix AZ 85008 602-533-1817

D
ata in

 th
e sto

res7 D
atab

ase

T
he D

em
on

stration
 D

atabase
715

Data in the stores7 Database

716 Appendix A

items Table (1 of 2)
item_num

1
order_num

1001
stock_num

1
manu_code

HRO
quantity

1
total_price

250.00
1 1002 4 HSK 1 960.00
2 1002 3 HSK 1 240.00
1 1003 9 ANZ 1 20.00
2 1003 8 ANZ 1 840.00
3 1003 5 ANZ 5 99.00
1 1004 1 HRO 1 250.00
2 1004 2 HRO 1 126.00
3 1004 3 HSK 1 240.00
4 1004 1 HSK 1 800.00
1 1005 5 NRG 10 280.00
2 1005 5 ANZ 10 198.00
3 1005 6 SMT 1 36.00
4 1005 6 ANZ 1 48.00
1 1006 5 SMT 5 125.00
2 1006 5 NRG 5 140.00
3 1006 5 ANZ 5 99.00
4 1006 6 SMT 1 36.00
5 1006 6 ANZ 1 48.00
1 1007 1 HRO 1 250.00
2 1007 2 HRO 1 126.00
3 1007 3 HSK 1 240.00
4 1007 4 HRO 1 480.00
5 1007 7 HRO 1 600.00
1 1008 8 ANZ 1 840.00
2 1008 9 ANZ 5 100.00
1 1009 1 SMT 1 450.00
1 1010 6 SMT 1 36.00
2 1010 6 ANZ 1 48.00
1 1011 5 ANZ 5 99.00
1 1012 8 ANZ 1 840.00
2 1012 9 ANZ 10 200.00
1 1013 5 ANZ 1 19.80
2 1013 6 SMT 1 36.00
3 1013 6 ANZ 1 48.00
4 1013 9 ANZ 2 40.00
1 1014 4 HSK 1 960.00
2 1014 4 HRO 1 480.00
1 1015 1 SMT 1 450.00
1 1016 101 SHM 2 136.00
2 1016 109 PRC 3 90.00
3 1016 110 HSK 1 308.00
4 1016 114 PRC 1 120.00
1 1017 201 NKL 4 150.00
2 1017 202 KAR 1 230.00
3 1017 301 SHM 2 204.00
1 1018 307 PRC 2 500.00

Data in the stores7 Database

The Demonstration Database 717

items Table (2 of 2)
item_num

2
order_num

1018
stock_num

302
manu_code

KAR
quantity

3
total_price

15.00
3 1018 110 PRC 1 236.00
4 1018 5 SMT 4 100.00
5 1018 304 HRO 1 280.00
1 1019 111 SHM 3 1499.97
1 1020 204 KAR 2 90.00
2 1020 301 KAR 4 348.00
1 1021 201 NKL 2 75.00
2 1021 201 ANZ 3 225.00
3 1021 202 KAR 3 690.00
4 1021 205 ANZ 2 624.00
1 1022 309 HRO 1 40.00
2 1022 303 PRC 2 96.00
3 1022 6 ANZ 2 96.00
1 1023 103 PRC 2 40.00
2 1023 104 PRC 2 116.00
3 1023 105 SHM 1 80.00
4 1023 110 SHM 1 228.00
5 1023 304 ANZ 1 170.00
6 1023 306 SHM 1 190.00

orders Table orders Table

order_num

1001
order_date

05 / 20 / 1994
customer_num

104
ship_instruct

express
backlog

n
po_num

B77836
ship_date

06 / 01 / 1994
ship_weight

20.40
ship_charge

10.00
paid_date

07 / 22 / 1994
1002 05 / 21 / 1994 101 PO on box; deliver back door only n 9270 05 / 26 / 1994 50.60 15.30 06 / 03 / 1994
1003 05 / 22 / 1994 104 express n B77890 05 / 23 / 1994 35.60 10.80 06 / 14 / 1994
1004 05 / 22 / 1994 106 ring bell twice y 8006 05 / 30 / 1994 95.80 19.20
1005 05 / 24 / 1994 116 call before delivery n 2865 06 / 09 / 1994 80.80 16.20 06 / 21 / 1994
1006 05 / 30 / 1994 112 after 10 am y Q13557 70.80 14.20
1007 05 / 31 / 1994 117 n 278693 06 / 05 / 1994 125.90 25.20
1008 06 / 07 / 1994 110 closed Monday y LZ230 07 / 06 / 1994 45.60 13.80 07 / 21 / 1994
1009 06 / 14 / 1994 111 next door to grocery n 4745 06 / 21 / 1994 20.40 10.00 08 / 21 / 1994
1010 06 / 17 / 1994 115 deliver 776 King St. if no answer n 429Q 06 / 29 / 1994 40.60 12.30 08 / 22 / 1994
1011 06 / 18 / 1994 104 express n B77897 07 / 03 / 1994 10.40 5.00 08 / 29 / 1994
1012 06 / 18 / 1994 117 n 278701 06 / 29 / 1994 70.80 14.20
1013 06 / 22 / 1994 104 express n B77930 07 / 10 / 1994 60.80 12.20 07 / 31 / 1994
1014 06 / 25 / 1994 106 ring bell, kick door loudly n 8052 07 / 03 / 1994 40.60 12.30 07 / 10 / 1994
1015 06 / 27 / 1994 110 closed Mondays n MA003 07 / 16 / 1994 20.60 6.30 08 / 31 / 1994
1016 06 / 29 / 1994 119 delivery entrance off Camp St. n PC6782 07 / 12 / 1994 35.00 11.80
1017 07 / 09 / 1994 120 North side of clubhouse n DM354331 07 / 13 / 1994 60.00 18.00
1018 07 / 10 / 1994 121 SW corner of Biltmore Mall n S22942 07 / 13 / 1994 70.50 20.00 08 / 06 / 1994
1019 07 / 11 / 1994 122 closed til noon Mondays n Z55709 07 / 16 / 1994 90.00 23.00 08 / 06 / 1994
1020 07 / 11 / 1994 123 express n W2286 07 / 16 / 1994 14.00 8.50 09 / 20 / 1994
1021 07 / 23 / 1994 124 ask for Elaine n C3288 07 / 25 / 1994 40.00 12.00 08 / 22 / 1994
1022 07 / 24 / 1994 126 express n W9925 07 / 30 / 1994 15.00 13.00 09 / 02 / 1994
1023 07 / 24 / 1994 127 no deliveries after 3 p.m. n KF2961 07 / 30 / 1994 60.00 18.00 08 / 22 / 1994

D
ata in

 th
e sto

res7 D
atab

ase

718
A

ppen
dix A

Data in the stores7 Database

The Demonstration Database 719

stock Table (1 of 2)
stock_num

1
manu_code

HRO
description

baseball gloves
unit_price

250.00
unit

case
unit_descr

10 gloves / case
1 HSK baseball gloves 800.00 case 10 gloves / case
1 SMT baseball gloves 450.00 case 10 gloves / case
2 HRO baseball 126.00 case 24 / case
3 HSK baseball bat 240.00 case 12 / case
4 HSK football 960.00 case 24 / case
4 HRO football 480.00 case 24 / case
5 NRG tennis racquet 28.00 each each
5 SMT tennis racquet 25.00 each each
5 ANZ tennis racquet 19.80 each each
6 SMT tennis ball 36.00 case 24 cans / case
6 ANZ tennis ball 48.00 case 24 cans / case
7 HRO basketball 600.00 case 24 / case
8 ANZ volleyball 840.00 case 24 / case
9 ANZ volleyball net 20.00 each each

101 PRC bicycle tires 88.00 box 4 / box
101 SHM bicycle tires 68.00 box 4 / box
102 SHM bicycle brakes 220.00 case 4 sets / case
102 PRC bicycle brakes 480.00 case 4 sets / case
103 PRC front derailleur 20.00 each each
104 PRC rear derailleur 58.00 each each
105 PRC bicycle wheels 53.00 pair pair
105 SHM bicycle wheels 80.00 pair pair
106 PRC bicycle stem 23.00 each each
107 PRC bicycle saddle 70.00 pair pair
108 SHM crankset 45.00 each each
109 PRC pedal binding 30.00 case 6 pairs / case
109 SHM pedal binding 200.00 case 4 pairs / case
110 PRC helmet 236.00 case 4 / case
110 ANZ helmet 244.00 case 4 / case
110 SHM helmet 228.00 case 4 / case
110 HRO helmet 260.00 case 4 / case
110 HSK helmet 308.00 case 4 / case
111 SHM 10-spd, assmbld 499.99 each each
112 SHM 12-spd, assmbld 549.00 each each
113 SHM 18-spd, assmbld 685.90 each each
114 PRC bicycle gloves 120.00 case 10 pairs / case

Data in the stores7 Database

stock Table (2 of 2)
stock_num

201
manu_code

NKL
description

golf shoes
unit_price

37.50
unit

each
unit_descr

each
201 ANZ golf shoes 75.00 each each
201 KAR golf shoes 90.00 each each
202 NKL metal woods 174.00 case 2 sets / case
202 KAR std woods 230.00 case 2 sets / case
203 NKL irons / wedges 670.00 case 2 sets / case
204 KAR putter 45.00 each each
205 NKL 3 golf balls 312.00 case 24 / case
205 ANZ 3 golf balls 312.00 case 24 / case
205 HRO 3 golf balls 312.00 case 24 / case
301 NKL running shoes 97.00 each each
301 HRO running shoes 42.50 each each
301 SHM running shoes 102.00 each each
301 PRC running shoes 75.00 each each
301 KAR running shoes 87.00 each each
301 ANZ running shoes 95.00 each each
302 HRO ice pack 4.50 each each
302 KAR ice pack 5.00 each each
303 PRC socks 48.00 box 24 pairs / box
303 KAR socks 36.00 box 24 pair / box
304 ANZ watch 170.00 box 10 / box
304 HRO watch 280.00 box 10 / box
305 HRO first-aid kit 48.00 case 4 / case
306 PRC tandem adapter 160.00 each each
306 SHM tandem adapter 190.00 each each
307 PRC infant jogger 250.00 each each
308 PRC twin jogger 280.00 each each
309 HRO ear drops 40.00 case 20 / case
309 SHM ear drops 40.00 case 20 / case
310 SHM kick board 80.00 case 10 / case
310 ANZ kick board 89.00 case 12 / case
311 SHM water gloves 48.00 box 4 pairs / box
312 SHM racer goggles 96.00 box 12 / box
312 HRO racer goggles 72.00 box 12 / box
313 SHM swim cap 72.00 box 12 / box
313 ANZ swim cap 60.00 box 12 / box

720 Appendix A

catalog Table (1 of 7)

catalog_num stock_num manu_code cat_descr

10001 1 HRO Brown leather. Specify first baseman’s
or infield / outfield style. Specify right-
or left-handed.

10002 1 HSK Babe Ruth signature glove. Black leather.
Infield / outfield style. Specify right- or
left-handed

10003 1 SMT Catcher’s mitt. Brown leather. Specify
right- or left-handed.

10004 2 HRO Jackie Robinson signature glove. Highest
Professional quality, used by National
League.

10005 3 HSK Pro-style wood. Available in sizes: 31, 32,
33, 34, 35.

10006 3 SHM Aluminum. Blue with black tape. 31",
20 oz or 22 oz; 32", 21 oz or 23 oz; 33",
22 oz or 24 oz;

10007 4 HSK Norm Van Brocklin signature style.

10008 4 HRO NFL-Style pigskin.

10009 5 NRG Graphite frame. Synthetic strings.

10010 5 SMT Aluminum frame. Synthetic strings

10011 5 ANZ Wood frame, cat-gut strings.

10012 6 SMT Soft yellow color for easy visibility in
sunlight or artificial light

10013 6 ANZ Pro-core. Available in neon yellow, green,

and pink.

10014 7 HRO Indoor. Classic NBA style. Brown leather.

10015 8 ANZ Indoor. Finest leather. Professional quality.

10016 9 ANZ Steel eyelets. Nylon cording. Double-
stitched. Sanctioned by the National
Athletic Congress

cat_picture cat_advert

<BYTE value> Your First Season’s Baseball Glove

<BYTE value> All-Leather, Hand-Stitched, Deep-
Pockets, Sturdy Webbing that Won’t
Let Go

<BYTE value> A Sturdy Catcher’s Mitt With the Perfect
Pocket

<BYTE value> Highest Quality Ball Available, from
the Hand-Stitching to the Robinson
Signature

<BYTE value> High-Technology Design Expands the
Sweet Spot

<BYTE value> Durable Aluminum for High School and
Collegiate Athletes

<BYTE value> Quality Pigskin with Norm Van Brocklin
Signature

<BYTE value> Highest Quality Football for High
School and Collegiate Competitions

<BYTE value> Wide Body Amplifies Your Natural
Abilities by Providing More Power
Through Aerodynamic Design

<BYTE value> Mid-Sized Racquet For the Improving
Player

<BYTE value> Antique Replica of Classic Wooden
Racquet Built with Cat-Gut Strings

<BYTE value> High-Visibility Tennis, Day or Night

<BYTE value> Durable Construction Coupled with the
Brightest Colors Available

<BYTE value> Long-Life Basketballs for Indoor
Gymnasiums

<BYTE value> Professional Volleyballs for Indoor
Competitions

<BYTE value> Sanctioned Volleyball Netting for
Indoor Professional and Collegiate
Competition

D
ata in

 th
e sto

res7 D
atab

ase

T
he D

em
on

stration
 D

atabase
721

catalog Table (2 of 7)

catalog_num stock_num manu_code cat_descr

10017 101 PRC Reinforced, hand-finished tubular.
Polyurethane belted. Effective against
punctures. Mixed tread for super wear
and road grip.

10018 101 SHM Durable nylon casing with butyl tube for
superior air retention. Center-ribbed tread
with herringbone side. Coated sidewalls
resist abrasion.

10019 102 SHM Thrust bearing and coated pivot washer /
spring sleeve for smooth action. Slotted
levers with soft gum hoods. Two-tone
paint treatment. Set includes calipers,
levers, and cables.

10020 102 PRC Computer-aided design with low-profile
pads. Cold-forged alloy calipers and beefy
caliper bushing. Aero levers. Set includes
calipers, levers, and cables

10021 103 PRC Compact leading-action design enhances
shifting. Deep cage for super-small granny
gears. Extra strong construction to resist
off-road abuse.

10022 104 PRC Floating trapezoid geometry with extra
thick parallelogram arms. 100-tooth
capacity. Optimum alignment with any
freewheel.

10023 105 PRC Front wheels laced with 15g spokes in a
3-cross pattern. Rear wheels laced with 14g
spikes in a 3-cross pattern.

10024 105 SHM Polished alloy. Sealed-bearing, quick-
release hubs. Double-butted. Front wheels
are laced 15g / 2-cross. Rear wheels are
laced 15g / 3-cross.

10025 106 PRC Hard anodized alloy with pearl finish.
6mm hex bolt hardware. Available in
lengths of 90-140mm in 10mm increments.

10026 107 PRC Available in three styles: Mens racing;
Mens touring; and Womens. Anatomical
gel construction with lycra cover. Black or
black / hot pink.

cat_picture cat_advert

<BYTE value> Ultimate in Puncture Protection, Tires
Designed for In-City Riding

<BYTE value> The Perfect Tire for Club Rides or
Training

<BYTE value> Thrust-Bearing and Spring-Sleeve Brake

Set Guarantees Smooth Action

<BYTE value> Computer Design Delivers Rigid Yet
Vibration-Free Brakes

<BYTE value> Climb Any Mountain: ProCycle’s Front
Derailleur Adds Finesse to Your ATB

<BYTE value> Computer-Aided Design Engineers
100-Tooth Capacity Into ProCycle’s Rear
Derailleur

<BYTE value> Durable Training Wheels That Hold
True Under Toughest Conditions

<BYTE value> Extra Lightweight Wheels for Training
or High-Performance Touring

<BYTE value> ProCycle Stem with Pearl Finish

<BYTE value> The Ultimate In Riding Comfort, Light-

weight With Anatomical Support

722

D
ata in

 th
e sto

res7 D
atab

ase

A
ppen

dix A

catalog Table (3 of 7)

catalog_num stock_num manu_code cat_descr

10027 108 SHM Double or triple crankset with choice of
chainrings. For double crankset, chain-
rings from 38-54 teeth. For triple crankset,
chainrings from 24-48 teeth.

10028 109 PRC Steel toe clips with nylon strap. Extra wide
at buckle to reduce pressure.

10029 109 SHM Ingenious new design combines button
on sole of shoe with slot on a pedal plate
to give riders new options in riding effi-
ciency. Choose full or partial locking. Four
plates mean both top and bottom of pedals
are slotted—no fishing around when you
want to engage full power. Fast unlocking
ensures safety when maneuverability is
paramount.

10030 110 PRC Super-lightweight. Meets both ANZI and
Snell standards for impact protection. 7.5
oz. Quick-release shadow buckle.

10031 110 ANZ No buckle so no plastic touches your chin.
Meets both ANZI and Snell standards for
impact protection. 7.5 oz. Lycra cover.

10032 110 SHM Dense outer layer combines with softer
inner layer to eliminate the mesh cover,
no snagging on brush. Meets both ANZI
and Snell standards for impact protection.
8.0 oz.

10033 110 HRO Newest ultralight helmet uses plastic shell.
Largest ventilation channels of any helmet
on the market. 8.5 oz.

10034 110 HSK Aerodynamic (teardrop) helmet covered
with anti-drag fabric. Credited with shav-
ing 2 seconds / mile from winner’s time in
Tour de France time-trial. 7.5 oz.

10035 111 SHM Light-action shifting 10 speed. Designed
for the city commuter with shock-absorb-
ing front fork and drilled eyelets for carry-
all racks or bicycle trailers. Internal wiring
for generator lights. 33 lbs.

cat_picture cat_advert

<BYTE value> Customize Your Mountain Bike With
Extra-Durable Crankset

<BYTE value> Classic Toeclip Improved To Prevent
Soreness At Clip Buckle

<BYTE value> Ingenious Pedal / Clip Design Delivers
Maximum Power And Fast Unlocking

<BYTE value> Feather-Light, Quick-Release,

Maximum Protection Helmet

<BYTE value> Minimum Chin Contact, Feather-Light,
Maximum Protection Helmet

<BYTE value> Mountain Bike Helmet: Smooth Cover
Eliminates the Worry of Brush Snags But
Delivers Maximum Protection

<BYTE value> Lightweight Plastic with Vents Assures
Cool Comfort Without Sacrificing
Protection

<BYTE value> Teardrop Design Used by Yellow
Jerseys, You Can Time the Difference

<BYTE value> Fully Equipped Bicycle Designed for the
Serious Commuter Who Mixes Business
With Pleasure

T
he D

em
on

stration
 D

atabase
723

D
ata in

 th
e sto

res7 D
atab

ase

catalog Table (4 of 7)

catalog_num stock_num manu_code cat_descr

10036 112 SHM Created for the beginner enthusiast. Ideal
for club rides and light touring. Sophisti-
cated triple-butted frame construction.
Precise index shifting. 28 lbs.

10037 113 SHM Ultra-lightweight. Racing frame geometry
built for aerodynamic handlebars.
Cantilever brakes. Index shifting. High-
performance gearing. Quick-release hubs.
Disk wheels. Bladed spokes.

10038 114 PRC Padded leather palm and stretch mesh
merged with terry back; Available in tan,
black, and cream. Sizes S, M, L, XL.

10039 201 NKL Designed for comfort and stability.
Available in white & blue or white
& brown. Specify size.

10040 201 ANZ Guaranteed waterproof. Full leather
upper. Available in white, bone, brown,
green, and blue. Specify size.

10041 201 KAR Leather and leather mesh for maximum
ventilation. Waterproof lining to keep feet
dry. Available in white & gray or white
& ivory. Specify size.

10042 202 NKL Complete starter set utilizes gold shafts.

Balanced for power.

10043 202 KAR Full set of woods designed for precision
control and power performance.

10044 203 NKL Set of eight irons includes 3 through 9 irons
and pitching wedge. Originally priced at
$489.00.

10045 204 KAR Ideally balanced for optimum control.
Nylon-covered shaft.

10046 205 NKL Fluorescent yellow.

10047 205 ANZ White only.

10048 205 HRO Combination fluorescent yellow and
standard white.

cat_picture cat_advert

<BYTE value> We Selected the Ideal Combination of
Touring Bike Equipment, Then Turned
It Into This Package Deal: High-Perfor-
mance on the Roads, Maximum Plea-
sure Everywhere

<BYTE value> Designed for the Serious Competitor,
The Complete Racing Machine

<BYTE value> Riding Gloves For Comfort and
Protection

<BYTE value> Full-Comfort, Long-Wearing Golf Shoes

for Men and Women

<BYTE value> Waterproof Protection Ensures
Maximum Comfort and Durability
In All Climates

<BYTE value> Karsten’s Top Quality Shoe Combines
Leather and Leather Mesh

<BYTE value> Starter Set of Woods, Ideal for High

School and Collegiate Classes

<BYTE value> High-Quality Woods Appropriate for
High School Competitions or Serious
Amateurs

<BYTE value> Set of Irons Available From Factory at
Tremendous Savings: Discontinued
Line.

<BYTE value> High-Quality Beginning Set of Irons Ap-
propriate for High School Competitions

<BYTE value> Long Drive Golf Balls: Fluorescent

Yellow

<BYTE value> Long Drive Golf Balls: White

<BYTE value> HiFlier Golf Balls: Case Includes
Fluorescent Yellow and Standard White

catalog Table (4 of 7)
D

ata in
 th

e sto
res7 D

atab
ase

724
A

ppen
dix A

catalog Table (5 of 7)

catalog_num stock_num manu_code cat_descr

10049 301 NKL Super shock-absorbing gel pads disperse
vertical energy into a horizontal plane for
extraordinary cushioned comfort. Great
motion control. Mens only. Specify size.

10050 301 HRO Engineered for serious training with
exceptional stability. Fabulous shock ab-
sorption. Great durability. Specify mens /
womens, size.

10051 301 SHM For runners who log heavy miles and need
a durable, supportive, stable platform.
Mesh / synthetic upper gives excellent
moisture dissipation. Stability system uses
rear antipronation platform and forefoot
control plate for extended protection dur-
ing high-intensity training. Specify mens /
womens, size.

10052 301 PRC Supportive, stable racing flat. Plenty of
forefoot cushioning with added motion
control. Womens only. D widths available.
Specify size.

10053 301 KAR Anatomical last holds your foot firmly in
place. Feather-weight cushioning delivers
the responsiveness of a racing flat. Specify
mens / womens, size.

10054 301 ANZ Cantilever sole provides shock absorption
and energy rebound. Positive traction shoe
with ample toe box. Ideal for runners who
need a wide shoe. Available in mens and
womens. Specify size.

10055 302 KAR Re-usable ice pack with velcro strap. For
general use. Velcro strap allows easy appli-
cation to arms or legs.

10056 303 PRC Neon nylon. Perfect for running or
aerobics. Indicate color: Fluorescent pink,
yellow, green, and orange.

10057 303 KAR 100% nylon blend for optimal wicking and
comfort. We’ve taken out the cotton to
eliminate the risk of blisters and reduce the
opportunity for infection. Specify mens or
womens.

cat_picture cat_advert

<BYTE value> Maximum Protection For High-Mileage
Runners

<BYTE value> Pronators and Supinators Take Heart:
A Serious Training Shoe For Runners
Who Need Motion Control

<BYTE value> The Training Shoe Engineered for
Marathoners and Ultra-Distance
Runners

<BYTE value> A Woman’s Racing Flat That Combines

Extra Forefoot Protection With a Slender
Heel

<BYTE value> Durable Training Flat That Can Carry

You Through Marathon Miles

<BYTE value> Motion Control, Protection, and Extra
Toebox Room

<BYTE value> Finally, An Ice Pack for Achilles Injuries
and Shin Splints that You Can Take to
the Office

<BYTE value> Knock Their Socks Off With YOUR
Socks!

<BYTE value> 100% Nylon Blend Socks - No Cotton!

catalog Table (5 of 7)
D

ata in
 th

e sto
res7 D

atab
ase

T
he D

em
on

stration
 D

atabase
725

catalog Table (6 of 7)
catalog_num stock_num manu_code cat_descr

10058 304 ANZ Provides time, date, dual display of lap /
cumulative splits, 4-lap memory, 10hr
count-down timer, event timer, alarm,
hour chime, waterproof to 50m, velcro
band.

10059 304 HRO Split timer, waterproof to 50m. Indicate
color: Hot pink, mint green, space black.

10060 305 HRO Contains ace bandage, anti-bacterial
cream, alcohol cleansing pads, adhesive
bandages of assorted sizes, and instant-
cold pack.

10061 306 PRC Converts a standard tandem bike into an
adult / child bike. User-tested Assembly
Instructions

10062 306 SHM Converts a standard tandem bike into an
adult / child bike. Lightweight model.

10063 307 PRC Allows mom or dad to take the baby out,
too. Fits children up to 21 pounds. Navy
blue with black trim.

10064 308 PRC Allows mom or dad to take both children!
Rated for children up to 18 pounds.

10065 309 HRO Prevents swimmer’s ear.

10066 309 SHM Extra-gentle formula. Can be used
every day for prevention or treatment
of swimmer’s ear.

10067 310 SHM Blue heavy-duty foam board with Shimara
or team logo.

10068 310 ANZ White. Standard size.

10069 311 SHM Swim gloves. Webbing between fingers
promotes strengthening of arms. Cannot
be used in competition.

10070 312 SHM Hydrodynamic egg-shaped lens.
Ground-in anti-fog elements; Available in
blue or smoke.

10071 312 HRO Durable competition-style goggles.
Available in blue, grey, or white.

cat_picture cat_advert

<BYTE value> Athletic Watch w / 4-Lap Memory

<BYTE value> Waterproof Triathlete Watch In

Competition Colors

<BYTE value> Comprehensive First-Aid Kit Essential
for Team Practices, Team Traveling

<BYTE value> Enjoy Bicycling With Your Child On a
Tandem; Make Your Family Outing
Safer

<BYTE value> Consider a Touring Vacation For the
Entire Family: A Lightweight, Touring
Tandem for Parent and Child

<BYTE value> Infant Jogger Keeps A Running Family
Together

<BYTE value> As Your Family Grows, Infant Jogger
Grows With You

<BYTE value> Swimmers Can Prevent Ear Infection
All Season Long

<BYTE value> Swimmer’s Ear Drops Specially
Formulated for Children

<BYTE value> Exceptionally Durable, Compact
Kickboard for Team Practice

<BYTE value> High-Quality Kickboard

<BYTE value> Hot Training Tool - Webbed Swim
Gloves Build Arm Strength and
Endurance

<BYTE value> Anti-Fog Swimmer’s Goggles:
Quantity Discount.

<BYTE value> Swim Goggles: Traditional Rounded
Lens For Greater Comfort.

D
ata in

 th
e sto

res7 D
atab

ase

726
A

ppen
dix A

catalog Table (7 of 7)
catalog_num stock_num manu_code cat_descr

10072 313 SHM Silicone swim cap. One size. Available
in white, silver, or navy. Team Logo
Imprinting Available

10073 313 ANZ Silicone swim cap. Squared-off top. One
size. White.

10074 302 HRO Re-usable ice pack. Store in the freezer
for instant first-aid. Extra capacity to
accommodate water and ice.

cat_picture cat_advert

<BYTE value> Team Logo Silicone Swim Cap

<BYTE value> Durable Squared-off Silicone Swim Cap

<BYTE value> Water Compartment Combines With
Ice to Provide Optimal Orthopedic
Treatment D

ata in
 th

e sto
res7 D

atab
ase

T
he D

em
on

stration
 D

atabase
727

cust_calls Table

customer_num call_dtime user_id call_code call_descr

106 1994-06-12 8:20 maryj D Order was received, but two of
the cans of ANZ tennis balls
within the case were empty

110 1994-07-07 10:24 richc L Order placed one month ago
(6 / 7) not received.

119 1994-07-01 15:00 richc B Bill does not reflect credit from

previous order

121 1994-07-10 14:05 maryj O Customer likes our merchandise.
Requests that we stock more
types of infant joggers. Will call
back to place order.

127 1994-07-31 14:30 maryj I Received Hero watches (item #
304) instead of ANZ watches

116 1989-11-28 13:34 mannyn I Received plain white swim caps
(313 ANZ) instead of navy with
team logo (313 SHM)

116 1989-12-21 11:24 mannyn I Second complaint from this
customer! Received two cases
right-handed outfielder gloves
(1 HRO) instead of one case
lefties.

res_dtime res_descr

1994-06-12 8:25 Authorized credit for two cans to
customer, issued apology. Called
ANZ buyer to report the QA problem.

1994-07-07 10:30 Checked with shipping (Ed Smith).
Order sent yesterday- we were wait-
ing for goods from ANZ. Next time
will call with delay if necessary.

1994-07-02 8:21 Spoke with Jane Akant in Finance. She
found the error and is sending new
bill to customer

1994-07-10 14:06 Sent note to marketing group of
interest in infant joggers

Sent memo to shipping to send ANZ
item 304 to customer and pickup HRO
watches. Should be done tomorrow,
8 / 1

1989-11-28 16:47 Shipping found correct case in ware-
house and express mailed it in time
for swim meet.

1989-12-27 08:19 Memo to shipping (Ava Brown) to
send case of left-handed gloves, pick
up wrong case; memo to billing
requesting 5% discount to placate
customer due to second offense and
lateness of resolution because of
holiday

cust_calls Table

728
A

ppen
dix A

D
ata in

 th
e sto

res7 D
atab

ase

Data in the stores7 Database

manufact Table
manu_code

ANZ
manu_name

Anza
lead_time

5
HSK Husky 5
HRO Hero 4
NRG Norge 7
SMT Smith 3
SHM Shimara 30
KAR Karsten 21
NKL Nikolus 8
PRC ProCycle 9

state Table
code

AK
sname

Alaska
code

MT
sname

Montana
AL Alabama NE Nebraska
AR Arkansas NC North Carolina
AZ Arizona ND North Dakota
CA California NH New Hampshire
CT Connecticut NJ New Jersey
CO Colorado NM New Mexico
D.C. DC NV Nevada
DE Delaware NY New York
FL Florida OH Ohio
GA Georgia OK Oklahoma
HI Hawaii OR Oregon
IA Iowa PA Pennsylvania
ID Idaho PR Puerto Rico
IL Illinois RI Rhode Island
IN Indiana SC South Carolina
KS Kansas SD South Dakota
KY Kentucky TN Tennessee
LA Louisiana TX Texas
MA Massachusetts UT Utah
MD Maryland VA Virginia
ME Maine VT Vermont
MI Michigan WA Washington
MN Minnesota WI Wisconsin
MO Missouri WV West Virginia
MS Mississippi WY Wyoming

The Demonstration Database 729

Data in the stores7 Database

730 Appendix A

1

Notices

Notices and Information

HCL Informix 4gl 7.51.FC3

======

DETAIL

======

Note: generic licenses are marked with (*)

Note: missing copyright references are marked with (*)

1. Library: icu4c-release-60-2 Product: Informix 4GL

========

LICENSES

========

Licensed under ICU License

License terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

License Text Under Appendix

==========

COPYRIGHTS

==========

Copyright 1 out of 15

Copyrighted under Copyright 1997-2016 International Business Machines Corporation and others

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/readme.html

Copyright 2 out of 15

Copyrighted under Copyright 2016 and later: Unicode, Inc. and others

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/readme.html

Copyright 3 out of 15

Copyrighted under Copyright 1997-2016 International Business Machines Corporation and others

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/readme.html

Copyright 4 out of 15

Copyrighted under Copyright 1999 TaBE Project

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

2

Copyright 5 out of 15

Copyrighted under Copyright 1991-2017 Unicode, Inc

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 6 out of 15

Copyrighted under Copyright 1999 Pai-Hsiang Hsiao

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 7 out of 15

Copyrighted under Copyright 1999 Computer Systems and Communication Lab,

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 8 out of 15

Copyrighted under Copyright 2013 Brian Eugene Wilson, Robert Martin Campbell

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 9 out of 15

Copyrighted under Copyright 1996 Chih-Hao Tsai @ Beckman Institute,

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 10 out of 15

Copyrighted under Copyright 2013 LeRoy Benjamin Sharon

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 11 out of 15

Copyrighted under Copyright 2013 International Business Machines Corporation

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 12 out of 15

Copyrighted under Copyright 2014 International Business Machines Corporation

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

3

Copyright 13 out of 15

Copyrighted under Copyright 1995-2016 International Business Machines Corporation and others

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 14 out of 15

Copyrighted under Copyright 2006-2008 Google Inc

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

Copyright 15 out of 15

Copyrighted under Copyright 2000-2001 2002, 2003 Nara Institute of Science

Copyright terms can be found at: https://github.com/sillsdev/icu4c/blob/release-60-2/LICENSE

=========================

APPENDIX: License Details

=========================

ICU License

License Text:

(*) ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2015 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without

limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software,

and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s)

and this permission notice appear in all copies of the Software and that both the above copyright notice(s)

and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED

TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY

RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM,

OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or

otherwise to promote the sale, use or other dealings in this Software without prior written authorization of

the copyright holder.

4

All trademarks and registered trademarks mentioned herein are the property of their respective owners.

Third-Party Software Licenses

This section contains third-party software notices and/or additional terms for licensed third-party software

components included within ICU libraries.

1. Unicode Data Files and Software

COPYRIGHT AND PERMISSION NOTICE

Copyright Â© 1991-2015 Unicode, Inc. All rights reserved.

Distributed under the Terms of Use in

http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining

a copy of the Unicode data files and any associated documentation

(the "Data Files") or Unicode software and any associated documentation

(the "Software") to deal in the Data Files or Software

without restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, and/or sell copies of

the Data Files or Software, and to permit persons to whom the Data Files

or Software are furnished to do so, provided that

(a) this copyright and permission notice appear with all copies

of the Data Files or Software,

(b) this copyright and permission notice appear in associated

documentation, and

(c) there is clear notice in each modified Data File or in the Software

as well as in the documentation associated with the Data File(s) or

Software that the data or software has been modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT OF THIRD PARTY RIGHTS.

IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS

NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL

DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER

TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR

PERFORMANCE OF THE DATA FILES OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder

shall not be used in advertising or otherwise to promote the sale,

use or other dealings in these Data Files or Software without prior

written authorization of the copyright holder.

2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt)

The Google Chrome software developed by Google is licensed under the BSD license. Other software included

in this distribution is provided under other licenses, as set forth below.

The BSD License

http://opensource.org/licenses/bsd-license.php

Copyright (C) 2006-2008, Google Inc.

All rights reserved.

http://www.unicode.org/copyright.html
http://www.unicode.org/copyright.html
http://opensource.org/licenses/bsd-license.php

5

Redistribution and use in source and binary forms, with or without modification, are permitted provided that

the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of Google Inc. nor the names of its contributors may be used to endorse or promote

products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

The word list in cjdict.txt are generated by combining three word lists listed

below with further processing for compound word breaking. The frequency is generated

with an iterative training against Google web corpora.

* Libtabe (Chinese)

- https://sourceforge.net/project/?group_id=1519

- Its license terms and conditions are shown below.

* IPADIC (Japanese)

- http://chasen.aist-nara.ac.jp/chasen/distribution.html

- Its license terms and conditions are shown below.

---------COPYING.libtabe ---- BEGIN--------------------

/*

* Copyrighy (c) 1999 TaBE Project.

* Copyright (c) 1999 Pai-Hsiang Hsiao.

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

* . Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* . Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

* . Neither the name of the TaBE Project nor the names of its

* contributors may be used to endorse or promote products derived

* from this software without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

http://chasen.aist-nara.ac.jp/chasen/distribution.html

6

* REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/*

* Copyright (c) 1999 Computer Systems and Communication Lab,

* Institute of Information Science, Academia Sinica.

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

* . Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* . Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in

* the documentation and/or other materials provided with the

* distribution.

* . Neither the name of the Computer Systems and Communication Lab

* nor the names of its contributors may be used to endorse or

* promote products derived from this software without specific

* prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

* REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

* OF THE POSSIBILITY OF SUCH DAMAGE.

*/

Copyright 1996 Chih-Hao Tsai @ Beckman Institute, University of Illinois

c-tsai4@uiuc.edu http://casper.beckman.uiuc.edu/~c-tsai4

---------------COPYING.libtabe-----END------------------------------------

---------------COPYING.ipadic-----BEGIN------------------------------------

Copyright 2000, 2001, 2002, 2003 Nara Institute of Science

and Technology. All Rights Reserved.

Use, reproduction, and distribution of this software is permitted.

Any copy of this software, whether in its original form or modified,

must include both the above copyright notice and the following

mailto:c-tsai4@uiuc.edu
http://casper.beckman.uiuc.edu/~c-tsai4

7

paragraphs.

Nara Institute of Science and Technology (NAIST),

the copyright holders, disclaims all warranties with regard to this

software, including all implied warranties of merchantability and

fitness, in no event shall NAIST be liable for

any special, indirect or consequential damages or any damages

whatsoever resulting from loss of use, data or profits, whether in an

action of contract, negligence or other tortuous action, arising out

of or in connection with the use or performance of this software.

A large portion of the dictionary entries

originate from ICOT Free Software. The following conditions for ICOT

Free Software applies to the current dictionary as well.

Each User may also freely distribute the Program, whether in its

original form or modified, to any third party or parties, PROVIDED

that the provisions of Section 3 ("NO WARRANTY") will ALWAYS appear

on, or be attached to, the Program, which is distributed substantially

in the same form as set out herein and that such intended

distribution, if actually made, will neither violate or otherwise

contravene any of the laws and regulations of the countries having

jurisdiction over the User or the intended distribution itself.

NO WARRANTY

The program was produced on an experimental basis in the course of the

research and development conducted during the project and is provided

to users as so produced on an experimental basis. Accordingly, the

program is provided without any warranty whatsoever, whether express,

implied, statutory or otherwise. The term "warranty" used herein

includes, but is not limited to, any warranty of the quality,

performance, merchantability and fitness for a particular purpose of

the program and the nonexistence of any infringement or violation of

any right of any third party.

Each user of the program will agree and understand, and be deemed to

have agreed and understood, that there is no warranty whatsoever for

the program and, accordingly, the entire risk arising from or

otherwise connected with the program is assumed by the user.

Therefore, neither ICOT, the copyright holder, or any other

organization that participated in or was otherwise related to the

development of the program and their respective officials, directors,

officers and other employees shall be held liable for any and all

damages, including, without limitation, general, special, incidental

and consequential damages, arising out of or otherwise in connection

with the use or inability to use the program or any product, material

or result produced or otherwise obtained by using the program,

regardless of whether they have been advised of, or otherwise had

knowledge of, the possibility of such damages at any time during the

project or thereafter. Each user will be deemed to have agreed to the

foregoing by his or her commencement of use of the program. The term

"use" as used herein includes, but is not limited to, the use,

modification, copying and distribution of the program and the

production of secondary products from the program.

In the case where the program, whether in its original form or

8

modified, was distributed or delivered to or received by a user from

any person, organization or entity other than ICOT, unless it makes or

grants independently of ICOT any specific warranty to the user in

writing, such person, organization or entity, will also be exempted

from and not be held liable to the user for any such damages as noted

above as far as the program is concerned.

---------------COPYING.ipadic-----END------------------------------------

3. Lao Word Break Dictionary Data (laodict.txt)

Copyright (c) 2013 International Business Machines Corporation

and others. All Rights Reserved.

Project: http://code.google.com/p/lao-dictionary/

Dictionary: http://lao-dictionary.googlecode.com/git/Lao-Dictionary.txt

License: http://lao-dictionary.googlecode.com/git/Lao-Dictionary-LICENSE.txt

(copied below)

This file is derived from the above dictionary, with slight modifications.

--

Copyright (C) 2013 Brian Eugene Wilson, Robert Martin Campbell.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer. Redistributions in binary

form must reproduce the above copyright notice, this list of conditions and

the following disclaimer in the documentation and/or other materials

provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--

4. Burmese Word Break Dictionary Data (burmesedict.txt)

Copyright (c) 2014 International Business Machines Corporation

and others. All Rights Reserved.

This list is part of a project hosted at:

github.com/kanyawtech/myanmar-karen-word-lists

--

Copyright (c) 2013, LeRoy Benjamin Sharon

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

http://code.google.com/p/lao-dictionary/
http://lao-dictionary.googlecode.com/git/Lao-Dictionary.txt
http://lao-dictionary.googlecode.com/git/Lao-Dictionary-LICENSE.txt

9

Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or

other materials provided with the distribution.

Neither the name Myanmar Karen Word Lists, nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--

5. Time Zone Database

ICU uses the public domain data and code derived from Time Zone Database for its time zone support. The

ownership of the TZ database is explained in BCP 175: Procedure for Maintaining the Time Zone Database section

7.

7. Database Ownership

The TZ database itself is not an IETF Contribution or an IETF

document. Rather it is a pre-existing and regularly updated work

that is in the public domain, and is intended to remain in the public

domain. Therefore, BCPs 78 [RFC5378] and 79 [RFC3979] do not apply

to the TZ Database or contributions that individuals make to it.

Should any claims be made and substantiated against the TZ Database,

the organization that is providing the IANA Considerations defined in

this RFC, under the memorandum of understanding with the IETF,

currently ICANN, may act in accordance with all competent court

orders. No ownership claims will be made by ICANN or the IETF Trust

on the database or the code. Any person making a contribution to the

database or code waives all rights to future claims in that

contribution or in the TZ Database.

Function Index 10

The Function Index lists all functions that
appear in the programming examples
and specifies the pages in the book where
the functions appear.

Page numbers identify the locations in
the book where a function is called. Bold-
face numbers indicate the location where
the text of the function is displayed and
annotated.

Function names in uppercase letters
are built-in 4GL functions.

Bold number indicates where function is defined

736 Function Index

Function Index 737

Function Index

A
add_order() 232, 233

add_order2() 336, 337

addupd_call() 389, 390, 407
addupd_cust() 174

answer() 477, 478

answer_yes() 114

B
bang() 61, 64, 171, 389, 407, 529, 593,

595
begin_wk() 516, 551, 553, 619, 621

browse_calls() 389, 404

browse_custs() 121, 124

browse_custs1() 171, 172

browse_custs2() 385, 386

browse_custs3() 574, 575

build_journal() 556

C
calc_order() 271, 288, 503

call_menu() 388, 389

ccall_maint() 360, 361, 367

change_cust() 128
check_db_priv() 560

choose_op() 195, 210
choose_option() 368
clear_lines() 121, 123, 127, 129, 134, 171,

173, 175, 179, 233, 235, 237,
241, 243, 247, 249, 255, 271,

277, 337, 385, 393, 477, 493,
495, 575, 577, 619, 623, 679

close_ckey() 493, 494, 533

close_screen() 588, 589

close_wins() 435, 440

cnvrt_dt() 687, 688

cnvrt_intvl() 687, 688

cnvrt_varch() 686, 687

commit_wk() 518, 553, 619, 623

convert_type() 683, 684
create_index() 570

curr_wndw() 590, 591, 593, 595

cust_maint() 360, 361, 367

cust_menu1() 170, 171

cust_menu2() 384, 385

cust_menu3() 571, 572

cust_popup() 237, 238

cust_popup2() 275, 276, 499

cust_summary() 77, 78

D
dec_digit() 696

del_row() 617, 618

delete_cust() 127, 130

delete_cust2() 577, 580

delete_manuf() 211, 212
disp_row() 616

drop_index() 571, 572

dsply_cat() 435, 440

dsply_logo() 36, 37, 589

Bold number indicates where function is defined

738 Function Index

dsply_manuf() 194

dsply_menu() 364, 365

dsply_option() 59, 62

dsply_screen() 588, 589

dsply_summary() 79, 86

dsply_taxes() 233, 252, 337

dummymsg() 590, 595

E
edit_descr() 412

ERR_GET() 583
ERRORLOG() 583

explode() 640, 641

explode_all() 638, 639

F
fdump() 305, 306
fglgetret() 312

fglgets() 307, 314

find_cust() 494

find_order() 270

find_unpaid() 500

G
get_custnum() 79, 80

get_datetime() 395, 405, 410

get_dbname() 678, 679
get_repeat() 532

get_summary() 84, 87
get_tab_auth() 624

get_timeflds() 405, 408

get_user() 573, 582

getquote() 312

H
hex_digit() 694

I
init_log() 571, 572

init_menu() 366, 367

init_msgs() 52, 53, 93

init_opnum() 368, 369

init_time() 393, 397, 410

input_call() 392

input_cust() 234

input_date() 492

input_items() 242

input_order() 240

input_ship() 256

input_stock() 144
input_stock2() 156

insert_call() 391, 414

insert_cust() 171, 182

insert_cust2() 578
insert_items() 260

insert_manuf() 210, 211
insert_order() 260

insert_stock() 143, 148

intvl_lngth() 692
inven_rep() 646

inventory() 643, 644, 645

inventory_all() 639, 642

invoice() 337, 338

invoice_rpt() 342

is_online() 434

K
kaboom() 642

L
like() 560

load_arrays() 435, 436

lock_cust() 529, 530

lock_menu() 526, 527

log_entry() 573, 579, 580, 581

M
main_menu() 358, 359

manuf_listing() 324, 325

manuf_maint() 360, 361, 367

manuf_popup() 157, 158
manuf_rpt() 326

menu_main() 589, 590

Function Index 739

merge_auth() 626
message_window() 47, 48, 63, 133, 183,

201, 207, 209, 211, 213, 215,
235, 275, 337, 361, 437, 449,
501, 507, 571, 579, 581

msg() 113, 114, 123, 127, 131, 147, 149,
159, 161, 179, 181, 183, 195,
203, 235, 237, 239, 241, 249,
253, 255, 259, 271, 277, 279,
281, 283, 285, 287, 339, 341,
387, 393, 407, 415, 417, 529,
531, 537, 575, 581, 591

N
new_time() 589, 590, 595

next_action() 126

next_action2() 172

next_action3() 386

next_action4() 576

nxtact_call() 406

O
open_calls() 387, 388

open_ckey() 494, 531
open_db() 514

open_wins() 435, 440

order_amount() 247, 254

order_maint() 360, 361, 367

order_popup() 275, 282

order_tx() 258

P
pay_orders() 493, 502

pop_a_kid() 641, 645, 648
prompt_window() 88

pushkids() 641, 645, 646

Q
qual_fld() 689, 690

query_cust1() 105, 106

query_cust2() 120, 121, 171, 385, 457,
575

query_cust3a() 473, 476

query_cust3b() 476, 477, 611

R
renum_items() 243, 247, 248
report_output() 340

reshuffle() 199, 201, 206

restore_orders() 549, 556

rollback_wk() 518, 553, 619, 623

row_locked() 538

S
save_journal() 549, 560

save_orders() 549, 556

save_rowid() 197, 214

schema() 679, 680

schema_rpt() 696

scroller_1() 458

scroller_2() 472

scroller_3() 606
sel_merged_auths() 626
SET_COUNT() 161, 183, 197, 239, 253,

281, 287, 369, 441

set_up_tables() 639, 648

ship_order() 233, 254, 337

show_advert() 442, 443

show_descr() 443, 446

SHOWHELP() 179

STARTLOG() 573
state_ maint() 360

state_maint() 361, 367

state_popup() 179, 180

stock_maint() 360, 361, 367

stock_popup() 247, 250

sub_menu() 591, 592, 593

T
tax_rates() 85, 88, 289

tear_down_tables() 639, 652

test_success() 537, 538

three_up() 662

to_hex() 694

try_update() 530

Bold number indicates where function is defined

740 Function Index

Bold number indicates where function is defined

Function Index 741

U
upd_err() 445, 448, 449

upd_order() 288
upd_rep() 552

upd_row() 615, 618

update_call() 391, 416

update_cust() 127, 130, 173

update_cust2() 533, 534

update_cust3() 577, 578

update_driver() 548, 549

update_manuf() 211, 212

V
valid_null() 204

verify_delete() 132

verify_mdel() 208

verify_rowid() 214

