
HCL Informix 14.10 - SQL programming Guide

ii

Contents
Chapter 1. SQL programming..3

SQL programming..
SQL programming...
SQL programming...
SQL programming...
SQL programming...
SQL programming...
SQL programming...
SQL programming...

Guide to SQL: Reference... 3
System catalog tables... 3
Data types...81
Environment variables..140
Appendixes... 215

Guide to SQL: Tutorial... 220
Database concepts.. 220
Compose SELECT statements............................ 232
Select data from complex types......................... 280
Functions in SELECT statements........................292
Compose advanced SELECT statements........... 320
Modify data...358
Access and modify data in an external
database... 396
SQL programming.. 400
Modify data through SQL programs....................423
Programming for a multiuser environment........ 433
Create and use SPL routines...............................453
Create and use triggers....................................... 522

Index...538

oxy_ex/sqls.dita
oxy_ex/sqls.dita
oxy_ex/sqls.dita
oxy_ex/sqls.dita
unique_2
unique_2
unique_2
unique_2
unique_8
unique_8
unique_8
unique_8
unique_9
unique_9
unique_9
unique_9
unique_30
unique_30
unique_30
unique_30
unique_31
unique_31
unique_31
unique_31
oxy_ex/ids_sqs_1758.dita
oxy_ex/ids_sqs_1758.dita
oxy_ex/ids_sqs_1758.dita
oxy_ex/ids_sqs_1758.dita
unique_1835
unique_1835
unique_1835
unique_1835

Chapter 1. SQL programming
You can use the HCL Informix® implementation of the SQL language to develop applications for Informix® database

servers.

Guide to SQL: Reference
These topics contain the reference information for the system catalog tables, data types, and environment variables of the

HCL Informix® dialect of the SQL language, as implemented in HCL Informix®. These topics also include information about

the stores_demo, sales_demo, and superstore_demo databases that are included with HCL Informix®.

This information is intended for the following users:

• Database users

• Database administrators

• Database security administrators

• Database application programmers.

This information assumes that you have the following background:

• A working knowledge of your computer, your operating system, and the utilities that your operating system provides.

• Some experience working with relational databases or exposure to database concepts.

• Some experience with computer programming.

These topics are taken from the HCL® Informix® Guide to SQL: Reference.

System catalog tables
The system catalog consists of tables and views that describe the structure of the database. Sometimes called the data

dictionary, these table objects contain everything that the database knows about itself. Each system catalog table contains

information about specific elements in the database. Each database has its own system catalog.

These topics provide information about the structure, content, and use of the system catalog tables. It also contains

information about the Information Schema, which provides information about the tables, views, and columns in all the

databases of the HCL Informix® instance to which your user session is currently connected.

Objects That the System Catalog Tables Track

The system catalog tables maintain information about the database, including the following categories of database objects:

• Tables, views, synonyms, and table fragments

• Columns, constraints, indexes, and index fragments

• Distribution statistics for tables, indexes, and fragments

• Triggers on tables, and INSTEAD OF triggers on views

• Procedures, functions, routines, and associated messages

3

HCL Informix 14.10 - SQL programming Guide

4

• Authorized users, roles, and privileges to access database objects

• LBAC security policies, components, labels, and exemptions

• Data types and casts

• User-defined aggregate functions

• Access methods and operator classes

• Sequence objects

• Storage spaces for BLOB and CLOB objects

• External optimizer directives

• Inheritance relationships

• XA data sources and XA data source types

• Trusted user and surrogate user information

Using the system catalog

HCL Informix® automatically generate the system catalog tables when you create a database. You can query the system

catalog tables as you would query any other table in the database. The system catalog tables for a newly created database

are located in a common area of the disk called a dbspace. Every database has its own system catalog tables. All tables and

views in the system catalog have the prefix sys (for example, the systables system catalog table).

Not all tables with the prefix sys are true system catalog tables. For example, the syscdr database supports the Enterprise

Replication feature. Non-catalog tables, however, have a tabid >= 100. System catalog tables all have a tabid < 100. See later

in this section and SYSTABLES on page 65 for more information about tabid numbers that the database server assigns to

tables, views, synonyms, and (in HCL Informix®) sequence objects.

Tip: Do not confuse the system catalog tables of a database with the tables in the sysmaster, sysutils, syscdr, or

(for HCL Informix®) the sysadmin and sysuser databases. The names of tables in those databases also have the

sys prefix, but they contain information about an entire database server, which might manage multiple databases.

Information in the sysadmin, sysmaster, sysutils, syscdr, and sysuser tables is primarily useful for database server

administrators (DBSAs). See also the HCL® Informix® Administrator's Guide and HCL® Informix® Administrator's

Reference.

The database server accesses the system catalog constantly. Each time an SQL statement is processed, the database server

accesses the system catalog to determine system privileges, add or verify table or column names, and so on.

For example, the following CREATE SCHEMA block adds the customer table, with its indexes and privileges, to the

stores_demo database. This block also adds a view, california, which restricts the data of the customer table to only the first

and last names of the customer, the company name, and the telephone number for all customers who reside in California.

CREATE SCHEMA AUTHORIZATION maryl
CREATE TABLE customer (customer_num SERIAL(101), fname CHAR(15),
 lname CHAR(15), company CHAR(20), address1 CHAR(20), address2 CHAR(20),
 city CHAR(15), state CHAR(2), zipcode CHAR(5), phone CHAR(18))
GRANT ALTER, ALL ON customer TO cathl WITH GRANT OPTION AS maryl
GRANT SELECT ON customer TO public
GRANT UPDATE (fname, lname, phone) ON customer TO nhowe
CREATE VIEW california AS

Chapter 1. SQL programming

 SELECT fname, lname, company, phone FROM customer WHERE state = 'CA'
CREATE UNIQUE INDEX c_num_ix ON customer (customer_num)
CREATE INDEX state_ix ON customer (state)

To process this CREATE SCHEMA block, the database server first accesses the system catalog to verify the following

information:

• The new table and view names do not already exist in the database. (If the database is ANSI-compliant, the database

server verifies that the new names do not already exist for the specified owners.)

• The user has permission to create tables and grant user privileges.

• The column names in the CREATE VIEW and CREATE INDEX statements exist in the customer table.

In addition to verifying this information and creating two new tables, the database server adds new rows to the following

system catalog tables:

• systables

• syscolumns

• sysviews

• systabauth

• syscolauth

• sysindexes

• sysindices

Rows added to the systables system catalog table

The following two new rows of information are added to the systables system catalog table after the CREATE SCHEMA block

is run.

Column name First row Second row

tabname customer california

owner maryl maryl

partnum 16778361 0

tabid 101 102

rowsize 134 134

ncols 10 4

nindexes 2 0

nrows 0 0

created 01/26/2007 01/26/2007

version 1 0

tabtype T V

5

HCL Informix 14.10 - SQL programming Guide

6

Column name First row Second row

locklevel P B

npused 0 0

fextsize 16 0

nextsize 16 0

flags 0 0

site

dbname

Each table recorded in the systables system catalog table is assigned a tabid, a system-assigned sequential number that

uniquely identifies each table in the database. The system catalog tables receive 2-digit tabid numbers, and the user-created

tables receive sequential tabid numbers that begin with 100.

Rows added to the syscolumns system catalog table

The CREATE SCHEMA block adds 14 rows to the syscolumns system catalog table. These rows correspond to the columns

in the table customer and the view california, as the following example shows.

colname tabid colno coltype collength colmin colmax

customer_num 101 1 262 4

fname 101 2 0 15

lname 101 3 0 15

company 101 4 0 20

address1 101 5 0 20

address2 101 6 0 20

city 101 7 0 15

state 101 8 0 2

zipcode 101 9 0 5

phone 101 10 0 18

fname 102 1 0 15

lname 102 2 0 15

company 102 3 0 20

phone 102 4 0 18

Chapter 1. SQL programming

In the syscolumns table, each column within a table is assigned a sequential column number, colno, that uniquely identifies

the column within its table. In the colno column, the fname column of the customer table is assigned the value 2 and the

fname column of the view california is assigned the value 1.

The colmin and colmax columns are empty. These columns contain values when a column is the first key (or the only key) in

an index, has no NULL or duplicate values, and the UPDATE STATISTICS statement has been run.

Rows added to the sysviews system catalog table

The database server also adds rows to the sysviews system catalog table, whose viewtext column contains each line of the

CREATE VIEW statement that defines the view. In that column, the x0 that precedes the column names in the statement (for

example, x0.fname) operates as an alias that distinguishes among the same columns that are used in a self-join.

Rows added to the systabauth system catalog table

The CREATE SCHEMA block also adds rows to the systabauth system catalog table. These rows correspond to the user

privileges granted on customer and california tables, as the following example shows.

grantor grantee tabid tabauth

maryl public 101 su-idx--

maryl cathl 101 SU-IDXAR

maryl nhowe 101 --*-----

maryl 102 SU-ID---

The tabauth column specifies the table-level privileges granted to users on the customer and california tables. This column

uses an 8-byte pattern, such as s (Select), u (Update), * (column-level privilege), i (Insert), d (Delete), x (Index), a (Alter), and

r (References), to identify the type of privilege. In this example, the user nhowe has column-level privileges on the customer

table. A hyphen (-) means the user has not been granted the privilege whose position the hyphen occupies within the

tabauth value.

If the tabauth privilege code is in uppercase (for example, S for Select), the user has this privilege and can also grant it to

others; but if the privilege code is lowercase (for example, s for Select), the user cannot grant it to others.

Rows added to the syscolauth system catalog table

In addition, three rows are added to the syscolauth system catalog table. These rows correspond to the user privileges that

are granted on specific columns in the customer, table as the following example shows.

grantor grantee tabid colno colauth

maryl nhowe 101 2 -u-

maryl nhowe 101 3 -u-

maryl nhowe 101 10 -u-

7

HCL Informix 14.10 - SQL programming Guide

8

The colauth column specifies the column-level privileges that are granted on the customer table. This column uses a 3-byte,

pattern such as s (Select), u (Update), and r (References), to identify the type of privilege. For example, the user nhowe has

Update privileges on the second column (because the colno value is 2) of the customer table (indicated by tabid value of

101).

Rows added to the sysindexes or the sysindices table

The CREATE SCHEMA block adds two rows to the sysindexes system catalog table (the sysindices table for HCL Informix®).

These rows correspond to the indexes created on the customer table, as the following example shows.

idxname c_num_ix state_ix

owner maryl maryl

tabid 101 101

idxtype U D

clustered

part1 1 8

part2 0 0

part3 0 0

part4 0 0

part5 0 0

part6 0 0

part7 0 0

part8 0 0

part9 0 0

part10 0 0

part11 0 0

part12 0 0

part13 0 0

part14 0 0

part15 0 0

part16 0 0

levels

leaves

Chapter 1. SQL programming

idxname c_num_ix state_ix

nunique

clust

idxflags

In this table, the idxtype column identifies whether the created index requires unique values (U) or accepts duplicate values

(D). For example, the c_num_ix index on the customer.customer_num column is unique.

Accessing the system catalog

Normal user access to the system catalog is read-only. Users with Connect or Resource privileges cannot alter the catalog,

but they can access data in the system catalog tables on a read-only basis using standard SELECT statements.

For example, the following SELECT statement displays all the table names and corresponding tabid codes of user-created

tables in the database:

SELECT tabname, tabid FROM systables WHERE tabid > 99

When you use DB-Access, only the tables that you created are displayed. To display the system catalog tables, enter the

following statement:

SELECT tabname, tabid FROM systables WHERE tabid < 100

You can use the SUBSTR or the SUBSTRING function to select only part of a source string. To display the list of tables in

columns, enter the following statement:

SELECT SUBSTR(tabname, 1, 18), tabid FROM systables

Although user informix can modify most system catalog tables, you should not update, delete, or insert any rows in them.

Modifying the content of system catalog tables can affect the integrity of the database. However, you can safely use the

ALTER TABLE statement to modify the size of the next extent of system catalog tables. Changing the next extent size does

not affect extents that already exist.

For certain catalog tables of HCL Informix®, however, it is valid to add entries to the system catalog tables. For instance, in

the case of the syserrors system catalog table and the systracemsgs system catalog table, a DataBlade® module developer

can directly insert entries that are in these system catalog tables.

Update system catalog data
If you use the UPDATE STATISTICS statement to update the system catalog before executing a query or other data

manipulation language (DML) statement, you can ensure that the information available to the query execution optimizer is

current.

In HCL Informix®, the optimizer determines the most efficient strategy for executing SQL queries and other DML operations.

The optimizer allows you to query the database without requiring you to consider fully which tables to search first in a join or

which indexes to use. The optimizer uses information from the system catalog to determine the best query strategy.

9

HCL Informix 14.10 - SQL programming Guide

10

When you delete or modify a table, the database server does not automatically update the related statistical data in the

system catalog. For example, if you delete one or more rows in a table with the DELETE statement, the nrows column in the

systables system catalog table, which holds the number of rows for that table, is not updated automatically.

The UPDATE STATISTICS statement causes the database server to recalculate data in the systables, sysdistrib, syscolumns,

and sysindices system catalog tables, and in the sysindexes view. (For operations on fragmented tables where the

STATLEVEL attribute is set to FRAGMENT, it also updates the sysfragdist and sysfragments system catalog tables.) After

you run UPDATE STATISTICS, the systables system catalog table holds the correct value in the nrows column. If you specify

MEDIUM or HIGH mode when you run UPDATE STATISTICS, the sysdistrib and (for fragment-level statistics) the sysfragdist

system catalog tables hold the updated column-distribution data.

Whenever you modify a data table extensively, use the UPDATE STATISTICS statement to update data in the system catalog.

For more information about the UPDATE STATISTICS statement, see the HCL® Informix® Guide to SQL: Syntax.

Structure of the System Catalog

The following system catalog tables describe the database objects in a database.

System Catalog Tables

SYSAGGREGATES on page 13

SYSAMS on page 14

SYSATTRTYPES on page 17

SYSAUTOLOCATE on page 18

SYSBLOBS on page 19

SYSCASTS on page 20

SYSCHECKS on page 20

SYSCHECKUDRDEP on page 21

SYSCOLATTRIBS on page 21

SYSCOLAUTH on page 22

SYSCOLDEPEND on page 23

SYSCOLUMNS on page 23

SYSCONSTRAINTS on page 28

SYSDEFAULTS on page 29

SYSDEPEND on page 30

SYSDIRECTIVES on page 31

SYSDISTRIB on page 31

Chapter 1. SQL programming

System Catalog Tables

SYSDOMAINS on page 33

SYSERRORS on page 34

SYSEXTCOLS on page 34

SYSEXTDFILES on page 35

SYSEXTERNAL on page 35

SYSFRAGAUTH on page 36

SYSFRAGDIST on page 37

SYSFRAGMENTS on page 39

SYSINDEXES on page 41

SYSINDICES on page 43

SYSINHERITS on page 46

SYSLANGAUTH on page 46

SYSLOGMAP on page 47

SYSOBJSTATE on page 47

SYSOPCLASSES on page 48

SYSOPCLSTR on page 48

SYSPROCAUTH on page 50

SYSPROCBODY on page 51

SYSPROCCOLUMNS on page 52

SYSPROCEDURES on page 52

SYSPROCPLAN on page 55

SYSREFERENCES on page 56

SYSROLEAUTH on page 56

SYSROUTINELANGS on page 57

SYSSECLABELAUTH on page 57

SYSSECLABELCOMPONENTS on page 58

SYSSECLABELCOMPONENTELEMENTS on page 58

SYSSECLABELNAMES on page 59

11

HCL Informix 14.10 - SQL programming Guide

12

System Catalog Tables

SYSSECLABELS on page 59

SYSSECPOLICIES on page 59

SYSSECPOLICYCOMPONENTS on page 60

SYSSECPOLICYEXEMPTIONS on page 60

SYSSEQUENCES on page 61

SYSSURROGATEAUTH on page 61

SYSSYNONYMS on page 62

SYSSYNTABLE on page 63

SYSTABAMDATA on page 63

SYSTABAUTH on page 64

SYSTABLES on page 65

SYSTRACECLASSES on page 68

SYSTRACEMSGS on page 69

SYSTRIGBODY on page 69

SYSTRIGGERS on page 70

SYSUSERS on page 71

SYSVIEWS on page 72

SYSVIOLATIONS on page 72

SYSXADATASOURCES on page 73

SYSXASOURCETYPES on page 73

SYSXTDDESC on page 74

SYSXTDTYPEAUTH on page 74

SYSXTDTYPES on page 75

In case-sensitive databases that use the default database locale (U. S. English, ISO 8859-1 code set), character columns in

these tables are CHAR and VARCHAR data types. For all other locales, character columns are the NLS data types, NCHAR

and NVARCHAR. For information about differences in the collation order of character data types, see the HCL® Informix®

GLS User's Guide. See also theData types on page 81 chapter of this publication.

Chapter 1. SQL programming

Character columns in databases that are not case-sensitive

In databases that are created with the NLSCASE INSENSITIVE keywords and that use the default database locale (U. S.

English, ISO 8859-1 code set), character columns in system catalog tables are CHAR and VARCHAR data types, which

support case-sensitive queries. For all other database locales, character column data types in the system catalog tables are

the NLS data types, NCHAR and NVARCHAR, but with the following specific exceptions:

Table_name.Column_name Data type

sysams.am_sptype CHAR(3)

syscolauth.colauth CHAR(3)

sysdefaults.class CHAR(1)

sysfragauth.fragauth CHAR(6)

sysinherits.class CHAR(1)

syslangauth.langauth CHAR(1)

sysprocauth.procauth CHAR(1)

sysprocedures.mode CHAR(1)

systabauth.tabauth CHAR(9)

systriggers.event CHAR(1)

sysxtdtypeauth.auth CHAR(2)

In each of these columns, case-sensitive encoding can record information that utilities of the database server require in

queries on those system catalog tables. In a database that is case-insensitive, queries might return incorrect results from

data stored in NCHAR or NVARCHAR columns, if different attributes of database objects are encoded as different cases of

the same letter. To avoid the loss of information, CHAR data types are used for the system catalog columns listed above.

SYSAGGREGATES

The sysaggregates system catalog table records user-defined aggregates (UDAs). The sysaggregates table has the

following columns.

Table 1. SYSAGGREGATES table column descriptions

Column Type Explanation

name VARCHAR(1

28)

Name of the aggregate

owner CHAR(32) Name of the owner of the aggregate

13

HCL Informix 14.10 - SQL programming Guide

14

Table 1. SYSAGGREGATES table column descriptions

(continued)

Column Type Explanation

aggid SERIAL Unique code identifying the

aggregate

init_func VARCHAR(1

28)

Name of initialization UDR

iter_func VARCHAR(1

28)

Name of iterator UDR

combine_func VARCHAR(1

28)

Name of combine UDR

final_func VARCHAR(1

28)

Name of finalization UDR

handlesnulls BOOLEAN NULL-handling indicator:

• t = handles NULLs

• f = does not handle NULLs

Each user-defined aggregate has one entry in sysaggregates that is uniquely identified by its identifying code (the aggid

value). Only user-defined aggregates (aggregates that are not built in) have entries in sysaggregates.

Both a simple index on the aggid column and a composite index on the name and owner columns require unique values.

SYSAMS
The sysams system catalog table contains information that is required for using built-in access methods and those created

by the CREATE ACCESS_METHOD statement of SQL.

The sysams table has the following columns.

Table 2. SYSAMS table column descriptions

Column Type Explanation

am_name VARCHAR(128, 0) Name of the access method

am_owner CHAR(32) Name of the owner of the access method

am_id INTEGER Unique identifying code for an access method

This corresponds to the am_id columns in the systables, sysindices,

and sysopclasses tables.

Chapter 1. SQL programming

Table 2. SYSAMS table column descriptions (continued)

Column Type Explanation

am_type CHAR(1) Type of access method: P = Primary; S = Secondary

am_sptype CHAR(3) Types of spaces where the access method can exist:

• A means the access method supports extspaces and

sbspaces. If the access method is built in, such as a B-tree, it

also supports dbspaces.

• D or d means the access method supports dbspaces only.

• DS means the access method supports dbspaces and

sbspaces.

• S or s means the access method supports sbspaces only.

• X or x means the access method supports extspaces only.

• sx means the access method supports sbspaces and

extspaces.

am_defopclass INTEGER Unique identifying code for default-operator class

Value is the opclassid from the entry for this operator class in the

sysopclasses table.

am_keyscan INTEGER Whether a secondary access method supports a key scan

(An access method supports a key scan if it can return a key and a

rowid from a call to the am_getnext function.) (0 = FALSE; Non-zero =

TRUE)

am_unique INTEGER Whether a secondary access method can support unique keys (0 =

FALSE; Non-zero = TRUE)

am_cluster INTEGER Whether a primary access method supports clustering (0 = FALSE;

Non-zero = TRUE)

am_rowids INTEGER Whether a primary access method supports rowids (0 = FALSE;

Non-zero = TRUE)

am_readwrite INTEGER Whether a primary access method can both read and write (0

= access method is read-only; Non-zero = access method is

read/write)

am_parallel INTEGER Whether an access method supports parallel execution (0 = FALSE;

Non-zero = TRUE)

am_costfactor SMALLFLOAT The value to be multiplied by the cost of a scan to normalize it to

costing done for built-in access methods

15

HCL Informix 14.10 - SQL programming Guide

16

Table 2. SYSAMS table column descriptions (continued)

Column Type Explanation

The scan cost is the output of the am_scancost function.

am_create INTEGER The routine specified for the AM_CREATE purpose for this access

method

Value = procid for the routine in the sysprocedures table.

am_drop INTEGER The routine specified for the AM_DROP purpose function for this

access method

am_open INTEGER The routine specified for the AM_OPEN purpose function for this

access method

am_close INTEGER The routine specified for the AM_CLOSE purpose function for this

access method

am_insert INTEGER The routine specified for the AM_INSERT purpose function for this

access method

am_delete INTEGER The routine specified for the AM_DELETE purpose function for this

access method

am_update INTEGER The routine specified for the AM_UPDATE purpose function for this

access method

am_stats INTEGER The routine specified for the AM_STATS purpose function for this

access method

am_scancost INTEGER The routine specified for the AM_SCANCOST purpose function for

this access method

am_check INTEGER The routine specified for the AM_CHECK purpose function for this

access method

am_beginscan INTEGER The routine specified for the AM_BEGINSCAN purpose function for

this access method

am_endscan INTEGER The routine specified for the AM_ENDSCAN purpose function for this

access method

am_rescan INTEGER The routine specified for the AM_RESCAN purpose function for this

access method

am_getnext INTEGER The routine specified for the AM_GETNEXT purpose function for this

access method

Chapter 1. SQL programming

Table 2. SYSAMS table column descriptions (continued)

Column Type Explanation

am_getbyid INTEGER The routine specified for the AM_GETBYID purpose function for this

access method

am_build INTEGER The routine specified for the AM_BUILD purpose function for this

access method

am_init INTEGER The routine specified for the AM_INIT purpose function for this

access method

am_truncate INTEGER The routine specified for the AM_TRUNCATE purpose function for

this access method

am_expr_pushdown INTEGER Reserved for future useWhether parameter descriptors are supported

(0 = FALSE; Non-zero = TRUE)

For each of the columns that contain a routine for a purpose function, the value is the sysprocedures.procid value for the

corresponding routine.

A composite index on the am_name and am_owner columns in this table allows only unique values. The am_id column has a

unique index.

For information about access method functions, see the documentation of your access method.

SYSATTRTYPES

The sysattrtypes system catalog table contains information about members of a complex data type. Each row of

sysattrtypes contains information about elements of a collection data type or fields of a row data type.

The sysattrtypes table has the following columns.

Table 3. SYSATTRTYPES table column descriptions

Column Type Explanation

extended_id INTEGER Identifying code of an extended data type

Value is the same as in the sysxtdtypes table (SYSXTDTYPES on

page 75).

seqno SMALLINT Identifying code of an entry having extended_id type

levelno SMALLINT Position of member in collection hierarchy

parent_no SMALLINT Value in the seqno column of the complex data type that contains this

member

fieldname VARCHAR(128) Name of the field in a row type

17

HCL Informix 14.10 - SQL programming Guide

18

Table 3. SYSATTRTYPES table column descriptions (continued)

Column Type Explanation

Null for other complex data types

fieldno SMALLINT Field number sequentially assigned by system (from left to right within

each row type)

type SMALLINT Code for the data type

See the description of syscolumns.coltype (page SYSCOLUMNS on

page 23).

length SMALLINT Length (in bytes) of the member

xtd_type_id INTEGER Code identifying this data type

See the description of sysxtdtypes.extended_id (SYSXTDTYPES on

page 75).

Two indexes on the extended_id column and the xtd_type_id column allow duplicate values. A composite index on the

extended_id and seqno columns allows only unique values.

SYSAUTOLOCATE
The sysautolocate system catalog table indicates which dbspaces are available for automatic table fragmentation. The

sysautolocate system catalog table is reserved for future use.

Table 4. SYSAUTOLOCATE table column descriptions

Column Type Explanation

dbsnum INTEGER The ID number of the dbspace. 0 indicates multiple dbspaces.Reserved for future use.

dbsname VARCHAR(128

,0)

The name of the dbspace. An asterisk (*) indicates multiple dbspaces.Reserved for future

use.

pagesize SMALLINT The page size of the dbspace. 0 indicates multiple page sizes.Reserved for future use.

flags INTEGER • 1 = On. The dbspace is available for automatic table fragmentation.

• 2 = Off. The dbspace is not available for automatic table fragmentation.

Reserved for future use.

You add or remove dbspace from the list of available dbspace by running the task() or admin() SQL administration API

function with one of the autolocate database arguments.

Chapter 1. SQL programming

The sysautolocate system catalog table does not necessarily list every dbspace. For example, if all dbspaces are available

for automatic table fragmentation, the table contains one row:

dbsnum dbsname pagesize flags
0 * 0 1

If all but one dbspace is available, the table contains two rows, for example:

dbsnum dbsname pagesize flags
0 * 0 1
12 dbs12 8 2

If all but two dbspaces are unavailable, the table contains three rows, for example:

dbsnum dbsname pagesize flags
0 * 0 2
12 dbs12 8 1
13 dbs13 4 1

Related information

autolocate database argument: Specify dbspaces for automatic location and fragmentation (SQL

administration API) on page

SYSBLOBS

The sysblobs system catalog table specifies the storage location of BYTE and TEXT column values. Its name is based on

a legacy term for BYTE and TEXT columns, blobs (also known as simple large objects), and does not refer to the BLOB data

type of HCL Informix®. The sysblobs table contains one row for each BYTE or TEXT column, and has the following columns.

Table 5. SYSBLOBS table column descriptions

Column Type Explanation

spacename VARCHAR(128) Name of partition, dbspace, or family

type CHAR(1) Code identifying the type of storage media: M = MagneticCode

identifying the type of storage media: M = Magnetic O = Optical

tabid INTEGER Code identifying the table

colno SMALLINT Column number within its table

A composite index on tabid and colno allows only unique values.

For information about the location and size of chunks of blobspaces, dbspaces, and sbspaces for TEXT, BYTE, BLOB, and

CLOB columns, see the HCL® Informix® Administrator's Guide and the HCL® Informix® Administrator's Reference.

19

../%20adr/ids_sapi_122.html#ids_sapi_122
../%20adr/ids_sapi_122.html#ids_sapi_122
../%20adr/ids_sapi_122.html#ids_sapi_122
../%20adr/ids_sapi_122.html#ids_sapi_122
../%20adr/ids_sapi_122.html#ids_sapi_122

HCL Informix 14.10 - SQL programming Guide

20

SYSCASTS

The syscasts system catalog table describes the casts in the database. It contains one row for each built-in cast, each

implicit cast, and each explicit cast that a user defines. The syscasts table has the following columns.

Table 6. SYSCASTS table column descriptions

Column Type Explanation

owner CHAR(32) Owner of cast (user informix for built-in casts and user name for

implicit and explicit casts)

argument_type SMALLINT Source data type on which the cast operates

argument_xid INTEGER Code for the source data type specified in the argument_type

column

result_type SMALLINT Code for the data type returned by the cast

result_xid INTEGER Data type code of the data type named in the result_type column

routine_name VARCHAR(128) Function or procedure implementing the cast

routine_owner CHAR(32) Name of owner of the function or procedure specified in the

routine_name column

class CHAR(1) Type of cast: E = Explicit cast I = Implicit cast S = Built-in cast

If routine_name and routine_owner have NULL values, this indicates that the cast is defined without a routine. This can occur

if both of the data types specified in the argument_type and result_type columns have the same length and alignment, and

are passed by reference, or passed by value.

A composite index on columns argument_type, argument_xid, result_type, and result_xid allows only unique values. A

composite index on columns result_type and result_xid allows duplicate values.

SYSCHECKS

The syschecks system catalog table describes each check constraint defined in the database. Because the syschecks

table stores both the ASCII text and a binary encoded form of the check constraint, it contains multiple rows for each check

constraint. The syschecks table has the following columns.

Table 7. SYSCHECKS table column descriptions

Column Type Explanation

constrid INTEGER Unique code identifying the constraint

type CHAR(1) Form in which the check constraint is stored: B = Binary encoded s =

Select T = Text

seqno SMALLINT Line number of the check constraint

Chapter 1. SQL programming

Table 7. SYSCHECKS table column descriptions (continued)

Column Type Explanation

checktext CHAR(32) Text of the check constraint

The text in the checktext column associated with B type in the type column is in computer-readable format. To view the text

associated with a particular check constraint, use the following query with the appropriate constrid code:

SELECT * FROM syschecks WHERE constrid=10 AND type='T'

Each check constraint described in the syschecks table also has its own row in the sysconstraints table.

A composite index on the constrid, type, and seqno columns allows only unique values.

SYSCHECKUDRDEP

The syscheckudrdep system catalog table describes each check constraint that is referenced by a user-defined routine

(UDR) in the database. The syscheckudrdep table has the following columns.

Table 8. SYSCHECKUDRDEP table column descriptions

Column Type Explanation

udr_id INTEGER Unique code identifying the UDR

constraint_id INTEGER Unique code identifying the check constraint

Each check constraint described in the syscheckudrdep table also has its own row in the sysconstraints system catalog

table, where the constrid column has the same value as the constraint_id column of syscheckudrdep.

A composite index on the udr_id and constraint_id columns requires that combinations of these values be unique.

SYSCOLATTRIBS
The syscolattribs system catalog table describes the characteristics of smart large objects, namely CLOB and BLOB data

types.

It contains one row for each sbspace referenced in the PUT clause of the CREATE TABLE statement or of the ALTER TABLE

statement.

Table 9. SYSCOLATTRIBS table column descriptions

Column Type Explanation

tabid INTEGER Code uniquely identifying the table

colno SMALLINT Number of the column that contains the smart large object

extentsize INTEGER Pages in smart-large-object extent, expressed in KB

21

HCL Informix 14.10 - SQL programming Guide

22

Table 9. SYSCOLATTRIBS table column descriptions

(continued)

Column Type Explanation

flags INTEGER Integer representation of the combination (by addition) of hexadecimal values of

the following parameters:

• LO_NOLOG (0x00000001 = 1) = The smart large object is not logged.

• LO_LOG (0x00000010 = 2) = Logging of smart large objects conforms to

current log mode of the database.

• LO_KEEP_LASTACCESS_TIME (0x00000100 = 4) = Keeps a record of

when this column was most recently accessed by a user.

• LO_NOKEEP_LASTACCESS_TIME (0x00001000 = 8) = No record is kept

of when this column was most recently accessed by a user.

• HI_INTEG (0x00010000= 16) = Sbspace data pages have headers and

footers to detect incomplete writes and data corruption.

• MODERATE_INTEG (0x00100000= 32) = Data pages have headers but no

footers.

flags1 INTEGER Reserved for future use

sbspace VARCHAR(128) Name of the sbspace

A composite index on the tabid, colno, and sbspace columns allows only unique combinations of these values.

SYSCOLAUTH

The syscolauth system catalog table describes each set of discretionary access privileges granted on a column. It contains

one row for each set of column-level privileges that are currently granted to a user, to a role, or to the PUBLIC group on a

column in the database. The syscolauth table has the following columns.

Column Type Explanation

grantor VARCHAR(32) Authorization identifier of the grantor

grantee VARCHAR(32) Authorization identifier of the grantee

tabid INTEGER Code uniquely identifying the table

colno SMALLINT Column number within the table

colauth CHAR(3) 3-byte pattern specifying column privileges: s or S = Select, u or U = Update,

r or R = References

Chapter 1. SQL programming

If the colauth privilege code is uppercase (for example, S for Select), a user who has this privilege can also grant it to others.

If the colauth privilege code is lowercase (for example, s for Select), the user who has this privilege cannot grant it to others.

A hyphen (-) indicates the absence of the privilege corresponding to that position within the colauth pattern.

A composite index on the tabid, grantor, grantee, and colno columns allows only unique values. A composite index on the

tabid and grantee columns allows duplicate values.

SYSCOLDEPEND

The syscoldepend system catalog table tracks the table columns specified in check constraints and in NOT NULL

constraints. Because a check constraint can involve more than one column in a table, the syscoldepend table can contain

multiple rows for each check constraint; one row is created for each column involved in the constraint. The syscoldepend

table has the following columns.

Column Type Explanation

constrid INTEGER Code uniquely identifying the constraint

tabid INTEGER Code uniquely identifying the table

colno SMALLINT Column number within the table

A composite index on the constrid, tabid, and colno columns allows only unique values. A composite index on the tabid and

colno columns allows duplicate values.

See also the syscheckudrdep system catalog table in SYSCHECKUDRDEP on page 21, which lists every check constraint

that is referenced by a user-defined routine.

See also the sysreferences table in SYSREFERENCES on page 56, which describes dependencies of referential

constraints.

SYSCOLUMNS
The syscolumns system catalog table describes each column in the database.

One row exists for each column that is defined in a table or view.

Table 10. The SYSCOLUMNS table

Column Type Explanation

colname VARCHAR(128) Column name

tabid INTEGER Identifying code of table containing the column

colno SMALLINT Column number

The system sequentially assigns this (from left to right within

each table).

23

HCL Informix 14.10 - SQL programming Guide

24

Table 10. The SYSCOLUMNS table (continued)

Column Type Explanation

coltype SMALLINT Code indicating the data type of the column:

0 = CHAR

1 = SMALLINT

2 = INTEGER

3 = FLOAT

4 = SMALLFLOAT

5 = DECIMAL

6 = SERIAL 1

7 = DATE

8 = MONEY

9 = NULL

10 = DATETIME

11 = BYTE

12 = TEXT

13 = VARCHAR

14 = INTERVAL

15 = NCHAR

16 = NVARCHAR

17 = INT8

18 = SERIAL8 1

19 = SET

20 = MULTISET

21 = LIST

22 = ROW (unnamed)

23 = COLLECTION

40 = LVARCHAR fixed-length opaque types 2

41 = BLOB, BOOLEAN, CLOB variable-length opaque

types 2

43 = LVARCHAR (client-side only)

45 = BOOLEAN

52 = BIGINT

53 = BIGSERIAL 1

2061 = IDSSECURITYLABEL 2, 3

4118 = ROW (named)

Chapter 1. SQL programming

Table 10. The SYSCOLUMNS table (continued)

Column Type Explanation

collength Any of the following data types:

• Integer-based

• Varying-length character

• Time

• Fixed-point

• Simple-large-object

• IDSSECURITYLABEL on

page 100

The value depends on the data type of the column. For some

data types, the value is the column length (in bytes). See

Storing Column Length on page 27 for more information.

colmin INTEGER Holds the second-smallest value in a column

colmax INTEGER Holds the second-largest value in a column

extended_id INTEGER Data type code, from the sysxtdtypes table, of the data type

specified in the coltype column

seclabelid INTEGER The label ID of the security label associated with the column

if it is a protected column. NULL otherwise.

colattr SMALLINT HIDDEN

1 - Hidden column

ROWVER

2 - Row version column

ROW_CHKSUM

4 - Row key column

ER_CHECKVER

8 - ER row version column

UPGRD1_COL

16 - ER auto primary key column

UPGRD2_COL

32 - ER auto primary key column

UPGRD3_COL

64 - ER auto primary key column

PK_NOTNULL

128 - NOT NULL by PRIMARY KEY

25

HCL Informix 14.10 - SQL programming Guide

26

Note:

1 In DB-Access, an offset value of 256 is always added to these coltype codes because DB-Access sets

SERIAL, SERIAL8, and BIGSERIAL columns to NOT NULL.
2 The built-in opaque data types do not have a unique coltype value. They are distinguished by the

extended_id column in the SYSXTDTYPES on page 75 system catalog table.
3 DISTINCT OF VARCHAR(128).

A composite index on tabid and colno allows only unique values.

The coltype codes can be incremented by bitmaps showing the following features of the column.

Bit Value Significance When Bit Is Set

0x0100 NULL values are not allowed

0x0200 Value is from a host variable

0x0400 Float-to-decimal for networked database server

0x0800 DISTINCT data type

0x1000 Named ROW type

0x2000 DISTINCT type from LVARCHAR base type

0x4000 DISTINCT type from BOOLEAN base type

0x8000 Collection is processed on client system

For example, the coltype value 4118 for named row types is the decimal representation of the hexadecimal value 0x1016,

which is the same as the hexadecimal coltype value for an unnamed row type (0x016), with the named-row-type bit set. The

file $INFORMIXDIR/incl/esql/sqltypes.h contains additional information about syscolumns.coltype codes.

The following table lists the coltype values for the built-in opaque data types:

NOT NULL constraints

Similarly, the coltype value is incremented by 256 if the column does not allow NULL values. To determine the data type for

such columns, subtract 256 from the value and evaluate the remainder, based on the possible coltype values. For example, if

the coltype value is 262, subtracting 256 leaves a remainder of 6, indicating that the column has a SERIAL data type.

Storing the column data type

The database server stores the coltype value as bitmap, as listed in SYSCOLUMNS on page 23.

Chapter 1. SQL programming

Storing column length

The collength column value depends on the data type of the column.

Integer-based data types

A collength value for a BIGINT, BIGSERIAL, DATE, INTEGER, INT8, SERIAL, SERIAL8, or SMALLINT column is machine-

independent. The database server uses the following lengths for these integer-based data types of the SQL language.

Integer-based data types Length (in bytes)

SMALLINT 2

DATE, INTEGER, and SERIAL 4

INT8 and SERIAL8 10

BIGINT and BIGSERIAL 8

Varying-length character data types

For HCL Informix® columns of the LVARCHAR type, collength has the value of max from the data type declaration, or 2048 if

no maximum was specified.

For VARCHAR or NVARCHAR columns, the max_size and min_space values are encoded in the collength column using one of

these formulas:

• If the collength value is positive:

collength = (min_space * 256) + max_size

• If the collength value is negative:

collength + 65536 = (min_space * 256) + max_size

Time data types

As noted previously, DATE columns have a value of 4 in the collength column.

For columns of type DATETIME or INTERVAL, collength is determined using the following formula:

(length * 256) + (first_qualifier * 16) + last_qualifier

The length is the physical length of the DATETIME or INTERVAL field, and first_qualifier and last_qualifier have values that the

following table shows.

Field qualifier Value Field qualifier Value

YEAR 0 FRACTION(1) 11

MONTH 2 FRACTION(2) 12

DAY 4 FRACTION(3) 13

27

HCL Informix 14.10 - SQL programming Guide

28

Field qualifier Value Field qualifier Value

HOUR 6 FRACTION(4) 14

MINUTE 8 FRACTION(5) 15

SECOND 10

For example, if a DATETIME YEAR TO MINUTE column has a length of 12 (such as YYYY:DD:MO:HH:MI), a first_qualifier value

of 0 (for YEAR), and a last_qualifier value of 8 (for MINUTE), then the collength value is 3080 (from (256 * 12) + (0 * 16) +

8).

Fixed-point data types

The collength value for a MONEY or DECIMAL (p, s) column can be calculated using the following formula:

(precision * 256) + scale

Simple-large-object data types

If the data type of the column is BYTE or TEXT, collength holds the length of the descriptor.

Storing Maximum and Minimum Values

The colmin and colmax are statistical values which give the second-smallest and second-largest values of a column at the

time of the last update statistics. These values will be determined by update statistics for leading index columns only. For

example, if the values in an indexed column are 1, 2, 3, 4, and 5, the colmin value is 2 and the colmax value is 4. Storing the

second-smallest and second-largest data values lets the query optimizer make assumptions about the range of values in the

column and, in turn, further refine search strategies.

The colmin and colmax columns contain values only if the column is indexed and the UPDATE STATISTICS statement has

explicitly or implicitly calculated the column distribution. If you store BYTE or TEXT data in the tblspace, the colmin value is

encoded as -1.

The colmin and colmax columns are valid only for data types that fit into four bytes: SMALLFLOAT, SMALLINT, INTEGER, and

the first four bytes of CHAR. The values for all other noninteger column types are the initial four bytes of the maximum or

minimum value, which are treated as integers.

It is better to use UPDATE STATISTICS MEDIUM than to depend on colmin and colmax values. UPDATE STATISTICS MEDIUM

gives better information and is valid for all data types.

HCL Informix® does not calculate colmin and colmax values for user-defined data types. These columns, however, have

values for user-defined data types if a user-defined secondary access method supplies them.

SYSCONSTRAINTS

The sysconstraints system catalog table lists the constraints placed on the columns in each database table. An entry is

also placed in the sysindexes system catalog table (or sysindices view for HCL Informix®) for each unique, primary key, or

Chapter 1. SQL programming

referential constraint that does not already have a corresponding entry in sysindexes or sysindices. Because indexes can be

shared, more than one constraint can be associated with an index. The sysconstraints table has the following columns.

Table 11. SYSCONSTRAINTS table column descriptions

Column Type Explanation

constrid SERIAL Code uniquely identifying the constraint

constrname VARCHAR(1

28)

Name of the constraint

owner VARCHAR(32) Name of the owner of the constraint

tabid INTEGER Code uniquely identifying the table

constrtype CHAR(1) Code identifying the constraint type:

• C = Check constraint

• N = Not NULL

• P = Primary key

• R = Referential

• T = Table

• U = Unique

idxname VARCHAR(1

28)

Name of index corresponding to constraint

collation CHAR(32) Collating order at the time when the constraint was

created.

A composite index on the constrname and owner columns allows only unique values. An index on the tabid column allows

duplicate values, and an index on the constrid column allows only unique values.

For check constraints (where constrtype = C), the idxname is always NULL. Additional information about each check

constraint is contained in the syschecks and syscoldepend system catalog tables.

SYSDEFAULTS
The sysdefaults system catalog table lists the user-defined defaults that are placed on each column in the database. One

row exists for each user-defined default value.

The sysdefaults table has the following columns:

29

HCL Informix 14.10 - SQL programming Guide

30

Table 12. SYSDEFAULTS table column descriptions

Column Type Explanation

tabid INTEGER Code uniquely identifying a table. When the class column contains the

code P, then the tabid column references a procedure ID not a table ID.

colno SMALLINT Code uniquely identifying a column.

type CHAR(1) Code identifying the type of default value:

C = Current®

L = Literal value

N = NULL

S = Dbservername or Sitename

T = Today

U = User

default CHAR(256) If sysdefaults.type = L, a literal default value.

class CHAR(1) Code identifying what kind of column:

T = table

t = ROW type

P = procedure

If no default is specified explicitly in the CREATE TABLE or the ALTER TABLE statement, then no entry exists for that column

in the sysdefaults table.

If you specify a literal for the default value, it is stored in the default column as ASCII text. If the literal value is not of one of

the data types listed in the next paragraph, the default column consists of two parts. The first part is the 6-bit representation

of the binary value of the default value structure. The second part is the default value in ASCII text. A blank space separates

the two parts.

If the data type of the column is not CHAR, NCHAR, NVARCHAR, or VARCHAR, or (for HCL Informix®) BOOLEAN or

LVARCHAR, a binary representation of the default value is encoded in the default column.

A composite index on the tabid, colno, and class columns allows only unique values.

SYSDEPEND

The sysdepend system catalog table describes how each view or table depends on other views or tables. One row exists

in this table for each dependency, so a view based on three tables has three rows. The sysdepend table has the following

columns.

Chapter 1. SQL programming

Table 13. SYSDEPEND table column descriptions

Column Type Explanation

btabid INTEGER Code uniquely identifying the base table or view

btype CHAR(1) Base object type: T = Table V = View

dtabid INTEGER Code uniquely identifying a dependent table or view

dtype CHAR(1) Code for the type of dependent object; currently, only view (V = View) is

implemented

The btabid and dtabid columns are indexed and allow duplicate values.

SYSDIRECTIVES

The sysdirectives table stores external optimizer directives that can be applied to queries. Whether queries in client

applications can use these optimizer directives depends on the setting of the IFX_EXTDIRECTIVES environment variable

on the client system, as described in Chapter 3, and on the EXT_DIRECTIVES setting in the configuration file of the database

server.

The sysdirectives table has the following columns:

Table 14. SYSDIRECTIVES table column descriptions

Column Type Explanation

id SERIAL Unique code identifying the optimizer directive

query TEXT Text of the query as it exists in the application

directives TEXT Text of the optimizer directive, without comments

directive_code BYTE Encoded directive

active SMALLINT Integer code that identifies whether this entry is active (= 1) or test only (=

2)

hash_code SMALLINT For internal use only

NULL values are not valid in the query column. There is a unique index on the id column.

SYSDISTRIB
The sysdistrib system catalog table stores data-distribution information for the query optimizer to use. Data distributions

provide detailed table and column information to the optimizer to improve the choice of execution paths of SELECT

statements.

The sysdistrib table has the following columns.

31

HCL Informix 14.10 - SQL programming Guide

32

Table 15. SYSDISTRIB table column descriptions

Column Type Explanation

tabid INTEGER Code identifying the table from which data values were

gathered

colno SMALLINT Column number in the source table

seqno INTEGER Ordinal number for multiple entries

constructed DATETIME YEAR TO

FRACTION(5)

Date when the data distribution was created

mode CHAR(1) Optimization level: M = Medium H = High

resolution SMALLFLOAT Specified in the UPDATE STATISTICS statement

confidence SMALLFLOAT Specified in the UPDATE STATISTICS statement

encdat STAT Statistics information

type CHAR(1) Type of statistics: A = encdat has ASCII-encoded

histogram in fixed-length character field S = encdat has

user-defined statistics

smplsize SMALLFLOAT A value greater than zero up to 1.0 indicating a

proportion of the total rows in the table that UPDATE

STATISTICS samples. Values greater than 1.0

indicate the actual number of rows used that UPDATE

STATISTICS samples. A value of zero indicates that no

sample size is specified. UPDATE STATISTICS HIGH

always updates statistics for all rows.

rowssmpld FLOAT Number of rows in the sample

constr_time DATETIME YEAR TO

FRACTION(5)

Time when the distribution was recorded

ustnrows FLOAT Rows in fragment when distribution was calculated.

ustbuildduration INTERVAL HOUR TO

FRACTION(5)

Time spent calculating the distribution statistics for this

column

nupdates FLOAT Number of updates to the table

ndeletes FLOAT Number of deletes to the table

ninserts FLOAT Number of inserts to the table

Information is stored in the sysdistrib table when an UPDATE STATISTICS statement with mode MEDIUM or HIGH is

executed for a table. (UPDATE STATISTICS LOW does not insert a value into the mode column.)

Chapter 1. SQL programming

Only user informix can select the encdat column.

Each row in the sysdistrib system catalog table is keyed by the tabid and colno for which the statistics are collected.

For built-in data type columns, the type field is set to A. The encdat column stores an ASCII-encoded histogram that is broken

down into multiple rows, each of which contains 256 bytes.

In HCL Informix®, for columns of user-defined data types, the type field is set to S. The encdat column stores the statistics

collected by the statcollect user-defined routine in multirepresentational form. Only one row is stored for each tabid and

colno pair. A composite index on the tabid, colno, and seqno columns requires unique combinations of values.

The following three DML counter columns record counts of how many DML operations modifying data rows were performed

on the table at the time of generation of column distribution statistics:

• UPDATE operations in nupdates

• DELETE operations in ndeletes

• and INSERT operations in ninserts

These counts can also include rows modified by MERGE statements.

These DML counter columns store the values of the counters from the server partition that exists when distribution statistics

are generated. If the AUTO_STAT_MODE configuration parameter, or the AUTO_STAT_MODE session environment setting, or

the AUTO keyword of the UPDATE STATISTICS statement has enabled selective updating of data distribution statistics, the

ninserts, ndeletes, and ninserts values can affect whether UPDATE STATISTICS operations refresh existing data distribution

statistics. When the UPDATE STATISTICS statement runs in MEDIUM or HIGH mode against the table, the database server

compares the stored values in these columns with the current values in the partition. Column distribution statistics for the

table are not updated if the sum of the stored values differs from the sum of these current sysdistrib DML counter values

from the partition page by less than the threshold specified by the setting of the STATCHANGE table attribute or of the

STATCHANGE configuration parameter.

SYSDOMAINS

The sysdomains view is not used. It displays columns of other system catalog tables. It has the following columns.

Table 16. SYSDOMAINS table column descriptions

Column Type Explanation

id SERIAL Unique code identifying the domain

owner CHAR(32) Name of the owner of the domain

name VARCHAR(1

28)

Name of the domain

type SMALLINT Code identifying the type of domain

33

HCL Informix 14.10 - SQL programming Guide

34

There is no index on this view.

SYSERRORS

The syserrors system catalog table stores information about error, warning, and informational messages returned by

DataBlade® modules and user-defined routines using the mi_db_error_raise() DataBlade® API function.

The syserrors table has the following columns.

Column Type Explanation

sqlstate CHAR(5) SQLSTATE value associated with the error.

locale CHAR(36) The locale with which this version of the message is associated (for

example, en_us.8859-1)

level SMALLINT Reserved for future use

seqno SMALLINT Reserved for future use

message VARCHAR(255) Message text

To create a new message, insert a row directly into the syserrors table. By default, all users can view this table, but only users

with the DBA privilege can modify it.

A composite index on the sqlstate, locale, level, and seqno columns allows only unique values.

Related information

Using the SQLSTATE Error Status Code on page

SYSEXTCOLS
The sysextcols system catalog table contains a row that describes each of the internal columns in external table tabid of

format type (fmttype) FIXED.

The sysextcols table has the following columns.

Column Type Explanation

tabid INTEGER Unique identifying code of a table

colno SMALLINT Code identifying the column

exttype SMALLINT Code identifying an external column type

extstart SMALLINT Starting position of column in the external data file

extlength SMALLINT External column length (in bytes)

../sqs/ids_sqs_0806.html#ids_sqs_0806
../sqs/ids_sqs_0806.html#ids_sqs_0806
../sqs/ids_sqs_0806.html#ids_sqs_0806
../sqs/ids_sqs_0806.html#ids_sqs_0806

Chapter 1. SQL programming

Column Type Explanation

nullstr CHAR(256) Represents NULL in external data

decprec SMALLINT Precision for external decimals

extstype VARCHAR(128,0) External type name

No entries are stored in sysextcols for DELIMITED or HCL Informix® format external files.

You can use the DBSCHEMA utility to write out the description of the external tables. To query these system catalog tables

about an external table, use the tabid as stored in systables with tabtype = ‘E'.

An index on the tabid column allows duplicate values.

SYSEXTDFILES
The sysextdfiles system catalog table contains identifying codes and the paths of external tables.

For each external table, at least one row exists in the sysextdfiles system catalog table, which has the following columns.

Column Type Explanation

tabid INTEGER Unique identifying code of an external table

dfentry CHAR(469) Absolute source or target file path

blobdir CHAR(344) Absolute or relative directory name

clobdir CHAR(344) Absolute or relative directory name

You can use DBSCHEMA to write out the description of the external tables. To query these system catalog tables about an

external table, use the tabid as stored in systables with tabtype = ‘E'.

An index on the tabid column allows duplicate values.

SYSEXTERNAL
For each external table, a single row exists in the sysexternal system catalog table.

The tabid column associates the external table record in this system catalog table with an entry in systables.

Column Type Explanation

tabid INTEGER Unique identifying code of an external table

fmttype CHAR(1) Type of format: D = (delimited) F = (fixed) I = (HCL Informix®)

codeset VARCHAR(128) Reserved for future use

recdelim VARCHAR(128) The record delimiter

flddelim CHAR(4) The field delimiter

35

HCL Informix 14.10 - SQL programming Guide

36

Column Type Explanation

datefmt CHAR(8) Reserved for future use

moneyfmt CHAR(20) Reserved for future use

maxerrors INTEGER Number of errors to allow

rejectfile CHAR(464) Name of the reject file

flags INTEGER Optional load flags

ndfiles INTEGER Number of data files in sysextdfiles

You can use the dbschema utility to write out the description of the external tables. To query these system catalog tables

about an external table, use the tabid as stored in systables with tabtype = ‘E'.

An index on the tabid column allows only unique values.

SYSFRAGAUTH

The sysfragauth system catalog table stores information about the privileges that are granted on table fragments. This table

has the following columns.

Table 17. SYSFRAGAUTH table column descriptions

Column Type Explanation

grantor CHAR(32) Name of the grantor of privilege

grantee CHAR(32) Name of the grantee of privilege

tabid INTEGER Identifying code of the fragmented table

fragm

ent

VARCHAR(1

28)

Name of dbspace where fragment is stored

fragauth CHAR(6) A 6-byte pattern specifying fragment privileges (including 3 bytes reserved for future

use):

• u or U = Update

• i or I = Insert

• d or D = Delete

In the fragauth column, an uppercase code (such as U for Update) means that the grantee can grant the privilege to other

users; a lowercase (for example, u for Update) means the user cannot grant the privilege to others. Hyphen (-) indicates the

absence of the privilege for that position within the pattern.

Chapter 1. SQL programming

A composite index on the tabid, grantor, grantee, and fragment columns allows only unique values. A composite index on the

tabid and grantee columns allows duplicate values.

The following example displays the fragment-level privileges for one base table, as they exist in the sysfragauth table. In this

example, the grantee rajesh can grant the Update, Delete, and Insert privileges to other users.

grantor grantee tabid fragment fragauth

dba omar 101 dbsp1 -ui---

dba jane 101 dbsp3 --i---

dba maria 101 dbsp4 --id--

dba rajesh 101 dbsp2 -UID--

SYSFRAGDIST
The sysfragdist system catalog table stores fragment-level column statistics for fragmented tables and indexes. One row

exists for each table fragment or index fragment.

Only columns in fragmented tables are described here. (For table-level column statistics, see the sysdistrib system catalog

table.)

The sysfragdist table has the following columns.

Column Type Explanation

tabid INTEGER Unique identifying code of table (= systables.tabid)

fragid INTEGER Unique identifying code of fragment (= sysfragments.partnum)

colno SMALLINT Unique identifying code of column (= syscolumns.colno)

seqno SMALLINT Sequence number (for distributions that span multiple rows)

mode CHAR(1) UPDATE STATISTICS mode (H = high, or M = medium)

resolution SMALLFLOAT Average percentage of the sample in each bin

confidence SMALLFLOAT Estimated likelihood that a MEDIUM mode sample value is

equivalent to an exact HIGH mode result

rowssampled FLOAT Number of rows in the sample

ustbuildduration INTERVAL HOUR TO

FRACTION(5)

Time spent to calculate the distribution for this column

constr_time DATETIME YEAR TO

FRACTION(5)

Time when the distribution was recorded

ustnrows FLOAT Rows in fragment when distribution was calculated.

37

HCL Informix 14.10 - SQL programming Guide

38

Column Type Explanation

minibinsize FLOAT For internal use only

nupdates FLOAT Number of updates to the table

ndeletes FLOAT Number of deletes to the table

ninserts FLOAT Number of inserts to the table

version INTEGER Reserved for future use

dbsnum INTEGER Unique identifying code of sbspace where encdist is stored

encdist STAT Encrypted fragment distribution

The set of rows with a given combination of tabid, fragid, and colno values identifies the column statistics for that fragment

of a table. These statistics can span multiple rows by using the seqno column for sequence numbering.

The mode, resolution and confidence values that are specified in the UPDATE STATISTICS MEDIUM or HIGH statement

that calculate the column statistics for the fragment are recorded in the sysfragdist columns of the same names. To use

existing fragment statistics to build table statistics, these three parameters should not change between UPDATE STATISTICS

statements that reference the fragments of the same table. The only exception to this is that "H" mode fragmented statistics

can be used to build "M" mode table statistics.

Column distribution statistics for the fragment are stored in the column encdist. The dbsnum column stores the identifying

code of the smart blob space where the encdist object describing this fragment is stored. By default, the SBSPACENAME

configuration parameter setting is the identifier of the sbspace whose identifying code is in the dbsnum column.

The following three columns record counts of how many DML operations modifying data rows were performed on the

fragment at the time of generation of column distribution statistics:

• UPDATE operations in nupdates

• DELETE operations in ndeletes

• and INSERT operations in ninserts

These counts can also include rows modified by MERGE statements.

These DML counter columns store the values of the counters from the server partition that existed when distribution

statistics were generated. When UPDATE STATISTICS runs in MEDIUM or HIGH mode against the fragmented table with

fragment level statistics, the database server compares the stored values in these columns with the current values in the

partition.

When the AUTO_STAT_MODE configuration parameter, or the AUTO_STAT_MODE session environment setting, or the AUTO

keyword of the UPDATE STATISTICS statement has enabled selective updating of data distribution statistics, the ninserts,

ndeletes, and ninserts values can affect whether UPDATE STATISTICS operations refresh existing data distribution statistics

for the fragment. Column statistics for the fragment corresponding to the row in the sysfragdist table are not updated if the

Chapter 1. SQL programming

sum of the stored values differs from the sum of these current DML counter values for the partition page by less than the

threshold specified by the setting of the STATCHANGE table attribute or of the STATCHANGE configuration parameter.

SYSFRAGMENTS
The sysfragments system catalog table stores fragmentation information and LOW mode statistical distributions for

individual fragments of tables and indexes. One row exists for each table fragment or index fragment.

The sysfragments table has the following columns.

Column Type Explanation

fragtype CHAR(1) Code indicating the type of fragmented object:

• I = Original index fragment

• T = Original table fragment

tabid INTEGER Unique identifying code of table

indexname VARCHAR(128) Name of index

colno INTEGER Identifying code of TEXT or BYTE column, or the upper limit on the number

of rolling window fragments

partn INTEGER Identifying code of physical storage location

strategy CHAR(1) Code for type of fragment distribution strategy:

• R = Round-robin distribution strategy

• E = Expression-based distribution strategy

• I = IN DBSPACE clause specifies a storage location as part of

distribution strategy

• N = raNge-iNterval (or rolliNg wiNdow) distribution strategy

• N = raNge-iNterval distribution strategy

• L = List distribution strategy

• T = Table-based distribution strategy

• H = table is a subtable within a table Hierarchy

location CHAR(1) Reserved for future use; shows L for local

servername VARCHAR(128) Reserved for future use

evalpos INTEGER Position of fragment in the fragmentation list.

For fragmentation by INTERVAL, one of the following values that indicates

the type of information in the exprtext field:

39

HCL Informix 14.10 - SQL programming Guide

40

Column Type Explanation

• -1 = List of dbspaces for interval fragments

• -2 = Interval value

• -3 = Fragmentation key

• -4 = Rolling window fragment

Fragmentation by LIST also uses the -3 value.

exprtext TEXT Expression for fragmentation strategy

For fragmentation by INTERVAL, LIST, or rolling window, provides the

information corresponding to the value of the evalpos field.

For fragmentation by INTERVAL or LIST, provides the information

corresponding to the value of the evalpos field.

exprbin BYTE Binary version of expression

exprarr BYTE Range-partitioning data to optimize expression in range-expression

fragmentation strategy

flags INTEGER Used internally

dbspace VARCHAR(128) Name of dbspace storing this fragment

levels SMALLINT Number of B-tree index levels

npused FLOAT For table-fragmentation strategies: the number of data pages

For index-fragmentation strategies: the number of leaf pages

For rolling window tables: the units for the storage size limit in nrows

nrows FLOAT For tables: the number of rows in the fragment.

For indexes: the number of unique keys.

For rolling window tables: the upper limit on storage size in the purge

policy.

clust FLOAT Degree of index clustering; smaller numbers correspond to greater

clustering.

partition VARCHAR(128) Fragment name.This can match the name of the dbspace that stores the

fragment, or can be an arbitrary name.

version SMALLINT Number that increments when fragment statistics is updated

nupdates FLOAT Number of updates to the fragment

Chapter 1. SQL programming

Column Type Explanation

ndeletes FLOAT Number of deletes to the fragment

ninserts FLOAT Number of inserts to the fragment

Every fragment has a row in this table. The evalpos and evaltext fields contain information about individual fragments.

Tables and indexes created with fragmentation by INTERVAL or LIST have additional rows containing information about the

fragmentation strategy.

The strategy type T is used for attached indexes. (This is a fragmented index whose fragmentation strategy is the same as

for the table fragmentation.)

For information about the nupdates, ndeletes, and ninserts columns, which in sysfragments tabulate DML operations on a

table since the most recent recalculation of its distribution statistics, see the description of the three columns that have the

same names in the SYSDISTRIB on page 31 system catalog table.

In Informix®, a composite index on the fragtype, tabid, indexname, and evalpos columns allows duplicate values.

SYSINDEXES
The sysindexes table is a view on the sysindices table. It contains one row for each index in the database.

The sysindexes table has the following columns.

Table 18. SYSINDEXES table column descriptions

Column Type Explanation

idxname VARCHAR(1

28)

Index name

owner VARCHAR(32) Owner of index (user informix for system catalog tables and username for database tables)

tabid INTEGER Unique identifying code of table

idxtype CHAR(1) Index type:

U = Unique

D = Duplicates allowed

G = Nonbitmap generalized-key index

g = Bitmap generalized-key index

u = unique, bitmap

d = nonunique, bitmap

41

HCL Informix 14.10 - SQL programming Guide

42

Table 18. SYSINDEXES table column descriptions

(continued)

Column Type Explanation

cluste

red

CHAR(1) Clustered or nonclustered index (C = Clustered)

part1 SMALLINT Column number (colno) of a single index or the 1st component of a composite index

part2 SMALLINT 2nd component of a composite index

part3 SMALLINT 3rd component of a composite index

part4 SMALLINT 4th component of a composite index

part5 SMALLINT 5th component of a composite index

part6 SMALLINT 6th component of a composite index

part7 SMALLINT 7th component of a composite index

part8 SMALLINT 8th component of a composite index

part9 SMALLINT 9th component of a composite index

part10 SMALLINT 10th component of a composite index

part11 SMALLINT 11th component of a composite index

part12 SMALLINT 12th component of a composite index

part13 SMALLINT 13th component of a composite index

part14 SMALLINT 14th component of a composite index

part15 SMALLINT 15th component of a composite index

part16 SMALLINT 16th component of a composite index

levels SMALLINT Number of B-tree levels

leaves INTEGER Number of leaves

nunique INTEGER Number of unique keys in the first column

clust INTEGER Degree of clustering; smaller numbers correspond to greater clustering

idxflags INTEGER Bitmap storing the current locking mode of the index

As with most system catalog tables, changes that affect existing indexes are reflected in this table only after you run the

UPDATE STATISTICS statement.

Each part1 through part16 column in this table holds the column number (colno) of one of the 16 possible parts of a

composite index. If the component is ordered in descending order, the colno is entered as a negative value. The columns

Chapter 1. SQL programming

are filled in for B-tree indexes that do not use user-defined data types or functional indexes. For generic B-trees and all other

access methods, the part1 through part16 columns all contain zeros.

The clust column is blank until the UPDATE STATISTICS statement is run on the table. The maximum value is the number of

rows in the table, and the minimum value is the number of data pages in the table.

SYSINDICES
The sysindices system catalog table describes the indexes in the database. It stores LOW mode statistics for all indexes,

and contains one row for each index that is defined in the database.

Table 19. sysindices system catalog table columns

Col

umn Type Explanation

idxn

ame

VARCHAR(1

28)

Name of index

ow

ner

VARCHAR(

32)

Name of owner of index (user informix for system catalog tables and username for database tables)

tabid INTEGER Unique identifying code of table

idxt

ype

CHAR(1) Uniqueness status

U = Unique values required

D = Duplicates allowed

clust

ered

CHAR(1) Clustered or nonclustered status (C = Clustered)

lev

els

SMALLINT Number of tree levels

lea

ves

FLOAT Number of leaves

nuni

que

FLOAT Number of unique keys in the first column

clust FLOAT Degree of clustering; smaller numbers correspond to greater clustering. The maximum value is the

number of rows in the table, and the minimum value is the number of data pages in the table. This

column is blank until UPDATE STATISTICS is run on the table.

nr

ows

FLOAT Estimated number of rows in the table (zero until UPDATE STATISTICS is run on the table)

43

HCL Informix 14.10 - SQL programming Guide

44

Table 19. sysindices system catalog table columns

(continued)

Col

umn Type Explanation

index

keys

INDEXKEYA

RRAY

Internal representation of the index keys. Column can have up to three fields, in the format: procid,

(col1,col2, . . . , coln), opclassid where 1 < n < 341

amid INTEGER Unique identifying code of the access method that implements this index. (Value = am_id for that

access method in the sysams table.)

ampa

ram

LVARCHAR(

2048)

List of parameters used to customize the amid access method behavior

collat

ion

CHAR(32) Database locale whose collating order was in effect at the time of index creation

page

size

INTEGER Size of the page, in bytes, where this index is stored

nhas

hcols

SMALLINT Number of hashed columns in a FOT index

nbuc

kets

SMALLINT Number of subtrees (buckets) in a forest of trees (FOT) index

ustlo

wts

DATETIME

YEAR TO

FRACTION

Date and time when index statistics were last recorded

ustbu

ilddu

rat

ion

INTERVAL

HOUR TO

FRACTION

(5)

Time required to calculate index statistics

nupd

ates

FLOAT Number of updates to the table

ndele

tes

FLOAT Number of deletes to the table

ninse

rts

FLOAT Number of inserts to the table

fexts

ize

INT Size (in KB) of the first extent of the index

nexts

ize

INT Size (in KB) of the next extent of the index

Chapter 1. SQL programming

Table 19. sysindices system catalog table columns

(continued)

Col

umn Type Explanation

index

attr

INT
• 0x00000001 = The index has a partial column key

• 0x00000002 = The index is compressed

• 0x00000004 = The index is on a BSON column

jpa

ram

LVARCHAR(

2048)

BSON index information

Tip: This system catalog table is changed from Version 7.2 of HCL Informix®. The earlier schema of this system

catalog table is still available as a view that can be accessed under its original name: sysindexes. See SYSINDEXES

on page 41.

Changes that affect existing indexes are reflected in this system catalog table only after you run the UPDATE STATISTICS

statement.

The fields within the indexkeys columns have the following significance:

• The procid (as in sysprocedures) exists only for a functional index on return values of a function defined on columns

of the table.

• The list of columns (col1, col2, ... , coln) in the second field identifies the columns on which the index is defined. The

maximum is language-dependent: up to 341 for an SPL or Java™ UDR; up to 102 for a C UDR.

• The opclassid identifies the secondary access method that the database server used to build and to search the index.

This is the same as the sysopclasses.opclassid value for the access method.

For information about the nupdates, ndeletes, and ninserts columns, which in sysindices tabulate DML operations on an

index since the most recent recalculation of its distribution statistics, see the description of the three columns that have the

same names in the SYSDISTRIB on page 31 system catalog table.

The fextsize column shows the user-defined first extent size (in kilobytes) that the optional EXTENT SIZE clause specified in

the CREATE INDEX statement that defined the index. Similarly, the nextsize column shows the user-defined next extent size

(in kilobytes) that the optional NEXT SIZE clause specified in the CREATE INDEX statement. Each of these columns displays

a value of zero (0) if the corresponding EXTENT SIZE or NEXT SIZE clause was omitted when the index was created.

If the CREATE INDEX statement that defines a new index includes no explicit extent size specifications, the database server

automatically calculates the first and next extent sizes, but the fextsize and nextsize column values are set to 0. When the

database server is converted from a release earlier than Version 11.70, the fextsize and nextsize values for every migrated

index are 0.

45

HCL Informix 14.10 - SQL programming Guide

46

The tabid column is indexed and allows duplicate values. A composite index on the idxname, owner, and tabid columns

allows only unique values.

SYSINHERITS

The sysinherits system catalog table stores information about table hierarchies and named ROW type inheritance. Every

supertype, subtype, supertable, and subtable in the database has a corresponding row in the sysinherits table.

Column Type Explanation

child INTEGER Identifying code of the subtable or subtype

parent INTEGER Identifying code of the supertable or supertype

class CHAR(1) Inheritance class: t = named ROW type T = table

The child and parent values are from sysxtdtypes.extended_id for named ROW types, or from systables.tabid for tables.

Simple indexes on the child and parent columns allow duplicate values.

SYSLANGAUTH

The syslangauth system catalog table contains the authorization information about computer languages that are used to

write user-defined routines (UDRs).

Table 20. SYSLANGAUTH table column descriptions

Column Type Explanation

grantor VARCHAR(

32)

Name of the grantor of the language authorization

grantee VARCHAR(

32)

Name of the grantee of the language authorization

langid INTEGER Identifying code of language in sysroutinelangs table

langauth CHAR(1) The language authorization:

u = Usage privilege granted

U = Usage privilege granted WITH GRANT

OPTION

A composite index on the langid, grantor, and grantee columns allows only unique values. A composite index on the langid

and grantee columns allows duplicate values.

Chapter 1. SQL programming

SYSLOGMAP

The syslogmap system catalog table contains fragmentation information.

Table 21. SYSLOGMAP table column descriptions

Column Type Explanation

tabloc INTEGER Code for the location of a table in another database

tabid INTEGER Unique identifying code of the table

fragid INTEGER Identifying code of the fragment

flags INTEGER Bitmap of modifiers from declaration of fragment

A simple index on the tabloc column and a composite index on the tabid and fragid columns do not allow duplicate values.

SYSOBJSTATE

The sysobjstate system catalog table stores information about the state (object mode) of database objects. The types of

database objects that are listed in this table are indexes, triggers, and constraints.

Every index, trigger, and constraint in the database has a corresponding row in the sysobjstate table if a user creates the

object. Indexes that the database server creates on the system catalog tables are not listed in the sysobjstate table because

their object mode cannot be changed.

The sysobjstate table has the following columns.

Table 22. SYSOBJSTATE table column descriptions

Col

umn Type Explanation

objtype CHAR(1) Code for the type of database object:

• C = Constraint

• I = Index

• T = Trigger

owner VARCHAR(32) Authorization identifier of the owner of the database object

name VARCHAR(1

28)

Name of the database object

tabid INTEGER Identifying code of table on which the object is defined

47

HCL Informix 14.10 - SQL programming Guide

48

Table 22. SYSOBJSTATE table column descriptions

(continued)

Col

umn Type Explanation

state CHAR(1) The current state (object mode) of the database object. This value can be one of the following

codes:

• D = Disabled

• E = Enabled

• F = Filtering with no integrity-violation errors

• G = Filtering with integrity-violation error

A composite index on the objtype, name, owner, and tabid columns allows only unique combinations of values. A simple

index on the tabid column allows duplicate values.

SYSOPCLASSES

The sysopclasses system catalog table contains information about operator classes associated with secondary access

methods. It contains one row for each operator class that has been defined in the database. The sysopclasses table has the

following columns.

Column Type Explanation

opclassname VARCHAR(128) Name of the operator class

owner VARCHAR(32) Name of the owner of the operator class

amid INTEGER Identifying code of the secondary access method associated with this

operator class

opclassid SERIAL Identifying code of the operator class

ops LVARCHAR(2048) List of names of the operators that belong to this operator class

support LVARCHAR(2048) List of names of support functions defined for this operator class

The opclassid value corresponds to the sysams.am_defopclass value that specifies the default operator class for the

secondary access method that the amid column specifies.

The sysopclasses table has a composite index on the opclassname and owner columns and an index on opclassid column.

Both indexes allow only unique values.

SYSOPCLSTR
The sysopclstr system catalog table defines each optical cluster in the database. The table contains one row for each optical

cluster.

Chapter 1. SQL programming

The sysopclstr table has the following columns.

Column Type Explanation

owner VARCHAR(32) Name of the owner of the optical cluster

clstrname VARCHAR(128) Name of the optical cluster

clstrsize INTEGER Size of the optical cluster

tabid INTEGER Unique identifying code for the table

blobcol1 SMALLINT BYTE or TEXT column number 1

blobcol2 SMALLINT BYTE or TEXT column number 2

blobcol3 SMALLINT BYTE or TEXT column number 3

blobcol4 SMALLINT BYTE or TEXT column number 4

blobcol5 SMALLINT BYTE or TEXT column number 5

blobcol6 SMALLINT BYTE or TEXT column number 6

blobcol7 SMALLINT BYTE or TEXT column number 7

blobcol8 SMALLINT BYTE or TEXT column number 8

blobcol9 SMALLINT BYTE or TEXT column number 9

blobcol10 SMALLINT BYTE or TEXT column number 10

blobcol11 SMALLINT BYTE or TEXT column number 11

blobcol12 SMALLINT BYTE or TEXT column number 12

blobcol13 SMALLINT BYTE or TEXT column number 13

blobcol14 SMALLINT BYTE or TEXT column number 14

blobcol15 SMALLINT BYTE or TEXT column number 15

blobcol16 SMALLINT BYTE or TEXT column number 16

clstrkey1 SMALLINT Cluster key number 1

clstrkey2 SMALLINT Cluster key number 2

clstrkey3 SMALLINT Cluster key number 3

clstrkey4 SMALLINT Cluster key number 4

clstrkey5 SMALLINT Cluster key number 5

clstrkey6 SMALLINT Cluster key number 6

clstrkey7 SMALLINT Cluster key number 7

49

HCL Informix 14.10 - SQL programming Guide

50

Column Type Explanation

clstrkey8 SMALLINT Cluster key number 8

clstrkey9 SMALLINT Cluster key number 9

clstrkey10 SMALLINT Cluster key number 10

clstrkey11 SMALLINT Cluster key number 11

clstrkey12 SMALLINT Cluster key number 12

clstrkey13 SMALLINT Cluster key number 13

clstrkey14 SMALLINT Cluster key number 14

clstrkey15 SMALLINT Cluster key number 15

clstrkey16 SMALLINT Cluster key number 16

The contents of this table are sensitive to CREATE OPTICAL CLUSTER, ALTER OPTICAL CLUSTER, and DROP OPTICAL

CLUSTER statements that have been executed on databases that support optical cluster subsystems. Changes that affect

existing optical clusters are reflected in this table only after you run the UPDATE STATISTICS statement.

A composite index on the clstrname and owner columns allows only unique values. A simple index on the tabid column

allows duplicate values.

SYSPROCAUTH

The sysprocauth system catalog table describes the privileges granted on a procedure or function. It contains one row for

each set of privileges that is granted. The sysprocauth table has the following columns.

Table 23. SYSPROCAUTH table column descriptions

Column Type Explanation

grantor VARCHAR(

32)

Name of grantor of privileges to access the routine

grantee VARCHAR(

32)

Name of grantee of privileges to access the

routine

procid INTEGER Unique identifying code of the routine

proca

uth

CHAR(1) Type of privilege granted on the routine:

e = Execute privilege on routine

E = Execute privilege WITH GRANT OPTION

Chapter 1. SQL programming

A composite index on the procid, grantor, and grantee columns allows only unique values. A composite index on the procid

and grantee columns allows duplicate values.

SYSPROCBODY

The sysprocbody system catalog table describes the compiled version of each procedure or function in the database.

Because the sysprocbody table stores the text of the routine, each routine can have multiple rows. The sysprocbody table

has the following columns.

Table 24. SYSPROCBODY table column descriptions

Column Type Explanation

procid INTEGER Unique identifying code for the routine

datakey CHAR(1) Type of information in the data column:

A = Routine alter SQL (will not change this value after update

statistics)

D = Routine user documentation text

E = Time of creation information

L = Literal value (that is, literal number or quoted string)

P = Interpreter instruction code (p-code)

R = Routine return value type list

S = Routine symbol table

T = Routine text creation SQL

seqno INTEGER Line number within the routine

data CHAR(256) Actual text of the routine

The A flag indicates the procedure modifiers are altered. ALTER ROUTINE statement updates only modifiers and not the

routine body. UPDATE STATISTICS updates the query plan and not the routine modifiers, and the value of datakey will not

be changed from A. The A flag marks all the procedures and functions that have altered modifiers, including overloaded

procedures and functions. The T flag is used for routine creation text.

The data column contains actual data, which can be in one of these formats:

• Encoded return values list

• Encoded symbol table

• Literal data

• P-code for the routine

• Compiled code for the routine

• Text of the routine and its documentation

A composite index on the procid, datakey, and seqno columns allows only unique values.

51

HCL Informix 14.10 - SQL programming Guide

52

SYSPROCCOLUMNS

The sysproccolumns system catalog table stores information about return types and parameter names of all UDRs in

SYSPROCEDURES.

A composite index on the procid and paramid columns in this table allows only unique values.

Table 25. SYSPROCCOLUMNS table column descriptions

Column Type Explanation

procid INTEGER Unique identifying code of the routine

paramid INTEGER Unique identifying code of the parameter

paramname VARCHAR

(IDENTSIZE)

Name of the parameter

paramtype SMALLINT Identifies the type of parameter

paramlen SMALLINT Specifies the length of the parameter

paramxid INTEGER Specifies the extended type ID for the parameter

paramattr INTEGER 0 = Parameter is of unknown type 1 = Parameter is INPUT mode 2 =

Parameter is INOUT mode 3 = Parameter is multiple return value 4 =

Parameter is OUT mode 5 = Parameter is a return value

SYSPROCEDURES
The sysprocedures system catalog table lists the characteristics for each function and procedure that is registered in the

database. It contains one row for each routine.

Each function in sysprocedures has a unique value, procid, called a routine identifier. Throughout the system catalog, a

function is identified by its routine identifier, not by its name.

The sysprocedures table has the following columns.

Table 26. SYSPROCEDURES table column descriptions

Column Type Explanation

procname VARCHAR(128) Name of routine

owner VARCHAR(32) Name of owner

procid SERIAL Unique identifying code for the routine

mode CHAR(1) Mode type:

D or d = DBA

O or o = Owner

Chapter 1. SQL programming

Table 26. SYSPROCEDURES table column descriptions (continued)

Column Type Explanation

P or p = Protected

R or r = Restricted

T or t = Trigger

retsize INTEGER Compiled size (in bytes) of returned values

symsize INTEGER Compiled size (in bytes) of symbol table

datasize INTEGER Compiled size (in bytes) of constant data

codesize INTEGER Compiled size (in bytes) of routine code

numargs INTEGER Number of arguments to routine

isproc CHAR(1) Specifies if the routine is a procedure or a function:

t = procedure

f = function

specificname VARCHAR(128) Specific name for the routine

externalname VARCHAR(255) Location of the external routine. This item is language-specific in

content and format.

paramstyle CHAR(1) Parameter style: I = HCL Informix®

langid INTEGER Language code (in sysroutinelangs table)

paramtypes RTNPARAMTYPES Information describing the parameters of the routine

variant BOOLEAN Whether the routine is VARIANT or not:

t = is VARIANT

f = is not VARIANT

client BOOLEAN Reserved for future use

handlesnulls BOOLEAN NULL handling indicator:

t = handles NULLs

f = does not handle NULLs

percallcost INTEGER Amount of CPU per call

Integer cost to execute UDR: cost/call - 0 -(2^31-1)

53

HCL Informix 14.10 - SQL programming Guide

54

Table 26. SYSPROCEDURES table column descriptions (continued)

Column Type Explanation

commutator VARCHAR(128) Name of commutator function

negator VARCHAR(128) Name of the negator function

selfunc VARCHAR(128) Name of function to estimate selectivity of the UDR

internal BOOLEAN Specifies if the routine can be called from SQL:

t = routine is internal, not callable from SQL

f = routine is external, callable from SQL

class CHAR(18) CPU class by which the routine should be executed

stack INTEGER Stack size in bytes required per invocation

parallelizable BOOLEAN Parallelization indicator for UDR:

t = parallelizable

f = not parallelizable

costfunc VARCHAR(128) Name of the cost function for the UDR

selconst SMALLFLOAT Selectivity constant for UDR

procflags INTEGER For internal use only

collation CHAR(32) Collating order at the time when the routine was created

In the mode column, the R mode is a special case of the O mode. A routine is in restricted (R) mode if it was created with a

specified owner who is different from the routine creator. If routine statements involving a remote database are executed,

the database server uses the access privileges of the user who executes the routine instead of the privileges of the routine

owner. In all other scenarios, R-mode routines behave the same as O-mode routines.

The database server can create protected routines for internal use. The sysprocedures table identifies these protected

routines with the letter P or p in the mode column, where p indicates an SPL routine. Protected routines have the following

restrictions:

• You cannot use the ALTER FUNCTION, ALTER PROCEDURE, or ALTER ROUTINE statements to modify protected

routines.

• You cannot use the DROP FUNCTION, DROP PROCEDURE, or DROP ROUTINE statements to unregister protected

routines.

• You cannot use the dbschema utility to display protected routines.

Chapter 1. SQL programming

In earlier versions, protected SPL routines were indicated by a lowercase p. Starting with version 9.0, protected SPL routines

are treated as DBA routines and cannot be Owner routines. Thus D and O indicate DBA routines and Owner routines, while d

and o indicate protected DBA routines and protected Owner routines.

The trigger mode designates user-defined SPL routines that can be invoked only from the FOR EACH ROW section of a

triggered action.

Important: After you issue the SET SESSION AUTHORIZATION statement, the database server assigns a restricted

mode to all Owner routines that you created while using the new identity.

A unique index is defined on the procid column. A composite index on the procname, isproc, numargs, and owner columns

allows duplicate values, as does a composite index on the specificname and owner columns.

SYSPROCPLAN

The sysprocplan system catalog table describes the query-execution plans and dependency lists for data-manipulation

statements within each routine. Because different parts of a routine plan can be created on different dates, this table can

contain multiple rows for each routine.

Table 27. SYSPROCPLAN table column descriptions

Column Type Explanation

procid INTEGER Identifying code for the routine

planid INTEGER Identifying code for the plan

datakey CHAR(1) Type of information stored in data column:

D = Dependency list

I = Information record

Q = Execution plan

seqno INTEGER Line number within the plan

created DATE Date when plan was created

datasize INTEGER Size (in bytes) of the list or plan

data CHAR(256) Encoded (compiled) list or plan

Before a routine is run, its dependency list in the data column is examined. If the major version number of a table accessed

by the plan has changed, or if any object that the routine uses has been modified since the plan was optimized (for example,

if an index has been dropped), then the plan is optimized again. When datakey is I, the data column stores information about

UPDATE STATISTICS and PDQPRIORITY.

55

HCL Informix 14.10 - SQL programming Guide

56

It is possible to delete all the plans for a given routine by using the DELETE statement on sysprocplan. When the routine is

subsequently executed, new plans are automatically generated and recorded in sysprocplan. The UPDATE STATISTICS FOR

PROCEDURE statement also updates this table.

A composite index on the procid, planid, datakey, and seqno columns allows only unique values.

SYSREFERENCES

The sysreferences system catalog table lists all referential constraints on columns. It contains a row for each referential

constraint in the database.

Table 28. SYSREFERENCES table column descriptions

Column Type Explanation

constrid INTEGER Code uniquely identifying the constraint

primary INTEGER Identifying code of the corresponding primary key

ptabid INTEGER Identifying code of the table that is the primary key

updrule CHAR(1) Reserved for future use; displays an R

delrule CHAR(1) Whether constraint uses cascading delete or restrict

rule:

C = Cascading delete

R = Restrict (default)

matchtype CHAR(1) Reserved for future use; displays an N

pendant CHAR(1) Reserved for future use; displays an N

The constrid column is indexed and allows only unique values. The primary column is indexed and allows duplicate values.

SYSROLEAUTH

The sysroleauth system catalog table describes the roles that are granted to users. It contains one row for each role that is

granted to a user in the database. The sysroleauth table has the following columns.

Table 29. SYSROLEAUTH table column descriptions

Column Type Explanation

rolename VARCHAR(

32)

Name of the role

Chapter 1. SQL programming

Table 29. SYSROLEAUTH table column descriptions

(continued)

Column Type Explanation

grantee VARCHAR(

32)

Name of the grantee of the role

is_granta

ble

CHAR(1) Specifies whether the role is

grantable:

Y = Grantable

N = Not grantable

The is_grantable column indicates whether the role was granted with the WITH GRANT OPTION of the GRANT statement.

A composite index on the rolename and grantee columns allows only unique values.

SYSROUTINELANGS

The sysroutinelangs system catalog table lists the supported programming languages for user-defined routines (UDRs). It

has these columns.

Column Type Explanation

langid SERIAL Code uniquely identifying a supported language

langname CHAR(30) Name of the language, such as C or SPL

langinitfunc VARCHAR(128) Name of initialization function for the language

langpath CHAR(255) Directory path for the UDR language

langclass CHAR(18) Name of the class of the UDR language

An index on the langname column allows duplicate values.

SYSSECLABELAUTH

The sysseclabelauth system catalog table records the LBAC labels that have been granted to users. It has these columns.

Column Type Explanation

GRANTEE CHAR(32) The name of the label grantee

secpolicyid INTEGER The ID of the security policy to which the security

label belongs.

57

HCL Informix 14.10 - SQL programming Guide

58

Column Type Explanation

readseclabelid INTEGER The security label ID of the security label granted for

read access

writeseclabelid INTEGER The security label ID of the security label granted for

write access

SYSSECLABELCOMPONENTS

The sysseclabelcomponents system catalog table records security label components. It has these columns.

Column Type Explanation

compname VARCHAR(128) Component name

compid SERIAL Component ID

comptype CHAR(1) The component type:

A = array

S = set

T = tree

numelements INTEGER Number of elements in the component

coveringinfo VARCHAR(128) Internal encoding information

numalters SMALLINT Numbers of alter operations that have been

performed on the component

SYSSECLABELCOMPONENTELEMENTS

The sysseclabelcomponentelements system catalog table records the values of component elements of security labels. It

has these columns.

Column Type Explanation

compid INTEGER Component ID

element VARCHAR(32) Element name

elementencoding CHAR(8) Encoded form of the element

parentelement VARCHAR(32) The name of the parent elements for tree

components. The value is NULL for the following

items:

Chapter 1. SQL programming

Column Type Explanation

Set components Array components Root nodes of a

tree component

alterversion SMALLINT The number of the alter operation when the element

is added. This value is used by the dbexport and

dbimport commands.

SYSSECLABELNAMES

The sysseclabelnames system catalog table records the security label names. It has these columns.

Column Type Explanation

secpolicyid INTEGER The ID of the security policy to which the security

label belongs.

seclabelname VARCHAR(128) The name of the security label

seclabelid INTEGER The ID of the security label

SYSSECLABELS

The sysseclabels system catalog table records the security label encoding. It has these columns.

Column Type Explanation

secpolicyid INTEGER ID of the security policy to which the security label

belongs

seclabelid INTEGER Security label ID

sysseclabelnames VARCHAR(128) Security label encoding

SYSSECPOLICIES

The syssecpolicies system catalog table records security policies It has these columns.

Column Type Explanation

secpolicyname VARCHAR(128) Security policy name

secpolicyid SERIAL Security policy ID

numcomps SMALLINT Number of security label components in the security

policy

comptypelist CHAR(16) An ordered list of the type of each component in the

policy.

59

HCL Informix 14.10 - SQL programming Guide

60

Column Type Explanation

A = array

S = set

T = tree

- = Beyond NUMCOMPS

overrideseclabel CHAR(1) Indicates the behavior when a user's security label

and exemption credentials do not allow them to insert

or update a data row with the security that is label

provided on the INSERT or UPDATE SQL statement.

• Y: The security label provided is ignored and

replaced by the user's security label for write

access.

• N: Return an error when not authorized to

write a security label.

SYSSECPOLICYCOMPONENTS

The syssecpolicycomponents system catalog table records the components for each security policies. It has these columns.

Column Type Explanation

secpolicyid INTEGER Security policy ID

compid INTEGER ID of a component of the label security policy

compno SMALLINT Position of the security label component as it exists

in the security policy, starting with position 1.

SYSSECPOLICYEXEMPTIONS

The syssecpolicyexemptions system catalog table records the exemptions that have been given to users. It has these

columns.

Column Type Explanation

grantee CHAR(32) The user who has this exemption

secpolicyid INTEGER ID of the policy on which the exemption is granted

exemption CHAR(6) The exemption given to the user who is identified in

the GRANTEE column. The six characters have the

following meanings:

Chapter 1. SQL programming

Column Type Explanation

1 = Read array

2 = Read set

3 = Read tree

4 = Write array

5 = Write set

6 = Write tree

Each character has one of the following values:

E = Exempt

D = Write down exemption

U = Write up exemption

– = No exemption

SYSSEQUENCES

The syssequences system catalog table lists the sequence objects that exist in the database. The syssequences table has

the following columns.

Column Type Explanation

seqid SERIAL Code uniquely identifying the sequence object

tabid INTEGER Identifying code of the sequence as a table object

start_val INT8 Starting value of the sequence

inc_val INT8 Value of the increment between successive values

max_val INT8 Largest possible value of the sequence

min_val INT8 Smallest possible value of the sequence

cycle CHAR(1) Zero means NOCYCLE, 1 means CYCLE

restart_val INT8 Starting value of the sequence after ALTER SEQUENCE RESTART was run

cache INTEGER Number of preallocated values in sequence cache

order CHAR(1) Zero means NOORDER, 1 means ORDER

SYSSURROGATEAUTH
The syssurrogateauth system catalog table stores trusted user and surrogate user information.

61

HCL Informix 14.10 - SQL programming Guide

62

The syssurrogateauth system catalog table is populated when the GRANT SETSESSIONAUTH statement is run. Users

or roles specified in the TO clause are added to trusteduser column. Users specified in the ON clause are added to

surrogateuser column.

For example, consider the following statement:

GRANT SETSESSIONAUTH ON bill, john TO mary, peter;

Entries in the syssurrogateauth table are created as follows:

trusteduser surrogateuser

mary bill
mary john
peter bill
peter john

The syssurrogateauth table has the following columns.

Table 30. SYSSURROGATEAUTH table column

descriptions

Column Type Explanation

trusteduser CHAR(32) Trusted user name or

role.

surrogateu

ser

CHAR(32) Surrogate user name.

SYSSYNONYMS

The syssynonyms system catalog table is unused. The syssyntable table describes synonyms. The syssynonyms system

catalog table has the following columns.

Table 31. SYSSYNONYMS table column descriptions

Column Type Explanation

owner VARCHAR(32) Name of the owner of the synonym

synname VARCHAR(1

28)

Name of the synonym

created DATE Date when the synonym was created

tabid INTEGER Identifying code of a table, sequence, or view

Chapter 1. SQL programming

SYSSYNTABLE

The syssyntable system catalog table outlines the mapping between each public or private synonym and the database

object (table, sequence, or view) that it represents. It contains one row for each entry in the systables table that has a

tabtype value of Por S. The syssyntable table has the following columns.

Column Type Explanation

tabid INTEGER Identifying code of the public synonym

servername VARCHAR(128) Name of an external database server

dbname VARCHAR(128) Name of an external database

owner VARCHAR(32) Name of the owner of an external object

tabname VARCHAR(128) Name of an external table or view

btabid INTEGER Identifying code of a base table, sequence, or view

ANSI-compliant databases do not support public synonyms; their syssyntable tables can describe only synonyms whose

syssyntable.tabtype value is P.

If you define a synonym for an object that is in your current database, only the tabid and btabid columns are used. If

you define a synonym for a table that is external to your current database, the btabid column is not used, but the tabid,

servername, dbname, owner, and tabname columns are used.

The tabid column maps to systables.tabid. With the tabid information, you can determine additional facts about the

synonym from systables.

An index on the tabid column allows only unique values. The btabid column is indexed to allow duplicate values.

SYSTABAMDATA

The systabamdata system catalog table stores the table-specific hashing parameters of tables that were created with a

primary access method.

The systabamdata table has the following columns.

Table 32. SYSTABAMDATA table column descriptions

Column Type Explanation

tabid INTEGER Identifying code of the table

am_pa

ram

LVARCHAR(81

92)

Access method parameter choices

63

HCL Informix 14.10 - SQL programming Guide

64

Table 32. SYSTABAMDATA table column descriptions

(continued)

Column Type Explanation

am_space VARCHAR(128) Name of the storage space holding the data

values

The am_param column stores configuration parameters that determine how a primary access method accesses a given

table. Each configuration parameter in the am_param list has the format keyword=value or keyword.

The am_space column specifies the location of the table. It might be located in a cooked file, a different database, or an

sbspace within the database server.

The tabid column is the primary key to the systables table. This column is indexed and must contain unique values.

SYSTABAUTH

The systabauth system catalog table describes each set of privileges that are granted on a table, view, sequence, or

synonym. It contains one row for each set of table privileges that are granted in the database; the REVOKE statement can

modify a row. The systabauth table has the following columns.

Table 33. SYSTABAUTH table column descriptions

Column Type Explanation

grantor VARCHAR(32) Name of the grantor of privilege

grantee VARCHAR(32) Name of the grantee of privilege

tabid INTEGER Value from systables.tabid for database object

tabauth CHAR(9) CHAR(8) Pattern that specifies privileges on the table, view, synonym, or sequence:

s or S = Select

u or U = Update

* = Column-level privilege

i or I = Insert

d or D = Delete

x or X = Index

a or A = Alter

r or R = References

n or N = Under privilege

If the tabauth column shows a privilege code in uppercase (for example, S for Select), this indicates that the user also has

the option to grant that privilege to others. Privilege codes listed in lowercase (for example, s for select) indicate that the

user has the specified privilege, but cannot grant it to others.

Chapter 1. SQL programming

A hyphen (-) indicates the absence of the privilege corresponding to that position within the tabauth pattern.

A tabauth value with an asterisk (*) means column-level privileges exist; see also syscolauth (page SYSINDEXES on

page 41). (In DB-Access, the Privileges option of the Info command for a specified table can display the column-level

privileges on that table.)

A composite index on tabid, grantor, and grantee allows only unique values. A composite index on tabid and grantee allows

duplicate values.

SYSTABLES
The systables system catalog table contains a row for each table object (a table, view, synonym, or in HCL Informix®, a

sequence) that has been defined in the database, including the tables and views of the system catalog.

Table 34. SYSTABLES table column descriptions

Column Type Explanation

tabname VARCHAR(128) Name of table, view, synonym, or sequence

owner CHAR(32) Owner of table (user informix for system catalog tables

and username for database tables)

partnum INTEGER Physical storage location code

tabid SERIAL System-assigned sequential identifying number

rowsize SMALLINT Maximum row size in bytes (< 32,768)

ncols SMALLINT Number of columns in the table

nindexes SMALLINT Number of indexes on the table

nrows FLOAT Number of rows in the table

created DATE Date when table was created or last modified

version INTEGER Number that changes when table is altered

tabtype CHAR(1) Code indicating the type of table object:

• T = Table

• E = External Table

• V = View

• Q = Sequence

• P = Private synonym

• S = Public synonym

(Type S is unavailable in an ANSI-compliant database.)

locklevel CHAR(1) Lock mode for the table:

65

HCL Informix 14.10 - SQL programming Guide

66

Table 34. SYSTABLES table column descriptions (continued)

Column Type Explanation

• B = Page and row level

• P = Page level

• R = Row level

npused FLOAT Number of data pages that have ever been initialized in

the tablespace by the database server

fextsize INTEGER Size of initial extent (in KB)

nextsize INTEGER Size of all subsequent extents (in KB)

flags SMALLINT Codes for classifying permanent tables:

ROWID

1 - Has rowid column defined

UNDER

2 - Table created under a supertable

VIEWREMOTE

4 - View is based on a remote table

CDR

8 - Has CDRCOLS defined

RAW

16 - (Informix®) RAW table

EXTERNAL

32- External table

AUDIT

64 - Audit table attribute - FGA

AQT

128 - View is an AQT for DWA offloading

VIRTAQT

256 - View is a virtual AQT

site VARCHAR(128) Reserved for future use

dbname VARCHAR(128) Reserved for future use

Chapter 1. SQL programming

Table 34. SYSTABLES table column descriptions (continued)

Column Type Explanation

type_xid INTEGER Code from sysxtdtypes.extended_id for typed tables, or

0 for untyped tables

am_id INTEGER Access method code (key to sysams table)

NULL or 0 indicates built-in storage manager

pagesize INTEGER The pagesize, in bytes, of the dbspace (or dbspaces, if

the table is fragmented) where the table data resides.

ustlowts DATETIME YEAR TO

FRACTION (5)

When table, row, and page-count statistics were last

recorded

secpolicyid INTEGER ID of the SECURITY policy attached to the table. NULL

for non-protected tables

protgranularity CHAR(1) LBAC granularity level:

• R: Row level granularity

• C: Column level granularity

• B: Both column and row granularity

• Blank for non-protected tables

statlevel CHAR(1) Statistics level

• T = table

• F = fragment

• A = automatic

statchange SMALLINT For internal use only

Each table, view, sequence, and synonym recorded in the systables table is assigned a tabid, which is a system-assigned

SERIAL value that uniquely identifies the object. The first 99 tabid values are reserved for the system catalog. The tabid of

the first user-defined table object in a database is always 100.

The tabid column is indexed and contains only unique values. A composite index on the tabname and owner columns also

requires unique values.

The version column contains an encoded number that is stored in systables when a new table is created. Portions of this

value are incremented when data-definition statements, such as ALTER INDEX, ALTER TABLE, DROP INDEX, and CREATE

INDEX, are performed on the table.

In the flags column, ST_RAW represents a nonlogging permanent table in a database that supports transaction logging.

67

HCL Informix 14.10 - SQL programming Guide

68

The setting of the SQL_LOGICAL_CHAR parameter is encoded into the systables.flags column value in the row that describes

the ' VERSION' table. Note the leading blank space in the identifier of this system-generated table.

To determine whether the database enables the SQL_LOGICAL_CHAR configuration parameter, which can apply logical

character semantics to the declarations of character columns, you can execute the following query:

SELECT flags INTO $value FROM 'informix'.systables WHERE tabname = ' VERSION';

Because the SQL_LOGICAL_CHAR setting is encoded in the two least significant bits of the " VERSION.flags" value, you can

calculate its setting from the returned flags value by the following formula:

SQL_LOGICAL_CHAR = (value & 0x03) + 1

Here & is the bitwise AND operator. Any SQL_LOGICAL_CHAR setting greater than 1 indicates that SQL_LOGICAL_CHAR was

enabled when the database was created, and that explicit or default maximum size specifications of character columns are

multiplied by that setting.

When a prepared statement that references a database table is executed, the version value is checked to make sure that

nothing has changed since the statement was prepared. If the version value has been changed by DDL operations that

modified the table schema while automatic recompilation was disabled by the IFX_AUTO_REPREPARE setting of the SET

ENVIRONMENT statement, the prepared statement is not executed, and you must prepare the statement again.

The npused column does not reflect the number of pages used for BYTE or TEXT data, nor the number of pages that are

freed in DELETE or TRUNCATE operations.

The nrows column and the npused columns might not accurately reflect the number of rows and the number of data pages

used by an external table unless the NUMROWS clause was specified when the external table was created. See the HCL®

Informix® Administrator's Guide for more information.

The systables table has two rows that store information about the database locale: GL_COLLATE with a tabid of 90 and

GL_CTYPE with a tabid of 91. To view these rows, enter the following SELECT statement:

SELECT * FROM systables WHERE tabid=90 OR tabid=91;

SYSTRACECLASSES

The systraceclasses system catalog table contains the names and identifiers of trace classes. The systraceclasses table

has the following columns.

Table 35. SYSTRACECLASSES table column descriptions

Column Type Explanation

name CHAR(18) Name of the class of trace messages

classid SERIAL Identifying code of the trace class

A trace class is a category of trace messages that you can use in the development and testing of new DataBlade® modules

and user-defined routines. Developers use the tracing facility by calling the appropriate DataBlade® API routines within their

code.

Chapter 1. SQL programming

To create a new trace class, insert a row directly into the systraceclasses table. By default, all users can view this table, but

only users with the DBA privilege can modify it.

The database cannot support tracing unless the MITRACE_OFF configuration parameter is undefined.

A unique index on the name column requires each trace class to have a unique name. The database server assigns to each

class a unique sequential code. The index on this classid column also allows only unique values.

SYSTRACEMSGS
The systracemsgs system catalog table stores internationalized trace messages that you can use in debugging user-defined

routines.

The systracemsgs table has the following columns.

Table 36. SYSTRACEMSGS table column descriptions

Column Type Explanation

name VARCHAR(128) Name of the message

msgid SERIAL Identifying code of the message template

locale CHAR(36) Locale with which this version of the message is associated (for example,

en_us.8859-1)

seqno SMALLINT Reserved for future use

message VARCHAR(255) The message text

DataBlade® module developers create a trace message by inserting a row directly into the systracemsgs table. After a

message is created, the development team can specify it either by name or by msgid code, using trace statements that the

DataBlade® API provides.

To create a trace message, you must specify its name, locale, and text. By default, all users can view the systracemsgs table,

but only users with the DBA privilege can modify it.

The database cannot support tracing unless the MITRACE_OFF configuration parameter is undefined.

A unique composite index is defined on the name and locale columns. Another unique index is defined on the msgid column.

SYSTRIGBODY

The systrigbody system catalog table contains the ASCII text of the trigger definition and the linearized code for the trigger.

Linearized code is binary data and code that is represented in ASCII format.

69

HCL Informix 14.10 - SQL programming Guide

70

Important: The database server uses the linearized code that is stored in systrigbody. You must not alter the content

of rows that contain linearized code.

The systrigbody table has the following columns.

Table 37. SYSTRIGBODY table column descriptions

Column Type Explanation

trigid INTEGER Identifying code of the trigger

datakey CHAR(1) Code specifying the type of data:

A = ASCII text for the body, triggered actions

B = Linearized code for the body

D = English text for the header, trigger definition

H = Linearized code for the header

S = Linearized code for the symbol table

seqno INTEGER Page number of this data segment

data CHAR(256) English text or linearized code

A composite index on the trigid, datakey, and seqno columns allows only unique values.

SYSTRIGGERS

The systriggers system catalog table contains information about the SQL triggers in the database. This information includes

the triggering event and the correlated reference specification for the trigger. The systriggers table has the following

columns.

Table 38. SYSTRIGGERS table column descriptions

Column Type Explanation

trigid SERIAL Identifying code of the trigger

trigname VARCHAR(128) Name of the trigger

owner VARCHAR(32) Name of the owner of the trigger

tabid INTEGER Identifying code of the triggering table

event CHAR(1) Code for the type of triggering event:

D = Delete trigger

I = Insert trigger

U = Update trigger

S = Select trigger

Chapter 1. SQL programming

Table 38. SYSTRIGGERS table column descriptions (continued)

Column Type Explanation

d = INSTEAD OF Delete trigger

i = INSTEAD OF Insert trigger

u = INSTEAD OF Update trigger

old VARCHAR(128) Name of value before update

new VARCHAR(128) Name of value after update

mode CHAR(1) Reserved for future use

collation CHAR(32) Collating order at the time when the routine was created

A composite index on the trigname and owner columns allows only unique values. An index on the trigid column also

requires unique values. An index on the tabid column allows duplicate values.

SYSUSERS
The sysusers system catalog table lists the authorization identifier of every individual user, or public for the PUBLIC group,

who holds database-level access privileges. This table also lists the name of every role that holds access privileges on any

object in the database.

This system catalog table has the following columns:

Table 39. SYSUSERS table column descriptions

Col

umn Type Explanation

user

n

ame

VARCH

AR(32)

Name of the database user or role.

An index on username allows only unique values. The username value can be the login name of a user or

the name of a role.

user

type

CHAR

(1)

Code specifying the highest database-level privilege held by username, where username is an individual

user or the PUBLIC group, or a role name. The valid codes are:

D = DBA (all privileges)

R = Resource (create UDRs, UDTs, permanent tables, and indexes)

C = Connect (work with existing tables)

G = Role

U = Default role. When a user is assigned a default role, an implicit connection to the database is

granted to the user. This is the role the user has before being granted a C, D, or R role.

71

HCL Informix 14.10 - SQL programming Guide

72

Table 39. SYSUSERS table column descriptions

(continued)

Col

umn Type Explanation

prior

ity

SMALL

INT

Reserved for future use.

pass

word

CHAR(

16)

Reserved for future use.

defr

ole

VARCH

AR(32)

Name of the default role.

SYSVIEWS

The sysviews system catalog table describes each view in the database. Because it stores the SELECT statement that

created the view, sysviews can contain multiple rows for each view. It has the following columns.

Column Type Explanation

tabid INTEGER Identifying code of the view

seqno SMALLINT Line number of the SELECT statement

viewtext CHAR(256) Actual SELECT statement used to create the view

A composite index on tabid and seqno allows only unique values.

SYSVIOLATIONS
The sysviolations system catalog table stores information about constraint violations for base tables.

This table is updated when the DELETE, INSERT, MERGE, or UPDATE statement detects a violation of an enabled constraint

or unique index in a database table for which the START VIOLATIONS TABLE statement of SQL has created an associated

violations table (and for Informix®, a diagnostics table). For each base table that has an active violations table, the

sysviolations table has a corresponding row, with the following columns.

Column Type Explanation

targettid INTEGER Identifying code of the target table (the base table on which the violations table and the

diagnostic table are defined)

viotid INTEGER Identifying code of the violations table

diatid INTEGER Identifying code of the diagnostics table

Chapter 1. SQL programming

Column Type Explanation

maxrows INTEGER Maximum number of rows that can be inserted into the diagnostics table by a single

insert, update, or delete operation on a target table that has a filtering mode object

defined on it.

The maxrows column also signifies the maximum number of rows that can be inserted in the diagnostics table during a

single operation that enables a disabled object or that sets a disabled object to filtering mode (provided that a diagnostics

table exists for the target table). If no maximum is specified for the diagnostics or violations table, then maxrows contains a

NULL value.

The primary key of this table is the targettid column. An additional unique index is also defined on the viotid column.

HCL Informix® also has a unique index on the diatid column.

SYSXADATASOURCES
The sysxadatasources system catalog table stores XA data sources.

The sysxadatasources table has the following columns.

Column Type Explanation

xa_datasrc_owner CHAR(32) The user ID of the XA data source owner

xa_datasrc_name VARCHAR(128) The name of the XA data source

xa_datasrc_rmid SERIAL Unique RMID of the XA data source

xa_source_typeid INTEGER XA data source type ID

SYSXASOURCETYPES
The sysxasourcetypes system catalog table stores XA data source types.

The sysxasourcetypes table has the following columns.

Column Type Explanation

xa_source_typeid SERIAL A unique identifier for the source type

xa_source_owner CHAR(32) The user ID of the owner

xa_source_name VARCHAR(128) The name of the source type

xa_flags INTEGER

xa_version INTEGER

xa_open INTEGER UDR ID of xa_open_entry

xa_close INTEGER UDR ID of xa_close_entry

73

HCL Informix 14.10 - SQL programming Guide

74

Column Type Explanation

xa_start INTEGER UDR ID of xa_start entry

xa_end INTEGER UDR ID of xa_end_entry

xa_rollback INTEGER UDR ID of xa_rollback_entry

xa_prepare INTEGER UDR ID of xa_prepare_entry

xa_commit INTEGER UDR ID of xa_commit_entry

xa_recover INTEGER UDR ID of xa_recover_entry

xa_forget INTEGER UDR ID of xa_forget_entry

xa_complete INTEGER UDR ID of xa_complete_entry

SYSXTDDESC

The sysxtddesc system catalog table provides a text description of each user-defined data type (UDT) defined in the

database. The sysxtddesc table has the following columns.

Column Type Explanation

extended_id INTEGER Code uniquely identifying the extended data types

seqno SMALLINT Value to order and identify one line of the description of the UDT

A new line is created only if the remaining text string is larger than 255 bytes.

description CHAR(256) Textual description of the extended data type

A composite index on extended_id and seqno allows duplicate values.

SYSXTDTYPEAUTH
The sysxtdtypeauth system catalog table identifies the privileges on each UDT (user-defined data type).

The sysxtdtypeauth table contains one row for each set of privileges granted and has the following columns:

Column Type Explanation

grantor VARCHAR(32) Name of grantor of privilege

grantee VARCHAR(32) Name of grantee of privilege

type INTEGER Code identifying the UDT

auth CHAR(2) Code identifying privileges on the UDT:

Chapter 1. SQL programming

Column Type Explanation

n or N = Under privilege

u or U = Usage privilege

If the privilege code in the auth column is upper case (for example, 'U' for usage), a user who has this privilege can also grant

it to others. If the code is in lower case, a user who has the privilege cannot grant it to others.

A composite index on type, grantor, and grantee allows only unique values. A composite index on the type and grantee

columns allows duplicate values.

SYSXTDTYPES
The sysxtdtypes system catalog table has an entry for each UDT (user-defined data type), including opaque and distinct

data types and complex data types (named ROW types, unnamed ROW types, and COLLECTION types), that is defined in the

database.

The sysxtdtypes table has the following columns.

Table 40. SYSXTDTYPES table column descriptions

Column Type Explanation

extended_id SERIAL Unique identifying code for extended data type

domain CHAR(1) Code for the domain of the UDT

mode CHAR(1) Code classifying the UDT:

• B = Base (opaque) type

• C = Collection type or unnamed ROW type

• D = Distinct type

• R = Named ROW type

• S = Reserved for internal use

• T = Reserved for internal use

• ' ' (blank) = Built-in type

owner VARCHAR(32) Name of the owner of the UDT

name VARCHAR(1

28)

Name of the UDT

type SMALLINT Code classifying the UDT

source INTEGER The sysxtdtypes reference (for distinct types only)

75

HCL Informix 14.10 - SQL programming Guide

76

Table 40. SYSXTDTYPES table column descriptions

(continued)

Column Type Explanation

Zero (0) indicates that a distinct UDT was created from a built-in data

type.

maxlen INTEGER The maximum length for variable-length data types

Zero indicates a fixed-length UDT.

length INTEGER The length in bytes for fixed-length data types

Zero indicates a variable-length UDT.

byvalue CHAR(1) 'T' = UDT is passed by value

'F' = UDT is not passed by value

cannothash CHAR(1) 'T' = UDT is hashable by default hash function

'F' = UDT is not hashable by default function

align SMALLINT Alignment (= 1, 2, 4, or 8) for this UDT

locator INTEGER Locator key for unnamed ROW type

Each extended data type is characterized by a unique identifier, called an extended identifier (extended_id), a data type

identifier (type), and the length and description of the data type.

For distinct types created from built-in data types, the type column codes correspond to the value of the syscolumns.coltype

column (indicating the source type) as listed on page SYSCOLUMNS on page 23, but incremented by the hexadecimal

value 0x0000800. The file $INFORMIXDIR/incl/esql/sqltypes.h contains information about sysxtdtypes.type and

syscolumns.coltype codes.

An index on the extended_id column allows only unique values. An index on the locator column allows duplicate values, as

does a composite index on the name and owner columns. A composite index on the type and source columns also allows

duplicate values.

Information Schema

The Information Schema consists of read-only views that provide information about all the tables, views, and columns in the

current database server to which you have access. These views also provide information about SQL dialects (such as HCL

Informix®, Oracle, or Sybase) and SQL standards. Note that unlike a system catalog, whose tables describes an individual

database, these views describe the HCL Informix® instance, rather than a single database.

Chapter 1. SQL programming

This version of the Information Schema views is an X/Open CAE standard. These standards are provided so that applications

developed on other database systems can obtain HCL Informix® system catalog information without accessing the HCL

Informix® system catalog tables directly.

Important: Because the X/Open CAE standard for Information Schema views differs from ANSI-compliant

Information Schema views, it is recommended that you do not install the X/Open CAE Information Schema views on

ANSI-compliant databases.

The following Information Schema views are available:

• tables

• columns

• sql_languages

• server_info

Sections that follow contain information about how to generate and access Information Schema views and information

about their structure.

Generating the Information Schema Views

About this task

The Information Schema views are generated automatically when you, as DBA, run the following DB-Access command:

dbaccess database-name $INFORMIXDIR/etc/xpg4_is.sql

The views display data from the system catalog tables. If tables, views, or routines exist with any of the same names as the

Information Schema views, you must either rename those database objects or rename the views in the script before you

can install the views. You can drop the views with the DROP VIEW statement on each view. To re-create the views, rerun the

script.

Important: In addition to the columns specified for each Information Schema view, individual vendors might include

additional columns or change the order of the columns. It is recommended that applications not use the forms

SELECT * or SELECT table-name* to access an Information Schema view.

Accessing the Information Schema Views

All Information Schema views have the Select privilege granted to PUBLIC WITH GRANT OPTION so that all users can query

the views. Because no other privileges are granted on the Information Schema views, they cannot be updated.

You can query the Information Schema views as you would query any other table or view in the database.

Structure of the Information Schema Views

The following Information Schema views are described in this section:

77

HCL Informix 14.10 - SQL programming Guide

78

• tables

• columns

• sql_languages

• server_info

In order to accept long identifier names, most of the columns in the views are defined as VARCHAR data types with large

maximum sizes.

The tables Information Schema View

The tables Information Schema view contains one row for each table to which you have access. It contains the following

columns.

Column Data Type Explanation

table_schema VARCHAR(32) Name of owner of table

table_name VARCHAR(128) Name of table or view

table_type VARCHAR(128) BASE TABLE for table or VIEW for view

remarks VARCHAR(255) Reserved for future use

The visible rows in the tables view depend on your privileges. For example, if you have one or more privileges on a table

(such as Insert, Delete, Select, References, Alter, Index, or Update on one or more columns), or if privileges are granted to

PUBLIC, you see the row that describes that table.

The columns Information Schema View

The columns Information Schema view contains one row for each accessible column. It contains the following columns.

Table 41. Description of the columns Information Schema View

Column Data Type Explanation

table_schema VARCHAR(128) Name of owner of table

table_name VARCHAR(128) Name of table or view

column_name VARCHAR(128) Name of the column in the table or view

ordinal_position INTEGER Position of the column within its table

The ordinal_position value is a sequential number that starts

at 1 for the first column. This is the HCL Informix® extension

to XPG4.

data_type VARCHAR(254) Name of the data type of the column, such as CHARACTER

or DECIMAL

Chapter 1. SQL programming

Table 41. Description of the columns Information Schema View (continued)

Column Data Type Explanation

char_max_length INTEGER Maximum length (in bytes) for character data types; NULL

otherwise

numeric_precision INTEGER Uses one of the following values:

• Total number of digits for exact numeric data types

(DECIMAL, INTEGER, MONEY, SMALLINT)

• Number of digits of mantissa precision

(machine-dependent) for approximate data types

(FLOAT, SMALLFLOAT)

• NULL for all other data types.

numeric_prec_radix INTEGER Uses one of the following values:

• 2 = Approximate data types (FLOAT and

SMALLFLOAT)

• 10 = Exact numeric data types (DECIMAL, INTEGER,

MONEY, and SMALLINT)

• NULL for all other data types

numeric_scale INTEGER Number of significant digits to the right of the decimal point

for DECIMAL and MONEY data types

0 for INTEGER and SMALLINT types NULL for all other data

types

datetime_precision INTEGER Number of digits in the fractional part of the seconds for

DATE and DATETIME columns; NULL otherwise

This column is the HCL Informix® extension to XPG4.

is_nullable VARCHAR(3) Indicates whether a column allows NULL values; either YES

or NO

remarks VARCHAR(254) Reserved for future use

The sql_languages Information Schema View

The sql_languages Information Schema view contains a row for each instance of conformance to standards that the current

database server supports. The sql_languages view contains the following columns.

79

HCL Informix 14.10 - SQL programming Guide

80

Column Data Type Explanation

source VARCHAR(254) Organization defining this SQL version

source_year VARCHAR(254) Year the source document was approved

conformance VARCHAR(254) Standard to which the server conforms

integrity VARCHAR(254) Indication of whether this is an integrity enhancement

feature; either YES or NO

implementation VARCHAR(254) Identification of the SQL product of the vendor

binding_style VARCHAR(254) Direct, module, or other binding style

programming_lang VARCHAR(254) Host language for which binding style is adapted

The sql_languages view is completely visible to all users.

The server_info Information Schema View

The server_info Information Schema view describes the database server to which the application is currently connected. It

contains two columns.

Column Data Type Explanation

server_attribute VARCHAR(254) An attribute of the database server

attribute_value VARCHAR(254) Value of the server_attribute as it applies to the current database

server

Each row in this view provides information about one attribute. X/Open-compliant databases must provide applications with

certain required information about the database server.

The server_info view includes the following server_attribute information.

server_attribute Explanation

identifier_length Maximum number of bytes for a user-defined identifier

row_length Maximum number of bytes in a row

userid_length Maximum number of bytes in a user name

txn_isolation Initial transaction isolation level for the database server:

Read Uncommitted (= Default isolation level for databases with no transaction logging; also

called Dirty Read)

Read Committed (= Default isolation level for databases that are not ANSI-compliant, but that

support explicit transaction logging)

Chapter 1. SQL programming

server_attribute Explanation

Serializable (= Default isolation level for ANSI-compliant databases; also called Repeatable

Read)

collation_seq Assumed ordering of the character set for the database server The following values are

possible: ISO 8859-1 EBCDIC

The default HCL Informix® representation shows ISO 8859-1.

The server_info view is completely visible to all users.

Data types
Every column in a table in a database is assigned a data type. The data type precisely defines the kinds of values that you

can store in that column.

These topics describe built-in and extended data types, casting between two data types, and operator precedence.

Summary of data types
HCL Informix® supports the most common set of built-in data types. Additionally, an extended set of data types are

supported on the database server.

You can use both built-in data types (which are system-defined) and extended data types (which you can define) in the

following ways:

• Use them to create columns within database tables.

• Declare them as arguments and as returned types of routines.

• Use them as base types from which to create DISTINCT data types.

• Cast them to other data types.

• Declare and access host variables of these types in SPL and ESQL/C.

You assign data types to columns with the CREATE TABLE statement and change them with the ALTER TABLE statement.

When you change an existing column data type, all data is converted to the new data type, if possible.

For information about the ALTER TABLE and CREATE TABLE statements, on SQL statements that create specific data types,

that create and drop casts, and on other data type topics, see the HCL® Informix® Guide to SQL: Syntax.

For information about how to create and use complex data types supported by HCL Informix®, see the IBM® Informix®

Database Design and Implementation Guide. For information about how to create user-defined data types, see HCL®

Informix® User-Defined Routines and Data Types Developer's Guide.

Some data types can be used in distributed SQL operations, while others can be used only in SQL operations within the same

database.

81

HCL Informix 14.10 - SQL programming Guide

82

Built-in data types supported in local and distributed SQL operations

The following table lists all of the built-in SQL data types that Informix® supports. These built-in SQL data types are valid in

all Informix® SQL transactions, including data-manipulation language (DML) operations of these types:

• Operations on objects in the local database

• Cross-database operations on objects in databases of the local server instance

• Cross-server operations on objects in databases of two or more database server instances

Table 42. Data types supported in all operations

Data type Explanation

BIGINT data type on page 86 Stores 8-byte integer values from -(263 -1) to 263 -1

BIGSERIAL data type on page 87 Stores sequential, 8-byte integers from 1 to 263 -1

BSON and JSON built-in opaque

data types on page

The BSON data type is the binary representation of a JSON data type format for

serializing JSON documents. The JSON data type is a plain text format for entering

and displaying structured data.

BYTE data type on page 89 Stores any kind of binary data, up to 231 bytes in length

CHAR(n) data type on page 90 Stores character strings; collation is in code-set order

CHARACTER(n) data type on

page 91

Is a synonym for CHAR

CHARACTER VARYING(m,r) data

type on page 91

Stores character strings of varying length (ANSI-compliant); collation is in code-set

order

DATE data type on page 92 Stores calendar dates

DATETIME data type on page 93 Stores calendar date combined with time of day

DEC data type on page 96 Is a synonym for DECIMAL

DECIMAL on page 96 Stores floating-point numbers with definable precision; if database is ANSI-compliant,

the scale is zero

DECIMAL (p,s) Fixed Point on

page 97

Stores fixed-point numbers of defined scale and precision

DOUBLE PRECISION data types on

page 99

Synonym for FLOAT

FLOAT(n) on page 99 Stores double-precision floating-point numbers corresponding to the double data

type in C

INT data type on page 100 Is a synonym for INTEGER

INT8 on page 100 Stores 8-byte integer values from -(263 -1) to 263 -1

../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770

Chapter 1. SQL programming

Table 42. Data types supported in all operations (continued)

Data type Explanation

INTEGER data type on page 100 Stores whole numbers from -2,147,483,647 to +2,147,483,647

INTERVAL data type on page 101 Stores a span of time (or level of effort) in units of years and months.

INTERVAL data type on page 101 Stores a span of time in a contiguous set of units of days, hours, minutes, seconds,

and fractions of a second

MONEY(p,s) data type on

page 105

Stores currency amounts

NCHAR(n) data type on page 107 Same as CHAR, but can support localized collation

NUMERIC(p,s) data type on

page 107

Synonym for DECIMAL(p,s)

NVARCHAR(m,r) data type on

page 107

Same as VARCHAR, but can support localized collation

REAL data type on page 108 Is a synonym for SMALLFLOAT

SERIAL(n) data type on page 111 Stores sequential integers (> 0) in positive range of INT

SERIAL8(n) data type on

page 112

Stores sequential integers (> 0) in positive range of INT8

SMALLFLOAT on page 114 Stores single-precision floating-point numbers corresponding to the float data type of

the C language

SMALLINT data type on page 115 Stores whole numbers from -32,767 to +32,767

TEXT data type on page 115 Stores any kind of text data, up to 231 bytes in length

VARCHAR(m,r) data type on

page 117

Stores character strings of varying length (up to 255 bytes); collation is in code-set

order

In cross-server MERGE operations, the source table (but not the target table) can be in a database of a remote Informix®

server.

For the character data types (CHAR, CHAR VARYING, LVARCHAR, NCHAR, NVARCHAR, and VARCHAR), a data string can

include letters, digits, punctuation, whitespace, diacritical marks, ligatures, and other printable symbols from the code set of

the database locale. For UTF-8 and for code sets of some East Asian locales, multibyte characters are supported within data

strings.

Built-in data types supported only in local database SQL operations

The following table lists the data types that Informix® supports only for use in SQL operations in a local database.

83

HCL Informix 14.10 - SQL programming Guide

84

Table 43. Data types supported in a local database

Data type Explanation

BLOB data type on page 87 Stores binary data in random-access chunks

The binary18 data type on

page

Stores 18 byte binary-encoded strings

The binaryvar data type on

page

Stores binary-encoded strings with a maximum length of 255 bytes

BOOLEAN data type on

page 88

Stores Boolean values true and false

CLOB data type on page 91 Stores text data in random-access chunks

DISTINCT data types on

page 98

Stores data in a user-defined type that has the same format as a source type on which it is

based, but its casts and functions can differ from those on the source type

Calendar data type on

page

Stores a calendar for a TimeSeries data type

CalendarPattern data type on

page

Stores the structure of the calendar pattern for a Calendar data type

IDSSECURITYLABEL data type

on page 100

Stores LBAC security label objects.

LIST(e) data type on

page 103

Stores a sequentially ordered collection of elements, all of the same data type, e; allows

duplicate values

The lld_locator data type on

page

Stores a large object identifier

The lld_lob data type on

page

Stores the location of a smart large object and specifies whether the object contains

binary or character data

LVARCHAR(m) data type on

page 104

Stores variable-length strings of up to 32,739 bytes

MULTISET(e) data type on

page 106

Stores a non-ordered collection of values, with elements all of the same data type, e;

allows duplicate values.

The node data type for

querying hierarchical data on

page

Stores a combination of integers and decimal points that represents hierarchical

relationships, of variable length up to 256 characters

OPAQUE data types on

page 108

Stores a user-defined data type whose internal structure is inaccessible to the database

server

../dbxt/ids_dbxt_386.html#ids_dbxt_386
../dbxt/ids_dbxt_386.html#ids_dbxt_386
../dbxt/ids_dbxt_386.html#ids_dbxt_386
../dbxt/ids_dbxt_386.html#ids_dbxt_386
../dbxt/ids_dbxt_386.html#ids_dbxt_386
../dbxt/ids_dbxt_386.html#ids_dbxt_386
../dbxt/ids_dbxt_385.html#ids_dbxt_385
../dbxt/ids_dbxt_385.html#ids_dbxt_385
../dbxt/ids_dbxt_385.html#ids_dbxt_385
../dbxt/ids_dbxt_385.html#ids_dbxt_385
../dbxt/ids_dbxt_385.html#ids_dbxt_385
../dbxt/ids_dbxt_385.html#ids_dbxt_385
../tms/ids_tms_059.html#ids_tms_059
../tms/ids_tms_059.html#ids_tms_059
../tms/ids_tms_059.html#ids_tms_059
../tms/ids_tms_059.html#ids_tms_059
../tms/ids_tms_059.html#ids_tms_059
../tms/ids_tms_059.html#ids_tms_059
../tms/ids_tms_058.html#ids_tms_058
../tms/ids_tms_058.html#ids_tms_058
../tms/ids_tms_058.html#ids_tms_058
../tms/ids_tms_058.html#ids_tms_058
../tms/ids_tms_058.html#ids_tms_058
../tms/ids_tms_058.html#ids_tms_058
../dbxt/ids_dbxt_476.html#ids_dbxt_476
../dbxt/ids_dbxt_476.html#ids_dbxt_476
../dbxt/ids_dbxt_476.html#ids_dbxt_476
../dbxt/ids_dbxt_476.html#ids_dbxt_476
../dbxt/ids_dbxt_476.html#ids_dbxt_476
../dbxt/ids_dbxt_476.html#ids_dbxt_476
../dbxt/ids_dbxt_478.html#ids_dbxt_478
../dbxt/ids_dbxt_478.html#ids_dbxt_478
../dbxt/ids_dbxt_478.html#ids_dbxt_478
../dbxt/ids_dbxt_478.html#ids_dbxt_478
../dbxt/ids_dbxt_478.html#ids_dbxt_478
../dbxt/ids_dbxt_478.html#ids_dbxt_478
../dbxt/ids_dbxt_442.html#ids_dbxt_442
../dbxt/ids_dbxt_442.html#ids_dbxt_442
../dbxt/ids_dbxt_442.html#ids_dbxt_442
../dbxt/ids_dbxt_442.html#ids_dbxt_442
../dbxt/ids_dbxt_442.html#ids_dbxt_442
../dbxt/ids_dbxt_442.html#ids_dbxt_442
../dbxt/ids_dbxt_442.html#ids_dbxt_442

Chapter 1. SQL programming

Table 43. Data types supported in a local database (continued)

Data type Explanation

ROW data type, Named on

page 108

Stores a named ROW type

ROW data type, Unnamed on

page 110

Stores an unnamed ROW type

SET(e) data type on

page 113

Stores a non-ordered collection of elements, all of the same data type, e; does not allow

duplicate values

ST_LineString data type on

page

Stores a one-dimensional object as a sequence of points defining a linear interpolated

path

ST_MultiLineString data type

on page

Stores a collection of ST_LineString data types

ST_MultiPoint data type on

page

Stores a collection of ST_Point data types

ST_MultiPolygon data type on

page

Stores a collection of ST_Polygon data types

ST_Point data type on

page

Stores a zero-dimensional geometry that occupies a single location in coordinate space

ST_Polygon data type on

page

Stores a two-dimensional surface stored as a sequence of points defining its exterior

bounding ring and 0 or more interior rings

TimeSeries data type on

page

Stores a collection of row subtypes

These extended data types of Informix® are individually described in other topics. These data types are valid in local

operations on databases where the data types are defined.

Extended data types in cross-database distributed SQL transactions

Distributed operations on other databases of the same Informix® instance can access BOOLEAN, BLOB, CLOB, and

LVARCHAR data types, which are implemented as built-in opaque types. Such operations can also access DISTINCT types

whose base types are built-in types, and user-defined types (UDTs), if the UDTs and DISTINCT types are explicitly cast to built-

in types, and if all of the UDTs, casts, and DISTINCT types are defined in all the participating databases.

You cannot, however, reference the following extended data types in cross-database transactions that access multiple

databases of the local Informix® instance:

• UDTs that are not cast to built-in data types

• DISTINCT types that are not cast to built-in data types

85

../spat/ids_spat_050.html#ids_spat_050
../spat/ids_spat_050.html#ids_spat_050
../spat/ids_spat_050.html#ids_spat_050
../spat/ids_spat_050.html#ids_spat_050
../spat/ids_spat_050.html#ids_spat_050
../spat/ids_spat_050.html#ids_spat_050
../spat/ids_spat_057.html#ids_spat_057
../spat/ids_spat_057.html#ids_spat_057
../spat/ids_spat_057.html#ids_spat_057
../spat/ids_spat_057.html#ids_spat_057
../spat/ids_spat_057.html#ids_spat_057
../spat/ids_spat_057.html#ids_spat_057
../spat/ids_spat_056.html#ids_spat_056
../spat/ids_spat_056.html#ids_spat_056
../spat/ids_spat_056.html#ids_spat_056
../spat/ids_spat_056.html#ids_spat_056
../spat/ids_spat_056.html#ids_spat_056
../spat/ids_spat_056.html#ids_spat_056
../spat/ids_spat_060.html#ids_spat_060
../spat/ids_spat_060.html#ids_spat_060
../spat/ids_spat_060.html#ids_spat_060
../spat/ids_spat_060.html#ids_spat_060
../spat/ids_spat_060.html#ids_spat_060
../spat/ids_spat_060.html#ids_spat_060
../spat/ids_spat_047.html#ids_spat_047
../spat/ids_spat_047.html#ids_spat_047
../spat/ids_spat_047.html#ids_spat_047
../spat/ids_spat_047.html#ids_spat_047
../spat/ids_spat_047.html#ids_spat_047
../spat/ids_spat_047.html#ids_spat_047
../spat/ids_spat_053.html#ids_spat_053
../spat/ids_spat_053.html#ids_spat_053
../spat/ids_spat_053.html#ids_spat_053
../spat/ids_spat_053.html#ids_spat_053
../spat/ids_spat_053.html#ids_spat_053
../spat/ids_spat_053.html#ids_spat_053
../tms/ids_tms_060.html#ids_tms_060
../tms/ids_tms_060.html#ids_tms_060
../tms/ids_tms_060.html#ids_tms_060
../tms/ids_tms_060.html#ids_tms_060
../tms/ids_tms_060.html#ids_tms_060
../tms/ids_tms_060.html#ids_tms_060

HCL Informix 14.10 - SQL programming Guide

86

• Collection data types

• Named or unnamed ROW data types

Extended data types in cross-server distributed SQL transactions

Distributed SQL transactions and function calls that access databases of other Informix® instances cannot return values of

complex or smart large object data types, nor of most distinct or built-in opaque data types. Among the extended data types,

only the following can be accessed in cross-server SQL operations:

• Any non-opaque built-in data type

• BOOLEAN

• DISTINCT of non-opaque built-in types

• DISTINCT of BOOLEAN

• DISTINCT of LVARCHAR

• DISTINCT of any of the DISTINCT types listed above

• IDSSECURITYLABEL

• LVARCHAR

A cross-server distributed SQL transaction can support DISTINCT data types only if they are cast explicitly to built-in types,

and all of the DISTINCT types, their data type hierarchies, and their casts are defined exactly the same way in each database

that participates in the distributed operation. For queries or other DML operations in cross-server UDRs that use the data

types in the preceding list as parameters or as returned data types, the UDR must also have the same definition in every

participating database.

The built-in DISTINCT data type IDSSECURITYLABEL, which stores security label objects, can be accessed in cross-server

and cross-database operations on protected data by users who hold sufficient security credentials. Like local operations on

protected data, distributed queries that access remote tables protected by a security policy can return only the qualifying

rows that IDSLBACRULES allow, after the database server has compared the security label that secures the data with the

security credentials of the user who issues the query.

Related reference

Built-In Data Types on page 118

Related information

Extended Data Types on page 129

Description of Data Types

This section describes the data types that HCL Informix® supports.

BIGINT data type
The BIGINT data type stores integers from -(263 -1) to 263 -1, which is –9,223,372,036,854,775,807 to

9,223,372,036,854,775,807, in eight bytes.

Chapter 1. SQL programming

This data type has storage advantages over INT8 and advantages for some arithmetic operations and sort comparisons over

INT8 and DECIMAL data types.

BIGSERIAL data type
The BIGSERIAL data type stores a sequential integer, of the BIGINT data type, that is assigned automatically by the database

server when a new row is inserted. The behavior of the BIGSERIAL data type is similar to the SERIAL data type, but with a

larger range.

The default BIGSERIAL starting number is 1, but you can assign an initial value, n, when you create or alter the table. The

value of n must be a positive integer in the range of 1 to 9,223,372,036,854,775,807. If you insert the value zero (0) in a

BIGSERIAL column, the value that is used is the maximum positive value that already exists in the BIGSERIAL column + 1. If

you insert any value that is not zero, that value will be inserted as it is.

A table can have no more than one SERIAL column, but it can have a SERIAL column and either a SERIAL8 column or a

BIGSERIAL column.

For information about:

• The SERIAL data type, see SERIAL(n) data type on page 111

• Using the SERIAL8 data type with the INT8 or BIGINT data type, see Using SERIAL8 and BIGSERIAL with INT8 or

BIGINT on page 87

Using SERIAL8 and BIGSERIAL with INT8 or BIGINT
All the arithmetic operators that are valid for INT8 and BIGINT (such as +, -, *, and /) and all the SQL functions that are valid

for INT8 and BIGINT (such as ABS, MOD, POW, and so on) are also valid for SERIAL8 and BIGSERIAL values.

Data conversion rules that apply to INT8 and BIGINT also apply to SERIAL8 and BIGSERIAL, but with a NOT NULL constraint

on SERIAL8 or BIGSERIAL.

The value of a SERIAL8 or BIGSERIAL column of one table can be stored in INT8 or BIGINT columns of another table. In the

second table, however, the INT8 or BIGINT values are not subject to the constraints on the original SERIAL8 or BIGSERIAL

column.

BLOB data type
The BLOB data type stores any kind of binary data in random-access chunks, called sbspaces. Binary data typically consists

of saved spreadsheets, program-load modules, digitized voice patterns, and so on. The database server performs no

interpretation of the contents of a BLOB column.

A BLOB column can be up to 4 terabytes (4*240 bytes) in length, though your system resources might impose a lower

practical limit. The minimum amount of disk space allocated for smart large object data types is 512 bytes.

The term smart large object refers to BLOB and CLOB data types. Use CLOB data types (see page CLOB data type on

page 91) for random access to text data. For general information about BLOB and CLOB data types, see Smart large

objects on page 122.

87

HCL Informix 14.10 - SQL programming Guide

88

You can use these SQL functions to perform operations on a BLOB column:

• FILETOBLOB copies a file into a BLOB column.

• LOTOFILE copies a BLOB (or CLOB) value into an operating-system file.

• LOCOPY copies an existing smart large object to a new smart large object.

For more information about these SQL functions, see the HCL® Informix® Guide to SQL: Syntax.

Within SQL, you are limited to the equality (=) comparison operation and the encryption and decryption functions for BLOB

data. (The encryption and decryption functions are described in the HCL® Informix® Guide to SQL: Syntax.) To perform

additional operations, you must use one of the application programming interfaces (APIs) from within your client application.

You can insert data into BLOB columns in the following ways:

• With the dbload or onload utilities

• With the LOAD statement (DB-Access)

• With the FILETOBLOB function

• From BLOB (ifx_lo_t) host variables (IBM® Informix® ESQL/C)

If you select a BLOB column using DB-Access, only the string <SBlob value> is returned; no actual value is displayed.

Related information

FILETOBLOB and FILETOCLOB Functions on page

LOTOFILE Function on page

LOCOPY Function on page

BOOLEAN data type
The BOOLEAN data type stores TRUE or FALSE data values as a single byte.

The following table shows internal and literal representations of the BOOLEAN data type.

Logical Value Internal Representation Literal Representation

TRUE \0 't'

FALSE \1 'f'

NULL Internal Use Only NULL

You can compare two BOOLEAN values to test for equality or inequality. You can also compare a BOOLEAN value to the

Boolean literals 't' and 'f'. BOOLEAN values are not case-sensitive; 't' is equivalent to 'T' and 'f' to 'F'.

../sqs/ids_sqs_1526.html#ids_sqs_1526
../sqs/ids_sqs_1526.html#ids_sqs_1526
../sqs/ids_sqs_1526.html#ids_sqs_1526
../sqs/ids_sqs_1526.html#ids_sqs_1526
../sqs/ids_sqs_1528.html#ids_sqs_1528
../sqs/ids_sqs_1528.html#ids_sqs_1528
../sqs/ids_sqs_1528.html#ids_sqs_1528
../sqs/ids_sqs_1528.html#ids_sqs_1528
../sqs/ids_sqs_1529.html#ids_sqs_1529
../sqs/ids_sqs_1529.html#ids_sqs_1529
../sqs/ids_sqs_1529.html#ids_sqs_1529
../sqs/ids_sqs_1529.html#ids_sqs_1529

Chapter 1. SQL programming

You can use a BOOLEAN column to store what a Boolean expression returns. In the following example, the value of

boolean_column is 't' if column1 is less than column2, 'f' if column1 is greater than or equal to column2, and NULL if the

value of either column1 or column2 is unknown:

UPDATE my_table SET boolean_column = lessthan(column1, column2)

BYTE data type
The BYTE data type stores any kind of binary data in an undifferentiated byte stream. Binary data typically consists of

digitized information, such as spreadsheets, program load modules, digitized voice patterns, and so on.

The term simple large object refers to an instance of a TEXT or BYTE data type. No more than 195 columns of the same table

can be declared as BYTE and TEXT data types.

The BYTE data type has no maximum size. A BYTE column has a theoretical limit of 231 bytes and a practical limit that your

disk capacity determines.

You cannot use the MEDIUM or HIGH options of the UPDATE STATISTICS statement to calculate distribution statistics on

BYTE columns.

BYTE objects in DML operations

You can store, retrieve, update, or delete the contents of a BYTE column. You cannot, however, use BYTE operands in

arithmetic or string operations, nor assign literals to BYTE columns with the SET clause of the UPDATE statement. You also

cannot use BYTE objects in any of the following contexts in a SELECT statement:

• With aggregate functions

• With the IN clause

• With the MATCHES or LIKE clauses

• With the GROUP BY clause

• With the ORDER BY clause

BYTE operands are valid in Boolean expressions only when you are testing for NULL values with the IS NULL or IS NOT NULL

operators.

You can use the following methods, which can load rows or update fields, to insert BYTE data:

• With the dbload or onload utilities

• With the LOAD statement (DB-Access)

• From BYTE host variables (IBM® Informix® ESQL/C)

You cannot use a quoted text string, number, or any other actual value to insert or update BYTE columns.

When you select a BYTE column, you can receive all or part of it. To retrieve it all, use the regular syntax for selecting a

column. You can also select any part of a BYTE column by using subscripts, as the next example, which reads the first 75

bytes of the cat_picture column associated with the catalog number 10001:

SELECT cat_picture [1,75] FROM catalog WHERE catalog_num = 10001

89

HCL Informix 14.10 - SQL programming Guide

90

A built-in cast converts BYTE values to BLOB values. For more information, see the IBM® Informix® Database Design and

Implementation Guide.

If you select a BYTE column using the DB-Access Interactive Schema Editor, only the string ''<BYTE value>'' is returned; no data

value is displayed.

Important: If you try to return a BYTE column from a subquery, an error results, even if the column is not used in a

Boolean expression nor with an aggregate.

CHAR(n) data type
The CHAR data type stores any string of letters, numbers, and symbols. It can store single-byte and multibyte characters,

based on the database locale.

A CHAR(n) column has a length of n bytes, where 1 ≤ n ≤ 32,767. If you do not specify n, CHAR(1) is the default length.

Character columns typically store alphanumeric strings, such as names, addresses, phone numbers, and so on. When a value

is retrieved or stored as CHAR(n), exactly n bytes of data are transferred. If the string is shorter than n bytes, the string is

extended with blank spaces up to the declared length. If the data value is longer than n bytes, a data string of length n that

has been truncated from the right is inserted or retrieved, without the database server raising an exception.

This does not create partial characters in multibyte locales. In right-to-left locales, such as Arabic, Hebrew, or Farsi, the

truncation is from the left.

Size specifications in CHAR data type declarations can be affected by the SQL_LOGICAL_CHAR feature that is described in

the section Logical Character Semantics in Character Type Declarations on page 120.

For more information about East Asian locales that support multibyte code sets, see Multibyte Characters with VARCHAR on

page 118.

Treating CHAR Values as Numeric Values
CHAR data typestoring numeric valuesArithmeticstring operandsIf you plan to perform calculations on numbers stored in a column, you should assign a number data type to that column.

Although you can store numbers in CHAR columns, you might not be able to use them in some arithmetic operations. For

example, if you insert a sum into a CHAR column, you might experience overflow problems if the CHAR column is too small

to hold the value. In this case, the insert fails. Numbers that have leading zeros (such as some zip codes) have the zeros

stripped if they are stored as number types INTEGER or SMALLINT. Instead, store these numbers in CHAR columns.

Sorting and Relational Comparisons
CHAR data typecollationCollationCHAR data typeIn general, the collating order for sorting CHAR values is the order of characters in the code set. (An exception is the

MATCHES operator with ranges; see Collating VARCHAR Values on page 118.) For more information about collation order,

see the HCL® Informix® GLS User's Guide.

Chapter 1. SQL programming

Code setsEast AsianLocalesmultibyteFor multibyte locales, the database supports any multibyte characters in the code set. When storing multibyte characters in

a CHAR data type, make sure to calculate the number of bytes needed. For more information about multibyte characters and

locales, see the HCL® Informix® GLS User's Guide.

Relational operators(), blank spacepadding CHAR valuesCHAR values are compared to other CHAR values by padding the shorter value on the right with blank spaces until the values

have equal length, and then comparing the two values, using the code-set order for collation.

 Nonprintable Characters with CHAR

A CHAR value can include tab, newline, whitespace, and nonprintable characters. You must, however, use an application

to insert nonprintable characters into host variables and the host variables into your database. After passing nonprintable

characters to the database server, you can store or retrieve them. After you select nonprintable characters, fetch them into

host variables and display them with your own display mechanism.

An important exception is the first value in the ASCII code set is used as the end-of-data terminator symbol in columns of

the CHAR data type. For this reason, any subsequent characters in the same string cannot be retrieved from a CHAR column,

because the database server reads only the characters (if any) that precede this null terminator. For example, you cannot use

the following 7-byte string as a CHAR data type value with a length of 7 bytes:

abc\0def

If you try to display nonprintable characters with DB-Access your screen returns inconsistent results. (Which characters are

nonprintable is locale-dependent. For more information see the discussion of code-set conversion between the client and the

database server in the HCL® Informix® GLS User's Guide.)

CHARACTER(n) data type
The CHARACTER data type is a synonym for CHAR.

CHARACTER VARYING(m,r) data type
The CHARACTER VARYING data type stores a string of letters, digits, and symbols of varying length, where m is the

maximum size of the column (in bytes) and r is the minimum number of bytes reserved for that column.

The CHARACTER VARYING data type complies with ANSI/ISO standard for SQL; the non-ANSI VARCHAR data type supports

the same functionality. For more information, see the description of the VARCHAR type in VARCHAR(m,r) data type on

page 117.

CLOB data type
The CLOB data type stores any kind of text data in random-access chunks, called sbspaces. Text data can include text-

formatting information, if this information is also textual, such as PostScript™, Hypertext Markup Language (HTML),

Standard Graphic Markup Language (SGML), or Extensible Markup Language (XML) data.

The term smart large object refers to CLOB and BLOB data types. The CLOB data type supports special operations for

character strings that are inappropriate for BLOB values. A CLOB value can be up to 4 terabytes (4*240 bytes) in length. The

minimum amount of disk space allocated for smart large object data types is 512 bytes.

91

HCL Informix 14.10 - SQL programming Guide

92

Use the BLOB data type (see BLOB data type on page 87) for random access to binary data. For general information about

the CLOB and BLOB data types, see Smart large objects on page 122.

The following SQL functions can perform operations on a CLOB column:

• FILETOCLOB copies a file into a CLOB column.

• LOTOFILE copies a CLOB (or BLOB) value into a file.

• LOCOPY copies a CLOB (or BLOB) value to a new smart large object.

• ENCRYPT_DES or ENCRYPT_TDES creates an encrypted BLOB value from a plain-text CLOB argument.

• DECRYPT_BINAR or DECRYPT_CHAR returns an unencrypted BLOB value from an encrypted BLOB argument (that

ENCRYPT_DES or ENCRYPT_TDES created from a plain-text CLOB value).

For more information about these SQL functions, see the HCL® Informix® Guide to SQL: Syntax.

No casts exist for CLOB data. Therefore, the database server cannot convert data of the CLOB type to any other data type,

except by using these encryption and decryption functions to return a BLOB. Within SQL, you are limited to the equality (=)

comparison operation for CLOB data. To perform additional operations, you must use one of the application programming

interfaces from within your client application.

Multibyte characters with CLOB

About this task

You can insert data into CLOB columns in the following ways:

• With the dbload or onload utilities

• With the LOAD statement (DB-Access)

• From CLOB (ifx_lo_t) host variables (ESQL/C)

For examples of CLOB types, see the HCL® Informix® Guide to SQL: Tutorial and the IBM® Informix® Database Design and

Implementation Guide.

With GLS, the following rules apply:

• Multibyte CLOB characters must be defined in the database locale.

• The CLOB data type is collated in code-set order.

• The database server handles code-set conversions for CLOB data.

For more information about database locales, collation order, and code-set conversion, see the HCL® Informix® GLS User's

Guide.

DATE data type
The DATE data type stores the calendar date. DATE data types require four bytes. A calendar date is stored internally as an

integer value equal to the number of days since December 31, 1899.

Chapter 1. SQL programming

Because DATE values are stored as integers, you can use them in arithmetic expressions. For example, you can subtract a

DATE value from another DATE value. The result, a positive or negative INTEGER value, indicates the number of days that

elapsed between the two dates. (You can use a UNITS DAY expression to convert the result to an INTERVAL DAY TO DAY

data type.)

The following example shows the default display format of a DATE column:

mm/dd/yyyy

In this example, mm is the month (1-12), dd is the day of the month (1-31), and yyyy is the year (0001-9999). You can specify

a different order of time units and a different time-unit separator than / (or no separator) by setting the DBDATE environment

variable. For more information, see DBDATE environment variable on page 157.

In non-default locales, you can display dates in culture-specific formats. The locale and the GL_DATE and DBDATE

environment variables (as described in the next chapter) affect the display formatting of DATE values. They do not, however,

affect the internal storage format for DATE columns in the database. For more information, see the HCL® Informix® GLS

User's Guide.

DATETIME data type
The DATETIME data type stores an instant in time expressed as a calendar date and time of day.

You select how precisely a DATETIME value is stored; its precision can range from a year to a fraction of a second.

DATETIME stores a data value as a contiguous series of fields that represents each time unit (year, month, day, and so forth)

in the data type declaration.

Field qualifiers to specify a DATETIME data type have this format:

DATETIME largest_qualifier TO smallest_qualifier

This resembles an INTERVAL field qualifier, but DATETIME represents a point in time, rather than (like INTERVAL) a span of

time. These differences exist between DATETIME and INTERVAL qualifiers:

• The DATETIME keyword replaces the INTERVAL keyword.

• DATETIME field qualifiers cannot specify a nondefault precision for the largest_qualifier time unit.

• Field qualifiers of a DATETIME data type can include YEAR, MONTH, and smaller time units, but an INTERVAL

data type that includes the DAY field qualifier (or smaller time units) cannot also include the YEAR or MONTH field

qualifiers.

The largest_qualifier and smallest_qualifier of a DATETIME data type can be any of the fields that the following table lists,

provided that smallest_qualifier does not specify a larger time unit than largest_qualifier. (The largest and smallest time units

can be the same; for example, DATETIME YEAR TO YEAR.)

Table 44. DATETIME field qualifiers

Qualifier field Valid entries

YEAR A year numbered from 1 to 9,999 (A.D.)

93

HCL Informix 14.10 - SQL programming Guide

94

Table 44. DATETIME field qualifiers (continued)

Qualifier field Valid entries

MONTH A month numbered from 1 to 12

DAY A day numbered from 1 to 31, as appropriate to the month

HOUR An hour numbered from 0 (midnight) to 23

MINUTE A minute numbered from 0 to 59

SECOND A second numbered from 0 - 59

FRACTION A decimal fraction-of-a-second with up to 5 digits of scale. The default scale is 3 digits (a

thousandth of a second). For smallest_qualifier to specify another scale, write FRACTION(n),

where n is the number of digits from 1 - 5.

The declaration of a DATETIME column need not include the full YEAR to FRACTION range of time units. It can include any

contiguous subset of these time units, or even only a single time unit.

For example, you can enter a MONTH TO HOUR value in a column declared as YEAR TO MINUTE, if each entered value

contains information for a contiguous series of time units. You cannot, however, enter a value for only the MONTH and

HOUR; the entry must also include a value for DAY.

If you use the DB-Access TABLE menu, and you do not specify the DATETIME qualifiers, a default DATETIME qualifier, YEAR

TO YEAR, is assigned.

A valid DATETIME literal must include the DATETIME keyword, the values to be entered, and the field qualifiers. You must

include these qualifiers because, as noted earlier, the value that you enter can contain fewer fields than were declared for

that column. Acceptable qualifiers for the first and last fields are identical to the list of valid DATETIME fields that are listed in

the table Table 44: DATETIME field qualifiers on page 93.

Write values for the field qualifiers as integers and separate them with delimiters. The following table lists the delimiters

that are used with DATETIME values in the default US English locale. (These are a superset of the delimiters that are used in

INTERVAL values.)

Table 45. Delimiters used with DATETIME

Delimiter Placement in DATETIME Literal

Hyphen (-) Between the YEAR, MONTH, and DAY time-unit values

Blank space () Between the DAY and HOUR time-unit values

Colon (:) Between the HOUR, MINUTE, and SECOND time-unit values

Decimal point (.) Between the SECOND and FRACTION time-unit values

The following illustration shows a DATETIME YEAR TO FRACTION(3) value with delimiters.

Chapter 1. SQL programming

Figure 1. Example DATETIME Value with Delimiters

When you enter a value with fewer time-unit fields than in the column, the value that you enter is expanded automatically

to fill all the declared time-unit fields. If you leave out any more significant fields, that is, time units larger than any that you

include, those fields are filled automatically with the current values for those time units from the system clock calendar. If

you leave out any less-significant fields, those fields are filled with zeros (or with 1 for MONTH and DAY) in your entry.

You can also enter DATETIME values as character strings. The character string must include information for each field

defined in the DATETIME column. The INSERT statement in the following example shows a DATETIME value entered as a

character string:

INSERT INTO cust_calls (customer_num, call_dtime, user_id,
 call_code, call_descr)
 VALUES (101, '2001-01-14 08:45', 'maryj', 'D',
 'Order late - placed 6/1/00');

If call_dtime is declared as DATETIME YEAR TO MINUTE, the character string must include values for the year, month, day,

hour, and minute fields.

If the character string does not contain information for all the declared fields (or if it adds additional fields), then the

database server returns an error.

All fields of a DATETIME column are two-digit numbers except for the year and fraction fields. The year field is stored as four

digits. When you enter a two-digit value in the year field, how the abbreviated year is expanded to four digits depends on the

setting of the DBCENTURY environment variable.

For example, if you enter 02 as the year value, whether the year is interpreted as 1902, 2002, or 2102 depends on the setting

of DBCENTURY and on the value of the system clock calendar at execution time. If you do not set DBCENTURY, the leading

digits of the current year are appended by default.

The fraction field requires n digits where 1 ≤ n ≤ 5, rounded up to an even number. You can use the following formula

(rounded up to a whole number of bytes) to calculate the number of bytes that a DATETIME value requires:

(total number of digits for all fields) /2 + 1

For example, a YEAR TO DAY qualifier requires a total of eight digits (four for year, two for month, and two for day). According

to the formula, this data value requires 5, or (8/2) + 1, bytes of storage.

The USEOSTIME configuration parameter can affect the subsecond granularity when the database server obtains the current

time from the operating system in SQL statements. For details, see the HCL® Informix® Administrator's Reference.

95

HCL Informix 14.10 - SQL programming Guide

96

With an ESQL API, the DBTIME environment variable affects DATETIME formatting. Nondefault locales and settings of the

GL_DATE and DBDATE environment variables also affect the display of datetime data. They do not, however, affect the

internal storage format of a DATETIME column.

If you specify a locale other than U.S. English, the locale defines the culture-specific display formats for DATETIME values.

To change the default display format, change the setting of the GL_DATETIME environment variable. When a database with a

nondefault locale uses a nondefault GL_DATETIME setting, the USE_DTENV environment variable must be set to 1 before the

database server can correctly process localized DATETIME values in the following operations:

• using the LOAD or UNLOAD feature of DB-Access

• using the dbexport or dbimport migration utilities

• using DML statements of SQL on database tables or on objects that the CREATE EXTERNAL TABLE statement

defined.

For more information about locales and GLS environment variables that can specify end-user DATETIME formats, see the

HCL® Informix® GLS User's Guide.

Related reference

INTERVAL data type on page 101

DBCENTURY environment variable on page 154

DBTIME environment variable on page 167

Related information

Manipulating DATE with DATETIME and INTERVAL Values on page 126

Manipulating DATETIME Values on page 124

The mi_datetime_compare() function on page

DEC data type
The DEC data type is a synonym for DECIMAL.

DECIMAL
The DECIMAL data type can take two forms: DECIMAL(p) floating point and DECIMAL(p,s) fixed point.

In an ANSI-compliant database all DECIMAL numbers are fixed point.

By default, literal numbers that include a decimal (.) point are interpreted by the database server as DECIMAL values.

 DECIMAL(p) Floating Point
The DECIMAL data type stores decimal floating-point numbers up to a maximum of 32 significant digits, where p is the total

number of significant digits (the precision).

../%20dapif/ids_dapif_553.html#ids_dapif_553
../%20dapif/ids_dapif_553.html#ids_dapif_553
../%20dapif/ids_dapif_553.html#ids_dapif_553
../%20dapif/ids_dapif_553.html#ids_dapif_553

Chapter 1. SQL programming

Specifying precision is optional. If you specify no precision (p), DECIMAL is treated as DECIMAL(16), a floating-point decimal

with a precision of 16 places. DECIMAL(p) has an absolute exponent range between 10-130 and 10124.

If you declare a DECIMAL(p) column in an ANSI-compliant database, the scale defaults to DECIMAL(p, 0), meaning that only

integer values can be stored in this data type.

In a database that is not ANSI-compliant, a DECIMAL(p) is a floating-point data type of a scale large enough to store the

exponential notation for a value.

For example, the following calculation shows how many bytes of storage a DECIMAL(5) column requires in the default locale

(where the decimal point occupies a single byte):

1 byte for the sign of the data value

1 byte for the 1st digit

1 byte for the decimal point

4 bytes for the rest of the digits (precision of 5 - 1)

1 byte for the e symbol

1 byte for the sign of the exponent

3 bytes for the exponent

12 bytes total

Thus, "12345" in a DECIMAL(5) column is displayed as "12345.00000" (that is, with a scale of 6) in a database that is not

ANSI-compliant.

DECIMAL (p,s) Fixed Point

In fixed-point numbers, DECIMAL(p,s), the decimal point is fixed at a specific place, regardless of the value of the number.

When you specify a column of this type, you declare its precision (p) as the total number of digits that it can store, from 1 to

32. You declare its scale (s) as the total number of digits in the fractional part (that is, to the right of the decimal point).

All numbers with an absolute value less than 0.5 * 10-s have the value zero. The largest absolute value of a DECIMAL(p,s)

data type that you can store without an overflow error is 10p-s -10-s. A DECIMAL column typically stores numbers with

fractional parts that must be stored and displayed exactly (for example, rates or percentages). In an ANSI-compliant

database, all DECIMAL numbers must have absolute values in the range 10-32 to 10+31.

DECIMAL Storage

The database server uses one byte of disk storage to store two digits of a decimal number, plus an additional byte to store

the exponent and sign, with the first byte representing a sign bit and a 7-bit exponent in excess-65 format. The rest of the

bytes express the mantissa as base-100 digits. The significant digits to the left of the decimal and the significant digits to

the right of the decimal are stored in separate groups of bytes. At the maximum precision specification, DECIMAL(32,s) data

types can store s-1 decimal digits to the right of the decimal point, if s is an odd number.

How the database server stores decimal numbers is illustrated in the following example. If you specify DECIMAL(6,3), the

data type consists of three significant digits in the integral part and three significant digits in the fractional part (for instance,

97

HCL Informix 14.10 - SQL programming Guide

98

123.456). The three digits to the left of the decimal are stored on 2 bytes (where one of the bytes only holds a single digit)

and the three digits to the right of the decimal are stored on another 2 bytes, as Figure 2: Schematic that illustrates the

storage of digits in a decimal (p,s) value on page 98 illustrates.

(The exponent byte is not shown.) With the additional byte required for the exponent and sign, DECIMAL(6,3) requires a total

of 5 bytes of storage.

Figure 2. Schematic that illustrates the storage of digits in a decimal (p,s) value

You can use the following formulas (rounded down to a whole number of bytes) to calculate the byte storage (N) for a

DECIMAL(p,s) data type (where N includes the byte that is required to store the exponent and the sign):

If the scale is odd: N = (precision + 4) / 2
If the scale is even: N = (precision + 3) / 2

For example, the data type DECIMAL(5,3) requires 4 bytes of storage (9/2 rounded down equals 4).

There is one caveat to these formulas. The maximum number of bytes the database server uses to store a decimal

value is 17. One byte is used to store the exponent and sign, leaving 16 bytes to store up to 32 digits of precision. If you

specify a precision of 32 and an odd scale, however, you lose 1 digit of precision. Consider, for example, the data type

DECIMAL(32,31). This decimal is defined as 1 digit to the left of the decimal and 31 digits to the right. The 1 digit to the left

of the decimal requires 1 byte of storage. This leaves only 15 bytes of storage for the digits to the right of the decimal. The

15 bytes can accommodate only 30 digits, so 1 digit of precision is lost.

DISTINCT data types
A DISTINCT type is a data type that is derived from a source type (called the base type).

A source type can be:

• A built-in type

• An existing DISTINCT type

• An existing named ROW type

• An existing opaque type

A DISTINCT type inherits from its source type the length and alignment on the disk. A DISTINCT type thus makes efficient

use of the preexisting functionality of the database server.

When you create a DISTINCT data type, the database server automatically creates two explicit casts: one cast from the

DISTINCT type to its source type and one cast from the source type to the DISTINCT type. A DISTINCT type based on a built-

in source type does not inherit the built-in casts that are provided for the built-in type. A DISTINCT type does inherit, however,

any user-defined casts that have been defined on the source type.

Chapter 1. SQL programming

A DISTINCT type cannot be compared directly to its source type. To compare the two types, you must first explicitly cast one

type to the other.

You must define a DISTINCT type in the database. Definitions of DISTINCT types are stored in the sysxtdtypes system

catalog table. The following SQL statements maintain the definitions of DISTINCT types in the database:

• The CREATE DISTINCT TYPE statement adds a DISTINCT type to the database.

• The DROP TYPE statement removes a previously defined DISTINCT type from the database.

For more information about the SQL statements mentioned above, see the HCL® Informix® Guide to SQL: Syntax. For

information about casting DISTINCT data types, see Casts for distinct types on page 138. For examples that show how to

create and register cast functions for a DISTINCT type, see the IBM® Informix® Database Design and Implementation Guide.

Size specifications in declarations of DISTINCT types whose base types are built-in character types can be affected by the

SQL_LOGICAL_CHAR feature that is described in the section Logical Character Semantics in Character Type Declarations on

page 120.

DOUBLE PRECISION data types
The DOUBLE PRECISION keywords are a synonym for the FLOAT keyword.

Related reference

FLOAT(n) on page 99

FLOAT(n)

The FLOAT data type stores double-precision floating-point numbers with up to 17 significant digits. FLOAT corresponds to

IEEE 4-byte floating-point, and to the double data type in C. The range of values for the FLOAT data type is the same as the

range of the C double data type on your computer.

You can use n to specify the precision of a FLOAT data type, but SQL ignores the precision. The value n must be a whole

number between 1 and 14.

A column with the FLOAT data type typically stores scientific numbers that can be calculated only approximately. Because

floating-point numbers retain only their most significant digits, the number that you enter in this type of column and the

number the database server displays can differ slightly.

The difference between the two values depends on how your computer stores floating-point numbers internally. For example,

you might enter a value of 1.1000001 into a FLOAT field and, after processing the SQL statement, the database server might

display this value as 1.1. This situation occurs when a value has more digits than the floating-point number can store. In this

case, the value is stored in its approximate form with the least significant digits treated as zeros.

FLOAT data types usually require 8 bytes of storage per value. Conversion of a FLOAT value to a DECIMAL value results in 17

digits of precision.

99

HCL Informix 14.10 - SQL programming Guide

100

Related reference

DOUBLE PRECISION data types on page 99

IDSSECURITYLABEL data type
The IDSSECURITYLABEL type stores a security label in a table that is protected by a label-based access control (LBAC)

security policy.

Only a user who holds the DBSECADM role can create, alter, or drop a column of this data type. IDSSECURITYLABEL is a

built-in DISTINCT OF VARCHAR(128) data type, but because its use is restricted to databases that implement label-based

access control, it is not classified as a character data type. A table that is protected by a security policy can have only

one IDSSECURITYLABEL column. A table that is not associated with any label-based security policy cannot include an

IDSSECURITYLABEL column. You cannot encrypt the security label in a column of type IDSSECURITYLABEL.

For a discussion of security policies, security components, security labels, and other concepts of label-based access control

(LBAC), see the HCL Informix® Security Guide.

INT data type
The INT data type is a synonym for INTEGER.

INT8
The INT8 data type stores whole numbers that can range in value from –9,223,372,036,854,775,807 to

9,223,372,036,854,775,807 [or -(263-1) to 263-1], for 18 or 19 digits of precision.

The number –9,223,372,036,854,775,808 is a reserved value that cannot be used. The INT8 data type is typically used to

store large counts, quantities, and so on.

HCL Informix® stores INT8 data in internal format that can require up to 10 bytes of storage.

Arithmetic operations and sort comparisons are performed more efficiently on integer data than on floating-point or fixed-

point decimal data, but INT8 cannot store data with absolute values beyond | 263-1 |. If a value exceeds the numeric range of

INT8, the database server does not store the value.

INTEGER data type
The INTEGER data type stores whole numbers that range from -2,147,483,647 to 2,147,483,647 for 9 or 10 digits of precision.

The number 2,147,483,648 is a reserved value and cannot be used. The INTEGER value is stored as a signed binary integer

and is typically used to store counts, quantities, and so on.

Arithmetic operations and sort comparisons are performed more efficiently on integer data than on float or decimal data.

INTEGER columns, however, cannot store absolute values beyond (231-1). If a data value lies outside the numeric range of

INTEGER, the database server does not store the value.

Chapter 1. SQL programming

INTEGER data types require 4 bytes of storage per value.

INTERVAL data type
The INTERVAL data type stores a value that represents a span of time. INTERVAL types are divided into two classes: year-

month intervals and day-time intervals.

A year-month interval can represent a span of years and months, and a day-time interval can represent a span of days, hours,

minutes, seconds, and fractions of a second.

An INTERVAL value is always composed of one value or a series of values that represents time units. Within a data-definition

statement such as CREATE TABLE or ALTER TABLE that defines the precision of an INTERVAL data type, the qualifiers must

have the following format:

INTERVAL largest_qualifier(n) TO smallest_qualifier

Here the largest_qualifier and smallest_qualifier keywords are taken from one of the two INTERVAL classes, as shown in the

table Table 46: Interval Classes on page 101.

If SECOND (or a larger time unit) is the largest_qualifier, the declaration of an INTERVAL data type can optionally specify n,

the precision of the largest time unit (for n ranging from 1 to 9); this is not a feature of DATETIME data types.

If smallest_qualifier is FRACTION, you can also specify a scale in the range from 1 to 5. For FRACTION TO FRACTION

qualifiers, the upper limit of n is 5, rather than 9. There are two incommensurable classes of INTERVAL data types:

• Those with a smallest_qualifier larger than DAY

• Those with a largest_qualifier smaller than MONTH

Table 46. Interval Classes

Interval Class Time Units Valid Entry

YEAR-MONTH

INTERVAL

YEAR A number of years

YEAR-MONTH

INTERVAL

MONTH A number of months

DAY-TIME INTERVAL DAY A number of days

DAY-TIME INTERVAL HOUR A number of hours

DAY-TIME INTERVAL MINUTE A number of minutes

DAY-TIME INTERVAL SECOND A number of seconds

DAY-TIME INTERVAL FRACTION A decimal fraction of a second, with up to 5 digits. The default scale is

3 digits (thousandth of a second). To specify a non-default scale, write

FRACTION(n), where 1 ≤ n ≤ 5.

101

HCL Informix 14.10 - SQL programming Guide

102

As with DATETIME data types, you can define an INTERVAL to include only the subset of time units that you need. But

because the construct of "month" (as used in calendar dates) is not a time unit that has a fixed number of days, a single

INTERVAL value cannot combine months and days; arithmetic that involves operands of the two different INTERVAL classes

is not supported.

A value entered into an INTERVAL column need not include the full range of time units that were specified in the data-type

declaration of the column. For example, you can enter a value of HOUR TO SECOND precision into a column defined as DAY

TO SECOND. A value must always consist, however, of contiguous time units. In the previous example, you cannot enter only

the HOUR and SECOND values; you must also include MINUTE values.

A valid INTERVAL literal contains the INTERVAL keyword, the values to be entered, and the field qualifiers. (See the

discussion of literal intervals in the HCL® Informix® Guide to SQL: Syntax.) When a value contains only one field, the largest

and smallest fields are the same.

When you enter a value in an INTERVAL column, you must specify the largest and smallest fields in the value, just as you do

for DATETIME values. In addition, you can optionally specify the precision of the first field (and the scale of the last field if it

is a FRACTION). If the largest and smallest field qualifiers are both FRACTION, you can specify only the scale in the last field.

Acceptable qualifiers for the largest and smallest fields are identical to the list of INTERVAL fields that the tab;e Table 46:

Interval Classes on page 101 displays.

If you use the DB-Access TABLE menu, but you specify no INTERVAL field qualifiers, then a default INTERVAL qualifier, YEAR

TO YEAR, is assigned.

The largest_qualifier in an INTERVAL value can be up to nine digits (except for FRACTION, which cannot be more than five

digits), but if the value that you want to enter is greater than the default number of digits allowed for that field, you must

explicitly identify the number of significant digits in the value that you enter. For example, to define an INTERVAL of DAY TO

HOUR that can store up to 999 days, you can specify it the following way:

INTERVAL DAY(3) TO HOUR

INTERVAL literals use the same delimiters as DATETIME literals (except that MONTH and DAY time units are not valid within

the same INTERVAL value). the following table shows the INTERVAL delimiters.

Table 47. INTERVAL Delimiters

Delimiter Placement in an INTERVAL Literal

Hyphen Between the YEAR and MONTH portions of the value

Blank space Between the DAY and HOUR portions of the value

Colon Between the HOUR, MINUTE, and SECOND portions of the value

Decimal point Between the SECOND and FRACTION portions of the value

You can also enter INTERVAL values as character strings. The character string must include information for the same time

units that were specified in the data-type declaration for the column. The INSERT statement in the following example shows

an INTERVAL value entered as a character string:

Chapter 1. SQL programming

INSERT INTO manufact (manu_code, manu_name, lead_time)
 VALUES ('BRO', 'Ball-Racquet Originals', '160')

Because the lead_time column is defined as INTERVAL DAY(3) TO DAY, this INTERVAL value requires only one field, the span

of days required for lead time. If the character string does not contain information for all fields (or adds additional fields), the

database server returns an error. For additional information about entering INTERVAL values as character strings, see the

HCL® Informix® Guide to SQL: Syntax.

By default, all fields of an INTERVAL column are two-digit numbers, except for the year and fraction fields. The year field

is stored as four digits. The fraction field requires n digits where 1 ≤ n ≤ 5, rounded up to an even number. You can use the

following formula (rounded up to a whole number of bytes) to calculate the number of bytes required for an INTERVAL value:

(total number of digits for all fields)/2 + 1

For example, INTERVAL YEAR TO MONTH requires six digits (four for year and two for month), and requires 4, or (6/2) + 1,

bytes of storage.

For information about using INTERVAL as a constant expression, see the description of the INTERVAL Field Qualifier in the

HCL® Informix® Guide to SQL: Syntax.

Related reference

DATETIME data type on page 93

Related information

Manipulating DATE with DATETIME and INTERVAL Values on page 126

Manipulating INTERVAL Values on page 128

The mi_interval_compare() function on page

LIST(e) data type
The LIST data type is a collection type that can store ordered non-NULL elements of the same SQL data type.

The LIST data type supports, but does not require, duplicate element values. The elements of a LIST data type have ordinal

positions. The LIST object must have a first element, which can be followed by a second element, and so on.

For unordered collection data types that do not support ordinal positions, see MULTISET(e) data type on page 106 and

SET(e) data type on page 113. For complex data types that can store a set of values that includes different SQL data types,

see ROW Data Types on page 132.

No more than 97 columns of the same table can be declared as LIST data types. (The same restriction applies to SET and

MULTISET collection types.)

By default, the database server inserts new elements into a LIST object at the end of the set of elements. To support the

ordinal position of a LIST, the INSERT statement provides the AT clause. This clause allows you to specify the position at

which you want to insert a LIST element value. For more information, see the INSERT statement in the HCL® Informix® Guide

to SQL: Syntax.

103

../%20dapif/ids_dapif_554.html#ids_dapif_554
../%20dapif/ids_dapif_554.html#ids_dapif_554
../%20dapif/ids_dapif_554.html#ids_dapif_554
../%20dapif/ids_dapif_554.html#ids_dapif_554

HCL Informix 14.10 - SQL programming Guide

104

All elements in a LIST object have the same element type. To specify the element type, use the following syntax:

LIST(element_type NOT NULL)

The element_type of a LIST can be any of the following data types:

• A built-in type, except SERIAL, SERIAL8, BIGSERIAL, BYTE, and TEXT

• A DISTINCT type

• An unnamed or named ROW type

• Another collection type

• An opaque type

You must specify the NOT NULL constraint for LIST elements. No other constraints are valid for LIST columns. For more

information about the syntax of the LIST data type, see the HCL® Informix® Guide to SQL: Syntax.

You can use LIST in most contexts where any other data type is valid. For example:

• After the IN predicate in the WHERE clause of a SELECT statement to search for matching LIST values

• As an argument to the CARDINALITY or mi_collection_card() function to determine the number of elements in a LIST

column

You cannot use LIST values as arguments to an aggregate function such as AVG, MAX, MIN, or SUM.

Just as with the other collection data types, you must use parentheses (()) in data type declarations to delimit the set of

elements of a LIST data type:

CREATE FUNCTION update_nums(list1 LIST (ROW (a VARCHAR(10),
 b VARCHAR(10),
 c INT) NOT NULL));

In SQL expressions that include literal LIST values, however, you must use braces ({ }) to delimit the set of elements of a

LIST object, as in the examples that follow.

Two LIST values are equal if they have the same elements in the same order. The following are both examples of LIST

objects, but their values are not equal. :

LIST{"blue", "green", "yellow"}

LIST{"yellow", "blue", "green"}

The above expressions are not equal because the values are not in the same order. To be equal, the second statement must

be:

LIST{"blue", "green", "yellow"}

LVARCHAR(m) data type
Use the LVARCHAR data type to create a column for storing variable-length character strings whose upper limit (m) can be

up to 32,739 bytes.

This limit is much greater than the VARCHAR data type, which is used for character strings that are no longer than 255 bytes.

Chapter 1. SQL programming

The LVARCHAR data type is implemented as a built-in opaque data type. You can access LVARCHAR columns in remote

tables by using distributed queries across databases of the same or different HCL Informix® instances.

By default, the database server interprets quoted strings as LVARCHAR types. It also uses LVARCHAR for input and output

casts for opaque data types.

The LVARCHAR data type stores opaque data types in the string (external) format. Each opaque type has an input support

function and cast, which convert it from LVARCHAR to a form that database servers can manipulate. Each opaque type also

has an output support function and cast, which convert it from its internal representation to LVARCHAR.

Important: When LVARCHAR is declared (with no size specification) as the data type of a column in a database table,

the default maximum size is 2 KB (2048 bytes), but you can specify an explicit maximum length of up to 32,739

bytes. When LVARCHAR is used in I/O operations on an opaque data type, however, the maximum size is limited only

by the operating system.

You cannot use the MEDIUM or HIGH options of the UPDATE STATISTICS statement to calculate distribution statistics on

LVARCHAR columns.

Size specifications in LVARCHAR data type declarations can be affected by the SQL_LOGICAL_CHAR feature that is

described in the section Logical Character Semantics in Character Type Declarations on page 120.

For more information about LVARCHAR, see the HCL® Informix® User-Defined Routines and Data Types Developer's Guide.

MONEY(p,s) data type
The MONEY data type stores currency amounts.

TLike the DECIMAL(p,s) data type, MONEY can store fixed-point numbers up to a maximum of 32 significant digits, where p is

the total number of significant digits (the precision) and s is the number of digits to the right of the decimal point (the scale).

Unlike the DECIMAL data type, the MONEY data type is always treated as a fixed-point decimal number. The database server

defines the data type MONEY(p) as DECIMAL(p,2). If the precision and scale are not specified, the database server defines a

MONEY column as DECIMAL(16,2).

You can use the following formula (rounded down to a whole number of bytes) to calculate the byte storage for a MONEY

data type:

If the scale is odd: N = (precision + 4) / 2
If the scale is even: N = (precision + 3) / 2

For example, a MONEY data type with a precision of 16 and a scale of 2 (MONEY(16,2)) requires 10 or (16 + 3)/2, bytes of

storage.

In the default locale, client applications format values from MONEY columns with the following currency notation:

105

HCL Informix 14.10 - SQL programming Guide

106

• A currency symbol: a dollar sign ($) at the front of the value

• A thousands separator: a comma (,) that separates every three digits in the integer part of the value

• A decimal point: a period (.) between the integer and fractional parts of the value

To change the format for MONEY values, change the DBMONEY environment variable. For valid DBMONEY settings, see

DBMONEY environment variable on page 162.

The default value that the database server uses for scale is locale-dependent. The default locale specifies a default scale of

two. For non-default locales, if the scale is omitted from the declaration, the database server creates MONEY values with a

locale-specific scale.

The currency notation that client applications use is locale-dependent. If you specify a nondefault locale, the client uses a

culture-specific format for MONEY values that might differ from the default U.S. English format in the leading (or trailing)

currency symbol, thousands separator, and decimal separator, depending on what the locale files specify. For more

information about locale dependency, see the HCL® Informix® GLS User's Guide.

MULTISET(e) data type
The MULTISET data type is a collection type that stores a non-ordered set that can include duplicate element values.

The elements in a MULTISET have no ordinal position. That is, there is no concept of a first, second, or third element in a

MULTISET. (For a collection type with ordinal positions for elements, see LIST(e) data type on page 103.)

All elements in a MULTISET have the same element type. To specify the element type, use the following syntax:

MULTISET(element_type NOT NULL)

The element_type of a collection can be any of the following types:

• Any built-in type, except SERIAL, SERIAL8, BIGSERIAL, BYTE, and TEXT

• An unnamed or a named ROW type

• Another collection type or opaque type

You can use MULTISET anywhere that you use any other data type, unless otherwise indicated. For example:

• After the IN predicate in the WHERE clause of a SELECT statement to search for matching MULTISET values

• As an argument to the CARDINALITY or mi_collection_card() function to determine the number of elements in a

MULTISET column

You cannot use MULTISET values as arguments to an aggregate function such as AVG, MAX, MIN, or SUM.

You must specify the NOT NULL constraint for MULTISET elements. No other constraints are valid for MULTISET columns.

For more information about the MULTISET collection type, see the HCL® Informix® Guide to SQL: Syntax.

Two multiset data values are equal if they have the same elements, even if the elements are in different positions within the

set. The following examples are both multiset values but are not equal:

Chapter 1. SQL programming

MULTISET {"blue", "green", "yellow"}
MULTISET {"blue", "green", "yellow", "blue"}

The following multiset values are equal:

MULTISET {"blue", "green", "blue", "yellow"}
MULTISET {"blue", "green", "yellow", "blue"}

No more than 97 columns of the same table can be declared as MULTISET data types. (The same restriction applies to SET

and LIST collection types.)

Named ROW

See ROW data type, Named on page 108.

NCHAR(n) data type
The NCHAR data type stores fixed-length character data. The data can be a string of single-byte or multibyte letters, digits,

and other symbols that are supported by the code set of the database locale.

The main difference between CHAR and NCHAR data types is the collating order.

The collation order of the CHAR data type follows the code-set order, but the collating order of the NCHAR data type can be a

localized order, if DB_LOCALE (or SET COLLATION) specifies a locale that defines a localized order for collation.

Size specifications ib NCHAR data type declarations can be affected by the SQL_LOGICAL_CHAR configuration parameter

that is described in the section Logical Character Semantics in Character Type Declarations on page 120.

In databases that are created with the NLSCASE INSENSITIVE property, operations on NCHAR strings ignore letter case,

ordering data values without respect to or preference for letter case. For example, the NCHAR string "IDS" might precede or

follow "IdS" or "iDs" in the collated list that a query returns, depending on the order in which these data strings are retrieved,

because all of the following NCHAR strings are treated as duplicate values:

"ids" "IDS" "idS" "IDs" "IdS" "iDs" "iDS" "Ids"

NUMERIC(p,s) data type
The NUMERIC data type is a synonym for fixed-point DECIMAL.

NVARCHAR(m,r) data type
The NVARCHAR data type stores strings of varying lengths. The string can include digits, symbols, and both single-byte and

(in some locales) multibyte characters.

The main difference between VARCHAR and NVARCHAR data types is the collation order. Collation of VARCHAR data follows

code-set order, but NVARCHAR collation can be locale specific, if DB_LOCALE (or SET COLLATION) has specified a locale

that defines a localized order for collation. (The section Collating VARCHAR Values on page 118 describes an exception.)

107

HCL Informix 14.10 - SQL programming Guide

108

A column declared as NVARCHAR, without parentheses or parameters, has a maximum size of one byte, and a reserved size

of zero.

The first parameter in NVARCHAR data type declarations can be affected by the SQL_LOGICAL_CHAR configuration

parameter that is described in the section Logical Character Semantics in Character Type Declarations on page 120.

No more than 195 columns of the same table can be NVARCHAR data types.

In databases that are created with the NLSCASE INSENSITIVE property, operations on NVARCHAR strings ignore letter

case, ordering data values without respect to or preference for letter case. For example, the NVARCHAR string "IBM" might

precede or follow "IbM" or "iBm" in the collated list that a query returns, depending on the order in which these data strings

are retrieved, because all of the following NVARCHAR strings are treated as duplicate values:

"ibm" "IBM" "ibM" "IBm" "IbM" "iBm" "iBM" "Ibm"

OPAQUE data types
An OPAQUE type is a data type for which you must provide information to the database server.

You must provide this information:

• A data structure for how the data values are stored on disk

• Support functions to determine how to convert between the disk storage format and the user format for data entry

and display

• Secondary access methods that determine how the index on this data type is built, used, and manipulated

• User functions that use the data type

• A system catalog entry to register the OPAQUE type in the database

The internal structure of an OPAQUE type is not visible to the database server and can only be accessed through user-defined

routines. Definitions for OPAQUE types are stored in the sysxtdtypes system catalog table. These SQL statements maintain

the definitions of OPAQUE types in the database:

• The CREATE OPAQUE TYPE statement registers a new OPAQUE type in the database.

• The DROP TYPE statement removes a previously defined OPAQUE type from the database.

For more information about the above-mentioned SQL statements, see the HCL® Informix® Guide to SQL: Syntax. For

information about how to create OPAQUE types and an example of an OPAQUE type, see HCL® Informix® User-Defined

Routines and Data Types Developer's Guide.

REAL data type
The REAL data type is a synonym for SMALLFLOAT.

ROW data type, Named
A named ROW data type must be declared with a name. This SQL identifier must be unique among data type names within

the same database.

Chapter 1. SQL programming

(An unnamed ROW type is a ROW type that contains fields but has no user-defined name.) Only named ROW types support

data type inheritance. For more information, see ROW Data Types on page 132.

Defining named ROW types

You must declare and register in the database a new named ROW type by using the CREATE ROW TYPE statement of SQL.

Definitions for named ROW types are stored in the sysxtdtypes system catalog table.

The fields of a ROW data type can be any built-in data type or UDT, but TEXT or BYTE fields of a ROW type are valid in typed

tables only. If you want to assign a ROW type to a column in the CREATE TABLE or ALTER TABLE statements, its elements

cannot be TEXT or BYTE data types.

In general, the data type of a field of a ROW type can be any of these types:

• A built-in type (except for the TEXT or BYTE data types)

• A collection type (LIST, MULTISET, or SET)

• A distinct type

• Another named or unnamed ROW type

• An opaque type

These SQL statements maintain the definitions of named ROW data types:

• The CREATE ROW TYPE statement adds a named ROW type to the database.

• The DROP ROW TYPE statement removes a previously defined named ROW type from the database.

No more than 195 columns of the same table can be named ROW types.

For details about these SQL syntax statements, see the HCL® Informix® Guide to SQL: Syntax. For examples of how to create

and use named ROW types, see the IBM® Informix® Database Design and Implementation Guide.

Equivalence and named ROW types

No two named ROW types can be equal, even if they have identical structures, because they have different names. For

example, the following named ROW types have the same structure (the same number of fields and the same order of data

types of fields within the row) but they are not equal:

name_t (lname CHAR(15), initial CHAR(1), fname CHAR(15))
emp_t (lname CHAR(15), initial CHAR(1), fname CHAR(15))

A Boolean equality condition like name_t = emp_t always evaluates to FALSE if both of the operands are different named ROW

types.

Named ROW types and inheritance

Named ROW types can be part of a type-inheritance hierarchy. One named ROW type can be the parent (or supertype) of

another named ROW type. A subtype in a hierarchy inherits all the properties of its supertype. Type inheritance is explained in

the CREATE ROW TYPE statement in the HCL® Informix® Guide to SQL: Syntax and in the IBM® Informix® Database Design

and Implementation Guide.

109

HCL Informix 14.10 - SQL programming Guide

110

Typed tables

Tables that are part of an inheritance hierarchy must be typed tables. Typed tables are tables that have been assigned a

named ROW type. For the syntax you use to create typed tables, see the CREATE TABLE statement in the HCL® Informix®

Guide to SQL: Syntax. Table inheritance and its relation to type inheritance is also explained in that section. For information

about how to create and use typed tables, see the IBM® Informix® Database Design and Implementation Guide.

ROW data type, Unnamed
An unnamed ROW type contains fields but has no user-declared name. An unnamed ROW type is defined by its structure.

Two unnamed ROW types are equal if they have the same structure (meaning the ordered list of the data types of the fields).

If two unnamed ROW types have the same number of fields, and if the order of the data type of each field in one ROW type

matches the order of data types of the corresponding fields in the other ROW data type, then the two unnamed ROW data

types are equal.

For example, the following unnamed ROW types are equal:

ROW (lname char(15), initial char(1) fname char(15))
ROW (dept char(15), rating char(1) name char(15))

The following ROW types have the same number of fields and the same data types, but are not equal, because their fields are

not in the same order:

ROW (x integer, y varchar(20), z real)
ROW (x integer, z real, y varchar(20))

A field of an unnamed ROW type can be any of the following data types:

• A built-in type

• A collection type

• A distinct type

• Another ROW type

• An opaque type

Unnamed ROW types cannot be used in typed tables or in type inheritance hierarchies. For more information about unnamed

ROW types, see the HCL® Informix® Guide to SQL: Syntax and the IBM® Informix® Database Design and Implementation

Guide.

Creating unnamed ROW types

About this task

You can create an unnamed ROW type in several ways:

• You can declare an unnamed ROW type using the ROW keyword. Each field in a ROW can have a different field type.

To specify the field type, use the following syntax:

ROW(field_name field_type, ...)

Chapter 1. SQL programming

The field_name must conform to the rules for SQL identifiers. (See the Identifier section in the HCL® Informix® Guide

to SQL: Syntax.)

• To generate an unnamed ROW type, use the ROW keyword as a constructor with a series of values. A corresponding

unnamed ROW type is created, using the default data types of the specified values.

For example, the following declaration:

ROW(1, 'abc', 5.30)

defines this unnamed ROW data type:

ROW (x INTEGER, y VARCHAR, z DECIMAL)

• You can create an unnamed ROW type by an implicit or explicit cast from a named ROW type or from another

unnamed ROW type.

• The rows of any table (except a table defined on a named ROW type) are unnamed ROW types.

No more than 195 columns of the same table can be unnamed ROW types.

 Inserting Values into Unnamed ROW Type Columns

About this task

When you specify field values for an unnamed ROW type, list the field values after the constructor and between parentheses.

For example, suppose you have an unnamed ROW-type column. The following INSERT statement adds one group of field

values to this ROW column:

INSERT INTO table1 VALUES (ROW(4, 'abc'))

You can specify a ROW column in the IN predicate in the WHERE clause of a SELECT statement to search for matching ROW

values. For more information, see the Condition section in the HCL® Informix® Guide to SQL: Syntax.

SERIAL(n) data type
The SERIAL data type stores a sequential integer, of the INT data type, that is automatically assigned by the database server

when a new row is inserted.

The default serial starting number is 1, but you can assign an initial value, n, when you create or alter the table.

• You must specify a positive number for the starting number.

• If you specify zero (0) for the starting number, the value that is used is the maximum positive value that already exists

in the SERIAL column + 1.

The maximum value for SERIAL is 2,147,483,647. If you assign a number greater than 2,147,483,647, you receive a syntax

error. Use the SERIAL8 or BIGSERIAL data type, rather than SERIAL, if you need a larger range.

A table can have no more than one SERIAL column, but it can have a SERIAL column and either a SERIAL8 column or a

BIGSERIAL column.

111

HCL Informix 14.10 - SQL programming Guide

112

SERIAL values in a column are not automatically unique. You must apply a unique index or primary key constraint to this

column to prevent duplicate serial numbers. If you use the interactive schema editor in DB-Access to define the table, a

unique index is applied automatically to a SERIAL column.

SERIAL numbers might not be consecutive, because of concurrent users, rollbacks, and other factors.

The DEFINE variable LIKE column syntax of SPL for indirect typing declares a variable of the INTEGER data type if column is a

SERIAL data type.

After a number is assigned, it cannot be changed. You can insert a value into a SERIAL column (using the INSERT statement)

or reset a serial column (using the ALTER TABLE statement), if the new value does not duplicate any existing value in the

column. To insert into a SERIAL column, your database server increments by one the previous value (or the reset value, if that

is larger) and assigns the result as the entered value. If ALTER TABLE has reset the next value of a SERIAL column to a value

smaller than values already in that column, however, the next value follows this formula:

(maximum existing value in SERIAL column) + 1

For example, if you reset the serial value of customer.customer_num to 50, when the largest existing value is 128, the next

assigned number will be 129. For more details on SERIAL data entry, see the HCL® Informix® Guide to SQL: Syntax.

A SERIAL column can store unique codes such as order, invoice, or customer numbers. SERIAL data values require four

bytes of storage, and have the same precision as the INTEGER data type. For details of another way to assign unique whole

numbers to each row of a database table, see the CREATE SEQUENCE statement in HCL® Informix® Guide to SQL: Syntax.

SERIAL8(n) data type
The SERIAL8 data type stores a sequential integer, of the INT8 data type, that is assigned automatically by the database

server when a new row is inserted.

The SERIAL8 data type behaves like the SERIAL data type, but with a larger range. For more information about how to insert

values into SERIAL8 columns, see the HCL® Informix® Guide to SQL: Syntax.

A SERIAL8 data column is commonly used to store large, unique numeric codes such as order, invoice, or customer numbers.

SERIAL8 data values have the same precision and storage requirements as INT8 values (page INT8 on page 100).

The default serial starting number is 1, but you can assign an initial value, n, when you create or alter the table.

• You must specify a positive number for the starting number.

• If you specify zero (0) for the starting number, the value that is used is the maximum positive value that already exists

in the SERIAL8 column + 1.

A table can have no more than one SERIAL column, but it can have a SERIAL column and either a SERIAL8 column or a

BIGSERIAL column.

SERIAL8 values in a column are not automatically unique. You must apply a unique index or primary key constraint to this

column to prevent duplicate serial numbers. If you use the interactive schema editor in DB-Access to define the table, a

unique index is applied automatically to a SERIAL8 column.

Chapter 1. SQL programming

SERIAL8 numbers might not be consecutive, because of concurrent users, rollbacks, and other factors.

The DEFINE variable LIKE column syntax of SPL for indirect typing declares a variable of the INTEGER data type if column is a

SERIAL8 data type.

For more information, see Assigning a Starting Value for SERIAL8 on page 113. For information about using the SERIAL8

data type with the INT8 or BIGINT data type, see Using SERIAL8 and BIGSERIAL with INT8 or BIGINT on page 87

Assigning a Starting Value for SERIAL8

The default serial starting number is 1, but you can assign an initial value, n, when you create or alter the table. To start the

values at 1 in a SERIAL8 column of a table, give the value 0 for the SERIAL8 column when you insert rows into that table.

The database server will assign the value 1 to the SERIAL8 column of the first row of the table. The largest SERIAL8 value

that you can assign is 263-1 (9,223,372,036,854,775,807). If you assign a value greater than this, you receive a syntax error.

When the database server generates a SERIAL8 value of this maximum number, it wraps around and starts generating values

beginning at 1.

After a nonzero SERIAL8 number is assigned, it cannot be changed. You can, however, insert a value into a SERIAL8 column

(using the INSERT statement) or reset the SERIAL8 value n (using the ALTER TABLE statement), if that value does not

duplicate any existing values in the column.

When you insert a number into a SERIAL8 column or reset the next value of a SERIAL8 column, your database server assigns

the next number in sequence to the number entered. If you reset the next value of a SERIAL8 column to a value that is less

than the values already in that column, however, the next value is computed using the following formula:

maximum existing value in SERIAL8 column + 1

For example, if you reset the SERIAL8 value of the customer_num column in the customer table to 50, when the highest-

assigned customer number is 128, the next customer number assigned is 129.

For information about using the SERIAL8 data type with the INT8 or BIGINT data type, see Using SERIAL8 and BIGSERIAL

with INT8 or BIGINT on page 87

SET(e) data type
The SET data type is an unordered collection type that stores unique elements

Duplicate element values are not valid as explained in HCL® Informix® Guide to SQL: Syntax. (For a collection type that

supports duplicate values, see the description of MULTISET in MULTISET(e) data type on page 106.)

No more than 97 columns of the same table can be declared as SET data types. (The same restriction also applies to

MULTISET and LIST collection types.)

The elements in a SET have no ordinal position. That is, no construct of a first, second, or third element in a SET exists. (For

a collection type with ordinal positions for elements, see LIST(e) data type on page 103.) All elements in a SET have the

same element type. To specify the element type, use this syntax:

SET(element_type NOT NULL)

113

HCL Informix 14.10 - SQL programming Guide

114

The element_type of a collection can be any of the following types:

• A built-in type, except SERIAL, SERIAL8, BIGSERIAL, BYTE, and TEXT

• A named or unnamed ROW type

• Another collection type

• An opaque type

You must specify the NOT NULL constraint for SET elements. No other constraints are valid for SET columns. For more

information about the syntax of the SET collection type, see the HCL® Informix® Guide to SQL: Syntax.

You can use SET anywhere that you use any other data type, unless otherwise indicated. For example:

• After the IN predicate in the WHERE clause of a SELECT statement to search for matching SET values

• As an argument to the CARDINALITY or mi_collection_card() function to determine the number of elements in a SET

column

SET values are not valid as arguments to an aggregate function such as AVG, MAX, MIN, or SUM. For more information, see

the Condition and Expression sections in the HCL® Informix® Guide to SQL: Syntax.

The following examples declare two sets. The first statement declares a set of integers and the second declares a set of

character elements.

SET(INTEGER NOT NULL)
SET(CHAR(20) NOT NULL)

The following examples construct the same sets from value lists:

SET{1, 5, 13}
SET{"Oakland", "Menlo Park", "Portland", "Lenexa"}

In the following example, a SET constructor function is part of a CREATE TABLE statement:

CREATE TABLE tab
(
 c CHAR(5),
 s SET(INTEGER NOT NULL)
);

The following set values are equal:

SET{"blue", "green", "yellow"}
SET{"yellow", "blue", "green"}

SMALLFLOAT
The SMALLFLOAT data type stores single-precision floating-point numbers with approximately nine significant digits.

SMALLFLOAT corresponds to the float data type in C. The range of values for a SMALLFLOAT data type is the same as the

range of values for the C float data type on your computer.

Chapter 1. SQL programming

A SMALLFLOAT data type column typically stores scientific numbers that can be calculated only approximately. Because

floating-point numbers retain only their most significant digits, the number that you enter in this type of column and the

number the database displays might differ slightly depending on how your computer stores floating-point numbers internally.

For example, you might enter a value of 1.1000001 in a SMALLFLOAT field and, after processing the SQL statement, the

application might display this value as 1.1. This difference occurs when a value has more digits than the floating-point

number can store. In this case, the value is stored in its approximate form with the least significant digits treated as zeros.

SMALLFLOAT data types usually require four bytes of storage. Conversion of a SMALLFLOAT value to a DECIMAL value

results in nine digits of precision.

SMALLINT data type
The SMALLINT data type stores small whole numbers that range from –32,767 to 32,767. The maximum negative number, –

32,768, is a reserved value and cannot be used.

The SMALLINT value is stored as a signed binary integer.

Integer columns typically store counts, quantities, and so on. Because the SMALLINT data type requires only two bytes per

value, arithmetic operations are performed efficiently. SMALLINT, however, stores only a limited range of values, compared

to other built-in numeric data types. If a number is outside the range of the minimum and maximum SMALLINT values, the

database server does not store the data value, but instead issues an error message.

TEXT data type
The TEXT data type stores any kind of text data. It can contain both single-byte and multibyte characters that the locale

supports. The term simple large object refers to an instance of a TEXT or BYTE data type.

A TEXT column has a theoretical limit of 231 bytes (two gigabytes) and a practical limit that your available disk storage

determines. No more than 195 columns of the same table can be declared as TEXT data types. The same restriction also

applies to BYTE data types.

You can store, retrieve, update, or delete the value in a TEXT column.

You can use TEXT operands in Boolean expressions only when you are testing for NULL values with the IS NULL or IS NOT

NULL operators.

You can use the following methods, which can load rows or update fields, to insert TEXT data:

• With the dbload or onload utilities

• With the LOAD statement (DB-Access)

• From TEXT host variables (ESQL)

A built-in cast exists to convert TEXT objects to CLOB objects. For more information, see the IBM® Informix® Database

Design and Implementation Guide.

115

HCL Informix 14.10 - SQL programming Guide

116

Strings of the TEXT data type are collated in code-set order. For more information about collating orders, see the HCL®

Informix® GLS User's Guide.

Selecting data in a TEXT column

When you select a TEXT column, you can receive all or part of it. To retrieve it all, use the regular syntax for selecting a

column. You can also select any part of a TEXT column by using subscripts, as this example shows:

SELECT cat_descr [1,75] FROM catalog WHERE catalog_num = 10001

The SELECT statement reads the first 75 bytes of the cat_descr column associated with the catalog_num value 10001.

Loading data into a TEXT column

You can use the LOAD statement to insert data into a table. For example, the inp.txt file contains the following

information:

1|aaaaa|
2|bbbbb|
3|cccccc|

To load this data into the blobtab table use the following statement:

LOAD FROM inp.txt INSERT INTO blobtab;

Limitations

You cannot use TEXT operands in arithmetic or string expressions, nor can you assign literals to TEXT columns in the SET

clause of the UPDATE statement.

You also cannot use TEXT values in any of the following ways:

• With aggregate functions

• With the IN clause

• With the MATCHES or LIKE clauses

• With the GROUP BY clause

• With the ORDER BY clause

You cannot use a quoted text string, number, or any other actual value to insert or update TEXT columns.

You cannot use the MEDIUM or HIGH options of the UPDATE STATISTICS statement to calculate distribution statistics on

TEXT columns.

Important: An error results if you try to return a TEXT column from a subquery, even if no TEXT column is used in a

comparison condition or with the IN predicate.

Nonprintable Characters in TEXT Values

TEXT columns typically store documents, program source files, and so on. In the default U.S. English locale, data objects of

type TEXT can contain a combination of printable ASCII characters and the following control characters:

Chapter 1. SQL programming

• Tab (CTRL-I)

• New line (CTRL-J)

• New page (CTRL-L)

Both printable and nonprintable characters can be inserted in text columns. HCL Informix® products do not do any checking

of data values that are inserted in a column of the TEXT data type. (Applications might have difficulty, however, in displaying

TEXT values that include non-printable characters.) For detailed information about entering and displaying nonprintable

characters, see Nonprintable Characters with CHAR on page 91.

Unnamed ROW

See ROW data type, Unnamed on page 110.

VARCHAR(m,r) data type
The VARCHAR data type stores character strings of varying length that contain single-byte and (if the locale supports them)

multibyte characters, where m is the maximum size (in bytes) of the column and r is the minimum number of bytes reserved

for that column.

A column declared as VARCHAR without parentheses or parameters has a maximum size of one byte, and a reserved size of

zero.

The VARCHAR data type is the HCL Informix® implementation of a character varying data type. The ANSI standard data type

for varying-length character strings is CHARACTER VARYING.

The size of the maximum size (m) parameter of a VARCHAR column can range from 1 to 255 bytes. If you are placing an

index on a VARCHAR column, the maximum size is 254 bytes. You can store character strings that are shorter, but not longer,

than the m value that you specify.

Specifying the minimum reserved space (r) parameter is optional. This value can range from 0 to 255 bytes but must be less

than the maximum size (m) of the VARCHAR column. If you do not specify any minimum value, it defaults to 0. You should

specify this parameter when you initially intend to insert rows with short or NULL character strings in the column but later

expect the data to be updated with longer values.

For variable-length strings longer than 255 bytes, you can use the LVARCHAR data type, whose upper limit is 32,739 bytes,

instead of VARCHAR.

In an index based on a VARCHAR column (or on a NVARCHAR column), each index key has a length that is based on the data

values that are actually entered, rather than on the declared maximum size of the column. (See, however, IFX_PAD_VARCHAR

environment variable on page 182 for information about how you can configure the effective size of VARCHAR and

NVARCHAR data strings that HCL Informix® sends or receives.)

When you store a string in a VARCHAR column, only the actual data characters are stored. The database server does not

strip a VARCHAR string of any user-entered trailing blanks, nor pad a VARCHAR value to the declared length of the column. If

you specify a reserved space (r), but some data strings are shorter than r bytes, some space reserved for rows goes unused.

117

HCL Informix 14.10 - SQL programming Guide

118

VARCHAR values are compared to other VARCHAR values (and to other character-string data types) in the same way that

CHAR values are compared. The shorter value is padded on the right with blank spaces until the values have equal lengths;

then they are compared for the full length.

No more than 195 columns of the same table can be VARCHAR data types.

Nonprintable Characters with VARCHAR

Nonprintable VARCHAR characters are entered, displayed, and treated in the same way that nonprintable characters in CHAR

values are treated. For details, see Nonprintable Characters with CHAR on page 91.

Storing Numeric Values in a VARCHAR Column

When you insert a numeric value in a VARCHAR column, the stored value does not get padded with trailing blanks to the

maximum length of the column. The number of digits in a numeric VARCHAR value is the number of characters that are

required to store that value. For example, in the next example, the value stored in table mytab is 1.

create table mytab (col1 varchar(10));
insert into mytab values (1);

Tip: VARCHAR treats C null (binary 0) and string terminators as termination characters for nonprintable characters.

In some East Asian locales, VARCHAR data types can store multibyte characters if the database locale supports a

multibyte code set. If you store multibyte characters, make sure to calculate the number of bytes needed. For more

information, see the HCL® Informix® GLS User's Guide.

Multibyte Characters with VARCHAR

The first parameter in VARCHAR data type declarations can be affected by the SQL_LOGICAL_CHAR feature that is described

in the section Logical Character Semantics in Character Type Declarations on page 120.

Collating VARCHAR Values

The main difference between the NVARCHAR and the VARCHAR data types (like the difference between CHAR and NCHAR)

is the difference in collating order. In general, collation of VARCHAR (like CHAR and LVARCHAR) values is in the order of the

characters as they exist in the code set.

An exception is the MATCHES operator, which applies a localized collation to NVARCHAR and VARCHAR values (and

to CHAR, LVARCHAR, and NCHAR values) if you use bracket ([]) symbols to define ranges when DB_LOCALE (or SET

COLLATION) has specified a localized collating order. For more information, see the HCL® Informix® GLS User's Guide.

Built-In Data Types

HCL Informix® supports the following built-in data types.

Chapter 1. SQL programming

Category Data Types

Character CHAR, CHARACTER VARYING, LVARCHAR, NCHAR, NVARCHAR, VARCHAR,

IDSSECURITYLABEL

Large-object Simple-large-object types: BYTE, TEXT Smart-large-object types: BLOB,

CLOB

Logical BOOLEAN

Multirepresentational BSON and JSON built-in opaque data types on page

Numeric BIGINT, BIGSERIAL, DECIMAL, FLOAT, INT8, INTEGER, MONEY, SERIAL,

SERIAL8, SMALLFLOAT, SMALLINT

Time DATE, DATETIME, INTERVAL

Related reference

Summary of data types on page 81

Related information

BSON and JSON built-in opaque data types on page

Character Data Types
The character data types store string values.

Built-in Character Types

Table 48. Attributes of built-in character data types

Size (in bytes) Default Reserved Collation Length

CHAR(n) 1 to 32,767 1 byte None Code set Fixed

NCHAR(n) 1 to 32,767 1 byte None Localized Fixed

VARCHAR(m, r) 1 to 255 0 for r 0 to 255 bytes Code set Variable

NVARCHAR(m, r) 1 to 255 0 for r 0 to 255 bytes Localized Variable

LVARCHAR(m) 1 to 32,739 2048 bytes None Code set Variable

The database server also uses LVARCHAR to represent the external format of opaque data types. In I/O operations of the

database server, LVARCHAR data values have no upper limit on their size, apart from file size restrictions or limits of your

operating system or hardware resources.

119

../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770
../sqs/ids_sqs_1770.html#ids_sqs_1770

HCL Informix 14.10 - SQL programming Guide

120

Logical Character Semantics in Character Type Declarations

HCL Informix® supports a configuration parameter, SQL_LOGICAL_CHAR, whose setting can instruct the SQL parser

to interpret the maximum size of character columns in data type declarations of the CREATE TABLE or ALTER TABLE

statements as logical characters, rather than in units of bytes.

When a database is created, the current SQL_LOGICAL_CHAR setting for the database server is recorded in the systables

table of the system catalog. The feature has no effect on tables that are subsequently created or altered in the database if

the setting is OFF or 1.

In a database where the SQL_LOGICAL_CHAR setting is ON or is a digit between 2, 3, or 4, however, the SQL parser interprets

explicit and implicit size declarations as logical characters in declarations of SPL variables and declarations of columns in

database tables for the following character types:

• CHAR and CHARACTER

• CHARACTER VARYING and VARCHAR

• LVARCHAR

• NCHAR

• NVARCHAR

• DISTINCT types of the data types listed above

• DISTINCT types of those DISTINCT types

• ROW data type fields of the types listed above .

• LIST, MULTISET, and SET elements of the types listed above.

This feature has no effect on the maximum storage size limits for the character types listed in the previous table. For

databases that use a multibyte locale, however, it can reduce the risk of data truncation when a string is inserted into a

character column or assigned to a character variable.

For example, if 4 is the SQL_LOGICAL_CHAR setting for the database, then a VARCHAR(10, 5) specification is interpreted

as requesting a maximum of 40 bytes of storage, with 5 of these bytes reserved, creating a VARCHAR(40, 5) data type in

standard SQL notation, rather than what was specified in the declaration.

The reserve size parameters of VARCHAR and NVARCHAR data types are not affected by the SQL_LOGICAL_CHAR setting,

because the minimum size of a multibyte character is 1 byte. In this example, the minimum size of 5 multibyte characters is

5 bytes, a size that remains unchanged.

See the description of the SQL_LOGICAL_CHAR configuration parameter in the HCL® Informix® Administrator's Reference for

more information about the effect of the SQL_LOGICAL_CHAR setting in databases whose DB_LOCALE specifies a multibyte

locale. For additional information about multibyte locales and logical characters, see the HCL® Informix® GLS User's Guide.

IDSSECURITYLABEL

HCL Informix® also supports the IDSSECURITYLABEL data type for systems that implement label-based access control

(LBAC). This built-in data type can be formally classified as a character type, because it is defined as a DISTINCT OF

Chapter 1. SQL programming

VARCHAR(128) data type, but only users who hold the DBSECADM role can declare this data type in DDL operations. It

supports the LBAC security feature, rather than functioning as a general-purpose character type.

Data Type Promotion

For some string-manipulation operations of HCL Informix®, the five built-in character data types listed above support data

type promotion, in order to reduce the risk of string operations failing because a returned string is too large to be stored in

an NVARCHAR or VARCHAR column or program variable. See the topic "Return Types from CONCAT and String Manipulation

Functions" in HCL® Informix® Guide to SQL: Syntax for details of data type promotion among HCL Informix® character types.

National Language Support

The NCHAR and NVARCHAR types are sometimes called National Language Support data types because of their support

for localized collation. Because columns of type VARCHAR or NVARCHAR have no default size, you must specify a size (no

greater than 255) in their declaration. For VARCHAR or NVARCHAR columns on which an index is defined, the maximum size

is 254 bytes.

NLSCASE lNSENSITIVE Databases

In databases created with the NLSCASE INSENSITIVE keyword option, operations on data strings of the NCHAR or NVARCHAR

types makes no distinction between uppercase and lowercase variants of the same letter. Rows are stored in NCHAR or

NVARCHAR columns in the letter case in which characters were loaded, but data strings that consist of the same letters

in the same sequence are evaluated as duplicates, even if the case of some letters is not identical. For example, the

three NCHAR strings "ABC" and "AbC" and "abC" are treated as duplicates. Other built-in character types, including CHAR,

LVARCHAR, and VARCHAR, follow the default case-sensitive rules, so that the same three strings in a CHAR column evaluate

to distinct values.

Databases with the NLSCASE INSENSITIVE property also ignore the letter case of DISTINCT data types whose base types are

NCHAR or NVARCHAR, as well as NCHAR or NVARCHAR fields in named or unnamed ROW types, and NCHAR or NVARCHAR

elements of COLLECTION data types, including LIST, SET, or MULTISET.

In a database that is insensitive to the letter case of NCHAR or NVARCHAR values, string manipulation operations might

produce unexpected results, if they implicitly cast CHAR, LVARCHAR, or VARCHAR operands or arguments to NCHAR or

NVARCHAR data types. In some contexts, the operation can return a duplicate string, despite letter case variations that the

database server would not have treated as duplicates for the original data types.

Large-Object Data Types
Large-object data typedefinedTableseparate from large object storageA large object is a data object that is logically stored in a table column but physically stored independent of the column.

Large objects are stored separate from the table because they typically store a large amount of data. Separation of this data

from the table can increase performance.

Figure 3: Large-Object Data Types on page 122 shows the large-object data types.

121

HCL Informix 14.10 - SQL programming Guide

122

Figure 3. Large-Object Data Types

Only HCL Informix® supports BLOB and CLOB data types.

For the relative advantages and disadvantages of simple and smart large objects, see the IBM® Informix® Database Design

and Implementation Guide.

 Simple Large Objects

Simple large objects are a category of large objects that have a theoretical size limit of 231 bytes and a practical limit that

your disk capacity determines. HCL Informix® supports these simple-large-object data types:

BYTE

Stores binary data. For more detailed information about this data type, see the description on page BYTE data

type on page 89.

TEXT

Stores text data. For more detailed information about this data type, see the description on page TEXT data

type on page 115.

No more than 195 columns of the same table can be declared as BYTE or TEXT data types. Unlike smart large objects,

simple large objects do not support random access to the data. When you transfer a simple large object between a client

application and the database server, you must transfer the entire BYTE or TEXT value. If the data cannot fit into memory, you

must store the data value in an operating-system file and then retrieve it from that file.

BlobspacesdefinedChunksThe database server stores simple large objects in blobspaces. A blobspace is a logical storage area that contains one or

more chunks that only store BYTE and TEXT data. For information about how to define blobspaces, see your HCL® Informix®

Administrator's Guide.

Smart large objects
Smart large objects are a category of large objects that support random access to the data, and that are generally

recoverable.

The random access feature allows you to seek and read through the smart large object as if it were an operating-system file.

Smart large objects are also useful for opaque data types with large storage requirements. (See the description of opaque

data types in Opaque Data Types on page 132.) They have a theoretical size limit of 242 bytes and a practical limit that your

disk capacity determines.

HCL Informix® supports the following smart-large-object data types:

Chapter 1. SQL programming

BLOB

Stores binary data. For more information about this data type, see the description on page BLOB data type on

page 87.

CLOB

Stores text data. For more information about this data type, see CLOB data type on page 91.

HCL Informix® stores smart large objects in sbspaces. An sbspace is a logical storage area that contains one or more

chunks that store only BLOB and CLOB data. For information about how to define sbspaces, see your .

When you define a BLOB or CLOB column, you can determine the following large-object characteristics:

• LOG and NOLOG: whether the database server should log the smart large object in accordance with the current

database logging mode.

• KEEP ACCESS TIME and NO KEEP ACCESS TIME: whether the database server should keep track of the last time the

smart large object was accessed.

• HIGH INTEG and MODERATE INTEG: whether the database server should use sbspace page headers and page

footers to detect data corruption (HIGH INTEG), or only use page headers (MODERATE INTEG).

Use of these characteristics can affect performance. For information, see your .

When an SQL statement accesses a smart-large-object, the database server does not send the actual BLOB or CLOB data.

Instead, it establishes a pointer to the data and returns this pointer. The client application can then use this pointer in open,

read, or write operations on the smart large object.

To access a BLOB or CLOB column from within a client application, use one of the following application programming

interfaces (APIs):

• From within IBM® Informix® ESQL/C programs, use the smart-large-object API. (For more information, see the HCL®

Informix® Enterprise Replication Guide.)

• From within a DataBlade® module, use the Client and Server API. (For more information, see the HCL® Informix®

DataBlade® API Programmer's Guide.)

For information about smart large objects, see the HCL® Informix® Guide to SQL: Syntax and IBM® Informix® Database

Design and Implementation Guide.

Time Data Types

DATE and DATETIME data values represent zero-dimensional points in time; INTERVAL data values represent 1-dimensional

spans of time, with positive or negative values. DATE precision is always an integer count of days, but various field qualifiers

can define the DATETIME and INTERVAL precision. You can use DATE, DATETIME, and INTERVAL data in arithmetic and

relational expressions. You can manipulate a DATETIME value with another DATETIME value, an INTERVAL value, the current

time (specified by the keyword CURRENT), or some unit of time (using the keyword UNITS).

123

HCL Informix 14.10 - SQL programming Guide

124

You can use a DATE value in most contexts where a DATETIME value is valid, and vice versa. You also can use an INTERVAL

operand in arithmetic operations where a DATETIME value is valid. In addition, you can add two INTERVAL values and

multiply or divide an INTERVAL value by a number.

An INTERVAL column can hold a value that represents the difference between two DATETIME values or the difference

between (or sum of) two INTERVAL values. In either case, the result is a span of time, which is an INTERVAL value.

Conversely, if you add or subtract an INTERVAL from a DATETIME value, another DATETIME value is produced, because the

result is a specific time.

Table 49: Arithmetic Operations on DATE, DATETIME, and INTERVAL Values on page 124 lists the binary arithmetic

operations that you can perform on DATE, DATETIME, and INTERVAL operands, and the data type that is returned by the

arithmetic expression.

Table 49. Arithmetic Operations on DATE, DATETIME, and INTERVAL Values

Operand 1 Operator Operand 2 Result

DATE - DATETIME INTERVAL

DATETIME - DATE INTERVAL

DATE + or - INTERVAL DATETIME

DATETIME - DATETIME INTERVAL

DATETIME + or - INTERVAL DATETIME

INTERVAL + DATETIME DATETIME

INTERVAL + or - INTERVAL INTERVAL

DATETIME - CURRENT INTERVAL

CURRENT - DATETIME INTERVAL

INTERVAL + CURRENT DATETIME

CURRENT + or - INTERVAL DATETIME

DATETIME + or - UNITS DATETIME

INTERVAL + or - UNITS INTERVAL

INTERVAL * or / NUMBER INTERVAL

No other combinations are allowed. You cannot add two DATETIME values because this operation does not produce either a

specific time or a span of time. For example, you cannot add December 25 and January 1, but you can subtract one from the

other to find the time span between them.

Manipulating DATETIME Values
You can subtract most DATETIME values from each other.

Chapter 1. SQL programming

Dates can be in any order and the result is either a positive or a negative INTERVAL value. The first DATETIME value

determines the precision of the result, which includes the same time units as the first operand.

If the second DATETIME value has fewer fields than the first, the precision of the second operand is increased automatically

to match the first.

In the following example, subtracting the DATETIME YEAR TO HOUR value from the DATETIME YEAR TO MINUTE value

results in a positive interval value of 60 days, 1 hour, and 30 minutes. Because minutes were not included in the second

operand, the database server sets the minutes value for the second operand to 0 before performing the subtraction.

DATETIME (2003-9-30 12:30) YEAR TO MINUTE
 - DATETIME (2003-8-1 11) YEAR TO HOUR

Result: INTERVAL (60 01:30) DAY TO MINUTE

If the second DATETIME operand has more fields than the first (regardless of whether the precision of the extra fields

is larger or smaller than those in the first operand), the additional time unit fields in the second value are ignored in the

calculation.

In the next expression (and its result), the year is not included for the second operand. Therefore, the year is set

automatically to the current year (from the system clock-calendar), in this example 2005, and the resulting INTERVAL is

negative, which indicates that the second date is later than the first.

DATETIME (2005-9-30) YEAR TO DAY
 - DATETIME (10-1) MONTH TO DAY

Result: INTERVAL (-1) DAY TO DAY [assuming that the current
 year is 2005]

You can compare two DATETIME values by using the mi_datetime_compare() function.

Related reference

DATETIME data type on page 93

Related information

The mi_datetime_compare() function on page

Manipulating DATETIME with INTERVAL Values
ArithmeticINTERVAL operandsINTERVAL values can be added to or subtracted from DATETIME values. In either case, the result is a DATETIME value. If you

are adding an INTERVAL value to a DATETIME value, the order of values is unimportant; however, if you are subtracting, the

DATETIME value must come first. Adding or subtracting a positive INTERVAL value moves the DATETIME result forward or

backward in time. The expression shown in the following example moves the date ahead by three years and five months:

DATETIME (2000-8-1) YEAR TO DAY
 + INTERVAL (3-5) YEAR TO MONTH

Result: DATETIME (2004-01-01) YEAR TO DAY

125

../%20dapif/ids_dapif_553.html#ids_dapif_553
../%20dapif/ids_dapif_553.html#ids_dapif_553
../%20dapif/ids_dapif_553.html#ids_dapif_553
../%20dapif/ids_dapif_553.html#ids_dapif_553

HCL Informix 14.10 - SQL programming Guide

126

Important: Evaluate the logic of your addition or subtraction. Remember that months can have 28, 29, 30, or 31 days

and that years can have 365 or 366 days.

EXTEND functionDATETIME data typeEXTEND functionIn most situations, the database server automatically adjusts the calculation when the operands do not have the same

precision. In certain contexts, however, you must explicitly adjust the precision of one value to perform the calculation. If

the INTERVAL value you are adding or subtracting has fields that are not included in the DATETIME value, you must use the

EXTEND function to increase the precision of the DATETIME value. (For more information about the EXTEND function, see

the Expression segment in the HCL® Informix® Guide to SQL: Syntax.)

TO keywordEXTEND functionYEAR keywordEXTEND functionFor example, you cannot subtract an INTERVAL MINUTE TO MINUTE value from the DATETIME value in the previous example

that has a YEAR TO DAY field qualifier. You can, however, use the EXTEND function to perform this calculation, as the

following example shows:

EXTEND (DATETIME (2008-8-1) YEAR TO DAY, YEAR TO MINUTE)
 - INTERVAL (720) MINUTE(3) TO MINUTE

Result: DATETIME (2008-07-31 12:00) YEAR TO MINUTE

Field qualifierEXTEND functionThe EXTEND function allows you to explicitly increase the DATETIME precision from YEAR TO DAY to YEAR TO MINUTE. This

allows the database server to perform the calculation, with the resulting extended precision of YEAR TO MINUTE.

Manipulating DATE with DATETIME and INTERVAL Values

You can use DATE operands in some arithmetic expressions with DATETIME or INTERVAL operands by writing expressions

to do the manipulating, as Table 50: Results of Expressions That Manipulate DATE with DATETIME or INTERVAL Values on

page 126 shows.

Table 50. Results of Expressions That Manipulate DATE with DATETIME or INTERVAL Values

Expression Result

DATE - DATETIME INTERVAL

DATETIME - DATE INTERVAL

DATE + or - INTERVAL DATETIME

In the cases that Table 50: Results of Expressions That Manipulate DATE with DATETIME or INTERVAL Values on page 126

shows, DATE values are first converted to their corresponding DATETIME equivalents, and then the expression is evaluated

by the rules of arithmetic.

Although you can interchange DATE and DATETIME values in many situations, you must indicate whether a value is a DATE

or a DATETIME data type. A DATE value can come from the following sources:

• A column or program variable of type DATE

• The TODAY keyword

• DATE() functionThe DATE() function

Chapter 1. SQL programming

• The MDY function

• A DATE literal

A DATETIME value can come from the following sources:

• A column or program variable of type DATETIME

• DATETIME data typesource dataThe CURRENT keyword

• The EXTEND function

• A DATETIME literal

The database locale defines the default DATE and DATETIME formats. For the default locale, U.S. English, these formats are

'mm/dd/yy' for DATE values and 'yyyy-mm-dd hh:MM:ss' for DATETIME values.

Quoted stringDATE and DATETIME literalsCharacter stringDATETIME literalsTo represent DATE and DATETIME values as character strings, the fields in the strings must be in the required order. In other

words, when a DATE value is expected, the string must be in DATE format and when a DATETIME value is expected, the string

must be in DATETIME format. For example, you can use the string 10/30/2008 as a DATE string but not as a DATETIME string.

Instead, you must use 2008-10-30 or 08-10-30 as the DATETIME string.

In a nondefault locale, literal DATE and DATETIME strings must match the formats that the locale defines. For more

information, see the HCL® Informix® GLS User's Guide.

You can customize the DATE format that the database server expects with the DBDATE and GL_DATE environment variables.

You can customize the DATETIME format that the database server expects with the DBTIME and GL_DATETIME environment

variables. For more information, see DBDATE environment variable on page 157 and DBTIME environment variable on

page 167. For more information about all these environment variables, see the HCL® Informix® GLS User's Guide.

UNITS operatorDAY keywordUNITS operatorYou can also subtract one DATE value from another DATE value, but the result is a positive or negative INTEGER count

of days, rather than an INTERVAL value. If an INTERVAL value is required, you can either use the UNITS DAY operator to

convert the INTEGER value into an INTERVAL DAY TO DAY value, or else use EXTEND to convert one of the DATE values into

a DATETIME value before subtracting.

Qualifier fieldUNITS(/), slashDATE separatorFor example, the following expression uses the DATE() function to convert character string constants to DATE values,

calculates their difference, and then uses the UNITS DAY keywords to convert the INTEGER result into an INTERVAL value:

(DATE ('5/2/2007') - DATE ('4/6/1968')) UNITS DAY

Result: INTERVAL (12810) DAY(5) TO DAY

Important: Because of the high precedence of UNITS relative to other SQL operators, you should generally enclose

any arithmetic expression that is the operand of UNITS within parentheses, as in the preceding example.(()), parenthesesdelimiters in expressions

Qualifier fieldEXTENDIf you need YEAR TO MONTH precision, you can use the EXTEND function on the first DATE operand, as the following

example shows:

EXTEND (DATE ('5/2/2007'), YEAR TO MONTH) - DATE ('4/6/1969')

Result: INTERVAL (39-01) YEAR TO MONTH

127

HCL Informix 14.10 - SQL programming Guide

128

DATETIME data typein expressionsThe resulting INTERVAL precision is YEAR TO MONTH, because the DATETIME value came first. If the DATE value had come

first, the resulting INTERVAL precision would have been DAY(5) TO DAY.

Related reference

DATETIME data type on page 93

INTERVAL data type on page 101

Manipulating INTERVAL Values
You can add or subtract INTERVAL values only if both values are from the same class; that is, if both are year-month or both

are day-time.

In the following example, a SECOND TO FRACTION value is subtracted from a MINUTE TO FRACTION value:

INTERVAL (100:30.0005) MINUTE(3) TO FRACTION(4)
 - INTERVAL (120.01) SECOND(3) TO FRACTION

Result: INTERVAL (98:29.9905) MINUTE TO FRACTION(4)

The use of numeric qualifiers alerts the database server that the MINUTE and FRACTION in the first value and the SECOND in

the second value exceed the default number of digits.

When you add or subtract INTERVAL values, the second value cannot have a field with greater precision than the first. The

second INTERVAL, however, can have a field of smaller precision than the first. For example, the second INTERVAL can be

HOUR TO SECOND when the first is DAY TO HOUR. The additional fields (in this case MINUTE and SECOND) in the second

INTERVAL value are ignored in the calculation.

You can compare two INTERVAL values by using the mi_interval_compare() function.

Related reference

INTERVAL data type on page 101

Related information

The mi_interval_compare() function on page

Multiplying or Dividing INTERVAL Values
(*), asteriskmultiplication operatorYou can multiply or divide INTERVAL values by numbers. Any remainder from the calculation is ignored, however, and the

result is truncated to the precision of the INTERVAL. The following expression multiplies an INTERVAL value by a literal

number that has a fractional part:

INTERVAL (15:30.0002) MINUTE TO FRACTION(4) * 2.5

Result: INTERVAL (38:45.0005) MINUTE TO FRACTION(4)

../%20dapif/ids_dapif_554.html#ids_dapif_554
../%20dapif/ids_dapif_554.html#ids_dapif_554
../%20dapif/ids_dapif_554.html#ids_dapif_554
../%20dapif/ids_dapif_554.html#ids_dapif_554

Chapter 1. SQL programming

INTERVAL data typein expressionsIn this example, 15 * 2.5 = 37.5 minutes, 30 * 2.5 = 75 seconds, and 2 * 2.5 = 5 FRACTION (4). The 0.5 minute is converted

into 30 seconds and 60 seconds are converted into 1 minute, which produces the final result of 38 minutes, 45 seconds, and

0.0005 of a second. The result of any calculation has the same precision as the original INTERVAL operand.

 Extended Data Types

HCL Informix® enables you to create extended data types to characterize data that cannot easily be represented with the

built-in data types. (You cannot, however, use extended data types in distributed transactions that query external tables.) You

can create these categories of extended data types:

• Complex data types

• Distinct data types

• Opaque data types

Sections that follow provide an overview of each of these data types.

For more information about extended data types, see the IBM® Informix® Database Design and Implementation Guide and

HCL® Informix® User-Defined Routines and Data Types Developer's Guide.

Related reference

Summary of data types on page 81

Complex data types
A complex data type can store one or more values of other built-in or extended data types.

Figure 4: Complex Data Types of HCL Informix on page 129 shows the complex types that HCL Informix® supports.

Figure 4. Complex Data Types of HCL Informix®

The following table summarizes the structure of the complex data types.

Table 51. Collection types are complex data types that are made up of elements, each of which is of the same data type.

Collection types Description

LIST A group of ordered elements, each of which need not be unique within the group.

MULTISET A group of elements, each of which need not be unique. The order of the elements is ignored.

129

HCL Informix 14.10 - SQL programming Guide

130

Table 51. Collection types are complex data types that are made up of elements, each of which is of the same data type.

(continued)

Collection types Description

SET A group of elements, each of which is unique. The order of the elements is ignored.

Table 52. ROW types are complex data types that are made up of fields.

ROW types Description

Named ROW type Row types that are identified by their name.

Unnamed ROW type Row types that are identified by their structure.

Complex data types can be nested. For example, you can construct a ROW type whose fields include one or more sets,

multisets, ROW types, and lists. Likewise, a collection type can have elements whose data type is a ROW type or a collection

type.

Complex types that include opaque types inherit the following support functions.

• input

• output

• send

• recv

• import

• export

• import_binary

• export_binary

• assign

• destroy

• LO_handles

• hash

• lessthan

• equal

• lessthan (for ROW types only)

The topics that follow summarize the complex data types. For more information, see the IBM® Informix® Database Design

and Implementation Guide.

Collection Data Types

A collection data type is a complex type that is made up of one or more elements, all of the same data type. A collection

element can be of any data type (including other complex types) except BYTE, TEXT, SERIAL, SERIAL8, or BIGSERIAL.

Chapter 1. SQL programming

Important: An element cannot have a NULL value. You must specify the NOT NULL constraint for collection elements.

No other constraints are valid for collections.

HCL Informix® supports three kinds of built-in collection types: LIST, SET, and MULTISET. The keywords used to declare

these collections are the names of the type constructors or just constructors. For the syntax of collection types, see the

HCL® Informix® Guide to SQL: Syntax. No more than 97 columns of the same table can be declared as collection data types.

When you specify element values for a collection, list the element values after the constructor and between braces ({ }). For

example, suppose you have a collection column with the following MULTISET data type:

CREATE TABLE table1
(
 mset_col MULTISET(INTEGER NOT NULL)
)

The next INSERT statement adds one group of element values to this column. (The word MULTISET in these two examples is

the MULTISET constructor.)

INSERT INTO table1 VALUES (MULTISET{5, 9, 7, 5})

You can leave the braces empty to indicate an empty set:

INSERT INTO table1 VALUE (MULTISET{})

An empty collection is not equivalent to a NULL value for the column.

Accessing collection data

About this task

To access the elements of a collection column, you must fetch the collection into a collection variable and modify the

contents of the collection variable. Collection variables can be either of the following types:

• Variables in an SPL routine

For more information, see the HCL® Informix® Guide to SQL: Tutorial.

• Host variables in IBM® Informix® ESQL/C programs

For more information, see the HCL® Informix® Enterprise Replication Guide.

You can also use nested dot notation to access collection data. For more about accessing elements of a collection, see the

HCL® Informix® Guide to SQL: Tutorial.

131

HCL Informix 14.10 - SQL programming Guide

132

Important: Collection data types are not valid as arguments to functions that are used for functional indexes.

ROW Data Types
ROW data typesComplex data typeROW typesFields of a ROW data typeA ROW data type is an ordered collection of one or more elements, called fields. Each field has a name and a data type. The

fields of a ROW are comparable to the columns of a table, but with important differences:

• Field of a ROW data typeA field has no default clause.

• You cannot define constraints on a field.

• You can only use fields with row types, not with tables.

Two kinds of ROW data types exist:

• ROW data typesnamedNamed ROW data types are identified by their names.

• ROW data typesunnamedUnnamed ROW data types are identified by their structure.

The structure of an unnamed ROW data type is the number (and the order of data types) of its fields.

No more than 195 columns of the same table can be declared as ROW data types. For more information about ROW data

types, see ROW data type, Named on page 108 and ROW data type, Unnamed on page 110.

Complex data typeYou can cast between named and unnamed ROW data types; this is described in the IBM® Informix® Database Design and

Implementation Guide.

Distinct Data Types
A distinct data type has the same internal structure as some other source data type in the database. The source type can be

a built-in or extended data type. What distinguishes a distinct type from its source type are support functions that are defined

on the distinct type.

No more than approximately 97 columns of the same table can be DISTINCT of collection data types (SET, LIST, and

MULTISET). No more than approximately 195 columns of the same table can be DISTINCT types that are based on BYTE,

TEXT, ROW, LVARCHAR, NVARCHAR, or VARCHAR source types. (Here 195 columns is an approximate lower limit that

applies to platforms with a 2 Kb base page size. For platforms with a base page size of 4 Kb, such as Windows™ and AIX®

systems, the upper limit is approximately 450 columns of these data types.) For more information, see the section DISTINCT

data types on page 98. See also HCL® Informix® User-Defined Routines and Data Types Developer's Guide.

Opaque Data Types
An opaque data type is a user-defined or built-in data type that is fully encapsulated. The internal structure of an opaque data

type is unknown to the database server.

Except for user-defined types (UDTs) that are DISTINCT of built-in non-opaque types, UDTs whose source types are built-in

types are opaque data types. Similarly, UDTs that are DISTINCT of built-in opaque types are opaque types.

Chapter 1. SQL programming

Built-in opaque data types

The built-in data types BLOB, BOOLEAN, CLOB, BSON, JSON, and LVARCHAR are implemented as opaque data types. You

can access all of these in other databases of the same Informix® instance, but you cannot access the BLOB or CLOB built-in

opaque data types in cross-server distributed operations.

UDTs that are DISTINCT of built-in opaque types and that are cast to built-in types are valid in cross-server queries and other

DML operations, but all the casts and all the DISTINCT OF definitions for the UDTs must be identical in every participating

database.

Several system catalog tables, whose schema are shown in Structure of the System Catalog on page 10, have columns of

built-in opaque data types. For information on how the system catalog emcodes columns of built-in opaque data types, see

SYSCOLUMNS on page 23.

User-defined opaque data types

You must provide the following information to the database server for an opaque data type:

• A data structure for how the data values are stored on disk

• Support functions to determine how to convert between the disk storage format and the user format for data entry

and display

• Secondary access methods that determine how the index on this data type is built, used, and manipulated

• User functions that use the data type

• A system catalog entry to register the opaque type in the database

The internal structure of an opaque type is not visible to the database server and can only be accessed through user-defined

routines. Definitions for opaque types are stored in the sysxtdtypes system catalog table. These SQL statements maintain

the definitions of opaque types in the database:

• The CREATE OPAQUE TYPE statement registers a new opaque type in the database.

• The DROP TYPE statement removes a previously defined opaque type from the database.

For more information, see the section OPAQUE data types on page 108. See also HCL® Informix® User-Defined Routines

and Data Types Developer's Guide.

 Data Type Casting and Conversion

About this task

Occasionally, the data type that was assigned to a column with the CREATE TABLE statement is inappropriate. You can

change the data type of a column when you are required to store larger values than the current data type can accommodate.

The database server allows you to change the data type of the column or to cast its values to a different data type with either

of the following methods:

133

HCL Informix 14.10 - SQL programming Guide

134

• Use the ALTER TABLE statement to modify the data type of a column.

For example, if you create a SMALLINT column and later find that you must store integers larger than 32,767, you

must change the data type of that column to store the larger value. You can use ALTER TABLE to change the data

type to INTEGER. The conversion changes the data type of all values that currently exist in the column and any new

values that might be added.

• Use the CAST AS keywords or the double colon (::) cast operator to cast a value to a different data type.

Casting does not permanently alter the data type of a value; it expresses the value in a more convenient form. Casting

user-defined data types into built-in types allows client programs to manipulate data types without knowledge of their

internal structure.

If you change data types, the new data type must be able to store all of the old value.

Both data-type conversion and casting depend on casts registered in the syscasts system catalog table. For information

about syscasts, see SYSCASTS on page 20.

A cast is either built-in or user defined. Guidelines exist for casting distinct and extended data types. For more information

about casting opaque data types, see HCL® Informix® User-Defined Routines and Data Types Developer's Guide. For

information about casting other extended data types see, the IBM® Informix® Database Design and Implementation Guide.

Using Built-in Casts

User informix owns built-in casts. They govern conversions from one built-in data type to another. Built-in casts allow the

database server to attempt the following data-type conversions:

• A character type to any other character type

• A character type to or from another built-in type

• A numeric type to any other numeric type

The database server automatically invokes appropriate built-in casts when required. For time data types, conversion between

DATE and DATETIME data types requires explicit casts with the EXTEND function, and explicit casts with the UNITS operator

are required for number-to-INTERVAL conversion. Built-in casts are unavailable for converting large (BYTE, BLOB, CLOB, and

TEXT) built-in types to other built-in data types.

When you convert a column from one built-in data type to another, the database server applies the appropriate built-in

casts to each value already in the column. If the new data type cannot store any of the resulting values, the ALTER TABLE

statement fails.

For example, if you try to convert a column from the INTEGER data type to the SMALLINT data type and the following values

exist in the INTEGER column, the database server does not change the data type, because SMALLINT columns cannot

accommodate numbers greater than 32,767:

100 400 700 50000 700

Chapter 1. SQL programming

The same situation might occur if you attempt to transfer data from FLOAT or SMALLFLOAT columns to INTEGER,

SMALLINT, or DECIMAL columns. Errors of overflow, underflow, or truncation can occur during data type conversion.

Sections that follow describe database server behavior during certain types of casts and conversions.

Converting from number to number

When you convert data from one number data type to another, you occasionally find rounding errors.

The following table indicates which numeric data type conversions are acceptable and what kinds of errors you can

encounter when you convert between certain numeric data types. In the table, the following codes are used:

OK

No error

P

An error can occur, depending on the precision of the decimal

E

An error can occur, depending on the data value

D

No error, but less significant digits might be lost

Table 53. Acceptable conversions and possible errors

This table shows acceptable datatype conversions and conversions that might cause errors.

Target Type SMALL INT INTEGER INT8
SMALL

FLOAT
FLOAT DECIMAL

SMALLINT OK OK OK OK OK OK

INTEGER E OK OK E OK P

INT8 E E OK D E P

SMALLFLOAT E E E OK OK P

FLOAT E E E D OK P

DECIMAL E E E D D P

For example, if you convert a FLOAT value to DECIMAL(4,2), your database server rounds off the floating-point number before

storing it as DECIMAL.

This conversion can result in an error depending on the precision assigned to the DECIMAL column.

135

HCL Informix 14.10 - SQL programming Guide

136

 Converting Between Number and Character

You can convert a character column (of a data type such as CHAR, NCHAR, NVARCHAR, or VARCHAR) to a numeric column.

If a data string, however, contains any characters that are not valid in a number column (for example, the letter l instead of

the number 1), the database server returns an error.

You can also convert a numeric column to a character column. If the character column is not large enough to receive the

number, however, the database server generates an error. If the database server generates an error, it cannot complete

the ALTER TABLE statement or cast, and leaves the column values as characters. You receive an error message and the

statement is rolled back automatically (regardless of whether you are in a transaction).

 Converting Between INTEGER and DATE

You can convert an integer column (SMALLINT, INTEGER, or INT8) to a DATE value. The database server interprets the

integer as a value in the internal format of the DATE column. You can also convert a DATE column to an integer column. The

database server stores the internal format of the DATE column as an integer representing a Julian date.

 Converting Between DATE and DATETIME

You can convert DATE columns to DATETIME columns. If the DATETIME column contains more fields than the DATE column,

however, the database server either ignores the fields or fills them with zeros. The illustrations in the following list show how

these two data types are converted (assuming that the default date format is mm/dd/yyyy):

• If you convert DATE to DATETIME YEAR TO DAY, the database server converts the existing DATE values to DATETIME

values. For example, the value 08/15/2002 becomes 2002-08-15.

• If you convert DATETIME YEAR TO DAY to the DATE format, the value 2002-08-15 becomes 08/15/2002.

• If you convert DATE to DATETIME YEAR TO SECOND, the database server converts existing DATE values to

DATETIME values and fills in the additional DATETIME fields with zeros. For example, 08/15/2002 becomes

2002-08-15 00:00:00.

• If you convert DATETIME YEAR TO SECOND to DATE, the database server converts existing DATETIME to DATE

values but drops fields for time units smaller than DAY. For example, 2002-08-15 12:15:37 becomes 08/15/2002.

Using User-Defined Casts

Implicit and explicit casts are owned by the users who create them. They govern casts and conversions between user-

defined data types and other data types. Developers of user-defined data types must create certain implicit and explicit casts

and the functions that are used to implement them. The casts allow user-defined types to be expressed in a form that clients

can manipulate.

For information about how to register and use implicit and explicit casts, see the CREATE CAST statement in the HCL®

Informix® Guide to SQL: Syntax and the IBM® Informix® Database Design and Implementation Guide.

Chapter 1. SQL programming

 Implicit Casts

Implicit casts allow you to convert a user-defined data type to a built-in type or vice versa. The database server automatically

invokes a single implicit cast when it must evaluate and compare expressions or pass arguments. Operations that require

more than one implicit cast fail.

Users can explicitly invoke an implicit cast using the CAST AS keywords or the double colon (::) cast operator.

 Explicit Casts

Explicit casts, unlike implicit casts or built-in casts, are never invoked automatically by the database server. Users must

invoke them explicitly with the CAST AS keywords or with the double colon (::) cast operator.

Determining Which Cast to Apply

The database server uses the following rules to determine which cast to apply in a particular situation:

• To compare two built-in types, the database server automatically invokes the appropriate built-in casts.

• The database server applies only one implicit cast per operand. If two or more casts are required to convert the

operand to the specified type, the user must explicitly invoke the additional casts.

In the following example, the literal value 5.55 is implicitly cast to DECIMAL, and is then explicitly cast to MONEY, and

finally to yen:

CREATE DISTINCT TYPE yen AS MONEY
. . .
INSERT INTO currency_tab
 VALUES (5.55::MONEY::yen)

• To compare a distinct type to its source type, the user must explicitly cast one type to the other.

• To compare a distinct type to a type other than its source, the database server looks for an implicit cast between the

source type and the specified type.

If neither cast is registered, the user must invoke an explicit cast between the distinct type and the specified type.

If this cast is not registered, the database server automatically invokes a cast from the source type to the specified

type.

If none of these casts is defined, the comparison fails.

• To compare an opaque type to a built-in type, the user must explicitly cast the opaque type to a data type that the

database server understands (such as LVARCHAR, SENDRECV, IMPEXP, or IMPEXPBIN). The database server then

invokes built-in casts to convert the results to the specified built-in type.

• To compare two opaque types, the user must explicitly cast one opaque type to a form that the database server

understands (such as LVARCHAR, SENDRECV, IMPEXP, or IMPEXPBIN) and then explicitly cast this type to the second

opaque type.

For information about casting and the BOOLEAN, BSON, JSON, IMPEXP, IMPEXPBIN, LVARCHAR, and SENDRECV built-in

opaque data types, see HCL® Informix® User-Defined Routines and Data Types Developer's Guide.

137

HCL Informix 14.10 - SQL programming Guide

138

Casts for distinct types

You define a distinct type based on a built-in type or an existing opaque type or ROW type. Although data of the distinct type

has the same length and alignment and is passed in the same way as data of the source type, the two cannot be compared

directly. To compare a distinct type and its source type, you must explicitly cast one type to the other.

When you create a new distinct type, the database server automatically registers two explicit casts:

• A cast from the distinct type to its source type

• A cast from the source type to the distinct type

You can create an implicit cast between a distinct type and its source type. To create an implicit cast, however, you must first

drop the default explicit cast between the distinct type and its source type.

You also can use all casts that have been registered for the source type without modification on the distinct type. You can

also create and register new casts and support functions that apply only to the distinct type.

For examples that show how to create a cast function for a distinct type and register the function as cast, see the IBM®

Informix® Database Design and Implementation Guide.

Important: For releases of HCL Informix® earlier than Version 9.21, distinct data types inherited the built-in casts

that are provided for the source type. The built-in casts of the source type are not inherited by distinct data types in

this release.

 What Extended Data Types Can Be Cast?

The next table shows the extended data type combinations that you can cast.

Table 54. Extended data type combinations

Target Type Opaque Type Distinct Type
Named ROW

Type

Unnamed ROW

Type
Collection Type Built-in Type

Opaque Type Explicit or

implicit

Explicit Explicit Not Valid Not Valid Explicit or

implicit3

Distinct Type Explicit3 Explicit Explicit Not Valid Not Valid Explicit or

implicit

Named ROW Type Explicit3 Explicit Explicit3 Explicit1 Not Valid Not Valid

Unnamed ROW

Type

Not Valid Not Valid Explicit1 Implicit1 Not Valid Not Valid

Collection Type Not Valid Not Valid Not Valid Not Valid Explicit2 Not Valid

Built-in Type Explicit or

implicit3
Explicit or

implicit

Not Valid Not Valid Not Valid System defined

(implicit)

Chapter 1. SQL programming

1 Applies when two ROW types are structurally equivalent or casts exist to handle data conversions where corresponding

field types are not the same.

2 Applies when a cast exists to convert between the element types of the respective collection types.

3 Applies when a user-defined cast exists to convert between the two data types.

The table shows only whether a cast between a source type and a target type are possible. In some cases, you must first

create a user-defined cast before you can perform a conversion between two data types. In other cases, the database server

provides either an implicit cast or a built-in cast that you must explicitly invoke.

 Operator Precedence

An operator is a symbol or keyword that can be in an SQL expression. Most SQL operators are restricted in the data types of

their operands and returned values. Some operators only support operands of built-in data types; others can support built-in

and extended data types as operands.

The following table shows the precedence of the operators thatHCL Informix® supports, in descending (highest to lowest)

order of precedence. Operators with the same precedence are listed in the same row.

Operator Precedence Example in Expression

. (membership) [] (substring) customer.phone [1, 3]

UNITS x UNITS DAY

+ - (unary) - y

:: (cast) NULL::TEXT

* / x / y

+ - (binary) x -y

|| (concatenation) customer.fname || customer.lname

ANY ALL SOME orders.ship_date > SOME (SELECT paid_date FROM orders)

NOT NOT y

< <= = > >= != <> x >= y

IN BETWEEN ... AND LIKE MATCHES customer.fname MATCHES y

AND x AND y

OR x OR y

See the HCL® Informix® Guide to SQL: Syntax for the syntax and semantics of these SQL operators.

139

HCL Informix 14.10 - SQL programming Guide

140

Environment variables
Various environment variables affect the functionality of your HCL Informix® products. You can set environment variables

that identify your terminal, specify the location of your software and define other parameters.

Some environment variables are required; others are optional. You must either set or accept the default setting for required

environment variables.

These topics describe how to use the environment variables that apply to one or more HCL Informix® products and shows

how to set them.

Types of environment variables

Two types of environment variables are explained in this chapter:

• Environment variables that are specific to HCL Informix®

Set HCL Informix® environment variables when you want to work with HCL Informix® products. Each HCL Informix®

product publication specifies the environment variables that you must set to use that product.

• Environment variables that are used with a specific operating system

HCL Informix® products rely on the correct setting of certain standard operating system environment variables. For

example, you must always set the PATH environment variable.

In a UNIX™ environment, you might also be required to set the TERMCAP or TERMINFO environment variable to use some

products effectively.

The GLS environment variables that support nondefault locales are described in the HCL® Informix® GLS User's Guide. The

GLS variables are included in the list of environment variables in #unique_2015_Connect_42_sii-03-39744.

The database server uses the environment variables that were in effect at the time when the database server was initialized.

The onstat - g env command lists the active environment settings.

Tip: Additional environment variables that are specific to your client application or SQL API might be explained in the

publication for that product.

Important: Do not set any environment variable in the home directory of user informix (or in the file .informix in

that directory) while initializing the database and creating the sysmaster database.

Limitations on environment variables

Chapter 1. SQL programming

Size of a block of environment variables

At the start of a session, the client groups all the environment variables that the server will use and sends the environment

variables to the server as single block. The maximum size of this block is 32K. If the block of environment variables is

greater than 32K, the error -1832 is returned to the application. The text of this error is "Environment block is greater than

32K."

To resolve this error, you can either unset one or more environment variables or reduce the size of some of the environment

variables.

Using environment variables on UNIX™
You can set, unset, modify, and view environment variables. If you already use any HCL Informix® products, some or all of

the appropriate environment variables might be set.

You can set environment variables on UNIX™ in the following places:

• At the system prompt on the command line

When you set an environment variable at the system prompt, you must reassign it the next time you log in to the

system.

• In an environment-configuration file

An environment-configuration file is a common or private file where you can set all the environment variables that

HCL Informix® products use. The use of such files reduces the number of environment variables that you must set at

the command line or in a shell file.

• In a login file

Values of environment variables set in your .login, .cshrc, or .profile file are assigned automatically every time

you log in to the system.

• In the SET ENVIRONMENT statement of SQL

Values of some environment variables can reset by the SET ENVIRONMENT statement. The scope of the new

settings is generally the routine that executed the SET ENVIRONMENT statement, but it is the current session for the

OPTCOMPIND environment variable of Informix®, as described in the section OPTCOMPIND environment variable

on page 202. For more information about these routines and on the SET ENVIRONMENT statement, see the HCL®

Informix® Guide to SQL: Syntax.

In IBM® Informix® ESQL/C, you can set supported environment variables within an application with the putenv() system call

and retrieve values with the getenv() system call, if your UNIX™ system supports these functions. For more information about

putenv() and getenv(), see the HCL® Informix® Enterprise Replication Guide and your C documentation.

Setting environment variables in a configuration file

About this task

141

HCL Informix 14.10 - SQL programming Guide

142

The common (shared) environment-configuration file that is provided with HCL Informix® products is located in

$INFORMIXDIR/etc/informix.rc. Permissions for this shared file must be set to 644.

A user can override the system or shared environment variables by setting variables in a private environment-configuration

file. This file must have all of the following characteristics:

• Stored in the user's home directory

• Named .informix

• Permissions set to readable by the user

An environment-configuration file can contain comment lines (preceded by the # comment indicator) and variable definition

lines that set values (separated by blank spaces or tabs), as the following example shows:

This is an example of an environment-configuration file
#
DBDATE DMY4-
#
These are ESQL/C environment variable settings
#
INFORMIXC gcc
CPFIRST TRUE

You can use the ENVIGNORE environment variable, described in ENVIGNORE environment variable (UNIX) on page 174,

to override one or more entries in an environment-configuration file. Use the HCL Informix® chkenv utility, described in

Checking environment variables with the chkenv utility on page 144, to perform a validity check on the contents of an

environment-configuration file. The chkenv utility returns an error message if the file contains a bad environment variable or

if the file is too large.

The first time you set an environment variable in a shell file or environment-configuration file, you must tell the shell process

to read your entry before you work with your HCL Informix® product. If you use a C shell, source the file; if you use a Bourne

or Korn shell, use a period (.) to execute the file.

Setting environment variables at login time

About this task

Add commands that set your environment variables to the appropriate login file:

For C shell

.login or .cshrc

For Bourne shell or Korn shell

.profile

Chapter 1. SQL programming

Syntax for setting environment variables

Use standard UNIX™ commands to set environment variables. The examples in the following table show how to set the

ABCD environment variable to value for the C shell, Bourne shell, and Korn shell. The Korn shell also supports a shortcut, as

the last row indicates. Environment variables are case-sensitive.

Shell Command

C setenv ABCD value

Bourne ABCD=value
export ABCD

Korn ABCD=value
export ABCD

Korn export ABCD=value

The following diagram shows how the syntax for setting an environment variable is represented throughout this chapter.

These diagrams indicate the setting for the C shell; for the Bourne or Korn shells, use the syntax illustrated in the preceding

table.

setenvABCDvalue

Unsetting environment variables

About this task

To unset an environment variable, enter the following command.

Shell Command

C unsetenv ABCD

Bourne or Korn unset ABCD

Modifying an environment-variable setting

About this task

Sometimes you must add information to an environment variable that is already set. For example, the PATH environment

variable is always set on UNIX™. When you use HCL Informix® productd, you must add to the PATH setting the name of the

directory where the executable files for the HCL Informix® products are stored.

In the following example, the INFORMIXDIR is /usr/informix. (That is, during installation, the HCL Informix® products were

installed in the /usr /informix directory.) The executable files are in the bin subdirectory, /usr/informix/bin. To add this

directory to the front of the C shell PATH environment variable, use the following command:

143

HCL Informix 14.10 - SQL programming Guide

144

setenv PATH /usr/informix/bin:$PATH

Rather than entering an explicit pathname, you can use the value of the INFORMIXDIR environment variable (represented as

$INFORMIXDIR), as the following example shows:

setenv INFORMIXDIR /usr/informix
setenv PATH $INFORMIXDIR/bin:$PATH

You might prefer to use this version to ensure that your PATH entry does not conflict with the search path that was set

in INFORMIXDIR, and so that you are not required to reset PATH whenever you change INFORMIXDIR. If you set the

PATH environment variable on the C shell command line, you might be required to include braces ({}) with the existing

INFORMIXDIR and PATH, as the following command shows:

setenv PATH ${INFORMIXDIR}/bin:${PATH}

For more information about how to set and modify environment variables, see the publications for your operating system.

Viewing your environment-variable settings

About this task

After you install one or more HCL Informix® products, enter the following command at the system prompt to view your

current environment settings.

UNIX™ version Command

BSD UNIX™ env

UNIX™ System V printenv

Checking environment variables with the chkenv utility

About this task

The chkenv utility checks the validity of shared or private environment-configuration files. It validates the names of the

environment variables in the file, but not their values. Use chkenv to provide debugging information when you define, in an

environment-configuration file, all the environment variables that your HCL Informix® products use.

chkenv [pathname] filename

filename

is the name of the environment-configuration file to be debugged.

pathname

is the full directory path in which the environment variable file is located.

File $INFORMIXDIR/etc/informix.rc is the shared environment-configuration file. A private environment-configuration file

is stored as .informix in the home directory of the user. If you specify no pathname for chkenv, the utility checks both the

shared and private environment configuration files. If you provide a pathname, chkenv checks only the specified file.

Chapter 1. SQL programming

Issue the following command to check the contents of the shared environment-configuration file:

chkenv informix.rc

The chkenv utility returns an error message if it finds a bad environment-variable name in the file or if the file is too large. You

can modify the file and rerun the utility to check the modified environment-variable names.

HCL Informix® products ignore all lines in the environment-configuration file, starting at the point of the error, if the chkenv

utility returns the following message:

-33523 filename: Bad environment variable on line number.

If you want the product to ignore specified environment-variables in the file, you can also set the ENVIGNORE environment

variable. For a discussion of the use and format of environment-configuration files and the ENVIGNORE environment

variable, see page ENVIGNORE environment variable (UNIX) on page 174.

Rules of precedence for environment variables

When HCL Informix® products accesses an environment variable, normally the following rules of precedence apply:

1. Of highest precedence is the value that is defined in the environment (shell) by explicitly setting the value at the shell

prompt.

2. The second highest precedence goes to the value that is defined in the private environment-configuration file in the

home directory of the user (~/.informix).

3. The next highest precedence goes to the value that is defined in the common environment-configuration file

($INFORMIXDIR/etc/informix.rc).

4. The lowest precedence goes to the default value, if one exists.

For precedence information about GLS environment variables, see the HCL® Informix® GLS User's Guide.

Important: If you set one or more environment variables before you start the database server, and you do not

explicitly set the same environment variables for your client products, the clients will adopt the original settings.

Using environment variables on Windows™

The following sections discuss setting, viewing, unsetting, and modifying environment variables for Windows™ applications.

Where to set environment variables on Windows™

You can set environment variables in several places on Windows™, depending on which HCL Informix® application you use.

Environment variables can be set in several ways, as described in Setting environment variables on Windows on page 146.

The SET ENVIRONMENT statement of SQL can set certain routine-specific environment options. For more information, see

the description of SET ENVIRONMENT in the HCL® Informix® Guide to SQL: Syntax.

145

HCL Informix 14.10 - SQL programming Guide

146

To use client applications such as IBM® Informix® ESQL/C or the Schema Tools on Windows™ environment, use the

Setnet32 utility to set environment variables. For information about the Setnet32 utility, see the Informix® Client Products

Installation Guide for your operating system.

In Informix® ESQL/C, you can set supported environment variables within an application with the ifx_putenv() function

and retrieve values with the ifx_getenv() function, if your Windows™ system supports them. For more information about

ifx_putenv() and ifx_getenv(), see the HCL® Informix® Enterprise Replication Guide.

Setting environment variables on Windows™

About this task

You can set environment variables for command-prompt utilities in the following ways:

• With the System applet in the Control Panel

• In a command-line session

Using the system applet to change environment variables
The System applet provides a graphical interface to create, modify, and delete system-wide and user-specific variables.

Environment variables that are set with the System applet are visible to all command-prompt sessions.

About this task

To change environment variables with the System applet in the control panel

1. Double-click the System applet icon from the Control Panel window.

2. Click the Environment tab near the top of the window.

Two list boxes display System Environment Variables and User Environment Variables. System Environment

Variables apply to an entire system, and User Environment Variables apply only to the sessions of the individual user.

3. To change the value of an existing variable, select that variable. The name of the variable and its current value are in

the boxes at the bottom of the window.

4. To add a new variable, highlight an existing variable and type the new variable name in the box at the bottom of the

window.

5. Next, enter the value for the new variable at the bottom of the window and click Set .

6. To delete a variable, select the variable and click Delete.

Results

Important: In order to use the System applet to change System environment variables, you must belong to the

Administrators group. For information about assigning users to groups, see your operating-system documentation.

Using the command prompt to change environment variables
You can change the setting of an environment variable at a command prompt.

Chapter 1. SQL programming

About this task

The following diagram shows the syntax for setting an environment variable at a command prompt in Windows™.

setABCD=value

If no value is specified, the environment variable is unset, as if it did not exist.

To view your current settings after one or more HCL Informix® products are installed, enter the following command at the

command prompt.

set

Sometimes you must add information to an environment variable that is already set. For example, the PATH environment

variable is always set in Windows™ environments. When you use HCL Informix® products, you must add the name of the

directory where the executable files for the HCL Informix® products are stored to the PATH.

In the following example, INFORMIXDIR is d:\informix (that is, during installation, HCL Informix® products were installed

in the d: \informix directory). The executable files are in the bin subdirectory, d:\informix\bin. To add this directory

at the beginning of the PATH environment-variable value, use the following command:

set PATH=d:\informix\bin;%PATH%

Rather than entering an explicit pathname, you can use the value of the INFORMIXDIR environment variable (represented as

%INFORMIXDIR%), as the following example shows:

set INFORMIXDIR=d:\informix
set PATH=%PATH%

You might prefer to use this version to ensure that your PATH entry does not contradict the search path that was set in

INFORMIXDIR and to avoid the requirement to reset PATH whenever you change INFORMIXDIR.

For more information about setting and modifying environment variables, see your operating-system publications.

Using dbservername.cmd to initialize a command-prompt environment
Each time that you open a Windows™ command prompt, it acts as an independent environment. Therefore, environment

variables that you set within it are valid only for that particular command-prompt instance.

About this task

For example, if you open one command window and set the variable, INFORMIXDIR, and then open another command

window and type set to check your environment, you will find that INFORMIXDIR is not set in the new command-prompt

session.

The database server installation program creates a batch file that you can use to configure command-prompt utilities,

ensuring that your command-prompt environment is initialized correctly each time that you run a command-prompt session.

The batch file, dbservername.cmd, is located in %INFORMIXDIR%, and is a plain text file that you can modify with any text

editor. If you have more than one database server installed in %INFORMIXDIR%, there will be more than one batch file with

the .cmd extension, each bearing the name of the database server with which it is associated.

147

HCL Informix 14.10 - SQL programming Guide

148

To run dbservername.cmd from a command prompt, type dbservername or configure a command prompt so that it runs

dbservername.cmd automatically at start.

Rules of precedence for Windows™ environment variables

When HCL Informix® products access an environment variable, normally the following rules of precedence apply:

1. The setting in Setnet32 with the Use my settings box selected.

2. The setting in Setnet32 with the Use my settings box cleared.

3. The setting on the command line before running the application.

4. The setting in Windows™ as a user variable.

5. The setting in Windows™ as a system variable.

6. The lowest precedence goes to the default value.

An application examines the first five values as it starts. Unless otherwise stated, changing an environment variable after the

application is running does not have any effect.

Environment variables in Informix® products
The topics that follow discuss (in alphabetic order) environment variables that HCL Informix® database server products and

their utilities use.

Important: The descriptions of the following environment variables include the syntax for setting the environment

variable on UNIX™. For a general description of how to set these environment variables on Windows™, see Setting

environment variables on Windows on page 146.

Related information

Informix environment variables with the IBMInformix JDBC Driver on page

GLS-related environment variables on page

Enterprise Replication configuration parameter and environment variable reference on page

AC_CONFIG file environment variable on page

ANSIOWNER environment variable
In an ANSI-compliant database, you can prevent the default behavior of upshifting lowercase letters in owner names that are

not delimited by quotation marks by setting the ANSIOWNER environment variable to 1.

setenvANSIOWNER 1

To prevent upshifting of lowercase letters in owner names in an ANSI-compliant database, you must set ANSIOWNER before

you initialize HCL Informix®.

../jdbc/ids_jdbc_040.html#ids_jdbc_040
../jdbc/ids_jdbc_040.html#ids_jdbc_040
../jdbc/ids_jdbc_040.html#ids_jdbc_040
../jdbc/ids_jdbc_040.html#ids_jdbc_040
../gug/ids_gug_063.html#ids_gug_063
../gug/ids_gug_063.html#ids_gug_063
../gug/ids_gug_063.html#ids_gug_063
../gug/ids_gug_063.html#ids_gug_063
../erp/ids_erp_367.html#ids_erp_367
../erp/ids_erp_367.html#ids_erp_367
../erp/ids_erp_367.html#ids_erp_367
../erp/ids_erp_367.html#ids_erp_367
../%20bar/ids_bar_286.html#ids_bar_286
../%20bar/ids_bar_286.html#ids_bar_286
../%20bar/ids_bar_286.html#ids_bar_286
../%20bar/ids_bar_286.html#ids_bar_286

Chapter 1. SQL programming

The following table shows how an ANSI-compliant database of HCL Informix® stores or reads the specified name of a

database object called oblong if you were the owner of oblong and your userid (in all lowercase letters) were owen:

Table 55. Lettercase of implicit, unquoted, and quoted owner names, with and without ANSIOWNER

Owner Format Specification ANSIOWNER = 1 ANSIOWNER Not Set

Implicit: oblong owen.oblong OWEN.oblong

Unquoted: owen.oblong owen.oblong OWEN.oblong

Quoted: 'owen'.oblong owen.oblong owen.oblong

Because they do not match the lettercase of your userid, any SQL statements that specified the formats that are stored as

OWEN.oblong would fail with errors.

CPFIRST environment variable
Use the CPFIRST environment variable to specify the default compilation order for all IBM® Informix® ESQL/C source files in

your programming environment.

setenvCPFIRST { TRUE | FALSE }

When you compile Informix® ESQL/C programs with CPFIRST not set, the Informix® ESQL/C preprocessor runs first, by

default, on the program source file and then passes the resulting file to the C language preprocessor and compiler. You can,

however, compile the Informix® ESQL/C program source file in the following order:

1. Run the C preprocessor

2. Run the Informix® ESQL/C preprocessor

3. Run the C compiler and linker

To use a nondefault compilation order for a specific program, you can either give the program source file a .ecp extension,

run the -cp option with the esql command on a program source file with a .ec extension, or set CPFIRST.

Set CPFIRST to TRUE (uppercase only) to run the C preprocessor before the Informix® ESQL/C preprocessor on all Informix®

ESQL/C source files in your environment, irrespective of whether the -cp option is passed to the esql command or the source

files have the .ec or the .ecp extension.

To restore the default order on a system where the CPFIRST environment variable has been set to TRUE, you can set CPFIRST

to FALSE. On UNIX™ systems that support the C shell, the following command has the same effect:

unsetenv CPFIRST

CMCONFIG environment variable
Set the CMCONFIG environment variable to specify the location of the Connection Manager configuration file. You use the

configuration file to specify service level agreements and other Connection Manager configuration options.

setenvCMCONFIGpath/file_name

149

HCL Informix 14.10 - SQL programming Guide

150

path/file_name

is the full path and file name of a Connection Manager configuration file.

If the CMCONFIG environment variable is not set and the configuration file name is not specified on the oncmsm utility

command line, the Connection Manager attempts to load the file from the following path and file name:

$INFORMIXDIR/etc/cmsm.cfg

Example

Examples

Suppose the CMCONFIG environment variable points to a valid path and file name of a Connection Manager configuration

file. To reload a Connection Manager instance using the configuration file specified in the shell environment enter the

following command:

./oncmsm -r

To shut down a Connection Manager instance using the configuration file specified in the shell environment:

./oncmsm -k

Related information

The oncmsm utility on page

Example of configuring connection management for a high-availability cluster on page

CLIENT_LABEL environment variable
Set the CLIENT_LABEL environment variable in CSDK 4.10.xC10 or JDBC 4.10.JC10 client to assign a character string to

CSDK or JDBC client session and identify that character string on the database server. You use this for environments where

same userid runs multiple instances of the same application, and there is a need to distinguish one session from the other.

onstat -g env sesID

select * from sysenvses where envses_name = CLIENT_LABEL

Example

CSDK Example

Suppose the CLIENT_LABEL is set to two different strings and the same esqlc program is executed with the session ids

being 43 and 201:

bash-3.2$ export CLIENT_LABEL='csdk_client1'
bash-3.2$./myesqlc

bash-3.2$ export CLIENT_LABEL='csdk_client2'
bash-3.2$./myesqlc

../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1128.html#ids_adr_1128
../admin%20/ids_admin_1173.html#ids_admin_1173
../admin%20/ids_admin_1173.html#ids_admin_1173
../admin%20/ids_admin_1173.html#ids_admin_1173
../admin%20/ids_admin_1173.html#ids_admin_1173

Chapter 1. SQL programming

onstat

onstat -g env 43

IBM Informix Dynamic Server Version 14.10 -- On-Line -- Up 5 days 23:01:39 --
 210712 Kbytes

Environment for session 43:

Variable Value [values-list]
CLIENT_LABEL cdsk_client2
CLIENT_LOCALE en_US.8859-1
CLNT_PAM_CAPABLE 1
snip

onstat -g env 201

IBM Informix Dynamic Server Version 14.10 -- On-Line -- Up 5 days 23:02:41 --
 210712 Kbytes

Environment for session 201:

Variable Value [values-list]
CLIENT_LABEL cdsk_client1
CLIENT_LOCALE en_US.8859-1
CLNT_PAM_CAPABLE 1

sysmaster

select * from sysenvses where envses_name = 'CLIENT_LABEL'

envses_sid 201
envses_id 9
envses_name CLIENT_LABEL
envses_value cdsk_client1

envses_sid 43
envses_id 9
envses_name CLIENT_LABEL
envses_value cdsk_client2

2 row(s) retrieved.

Database closed.

Example

JDBC Example

Suppose the CLIENT_LABEL is set to two different strings in the JDBC connection URL and the same JDBC program is

executed with the session ids being 232 and 234:

java myjdbc "jdbc:informix-sqli://myhost:52220:user=myuser;password=mypasswd;CLIENT_LABEL=jdbc_client1"

java myjdbc "jdbc:informix-sqli://myhost:52220:user=myuser;password=mypasswd;CLIENT_LABEL=jdbc_client2"

151

HCL Informix 14.10 - SQL programming Guide

152

onstat

onstat -g env 232
IBM Informix Dynamic Server Version 12.10.FC10 -- On-Line -- Up 6 days 00:56:26
 -- 210712 Kbytes

Environment for session 232:

Variable Value [values-list]
CLIENT_LABEL jdbc_client1
CLIENT_LOCALE en_US.8859-1
CLNT_PAM_CAPABLE 1

onstat -g env 234

IBM Informix Dynamic Server Version 12.10.FC10 -- On-Line -- Up 6 days 00:56:59
 -- 210712 Kbytes

Environment for session 234:

Variable Value [values-list]
CLIENT_LABEL jdbc_client2
CLIENT_LOCALE en_US.8859-1
CLNT_PAM_CAPABLE 1

sysmaster

Database selected.

select * from sysenvses where envses_name = 'CLIENT_LABEL'

envses_sid 234
envses_id 9
envses_name CLIENT_LABEL
envses_value jdbc_client2

envses_sid 232
envses_id 9
envses_name CLIENT_LABEL
envses_value jdbc_client1

2 row(s) retrieved.

Database closed.

DBACCNOIGN environment variable
Use the DBACCNOIGN environment variable to specify the behavior of the DB-Access utility when specified errors occurs.

The DBACCNOIGN environment variable affects the behavior of the DB-Access utility if an error occurs under one of the

following circumstances:

• You run DB-Access in non-menu mode.

• In HCL Informix® only, you execute the LOAD command with DB-Access in menu mode.

Chapter 1. SQL programming

Set the DBACCNOIGN environment variable to 1 to roll back an incomplete transaction if an error occurs while you run the

DB-Access utility under either of the preceding conditions.

setenvDBACCNOIGN1

For example, assume DB-Access runs the following SQL commands:

DATABASE mystore
BEGIN WORK

INSERT INTO receipts VALUES (cust1, 10)
INSERT INTO receipt VALUES (cust1, 20)
INSERT INTO receipts VALUES (cust1, 30)

UPDATE customer
 SET balance =
 (SELECT (balance-60)
 FROM customer WHERE custid = 'cust1')
 WHERE custid = 'cust1
COMMIT WORK

Here, one statement has a misspelled table name: the receipt table does not exist. If DBACCNOIGN is not set in your

environment, DB-Access inserts two records into the receipts table and updates the customer table. Now, the decrease in the

customer balance exceeds the sum of the inserted receipts.

But if DBACCNOIGN is set to 1, messages open that indicate that DB-Access rolled back all the INSERT and UPDATE

statements. The messages also identify the cause of the error so that you can resolve the problem.

LOAD statement example when DBACCNOIGN is set
You can set the DBACCNOIGN environment variable to protect data integrity during a LOAD statement, even if DB-Access

runs the LOAD statement in menu mode.

Assume you execute the LOAD statement from the DB-Access SQL menu. Forty-nine rows of data load correctly, but the 50th

row contains an invalid value that causes an error. If you set DBACCNOIGN to 1, the database server does not insert the forty-

nine previous rows into the database. If DBACCNOIGN is not set, the database server inserts the first 49 rows.

DBANSIWARN environment variable
Use the DBANSIWARN environment variable to indicate that you want to check for HCL Informix® extensions to ANSI-

standard SQL syntax.

Unlike most environment variables, you are not required to set

DBANSIWARN

to a value. You can set it to any value or to no value.

setenvDBANSIWARN

Running DB-Access with DBANSIWARN set is functionally equivalent to including the -ansi flag when you invoke DB-Access

(or any HCL Informix® product that recognizes the -ansi flag) from the command line. If you set DBANSIWARN before you

run DB-Access, any syntax-extension warnings are displayed on the screen within the SQL menu.

153

HCL Informix 14.10 - SQL programming Guide

154

At runtime, the DBANSIWARN environment variable causes the sixth character of the sqlwarn array in the SQL

Communication Area (SQLCA) to be set to W when a statement is executed that is recognized as including any HCL

Informix® extension to the ANSI/ISO standard for SQL syntax.

For details on SQLCA, see the HCL® Informix® Enterprise Replication Guide.

After you set DBANSIWARN, HCL Informix® extension checking is automatic until you log out or unset DBANSIWARN. To

turn off HCL Informix® extension checking, you can disable DBANSIWARN with this command:

unsetenv DBANSIWARN

DBBLOBBUF environment variable
Use the DBBLOBBUF environment variable to control whether TEXT or BYTE values are stored temporarily in memory or in a

file while being processed by the UNLOAD statement. DBBLOBBUF affects only the UNLOAD statement.

setenvDBBLOBBUFsize

size

represents the maximum size of TEXT or BYTE data in KB.

If the TEXT or BYTE data size is smaller than the default of 10 KB (or the setting of DBBLOBBUF), the TEXT or BYTE value is

temporarily stored in memory. If the data size is larger than the default or the DBBLOBBUF setting, the data value is written to

a temporary file. For instance, to set a buffer size of 15 KB, set DBBLOBBUF as in the following example:

setenv DBBLOBBUF 15

Here any TEXT or BYTE value smaller than 15 KB is stored temporarily in memory. Values larger than 15 KB are stored

temporarily in a file.

DBCENTURY environment variable
Use the DBCENTURY environment variable to specify how to expand literal DATE and DATETIME values that are entered with

abbreviated year values. To avoid problems in expanding abbreviated years, applications should require entry of 4-digit years,

and should always display years as four digits.

setenvDBCENTURY { R | F | { C | P } }

When DBCENTURY is not set (or is set to R), the first two digits of the current year are used to expand 2-digit year values. For

example, if today's date is 09/30/2003, then the abbreviated date 12/31/99 expands to 12/31/2099, and the abbreviated date

12/31/00 expands to 12/31/2000.

The R, P, F, and C settings determine algorithms for expanding two-digit years.

Setting Algorithm

R = Current® Use the first two digits of the current year to expand the year value.

Chapter 1. SQL programming

Setting Algorithm

P = Past Expanded dates are created by prefixing the abbreviated year value with 19 and 20. Both dates are

compared to the current date, and the most recent date that is earlier than the current date is used.

F = Future Expanded dates are created by prefixing the abbreviated year value with 20 and 21. Both dates are

compared to the current date, and the earliest date that is later than the current date is used.

C = Closest Expanded dates are created by prefixing the abbreviated year value with 19, 20, and 21. These three

dates are compared to the current date, and the date that is closest to the current date is used.

Settings are case sensitive, and no error is issued for invalid settings. If you enter f (for example), then the default (R) setting

takes effect. The P and F settings cannot return the current date, which is not in the past or future.

Years entered as a single digit are prefixed with 0 and then expanded. Three-digit years are not expanded. Pad years earlier

than 100 with leading zeros.

Related reference

DATETIME data type on page 93

Examples of expanding year values
The examples in this topic illustrate how various settings of DBCENTURY cause abbreviated years to be expanded in DATE

and DATETIME values.

DBCENTURY = P

Example data type: DATE
Current date: 4/6/2003
User enters: 1/1/1
Prefix with "19" expansion : 1/1/1901
Prefix with "20" expansion: 1/1/2001
Analysis: Both are prior to current date, but 1/1/2001 is closer to
 current date.

Important: The effect of DBCENTURY depends on the current date from the system clock-calendar. Thus, 1/1/1,

the abbreviated date in this example, would instead be expanded to 1/1/1901 if the current date were 1/1/2001 and

DBCENTURY = P.

DBCENTURY = F

Example data type: DATETIME year to month
Current date: 5/7/2005
User enters: 1-1
Prefix with "20" expansion: 2001-1
Prefix with "21" expansion: 2101-1
Analysis: Only date 2101-1 is after the current date, so it is chosen.

155

HCL Informix 14.10 - SQL programming Guide

156

DBCENTURY = C
Example data type: DATE
Current date: 4/6/2000
User enters: 1/1/1
Prefix with "19" expansion : 1/1/1901
Prefix with "20" expansion: 1/1/2001
Prefix with "21" expansion: 1/1/2101
Analysis: Here 1/1/2001 is closest to the current date, so it is chosen.

DBCENTURY = R or DBCENTURY Not Set
Example data type: DATETIME year to month
Current date: 4/6/2000
User enters: 1-1
Prefix with "20" expansion: 2001-1

Example data type: DATE
Current date: 4/6/2003
User enters: 0/1/1
Prefix with "20" expansion: 2000/1
Analysis: In both examples, the Prefix with "20" algorithm is used.

Setting DBCENTURY does not affect HCL Informix® products when the locale specifies a non-Gregorian calendar, such as

Hebrew or Islamic calendars. The leading digits of the current year are used for alternative calendar systems when the year

is abbreviated.

Abbreviated years and expressions in database objects
When an expression in a database object (including a check constraint, fragmentation expression, SPL routine, trigger, or

UDR) contains a literal date or DATETIME value in which the year has one or two digits, the database server evaluates the

expression using the setting that DBCENTURY (and other relevant environment variables) had when the database object was

created (or was last modified).

If DBCENTURY has been reset to a new value, the new value is ignored when the abbreviated year is expanded.

For example, suppose a user creates a table and defines the following check constraint on a column named birthdate:

birthdate < '09/25/50'

The expression is interpreted according to the value of DBCENTURY when the constraint was defined. If the table that

contains the birthdate column is created on 09/23/2000 and DBCENTURY =C, the check constraint expression is consistently

interpreted as birthdate < '09/25/1950' when inserts or updates are performed on the birthdate column. Even if different

values of DBCENTURY are set when users perform inserts or updates on the birthdate column, the constraint expression is

interpreted according to the setting at the time when the check constraint was defined (or was last modified).

Database objects created on some earlier versions of HCL Informix® do not support the priority of creation-time settings.

For legacy objects to acquire this feature

1. Drop the objects.

2. Recreate them (or for fragmentation expressions, detach them and then reattach them).

Chapter 1. SQL programming

After the objects are redefined, date literals within expressions of the objects will be interpreted according to the environment

at the time when the object was created or was last modified. Otherwise, their behavior will depend on the runtime

environment and might become inconsistent if this changes.

Administration of a database that includes a mix of legacy objects and new objects might become difficult because of

differences between the new and the old behavior for evaluating date expressions. To avoid this, it is recommended that you

redefine any legacy objects.

The value of DBCENTURY and the current date are not the only factors that determine how the database server interprets

date and DATETIME values. The DBDATE, DBTIME, GL_DATE, and GL_DATETIME environment variables can also influence

how dates are interpreted. For information about GL_DATE and GL_DATETIME, see the HCL® Informix® GLS User's Guide.

Important: The behavior of DBCENTURY for HCL Informix® is not compatible with earlier versions.

DBDATE environment variable
Use the DBDATE environment variable to specify the end-user formats of DATE values.

On UNIX™ systems that use the C shell, set DBDATE with this syntax.

setenvDBDATE { MD | DM | Y4 | Y2 } { Y4 | Y2 | MD | DM } { / | - | . | . | 0 }

The following formatting symbols are valid in the DBDATE setting:

- . /

are characters that can exist as separators in a date format.

0

indicates that no separator is displayed between time units.

D, M

are characters that represent the day and the month.

Y2, Y4

are characters that represent the year and the precision of the year.

Some East Asian locales support additional syntax for era-based dates.

DBDATE can specify the following attributes of the display format:

• The order of time units (the month, day, and year) in a date

• Whether the year is shown as two digits (Y2) or four digits (Y4)

• The separator between the month, day, and year time units

For the U.S. English locale, the default for DBDATE is MDY4/, where M represents the month, D represents the day, Y4 represents

a four-digit year, and slash (/) is the time-units separator (for example, 01/08/2011). Other valid characters for the separator

are a hyphen (-), a period (.), or a zero (0). To indicate no separator, use the zero. The slash (/) is used by default if you

157

HCL Informix 14.10 - SQL programming Guide

158

attempt to specify a character other than a hyphen, period, or zero as a separator, or if you do not include any separator in the

DBDATE specification.

If DBDATE is not set on the client, any DBDATE setting on the database server overrides the MDY4/ default on the client. If

DBDATE is set on the client, that value (rather than the setting on the database server) is used by the client.

The following table shows some examples of valid DBDATE settings and their corresponding displays for the date 8 January,

2011:

DBDATE Setting
Representation of January 8,

2011:
DBDATE Setting

Representation of January 8,

2011:

MDY4/ 01/08/2011 Y2DM. 11.08.01

DMY2- 08-01-11 MDY20 010811

MDY4 01/08/2011 Y4MD* 2011/01/08

Formats Y4MD* (because asterisk is not a valid separator) and MDY4 (with no separator defined) both display the default

symbol (slash) as the separator.

Important: If you use the Y2 format, the setting of the DBCENTURY environment variable can also affect how literal

DATE values are evaluated in data entry.

Also, certain routines that IBM® Informix® ESQL/C calls can use the DBTIME variable, rather than DBDATE, to set DATETIME

formats to international specifications. For more information, see the discussion of the DBTIME environment variable in

DBTIME environment variable on page 167 and in the HCL® Informix® Enterprise Replication Guide.

The setting of the DBDATE variable takes precedence over that of the GL_DATE environment variable, and over any default

DATE format that CLIENT_LOCALE specifies. For information about GL_DATE and CLIENT_LOCALE, see the HCL® Informix®

GLS User's Guide.

End-user formats affect the following contexts:

• When you display DATE values, HCL Informix® products use the DBDATE environment variable to format the output.

• During data entry of DATE values, HCL Informix® products use the DBDATE environment variable to interpret the

input.

For example, if you specify a literal DATE value in an INSERT statement, the database server expects this literal value to be

compatible with the format that DBDATE specifies. Similarly, the database server interprets the date that you specify as the

argument to the DATE() function to be in DBDATE format.

DATE expressions in database objects
When an expression in a database object (including a check constraint, fragmentation expression, SPL routine, trigger, or

UDR) contains a literal date value, the database server evaluates the expression using the setting that DBDATE (or other

Chapter 1. SQL programming

relevant environment variables) had when the database object was created (or was last modified). If DBDATE has been reset

to a new value, the new value is ignored when the literal DATE is evaluated.

For example, suppose DBDATE is set to MDY2/ and a user creates a table with the following check constraint on the column

orderdate:

orderdate < '06/25/98'

(<), less thanrelational operatorThe date of the preceding expression is formatted according to the value of DBDATE when the constraint is defined. The

check constraint expression is interpreted as orderdate < '06/25/98' regardless of the value of DBDATE during inserts or

updates on the orderdate column. Suppose DBDATE is reset to DMY2/ when a user inserts the value '30/01/98' into the

orderdate column. The date value inserted uses the date format DMY2/, whereas the check constraint expression uses the

date format MDY2/.

See Abbreviated years and expressions in database objects on page 156 for a discussion of legacy objects from earlier

versions of HCL Informix® that are always evaluated according to the runtime environment. That section describes how to

redefine objects so that dates are interpreted according to environment variable settings that were in effect when the object

was defined (or when the object was last modified).

Important: The behavior of DBDATE for HCL Informix® is not compatible with earlier versions.

DBDELIMITER environment variable
Set the DBDELIMITER environment variable to specify the field delimiter used with the dbexport utility and with the LOAD and

UNLOAD statements.

setenvDBDELIMITER'delimiter'

delimiter

is the field delimiter for unloaded data files.

The delimiter can be any single character, except those in the following list:

• Hexadecimal digits (0 through 9,a through f, A through F)

• Newline or CTRL-J

• The backslash (\) symbol

The vertical bar (| = ASCII 124) is the default. To change the field delimiter to a plus (+) symbol, for example, you can set

DBDELIMITER as follows:

setenv DBDELIMITER '+'

DBEDIT environment variable
Use the DBEDIT environment variable to specify the text editor to use with SQL statements and command files in DB-Access.

159

HCL Informix 14.10 - SQL programming Guide

160

If DBEDIT is set, the specified text editor is invoked automatically. If DBEDIT is not, set you are prompted to specify a text

editor as the default for the rest of the session.

setenvDBEDITeditor

editor

is the name of the text editor you want to use.

For most UNIX™ systems, the default text editor is vi. If you use another text editor, be sure that it creates flat ASCII files.

Some word processors in document mode introduce printer control characters that can interfere with the operation of your

HCL Informix® product.

To specify the EMACS text editor, set DBEDIT with the following command:

setenv DBEDIT emacs

DBFLTMASK environment variable

The DB-Access utility displays the floating-point values of data types FLOAT, SMALLFLOAT, and DECIMAL(p) within a 14-

character buffer. By default, DB-Access displays as many digits to the right of the decimal point as will fit into this character

buffer. Therefore, the actual number of decimal digits that DB-Access displays depends on the size of the floating-point

value.

To reduce the number of digits displayed to the right of the decimal point in floating-point values, set DBFLTMASK to the

specified number of digits.

setenvDBFLTMASKscale

scale

is the number of decimal digits that you want the HCL Informix® client application to display in the floating-

point values. Here scale must be smaller than 16, the default number of digits displayed.

If the floating-point value contains more digits to the right of the decimal than DBFLTMASK specifies, DB-Access rounds the

value to the specified number of digits. If the floating-point value contains fewer digits to the right of the decimal, DB-Access

pads the value with zeros. If you set DBFLTMASK to a value greater than can fit into the 14-character buffer, however, DB-

Access rounds the value to the number of digits that can fit.

DBINFO_DBSPACE_RETURN_NULL_FOR_INVALID_PARTNUM environment variable
Use the DBINFO_DBSPACE_RETURN_NULL_FOR_INVALID_PARTNUM environment variable to specify if dbinfo('dbspace',

partnum) raises an error -727 or returns NULL when an invalid partition number (partnum) is provided.

+-DBINFO_DBSPACE_RETURN_NULL_FOR_INVALID_PARTNUM--+-'0'-+---------------------------------------+
 '-'1'-'

A partition number is considered invalid if it resolves to a dbspace number which is not a valid dbspace in the instance. This

includes the pseudo tables which are having partition numbers that would be associated with dbspace 0 which is not a (real)

dbspace in an Informix instance. This reflects that pseudo tables do not directly have an on-disk representation but rather are

state information from (shared) memory which are exposed via SQL.

Chapter 1. SQL programming

In case of an invalid partnum the dbinfo('dbspace', partnum) function would result in an error

'727: Invalid or NULL TBLspace number given to dbinfo(dbspace).'. When the environment variable

DBINFO_DBSPACE_RETURN_NULL_FOR_INVALID_PARTNUM is set to 1, dbinfo() will not result in an error in this case, but

rather does return NULL as dbspace name. When setting a value of '0' or not setting the environment variable, the default

behavior returns an error -727 for an invalid partnum. In any case a NULL provided as partnum will result in error -727 being

raised.

With SET ENVIRONMENT DBINFO_DBSPACE_RETURN_NULL_FOR_INVALID_PARTNUM the variable can be set

dynamically at runtime. This overrides the current DBINFO_DBSPACE_RETURN_NULL_FOR_INVALID_PARTNUM

value for the current user session only. For more information about the SET ENVIRONMENT

DBINFO_DBSPACE_RETURN_NULL_FOR_INVALID_PARTNUM statement of SQL, see the Guide to SQL: Syntax.

DBLANG environment variable
Use the DBLANG environment variable to specify the subdirectory of $INFORMIXDIR or the full pathname of the directory

that contains the compiled message files that HCL Informix® products use.

setenvDBLANG { relative_path | full_path }

relative_path

is a subdirectory of $INFORMIXDIR.

full_path

is the pathname to the compiled message files.

By default, HCL Informix® products put compiled messages in a locale-specific subdirectory of the $INFORMIXDIR/msg

directory. These compiled message files have the file extension .iem. If you want to use a message directory other than

$INFORMIXDIR/msg, where, for example, you can store message files that you create, you must perform the following steps:

To use a message directory other than $INFORMIXDIR/msg

1. Use the mkdir command to create the appropriate directory for the message files.

You can make this directory under the directory $INFORMIXDIR or $INFORMIXDIR/msg, or you can make it under any

other directory.

2. Set the owner and group of the new directory to informix and the access permission for this directory to 755.

3. Set the DBLANG environment variable to the new directory. If this is a subdirectory of $INFORMIXDIR or

$INFORMIXDIR/msg, then you need only list the relative path to the new directory. Otherwise, you must specify the

full pathname of the directory.

4. Copy the .iem files or the message files that you created to the new message directory that $DBLANG specifies.

All the files in the message directory should have the owner and group informix and access permission 644.

HCL Informix® products that use the default U.S. English locale search for message files in the following order:

161

oxy_ex/sqls.dita

HCL Informix 14.10 - SQL programming Guide

162

1. In $DBLANG, if DBLANG is set to a full pathname

2. In $INFORMIXDIR/msg/$DBLANG, if DBLANG is set to a relative pathname

3. In $INFORMIXDIR/$DBLANG, if DBLANG is set to a relative pathname

4. In $INFORMIXDIR/msg/en_us/0333

5. In $INFORMIXDIR/msg/en_us.8859-1

6. In $INFORMIXDIR/msg

7. In $INFORMIXDIR/msg/english

For more information about search paths for messages, see the description of DBLANG in the HCL® Informix® GLS User's

Guide.

DBMONEY environment variable
Use the DBMONEY environment variable to specify the display format of values in columns of smallfloat, FLOAT, DECIMAL, or

MONEY data types, and of complex data types derived from any of these data types.

setenvDBMONEY { '$' | front | 'front ' } { . | , } [{ back | ‘back' }]

$

is a currency symbol that precedes MONEY values in the default locale if no other front symbol is specified, or if

DBMONEY is not set.

, or .

is a comma or period (the default) that separates the integral part from the fractional part of the FLOAT,

DECIMAL, or MONEY value. Whichever symbol you do not specify becomes the thousands separator.

back

is a currency symbol that follows the MONEY value.

front

is a currency symbol that precedes the MONEY value.

The back symbol can be up to seven characters and can contain any character that the locale supports, except a digit, a

comma (,), or a period (.) symbol. The front symbol can be up to seven characters and can contain any character that the

locale supports except a digit, a comma (,), or a period (.) symbol. If you specify any character that is not a letter of the

alphabet for front or back, you must enclose the front or back setting between single quotation (') marks.

When you display MONEY values, HCL Informix® products use the DBMONEY setting to format the output. DBMONEY has no

effect, however, on the internal format of data values that are stored in columns of the database.

If you do not set DBMONEY, then MONEY values for the default locale, U.S. English, are formatted with a dollar sign ($) that

precedes the MONEY value, a period (.) that separates the integral from the fractional part of the MONEY value, and no back

symbol. For example, 100.50 is formatted as $100.50.

Suppose you want to represent MONEY values as DM (deutsche mark) units, using the currency symbol DM and comma (,)

as the decimal separator. Enter the following command to set the DBMONEY environment variable:

Chapter 1. SQL programming

setenv DBMONEY DM,

Here DM is the front currency symbol that precedes the MONEY value, and a comma separates the integral from the fractional

part of the MONEY value. As a result, the value 100.50 is displayed as DM100,50.

For more information about how DBMONEY formats MONEY values in nondefault locales, see the HCL® Informix® GLS

User's Guide.

DBPATH environment variable
Use the DBPATH environment variable to identify the database servers that contain databases. DBPATH can also specify a

list of directories (in addition to the current directory) in which DB-Access looks for command scripts (.sql files).

The CONNECT DATABASE, START DATABASE, and DROP DATABASE statements use DBPATH to locate the database under

two conditions:

• If the location of a database is not explicitly stated

• If the database cannot be located in the default server

The CREATE DATABASE statement does not use DBPATH.

To add a new DBPATH entry to existing entries, see Modifying an environment-variable setting on page 143.

setenvDBPATH { | pathname | / /servername/full_pathname | / /servername }

full_pathname

is the full path, from root, of a directory where .sql files are stored.

pathname

is the valid relative path of a directory where .sql files are stored.

servername

is the name of a database server where databases are stored. You cannot reference database files with a

servername.

DBPATH can contain up to 16 entries. Each entry must be less than 128 characters. In addition, the maximum length of

DBPATH depends on the hardware platform on which you set DBPATH.

When you access a database with the CONNECT, DATABASE, START DATABASE, or DROP DATABASE statement, the search

for the database is done first in the directory or database server specified in the statement. If no database server is specified,

the default database server that was specified by the INFORMIXSERVER environment variable is used.

If the database is not located during the initial search, and if DBPATH is set, the database servers and directories in DBPATH

are searched for in the specified database. These entries are searched in the same order in which they are listed in the

DBPATH setting.

163

HCL Informix 14.10 - SQL programming Guide

164

Using DBPATH with DB-Access

If you use DB-Access and select the Choose option from the SQL menu without having already selected a database, you see

a list of all the .sql files in the directories listed in your DBPATH. After you select a database, the DBPATH is not used to find

the .sql files. Only the .sql files in the current working directory are displayed.

Searching local directories

About this task

Use a pathname without a database server name to search for .sql scripts on your local computer. In the following example,

the DBPATH setting causes DB-Access to search for the database files in your current directory and then in the Joachim and

Sonja directories on the local computer:

setenv DBPATH /usr/joachim:/usr/sonja

As the previous example shows, if the pathname specifies a directory name but not a database server name, the directory is

sought on the computer that runs the default database server that the INFORMIXSERVER specifies; see INFORMIXSERVER

environment variable on page 193. For instance, with the previous example, if INFORMIXSERVER is set to quality, the

DBPATH value is interpreted, as the following example shows, where the double slash precedes the database server name:

setenv DBPATH //quality/usr/joachim://quality/usr/sonja

Searching networked computers for databases

About this task

If you use more than one database server, you can set DBPATH explicitly to contain the database server and directory names

that you want to search for databases. For example, if INFORMIXSERVER is set to quality, but you also want to search the

marketing database server for /usr/joachim, set DBPATH as the following example shows:

setenv DBPATH //marketing/usr/joachim:/usr/sonja

Specifying a servername

About this task

You can set DBPATH to contain only database server names. This feature allows you to locate only databases; you cannot

use it to locate command files.

The database administrator must include each database server mentioned by DBPATH in the $INFORMIXDIR/etc/sqlhosts

file. For information about communication-configuration files and dbservernames, see your HCL® Informix® Administrator's

Guide and the HCL® Informix® Administrator's Reference.

For example, if INFORMIXSERVER is set to quality, you can search for a database first on the quality database server and

then on the marketing database server by setting DBPATH, as the following example shows:

setenv DBPATH //marketing

Chapter 1. SQL programming

If you use DB-Access in this example, the names of all the databases on the quality and marketing database servers are

displayed with the Select option of the DATABASE menu.

DBPRINT environment variable
Use the DBPRINT environment variable to specify the default printing program.

setenvDBPRINTprogram

program

Any command, shell script, or UNIX™ utility that produces standard ASCII output.

If you do not set DBPRINT, the default program is found in one of two places:

• For most BSD UNIX™ systems, the default program is lpr.

• For UNIX™ System V, the default program is usually lp.

Enter the following command to set the DBPRINT environment variable to specify myprint as the print program:

setenv DBPRINT myprint

DBREMOTECMD environment variable (UNIX™)
Use the DBREMOTECMD environment variable to override the default remote shell to perform remote tape operations with

the database server.

You can set DBREMOTECMD to a simple command or to a full path name.

setenvDBREMOTECMD { command | pathname }

command

A command to override the default remote shell.

pathname

A path name to override the default remote shell.

If you do not specify the full path name, the database server searches your PATH for the specified command. You should

use the full path name syntax on interactive UNIX™ platforms to avoid problems with similarly named programs in other

directories and possible confusion with the restricted shell (/usr/bin/rsh).

The following command sets DBREMOTECMD for a simple command name:

setenv DBREMOTECMD rcmd

The next command to set DBREMOTECMD specifies a full path name:

setenv DBREMOTECMD /usr/bin/remsh

For more information about using remote tape devices for backups, see Specify a remote device on page .

165

../%20bar/ids_bar_450.html#ids_bar_450
../%20bar/ids_bar_450.html#ids_bar_450
../%20bar/ids_bar_450.html#ids_bar_450
../%20bar/ids_bar_450.html#ids_bar_450

HCL Informix 14.10 - SQL programming Guide

166

DBSPACETEMP environment variable
The DBSPACETEMP environment variable specifies the dbspaces in which temporary tables are built. The list can include

standard dbspaces, temporary dbspaces, or both.

setenvDBSPACETEMP dbspace

dbspace

is the name of an existing standard or temporary dbspace.

You can list dbspaces, separated by colon (:) or comma (,) symbols, to designate space for temporary tables across

physical storage devices. For example, the following command to set the DBSPACETEMP environment variable specifies

three dbspaces for temporary tables:

setenv DBSPACETEMP sorttmp1:sorttmp2:sorttmp3

DBSPACETEMP overrides any default dbspaces that the DBSPACETEMP parameter specifies in the configuration file of

the database server. For UPDATE STATISTICS operations, DBSPACETEMP is used only when you specify the HIGH keyword

option.

On UNIX™ platforms, you might have better performance if the list of dbspaces in DBSPACETEMP is composed of chunks

that are allocated as raw devices.

The number of dbspaces is limited by the maximum size of the environment variable, as defined by your operating system.

Your database server does not create a dbspace specified by the environment variable if the dbspace does not exist.

The two classes of temporary tables are explicit temporary tables that the user creates and implicit temporary tables that the

database server creates. Use DBSPACETEMP to specify the dbspaces for both types of temporary tables.

If you create an explicit temporary table with the CREATE TEMP TABLE statement and do not specify a dbspace for the table

either in the IN dbspace clause or in the FRAGMENT BY clause, the database server uses the settings in DBSPACETEMP to

determine where to create the table.

If you create an explicit temporary table with the SELECT INTO TEMP statement, the database server uses the settings in

DBSPACETEMP to determine where to create the table.

If DBSPACETEMP is set, and the dbspaces that it lists include both logging and non-logging dbspaces, the database server

stores temporary tables that implicitly or explicitly support transaction logging in a logged dbspace, and non-logging

temporary tables in a non-logging dbspace.

The database server creates implicit temporary tables for its own use while executing join operations, SELECT statements

with the GROUP BY clause, SELECT statements with the ORDER BY clause, and index builds.

When it creates explicit or implicit temporary tables, the database server uses disk space for writing the temporary data.

If there are conflicts among settings or statement specifications for the location of a temporary table, these conflicts are

resolved in this descending (highest to lowest) order of precedence:

Chapter 1. SQL programming

1. On UNIX™ platforms, the operating-system directory or directories that the environment variable PSORT_DBTEMP

specifies, if this is set

2. The dbspace or dbspaces that the environment variable DBSPACETEMP specifies, if this is set

3. The dbspace or dbspaces that the ONCONFIG parameter DBSPACETEMP specifies.

4. The operating-system file space specified by the DUMPDIR configuration parameter

5. The directory $INFORMIXDIR/tmp (UNIX™) or $INFORMIXDIR\tmp (Windows™).

Important: If the DBSPACETEMP environment variable is set to an invalid value, the database server defaults to the

root dbspace for explicit temporary tables and to /tmp for implicit temporary tables, rather than to the setting of

the DBSPACETEMP configuration parameter. In this situation, the database server might fill /tmp to the limit and

eventually bring down the database server or kill the file system.

DBTEMP environment variable

The DBTEMP environment variable is used by DB-Access and HCL Informix® Enterprise Gateway products and by HCL

Informix® and by earlier database servers. DBTEMP resembles DBSPACETEMP, specifying the directory in which to place

temporary files and temporary tables.

setenv DBTEMP pathname

pathname

The full path name of the directory for temporary files and tables.

For DB-Access to work correctly on Windows™ platforms, DBTEMP should be set to $INFORMIXDIR/infxtmp.

The following example sets DBTEMP to the path name usr/magda/mytemp for UNIX™ systems that use the C shell:

setenv DBTEMP usr/magda/mytemp

Important: DBTEMP can point to an NFS-mounted directory only if the vendor of that NFS device is certified by IBM®.

If DBTEMP is not set, the database server creates temporary files in the /tmp directory and temporary tables in the

DBSPACETEMP directory. See DBSPACETEMP environment variable on page 166 for the default if DBSPACETEMP is not

set. Similarly, if you do not set DBTEMP on the client system, temporary files (such as those created for scroll cursors) are

created in the /tmp directory.

You might experience unexpected behavior or failure in operations on values of large or complex data types, such as BYTE or

ROW, if DBTEMP is not set.

DBTIME environment variable
The DBTIME environment variable specifies a formatting mask for the display and data-entry format of DATETIME values.

TheDBTIME environment variable is useful in contexts where the DATETIME data values to be formatted by DBTIME have the

same precision as the specified DBTIME setting. You might encounter unexpected or invalid display formats for DATETIME

values that are declared with a different DATETIME qualifier.

167

HCL Informix 14.10 - SQL programming Guide

168

setenvDBTIME' { | literal | % [{ - | 0 }] [min] [.precision] special } '

literal

is a literal white space or any printable character.

min

is a literal integer, setting the minimum number of characters in the substring for the value that special

specifies.

precision

is the number of digits for the value of any time unit, or the maximum number of characters in the name of a

month.

special

is one of the placeholder characters that are listed following.

These terms and symbols are described in the pages that follow.

This quoted string can include literal characters and placeholders for the values of individual time units and other elements

of a DATETIME value. DBTIME takes effect only when you call certain IBM® Informix® ESQL/C DATETIME routines. (For

details, see the HCL® Informix® Enterprise Replication Guide.) If DBTIME is not set, the behavior of these routines is

undefined, and "YYYY-MM-DD hh:mm:ss.fffff" is the default display and input format for DATETIME YEAR TO FRACTION(5)

literal values in the default locale.

The percentage (%) symbol gives special significance to the special placeholder symbol that follows. Without a preceding %

symbol, any character within the formatting mask is interpreted as a literal character, even if it is the same character as one

of the placeholder characters in the following list. Note also that the special placeholder symbols are case sensitive.

The following characters within a DBTIME format string are placeholders for time units (or for other features) within a

DATETIME value.

%b

is replaced by the abbreviated month name.

%B

is replaced by the full month name.

%d

is replaced by the day of the month as a decimal number [01,31].

%Fn

is replaced by a fraction of a second with a scale that the integer n specifies. The default value of n is 2; the

range of n is 0 ≤ n ≤ 5.

%H

is replaced by the hour (24-hour clock).

Chapter 1. SQL programming

%I

is replaced by the hour (12-hour clock).

%M

is replaced by the minute as a decimal number [00,59].

%m

is replaced by the month as a decimal number [01,12].

%p

is replaced by A.M. or P.M. (or the equivalent in the locale file).

%S

is replaced by the second as a decimal number [00,59].

%y

is replaced by the year as a four-digit decimal number.

%Y

is replaced by the year as a four-digit decimal number. User must enter a four-digit value.

%%

is replaced by % (to allow a literal % character in the format string).

For example, consider this display format for DATETIME YEAR TO SECOND:

Mar 21, 2013 at 16 h 30 m 28 s

If the user enters a two-digit year value, this value is expanded to 4 digits according to the DBCENTURY environment variable

setting. If DBCENTURY is not set, then the string 19 is used by default for the first two digits.

Set DBTIME as the following command line (for the C shell) shows:

setenv DBTIME '%b %d, %Y at %H h %M m %S s'

The default DBTIME produces the following ANSI SQL string format:

2001-03-21 16:30:28

You can set the default DBTIME as the following example shows:

setenv DBTIME '%Y-%m-%d %H:%M:%S'

An optional field width and precision specification (w.p) can immediately follow the percent (%) character. It is interpreted as

follows:

w

Specifies the minimum field width. The value is right-justified with blank spaces on the left.

169

HCL Informix 14.10 - SQL programming Guide

170

-w

Specifies the minimum field width. The value is left-justified with blank spaces on the right.

0w

Specifies the minimum field width. The value is right-justified and padded with zeros on the left.

p

Specifies the precision of d, H, I, m, M, S, y, and Y time unit values, or the maximum number of characters in b

and B month names.

The following limitations apply to field-width and precision specifications:

• If the data value supplies fewer digits than precision specifies, the value is padded with leading zeros.

• If a data value supplies more characters than precision specifies, excess characters are truncated from the right.

• If no field width or precision is specified for d, H, I, m, M, S, or y placeholders, 0.2 is the default, or 0.4 for the Y

placeholder.

• A precision specification is significant only when converting a DATETIME value to an ASCII string, but not vice versa.

The F placeholder does not support this field-width and precision syntax.

Important: Any separator character between the %S and %F directives for DATETIME user formats must be explicitly

defined. Specifying %S%F concatenates the digits that represent the integer and fractional parts of the seconds value.

Like DBDATE, GL_DATE, or GL_DATETIME, or USE_DTENV, the DBTIME setting controls only the character-string

representation of data values. It cannot change the internal storage format of the DATETIME column. (For additional

information about formatting DATE values, see the discussion of DBDATE in the topic DBDATE environment variable on

page 157.)

DBTIME formats in nondefault locales

If you specify a locale other than U.S. English, the locale defines the culture-specific display formats for DATETIME values.

To change the default display format, change the setting of DBTIME, or of the GL_DATETIME and USE_DTENV environment

variables.

In East Asian locales that support era-based dates, DBTIME can also specify Japanese or Taiwanese eras. See HCL®

Informix® GLS User's Guide for details of additional placeholder symbols for setting DBTIME to display era-based DATETIME

values, and for descriptions of the GL_DATETIME, GL_DATE, and USE_DTENV environment variables.

Related reference

DATETIME data type on page 93

Chapter 1. SQL programming

DBUPSPACE environment variable
Use the DBUPSPACE environment variable to specify the amount of system disk space and the amount of memory that the

UPDATE STATISTICS MEDIUM and UPDATE STATISTICS HIGH statement can use when it reads and sorts column values to

construct column distributions. The DBUPSPACE setting can also request SET EXPLAIN output to describe the execution

path for calculating the statistical distributions.

setenvDBUPSPACE { 1024 | [disk] } { : 15 | [: memory] } [: directive]

disk

is an unsigned integer, specifying the disk space (in KiB) to allocate for sorting in UPDATE STATISTICS MEDIUM

and HIGH operations.

memory

is an unsigned integer, specifying the maximum amount of sorting memory (in MiB, in the range from 4 to 50

megabytes) to allocate without using PDQ.

directive

is an unsigned integer, encoding one of the following directives for the UPDATE STATISTICS execution plan:

• 1: Do not use any indexes for sorting. Print the entire plan for update statistics in the sqexplain.out

file.

• 2: Do not use any indexes for sorting. Do not print the plan for update statistics.

• 3 or greater: Use available indexes for sorting. Print the entire plan for update statistics in explain

output file.

For example, to set DBUPSPACE to 2,500 KiB of disk space and 1 megabyte of memory, enter this command:

setenv DBUPSPACE 2500:1

After you set this value, the database server will attempt to use no more than 2,500 KiB of disk space during the execution of

an UPDATE STATISTICS MEDIUM or HIGH statement. If a table requires 5 megabytes of disk space for sorting, then UPDATE

STATISTICS accomplishes the task in two passes; the distributions for one half of the columns are constructed with each

pass. For a table of a given storage size, this parameter determines the number of passes, but no pass can write less than a

full column.

If you do not set DBUPSPACE, the default setting is 1 megabyte (1,024 KiB) for disk, and 15 megabytes for memory.

If you attempt to set the first DBUPSPACE parameter to any value less than 1,024 KiB, it is automatically set to 1,024

KiB, but no error message is returned. If this disk value is not large enough to allow more than one distribution to be

constructed at a time, at least one distribution is done, even if the amount of disk space required to do this is more than

what DBUPSPACE specifies. That is, regardless of the disk parameter setting for DBUPSPACE, the largest individual column

storage requirement of a table determines the actual upper limit on disk space for a single pass in any UPDATE STATISTICS

HIGH or MEDIUM operation.

171

HCL Informix 14.10 - SQL programming Guide

172

Related information

Default name and location of the explain output file on UNIX on page

Default name and location of the output file on Windows on page

DEFAULT_ATTACH environment variable

The DEFAULT_ATTACH environment variable supports the legacy behavior of Version 7.x of HCL Informix®, in which the

pages of nonfragmented B-tree indexes on nonfragmented tables were stored, by default, in the same dbspace partition as

the data pages. (The name "DEFAULT_ATTACH" derives from an obsolete definition of an attached index, a term that now

refers to an index whose fragmentation strategy is the same as the fragmentation strategy of its table. Do not confuse the

obsolete Version 7.x definition with this current definition.)

setenvDEFAULT_ATTACH1

If the DEFAULT_ATTACH environment variable is set to 1, then by default, the pages of nonfragmented B-tree indexes on

nonfragmented tables are stored in the same partition (and in the same dbspace) that stores data pages of the table. The IN

TABLE keywords of the CREATE INDEX statement are not required (but do not return an error).

Setting DEFAULT_ATTACH to 1 has no effect, however, on any other types of indexes, whose pages are always stored

in separate partitions from the data pages of the indexed table. These index types whose storage distribution is always

different from that of their table include

• R-tree indexes,

• functional indexes,

• forest of trees indexes,

• fragmented indexes,

• and indexes on fragmented tables.

Index storage in the same partition as the data pages is supported only for nonfragmented B-tree indexes on nonfragmented

tables.

If DEFAULT_ATTACH is not set, then by default, any CREATE INDEX statement that does not specify IN TABLE as its Storage

Options clause creates an index whose pages are stored in partitions separate from the data pages. This release of HCL

Informix® can support existing indexes that were created by Version 7.x of HCL Informix®.

Important: Future releases of HCL Informix® might not continue to support DEFAULT_ATTACH. Developing new

applications that depend on this deprecated feature is not recommended.

DELIMIDENT environment variable
The DELIMIDENT environment variable specifies that strings enclosed between double quotation (") marks are delimited

database identifiers.

../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157

Chapter 1. SQL programming

The DELIMIDENT environment variable is also supported on client systems, where it can be set to y, to n, or to no setting.

• y specifies that client applications must use single quotation (') symbols to delimit character strings, and must use

double quotation (") symbols only around delimited SQL identifiers, which can support a larger character set than is

valid in undelimited identifiers. Letters within delimited strings or delimited identifiers are case-sensitive. This is the

default value for OLE DB and .NET.

• n specifies that client applications can use double quotation (") or single quotation (') symbols to delimit character

strings, but not to delimit SQL identifiers. If the database server encounters a string delimited by double or single

quotation symbols in a context where an SQL identifier is required, it issues an error. An owner name that qualifies an

SQL identifier can be delimited by single quotation (') symbols. You must use a pair of the same quotation symbols

to delimit a character string.

This is the default value for ESQL/C, JDBC, and ODBC. APIs that have ESQL/C as an underlying layer, such as HCL

Informix® 4GL, the DataBlade® API (LIBDMI), and the C++ API, behave as ESQL/C, and use 'n' as the default if no

value for DELIMIDENT is specified on the client system.

• Specifying the DELIMIDENT environment variable with no value on the client system requires client applications to

use the DELIMIDENT setting that is the default for their application programming interface (API).

setenvDELIMIDENT

No value is required; DELIMIDENT takes effect if it exists, and it remains in effect while it is on the list of environment

variables. Removing DELIMIDENT when it is set at the server level requires restarting the server.

Delimited identifiers can include white space (such as the phrase "Vitamin E") or can be identical to SQL keywords, (such

as "TABLE" or "USAGE"). You can also use them to declare database identifiers that contain characters outside the default

character set for SQL identifiers (such as "Column #6"). In the default locale, this set consists of letters, digits, and the

underscore (_) symbol.

Even if DELIMIDENT is set, you can use single quotation (') symbols to delimit authorization identifiers as the owner name

component of a database object name, as in the following example:

RENAME COLUMN 'Owner'.table2.collum3 TO column3;

This example is an exception to the general rule that when DELIMIDENT is set, the SQL parser interprets character strings

delimited by single quotation symbols as string literals, and interprets character strings delimited by double quotation

symbols (") as SQL identifiers.

Database identifiers (also called SQL identifiers) are names for database objects, such as tables and columns. Storage

identifiers are names for storage objects, such as dbspaces, blobspaces, and sbspaces. You cannot use DELIMIDENT to

declare storage identifiers that contain characters outside the default SQL character set.

Delimited identifiers are case sensitive. To use delimited identifiers, applications in Informix® ESQL/C must set DELIMIDENT

at compile time and at run time.

173

HCL Informix 14.10 - SQL programming Guide

174

Important: If DELIMIDENT is not already set, you should be aware that setting it can cause the failure of existing

.sql scripts or client applications that use double (") quotation marks in contexts other than delimiting SQL

identifiers, such as delimiters of string literals. You must use single (') rather than double quotation marks for

delimited constructs that are not SQL identifiers if DELIMIDENT is set.

On UNIX™ systems that use the C shell and on which DELIMIDENT has been set, you can disable this feature (which causes

anything between double quotation symbols to be interpreted as an SQL identifier) by the command:

unsetenv DELIMIDENT

ENVIGNORE environment variable (UNIX™)

The ENVIGNORE environment variable can deactivate specified environment variable settings in the common (shared)

configuration file, informix.rc, and private environment-configuration file, .informix.

setenvENVIGNORE variable

variable

The name of an environment variable to be deactivated.

Use colon (:) symbols between consecutive variable names. For example, to ignore the DBPATH and DBMONEY entries in

the environment-configuration files, enter the following command:

setenv ENVIGNORE DBPATH:DBMONEY

The common environment-configuration file is stored in $INFORMIXDIR/etc/informix.rc.

The private environment-configuration file is stored in the home directory of the user as .informix.

For information about creating or modifying an environment-configuration file, see Setting environment variables in a

configuration file on page 141.

ENVIGNORE itself cannot be set in an environment-configuration file.

FET_BUF_SIZE environment variable

The FET_BUF_SIZE environment variable can override the default setting for the size of the fetch buffer for all

data types except BYTE and TEXT values. For ANSI databases, you must set transactions to READ ONLY for the

FET_BUF_SIZEenvironment variable to improve performance, otherwise rows are returned one by one.

setenvFET_BUF_SIZEsize

size

is a positive integer that is larger than the default buffer size, but no greater than 2147483648 (2GB), specifying

the size (in bytes) of the fetch buffer that holds data retrieved by a query.

For example, to set a buffer size to 5,000 bytes on a UNIX™ system that uses the C shell, set FET_BUF_SIZE by entering the

following command:

Chapter 1. SQL programming

setenv FET_BUF_SIZE 5000

When FET_BUF_SIZE is set to a valid value, the new value overrides the default value (or any previously set value of

FET_BUF_SIZE). The default setting for the fetch buffer is dependent on row size.

The processing of BYTE and TEXT values is not affected by FET_BUF_SIZE.

No error is raised if FET_BUF_SIZE is set to a value that is less than the default size or is larger than 2147483648 (2GB). In

these cases, however, the invalid fetch buffer size is ignored, and the default size is in effect.

A valid FET_BUF_SIZE setting is in effect for the local database server and for any remote database server from which you

retrieve rows through a distributed query in which the local server is the coordinator and the remote database is subordinate.

The greater the size of the buffer, the more rows can be returned, and the less frequently the client application must wait

while the database server returns rows. A large buffer can improve performance by reducing the overhead of filling the client-

side buffer.

IFMXMONGOAUTH environment variable
Set the IFMXMONGOAUTH environment variable to enable PAM authentication for MongoDB clients through the wire

listener.

You can set the IFMXMONGOAUTH environment variable to any value or to no value.

setenv IFMXMONGOAUTH 1

Setting the IFMXMONGOAUTH environment variable is a prerequisite to configuring PAM authentication for MongoDB

clients.

You can disable the IFMXMONGOAUTH environment variable with this command:

unsetenv IFMXMONGOAUTH

Related information

Configuring PAM authentication on page

IFX_DEF_TABLE_LOCKMODE environment variable

The IFX_DEF_TABLE_LOCKMODE environment variable can specify the default lock mode for database tables that are

subsequently created without explicitly specifying the LOCKMODE PAGE or LOCKMODE ROW keywords. This feature is

convenient if you must create several tables of the same lock mode. UNIX™ systems that use the C shell support the

following syntax:

setenvIFX_DEF_TABLE_LOCKMODE { PAGE | ROW }

PAGE

The default lock mode is page-level granularity. This value disables the LAST COMMITTED feature of

COMMITTED READ.

175

../json/ids_json_073.html#ids_json_073
../json/ids_json_073.html#ids_json_073
../json/ids_json_073.html#ids_json_073
../json/ids_json_073.html#ids_json_073

HCL Informix 14.10 - SQL programming Guide

176

ROW

The default lock mode is row-level granularity.

Similar functionality is available by setting the DEF_TABLE_LOCKMODE parameter of the ONCONFIG file to PAGE or ROW.

When a table is created or modified, any conflicting lock mode specifications are resolved according to the following

descending (highest to lowest) order of precedence:

1. Explicit LOCKMODE specification of CREATE TABLE or ALTER TABLE

2. IFX_DEF_TABLE_LOCKMODE environment variable setting

3. DEF_TABLE_LOCKMODE parameter setting in the ONCONFIG file

4. The system default lock mode (= page mode)

To make the DEF_TABLE_LOCKMODE setting the default mode (or to restore the system default if DEF_TABLE_LOCKMODE is

not set) use the command:

unsetenv IFX_DEF_TABLE_LOCKMODE

If IFX_DEF_TABLE_LOCKMODE is set in the environment of the database server before running oninit, then its

scope is all sessions of the database server (just as if DEF_TABLE_LOCKMODE were set in the ONCONFIG file). If

IFX_DEF_TABLE_LOCKMODE is set in the shell, or in the $HOME/.informix or $INFORMIXDIR/etc/informix.rc files, then the

scope is restricted to the current session (if you set it in the shell) or to the individual user.

Important: This has no effect on existing tables. If you specify ROW as the lock mode, the database will use this to

restore, recover, or copy data. For tables that were created in PAGE mode, this might cause lock-table overflow or

performance degradation.

IFX_DIRECTIVES environment variable

The IFX_DIRECTIVES environment variable setting determines whether the optimizer allows query optimization directives

from within a query. The IFX_DIRECTIVES environment variable is set on the client.

You can specify either ON and OFF or 1 and 0 to set the environment variable.

setenvIFX_DIRECTIVES { 1 | 0 }

1

Optimizer directives accepted

0

Optimizer directives not accepted

The setting of the IFX_DIRECTIVES environment variable overrides the value of the DIRECTIVES configuration parameter that

is set for the database server. If the IFX_DIRECTIVES environment variable is not set, however, then all client sessions will

inherit the database server configuration for directives that the ONCONFIG parameter DIRECTIVES determines. The default

setting for the IFX_DIRECTIVES environment variable is ON.

Chapter 1. SQL programming

For more information about the DIRECTIVES parameter, see the HCL® Informix® Administrator's Reference. For more

information about the performance impact of directives, see your .

IFX_EXTDIRECTIVES environment variable

The IFX_EXTDIRECTIVES environment variable specifies whether the query optimizer allows external query optimization

directives from the sysdirectives system catalog table to be applied to queries in existing applications.

You have two options for setting the IFX_EXTDIRECTIVES environment variable:

• Global, for all users:

On the server, set IFX_EXTDIRECTIVES in the environment as user informix and then run the oninit command.

• Client specific:

On the client, set IFX_EXTDIRECTIVES in the environment. When IFX_EXTDIRECTIVES is set in the client environment,

the client setting are used regardless of the server (global) setting.

You can determine the server setting using the onstat -g env command.

You can specify either ON and OFF or 1 and 0 to set the environment variable.

setenvIFX_DIRECTIVES { 1 | 0 }

1

External optimizer directives accepted

0

External optimizer directives not accepted

Queries within a given client application can use external directives if both the EXT_DIRECTIVES parameter in the

configuration file of the database server and the IFX_EXTDIRECTIVES environment variable setting on the client system are

both set to 1 or ON. If IFX_EXTDIRECTIVES is not set, external directives are supported only if the ONCONFIG parameter

EXT_DIRECTIVES is set to 2. The following table summarizes the effect of valid IFX_EXTDIRECTIVES and EXT_DIRECTIVES

settings on support for external optimizer directives.

Table 56. Effect of IFX_EXTDIRECTIVES and EXT_DIRECTIVES settings on external directives

EXT_DIRECTIVES = 0 EXT_DIRECTIVES = 1 EXT_DIRECTIVES = 2

IFX_EXTDIRECTIVES No setting OFF OFF ON

IFX_EXTDIRECTIVES0 = OFF OFF OFF OFF

IFX_EXTDIRECTIVES1 = ON OFF ON ON

The database server interprets any EXT_DIRECTIVES setting besides 1 or 2 (or no setting) as equivalent to OFF, disabling

support for external directives. Any value of IFX_EXTDIRECTIVES other than 1 has the same effect for the client.

177

HCL Informix 14.10 - SQL programming Guide

178

For information about how to define external optimizer directives, see the description of the SAVE EXTERNAL DIRECTIVES

statement of SQL in the HCL® Informix® Guide to SQL: Syntax. For more information about the EXT_DIRECTIVES

configuration parameter, see the HCL® Informix® Administrator's Reference. For more information about the performance

impact of directives, see your .

IFX_LARGE_PAGES environment variable
The IFX_LARGE_PAGES environment variable specifies whether the database server can use large pages on platforms where

the hardware and the operating system support large pages of shared memory. If this is enabled in the server environment,

HCL Informix® can use the large pages for non-message shared memory segments that are located in physical memory.

The IFX_LARGE_PAGES environment variable is supported only on AIX®, Solaris, and Linux™ operating systems. The setting

of IFX_LARGE_PAGES has no effect on Informix® if the operating system does not support large pages, or if large pages are

not configured on the system.

You can specify either 1 or 0 to set this environment variable.

setenvIFX_LARGE_PAGES { 1 | 0 }

0

The use of large pages is disabled. This is the default on AIX® systems.

1

The use of large pages is enabled. This is the default on Solaris and Linux™ systems.

The DBSA must use operating system commands to configure the large pages. See the operating system documentation for

the configuration procedures.

Informix® can use large pages for non-message shared memory segments that are locked in physical memory, if sufficient

large pages are configured and available. The RESIDENT configuration parameter controls whether a shared memory

segment is locked in physical memory, so that the segment cannot be swapped. If there are insufficient large pages to hold a

segment, the segment might contain a mixture of large pages and regular pages.

On AIX® the large pages used by Informix® are 16 MB in size.

On Linux™ x86_64 the large pages used by Informix® are defined by the Hugepagesize entry in the /proc/meminfo file.

Informix® aligns the segment address and rounds up to the segment size automatically. In addition to messages regarding

rounding, the server prints an informational message to the server log file whenever it attempts to use large pages to store a

segment.

When IFX_LARGE_PAGES is enabled, the use of large pages can offer significant performance benefits in large memory

configurations.

Related information

RESIDENT configuration parameter on page

../%20adr/ids_adr_0140.html#ids_adr_0140
../%20adr/ids_adr_0140.html#ids_adr_0140
../%20adr/ids_adr_0140.html#ids_adr_0140
../%20adr/ids_adr_0140.html#ids_adr_0140

Chapter 1. SQL programming

IFX_LOB_XFERSIZE environment variable
Use the IFX_LOB_XFERSIZE environment variable to specify the number of bytes in a CLOB or BLOB data type to transfer

from a client application to the database server before checking whether an error has occurred.

The error check occurs each time the specified number of bytes is transferred. If an error occurs, the remaining data is not

sent and an error is reported. If no error occurs, the file transfer will continue until it finishes.

For example, if the value of IFX_LOB_XFERSIZE is set to 10485760 (10 MB), then error checking will occur after every

10485760 bytes of the CLOB or BLOB data is sent. If IFX_LOB_XFERSIZE is not set, the error check occurs after the entire

BLOB or CLOB data is transferred.

The valid range for IFX_LOB_XFERSIZE is from 1 to 9223372036854775808 bytes. The IFX_LOB_XFERSIZE environment

variable is set on the client.

setenvIFX_LOB_XFERSIZEvalue

value

the number of bytes in a CLOB or BLOB to transfer from a client application to the database server before

checking whether an error has occurred

You should adjust the value of IFX_LOB_XFERSIZE to suit your environment. Set IFX_LOB_XFERSIZE low enough so that

transmission errors of large BLOB or CLOB data types are detected early, but not so low that excessive network resources are

used.

IFX_LONGID environment variable

The IFX_LONGID environment variable setting and the version number of the client application determine whether a given

client application is capable of handling long identifiers. (Older versions of HCL Informix® restricted SQL identifiers to 18 or

fewer bytes; long identifiers can have up to 128 bytes when IFX_LONGID is set.) Valid IFX_LONGID values are 1 and 0.

setenvIFX_LONGID { 1 | 0 }

1

Client supports long identifiers.

0

Client cannot support long identifiers.

When IFX_LONGID is set to zero, applications display only the first 18 bytes of long identifiers, without indicating (by +) that

truncation has occurred.

If IFX_LONGID is unset or is set to a value other than 1 or 0, the determination is based on the internal version of the client

application. If the (server-based) version is not less than 9.0304, or is in the (CSDK-based) range 2.90 ≤ version < 4.0, the

client is considered capable of handling long identifiers. Otherwise, the client application is considered incapable.

179

HCL Informix 14.10 - SQL programming Guide

180

The IFX_LONGID setting overrides the internal version of the client application. If the client cannot handle long identifiers

despite a newer version number, set IFX_LONGID to 0. If the client version can handle long identifiers despite an older version

number, set IFX_LONGID to 1.

If you set IFX_LONGID on the client, the setting affects only that client. If you start the database server with IFX_LONGID set,

all client applications use that setting by default. If IFX_LONGID is set to different values on the client and on the database

server, however, the client setting takes precedence.

Important: ESQL executables that have been built with the -static option using the libos.a library version that does

not support long identifiers cannot use the IFX_LONGID environment variable. You must recompile such applications

with the new libos.a library that includes support for long identifiers. Executables that use shared libraries (no

-static option) can use IFX_LONGID without recompilation provided that they use the new libifos.so that provides

support for long identifiers. For details, see your ESQL product publication.

IFX_NETBUF_PVTPOOL_SIZE environment variable (UNIX™)
Use the IFX_NETBUF_PVTPOOL_SIZE environment variable to specify the maximum size of the free (unused) private

network buffer pool for each database server session.

setenvIFX_NETBUF_PVTPOOL_SIZEcount

count

an integer specifying the number of units (buffers) in the pool.

The default size is 1 buffer. If IFX_NETBUF_PVTPOOL_SIZE is set to 0, then each session obtains buffers from the free global

network buffer pool. You must specify the value in decimal form.

IFX_NETBUF_SIZE environment variable
Use the IFX_NETBUF_SIZE environment variable to configure the network buffers to the optimum size. This environment

variable specifies the size of all network buffers in the free (unused) global pool and the private network buffer pool for each

database server session.

setenvIFX_NETBUF_SIZEsize

size

is the integer size (in bytes) for one network buffer.

The default size is 4 KB (4,096 bytes). The maximum size is 64 KB (65,536 bytes) and the minimum size is 512 bytes. You

can specify the value in hexadecimal or decimal form.

Chapter 1. SQL programming

Tip: You cannot set a different size for each session.

IFX_NO_SECURITY_CHECK environment variable (UNIX™)

The IFX_NO_SECURITY_CHECK environment variable allows user informix or root to complete operations with a database

server instance even when the HCL Informix® utilities detect that the $INFORMIXDIR path is not secure. Do not use this

environment variable unless your system setup makes it absolutely necessary to do so.

The purpose of IFX_NO_SECURITY_CHECK is for environments where the database server started but while running it

detects that the runtime path is not secure anymore. In this case, a superuser might be required to stop the database server

in order to remedy the security flaw. With this environment variable, either user informix or root can use the onmode utility to

shut down a nonsecure Informix® instance, which would otherwise not be possible because key programs do not run when

the $INFORMIXDIR path is not secure.

There is some risk in using this environment variable, but in some circumstances it might be necessary to remedy a bigger

security problem. The requirement that only user informix or root can invoke IFX_NO_SECURITY_CHECK makes it unlikely

that an illegitimate user would be able to run it.

To use this environment variable, set it to any non-empty string.

setenvIFX_NO_SECURITY CHECK1

1

Any value entered here when running this environment variable disables the onsecurity utility.

Important: Turn off this environment variable after you have finished troubleshooting the security problem.

IFX_NO_TIMELIMIT_WARNING environment variable

Trial or evaluation versions of HCL Informix® software products, which cease to function when some time limit has elapsed

since the software was installed, by default issue warning messages that tell users when the license will expire. If you set

the IFX_NO_TIMELIMIT_WARNING environment variable, however, the time-limited software does not issue these warning

messages.

setenvIFX_NO_TIMELIMIT_WARNING

For users who dislike viewing warning messages, this feature is an alternative to redirecting the error output. Setting

IFX_NO_TIMELIMIT_WARNING has no effect, however, on when a time-limited license expires; the software ceases

to function at the same point in time when it would if this environment variable had not been set. If you do set

IFX_NO_TIMELIMIT_WARNING, users will not see potentially annoying warnings about the impending license expiration, but

some users might be annoyed at you when the database server (or whatever software has a time-limited license) ceases to

function without any warning.

181

HCL Informix 14.10 - SQL programming Guide

182

IFX_NODBPROC environment variable

The IFX_NODBPROC environment variable lets you prevent the database server from running the sysdbopen() or

sysdbclose() procedure. These procedures cannot be run if this environment variable is set to any value.

setenvIFX_NODBPROCstring

string

Any value prevents the database server from running sysdbopen() or sysdblcose().

IFX_NOT_STRICT_THOUS_SEP environment variable

HCL Informix® requires the thousands separator to have 3 digits following it. For example, 1,000 is considered correct, and

1,00 is considered wrong. In previous releases, both formats were considered correct.

setenvIFX_NOT_STRICT_THOUS_SEPn

n

Set n to 1 for the behavior in previous releases, which is that the thousands separator can have fewer than

three digits following it.

IFX_ONTAPE_FILE_PREFIX environment variable

When TAPEDEV and LTAPEDEV specify directories, use the IFX_ONTAPE_FILE_PREFIX environment variable to

specify a prefix for backup file names that replaces the hostname_servernum format. If no value is set, file names are

hostname_servernum_Ln for levels and hostname_servernum_Lognnnnnnnnnn for log files.

If you set the value of IFX_ONTAPE_FILE_PREFIX to My_Backup, the backup file names have the following names:

• My_Backup_L0

• My_Backup_L1

• My_Backup_L2

• My_Backup_Log0000000001

• My_Backup_Log0000000002

setenvIFX_ONTAPE_FILE_PREFIXstring

string

The prefix to use for the names of backup files.

IFX_PAD_VARCHAR environment variable

The IFX_PAD_VARCHAR environment variable setting controls how the database server sends and receives VARCHAR and

NVARCHAR data values. Valid IFX_PAD_VARCHAR values are 1 and 0.

setenvIFX_PAD_VARCHAR { 1 | 0 }

Chapter 1. SQL programming

1

Transmit the entire structure, up to the declared max size.

0

Transmit only the portion of the structure containing data.

For example, to send the string "ABC" from a column declared as NVARCHAR(255) when IFX_PAD_VARCHAR is set to 0

would send 3 bytes.

If the setting were 1 in the previous example, however, the number of bytes sent would be 255 bytes.

The effect IFX_PAD_VARCHAR is context-sensitive. In a low-bandwidth network, a setting of 0 might improve performance

by reducing the total volume of transmitted data. But in a high-bandwidth network, a setting of 1 might improve performance,

if the CPU time required to process variable-length packets were greater than the time required to send the entire character

stream. In cross-server distributed operations, this setting has no effect, and padding characters are dropped from VARCHAR

or NVARCHAR values that are passed between database servers.

IFX_SMX_TIMEOUT environment variable
Use the IFX_SMX_TIMEOUT environment variable to specify the maximum number of seconds for a high-availability

replication (HDR), remote stand-alone (RS) or shared disk (SD) secondary server to wait for a message from the primary

server in a Server Multiplexer Group (SMX) connection.

setenvIFX_SMX_TIMEOUTvalue

value

Any positive numeric value for the number of seconds or -1 to disable this environment variable. There is no

upper limit to the number of seconds that you can specify.

default value

10

For example, to indicate that the secondary server should wait for no more than 60 seconds, specify:

setenv IFX_SMX_TIMEOUT 60

If the secondary server does not receive any message after the number of seconds specified in the IFX_SMX_TIMEOUT

environment variable and after the number of cycles specified in the IFX_SMX_TIMEOUT_RETRY environment variable

have completed, the secondary server will print the error message in the online.log and close the SMX connection.

If an SMX timeout message is in the online.log, you might need to increase the IFX_SMX_TIMEOUT value, the

IFX_SMX_TIMEOUT_RETRY value, or both of these values and restart secondary node.

This environment variable applies only to secondary servers. If you set this environment variable on the primary server, it will

become effective only if the primary server becomes a secondary server after a failure.

183

HCL Informix 14.10 - SQL programming Guide

184

Related reference

IFX_SMX_TIMEOUT_RETRY environment variable on page 184

Related information

Server Multiplexer Group (SMX) connections on page

IFX_SMX_TIMEOUT_RETRY environment variable
Use the IFX_SMX_TIMEOUT_RETRY environment variable to specify the number of times that the high-availability

replication (HDR), remote standalone (RS) or shared disk (SD) secondary server will repeat the wait cycle specified by the

IFX_SMX_TIMEOUT environment variable if a response from the primary server has not been received.

setenvIFX_SMX_TIMEOUT_RETRYvalue

value

Any positive numeric value

default value

6

For example, to indicate that the amount of time specified in the IFX_SMX_TIMEOUT configuration parameter should be

repeated up to 20 times if a response from the primary server has not been received, specify:

setenv IFX_SMX_TIMEOUT_RETRY 20

If the secondary server does not receive any message after the number of seconds specified in the IFX_SMX_TIMEOUT

environment variable and after the number of cycles specified in the IFX_SMX_TIMEOUT_RETRY environment variable

have completed, the secondary server will print the error message in the online.log and close the SMX connection.

If an SMX timeout message is in the online.log, you might need to increase the IFX_SMX_TIMEOUT value, the

IFX_SMX_TIMEOUT_RETRY value, or both of these values and restart secondary node.

This environment variable applies only to secondary servers. If you set this environment variable on the primary server, it will

become effective only if the primary server becomes a secondary server after a failure.

Related reference

IFX_SMX_TIMEOUT environment variable on page 183

Related information

Server Multiplexer Group (SMX) connections on page

IFX_UNLOAD_EILSEQ_MODE environment variable
Use the IFX_UNLOAD_EILSEQ_MODE environment variable to help migrate databases from Informix® Version 10 to Version

11.50 or 11.70, where character data might be encoded with a codeset that is different than the codeset used to create the

Version 10 database.

../admin%20/ids_admin_0995.html#ids_admin_0995
../admin%20/ids_admin_0995.html#ids_admin_0995
../admin%20/ids_admin_0995.html#ids_admin_0995
../admin%20/ids_admin_0995.html#ids_admin_0995
../admin%20/ids_admin_0995.html#ids_admin_0995
../admin%20/ids_admin_0995.html#ids_admin_0995
../admin%20/ids_admin_0995.html#ids_admin_0995
../admin%20/ids_admin_0995.html#ids_admin_0995

Chapter 1. SQL programming

In earlier versions of Informix®, it was possible to load character data into a database that did not match the

locale and codeset of the database. For example you could load Chinese data into a database created with the

DB_LOCALE=en_US.8859-1 codeset. In newer versions of Informix®, to insert Chinese data you would need a database

created with the Chinese (DB_LOCALE=zh_tw.big5 locale and codeset.

Important: For databases created with Version 10 and Client SDK 2.4, when you attempt to unload the invalid

character data an error occurs unless you have set this environment variable. The IFX_UNLOAD_EILSEQ_MODE

environment variable enables DB-Access, dbexport, and High Performance Loader (HPL) to unload character and

bypass the GLS validation that normally occurs when you unload data by using the Version 11.50 and 11.70 tools.

To use this environment variable, set it to any non-empty string.

setenvIFX_UNLOAD_EILSEQ_MODEvalue

value

Any alpha or numeric value. For example: yes, true, or 1.

This environment variable takes effect when character data is being fetched or retrieved from the database.

setenv IFX_UNLOAD_EILSEQ_MODE 1
setenv IFX_UNLOAD_EILSEQ_MODE yes
setenv IFX_UNLOAD_EILSEQ_MODE on

This environment variable is similar to setting the EILSEQ_COMPAT_MODE configuration parameter in the

ONCONFIG file. The configuration parameter affects character data that is inserted into the database, whereas the

IFX_UNLOAD_EILSEQ_MODE environment variable affects character data that is unloaded from the database.

IFX_UPDDESC environment variable

You must set the IFX_UPDDESC environment variable at execution time before you can do a DESCRIBE of an UPDATE

statement.

setenvIFX_UPDDESCvalue

value

is any non-NULL value.

A NULL value (here meaning that IFX_UPDDESC is not set) disables the describe-for-update feature. Any non-NULL value

enables the feature.

IFX_XASTDCOMPLIANCE_XAEND environment variable

In earlier releases of HCL Informix®, an internal rollback of a global transaction freed the transaction. In releases later than

Version 9.40, however, the default behavior after an internal rollback is not to free the global transaction until an explicit

rollback, as required by the X/Open XA standard. By setting the DISABLE_B162428_XA_FIX configuration parameter to 1, you

can restore the legacy behavior as the default for all sessions.

185

HCL Informix 14.10 - SQL programming Guide

186

The IFX_XASTDCOMPLIANCE_XAEND environment variable can override the configuration parameter for the current session,

using the following syntax. Valid IFX_XASTDCOMPLIANCE_XAEND values are 1 and 0.

setenvIFX_XASTDCOMPLIANCE_XAEND { 1 | 0 }

0

Frees global transactions only after an explicit rollback

1

Frees global transactions after any rollback

This environment variable can be particularly useful when the server instance is disabled for new behavior by the

DISABLE_B162428_XA_FIX configuration parameter, but one client requires the new behavior. Setting this environment

variable to zero supports the new behavior in the current session.

IFX_XFER_SHMBASE environment variable

An alternative base address for a utility to attach the server shared memory segments.

setenvIFX_XFER_SHMBASE { address }

address

Valid address in hexadecimal

After the database server allocates shared memory, the database server might allocate multiple contiguous OS shared

memory segments. The client utility that connects to shared memory must attach all those OS segments contiguously also.

The utility might have some other shared objects (for example, the xbsa library in onbar) loaded at the address where the

server has shared memory segment attached. To workaround this situation, you can specify a different base address in the

environment variable IFX_XFER_SHMBASE for the utility to attach the shared memory segments. The onstat, onmode, and

oncheck utilities must attach to exact same shared memory base as oninit. Setting IFX_XFER_SHMBASE is not an option for

these utilities.

IMCADMIN environment variable

The IMCADMIN environment variable supports the imcadmin administrative tool by specifying the name of a database

server through which imcadmin can connect to MaxConnect. For imcadmin to operate correctly, you must set IMCADMIN

before you use any HCL Informix® products.

setenvIMCADMINdbservername

dbservername

is the name of a database server.

Here dbservername must be listed in the sqlhosts file on the computer where the MaxConnect runs. MaxConnect uses this

setting to obtain the following connectivity information from the sqlhosts file:

Chapter 1. SQL programming

• Where the administrative listener port must be established

• The network protocol that the specified database server uses

• The host name of the system where the specified database server is located

You cannot use the imcadmin tool unless IMCADMIN is set to a valid database server name.

For more information about using IMCADMIN, see IBM® Informix® MaxConnect User's Guide.

IMCCONFIG environment variable

The IMCCONFIG environment variable specifies a nondefault filename, and optionally a pathname, for the MaxConnect

configuration file. On UNIX™ systems that support the C shell, this variable can be set by the following command.

setenvIMCCONFIGpathname

pathname

is a full pathname or a simple filename.

When the setting is a filename that is not qualified by a full pathname, MaxConnect searches for the specified file

in the $INFORMIXDIR/etc/ directory. Thus, if you set IMCCONFIG to IMCconfig.imc2, MaxConnect searches for

$INFORMIXDIR/etc/IMCconfig.imc2 as its configuration file.

If the IMCCONFIG environment variable is not set, MaxConnect searches by default for $INFORMIXDIR/etc/IMCconfig as its

configuration file.

IMCSERVER environment variable

The IMCSERVER environment variable specifies the name of a database server entry in the sqlhosts file that contains

information about connectivity.

The database server can be either local or remote. On UNIX™ systems that support the C shell, the IMCSERVER environment

variable can be set by the command.

setenvIMCSERVERdbservername

dbservername

is the valid name of a database server.

Here dbservername must be the name of a database server in the sqlhosts file. For more information about sqlhosts settings

with MaxConnect, see your HCL® Informix® Administrator's Guide. You cannot use MaxConnect unless IMCSERVER is set to

a valid database server name.

INFORMIXC environment variable (UNIX™)

The INFORMIXC environment variable specifies the filename or pathname of the C compiler to be used to compile files that

IBM® Informix® ESQL/C generates. The setting takes effect only during the C compilation stage.

If INFORMIXC is not set, the default compiler on most systems is cc.

187

HCL Informix 14.10 - SQL programming Guide

188

Tip: On Windows™, you pass either -mcc or -bcc options to the esql preprocessor to use either the Microsoft™ or

Borland C compilers.

setenvINFORMIXC { compiler | pathname }

compiler

The file name of the C compiler.

pathname

The full path name of the C compiler.

For example, to specify the GNU C compiler, enter the following command:

setenv INFORMIXC gcc

Important: If you use gcc, be aware that the database server assumes that strings are writable, so you must compile

by using the -fwritable-strings option. Failure to do so can produce unpredictable results, possibly including core

dumps.

INFORMIXCMNAME environment variable
If the Connection Manager raises an event alarm, the INFORMIXCMNAME environment variable is used to store the name

of the Connection Manager instance that raised the alarm. The environment variable is set automatically by the Connection

Manager.

The INFORMIXCMNAME environment variable corresponds to the NAME parameter in the Connection Manager configuration

file. The environment variable is used by the CMALARMPROGRAM program to determine the Connection Manager instance

responsible for the event alarm. You can also use the environment variable in your own Connection Manager event alarm

handler.

The environment variable is set automatically by the Connection Manager and should not be modified.

Related reference

INFORMIXCMCONUNITNAME environment variable on page 188

Related information

The oncmsm utility on page

Connection Manager event alarm IDs on page

INFORMIXCMCONUNITNAME environment variable
If the Connection Manager raises an event alarm, the INFORMIXCMCONUNITNAME environment variable is used to store the

name of the Connection Manager connection unit that raised the alarm. The environment variable is set automatically by the

Connection Manager.

../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1148.html#ids_adr_1148
../%20adr/ids_adr_1148.html#ids_adr_1148
../%20adr/ids_adr_1148.html#ids_adr_1148
../%20adr/ids_adr_1148.html#ids_adr_1148

Chapter 1. SQL programming

The INFORMIXCMCONUNITNAME environment variable corresponds to the connection unit name parameter in the

Connection Manager configuration file. The environment variable is used by the CMALARMPROGRAM program to determine

the Connection Manager instance responsible for the event alarm. You can also use the environment variable in your own

Connection Manager event alarm handler.

The environment variable is set automatically by the Connection Manager and should not be modified.

Related reference

INFORMIXCMNAME environment variable on page 188

Related information

The oncmsm utility on page

Connection Manager event alarm IDs on page

INFORMIXCONCSMCFG environment variable
Use the INFORMIXCONCSMCFG environment variable to specify the location of the concsm.cfg file that describes

communications support modules.

setenvINFORMIXCONCSMCFGpathname

pathname

specifies the full pathname of the concsm.cfg file.

The following command specifies that the concsm.cfg file is in /usr/myfiles:

setenv INFORMIXCONCSMCFG /usr/myfiles

You can also specify a different name for the file. The following example specifies a filename of csmconfig in the same

directory:

setenv INFORMIXCONCSMCFG /usr/myfiles/csmconfig

The default location of the concsm.cfg file is in $INFORMIXDIR/etc. For more information about communications support

modules and the contents of the concsm.cfg file, see the HCL® Informix® Administrator's Reference.

INFORMIXCONRETRY environment variable
The INFORMIXCONRETRY environment variable sets a limit on the maximum number of connection attempts that can be

made to each database server by the client after the initial connection attempt fails. These attempts are made within the

time limit that the INFORMIXCONTIME setting specifies.

setenvINFORMIXCONRETRYcount

count

The number of additional attempts to connect to each database server after the initial connection attempt fails.

189

../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1128.html#ids_adr_1128
../%20adr/ids_adr_1148.html#ids_adr_1148
../%20adr/ids_adr_1148.html#ids_adr_1148
../%20adr/ids_adr_1148.html#ids_adr_1148
../%20adr/ids_adr_1148.html#ids_adr_1148

HCL Informix 14.10 - SQL programming Guide

190

For example, the following command sets INFORMIXCONRETRY to specify three connection attempts after the initial

attempt:

setenv INFORMIXCONRETRY 3

The default value for INFORMIXCONRETRY is one attempt after the initial connection attempt.

Order of precedence among INFORMIXCONRETRY settings

When you specify a setting for the INFORMIXCONRETRY client environment variable, it overrides any INFORMIXCONRETRY

configuration parameter setting in the onconfig file.

If the SET ENVIRONMENT statement specifies a setting for the INFORMIXCONRETRY session environment option, however,

the SQL statement setting overrides the INFORMIXCONRETRY client environment variable setting for subsequent connection

attempts during the current session. The SET ENVIRONMENT INFORMIXCONRETRY setting has no effect on other sessions.

In summary, this is the ascending order (lowest to highest) of the methods for setting a limit on attempts for a connection to

a database server:

• INFORMIXCONRETRY configuration parameter

• INFORMIXCONRETRY client environment variable

• SET ENVIRONMENT INFORMIXCONRETRY statement of SQL

The INFORMIXCONTIME setting takes precedence over the INFORMIXCONRETRY setting. Connection attempts can end

after the INFORMIXCONTIME value is exceeded, but before the INFORMIXCONRETRY value is reached. For more information

about restricting the time available to establish a connection to a database server, see INFORMIXCONTIME environment

variable on page 190

Related reference

INFORMIXCONRETRY configuration parameter on page

Related information

INFORMIXCONRETRY session environment option on page

INFORMIXCONTIME environment variable
The INFORMIXCONTIME environment variable specifies the number of seconds the CONNECT statement attempts to

establish a connection to a database server before returning an error. If you set no value, the default of 60 seconds can

typically support a few hundred concurrent client connections. However, some systems might encounter few connection

errors with a value as low as 15. The total distance between nodes, hardware speed, the volume of traffic, and the

concurrency level of the network can all affect what value you should set to optimize INFORMIXCONTIME.

The INFORMIXCONTIME and INFORMIXCONRETRY environment variables let you configure your client-side connection

capability to retry the connection instead of returning a -908 error.

setenvINFORMIXCONTIMEseconds

../%20adr/ids_adr_1184.html#ids_adr_1184
../%20adr/ids_adr_1184.html#ids_adr_1184
../%20adr/ids_adr_1184.html#ids_adr_1184
../%20adr/ids_adr_1184.html#ids_adr_1184
../sqs/ids_sqs_2604.html#ids_sqs_2604
../sqs/ids_sqs_2604.html#ids_sqs_2604
../sqs/ids_sqs_2604.html#ids_sqs_2604
../sqs/ids_sqs_2604.html#ids_sqs_2604

Chapter 1. SQL programming

seconds

Represents the minimum number of seconds spent in attempts to establish a connection to a database server.

For example, enter this command to set INFORMIXCONTIME to 60 seconds:

setenv INFORMIXCONTIME 60

If INFORMIXCONTIME is set to 60 and INFORMIXCONRETRY is set to 3, attempts to connect to the database server (after

the initial attempt at 0 seconds) are made at 20, 40, and 60 seconds, if necessary, before aborting. This 20-second interval

is the result of INFORMIXCONTIME divided by INFORMIXCONRETRY. If you set the INFORMIXCONTIME value to zero, the

database server automatically uses the default value of 60 seconds.

If the CONNECT statement must search DBPATH, the INFORMIXCONRETRY setting specifies the number of additional

connection attempts that can be made for each database server entry in DBPATH.

• All appropriate servers in the DBPATH setting are accessed at least once, even if the INFORMIXCONTIME value is

exceeded. Thus, the CONNECT statement might take longer than the INFORMIXCONTIME time limit to return an error

that indicates connection failure or that the database was not found.

• The INFORMIXCONTIME value is divided among the number of database server entries that are specified in DBPATH.

Thus, if DBPATH contains numerous servers, increase the INFORMIXCONTIME value accordingly. For example, if

DBPATH contains three entries, to spend at least 30 seconds attempting each connection, set INFORMIXCONTIME to

90.

The INFORMIXCONTIME and INFORMIXCONRETRY environment variables can be modified with the onutil SET command, as

in the following example:

% onutil
1> SET INFORMIXCONTIME 120;
Dynamic Configuration completed successfully
2> SET INFORMIXCONRETRY 10;
Dynamic Configuration completed successfully

Order of precedence among INFORMIXCONTIME settings

When you specify a setting for the INFORMIXCONTIME client environment variable, it overrides the INFORMIXCONTIME

configuration parameter settings in the onconfig file for the current session.

If the SET ENVIRONMENT statement specifies a setting for the INFORMIXCONRETRY session environment option, however,

the SQL statement setting overrides the INFORMIXCONRETRY client environment variable setting for subsequent connection

attempts during the current session. The SET ENVIRONMENT INFORMIXCONRETRY setting has no effect on other sessions.

In summary, this is the ascending order (lowest to highest) of the methods for setting an upper limit on the amount of time

that a CONNECT statement can spend attempting to connect to a database server:

• INFORMIXCONTIME configuration parameter

• INFORMIXCONTIME client environment variable

• SET ENVIRONMENT INFORMIXCONTIME statement of SQL.

191

HCL Informix 14.10 - SQL programming Guide

192

INFORMIXCONTIME takes precedence over the INFORMIXCONRETRY setting. Connection attempts can end after the

INFORMIXCONTIME value is exceeded, but before the INFORMIXCONRETRY value is reached.

Related information

INFORMIXCONTIME session environment option on page

INFORMIXCONTIME configuration parameter on page

INFORMIXCPPMAP environment variable

Set the INFORMIXCPPMAP environment variable to specify the fully qualified pathname of the map file for C++ programs.

Information in the map file includes the database server type, the name of the shared library that supports the database

object or value object type, the library entry point for the object, and the C++ library for which an object was built.

setenvINFORMIXCPPMAPpathname

pathname

The directory path where the C++ map file is stored.

The map file is a text file that can have any filename. You can specify several map files, separated by colons (:) on UNIX™ or

semicolons (;) on Windows™.

On UNIX™, the default map file is $INFORMIXDIR/etc/c++map. On Windows™, the default map file is %INFORMIXDIR%

\etc\c++map.

INFORMIXDIR environment variable

The INFORMIXDIR environment variable specifies the directory that contains the subdirectories in which your product files

are installed. You must always set INFORMIXDIR. Verify that INFORMIXDIR is set to the full pathname of the directory

in which you installed your database server. If you have multiple versions of a database server, set INFORMIXDIR to the

appropriate directory name for the version that you want to access. For information about when to set INFORMIXDIR, see

your HCL® Informix® Installation Guide.

setenvINFORMIXDIR\pathname

pathname

is the directory path where the product files are installed.

To set INFORMIXDIR to usr/informix/, for example, as the installation directory, enter the following command:

setenv INFORMIXDIR /usr/informix

INFORMIXOPCACHE environment variable

The INFORMIXOPCACHE environment variable can specify the size of the memory cache for the staging-area blobspace of

the client application.

setenvINFORMIXOPCACHEkilobytes

../sqs/ids_sqs_2605.html#ids_sqs_2605
../sqs/ids_sqs_2605.html#ids_sqs_2605
../sqs/ids_sqs_2605.html#ids_sqs_2605
../sqs/ids_sqs_2605.html#ids_sqs_2605
../%20adr/ids_adr_1185.html#ids_adr_1185
../%20adr/ids_adr_1185.html#ids_adr_1185
../%20adr/ids_adr_1185.html#ids_adr_1185
../%20adr/ids_adr_1185.html#ids_adr_1185

Chapter 1. SQL programming

kilobytes

Specifies the value you set for the optical memory cache.

Set the INFORMIXOPCACHE environment variable by specifying the size of the memory cache in KB. The specified size must

be equal to or smaller than the size of the system-wide configuration parameter, OPCACHEMAX.

If you do not set INFORMIXOPCACHE, the default cache size is 128 kilobytes or the size specified in the configuration

parameter OPCACHEMAX. The default for OPCACHEMAX is 0. If you set INFORMIXOPCACHE to a value of 0, Optical

Subsystem does not use the cache.

INFORMIXSERVER environment variable
The INFORMIXSERVER environment variable specifies the default database server to which an explicit or implicit connection

is made by an SQL API client, the DB-Access utility, or other HCL Informix® products.

This environment variable must be set before you can use HCL Informix® client products. It has the following syntax.

setenvINFORMIXSERVERdbservername

dbservername

is the name of the default database server.

The value of INFORMIXSERVER can be a local or remote server, but must correspond to a valid dbservername entry in the

$INFORMIXDIR/etc/sqlhosts file on the computer running the application. The dbservername must begin with a lower-case

letter and cannot exceed 128 bytes. It can include any printable characters except uppercase characters, field delimiters

(blank space or tab), the newline character, and the hyphen (or minus) symbol.

For example, this command specifies the coral database server as the default:

setenv INFORMIXSERVER coral

INFORMIXSERVER specifies the database server to which an application connects if the CONNECT DEFAULT statement is

executed. It also defines the database server to which an initial implicit connection is established if the first statement in an

application is not a CONNECT statement.

Important: You must set INFORMIXSERVER even if the application or DB-Access does not use implicit or explicit

default connections.

INFORMIXSHMBASE environment variable (UNIX™)

The INFORMIXSHMBASE environment variable affects only client applications connected to HCL Informix® databases that

use the interprocess communications (IPC) shared-memory (ipcshm) protocol.

193

HCL Informix 14.10 - SQL programming Guide

194

Important: Resetting INFORMIXSHMBASE requires a thorough understanding of how the application uses memory.

Normally you do not reset INFORMIXSHMBASE.

INFORMIXSHMBASE specifies where shared-memory communication segments are attached to the client process so that

client applications can avoid collisions with other memory segments that it uses. If you do not set INFORMIXSHMBASE, the

memory address of the communication segments defaults to an implementation-specific value such as 0x800000.

setenvINFORMIXSHMBASEvalue

value

is an integer (in KB) used to calculate the memory address.

The database server calculates the memory address where segments are attached by multiplying the value of

INFORMIXSHMBASE by 1,024. For example, on a system that uses the C shell, you can set the memory address to the value

0x800000 by entering the following command:

setenv INFORMIXSHMBASE 8192

For more information, see your HCL® Informix® Administrator's Guide and the HCL® Informix® Administrator's Reference.

INFORMIXSQLHOSTS environment variable
The INFORMIXSQLHOSTS environment variable specifies where the SQL client or the database server can find connectivity

information.

setenvINFORMIXSQLHOSTSpathname

pathname

The full path name of the connectivity information file.

UNIX: Default =$INFORMIXDIR/etc/sqlhosts

Windows server: Default = %INFORMIXDIR%\etc\sqlhosts.%INFORMIXSERVER%

For example, the following command overrides the default location and specifies that the mysqlhosts file is in the /work/

envt directory:

setenv INFORMIXSQLHOSTS /work/envt/mysqlhosts

Windows™ client: Windows™: The INFORMIXSQLHOSTS environment variable points to the computer whose registry

contains the SQLHOSTS subkey. For example, the following command instructs the Windows™ client to look for connectivity

information in the registry of a computer named arizona:

set INFORMIXSQLHOSTS = \\arizona

Chapter 1. SQL programming

INFORMIXSTACKSIZE environment variable

The INFORMIXSTACKSIZE environment variable specifies the stack size (in KB) that is applied to all client processes. Any

value that you set for INFORMIXSTACKSIZE in the client environment is ignored by the database server.

setenvINFORMIXSTACKSIZEsize

size

is an integer, setting the stack size (in KB) for SQL client threads.

For example, to decrease the INFORMIXSTACKSIZE to 20 KB, enter the following command:

setenv INFORMIXSTACKSIZE 20

If INFORMIXSTACKSIZE is not set, the stack size is taken from the database server configuration parameter STACKSIZE or

else defaults to a platform-specific value. The default stack size value for the primary thread of an SQL client is 32 KB for

nonrecursive database activity.

Warning: For instructions on setting this value, see the HCL® Informix® Administrator's Reference. If you incorrectly

set the value of INFORMIXSTACKSIZE, it can cause the database server to fail.

INFORMIXTERM environment variable (UNIX™)
The INFORMIXTERM environment variable specifies whether DB-Access should use the information in the terminfo

directory or the termcap file.

On character-based systems, the terminfo directory and termcap file determine terminal-dependent keyboard and screen

capabilities, such as the operation of function keys, color and intensity attributes in screen displays, and the definition of

window borders and graphic characters.

setenvINFORMIXTERM { terminfo | termcap }

If INFORMIXTERM is not set, the default setting is terminfo.

The terminfo directory contains a file for each terminal name that has been defined. The terminfo setting for

INFORMIXTERM is supported only on computers that provide full support for the UNIX™ System V terminfo library. For

details, see the machine notes file for your product.

When DB-Access is installed on your system, a termcap file is placed in the etc subdirectory of $INFORMIXDIR. This file is

a superset of an operating-system termcap file. You can use the termcap file that the database server supplies, the system

termcap file, or a termcap file that you create. You must set the TERMCAP environment variable if you do not use the

default termcap file. For information about setting the TERMCAP environment variable, see TERMCAP environment variable

(UNIX) on page 213.

INF_ROLE_SEP environment variable

The INF_ROLE_SEP environment variable configures the security feature of role separation when the database server is

installed or reinstalled on UNIX™ systems. Role separation enforces separating administrative tasks by people who run and

195

HCL Informix 14.10 - SQL programming Guide

196

audit the database server. After the installation is complete, INF_ROLE_SEP has no effect. If INF_ROLE_SEP is not set, then

user informix (the default) can perform all administrative tasks.

setenvINF_ROLE_SEPn

n

is any positive integer.

On Windows™, the install process asks whether you want to enable role separation regardless of the setting of

INF_ROLE_SEP. To enable role separation for database servers on Windows™, select the role-separation option during

installation.

If INF_ROLE_SEP is set when HCL Informix® is installed on a UNIX™ platform, role separation is implemented and a separate

group is specified to serve each of the following responsibilities:

• The Database Server Administrator (DBSA)

• The Audit Analysis Officer (AAO)

• The standard user

On UNIX™, you can establish role separation by changing the group that owns the aaodir, dbsadir, or etc directories at

any time after the installation is complete. You can disable role separation by resetting the group that owns these directories

to informix. You can have role separation enabled, for example, for the Audit Analysis Officer (AAO) without having role

separation enabled for the Database Server Administrator (DBSA).

For more information about the security feature of role separation, see the HCL® Informix® Security Guide. To learn how to

configure role separation when you install your database server, see your HCL® Informix® Installation Guide.

INTERACTIVE_DESKTOP_OFF environment variable (Windows™)

This environment variable lets you prevent interaction with the Windows™ desktop when an SPL routine executes a SYSTEM

command.

setenvINTERACTIVE_DESKTOP_OFF { 1 | 0 }

If INTERACTIVE_DESKTOP_OFF is 1 and an SPL routine attempts to interact with the desktop (for example, with the

notepad.exe or cmd.exe program), the routine fails unless the user is a member of the Administrators group.

The valid settings (1 or 0) have the following effects:

1

Prevents the database server from acquiring desktop resources for the user executing the stored procedure

0

SYSTEM commands in a stored procedure can interact with the desktop. This is the default value.

Chapter 1. SQL programming

Setting INTERACTIVE_DESKTOP_OFF to 1 allows an SPL routine that does not interact with the desktop to execute more

quickly. This setting also allows the database server to simultaneously call a greater number of SYSTEM commands

because the command no longer depends on a limited operating- system resource (Desktop and WindowStation handles).

ISM_COMPRESSION environment variable
Use the ISM_COMPRESSION environment variable to specify whether the IBM® Informix® Storage Manager (ISM) should

use a data-compression algorithm to store and retrieve data.

setenvISM_COMPRESSION { TRUE | FALSE }

If ISM_COMPRESSION is set to TRUE in the environment of the ON-Bar process that makes a request, the ISM server uses the

data-compression algorithm.

If ISM_COMPRESSION is set to FALSE or is not set, the ISM server does not use compression.

ISM_DEBUG_FILE environment variable
Use the ISM_DEBUG_FILE environment variable in the IBM® Informix® Storage Manager (ISM) server environment to specify

where to write XBSA messages.

setenvISM_DEBUG_FILEpathname

pathname

Specifies the location of the XBSA message log file.

If you do not set ISM_DEBUG_FILE, the XBSA message log is located in the $INFORMIXDIR/ism/applogs/

xbsa.messages directory on UNIX™, or in the c:\nsr\applogs\xbsa.messages directory on Windows™ systems.

ISM_DEBUG_LEVEL environment variable
Use the ISM_DEBUG_LEVEL environment variable in the ON-Bar environment to control the level of reporting detail recorded

in the XBSA messages log. The XBSA shared library writes to this log.

setenvISM_DEBUG_LEVELvalue

value

specifies the level of reporting detail, where 1 ≤ value ≤ 9.

If ISM_DEBUG_LEVEL is not set, has a null value, or has a value outside this range, the default detail level is 1. A detail level of

0 suppresses all XBSA debugging records. A detail level of 1 reports only XBSA failures.

ISM_ENCRYPTION environment variable
Use the ISM_ENCRYPTION environment variable in the ON-Bar environment to specify whether IBM® Informix® Storage

Manager (ISM) uses data encryption.

setenvISM_ENCRYPTION { XOR | NONE | TRUE }

197

HCL Informix 14.10 - SQL programming Guide

198

Three settings of ISM_ENCRYPTION are supported:

XOR

Uses encryption.

NONE

Does not use encryption.

TRUE

Uses encryption.

If ISM_ENCRYPTION is set to NONE or is not set, the ISM server does not use encryption.

If the ISM_ENCRYPTION is set to TRUE or XOR in the environment of the ON-Bar process that makes a request, the ISM

server uses encryption to store or retrieve the data specified in that request.

ISM_MAXLOGSIZE environment variable
Use the ISM_MAXLOGSIZE environment variable in the IBM® Informix® Storage Manager (ISM) server environment to

specify the size threshold of the ISM activity log.

setenvISM_MAXLOGSIZEsize

size

Specifies the size threshold (in megabytes) of the activity log.

If ISM_MAXLOGSIZE is not set, then the default size limit is 1 megabyte. If ISM_MAXLOGSIZE is set to a null value, then the

threshold is 0 bytes.

ISM_MAXLOGVERS environment variable
Use the ISM_MAXLOGVERS environment variable in the IBM® Informix® Storage Manager (ISM) server environment to

specify the maximum number of activity-log files to be preserved by the ISM server.

setenvISM_MAXLOGVERSvalue

value

specifies the number of files to be preserved.

If ISM_MAXLOGVERS is not set, then the default number of files is four. If the setting is a null value, then the ISM server

preserves no activity log files.

JAR_TEMP_PATH environment variable

Set the JAR_TEMP_PATH variable to specify a non-default local file system location where jar management procedures such

as install_jar() and replace_jar() can store temporary .jar files of the Java™ virtual machine.

setenvJAR_TEMP_PATHpathname

Chapter 1. SQL programming

pathname

specifies a local directory for temporary .jar files.

This directory must have read and write permissions for the user who starts the database server. If the JAR_TEMP_PATH

environment variable is not set, temporary copies of .jar files are stored in the /tmp directory of the local file system for the

database server.

JAVA_COMPILER environment variable

You can set the JAVA_COMPILER environment variable in the Java™ virtual machine environment to disable JIT compilation.

setenvJAVA_COMPILER { none | NONE }

The NONE and none settings are equivalent. On UNIX™ systems that support the C shell and on which JAVA_COMPILER has

been set to NONE or none, you can enable the JIT compiler for the JVM environment by the following command:

unset JAVA_COMPILER

JVM_MAX_HEAP_SIZE environment variable

The JVM_MAX_HEAP_SIZE environment variable can set a non-default upper limit on the size of the heap for the Java™

virtual machine.

setenvJVM_MAX_HEAP_SIZE size

size

is a positive integer that specifies the maximum size (in megabytes).

For example, the following command sets the maximum heap size at 12 MB:

set JVM_MAX_HEAP_SIZE 12

If you do not set JVM_MAX_HEAP_SIZE, 16 MB is the default maximum size.

LD_LIBRARY_PATH environment variable (UNIX™)

The LD_LIBRARY_PATH environment variable tells the shell on Solaris systems which directories to search for client or

shared HCL Informix® general libraries. You must specify the directory that contains your client libraries before you can use

the product.

setenvLD_LIBRARY_PATH$PATH: pathname

pathname

Specifies the search path for the library.

For INTERSOLV DataDirect ODBC Driver on AIX®, set LIBPATH. For INTERSOLV DataDirect ODBC Driver on HP-UX, set

SHLIB_PATH.

The following example sets the LD_LIBRARY_PATH environment variable to the directory:

199

HCL Informix 14.10 - SQL programming Guide

200

setenv LD_LIBRARY_PATH
${INFORMIXDIR}/lib:${INFORMIXDIR}/lib/esql:$LD_LIBRARY_PATH

LIBPATH environment variable (UNIX™)

The LIBPATH environment variable tells the shell on AIX® systems which directories to search for dynamic-link libraries

for the INTERSOLV DataDirect ODBC Driver. You must specify the full path name for the directory where you installed the

product.

setenvLIBPATH pathname

pathname

Specifies the search path for the libraries.

On Solaris, set LD_LIBRARY_PATH. On HP-UX, set SHLIB_PATH.

NODEFDAC environment variable
Enabling NODEFDAC applies the ANSI-compliant restrictions on default access privileges for the PUBLIC group when tables

or Owner-mode user-defined routines are created in databases that are not ANSI-compliant.

In a database that is not ANSI-compliant, when the NODEFDAC environment variable enabled by setting it to yes,

• the database server withholds default table access privileges from PUBLIC when a new table is created,

• and also withholds the default Execute privilege from PUBLIC when an owner-privileged UDR is created.

setenvNODEFDAC { yes }

yes

prevents default table privileges (Select, Insert, Update, and Delete) from being granted to PUBLIC on new

tables in a database that is not ANSI-compliant. This setting also prevents the Execute privilege from being

granted to PUBLIC by default when a new user-defined routine is created in Owner mode.

The yes setting is case sensitive, and is also sensitive to leading and trailing blank spaces. Including uppercase letters or

blank spaces in the setting is equivalent to leaving NODEFDAC unset. When NODEFDAC is not set, or if it is set to any value

besides yes, default privileges on tables and Owner-mode UDRs are granted to PUBLIC by default when the table or UDR is

created in a database that is not ANSI-compliant. The setting YES, for example, disables NODEFDAC.

Enabling NODEFDAC has no effect in an ANSI-compliant databases.

Chapter 1. SQL programming

Important: Enabling NODEFDAC withholds default table or routine privileges from PUBLIC when the object is created,

but the NODEFDAC setting cannot prevent the PUBLIC group from being granted the same privileges by a user who

holds the necessary access privileges on the new table or on the new UDR.

ONCONFIG environment variable
The ONCONFIG environment variable specifies the name of the active file, called the onconfig file, which holds the

configuration parameters for the database server.

This file is read as input during the initialization procedure. After you prepare your onconfig configuration file, set the

ONCONFIG environment variable to the name of this file.

setenvONCONFIGfilename

filename

is the name of your onconfig file in the %INFORMIXDIR%\etc\%ONCONFIG% or $INFORMIXDIR/etc/

$ONCONFIG directory

This file contains the configuration parameters for your database.

To prepare the onconfig file, make a copy of the onconfig.std file and modify the copy. Name the onconfig file so that

it can easily be related to a specific database server. If you have multiple instances of a database server, each instance must

have its own uniquely named onconfig file.

If the ONCONFIG environment variable is not set, the database server reads the configuration values from the onconfig file

during initialization.

ONINIT_STDOUT environment variable (Windows™)
The ONINIT_STDOUT environment variable specifies a path and file name in which output from the oninit command is

stored.

While it is not generally necessary to view output from the oninit command, it might be necessary in certain situations, such

as when using the -v (verbose) option or when you want to see output from an unhandled exception in a process launched

within a virtual processor. When the value of ONINIT_STDOUT is set to the name of a file, output from the oninit command is

written to the file.

setONINIT_STDOUT\path\filename

You can set the ONINIT_STDOUT environment variable as a system variable in Control Panel > System > Advanced >

Environment Variables. If the HCL Informix® service is configured to log on as user informix, start the service using the

starts command after setting the environment variable. Note, however, that because environment variables are read from the

system when the service is started, if the service is set to log on as the local system user, you must restart your computer

for the environment variable to take effect. Because the local system user is effectively logged on at all times, environment

variables are refreshed only when the operating system is restarted.

201

HCL Informix 14.10 - SQL programming Guide

202

For example, if the environment variable set to C:\temp\oninit_out.txt, you can start the server with the verbose

option with the following command:

starts %INFORMIXSERVER% -v

The oninit messages are saved to the C:\temp\oninit_out.txt file.

Important: Only a single instance of the database can run on a Windows™ machine if the ONINIT_STDOUT

environment variable is set.

OPTCOMPIND environment variable

You can set the OPTCOMPIND environment variable so that the optimizer can select the appropriate join method.

setenvOPTCOMPIND { 2 | 1 | 0 }

0

A nested-loop join is preferred, where possible, over a sort-merge join or a hash join.

1

When the isolation level is not Repeatable Read, the optimizer behaves as in setting 2; otherwise, the optimizer

behaves as in setting 0.

2

Nested-loop joins are not necessarily preferred. The optimizer bases its decision purely on costs, regardless of

transaction isolation mode.

When OPTCOMPIND is not set, the database server uses the OPTCOMPIND value from the ONCONFIG configuration file.

When neither the environment variable nor the configuration parameter is set, the default value is 2.

On HCL Informix®, the SET ENVIRONMENT OPTCOMPIND statement can set or reset OPTCOMPIND dynamically at runtime.

This overrides the current OPTCOMPIND value (or the ONCONFIG configuration parameter OPTCOMPIND) for the current

user session only. For more information about the SET ENVIRONMENT OPCOMPIND statement of SQL see the HCL®

Informix® Guide to SQL: Syntax.

For more information about the ONCONFIG configuration parameter OPTCOMPIND, see the HCL® Informix® Administrator's

Reference. For more information about the different join methods that the optimizer uses, see your .

OPTMSG environment variable

Set the OPTMSG environment variable at runtime before you start the IBM® Informix® ESQL/C application to enable (or

disable) optimized message transfers (message chaining) for all SQL statements in the application.

setenv OPTMSG { 0 | 1 }

0

disables optimized message transfers.

Chapter 1. SQL programming

1

enables optimized message transfers and implements the feature for any subsequent connection.

The default value is 0 (zero), which explicitly disables message chaining. You might want, for example, to disable optimized

message transfers for statements that require immediate replies, for debugging, or to ensure that the database server

processes all messages before the application terminates.

When you set OPTMSG within an application, you can activate or deactivate optimized message transfers for each

connection or within each thread. To enable optimized message transfers, you must set OPTMSG before you establish a

connection.

For more information about setting OPTMSG and defining related global variables, see the HCL® Informix® Enterprise

Replication Guide.

OPTOFC environment variable
Use the OPTOFC environment variable to enable optimize-OPEN-FETCH-CLOSE functionality in IBM® Informix® ESQL/C

applications or other APIs (such as JDBC, ODBC, OLE DB, LIBDMI, and Lib C++) that use DECLARE and OPEN statements to

establish a cursor.

setenvOPTOFC { 0 | 1 }

0

disables OPTOFC for all threads of the application.

1

enables OPTOFC for every cursor in every thread of the application.

The default value is 0 (zero).

You can set the OPTOFC environment variable on the client or server. If this environment variable is set on the server, then

any application that does not explicitly set this environment variable uses the value that is set on the server.

The OPTOFC environment variable reduces the number of message requests between the application and the database

server.

If you set OPTOFC from the shell, you must set it before you start the Informix® ESQL/C application. For more information

about enabling OPTOFC and related features, see the HCL® Informix® Enterprise Replication Guide.

OPT_GOAL environment variable (UNIX™)

Set the OPT_GOAL environment variable in the user environment, before you start an application, to specify the query

performance goal for the optimizer.

setenvOPT_GOAL { 0 | -1 }

203

HCL Informix 14.10 - SQL programming Guide

204

0

Specifies user-response-time optimization.

-1

Specifies total-query-time optimization.

The default behavior is for the optimizer to use query plans that optimize the total query time.

You can also specify the optimization goal for individual queries with optimizer directives or for a session with the SET

OPTIMIZATION statement.

Both methods take precedence over the OPT_GOAL environment variable setting. You can also set the OPT_GOAL

configuration parameter for the HCL Informix® system; this method has the lowest level of precedence.

For more information about optimizing queries for your database server, see your . For information about the SET

OPTIMIZATION statement, see the HCL® Informix® Guide to SQL: Syntax.

PATH environment variable

The UNIX™ PATH environment variable tells the shell which directories to search for executable programs. You must add the

directory containing your HCL Informix® product to your PATH setting before you can use the product.

setenvPATH$PATH: pathname

pathname

Specifies the search path for the executable files.

Include a colon (:) separator between the path names on UNIX™ systems. (Use the semicolon (;) separator between path

names on Windows™ systems.)

You can specify the search path in various ways. The PATH environment variable tells the operating system where to search

for executable programs. You must include the directory that contains your HCL Informix® product in your path setting

before you can use the product. This directory should be located before $INFORMIXDIR/bin, which you must also include.

For additional information about how to modify your path, see Modifying an environment-variable setting on page 143.

PDQPRIORITY environment variable
The PDQPRIORITY environment variable determines the degree of parallelism that the database server uses and affects how

the database server allocates resources, including memory, processors, and disk reads.

setenvPDQPRIORITY { HIGH | LOW | OFF | resources }

resources

Is an integer in the range 0 to 100. The value 1 is the same as LOW, and 100 is the same as HIGH. Values lower

than 0 are set to 0 (OFF), and values greater than 100 are set to 100 (HIGH).

Value 0 is the same as OFF (for HCL Informix® only).

Chapter 1. SQL programming

Here the HIGH, LOW, and OFF keywords have the following effects:

HIGH

When the database server allocates resources among all users, it gives as many resources as possible to the

query.

LOW

Data values are fetched from fragmented tables in parallel.

OFF

PDQ processing is turned off (for HCL Informix® only).

Usually, the more resources a database server uses, the better its performance for a given query. If the server uses too

many resources, however, contention for the resources can take resources away from other queries, resulting in degraded

performance. For more information about performance considerations for PDQPRIORITY, see the .

An application can override the setting of this environment variable when it issues the SQL statement SET PDQPRIORITY, as

the HCL® Informix® Guide to SQL: Syntax describes.

Using PDQPRIORITY with Informix®

The resources value specifies the query priority level and the amount of resources that the database server uses to process

the query.

When PDQPRIORITY is not set, the default value is OFF.

When PDQPRIORITY is set to HIGH, HCL Informix® determines an appropriate value to use for PDQPRIORITY based on

several criteria. These include the number of available processors, the fragmentation of tables queried, the complexity of the

query, and additional factors.

PLCONFIG environment variable

The PLCONFIG environment variable specifies the name of the configuration file that the High Performance Loader (HPL)

uses. This file must be located in the $INFORMIXDIR/etc directory. If the PLCONFIG environment variable is not set, then

$INFORMIXDIR/etc/plconfig is the default configuration file.

setenvPLCONFIGfilename

filename

Specifies the simple file name of the configuration file that the High-Performance Loader uses.

For example, to specify the $INFORMIXDIR/etc/custom.cfg file as the configuration file for the High-Performance

Loader, enter the following command:

setenv PLCONFIG custom.cfg

For more information, see the IBM® Informix® High-Performance Loader User's Guide.

205

HCL Informix 14.10 - SQL programming Guide

206

PLOAD_LO_PATH environment variable

The PLOAD_LO_PATH environment variable lets you specify the pathname for smart-large-object handles (which identify the

location of smart large objects such as BLOB and CLOB data types).

setenvPLOAD_LO_PATHpathname

pathname

specifies the directory for the smart-large-object handles.

If PLOAD_LO_PATH is not set, the default directory is /tmp.

For more information, see the IBM® Informix® High-Performance Loader User's Guide.

PLOAD_SHMBASE environment variable

The PLOAD_SHMBASE environment variable lets you specify the shared-memory address at which the High Performance

Loader (HPL) onpload processes will attach. If PLOAD_SHMBASE is not set, the HPL determines which shared-memory

address to use.

setenvPLOAD_SHMBASEvalue

value

Used to calculate the shared-memory address.

If the onpload utility cannot attach, an error is issued, and you must specify a new value.

The onpload utility tries to determine at which address to attach, as follows in the following (descending) order:

1. Attach at the same address (SHMBASE) as the database server.

2. Attach beyond the database server segments.

3. Attach at the address specified in PLOAD_SHMBASE.

Tip: It is recommended that you let the HPL decide where to attach and that you set PLOAD_SHMBASE only if

necessary to avoid shared-memory collisions between onpload and the database server.

For more information, see the IBM® Informix® High-Performance Loader User's Guide.

PSM_ACT_LOG environment variable
Use the PSM_ACT_LOG environment variable to specify the location of the HCL Informix® Primary Storage Manager activity

log for your environment, for example, for a single session.

setenvPSM_ACT_LOG pathname

pathname

The full path name for the location of the $INFORMIXDIR/psm_act.log. If you specify a file name only, the

storage manager creates the activity log in the working directory in which you started the storage manager.

Chapter 1. SQL programming

The PSM_ACT_LOG environment variable overrides the value of the PSM_ACT_LOG configuration parameter.

Related information

PSM_ACT_LOG configuration parameter on page

PSM_CATALOG_PATH environment variable
Use the PSM_CATALOG_PATH environment variable to specify the location of the HCL Informix® Primary Storage Manager

catalog tables for your environment, for example, for a single session.

setenvPSM_CATALOG_PATH pathname

pathname

The full path name for the location of the catalog table, which contain information about the pools, devices, and

objects managed by the storage manager.

The PSM_CATALOG_PATH environment variable overrides the value of the PSM_CATALOG_PATH configuration parameter.

Related information

PSM_CATALOG_PATH configuration parameter on page

PSM_DBS_POOL environment variable
Use the PSM_DBS_POOL environment variable to change the name of the pool in which the HCL Informix® Primary Storage

Manager places backup and restore dbspace data for your environment, for example, for a single session.

setenvPSM_DBS_POOL pool_name

pool_name

The name of the storage manager pool.

The PSM_DBS_POOL environment variable overrides the value of the PSM_DBS_POOL configuration parameter.

Related information

PSM_DBS_POOL configuration parameter on page

PSM_DEBUG environment variable
Use the PSM_DEBUG environment variable to specify the amount of debugging information that prints in the Informix®

Primary Storage Manager debug log for your environment, for example, for a single session.

setenvPSM_DEBUG value

207

../%20bar/ids_bar_541.html#ids_bar_541
../%20bar/ids_bar_541.html#ids_bar_541
../%20bar/ids_bar_541.html#ids_bar_541
../%20bar/ids_bar_541.html#ids_bar_541
../%20bar/ids_bar_542.html#ids_bar_542
../%20bar/ids_bar_542.html#ids_bar_542
../%20bar/ids_bar_542.html#ids_bar_542
../%20bar/ids_bar_542.html#ids_bar_542
../%20bar/ids_bar_547.html#ids_bar_547
../%20bar/ids_bar_547.html#ids_bar_547
../%20bar/ids_bar_547.html#ids_bar_547
../%20bar/ids_bar_547.html#ids_bar_547

HCL Informix 14.10 - SQL programming Guide

208

value

0 = No debugging messages.

1 = Prints only internal errors.

2 = Prints information about the entry and exit of functions and prints internal errors.

3 = Prints the information specified by 1-2 with additional details.

4 = Prints information about parallel operations and the information specified by 1-3.

5 = Prints information about internal states in the Informix® Primary Storage Manager.

6 = Prints the information specified by 1-5 with additional details.

7 = Prints information specified by 1-6 with additional details.

8 = Prints information specified by 1-7 with additional details.

9 = Prints all debugging information.

The PSM_DEBUG environment variable overrides the value of the PSM_DEBUG configuration parameter.

Related information

PSM_DEBUG configuration parameter on page

PSM_DEBUG_LOG environment variable
Use the PSM_DEBUG_LOG environment variable to specify the location of the HCL Informix® Primary Storage Manager

debug log for your environment, for example, for a single session.

setenvPSM_DEBUG_LOG pathname

pathname

The full path name for the location of the $INFORMIXDIR/psm_debug.log. If you specify a file name only,

the storage manager creates the debug log in the working directory in which you started the storage manager.

The PSM_DEBUG_LOG environment variable overrides the value of the PSM_DEBUG_LOG configuration parameter.

Related information

PSM_DEBUG_LOG configuration parameter on page

PSM_LOG_POOL environment variable
Use the PSM_LOG_POOL environment variable to change the name of the pool in which the HCL Informix® Primary Storage

Manager places backup and restore log data for your environment, for example, for a single session.

../%20bar/ids_bar_543.html#ids_bar_543
../%20bar/ids_bar_543.html#ids_bar_543
../%20bar/ids_bar_543.html#ids_bar_543
../%20bar/ids_bar_543.html#ids_bar_543
../%20bar/ids_bar_544.html#ids_bar_544
../%20bar/ids_bar_544.html#ids_bar_544
../%20bar/ids_bar_544.html#ids_bar_544
../%20bar/ids_bar_544.html#ids_bar_544

Chapter 1. SQL programming

setenvPSM_LOG_POOL pool_name

pool_name

The name of the storage manager log pool.

The PSM_LOG_POOL environment variable overrides the value of the PSM_LOG_POOL configuration parameter.

Related information

PSM_LOG_POOL configuration parameter on page

PSORT_DBTEMP environment variable
The PSORT_DBTEMP environment variable specifies the location where the database server writes the temporary files that

the PSORT_NPROCS environment variable uses to perform a sort.

setenvPSORT_DBTEMP pathname

pathname

The name of the UNIX™ directory used for intermediate writes during a sort.

To set the PSORT_DBTEMP environment variable to specify the directory (for example, /usr/leif/tempsort), enter the

following command:

setenv PSORT_DBTEMP /usr/leif/tempsort

For maximum performance, specify directories that are located in file systems on different disks.

You might also want to consider setting the environment variable DBSPACETEMP to place temporary files used in

sorting in dbspaces rather than operating-system files. See the discussion of the DBSPACETEMP environment variable in

DBSPACETEMP environment variable on page 166.

The database server uses the directory that PSORT_DBTEMP specifies, even if the environment variable PSORT_NPROCS

is not set. For additional information about the PSORT_DBTEMP environment variable, see your HCL® Informix®

Administrator's Guide and your .

PSORT_NPROCS environment variable
The PSORT_NPROCS environment variable enables the database server to improve the performance of the parallel-process

sorting package by allocating more threads for sorting.

Before the sorting package performs a parallel sort, make sure that the database server has enough memory for the sort.

setenvPSORT_NPROCSthreads

threads

is an integer, specifying the maximum number of threads to be used to sort a query. This value cannot be

greater than 10.

209

../%20bar/ids_bar_548.html#ids_bar_548
../%20bar/ids_bar_548.html#ids_bar_548
../%20bar/ids_bar_548.html#ids_bar_548
../%20bar/ids_bar_548.html#ids_bar_548

HCL Informix 14.10 - SQL programming Guide

210

The following command sets PSORT_NPROCS to 4:

setenv PSORT_NPROCS 4

To disable parallel sorting, enter the following command:

unsetenv PSORT_NPROCS

It is recommended that you initially set PSORT_NPROCS to 2 when your computer has multiple CPUs. If subsequent CPU

activity is lower than I/O activity, you can increase the value of PSORT_NPROCS.

Tip: If the PDQPRIORITY environment variable is not set, the database server allocates the minimum amount

of memory to sorting. This minimum memory is insufficient to start even two sort threads. If you have not set

PDQPRIORITY, check the available memory before you perform a large-scale sort (such as an index build) to make

sure that you have enough memory.

Default PSORT_NPROCS values for detached indexes

If the PSORT_NPROCS environment variable is set, the database server uses the specified number of sort threads as an

upper limit for ordinary sorts. If PSORT_NPROCS is not set, parallel sorting does not take place. If you have a single-CPU

virtual processor, the database server uses one thread for the sort. If PSORT_NPROCS is set to 0, the database server uses

three threads for the sort.

Default PSORT_NPROCS values for attached indexes
Indexthreads for sortingAttached indexesIndexattachedThe default number of threads is different for attached indexes.

FragmentationPSORT_NPROCS environment variableIf the PSORT_NPROCS environment variable is set, you get the specified number of sort threads for each fragment of the

index that is being built.

Zero (0)PSORT_NPROCS settingVirtual processorsIf PSORT_NPROCS is not set, or if it is set to 0, you get two sort threads for each fragment of the index unless you have a

single-CPU virtual processor. If you have a single-CPU virtual processor, you get one sort thread for each fragment of the

index.

For additional information about the PSORT_NPROCS environment variable, see your HCL® Informix® Administrator's Guide

and your .

RTREE_COST_ADJUST_VALUE environment variable

The RTREE_COST_ADJUST_VALUE environment variable specifies a coefficient that support functions of user-defined data

types can use to estimate the cost of an R-tree index for queries on UDT columns.

setenvRTREE_COST_ADJUST_VALUEvalue

value

is a floating-point number, where 1 ≤ value ≤ 1000, specifying a multiplier for estimating the cost of using an

index on a UDT column.

Chapter 1. SQL programming

For spatial queries, the I/O overhead tends to exceed by far the CPU cost, so by multiplying the uncorrected estimated cost

by an appropriate value from this setting, the database server can make better cost-based decisions on how to implement

queries on UDT columns for which an R-tree index exists.

SHLIB_PATH environment variable (UNIX™)

The SHLIB_PATH environment variable tells the shell on HP-UX systems which directories to search for dynamic-link

libraries. This is used, for example, with the INTERSOLV DataDirect ODBC Driver. You must specify the full pathname for the

directory where you installed the product.

setenvSHLIB_PATH$PATH: pathname

pathname

Specifies the search path for the libraries.

On Solaris systems, set LD_LIBRARY_PATH. On AIX® systems, set LIBPATH.

SRV_FET_BUF_SIZE environment variable
Use the SRV_FET_BUF_SIZE environment variable to specify the size of the fetch buffer that the local database server uses

in distributed DML transactions across database servers.

setenvSRV_FET_BUF_SIZEsize

size

is a positive integer that is no greater than 1048576 (1 MiB), specifying the size (in bytes) of the fetch buffer

that holds data retrieved by a cross-server distributed query.

For example, to set a buffer size to 5,000 bytes on a UNIX™ system that uses the C shell, set SRV_FET_BUF_SIZE by entering

the following command:

setenv SRV_FET_BUF_SIZE 5000

When SRV_FET_BUF_SIZE is set to a valid value, the new value overrides the default value (or any previously set value) of

SRV_FET_BUF_SIZE. The setting takes effect only when it is set in the starting environment of the database server.

When SRV_FET_BUF_SIZE is not set, the default setting for the fetch buffer is dependent on row size.

No error is raised if SRV_FET_BUF_SIZE is set to a value that is less than the default size, or that is greater than 1048576

(1MiB). If you specify a size for SRV_FET_BUF_SIZE that is greater than 1048576, the value is set to 1048576. In older 11.70

releases, up to and including 11.70.xC4, the upper limit is 32767.

A valid SRV_FET_BUF_SIZE setting is in effect only in cross-server DML transactions in which the local database server

participates as the coordinator or as a subordinate database server.

211

HCL Informix 14.10 - SQL programming Guide

212

• It has no effect, however, on queries that access only databases of the local server instance, and it does not affect

the size of the fetch buffer in client-to-local-server communication.

• The processing of BYTE and TEXT objects is not affected by the SRV_FET_BUF_SIZE setting.

• Setting SRV_FET_BUF_SIZE for the environment of the local database server does not reset the fetch buffer size

of remote server instances that coordinate or participate in cross-server DML transactions with the local server

instance.

The greater the size of the buffer, the more rows can be returned, and the less frequently the local server must wait while the

database server returns rows. A large buffer can improve performance when transferring a large amount of data between

servers.

STMT_CACHE environment variable
Use the STMT_CACHE environment variable to control the use of the shared-statement cache on a session.

This feature can reduce memory consumption and can speed query processing among different user sessions. Valid

STMT_CACHE values are 1 and 0.

setenvSTMT_CACHE { 1 | 0 }

1

enables the SQL statement cache.

0

disables the SQL statement cache.

Set the STMT_CACHE environment variable for applications that do not use the SET STMT_CACHE statement to control the

use of the SQL statement cache. By default, a statement cache is disabled, but can be enabled through the STMT_CACHE

parameter of the onconfig.std file or by the SET STMT_CACHE statement.

This environment variable has no effect if the SQL statement cache is disabled through the configuration file setting. Values

set by the SET STMT_CACHE statement in the application override the STMT_CACHE setting.

TERM environment variable (UNIX™)

The TERM environment variable is used for terminal handling. It lets DB-Access (and other character-based applications)

recognize and communicate with the terminal that you are using.

setenvTERMtype

type

Specifies the terminal type.

The terminal type specified in the TERM setting must correspond to an entry in the termcap file or terminfo directory.

Before you can set the TERM environment variable, you must obtain the code for your terminal from the database

administrator.

Chapter 1. SQL programming

For example, to specify the vt100 terminal, set the TERM environment variable by entering the following command:

setenv TERM vt100

TERMCAP environment variable (UNIX™)
The TERMCAP environment variable is used for terminal handling. It tells DB-Access (and other character-based

applications) to communicate with the termcap file instead of the terminfo directory.

setenvTERMCAPpathname

pathname

Specifies the location of the termcap file.

The termcap file contains a list of various types of terminals and their characteristics. For example, to provide DB-Access

terminal-handling information, which is specified in the /usr/informix/etc/termcap file, enter the following command:

setenv TERMCAP /usr/informix/etc/termcap

You can use set TERMCAP in any of the following ways. If several termcap files exist, they have the following (descending)

order of precedence:

1. The termcap file that you create

2. The termcap file that the database server supplies (that is, $INFORMIXDIR/etc/termcap)

3. The operating-system termcap file (that is, /etc/termcap)

If you set the TERMCAP environment variable, be sure that the INFORMIXTERM environment variable is set to termcap.

If you do not set the TERMCAP environment variable, the terminfo directory is used by default.

TERMINFO environment variable (UNIX™)
The TERMINFO environment variable is used for terminal handling.

The environment variable is supported only on platforms that provide full support for the terminfo libraries that System V

and Solaris UNIX™ systems provide.

setenvTERMINFO/usr/lib/terminfo

TERMINFO tells DB-Access to communicate with the terminfo directory instead of the termcap file. The terminfo

directory has subdirectories that contain files that pertain to terminals and their characteristics.

To set TERMINFO, enter the following command:

setenv TERMINFO /usr/lib/terminfo

213

HCL Informix 14.10 - SQL programming Guide

214

THREADLIB environment variable (UNIX™)

Use the THREADLIB environment variable to compile multithreaded IBM® Informix® ESQL/C applications. A multithreaded

Informix® ESQL/C application lets you establish as many connections to one or more databases as there are threads. These

connections can remain active while the application program executes.

The THREADLIB environment variable indicates which thread package to use when you compile an application. Currently

only the Distributed Computing Environment (DCE) is supported.

setenvTHREADLIBDCE

The THREADLIB environment variable is checked when the -thread option is passed to the Informix® ESQL/C script when

you compile a multithreaded Informix® ESQL/C application. When you use the -thread option while compiling, the Informix®

ESQL/C script generates an error if THREADLIB is not set, or if THREADLIB is set to an unsupported thread package.

TZ environment variable
The TZ environment variable is used for setting the time zone. It is used by various time functions to compute times relative

to Coordinated Universal Time (UTC), formerly known as Greenwich Mean Time (GMT). The format is specified by the

operating system.

setenvTZtzn [{ + | - }] hh [:mm [:ss]] [dzn]

tzn

Three-letter time zone name, such as PST. You must specify the correct offset from local time to UTC

(Universal Time Coordinated).

hh

A one- or two-digit difference in hours between UTC and local time. Optionally signed.

mm

Two-digit difference in minutes between UTC and local time.

ss

Two-digit difference in seconds between UTC and local time.

dzn

Three-letter daylight-saving-time zone, such as PDT. If daylight saving time is never in effect in the locality, set

TZ without a value for dzn.

For example, if you use Pacific Standard Time with Pacific daylight savings time, set the TZ environment variable to PST8PDT.

For more information on setting the TZ environment variable, see your operating system documentation.

Chapter 1. SQL programming

USETABLENAME environment variable

The USETABLENAME environment variable can prevent users from using a synonym to specify the table in ALTER TABLE or

DROP TABLE statements. Unlike most environment variables, USETABLENAME is not required to be set to a value. It takes

effect if you set it to any value, or to no value.

setenvUSETABLENAME

By default, ALTER TABLE or DROP TABLE statements accept a valid synonym for the name of the table to be altered

or dropped. (In contrast, RENAME TABLE issues an error if you specify a synonym, as do the ALTER SEQUENCE, DROP

SEQUENCE, and RENAME SEQUENCE statements, if you attempt to substitute a synonym for the sequence name in those

statements.)

If you set USETABLENAME, an error results if a synonym is in ALTER TABLE or DROP TABLE statements. Setting

USETABLENAME has no effect on the DROP VIEW statement, which accepts a valid synonym for the view.

Appendixes

The stores_demo Database
The stores_demo database contains a set of tables that describe an imaginary business and many of the examples in the

HCL Informix® documentation are based on this database.

The stores_demo database uses the default (U.S. English) locale and is not ANSI-compliant.

For information about how to create and populate the stores_demo database, see the HCL® Informix® DB-Access User's

Guide. For information about how to design and implement a relational database, see the IBM® Informix® Database Design

and Implementation Guide.

The stores_demo Database Map
Some of the tables in the stores_demo database have relationships between them.

The following illustration displays the joins in the stores_demo database between customers, catalog orders, and customer

calls. The shading that connects a column in one table to a column with the same name in another table indicates the

relationships, or joins, between tables.

215

HCL Informix 14.10 - SQL programming Guide

216

Figure 5. Joins between customers and catalog orders

The following illustration displays the joins in the stores_demo database between customers, electricity meter data, and

location. The Customer_ts_data, ts_data, and ts_data_location tables contain time series data. You can prevent the creation

of these time series tables when you create the demonstration database.

Figure 6. Joins between customers, electricity usage data, and location

Chapter 1. SQL programming

The superstores_demo database
The superstores_demo database illustrates an object-relational schema.

SQL files and user-defined routines (UDRs) that are provided with DB-Access let you derive the superstores_demo object-

relational database.

The superstores_demo database uses the default locale and is not ANSI-compliant.

For information about how to create and populate the demonstration databases, including relevant SQL files, see the HCL®

Informix® DB-Access User's Guide. For conceptual information about demonstration databases, see the IBM® Informix®

Database Design and Implementation Guide.

Structure of the superstores_demo Tables
Although many of the tables in the superstores_demo database have the same name as stores_demo tables, they are

different.

The superstores_demo database includes the following tables. The tables are listed alphabetically, not in the order in which

they are created.

• call_type

• catalog

• cust_calls

• customer

◦ retail_customer

◦ whlsale_customer

• items

• location

◦ location_non_us

◦ location_us

• manufact

• orders

• region

• sales_rep

• state

• stock

• stock_discount

• units

User-defined routines and extended data types
The superstores_demo database uses user-defined routines (UDRs) and extended data types.

A UDR is a routine that you define that can be invoked within an SQL statement or another UDR. A UDR can either return

values or not.

217

HCL Informix 14.10 - SQL programming Guide

218

The data type system of HCL Informix® is an extensible and flexible system that supports the creation of following kinds of

data types:

• Extensions of existing data types by, redefining some of the behavior for data types that the database server provides

• Definitions of customized data types by a user

For information about creating and using UDRs and extended data types, see HCL® Informix® User-Defined Routines and

Data Types Developer's Guide.

The superstores_demo database creates the distinct data type, percent, in a UDR, as follows:

CREATE DISTINCT TYPE percent AS DECIMAL(5,5);
DROP CAST (DECIMAL(5,5) AS percent);
CREATE IMPLICIT CAST (DECIMAL(5,5) AS percent);
The superstores_demo database creates the following named row types:

• location hierarchy:

◦ location_t

◦ loc_us_t

◦ loc_non_us_t

• customer hierarchy:

◦ name_t

◦ customer_t

◦ retail_t

◦ whlsale_t

• orders table

◦ ship_t

location_t definition

location_id SERIAL
loc_type CHAR(2)
company VARCHAR(20)
street_addr LIST(VARCHAR(25) NOT NULL)
city VARCHAR(25)
country VARCHAR(25)

loc_us_t definition

state_code CHAR(2)
zip ROW(code INTEGER, suffix SMALLINT)
phone CHAR(18)

loc_non_us_t definition

province_code CHAR(2)
zipcode CHAR(9)
phone CHAR(15)

Chapter 1. SQL programming

name_t definition
first VARCHAR(15)
last VARCHAR(15)

customer_t definition
customer_num SERIAL
customer_type CHAR(1)
customer_name name_t
customer_loc INTEGER
contact_dates LIST(DATETIME YEAR TO DAY NOT NULL)
cust_discount percent
credit_status CHAR(1)

retail_t definition
credit_num CHAR(19)
expiration DATE

whlsale_t definition

resale_license CHAR(15)
terms_net SMALLINT

ship_t definition

date DATE
weight DECIMAL(8,2)
charge MONEY(6,2)
instruct VARCHAR(40)

Table Hierarchies

The following illustration shows how the hierarchical tables of the superstores_demo database are related. The foreign key

and primary relationships between the two tables are indicated by shaded arrows that point from the customer.custnum and

customer.loc columns to the location.location_id columns.

Figure 7. Hierarchies of superstores_demo Tables

219

HCL Informix 14.10 - SQL programming Guide

220

Guide to SQL: Tutorial
This publication shows how to use basic and advanced structured query language (SQL) to access and manipulate the data

in your databases. It discusses the data manipulation language (DML) statements as well as triggers and stored procedure

language (SPL) routines, which DML statements often use.

This publication is written for the following users:

• Database users

• Database administrators

• Database-application programmers

This publication assumes that you have the following background:

• A working knowledge of your computer, your operating system, and the utilities that your operating system provides

• Some experience working with relational databases or exposure to database concepts

• Some experience with computer programming

This publication is one of a series of publications that discusses the HCL® Informix® implementation of SQL. The HCL®

Informix® Guide to SQL: Syntax contains all the syntax descriptions for SQL and SPL. The HCL® Informix® Guide to SQL:

Reference provides reference information for aspects of SQL other than the language statements. The IBM® Informix®

Database Design and Implementation Guide shows how to use SQL to implement and manage your databases.

Database concepts

This chapter describes fundamental database concepts and focuses on the following topics:

• Data models

• Multiple users

• Database terminology

• SQL (Structured Query Language)

Your real use of a database begins with the SELECT statement, which Compose SELECT statements on page 232,

describes.

Illustration of a data model

The principal difference between information collected in a database versus information collected in a file is the way the data

is organized. A flat file is organized physically; certain items precede or follow other items. But the contents of a database

are organized according to a data model. A data model is a plan, or map, that defines the units of data and specifies how

each unit relates to the others.

For example, a number can appear in either a file or a database. In a file, it is simply a number that occurs at a certain point

in the file. A number in a database, however, has a role that the data model assigns to it. The role might be a price that is

associated with a product that was sold as one item of an order that a customer placed. Each of these components, price,

Chapter 1. SQL programming

product, item, order, and customer, also has a role that the data model specifies. For an illustration of a data model, see the

following figure.

Figure 8. The advantage of using a data model

You design the data model when you create the database. You then insert units of data according to the plan that the model

lays out. Some books use the term schema instead of data model.

Store data

Another difference between a database and a file is that the organization of the database is stored with the database.

A file can have a complex inner structure, but the definition of that structure is not within the file; it is in the programs that

create or use the file. For example, a document file that a word-processing program stores might contain detailed structures

that describe the format of the document. However, only the word-processing program can decipher the contents of the file,

because the structure is defined within the program, not within the file.

A data model, however, is contained in the database it describes. It travels with the database and is available to any program

that uses the database. The model defines not only the names of the data items but also their data types, so a program

can adapt itself to the database. For example, a program can find out that, in the current database, a price item is a decimal

number with eight digits, two to the right of the decimal point; then it can allocate storage for a number of that type. How

221

HCL Informix 14.10 - SQL programming Guide

222

programs work with databases is the subject of SQL programming on page 400, and Modify data through SQL programs

on page 423.

Query data

Another difference between a database and a file is the way you can access them. You can search a file sequentially, looking

for particular values at particular physical locations in each line or record. That is, you might ask, “What records have the

number 1013 in the first field?” The following figure shows this type of search.

Figure 9. Search a file sequentially

In contrast, when you query a database, you use the terms that the model defines. You can query the database with

questions such as, “What orders have been placed for products made by the Shimara Corporation, by customers in New Jersey,

with ship dates in the third quarter?” The following figure shows this type of query.

Figure 10. Query a database

Chapter 1. SQL programming

In other words, when you access data that is stored in a file, you must state your question in terms of the physical layout of

the file. When you query a database, you can ignore the arcane details of computer storage and state your query in terms that

reflect the real world, at least to the extent that the data model reflects the real world.

Compose SELECT statements on page 232, and Compose advanced SELECT statements on page 320, discuss the

language you use to make queries.

For information about how to build and implement your data model, see the IBM® Informix® Database Design and

Implementation Guide.

Modify data

The data model also makes it possible to modify the contents of the database with less chance for error. You can query the

database with statements such as, “Find every stock item with a manufacturer of Presta or Schraeder, and increase its price

by 13 percent.” You state changes in terms that reflect the meaning of the data. You do not have to waste time and effort

thinking about details of fields within records in a file, so the chances for error are fewer.

The statements you use to modify stored data are covered in Modify data on page 358.

Concurrent use and security

A database can be a common resource for many users. Multiple users can query and modify a database simultaneously. The

database server (the program that manages the contents of all databases) ensures that the queries and modifications are

done in sequence and without conflict.

Having concurrent users on a database provides great advantages but also introduces new problems of security and privacy.

Some databases are private; individuals set them up for their own use. Other databases contain confidential material that

must be shared, but only among a restricted group; still other databases provide public access.

Control database use

HCL® Informix® database software provides the means to control database use. When you design a database, you can

perform any of the following functions:

• Keep the database completely private

• Open its entire contents to all users or to selected users

• Restrict the selection of data that some users can view (different selections of data to different groups of users)

• Allow specified users to view certain items, but not modify them

• Allow specified users to add new data, but not modify old data

• Allow specified users to modify all, or specified items of, existing data

• Ensure that added or modified data conforms to the data model

Access-management strategies

HCL Informix® supports two access-management systems:

223

HCL Informix 14.10 - SQL programming Guide

224

Label-Based Access Control (LBAC)

Label-Based Access Control is an implementation of Mandatory Access Control, which is typically used in

databases that store highly sensitive data, such as systems maintained by armed forces or security services.

The primary documentation of HCL Informix® features relating to LBAC is the HCL® Informix® Security Guide.

HCL® Informix® Guide to SQL: Syntax describes how LBAC security objects are created and maintained by the

Database Security Administrator (DBSECADM). Only the Database Server Administrator (DBSA) can grant the

DBSECADM role.

Discretionary Access Control (DAC)

Discretionary Access Control is a simpler system that involves less overhead than LBAC. Based on access

privileges and roles, DAC is enabled in all Informix® databases, including those that implement LBAC.

Creating and granting a role

About this task

To support DAC, the database administrator (DBA) can define roles and assign them to users to standardize the access

privileges of groups of users who need access to the same database objects. When the DBA assigns privileges to that role,

every user who is granted role holds those privileges when that role is activated. In order to activate a specific role, a user

must issue the SET ROLE statement. The SQL statements used for defining and manipulating roles include: CREATE ROLE,

DROP ROLE, GRANT, REVOKE, and SET ROLE.

For more information on the SQL syntax statements for defining and manipulating roles, see the HCL® Informix® Guide to

SQL: Syntax.

To create and grant a role:

1. Use the CREATE ROLE statement to create a new role in the current database.

2. Use the GRANT statement to grant access privileges to that role

3. Use the GRANT statement to grant the role to a user or to PUBLIC (all users).

4. The user must issue the SET ROLE statement to enable that role.

Defining and granting privileges for a default role

About this task

The DBA can also define a default role to assign to individual users or to the PUBLIC group for a specific database. The role

is automatically activated when the user establishes a connection with that database, without the requiring the user to issue

a SET ROLE statement. At connection time, each user who holds a default role has whatever access privileges are granted to

the user individually, as well as the privileges of the default role.

Only one role that the CREATE ROLE statement defines can be in effect for a given user at a given time. If a user who holds

both a default role and one or more other roles uses the SET ROLE statement to make a nondefault role the active role, then

any access privileges that were granted only to the default role (and not to the user individually, nor to PUBLIC, nor to the new

Chapter 1. SQL programming

active role) are no longer in effect for that user. The same user can issue the SET ROLE DEFAULT statement to reactivate the

default role, but this action disables any privileges that the user held only through the previously enabled nondefault role.

If different default roles are assigned to the user and to PUBLIC, the default role of the user takes precedence.

To define and grant privileges for a default role:

1. Use the CREATE ROLE statement to create a new role in the current database.

2. Use the GRANT statement to grant privileges to the role.

3. Grant the role to a user and set the role as the default user or PUBLIC role using the one of the following syntax:

Choose from:

◦ GRANT DEFAULT ROLE rolename TO username;

◦ GRANT DEFAULT ROLE rolename TO PUBLIC;

4. Use the REVOKE DEFAULT ROLE statement to disassociate a default role from a user.

Restriction: Only the DBA or the database owner can remove the default role.

5. Use the SET ROLE DEFAULT statement to reset the current role back to the default role.

Built-in roles

For security reasons, HCL Informix® supports certain built-in roles that are in effect for any user who is granted the role and

is connected to the database, regardless of whether any other role is also active.

For example, in a database in which the IFX_EXTEND_ROLE configuration parameter is set to ON, only the Database Server

Administrator (DBSA) or users to whom the DBSA has granted the built-in EXTEND role can create or drop UDRs that are

defined with the EXTERNAL keyword.

Similarly, in a database that implements LBAC security policies, the DBSA can grant the built-in DBSECADM role. The grantee

of this role becomes the Database Security Administrator, who can define and implement LBAC security policies and can

assign security labels to data and to users.

Unlike user-defined roles, built-in roles cannot be destroyed by the DROP ROLE statement. The SET ROLE statement has no

effect on a built-in role, because it is always active while users are connected to a database in which they have been granted

the built-in role.

For more information on the External Routine Reference segment or SQL statements for defining and manipulating roles, see

the HCL® Informix® Guide to SQL: Syntax.

For more information on the DBSECADM role or SQL statements for defining and manipulating LBAC security objects, see

the HCL® Informix® Security Guide.

For more information on default roles, see the HCL® Informix® Administrator's Guide.

For more information about how to grant and limit access to your database, see the IBM® Informix® Database Design and

Implementation Guide.

225

HCL Informix 14.10 - SQL programming Guide

226

Centralized management

Databases that many people use are valuable and must be protected as important business assets. You create a significant

problem when you compile a store of valuable data and simultaneously allow many employees to access it. You handle this

problem by protecting data while maintaining performance. The database server lets you centralize these tasks.

Databases must be guarded against loss or damage. The hazards are many: failures in software and hardware, and the risks

of fire, flood, and other natural disasters. Losing an important database creates a huge potential for damage. The damage

could include not only the expense and difficulty of re-creating the lost data, but also the loss of productive time by the

database users as well as the loss of business and goodwill while users cannot work. A plan for regular backups helps avoid

or mitigate these potential disasters.

A large database that many people use must be maintained and tuned. Someone must monitor its use of system resources,

chart its growth, anticipate bottlenecks, and plan for expansion. Users will report problems in the application programs;

someone must diagnose these problems and correct them. If rapid response is important, someone must analyze the

performance of the system and find the causes of slow responses.

Important database terms

You should know a number of terms before you begin the next chapter. Depending on the database server you use, a

different set of terms can describe the database and the data model that apply.

The relational database model

The databases you create with the HCL® Informix® database server are object-relational databases. In practical terms this

means that all data is presented in the form of tables with rows and columns where the following simple corresponding

relationships apply.

Relationship

Description

table = entity

A table represents all that the database knows about one subject or kind of thing.

column = attribute

A column represents one feature, characteristic, or fact that is true of the table subject.

row = instance

A row represents one individual instance of the table subject.

Some rules apply about how you choose entities and attributes, but they are important only when you are designing a new

database. (For more information about database design, see the IBM® Informix® Database Design and Implementation

Guide.) The data model in an existing database is already set. To use the database, you need to know only the names of the

tables and columns and how they correspond to the real world.

Chapter 1. SQL programming

Tables

A database is a collection of information that is grouped into one or more tables. A table is an array of data items organized

into rows and columns. A demonstration database is distributed with every HCL® Informix® database server product. A

partial table from the demonstration database follows.

stock_num manu_code description unit_price unit unit_descr

.

1 HRO baseball gloves 250.00 case 10 gloves/case

1 HSK baseball gloves 800.00 case 10 gloves/case

1 SMT baseball gloves 450.00 case 10 gloves/case

2 HRO baseball 126.00 case 24/case

3 HSK baseball bat 240.00 case 12/case

4 HSK football 960.00 case 24/case

4 HRO football 480.00 case 24/case

5 NRG tennis racquet 28.00 each each

.

313 ANZ swim cap 60.00 case 12/box

A table represents all that the database administrator (DBA) wants to store about one entity, one type of thing that the

database describes. The example table, stock, represents all that the DBA wants to store about the merchandise that a

sporting goods store stocks. Other tables in the demonstration database represent such entities as customer and orders.

Columns

Each column of a table contains one attribute, which is one characteristic, feature, or fact that describes the subject of the

table. The stock table has columns for the following facts about items of merchandise: stock numbers, manufacturer codes,

descriptions, prices, and units of measure.

Rows

Each row of a table is one instance of the subject of the table, which is one particular example of that entity. Each row of the

stock table stands for one item of merchandise that the sporting goods store sells.

Views

A view is a virtual table based on a specified SELECT statement. A view is a dynamically controlled picture of the contents in

a database and allows a programmer to determine what information the user sees and manipulates. Different users can be

given different views of the contents of a database, and their access to those contents can be restricted in several ways.

227

HCL Informix 14.10 - SQL programming Guide

228

Sequences

A sequence is a database object that generates a sequence of whole numbers within a defined range. The sequence of

numbers can run in either ascending or descending order, and is monotonic. For more information about sequences, see the

HCL® Informix® Guide to SQL: Syntax.

Operations on tables

Because a database is really a collection of tables, database operations are operations on tables. The object-relational model

supports three fundamental operations: selection, projection, and joining. The following figure shows the selection and

projection operations. (All three operations are defined in detail, with many examples, in the following topics.)

Figure 11. Illustration of selection and projection

When you select data from a table, you are choosing certain rows and ignoring others. For example, you can query the stock

table by asking the database management system to, “Select all rows in which the manufacturer code is HSK and the unit

price is between 200.00 and 300.00.”

When you project from a table, you are choosing certain columns and ignoring others. For example, you can query the stock

table by asking the database management system to “project the stock_num, unit_descr, and unit_price columns.”

A table contains information about only one entity; when you want information about multiple entities, you must join their

tables. You can join tables in many ways. For more information about join operations, refer to Compose advanced SELECT

statements on page 320.

The object-relational model

HCL Informix® (Informix®) allows you to build object-relational databases. In addition to supporting alphanumeric data such

as character strings, integers, date, and decimal, an object-relational database extends the features of a relational model with

the following object-oriented capabilities:

Chapter 1. SQL programming

Extensibility

You can extend the capability of the database server by defining new data types (and the access methods and

functions to support them) and user-defined routines (UDRs) that allow you to store and manage images, audio,

video, large text documents, and so forth.

IBM®, as well as third-party vendors, packages some data types and access methods into DataBlade®

modules or shared class libraries, that you can add on to the database server, if it suits your needs. A

DataBlade® module enables you to store non-traditional data types such as two-dimensional spatial objects

(lines, polygons, ellipses, and circles) and to access them through R-tree indexes. A DataBlade® module might

also provide new types of access to large text documents, including phrase matching, fuzzy searches, and

synonym matching.

You can also extend the database server on your own by using the features of HCL Informix® that enable you

to add data types and access methods. For more information, see HCL® Informix® User-Defined Routines and

Data Types Developer's Guide.

You can create UDRs in SPL and the C programming language to encapsulate application logic or to enhance

the functionality of the Informix®. For more information, see Create and use SPL routines on page 453.

Complex types

You can define new data types that combine one or more existing data types. Complex types enable greater

flexibility in organizing data at the level of columns and tables. For example, with complex types, you can define

columns that contain collections of values of a single type and columns that contain multiple component

types.

Inheritance

You can define objects (types and tables) that acquire the properties of other objects and add new properties

that are specific to the object that you define.

Informix® provides object-oriented capabilities beyond those of the relational model but represents all data in the form of

tables with rows and columns. Although the object-relational model extends the capabilities of the relational model, you can

implement your data model as a traditional relational database if you choose.

Some rules apply about how you choose entities and attributes, but they are important only when you are designing a new

database. For more information about object-relational database design, see the IBM® Informix® Database Design and

Implementation Guide.

Structured Query Language

Most computer software has not yet reached a point where you can literally ask a database, “What orders have been placed

by customers in New Jersey with ship dates in the third quarter?” You must still phrase questions in a restricted syntax that

the software can easily parse. You can pose the same question to the demonstration database in the following terms:

SELECT * FROM customer, orders
 WHERE customer.customer_num = orders.customer_num
 AND customer.state = 'NJ'

229

HCL Informix 14.10 - SQL programming Guide

230

 AND orders.ship_date
 BETWEEN DATE('7/1/98') AND DATE('9/30/98');

This question is a sample of Structured Query Language (SQL). It is the language that you use to direct all operations on

the database. SQL is composed of statements, each of which begins with one or two keywords that specify a function.

The HCL® Informix® implementation of SQL includes a large number of SQL statements, from ALLOCATE DESCRIPTOR to

WHENEVER.

You will use most of the statements only when you set up or tune your database. You will use three or four statements

regularly to query or update your database. For details on SQL statements, see the HCL® Informix® Guide to SQL: Syntax.

One statement, SELECT, is in almost constant use. SELECT is the only statement that you can use to retrieve data from the

database. It is also the most complicated statement, and the next two chapters of this book explore its many uses.

Standard SQL

The relational model and SQL and were invented and developed at IBM® in the early and middle 1970s. Once IBM® proved

that it was possible to implement practical relational databases and that SQL was a usable language for manipulating them,

other implementations of SQL were developed.

For reasons of performance or competitive advantage, or to take advantage of local hardware or software features, each

SQL implementation differed in small ways from the others and from the IBM® version of the language. To ensure that the

differences remained small, a standards committee was formed in the early 1980s.

Committee X3H2, sponsored by the American National Standards Institute (ANSI), issued the SQL1 standard in 1986. This

standard defines a core set of SQL features and the syntax of statements such as SELECT.

Informix® SQL and ANSI SQL

The HCL® Informix® implementation of SQL is compatible with standard SQL. Informix® SQL is also compatible with the

IBM® version of the language. However, Informix® SQL contains extensions to the standard; that is, extra options or features

for certain statements, and looser rules for others. Most of the differences occur in the statements that are not in everyday

use. For example, few differences occur in the SELECT statement, which accounts for 90 percent of SQL use.

When a difference exists between Informix® SQL and ANSI standard, the HCL® Informix® Guide to SQL: Syntax identifies the

Informix® syntax as an extension to the ANSI standard for SQL.

Interactive SQL

To carry out the examples in this book and to experiment with SQL and database design, you need a program that lets you

execute SQL statements interactively. DB-Access is such a program. It helps you compose SQL statements and then passes

your SQL statements to the database server for execution and displays the results to you.

Chapter 1. SQL programming

General programming

You can write programs that incorporate SQL statements and exchange data with the database server. That is, you can write

a program to retrieve data from the database and format it however you choose. You can also write programs that take data

from any source in any format, prepare it, and insert it into the database.

You can also write programs called stored routines to work with database data and objects. The stored routines that you

write are stored directly in a database in tables. You can then execute a stored routine from DB-Access or an SQL Application

Programming Interface (API) such as IBM® Informix® ESQL/C.

SQL programming on page 400, and Modify data through SQL programs on page 423, present an overview of how SQL is

used in programs.

ANSI-compliant databases

Use the MODE ANSI keywords when you create a database to designate it as ANSI compliant. Within such a database,

certain characteristics of the ANSI/ISO standard apply. For example, all actions that modify data take place within a

transaction automatically, which means that the changes are made in their entirety or not at all. Differences in the behavior

of ANSI-compliant databases are noted, where appropriate, in the statement descriptions in the HCL® Informix® Guide

to SQL: Syntax. For a detailed discussion of ANSI-compliant databases, see the IBM® Informix® Database Design and

Implementation Guide.

Global Language Support

HCL® Informix® database server products provide the Global Language Support (GLS) feature. In addition to U.S. ASCII

English, GLS allows you to work in other locales and use non-ASCII characters in SQL data and identifiers. You can use the

GLS feature to conform to the customs of a specific locale. The locale files contain culture-specific information, such as

money and date formats and collation orders. For more GLS information, see the HCL® Informix® GLS User's Guide.

Summary

A database contains a collection of related information but differs in a fundamental way from other methods of storing data.

The database contains not only the data, but also a data model that defines each data item and specifies its meaning with

respect to the other items and to the real world.

More than one user can access and modify a database at the same time. Each user has a different view of the contents of a

database, and each user's access to those contents can be restricted in several ways.

A relational database consists of tables, and the tables consist of columns and rows. The relational model supports three

fundamental operations on tables: selections, projections, and joins.

An object-relational database extends the features of a relational database. You can define new data types to store and

manage audio, video, large text documents, and so forth. You can define complex types that combine one or more existing

data types to provide greater flexibility in how you organize your data in columns and tables. You can define types and tables

that inherit the properties of other database objects and add new properties that are specific to the object that you define.

231

HCL Informix 14.10 - SQL programming Guide

232

To manipulate and query a database, use SQL. IBM® pioneered SQL and ANSI standardized it. HCL® Informix® extensions

that you can use to your advantage add to the ANSI-defined language. HCL® Informix® tools also make it possible to

maintain strict compliance with ANSI standards.

Two layers of software mediate all your work with databases. The bottom layer is always a database server that executes

SQL statements and manages the data on disk and in computer memory. The top layer is one of many applications, some

from IBM® and some written by you, by other vendors, or your colleagues. Middleware is the component that links the

database server to the application, and is provided by the database vendor to bind the client programs with the database

server. HCL® Informix® Stored Procedure Language (SPL) is an example of such a tool.

Compose SELECT statements

The SELECT statement is the most important and the most complex SQL statement. You can use it and the SQL statements

INSERT, UPDATE, and DELETE to manipulate data. You can use the SELECT statement to retrieve data from a database, as

part of an INSERT statement to produce new rows, or as part of an UPDATE statement to update information.

The SELECT statement is the primary way to query information in a database. It is your key to retrieving data in a program,

report, form, or spreadsheet. You can use SELECT statements with a query tool such as DB-Access or embed SELECT

statements in an application.

This chapter introduces the basic methods for using the SELECT statement to query and retrieve data from relational

databases. It discusses how to tailor your statements to select columns or rows of information from one or more tables, how

to include expressions and functions in SELECT statements, and how to create various join conditions between database

tables. The syntax and usage for the SELECT statement are described in detail in the HCL® Informix® Guide to SQL: Syntax.

Most examples in this publication come from the tables in the stores_demo database, which is included with the software

for your Informix® SQL API or database utility. In the interest of brevity, the examples show only part of the data that is

retrieved for each SELECT statement. For information on the structure and contents of the demonstration database, see the

HCL® Informix® Guide to SQL: Reference. For emphasis, keywords are shown in uppercase letters in the examples, although

SQL is not case sensitive.

SELECT statement overview

The SELECT statement is constructed of clauses that let you look at data in a relational database. These clauses let you

select columns and rows from one or more database tables or views, specify one or more conditions, order and summarize

the data, and put the selected data in a temporary table.

This chapter shows how to use five SELECT statement clauses. If you include all five of these clauses, they must appear in

the SELECT statement in the following order:

1. Projection clause

2. FROM clause

3. WHERE clause

4. ORDER BY clause

5. INTO TEMP clause

Chapter 1. SQL programming

Only the Projection clause and FROM clause are required. These two clauses form the basis for every database query,

because they specify the column values to be retrieved, and the tables that contain those columns. Use one or more of the

other clauses from the following list:

• Add a WHERE clause to select specific rows or create a join condition.

• Add an ORDER BY clause to change the order in which data is produced.

• Add an INTO TEMP clause to save the results as a table for further queries.

Two additional SELECT statement clauses, GROUP BY and HAVING, let you perform more complex data retrieval. They

are introduced in Compose advanced SELECT statements on page 320. Another clause, INTO, specifies the program or

host variable to receive data from a SELECT statement in an application program. Complete syntax and rules for using the

SELECT statement are in the HCL® Informix® Guide to SQL: Syntax.

Output from SELECT statements

Although the syntax remains the same across all HCL® Informix® products, the formatting and display of the resulting

output depends on the application. The examples in this chapter and in Compose advanced SELECT statements on

page 320 display the SELECT statements and their output as they appear when you use the interactive Query-language

option in DB-Access.

Output from large object data types

When you issue a SELECT statement that includes a large object, DB-Access displays the results as follows:

• For a TEXT column or CLOB column, the contents of the column are displayed.

• For a BYTE column, the words <BYTE value> are displayed instead of the actual value.

• For a BLOB column, the words <SBlob data> are displayed instead of the actual value.

Output from user-defined data types

DB-Access uses special conventions to display output from columns that contain complex or opaque data types. For more

information about these data types, refer to the IBM® Informix® Database Design and Implementation Guide.

Output in non-default code sets

You can issue a SELECT statement that queries NCHAR columns instead of CHAR columns or NVARCHAR columns instead

of VARCHAR columns.

For more Global Language Support (GLS) information, see the HCL® Informix® GLS User's Guide. For additional information

on using NCHAR and NVARCHAR data types with non-default code sets, see the IBM® Informix® Database Design and

Implementation Guide and the HCL® Informix® Guide to SQL: Reference.

Some basic concepts

The SELECT statement, unlike INSERT, UPDATE, and DELETE statements, does not modify the data in a database. It simply

queries the data. Whereas only one user at a time can modify data, multiple users can query or select the data concurrently.

233

HCL Informix 14.10 - SQL programming Guide

234

For more information about statements that modify data, see Modify data on page 358. The syntax descriptions of the

INSERT, UPDATE, and DELETE statements appear in the HCL® Informix® Guide to SQL: Syntax.

In a relational database, a column is a data element that contains a particular type of information that occurs in every row in

the table. A row is a group of related items of information about a single entity across all columns in a database table.

You can select columns and rows from a database table; from a system catalog table, a special table that contains

information on the database; or from a view, a virtual table created to contain a customized set of data. System catalog

tables are described in the HCL® Informix® Guide to SQL: Reference. Views are discussed in the IBM® Informix® Database

Design and Implementation Guide.

Privileges

Before you make a query against data, make sure you have the Connect privilege on the database and the Select privilege on

the table. These privileges are normally granted to all users. Database access privileges are discussed in the IBM® Informix®

Database Design and Implementation Guide and in the GRANT and REVOKE statements in the HCL® Informix® Guide to SQL:

Syntax.

Relational operations

A relational operation involves manipulating one or more tables, or relations, to result in another table. The three kinds of

relational operations are selection, projection, and join. This chapter includes examples of selection, projection, and simple

joining.

Selection and projection

In relational terminology, selection is defined as taking the horizontal subset of rows of a single table that satisfies a

particular condition. This kind of SELECT statement returns some of the rows and all the columns in a table. Selection is

implemented through the WHERE clause of a SELECT statement, as the following figure shows.

Figure 12. Query

SELECT * FROM customer WHERE state = 'NJ';

The result contains the same number of columns as the customer table, but only a subset of its rows. In this example, DB-

Access displays the data from each column on a separate line.

Chapter 1. SQL programming

Figure 13. Query result

customer_num 119
fname Bob
lname Shorter
company The Triathletes Club
address1 2405 Kings Highway
address2
city Cherry Hill
state NJ
zipcode 08002
phone 609-663-6079

customer_num 122
fname Cathy
lname O‘Brian
company The Sporting Life
address1 543d Nassau
address2
city Princeton
state NJ
zipcode 08540
phone 609-342-0054

In relational terminology, projection is defined as taking a vertical subset from the columns of a single table that retains the

unique rows. This kind of SELECT statement returns some of the columns and all the rows in a table.

Projection is implemented through the projection list in the Projection clause of a SELECT statement, as the following figure

shows.

Figure 14. Query

SELECT city, state, zipcode FROM customer;

SELECT statementsusingfor projectionProjection, definition ofThe result contains the same number of rows as the customer table, but it projects only a subset of the columns in the table.

Because only a small amount of data is selected from each row, DB-Access is able to display all of the data from the row on

one line.

235

HCL Informix 14.10 - SQL programming Guide

236

Figure 15. Query result

city state zipcode

Sunnyvale CA 94086
San Francisco CA 94117
Palo Alto CA 94303
Redwood City CA 94026
Los Altos CA 94022
Mountain View CA 94063
Palo Alto CA 94304
Redwood City CA 94063
Sunnyvale CA 94086
Redwood City CA 94062
Sunnyvale CA 94085
⋮;
Oakland CA 94609
Cherry Hill NJ 08002
Phoenix AZ 85016
Wilmington DE 19898
Princeton NJ 08540
Jacksonville FL 32256
Bartlesville OK 74006

The most common kind of SELECT statement uses both selection and projection. A query of this kind returns some of the

rows and some of the columns in a table, as the following figure shows.

Figure 16. Query

SELECT UNIQUE city, state, zipcode
 FROM customer
 WHERE state = 'NJ';

Figure 17: Query result on page 236 contains a subset of the rows and a subset of the columns in the customer table.

Figure 17. Query result

city state zipcode

Cherry Hill NJ 08002
Princeton NJ 08540

Join

A join occurs when two or more tables are connected by one or more columns in common, which creates a new table of

results. The following figure shows a query that uses a subset of the items and stock tables to illustrate the concept of a

join.

Chapter 1. SQL programming

Figure 18. A join between two tables

The following query joins the customer and state tables.

Figure 19. Query

SELECT UNIQUE city, state, zipcode, sname
 FROM customer, state
 WHERE customer.state = state.code;

The result consists of specified rows and columns from both the customer and state tables.

237

HCL Informix 14.10 - SQL programming Guide

238

Figure 20. Query result

city state zipcode sname

Bartlesville OK 74006 Oklahoma
Blue Island NY 60406 New York
Brighton MA 02135 Massachusetts
Cherry Hill NJ 08002 New Jersey
Denver CO 80219 Colorado
Jacksonville FL 32256 Florida
Los Altos CA 94022 California
Menlo Park CA 94025 California
Mountain View CA 94040 California
Mountain View CA 94063 California
Oakland CA 94609 California
Palo Alto CA 94303 California
Palo Alto CA 94304 California
Phoenix AZ 85008 Arizona
Phoenix AZ 85016 Arizona
Princeton NJ 08540 New Jersey
Redwood City CA 94026 California
Redwood City CA 94062 California
Redwood City CA 94063 California
San Francisco CA 94117 California
Sunnyvale CA 94085 California
Sunnyvale CA 94086 California
Wilmington DE 19898 Delaware

Single-table SELECT statements

You can query a single table in a database in many ways. You can tailor a SELECT statement to perform the following

actions:

• Retrieve all or specific columns

• Retrieve all or specific rows

• Perform computations or other functions on the retrieved data

• Order the data in various ways

The most basic SELECT statement contains only the two required clauses, the Projection clause and FROM.

The asterisk symbol (*)

The following query specifies all the columns in the manufact table in a projection list. An explicit projection list is a list of the

column names or expressions that you want to project from a table.

Figure 21. Query

SELECT manu_code, manu_name, lead_time FROM manufact;

The following query uses the wildcard asterisk symbol (*) as shorthand in the projection list to represent the names of all the

columns in the table. You can use the asterisk symbol (*) when you want all the columns in their defined order. An implicit

select list uses the asterisk symbol.

Chapter 1. SQL programming

Figure 22. Query

SELECT * FROM manufact;

Because the manufact table has only three columns, Figure 21: Query on page 238 and Figure 22: Query on page 239

are equivalent and display the same results; that is, a list of every column and row in the manufact table. The following figure

shows the results.

Figure 23. Query result

manu_code manu_name lead_time

 SMT Smith 3
 ANZ Anza 5
 NRG Norge 7
 HSK Husky 5
 HRO Hero 4
 SHM Shimara 30
 KAR Karsten 21
 NKL Nikolus 8
 PRC ProCycle 9

Reorder the columns

The following query shows how you can change the order in which the columns are listed by changing their order in your

projection list.

Figure 24. Query

SELECT manu_name, manu_code, lead_time FROM manufact;

The query result includes the same columns as the previous query result, but because the columns are specified in a

different order, the display is also different.

Figure 25. Query result

manu_name manu_code lead_time

 Smith SMT 3
 Anza ANZ 5
 Norge NRG 7
 Husky HSK 5
 Hero HRO 4
 Shimara SHM 30
 Karsten KAR 21
 Nikolus NKL 8
 ProCycle PRC 9

The ORDER BY clause to sort the rows

The results from a query are not arranged in any particular order. For example, Figure 15: Query result on page 236 and

Figure 25: Query result on page 239 appear to be in random order.

You can add an ORDER BY clause to your SELECT statement to direct the system to sort the data in a specific order. The

ORDER BY clause is a list of column names from any remote or local table or view. Any expressions that are allowed in the

239

HCL Informix 14.10 - SQL programming Guide

240

projection list are allowed in the ORDER BY list. If a column used in the ORDER BY list has a Select trigger on it, the trigger will

not be activated.

The following query returns every row from the manu_code, manu_name, and lead_time columns in the manufact table,

sorted according to lead_time.

Figure 26. Query

SELECT manu_code, manu_name, lead_time
 FROM manufact
 ORDER BY lead_time;

For HCL Informix®, you do not need to include the columns that you want to use in the ORDER BY clause in the projection

list. That is, you can sort the data according to a column that is not retrieved in the projection list. The following query

returns every row from the manu_code and manu_name columns in the manufact table, sorted according to lead_time. The

lead_time column is in the ORDER BY clause although it is not included in the projection list.

Figure 27. Query

SELECT manu_code, manu_name
 FROM manufact
 ORDER BY lead_time;

Ascending order

The retrieved data is sorted and displayed, by default, in ascending order. In the ASCII character set, ascending order

is uppercase A to lowercase z for character data types, and lowest to highest value for numeric data types. DATE and

DATETIME data is sorted from earliest to latest, and INTERVAL data is ordered from shortest to longest span of time.

Descending order

Descending order is the opposite of ascending order, from lowercase z to uppercase A for character types, and from highest

to lowest for numeric data types. DATE and DATETIME data is sorted from latest to earliest, and INTERVAL data is ordered

from longest to shortest span of time. The following query shows an example of descending order.

Figure 28. Query

SELECT * FROM manufact ORDER BY lead_time DESC;

The keyword DESC following a column name causes the retrieved data to be sorted in descending order, as the result shows.

Figure 29. Query result

manu_code manu_name lead_time

 SHM Shimara 30
 KAR Karsten 21
 PRC ProCycle 9
 NKL Nikolus 8
 NRG Norge 7
 HSK Husky 5
 ANZ Anza 5
 HRO Hero 4
 SMT Smith 3

Chapter 1. SQL programming

You can specify any column of a built-in data type (except TEXT, BYTE, BLOB, or CLOB) in the ORDER BY clause, and the

database server sorts the data based on the values in that column.

Sorting on multiple columns

You can also ORDER BY two or more columns, which creates a nested sort. The default is still ascending, and the column

that is listed first in the ORDER BY clause takes precedence.

The following query and Figure 32: Query on page 241 and the corresponding query results show nested sorts. To modify

the order in which selected data is displayed, change the order of the two columns that are named in the ORDER BY clause.

Figure 30. Query

SELECT stock_num, manu_code, description, unit_price
 FROM stock
 ORDER BY manu_code, unit_price;

In the query result, the manu_code column data appears in alphabetical order and, within each set of rows with the same

manu_code (for example, ANZ, HRO), the unit_price is listed in ascending order.

Figure 31. Query result

stock_num manu_code description unit_price

 5 ANZ tennis racquet $19.80
 9 ANZ volleyball net $20.00
 6 ANZ tennis ball $48.00
 313 ANZ swim cap $60.00
 201 ANZ golf shoes $75.00
 310 ANZ kick board $84.00
 ⋮
 111 SHM 10-spd, assmbld $499.99
 112 SHM 12-spd, assmbld $549.00
 113 SHM 18-spd, assmbld $685.90
 5 SMT tennis racquet $25.00
 6 SMT tennis ball $36.00
 1 SMT baseball gloves $450.00

The following query shows the reverse order of the columns in the ORDER BY clause.

Figure 32. Query

SELECT stock_num, manu_code, description, unit_price
 FROM stock
 ORDER BY unit_price, manu_code;

In the query result, the data appears in ascending order of unit_price and, where two or more rows have the same unit_price

(for example, $20.00, $48.00, $312.00), the manu_code is in alphabetical order.

241

HCL Informix 14.10 - SQL programming Guide

242

Figure 33. Query result

stock_num manu_code description unit_price

 302 HRO ice pack $4.50
 302 KAR ice pack $5.00
 5 ANZ tennis racquet $19.80
 9 ANZ volleyball net $20.00
 103 PRC frnt derailleur $20.00
 ⋮
 108 SHM crankset $45.00
 6 ANZ tennis ball $48.00
 305 HRO first-aid kit $48.00
 303 PRC socks $48.00
 311 SHM water gloves $48.00
 ⋮
 113 SHM 18-spd, assmbld $685.90
 1 HSK baseball gloves $800.00
 8 ANZ volleyball $840.00
 4 HSK football $960.00

The order of the columns in the ORDER BY clause is important, and so is the position of the DESC keyword. Although the

statements in the following query contain the same components in the ORDER BY clause, each produces a different result

(not shown).

Figure 34. Query

SELECT * FROM stock ORDER BY manu_code, unit_price DESC;

SELECT * FROM stock ORDER BY unit_price, manu_code DESC;

SELECT * FROM stock ORDER BY manu_code DESC, unit_price;

SELECT * FROM stock ORDER BY unit_price DESC, manu_code;

Select specific columns

The previous section shows how to select and order all data from a table. However, often all you want to see is the data in

one or more specific columns. Again, the formula is to use the Projection and FROM clauses, specify the columns and table,

and perhaps order the data in ascending or descending order with an ORDER BY clause.

If you want to find all the customer numbers in the orders table, use a statement such as the one in the following query.

Figure 35. Query

SELECT customer_num FROM orders;

The result shows how the statement simply selects all data in the customer_num column in the orders table and lists the

customer numbers on all the orders, including duplicates.

Chapter 1. SQL programming

Figure 36. Query result

customer_num

 104
 101
 104
 ⋮
 122
 123
 124
 126
 127

The output includes several duplicates because some customers have placed more than one order. Sometimes you want to

see duplicate rows in a projection. At other times, you want to see only the distinct values, not how often each value appears.

To suppress duplicate rows, you can include the keyword DISTINCT or its synonym UNIQUE at the start of the select list,

once in each level of a query, as the following query shows.

Figure 37. Query

SELECT DISTINCT customer_num FROM orders;

SELECT UNIQUE customer_num FROM orders;

To produce a more readable list, Figure 37: Query on page 243 limits the display to show each customer number in the

orders table only once, as the result shows.

Figure 38. Query result

customer_num

 101
 104
 106
 110
 111
 112
 115
 116
 117
 119
 120
 121
 122
 123
 124
 126
 127

Suppose you are handling a customer call, and you want to locate purchase order number DM354331. To list all the purchase

order numbers in the orders table, use a statement such as the following query shows.

Figure 39. Query

SELECT po_num FROM orders;

243

HCL Informix 14.10 - SQL programming Guide

244

The result shows how the statement retrieves data in the po_num column in the orders table.

Figure 40. Query result

po_num

B77836
9270
B77890
8006
2865
Q13557
278693
⋮

However, the list is not in a useful order. You can add an ORDER BY clause to sort the column data in ascending order and

make it easier to find that particular po_num, as shown in the following query.

Figure 41. Query

SELECT po_num FROM orders ORDER BY po_num;

Figure 42. Query result

po_num

278693
278701
2865
429Q
4745
8006
8052
9270
B77836
B77890
⋮

To select multiple columns from a table, list them in the projection list in the Projection clause. The following query shows

that the order in which the columns are selected is the order in which they are retrieved, from left to right.

Figure 43. Query

SELECT ship_date, order_date, customer_num,
 order_num, po_num
 FROM orders
 ORDER BY order_date, ship_date;

As Sorting on multiple columns on page 241 shows, you can use the ORDER BY clause to sort the data in ascending or

descending order and perform nested sorts. The result shows ascending order.

Chapter 1. SQL programming

Figure 44. Query result

ship_date order_date customer_num order_num po_num

06/01/1998 05/20/1998 104 1001 B77836
05/26/1998 05/21/1998 101 1002 9270
05/23/1998 05/22/1998 104 1003 B77890
05/30/1998 05/22/1998 106 1004 8006
06/09/1998 05/24/1998 116 1005 2865
 05/30/1998 112 1006 Q13557
06/05/1998 05/31/1998 117 1007 278693
07/06/1998 06/07/1998 110 1008 LZ230
06/21/1998 06/14/1998 111 1009 4745
06/29/1998 06/17/1998 115 1010 429Q
06/29/1998 06/18/1998 117 1012 278701
07/03/1998 06/18/1998 104 1011 B77897
07/10/1998 06/22/1998 104 1013 B77930
07/03/1998 06/25/1998 106 1014 8052
07/16/1998 06/27/1998 110 1015 MA003
07/12/1998 06/29/1998 119 1016 PC6782
07/13/1998 07/09/1998 120 1017 DM354331
07/13/1998 07/10/1998 121 1018 S22942
07/16/1998 07/11/1998 122 1019 Z55709
07/16/1998 07/11/1998 123 1020 W2286
07/25/1998 07/23/1998 124 1021 C3288
07/30/1998 07/24/1998 126 1022 W9925
07/30/1998 07/24/1998 127 1023 KF2961

When you use SELECT and ORDER BY on several columns in a table, you might find it helpful to use integers to refer to the

position of the columns in the ORDER BY clause. When an integer is an element in the ORDER BY list, the database server

treats it as the position in the projection list. For example, using 3 in the ORDER BY list (ORDER BY 3) refers to the third item

in the projection list. The statements in the following query retrieve and display the same data, as Figure 46: Query result on

page 246 shows.

Figure 45. Query

SELECT customer_num, order_num, po_num, order_date
 FROM orders
 ORDER BY 4, 1;

SELECT customer_num, order_num, po_num, order_date
 FROM orders
 ORDER BY order_date, customer_num;

245

HCL Informix 14.10 - SQL programming Guide

246

Figure 46. Query result

customer_num order_num po_num order_date

 104 1001 B77836 05/20/1998
 101 1002 9270 05/21/1998
 104 1003 B77890 05/22/1998
 106 1004 8006 05/22/1998
 116 1005 2865 05/24/1998
 112 1006 Q13557 05/30/1998
 117 1007 278693 05/31/1998
 110 1008 LZ230 06/07/1998
 111 1009 4745 06/14/1998
 115 1010 429Q 06/17/1998
 104 1011 B77897 06/18/1998
 117 1012 278701 06/18/1998
 104 1013 B77930 06/22/1998
 106 1014 8052 06/25/1998
 110 1015 MA003 06/27/1998
 119 1016 PC6782 06/29/1998
 120 1017 DM354331 07/09/1998
 121 1018 S22942 07/10/1998
 122 1019 Z55709 07/11/1998
 123 1020 W2286 07/11/1998
 124 1021 C3288 07/23/1998
 126 1022 W9925 07/24/1998
 127 1023 KF2961 07/24/1998

You can include the DESC keyword in the ORDER BY clause when you assign integers to column names, as the following

query shows.

Figure 47. Query

SELECT customer_num, order_num, po_num, order_date
 FROM orders
 ORDER BY 4 DESC, 1;

In this case, data is first sorted in descending order by order_date and in ascending order by customer_num.

Select substrings

To select part of the value of a character column, include a substring in the projection list. Suppose your marketing

department is planning a mailing to your customers and wants their geographical distribution based on zip codes. You could

write a query similar to the following.

Figure 48. Query

SELECT zipcode[1,3], customer_num
 FROM customer
 ORDER BY zipcode;

The query uses a substring to select the first three characters of the zipcode column (which identify the state) and the full

customer_num, and lists them in ascending order by zip code, as the result shows.

Chapter 1. SQL programming

Figure 49. Query result

zipcode customer_num

021 125
080 119
085 122
198 121
322 123
⋮
943 103
943 107
946 118

The WHERE clause

The set of rows that a SELECT statement returns is its active set. A singleton SELECT statement returns a single row. You

can add a WHERE clause to a SELECT statement if you want to see only specific rows. For example, you use a WHERE clause

to restrict the rows that the database server returns to only the orders that a particular customer placed or the calls that a

particular customer service representative entered.

You can use the WHERE clause to set up a comparison condition or a join condition. This section demonstrates only the first

use. Join conditions are described in a later section and in the next chapter.

Create a comparison condition

The WHERE clause of a SELECT statement specifies the rows that you want to see. A comparison condition employs specific

keywords and operators to define the search criteria.

For example, you might use one of the keywords BETWEEN, IN, LIKE, or MATCHES to test for equality, or the keywords IS

NULL to test for null values. You can combine the keyword NOT with any of these keywords to specify the opposite condition.

The following table lists the relational operators that you can use in a WHERE clause in place of a keyword to test for

equality.

Operator

Operation

=

equals

!= or <>

does not equal

>

greater than

>=

greater than or equal to

247

HCL Informix 14.10 - SQL programming Guide

248

<

less than

<=

less than or equal to

For CHAR expressions, greater than means after in ASCII collating order, where lowercase letters are after uppercase letters,

and both are after numerals. See the ASCII Character Set chart in the HCL® Informix® Guide to SQL: Syntax. For DATE and

DATETIME expressions, greater than means later in time, and for INTERVAL expressions, it means of longer duration.

You cannot use TEXT or BYTE columns to create a comparison condition, except when you use the IS NULL or IS NOT NULL

keywords to test for NULL values.

You cannot specify BLOB or CLOB columns to create a comparison condition on HCL Informix®, except when you use the IS

NULL or IS NOT NULL keywords to test for NULL values.

You can use the preceding keywords and operators in a WHERE clause to create comparison-condition queries that perform

the following actions:

• Include values

• Exclude values

• Find a range of values

• Find a subset of values

• Identify NULL values

To perform variable text searches using the following criteria, use the preceding keywords and operators in a WHERE clause

to create comparison-condition queries:

• Exact-text comparison

• Single-character wildcards

• Restricted single-character wildcards

• Variable-length wildcards

• Subscripting

The following section contains examples that illustrate these types of queries.

Include rows

Use the equal sign (=) relational operator to include rows in a WHERE clause, as the following query shows.

Figure 50. Query

SELECT customer_num, call_code, call_dtime, res_dtime
 FROM cust_calls
 WHERE user_id = 'maryj';

The query returns the set of rows that is shown.

Chapter 1. SQL programming

Figure 51. Query result

customer_num call_code call_dtime res_dtime

 106 D 1998-06-12 08:20 1998-06-12 08:25
 121 O 1998-07-10 14:05 1998-07-10 14:06
 127 I 1998-07-31 14:30

Exclude rows

Use the relational operators != or <> to exclude rows in a WHERE clause.

The following query assumes that you are selecting from an ANSI-compliant database; the statements specify the owner or

login name of the creator of the customer table. This qualifier is not required when the creator of the table is the current user,

or when the database is not ANSI compliant. However, you can include the qualifier in either case. For a detailed discussion

of owner naming, see the HCL® Informix® Guide to SQL: Syntax.

Figure 52. Query

SELECT customer_num, company, city, state
 FROM odin.customer
 WHERE state != 'CA';

SELECT customer_num, company, city, state
 FROM odin.customer
 WHERE state <> 'CA';

Both statements in the query exclude values by specifying that, in the customer table that the user odin owns, the value in

the state column should not be equal to CA, as the result shows.

Figure 53. Query result

customer_num company city state

 119 The Triathletes Club Cherry Hill NJ
 120 Century Pro Shop Phoenix AZ
 121 City Sports Wilmington DE
 122 The Sporting Life Princeton NJ
 123 Bay Sports Jacksonville FL
 124 Putnum's Putters Bartlesville OK
 125 Total Fitness Sports Brighton MA
 126 Neelie's Discount Sp Denver CO
 127 Big Blue Bike Shop Blue Island NY
 128 Phoenix College Phoenix AZ

Specify a range of rows

The following query shows two ways to specify a range of rows in a WHERE clause.

249

HCL Informix 14.10 - SQL programming Guide

250

Figure 54. Query

SELECT catalog_num, stock_num, manu_code, cat_advert
 FROM catalog
 WHERE catalog_num BETWEEN 10005 AND 10008;

SELECT catalog_num, stock_num, manu_code, cat_advert
 FROM catalog
 WHERE catalog_num >= 10005 AND catalog_num <= 10008;

Each statement in the query specifies a range for catalog_num from 10005 through 10008, inclusive. The first statement

uses keywords, and the second statement uses relational operators to retrieve the rows, as the result shows.

Figure 55. Query result

catalog_num 10005
stock_num 3
manu_code HSK
cat_advert High-Technology Design Expands the Sweet Spot

catalog_num 10006
stock_num 3
manu_code SHM
cat_advert Durable Aluminum for High School and Collegiate Athletes

catalog_num 10007
stock_num 4
manu_code HSK
cat_advert Quality Pigskin with Joe Namath Signature

catalog_num 10008
stock_num 4
manu_code HRO
cat_advert Highest Quality Football for High School
 and Collegiate Competitions

Although the catalog table includes a column with the BYTE data type, that column is not included in this SELECT statement

because the output would show only the words <BYTE value> by the column name. You can write an SQL API application to

display TEXT and BYTE values.

Exclude a range of rows

The following query uses the keywords NOT BETWEEN to exclude rows that have the character range 94000 through 94999

in the zipcode column, as the result shows.

Figure 56. Query

SELECT fname, lname, city, state
 FROM customer
 WHERE zipcode NOT BETWEEN '94000' AND '94999'
 ORDER BY state;

Chapter 1. SQL programming

Figure 57. Query result

fname lname city state

Frank Lessor Phoenix AZ
Fred Jewell Phoenix AZ
Eileen Neelie Denver CO
Jason Wallack Wilmington DE
Marvin Hanlon Jacksonville FL
James Henry Brighton MA
Bob Shorter Cherry Hill NJ
Cathy O'Brian Princeton NJ
Kim Satifer Blue Island NY
Chris Putnum Bartlesville OK

Use a WHERE clause to find a subset of values

Like Exclude rows on page 249, the following query assumes the use of an ANSI-compliant database. The owner qualifier

is in quotation marks to preserve the case sensitivity of the literal string.

Figure 58. Query

SELECT lname, city, state, phone
 FROM 'Aleta'.customer
 WHERE state = 'AZ' OR state = 'NJ'
 ORDER BY lname;

SELECT lname, city, state, phone
 FROM 'Aleta'.customer
 WHERE state IN ('AZ', 'NJ')
 ORDER BY lname;

Each statement in the query retrieves rows that include the subset of AZ or NJ in the state column of the Aleta.customer

table.

Figure 59. Query result

lname city state phone

Jewell Phoenix AZ 602-265-8754
Lessor Phoenix AZ 602-533-1817
O'Brian Princeton NJ 609-342-0054
Shorter Cherry Hill NJ 609-663-6079

You cannot test TEXT or BYTE columns with the IN keyword.

Also, when you use HCL Informix®, you cannot test BLOB or CLOB columns with the IN keyword.

In the example of a query on an ANSI-compliant database, no quotation marks exist around the table owner name. Whereas

the two statements in Figure 58: Query on page 251 searched the Aleta.customer table, the following query searches the

table ALETA.customer, which is a different table, because of the way ANSI-compliant databases look at owner names.

251

HCL Informix 14.10 - SQL programming Guide

252

Figure 60. Query

SELECT lname, city, state, phone
 FROM Aleta.customer
 WHERE state NOT IN ('AZ', 'NJ')
 ORDER BY state;

The previous query adds the keywords NOT IN, so the subset changes to exclude the subsets AZ and NJ in the state column.

The following figure shows the results in order of the state column.

Figure 61. Query result

lname city state phone

Pauli Sunnyvale CA 408-789-8075
Sadler San Francisco CA 415-822-1289
Currie Palo Alto CA 415-328-4543
Higgins Redwood City CA 415-368-1100
Vector Los Altos CA 415-776-3249
Watson Mountain View CA 415-389-8789
Ream Palo Alto CA 415-356-9876
Quinn Redwood City CA 415-544-8729
Miller Sunnyvale CA 408-723-8789
Jaeger Redwood City CA 415-743-3611
Keyes Sunnyvale CA 408-277-7245
Lawson Los Altos CA 415-887-7235
Beatty Menlo Park CA 415-356-9982
Albertson Redwood City CA 415-886-6677
Grant Menlo Park CA 415-356-1123
Parmelee Mountain View CA 415-534-8822
Sipes Redwood City CA 415-245-4578
Baxter Oakland CA 415-655-0011
Neelie Denver CO 303-936-7731
Wallack Wilmington DE 302-366-7511
Hanlon Jacksonville FL 904-823-4239
Henry Brighton MA 617-232-4159
Satifer Blue Island NY 312-944-5691
Putnum Bartlesville OK 918-355-2074

Identify NULL values

Use the IS NULL or IS NOT NULL option to check for NULL values. A NULL value represents either the absence of data or an

unknown value. A NULL value is not the same as a zero or a blank.

The following query returns all rows that have a null paid_date, as the result shows.

Figure 62. Query

SELECT order_num, customer_num, po_num, ship_date
 FROM orders
 WHERE paid_date IS NULL
 ORDER BY customer_num;

Chapter 1. SQL programming

Figure 63. Query result

order_num customer_num po_num ship_date

 1004 106 8006 05/30/1998
 1006 112 Q13557
 1007 117 278693 06/05/1998
 1012 117 278701 06/29/1998
 1016 119 PC6782 07/12/1998
 1017 120 DM354331 07/13/1998

Form compound conditions

To connect two or more comparison conditions, or Boolean expressions, use the logical operators AND, OR, and NOT. A

Boolean expression evaluates as true or false or, if NULL values are involved, as unknown.

In the following query, the operator AND combines two comparison expressions in the WHERE clause.

Figure 64. Query

SELECT order_num, customer_num, po_num, ship_date
 FROM orders
 WHERE paid_date IS NULL
 AND ship_date IS NOT NULL
 ORDER BY customer_num;

The query returns all rows that have NULL paid_date or a NOT NULL ship_date.

Figure 65. Query result

order_num customer_num po_num ship_date

 1004 106 8006 05/30/1998
 1007 117 278693 06/05/1998
 1012 117 278701 06/29/1998
 1017 120 DM354331 07/13/1998

Exact-text comparisons

The following examples include a WHERE clause that searches for exact-text comparisons by using the keyword LIKE

or MATCHES or the equal sign (=) relational operator. Unlike earlier examples, these examples illustrate how to query a

table that is not in the current database. You can access a table that is not in the current database only if the database

that contains the table has the same ANSI compliance status as the current database. If the current database is an ANSI-

compliant database, the table you want to access must also reside in an ANSI-compliant database. If the current database is

not an ANSI-compliant database, the table you want to access must also reside in a database that is not an ANSI-compliant

database.

Although the database used previously in this chapter is the demonstration database, the FROM clause in the following

examples specifies the manatee table, created by the owner bubba, which resides in an ANSI-compliant database named

syzygy. For more information on how to access tables that are not in the current database, see the HCL® Informix® Guide to

SQL: Syntax.

253

HCL Informix 14.10 - SQL programming Guide

254

Each statement in the following query retrieves all the rows that have the single word helmet in the description column, as

the result shows.

Figure 66. Query

SELECT stock_no, mfg_code, description, unit_price
 FROM syzygy:bubba.manatee
 WHERE description = 'helmet'
 ORDER BY mfg_code;

SELECT stock_no, mfg_code, description, unit_price
 FROM syzygy:bubba.manatee
 WHERE description LIKE 'helmet'
 ORDER BY mfg_code;

SELECT stock_no, mfg_code, description, unit_price
 FROM syzygy:bubba.manatee
 WHERE description MATCHES 'helmet'
 ORDER BY mfg_code;

The results might look like the following figure.

Figure 67. Query result

stock_no mfg_code description unit_price

 991 ABC helmet $222.00
 991 BKE helmet $269.00
 991 HSK helmet $311.00
 991 PRC helmet $234.00
 991 SPR helmet $245.00

Variable-text searches
You can use the keywords LIKE and MATCHES for variable-text queries that are based on substring searches of fields.

Include the keyword NOT to indicate the opposite condition.

The keyword LIKE complies with the ISO/ANSI standard for SQL, whereas MATCHES is the HCL® Informix® extension.

Variable-text search strings can include the wildcard symbols that are listed with the keywords LIKE or MATCHES in the

following table.

The following table shows the wildcard symbols that you can use with the keyword LIKE and the keyword MATCHES. The symbol is followed by an explanation about what the symbol does.

Keyword Symbol Explanation

LIKE % Evaluates to zero or more characters

LIKE _ Evaluates to a single character

LIKE \ Escapes special significance of next character

MATCHES * Evaluates to zero or more characters

MATCHES ? Evaluates to a single character (except null)

Chapter 1. SQL programming

Keyword Symbol Explanation

MATCHES [] Evaluates to a single character or range of values

MATCHES \ Escapes special significance of next character

You cannot test BLOB, CLOB, TEXT, or BYTE columns with the LIKE or MATCHES operators.

A single-character wildcard

The statements in the following query illustrate the use of a single-character wildcard in a WHERE clause. Further, they

demonstrate a query on a table that is not in the current database. The stock table is in the database sloth. Besides being

outside the current demonstration database, sloth is on a separate database server called meerkat.

For more information, see Access and modify data in an external database on page 396 and the HCL® Informix® Guide to

SQL: Syntax.

Figure 68. Query

SELECT stock_num, manu_code, description, unit_price
 FROM sloth@meerkat:stock
 WHERE manu_code LIKE '_R_'
 AND unit_price >= 100
 ORDER BY description, unit_price;

SELECT stock_num, manu_code, description, unit_price
 FROM sloth@meerkat:stock
 WHERE manu_code MATCHES '?R?'
 AND unit_price >= 100
 ORDER BY description, unit_price;

Each statement in the query retrieves only those rows for which the middle letter of the manu_code is R, as the result shows.

The comparison '_R_' (for LIKE) or '?R?' (for MATCHES) specifies, from left to right, the following items:

• Any single character

• The letter R

• Any single character

255

HCL Informix 14.10 - SQL programming Guide

256

Figure 69. Query result

stock_num manu_code description unit_price

 205 HRO 3 golf balls $312.00
 2 HRO baseball $126.00
 1 HRO baseball gloves $250.00
 7 HRO basketball $600.00
 102 PRC bicycle brakes $480.00
 114 PRC bicycle gloves $120.00
 4 HRO football $480.00
 110 PRC helmet $236.00
 110 HRO helmet $260.00
 307 PRC infant jogger $250.00
 306 PRC tandem adapter $160.00
 308 PRC twin jogger $280.00
 304 HRO watch $280.00

WHERE clause to specify a range of initial characters

The following query selects only those rows where the manu_code begins with A through H and returns the rows that the

result shows. The test '[A-H]' specifies any single letter from A through H, inclusive. No equivalent wildcard symbol exists for

the LIKE keyword.

Figure 70. Query

SELECT stock_num, manu_code, description, unit_price
 FROM stock
 WHERE manu_code MATCHES '[A-H]*'
 ORDER BY description, manu_code;

Figure 71. Query result

stock_num manu_code description unit_price

 205 ANZ 3 golf balls $312.00
 205 HRO 3 golf balls $312.00
 2 HRO baseball $126.00
 3 HSK baseball bat $240.00
 1 HRO baseball gloves $250.00
 1 HSK baseball gloves $800.00
 7 HRO basketball $600.00
 ⋮;
 313 ANZ swim cap $60.00
 6 ANZ tennis ball $48.00
 5 ANZ tennis racquet $19.80
 8 ANZ volleyball $840.00
 9 ANZ volleyball net $20.00
 304 ANZ watch $170.00

WHERE clause with variable-length wildcard

The statements in the following query use a wildcard at the end of a string to retrieve all the rows where the description

begins with the characters bicycle.

Chapter 1. SQL programming

Figure 72. Query

SELECT stock_num, manu_code, description, unit_price
 FROM stock
 WHERE description LIKE 'bicycle%'
 ORDER BY description, manu_code;

SELECT stock_num, manu_code, description, unit_price
 FROM stock
 WHERE description MATCHES 'bicycle*'
 ORDER BY description, manu_code;

Either statement returns the following rows.

Figure 73. Query result

stock_num manu_code description unit_price

 102 PRC bicycle brakes $480.00
 102 SHM bicycle brakes $220.00
 114 PRC bicycle gloves $120.00
 107 PRC bicycle saddle $70.00
 106 PRC bicycle stem $23.00
 101 PRC bicycle tires $88.00
 101 SHM bicycle tires $68.00
 105 PRC bicycle wheels $53.00
 105 SHM bicycle wheels $80.00

The comparison 'bicycle%' or 'bicycle*' specifies the characters bicycle followed by any sequence of zero or more

characters. It matches bicycle stem with stem matched by the wildcard. It matches to the characters bicycle alone, if a row

exists with that description.

The following query narrows the search by adding another comparison condition that excludes a manu_code of PRC.

Figure 74. Query

SELECT stock_num, manu_code, description, unit_price
 FROM stock
 WHERE description LIKE 'bicycle%'
 AND manu_code NOT LIKE 'PRC'
 ORDER BY description, manu_code;

The statement retrieves only the following rows.

Figure 75. Query result

stock_num manu_code description unit_price

 102 SHM bicycle brakes $220.00
 101 SHM bicycle tires $68.00
 105 SHM bicycle wheels $80.00

When you select from a large table and use an initial wildcard in the comparison string (such as '%cycle'), the query often

takes longer to execute. Because indexes cannot be used, every row is searched.

257

HCL Informix 14.10 - SQL programming Guide

258

Protect special characters

The following query uses the keyword ESCAPE with LIKE or MATCHES so you can protect a special character from

misinterpretation as a wildcard symbol.

Figure 76. Query

SELECT * FROM cust_calls
 WHERE res_descr LIKE '%!%%' ESCAPE '!';

The ESCAPE keyword designates an escape character (! in this example) that protects the next character so that it is

interpreted as data and not as a wildcard. In the example, the escape character causes the middle percent sign (%) to be

treated as data. By using the ESCAPE keyword, you can search for occurrences of a percent sign (%) in the res_descr column

by using the LIKE wildcard percent sign (%). The query retrieves the following row.

Figure 77. Query result

customer_num 116
call_dtime 1997-12-21 11:24
user_id mannyn
call_code I
call_descr Second complaint from this customer!
 Received two cases righthanded outfielder
 glove (1 HRO) instead of one case lefties.
res_dtime 1997-12-27 08:19
res_descr Memo to shipping (Ava Brown) to send case
 of lefthanded gloves, pick up wrong case;
 memo to billing requesting 5% discount to
 placate customer due to second offense
 and lateness of resolution because of
 holiday.

Subscripting in a WHERE clause

You can use subscripting in the WHERE clause of a SELECT statement to specify a range of characters or numbers in a

column, as the following query shows.

Figure 78. Query

SELECT catalog_num, stock_num, manu_code, cat_advert,
 cat_descr
 FROM catalog
 WHERE cat_advert[1,4] = 'High';

The subscript [1,4] causes the query to retrieve all rows in which the first four letters of the cat_advert column are High, as

result shows.

Chapter 1. SQL programming

Figure 79. Query result

catalog_num 10004
stock_num 2
manu_code HRO
cat_advert Highest Quality Ball Available, from Hand-Sti
 tching to the Robinson Signature
cat_descr
Jackie Robinson signature ball. Highest professional quality,
used by National League.

catalog_num 10005
stock_num 3
manu_code HSK
cat_advert High-Technology Design Expands the Sweet Spot
cat_descr
Pro-style wood. Available in sizes: 31, 32, 33, 34, 35.
⋮
catalog_num 10045
stock_num 204
manu_code KAR
cat_advert High-Quality Beginning Set of Irons. Appropriate
 for High School Competitions
cat_descr
Ideally balanced for optimum control. Nylon covered shaft.

catalog_num 10068
stock_num 310
manu_code ANZ
cat_advert High-Quality Kickboard
cat_descr
White. Standard size.

FIRST clause to select specific rows

You can include a FIRST max specification in the Projection clause of a SELECT statement, where max has an integer value,

to instruct the query to return no more than the first max rows that match the conditions of the SELECT statement. You

can also use the keyword LIMIT as a synonym for FIRST in this context (and only in this context). The rows that a SELECT

statement with a FIRST clause returns might depend on whether the statement also includes an ORDER BY clause.

The keyword SKIP, followed by an unsigned integer, can precede the FIRST or LIMIT keyword in the Projection clause.

The SKIP offset clause instructs the database server to exclude the first offset qualifying rows from the result set of the

query before returning the number of rows that the FIRST clause specifies. In SPL routines, the parameter of SKIP, FIRST,

or LIMIT can be a literal integer or a local SPL variable. If the Projection clause includes SKIP offset but no FIRST or LIMIT

specification, then the query returns all of the qualifying rows except for the first offset rows.

The Projection clause cannot include the SKIP, FIRST, or LIMIT keywords in these contexts:

• when the SELECT statement is part of a view definition

• in a subquery, except in the FROM clause of the outer query

• in a cross-server distributed query in which a participating database server does not support the SKIP, FIRST, or LIMIT

keywords.

259

HCL Informix 14.10 - SQL programming Guide

260

For information about restrictions on use of the FIRST clause, see the description of the Projection clause of the SELECT

statement in the HCL® Informix® Guide to SQL: Syntax.

FIRST clause without an ORDER BY clause

If you do not include an ORDER BY clause in a SELECT statement with a FIRST clause, any rows that match the conditions

of the SELECT statement might be returned. In other words, the database server determines which of the qualifying rows to

return, and the query result can vary depending on the query plan that the optimizer chooses.

The following query uses the FIRST clause to return the first five rows from the state table.

Figure 80. Query

SELECT FIRST 5 * FROM state;

Figure 81. Query result

code sname

AK Alaska
HI Hawaii
CA California
OR Oregon
WA Washington

You can use a FIRST clause when you simply want to know the names of all the columns and the type of data that a table

contains, or to test a query that otherwise would return many rows. The following query shows how to use the FIRST clause

to return column values for the first row of a table.

Figure 82. Query

SELECT FIRST 1 * FROM orders;

Figure 83. Query result

order_num 1001
order_date 05/20/1998
customer_num 104
ship_instruct express
backlog n
po_num B77836
ship_date 06/01/1998
ship_weight 20.40
ship_charge $10.00
paid_date 07/22/1998

FIRST clause with an ORDER BY clause

You can include an ORDER BY clause in a SELECT statement with a FIRST clause to return rows that contain the highest or

lowest values for a specified column. The following query shows a query that includes an ORDER BY clause to return (by

alphabetical order) the first five states contained in the state table. The query, which is the same as Figure 80: Query on

page 260 except for the ORDER BY clause, returns a different set of rows than Figure 80: Query on page 260.

Chapter 1. SQL programming

Figure 84. Query

SELECT FIRST 5 * FROM state ORDER BY sname;

Figure 85. Query result

code sname

AL Alabama
AK Alaska
AZ Arizona
AR Arkansas
CA California

The following query shows how to use a FIRST clause in a query with an ORDER BY clause to find the 10 most expensive

items listed in the stock table.

Figure 86. Query

SELECT FIRST 10 description, unit_price
 FROM stock ORDER BY unit_price DESC;

Figure 87. Query result

description unit_price

football $960.00
volleyball $840.00
baseball gloves $800.00
18-spd, assmbld $685.90
irons/wedge $670.00
basketball $600.00
12-spd, assmbld $549.00
10-spd, assmbld $499.99
football $480.00
bicycle brakes $480.00

Applications can use the SKIP and FIRST keywords of the Projection clause, in conjunction with the ORDER BY clause, to

perform successive queries that incrementally retrieve all of the qualifying rows in subsets of some fixed size (for example,

the maximum number of rows that are visible without scrolling a screen display). You can accomplish this by incrementing

the offset parameter of the SKIP clause by the max parameter of the FIRST clause after each query. By imposing a unique

order on the qualifying rows, the ORDER BY clause ensures that each query returns a disjunct subset of the qualifying rows.

The following query shows a query that includes SKIP, FIRST, and ORDER BY specifications to return (by alphabetical order)

the sixth through tenth states in the state table, but not the first five states. This query resembles Figure 80: Query on

page 260, except that the SKIP 5 specification instructs the database server to returns a different set of rows than Figure

80: Query on page 260.

Figure 88. Query

SELECT SKIP 5 FIRST 5 * FROM state ORDER BY sname;

261

HCL Informix 14.10 - SQL programming Guide

262

Figure 89. Query result

code sname

CO Colorado
CT Connecticut
DE Delaware
FL Florida
GA Georgia

If you use the SKIP, FIRST, or LIMIT keywords, you must take care to specify parameters that correspond to the design goals

of your application. If the offset parameter of skip is larger than the number of qualifying rows, then any FIRST or LIMIT

specification has no effect, and the query returns nothing.

Expressions and derived values

You are not limited to selecting columns by name. You can list an expression in the Projection clause of a SELECT statement

to perform computations on column data and to display information derived from the contents of one or more columns.

An expression consists of a column name, a constant, a quoted string, a keyword, or any combination of these items

connected by operators. It can also include host variables (program data) when the SELECT statement is embedded in a

program.

Arithmetic expressions

An arithmetic expression contains at least one of the arithmetic operators listed in the following table and produces a

number.

Operator

Operation

+

addition

-

subtraction

*

multiplication

/

division

You cannot use TEXT or BYTE columns in arithmetic expressions.

With HCL Informix®, you cannot specify BLOB or CLOB in arithmetic expressions.

Arithmetic operations enable you to see the results of proposed computations without actually altering the data in

the database. You can add an INTO TEMP clause to save the altered data in a temporary table for further reference,

Chapter 1. SQL programming

computations, or impromptu reports. The following query calculates a 7 percent sales tax on the unit_price column when the

unit_price is $400 or more (but does not update it in the database).

Figure 90. Query

SELECT stock_num, description, unit_price, unit_price * 1.07
 FROM stock
 WHERE unit_price >= 400;

The result appears in the expression column.

Figure 91. Query result

stock_num description unit_price (expression)

 1 baseball gloves $800.00 $856.00
 1 baseball gloves $450.00 $481.50
 4 football $960.00 $1027.20
 4 football $480.00 $513.60
 7 basketball $600.00 $642.00
 8 volleyball $840.00 $898.80
 102 bicycle brakes $480.00 $513.60
 111 10-spd, assmbld $499.99 $534.99
 112 12-spd, assmbld $549.00 $587.43
 113 18-spd, assmbld $685.90 $733.91
 203 irons/wedge $670.00 $716.90

The following query calculates a surcharge of $6.50 on orders when the quantity ordered is less than 5.

Figure 92. Query

SELECT item_num, order_num, quantity,
 total_price, total_price + 6.50
 FROM items
 WHERE quantity < 5;

The result appears in the expression column.

Figure 93. Query result

item_num order_num quantity total_price (expression)

 1 1001 1 $250.00 $256.50
 1 1002 1 $960.00 $966.50
 2 1002 1 $240.00 $246.50
 1 1003 1 $20.00 $26.50
 2 1003 1 $840.00 $846.50
 1 1004 1 $250.00 $256.50
 2 1004 1 $126.00 $132.50
 3 1004 1 $240.00 $246.50
 4 1004 1 $800.00 $806.50
⋮;
 1 1023 2 $40.00 $46.50
 2 1023 2 $116.00 $122.50
 3 1023 1 $80.00 $86.50
 4 1023 1 $228.00 $234.50
 5 1023 1 $170.00 $176.50
 6 1023 1 $190.00 $196.50

263

HCL Informix 14.10 - SQL programming Guide

264

The following query calculates and displays in the expression column the interval between when the customer call was

received (call_dtime) and when the call was resolved (res_dtime), in days, hours, and minutes.

Figure 94. Query

SELECT customer_num, call_code, call_dtime,
 res_dtime - call_dtime
 FROM cust_calls
 ORDER BY customer_num;

Figure 95. Query result

customer_num call_code call_dtime (expression)

 106 D 1998-06-12 08:20 0 00:05
 110 L 1998-07-07 10:24 0 00:06
 116 I 1997-11-28 13:34 0 03:13
 116 I 1997-12-21 11:24 5 20:55
 119 B 1998-07-01 15:00 0 17:21
 121 O 1998-07-10 14:05 0 00:01
 127 I 1998-07-31 14:30

Display labels

You can assign a display label to a computed or derived data column to replace the default column header expression.

In Figure 90: Query on page 263, Figure 92: Query on page 263, and Figure 96: Query on page 264, the derived data

appears in the expression column. The following query also presents derived values, but the column that displays the derived

values has the descriptive header taxed.

Figure 96. Query

SELECT stock_num, description, unit_price,
 unit_price * 1.07 taxed
 FROM stock
 WHERE unit_price >= 400;

The result shows that the label taxed is assigned to the expression in the projection list that displays the results of the

operation unit_price * 1.07.

Figure 97. Query result

stock_num description unit_price taxed

 1 baseball gloves $800.00 $856.00
 1 baseball gloves $450.00 $481.50
 4 football $960.00 $1027.20
 4 football $480.00 $513.60
 7 basketball $600.00 $642.00
 8 volleyball $840.00 $898.80
 102 bicycle brakes $480.00 $513.60
 111 10-spd, assmbld $499.99 $534.99
 112 12-spd, assmbld $549.00 $587.43
 113 18-spd, assmbld $685.90 $733.91
 203 irons/wedge $670.00 $716.90

Chapter 1. SQL programming

In the following query, the label surcharge is defined for the column that displays the results of the operation total_price +

6.50.

Figure 98. Query

SELECT item_num, order_num, quantity,
 total_price, total_price + 6.50 surcharge
 FROM items
 WHERE quantity < 5;

The surcharge column is labeled in the output.

Figure 99. Query result

item_num order_num quantity total_price surcharge

 1 1001 1 $250.00 $256.50
 1 1002 1 $960.00 $966.50
 2 1002 1 $240.00 $246.50
 1 1003 1 $20.00 $26.50
 2 1003 1 $840.00 $846.50
⋮;
 1 1023 2 $40.00 $46.50
 2 1023 2 $116.00 $122.50
 3 1023 1 $80.00 $86.50
 4 1023 1 $228.00 $234.50
 5 1023 1 $170.00 $176.50
 6 1023 1 $190.00 $196.50

The following query assigns the label span to the column that displays the results of subtracting the DATETIME column

call_dtime from the DATETIME column res_dtime.

Figure 100. Query

SELECT customer_num, call_code, call_dtime,
 res_dtime - call_dtime span
 FROM cust_calls
 ORDER BY customer_num;

The span column is labeled in the output.

Figure 101. Query result

customer_num call_code call_dtime span

 106 D 1998-06-12 08:20 0 00:05
 110 L 1998-07-07 10:24 0 00:06
 116 I 1997-11-28 13:34 0 03:13
 116 I 1997-12-21 11:24 5 20:55
 119 B 1998-07-01 15:00 0 17:21
 121 O 1998-07-10 14:05 0 00:01
 127 I 1998-07-31 14:30

CASE expressions

A CASE expression is a conditional expression, which is similar to the concept of the CASE statement in programming

languages. You can use a CASE expression when you want to change the way data is represented. The CASE expression

265

HCL Informix 14.10 - SQL programming Guide

266

allows a statement to return one of several possible results, depending on which of several condition tests evaluates to

TRUE.

TEXT or BYTE values are not allowed in a CASE expression.

Consider a column that represents marital status numerically as 1,2,3,4 with the corresponding values meaning single,

married, divorced, widowed. In some cases, you might prefer to store the short values (1,2,3,4) for database efficiency, but

employees in human resources might prefer the more descriptive values (single, married, divorced, widowed). The CASE

expression makes such conversions between different sets of values easy.

In HCL Informix®, the CASE expression also supports extended data types and cast expressions.

The following example shows a CASE expression with multiple WHEN clauses that returns more descriptive values for the

manu_code column of the stock table. If none of the WHEN conditions is true, NULL is the default result. (You can omit the

ELSE NULL clause.)

SELECT
 CASE
 WHEN manu_code = "HRO" THEN "Hero"
 WHEN manu_code = "SHM" THEN "Shimara"
 WHEN manu_code = "PRC" THEN "ProCycle"
 WHEN manu_code = "ANZ" THEN "Anza"
 ELSE NULL
 END
 FROM stock;

You must include at least one WHEN clause within the CASE expression; subsequent WHEN clauses and the ELSE clause are

optional. If no WHEN condition evaluates to true, the resulting value is NULL. You can use the IS NULL expression to handle

NULL results. For information on handling NULL values, see the HCL® Informix® Guide to SQL: Syntax.

The following query shows a simple CASE expression that returns a character string value to flag any orders from the orders

table that have not been shipped to the customer.

Figure 102. Query

SELECT order_num, order_date,
 CASE
 WHEN ship_date IS NULL
 THEN "order not shipped"
 END
 FROM orders;

Chapter 1. SQL programming

Figure 103. Query result

order_num order_date (expression)

 1001 05/20/1998
 1002 05/21/1998
 1003 05/22/1998
 1004 05/22/1998
 1005 05/24/1998
 1006 05/30/1998 order not shipped
 1007 05/31/1998
 ⋮;
 1019 07/11/1998
 1020 07/11/1998
 1021 07/23/1998
 1022 07/24/1998
 1023 07/24/1998

For information about how to use the CASE expression to update a column, see CASE expression to update a column on

page 377.

Sorting on derived columns

When you want to use ORDER BY on an expression, you can use either the display label assigned to the expression or an

integer, as Figure 104: Query on page 267 and Figure 106: Query on page 267 show.

Figure 104. Query

SELECT customer_num, call_code, call_dtime,
 res_dtime - call_dtime span
 FROM cust_calls
 ORDER BY span;

The query retrieves the same data from the cust_calls table as Figure 100: Query on page 265. In the query, the ORDER BY

clause causes the data to be displayed in ascending order of the derived values in the span column, as the result shows.

Figure 105. Query result

customer_num call_code call_dtime span

 127 I 1998-07-31 14:30
 121 O 1998-07-10 14:05 0 00:01
 106 D 1998-06-12 08:20 0 00:05
 110 L 1998-07-07 10:24 0 00:06
 116 I 1997-11-28 13:34 0 03:13
 119 B 1998-07-01 15:00 0 17:21
 116 I 1997-12-21 11:24 5 20:55

The following query uses an integer to represent the result of the operation res_dtime - call_dtime and retrieves the same

rows that appear in the above result.

Figure 106. Query

SELECT customer_num, call_code, call_dtime,
 res_dtime - call_dtime span
 FROM cust_calls
 ORDER BY 4;

267

HCL Informix 14.10 - SQL programming Guide

268

Rowid values in SELECT statements

The database server assigns a unique rowid to rows in nonfragmented tables. The rowid is, in effect, a hidden column in

every table. The sequential values of rowid have no special significance and can vary depending on the location of the

physical data in the chunk. You can use a rowid to locate the internal record number that is associated with a row in a table.

Rows in fragmented tables do not automatically contain the rowid column.

It is recommended that you use primary keys as a method of access in your applications rather than rowids. Because

primary keys are defined in the ANSI specification of SQL, using them to access data makes your applications more portable.

In addition, the database server requires less time to access data in a fragmented table when it uses a primary key than it

requires to access the same data when it uses rowid.

For more information about rowids, see the IBM® Informix® Database Design and Implementation Guide and your HCL®

Informix® Administrator's Guide.

The following query uses the rowid and the wildcard asterisk symbol (*) in the Projection clause to retrieve each row in the

manufact table and its corresponding rowid.

Figure 107. Query

SELECT rowid, * FROM manufact;

Figure 108. Query result

rowid manu_code manu_name lead_time

 257 SMT Smith 3
 258 ANZ Anza 5
 259 NRG Norge 7
 260 HSK Husky 5
 261 HRO Hero 4
 262 SHM Shimara 30
 263 KAR Karsten 21
 264 NKL Nikolus 8
 265 PRC ProCycle 9

Never store a rowid in a permanent table or attempt to use it as a foreign key. If a table is dropped and then reloaded from

external data, all the rowids will be different.

Multiple-table SELECT statements

To select data from two or more tables, specify the table names in the FROM clause. Add a WHERE clause to create a join

condition between at least one related column in each table. This WHERE clause creates a temporary composite table in

which each pair of rows that satisfies the join condition is linked to form a single row.

A simple join combines information from two or more tables based on the relationship between one column in each table. A

composite join is a join between two or more tables based on the relationship between two or more columns in each table.

To create a join, you must specify a relationship, called a join condition, between at least one column from each table.

Because the columns are being compared, they must have compatible data types. When you join large tables, performance

improves when you index the columns in the join condition.

Chapter 1. SQL programming

Data types are described in the HCL® Informix® Guide to SQL: Reference and the IBM® Informix® Database Design and

Implementation Guide. Indexing is discussed in detail in the HCL® Informix® Administrator's Guide.

Create a Cartesian product

When you perform a multiple-table query that does not explicitly state a join condition among the tables, you create a

Cartesian product. A Cartesian product consists of every possible combination of rows from the tables. This result is usually

large and unwieldy.

The following query selects from two tables and produces a Cartesian product.

Figure 109. Query

SELECT * FROM customer, state;

Although only 52 rows exist in the state table and 28 rows in the customer table, the effect of the query is to multiply the

rows of one table by the rows of the other and retrieve an impractical 1,456 rows, as the result shows.

269

HCL Informix 14.10 - SQL programming Guide

270

Figure 110. Query result

customer_num 101
fname Ludwig
lname Pauli
company All Sports Supplies
address1 213 Erstwild Court
address2
city Sunnyvale
state CA
zipcode 94086
phone 408-789-8075
code AK
sname Alaska

customer_num 101
fname Ludwig
lname Pauli
company All Sports Supplies
address1 213 Erstwild Court
address2
city Sunnyvale
state CA
zipcode 94086
phone 408-789-8075
code HI
sname Hawaii

customer_num 101
fname Ludwig
lname Pauli
company All Sports Supplies
address1 213 Erstwild Court
address2
city Sunnyvale
state CA
zipcode 94086
phone 408-789-8075
code CA
sname California
⋮

In addition, some of the data that is displayed in the concatenated rows is contradictory. For example, although the city and

state from the customer table indicate an address in California, the code and sname from the state table might be for a

different state.

Create a join

Conceptually, the first stage of any join is the creation of a Cartesian product. To refine or constrain this Cartesian product

and eliminate meaningless combinations of rows of data, include a WHERE clause with a valid join condition in your SELECT

statement.

This section illustrates cross joins, equi-joins, natural joins, and multiple-table joins. Additional complex forms, such as self-

joins and outer joins, are discussed in Compose advanced SELECT statements on page 320.

Chapter 1. SQL programming

Cross join

A cross join combines all rows in all tables selected and creates a Cartesian product. The results of a cross join can be very

large and difficult to manage.

The following query uses ANSI join syntax to create a cross join.

Figure 111. Query

SELECT * FROM customer CROSS JOIN state;

The results of the query are identical to the results of Figure 109: Query on page 269. In addition, you can filter a cross join

by specifying a WHERE clause.

For more information about Cartesian products, see Create a Cartesian product on page 269. For more information about

ANSI syntax, see ANSI join syntax on page 329.

Equi-join

An equi-join is a join based on equality or matching column values. This equality is indicated with an equal sign (=) as the

comparison operator in the WHERE clause, as the following query shows.

Figure 112. Query

SELECT * FROM manufact, stock
 WHERE manufact.manu_code = stock.manu_code;

The query joins the manufact and stock tables on the manu_code column. It retrieves only those rows for which the values of

the two columns are equal, some of which the result shows.

271

HCL Informix 14.10 - SQL programming Guide

272

Figure 113. Query result

manu_code SMT
manu_name Smith
lead_time 3
stock_num 1
manu_code SMT
description baseball gloves
unit_price $450.00
unit case
unit_descr 10 gloves/case

manu_code SMT
manu_name Smith
lead_time 3
stock_num 5
manu_code SMT
description tennis racquet
unit_price $25.00
unit each
unit_descr each

manu_code SMT
manu_name Smith
lead_time 3
stock_num 6
manu_code SMT
description tennis ball
unit_price $36.00
unit case
unit_descr 24 cans/case

manu_code ANZ
manu_name Anza
lead_time 5
stock_num 5
manu_code ANZ
description tennis racquet
unit_price $19.80
unit each
unit_descr each
⋮

In this equi-join, the result includes the manu_code column from both the manufact and stock tables because the select list

requested every column.

You can also create an equi-join with additional constraints, where the comparison condition is based on the inequality

of values in the joined columns. These joins use a relational operator in addition to the equal sign (=) in the comparison

condition that is specified in the WHERE clause.

To join tables that contain columns with the same name, qualify each column name with the name of its table and a period

symbol (.), as the following query shows.

Chapter 1. SQL programming

Figure 114. Query

SELECT order_num, order_date, ship_date, cust_calls.*
 FROM orders, cust_calls
 WHERE call_dtime >= ship_date
 AND cust_calls.customer_num = orders.customer_num
 ORDER BY orders.customer_num;

The query joins the customer_num column and then selects only those rows where the call_dtime in the cust_calls table is

greater than or equal to the ship_date in the orders table. The result shows the combined rows that it returns.

Figure 115. Query result

order_num 1004
order_date 05/22/1998
ship_date 05/30/1998
customer_num 106
call_dtime 1998-06-12 08:20
user_id maryj
call_code D
call_descr Order received okay, but two of the cans of
 ANZ tennis balls within the case were empty
res_dtime 1998-06-12 08:25
res_descr Authorized credit for two cans to customer,
 issued apology. Called ANZ buyer to report
 the qa problem.

order_num 1008
order_date 06/07/1998
ship_date 07/06/1998
customer_num 110
call_dtime 1998-07-07 10:24
user_id richc
call_code L
call_descr Order placed one month ago (6/7) not received.
res_dtime 1998-07-07 10:30
res_descr Checked with shipping (Ed Smith). Order out
 yesterday-was waiting for goods from ANZ.
 Next time will call with delay if necessary.

order_num 1023
order_date 07/24/1998
ship_date 07/30/1998
customer_num 127
call_dtime 1998-07-31 14:30
user_id maryj
call_code I
call_descr Received Hero watches (item # 304) instead
 of ANZ watches
res_dtime
res_descr Sent memo to shipping to send ANZ item 304
 to customer and pickup HRO watches. Should
 be done tomorrow, 8/1

273

HCL Informix 14.10 - SQL programming Guide

274

Natural join

A natural join is a type of equi-join and is structured so that the join column does not display data redundantly, as the

following query shows.

Figure 116. Query

SELECT manu_name, lead_time, stock.*
 FROM manufact, stock
 WHERE manufact.manu_code = stock.manu_code;

Like the example for equi-join, the query joins the manufact and stock tables on the manu_code column. Because the

Projection list is more closely defined, the manu_code is listed only once for each row retrieved, as the result shows.

Figure 117. Query result

manu_name Smith
lead_time 3
stock_num 1
manu_code SMT
description baseball gloves
unit_price $450.00
unit case
unit_descr 10 gloves/case

manu_name Smith
lead_time 3
stock_num 5
manu_code SMT
description tennis racquet
unit_price $25.00
unit each
unit_descr each

manu_name Smith
lead_time 3
stock_num 6
manu_code SMT
description tennis ball
unit_price $36.00
unit case
unit_descr 24 cans/case

manu_name Anza
lead_time 5
stock_num 5
manu_code ANZ
description tennis racquet
unit_price $19.80
unit each
unit_descr each
⋮;

All joins are associative; that is, the order of the joining terms in the WHERE clause does not affect the meaning of the join.

Both statements in the following query create the same natural join.

Chapter 1. SQL programming

Figure 118. Query

SELECT catalog.*, description, unit_price, unit, unit_descr
 FROM catalog, stock
 WHERE catalog.stock_num = stock.stock_num
 AND catalog.manu_code = stock.manu_code
 AND catalog_num = 10017;

SELECT catalog.*, description, unit_price, unit, unit_descr
 FROM catalog, stock
 WHERE catalog_num = 10017
 AND catalog.manu_code = stock.manu_code
 AND catalog.stock_num = stock.stock_num;

Each statement retrieves the following row.

Figure 119. Query result

catalog_num 10017
stock_num 101
manu_code PRC
cat_descr
Reinforced, hand-finished tubular. Polyurethane belted.
Effective against punctures. Mixed tread for super wear
and road grip.
cat_picture <BYTE value>

cat_advert Ultimate in Puncture Protection, Tires
 Designed for In-City Riding
description bicycle tires
unit_price $88.00
unit box
unit_descr 4/box

Figure 118: Query on page 275 includes a TEXT column, cat_descr; a BYTE column, cat_picture; and a VARCHAR column,

cat_advert.

Multiple-table join

A multiple-table join connects more than two tables on one or more associated columns; it can be an equi-join or a natural

join.

The following query creates an equi-join on the catalog, stock, and manufact tables.

Figure 120. Query

SELECT * FROM catalog, stock, manufact
 WHERE catalog.stock_num = stock.stock_num
 AND stock.manu_code = manufact.manu_code
 AND catalog_num = 10025;

The query retrieves the following rows.

275

HCL Informix 14.10 - SQL programming Guide

276

Figure 121. Query result

catalog_num 10025
stock_num 106
manu_code PRC
cat_descr
Hard anodized alloy with pearl finish; 6mm hex bolt hard ware.
Available in lengths of 90-140mm in 10mm increments.
cat_picture <BYTE value>

cat_advert ProCycle Stem with Pearl Finish
stock_num 106
manu_code PRC
description bicycle stem
unit_price $23.00
unit each
unit_descr each
manu_code PRC
manu_name ProCycle
lead_time 9

The manu_code is repeated three times, once for each table, and stock_num is repeated twice.

To avoid the considerable duplication of a multiple-table query such as Figure 120: Query on page 275, include specific

columns in the projection list to define the SELECT statement more closely, as the following query shows.

Figure 122. Query

SELECT catalog.*, description, unit_price, unit,
 unit_descr, manu_name, lead_time
 FROM catalog, stock, manufact
 WHERE catalog.stock_num = stock.stock_num
 AND stock.manu_code = manufact.manu_code
 AND catalog_num = 10025;

The query uses a wildcard to select all columns from the table with the most columns and then specifies columns from the

other two tables. The result shows the natural join that the query produces. It displays the same information as the previous

example, but without duplication.

Figure 123. Query result

catalog_num 10025
stock_num 106
manu_code PRC
cat_descr
Hard anodized alloy with pearl finish. 6mm hex bolt
hardware. Available in lengths of 90-140mm in 10mm increments.
cat_picture <BYTE value>

cat_advert ProCycle Stem with Pearl Finish
description bicycle stem
unit_price $23.00
unit each
unit_descr each
manu_name ProCycle
lead_time 9

Chapter 1. SQL programming

Some query shortcuts

You can use aliases, the INTO TEMP clause, and display labels to speed your way through joins and multiple-table queries

and to produce output for other uses.

Aliases

You can assign aliases to the tables in the FROM clause of a SELECT statement to make multiple-table queries shorter and

more readable. You can use an alias wherever the table name would be used, for instance, as a prefix to the column names in

the other clauses.

Figure 124. Query

SELECT s.stock_num, s.manu_code, s.description,
 s.unit_price, c.catalog_num,
 c.cat_advert, m.lead_time
 FROM stock s, catalog c, manufact m
 WHERE s.stock_num = c.stock_num
 AND s.manu_code = c.manu_code
 AND s.manu_code = m.manu_code
 AND s.manu_code IN ('HRO', 'HSK')
 AND s.stock_num BETWEEN 100 AND 301
 ORDER BY catalog_num;

The associative nature of the SELECT statement allows you to use an alias before you define it. In the query above, the

aliases s for the stock table, c for the catalog table, and m for the manufact table are specified in the FROM clause and used

throughout the SELECT and WHERE clauses as column prefixes.

Compare the length of Figure 124: Query on page 277 with the following query, which does not use aliases.

Figure 125. Query

SELECT stock.stock_num, stock.manu_code, stock.description,
 stock.unit_price, catalog.catalog_num,
 catalog.cat_advert,
 manufact.lead_time
 FROM stock, catalog, manufact
 WHERE stock.stock_num = catalog.stock_num
 AND stock.manu_code = catalog.manu_code
 AND stock.manu_code = manufact.manu_code
 AND stock.manu_code IN ('HRO', 'HSK')
 AND stock.stock_num BETWEEN 100 AND 301
 ORDER BY catalog_num;

Figure 124: Query on page 277 and Figure 125: Query on page 277 are equivalent and retrieve the data that the following

query shows.

277

HCL Informix 14.10 - SQL programming Guide

278

Figure 126. Query result

stock_num 110
manu_code HRO
description helmet
unit_price $260.00
catalog_num 10033
cat_advert Lightweight Plastic with Vents Assures Cool
 Comfort Without Sacrificing Protection
lead_time 4

stock_num 110
manu_code HSK
description helmet
unit_price $308.00
catalog_num 10034
cat_advert Teardrop Design Used by Yellow Jerseys; You
 Can Time the Difference
lead_time 5
⋮;

You cannot use the ORDER BY clause for the TEXT column cat_descr or the BYTE column cat_picture.

You can use aliases to shorten your queries on tables that are not in the current database.

The following query joins columns from two tables that reside in different databases and systems, neither of which is the

current database or system.

Figure 127. Query

SELECT order_num, lname, fname, phone
FROM masterdb@central:customer c, sales@western:orders o
 WHERE c.customer_num = o.customer_num
 AND order_num <= 1010;

By assigning the aliases c and o to the long database@system:table names, masterdb@central:customer and

sales@western:orders, respectively, you can use the aliases to shorten the expression in the WHERE clause and retrieve the

data, as the result shows.

Figure 128. Query result

order_num lname fname phone

 1001 Higgins Anthony 415-368-1100
 1002 Pauli Ludwig 408-789-8075
 1003 Higgins Anthony 415-368-1100
 1004 Watson George 415-389-8789
 1005 Parmelee Jean 415-534-8822
 1006 Lawson Margaret 415-887-7235
 1007 Sipes Arnold 415-245-4578
 1008 Jaeger Roy 415-743-3611
 1009 Keyes Frances 408-277-7245
 1010 Grant Alfred 415-356-1123

For more information on how to access tables that are not in the current database, see Access other database servers on

page 396 and the HCL® Informix® Guide to SQL: Syntax.

Chapter 1. SQL programming

You can also use synonyms as shorthand references to the long names of tables that are not in the current database as well

as current tables and views. For details on how to create and use synonyms, see the IBM® Informix® Database Design and

Implementation Guide.

The INTO TEMP clause

By adding an INTO TEMP clause to your SELECT statement, you can temporarily save the results of a multiple-table query in

a separate table that you can query or manipulate without modifying the database. Temporary tables are dropped when you

end your SQL session or when your program or report terminates.

The following query creates a temporary table called stockman and stores the results of the query in it. Because all columns

in a temporary table must have names, the alias adj_price is required.

Figure 129. Query

SELECT DISTINCT stock_num, manu_name, description,
 unit_price, unit_price * 1.05 adj_price
 FROM stock, manufact
 WHERE manufact.manu_code = stock.manu_code
 INTO TEMP stockman;
SELECT * from stockman;

Figure 130. Query result

stock_num manu_name description unit_price adj_price

 1 Hero baseball gloves $250.00 $262.5000
 1 Husky baseball gloves $800.00 $840.0000
 1 Smith baseball gloves $450.00 $472.5000
 2 Hero baseball $126.00 $132.3000
 3 Husky baseball bat $240.00 $252.0000
 4 Hero football $480.00 $504.0000
 4 Husky football $960.00 $1008.0000
 ⋮;
 306 Shimara tandem adapter $190.00 $199.5000
 307 ProCycle infant jogger $250.00 $262.5000
 308 ProCycle twin jogger $280.00 $294.0000
 309 Hero ear drops $40.00 $42.0000
 309 Shimara ear drops $40.00 $42.0000
 310 Anza kick board $84.00 $88.2000
 310 Shimara kick board $80.00 $84.0000
 311 Shimara water gloves $48.00 $50.4000
 312 Hero racer goggles $72.00 $75.6000
 312 Shimara racer goggles $96.00 $100.8000
 313 Anza swim cap $60.00 $63.0000
 313 Shimara swim cap $72.00 $75.6000

You can query this table and join it with other tables, which avoids a multiple sort and lets you move more quickly through the

database. For more information on temporary tables, see the HCL® Informix® Guide to SQL: Syntax and the HCL® Informix®

Administrator's Guide.

279

HCL Informix 14.10 - SQL programming Guide

280

Summary

This chapter presented syntax examples and results for basic kinds of SELECT statements that are used to query a relational

database. The section Single-table SELECT statements on page 238 shows how to perform the following actions:

• Select columns and rows from a table with the Projection and FROM clauses

• Select rows from a table with the Projection, FROM, and WHERE clauses

• Use the DISTINCT or UNIQUE keyword in the Projection clause to eliminate duplicate rows from query results

• Sort retrieved data with the ORDER BY clause and the DESC keyword

• Select and order data values that contain non-English characters

• Use the BETWEEN, IN, MATCHES, and LIKE keywords and various relational operators in the WHERE clause to create

comparison conditions

• Create comparison conditions that include values, exclude values, find a range of values (with keywords, relational

operators, and subscripting), and find a subset of values

• Use exact-text comparisons, variable-length wildcards, and restricted and unrestricted wildcards to perform variable

text searches

• Use the logical operators AND, OR, and NOT to connect search conditions or Boolean expressions in a WHERE clause

• Use the ESCAPE keyword to protect special characters in a query

• Search for NULL values with the IS NULL and IS NOT NULL keywords in the WHERE clause

• Use the FIRST clause to specify that a query returns only a specified number of the rows that match the conditions of

the SELECT statement

• Use arithmetic operators in the Projection clause to perform computations on number fields and display derived data

• Assign display labels to computed columns as a formatting tool for reports

This chapter also introduced simple join conditions that enable you to select and display data from two or more tables. The

section Multiple-table SELECT statements on page 268 describes how to perform the following actions:

• Create a Cartesian product

• Create a CROSS JOIN, which creates a Cartesian product

• Include a WHERE clause with a valid join condition in your query to constrain a Cartesian product

• Define and create a natural join and an equi-join

• Join two or more tables on one or more columns

• Use aliases as a shortcut in multiple-table queries

• Retrieve selected data into a separate, temporary table with the INTO TEMP clause to perform computations outside

the database

Select data from complex types

This chapter describes how to query complex data types. A complex data type is built from a combination of other data types

with an SQL type constructor. An SQL statement can access individual components within the complex type. Complex data

types are row types or collection types.

ROW types have instances that combine one or more related data fields. The two kinds of ROW types are named and

unnamed.

Chapter 1. SQL programming

Collection types have instances where each collection value contains a group of elements of the same data type, which can

be any fundamental or complex data type. A collection can consist of a LIST, SET, or MULTISET datatype.

Important: There is no cross-database support for complex data types. They can only be manipulated in local

databases.

For a more complete description of the data types that the database server supports, see the chapter on data types in the

HCL® Informix® Guide to SQL: Reference.

For information about how to create and use complex types, see the IBM® Informix® Database Design and Implementation

Guide, HCL® Informix® Guide to SQL: Reference, and HCL® Informix® Guide to SQL: Syntax.

Select row-type data

This section describes how to query data that is defined as row-type data. A ROW type is a complex type that combines one

or more related data fields.

The two kinds of ROW types are as follows:

Named ROW type

A named ROW type can define tables, columns, fields of another row-type column, program variables,

statement local variables, and routine return values.

Unnamed ROW type

An unnamed ROW type can define columns, fields of another row-type column, program variables, statement

local variables, routine return values, and constants.

The examples used throughout this section use the named ROW types zip_t, address_t, and employee_t, which define the

employee table. The following figure shows the SQL syntax that creates the ROW types and table.

281

HCL Informix 14.10 - SQL programming Guide

282

Figure 131. SQL syntax that creates the ROW types and table.

CREATE ROW TYPE zip_t
(
 z_code CHAR(5),
 z_suffix CHAR(4)
)

CREATE ROW TYPE address_t
(
 street VARCHAR(20),
 city VARCHAR(20),
 state CHAR(2),
 zip zip_t
)

CREATE ROW TYPE employee_t
(
name VARCHAR(30),
address address_t,
salary INTEGER
)

CREATE TABLE employee OF TYPE employee_t

The named ROW types zip_t, address_t and employee_t serve as templates for the fields and columns of the typed table,

employee. A typed table is a table that is defined on a named ROW type. The employee_t type that serves as the template for

the employee table uses the address_t type as the data type of the address field. The address_t type uses the zip_t type as

the data type of the zip field.

The following figure shows the SQL syntax that creates the student table. The s_address column of the student table is

defined on an unnamed ROW type. (The s_address column could also have been defined as a named ROW type.)

Figure 132. SQL syntax that creates the student table.

CREATE TABLE student
(
s_name VARCHAR(30),
s_address ROW(street VARCHAR (20), city VARCHAR(20),
 state CHAR(2), zip VARCHAR(9)),
 grade_point_avg DECIMAL(3,2)
)

Select columns of a typed table

A query on a typed table is no different from a query on any other table. For example, the following query uses the asterisk

symbol (*) to specify a SELECT statement that returns all columns of the employee table.

Figure 133. Query

SELECT * FROM employee

The SELECT statement on the employee table returns all rows for all columns.

Chapter 1. SQL programming

Figure 134. Query result

name Paul, J.
address ROW(102 Ruby, Belmont, CA, 49932, 1000)
salary 78000

name Davis, J.
address ROW(133 First, San Jose, CA, 85744, 4900)
salary 75000
⋮

The following query shows how to construct a query that returns rows for the name and address columns of the employee

table.

Figure 135. Query

SELECT name, address FROM employee

Figure 136. Query result

name Paul, J.
address ROW(102 Ruby, Belmont, CA, 49932, 1000)

name Davis, J.
address ROW(133 First, San Jose, CA, 85744, 4900)
⋮

Select columns that contain row-type data

A row-type column is a column that is defined on a named ROW type or unnamed ROW type. You use the same SQL syntax to

query a named ROW type and an unnamed row-type column.

A query on a row-type column returns data from all the fields of the ROW type. A field is a component data type within a ROW

type. For example, the address column of the employee table contains the street, city, state, and zip fields. The following

query shows how to construct a query that returns all fields of the address column.

Figure 137. Query

SELECT address FROM employee

Figure 138. Query result

address ROW(102 Ruby, Belmont, CA, 49932, 1000)
address ROW(133 First, San Jose, CA, 85744, 4900)
address ROW(152 Topaz, Willits, CA, 69445, 1000))
⋮;

To access individual fields that a column contains, use single-dot notation to project the individual fields of the column. For

example, suppose you want to access specific fields from the address column of the employee table. The following SELECT

statement projects the city and state fields from the address column.

Figure 139. Query

SELECT address.city, address.state FROM employee

283

HCL Informix 14.10 - SQL programming Guide

284

Figure 140. Query result

city state

Belmont CA
San Jose CA
Willits CA
⋮;

You construct a query on an unnamed row-type column in the same way you construct a query on a named row-type column.

For example, suppose you want to access data from the s_address column of the student table in Figure 132: SQL syntax

that creates the student table. on page 282. You can use dot notation to query the individual fields of a column that are

defined on an unnamed row type. The following query shows how to construct a SELECT statement on the student table that

returns rows for the city and state fields of the s_address column.

Figure 141. Query

SELECT s_address.city, s_address.state FROM student

Figure 142. Query result

city state

Belmont CA
Mount Prospect IL
Greeley CO
⋮;

Field projections

Do not confuse fields with columns. Columns are only associated with tables, and column projections use conventional dot

notation of the form name_1.name2 for a table and column, respectively. A field is a component data type within a ROW type.

With ROW types (and the capability to assign a ROW type to a single column), you can project individual fields of a column

with single dot notation of the form: name_a.name_b.name_c.name_d. HCL® Informix® database servers use the following

precedence rules to interpret dot notation:

1. table_name_a . column_name_b . field_name_c . field_name_d

2. column_name_a . field_name_b . field_name_c . field_name_d

When the meaning of a particular identifier is ambiguous, the database server uses precedence rules to determine which

database object the identifier specifies. Consider the following two statements:

CREATE TABLE b (c ROW(d INTEGER, e CHAR(2)))
CREATE TABLE c (d INTEGER)

In the following SELECT statement, the expression c.d references column d of table c (rather than field d of column c in table

b) because a table identifier has a higher precedence than a column identifier:

SELECT * FROM b,c WHERE c.d = 10

Chapter 1. SQL programming

To avoid referencing the wrong database object, you can specify the full notation for a field projection. Suppose, for example,

you want to reference field d of column c in table b (not column d of table c). The following statement specifies the table,

column, and field identifiers of the object you want to reference:

SELECT * FROM b,c WHERE b.c.d = 10

Important: Although precedence rules reduce the chance of the database server misinterpreting field projections, it is

recommended that you use unique names for all table, column, and field identifiers.

Field projections to select nested fields

Typically the row type is a column, but you can use any row-type expression for field projection. When the row-type

expression itself contains other row types, the expression contains nested fields. To access nested fields within an

expression or individual fields, use dot notation. To access all the fields of the row type, use an asterisk (*). This section

describes both methods of row-type access.

For a discussion of how to use dot notation and asterisk notation with row-type expressions, see the Expression segment in

the HCL® Informix® Guide to SQL: Syntax.

Select individual fields of a row type

Consider the address column of the employee table, which contains the fields street, city, state, and zip. In addition, the zip

field contains the nested fields: z_code and z_suffix. (You might want to review the row type and table definitions of Figure

131: SQL syntax that creates the ROW types and table. on page 282.) A query on the zip field returns rows for the z_code

and z_suffix fields. However, you can specify that a query returns only specific nested fields. The following query shows how

to use dot notation to construct a SELECT statement that returns rows for the z_code field of the address column only.

Figure 143. Query

SELECT address.zip.z_code FROM employee

Figure 144. Query result

z_code

39444
6500
76055
19004
⋮

Asterisk notation to access all fields of a row type

Asterisk notation is supported only within the select list of a SELECT statement. When you specify the column name for a

row-type column in a projection list, the database server returns values for all fields of the column. You can also use asterisk

notation when you want to project all the fields within a ROW type.

The following query uses asterisk notation to return all fields of the address column in the employee table.

285

HCL Informix 14.10 - SQL programming Guide

286

Figure 145. Query

SELECT address.* FROM employee;

Figure 146. Query result

address ROW(102 Ruby, Belmont, CA, 49932, 1000)
address ROW(133 First, San Jose, CA, 85744, 4900)
address ROW(152 Topaz, Willits, CA, 69445, 1000))
⋮

The asterisk notation makes it easier to perform some SQL tasks. Suppose you create a function new_row() that returns a

row-type value and you want to call this function and insert the row that is returned into a table. The database server provides

no easy way to handle such operations. However, the following query shows how to use asterisk notation to return all fields

of new_row() and insert the returned fields into the tab_2 table.

Figure 147. Query

INSERT INTO tab_2 SELECT new_row(exp).* FROM tab_1

For information about how to use the INSERT statement, see Modify data on page 358.

Important: An expression that uses the .* notation is evaluated only once.

Select from a collection

This section describes how to query columns that are defined on collection types. A collection type is a complex data type

in which each collection value contains a group of elements of the same data type. For a detailed description of collection

data types, see the IBM® Informix® Database Design and Implementation Guide. For information about how to access the

individual elements that a collection contains, see Handle collections in SELECT statements on page 345.

The following figure shows the manager table, which is used in examples throughout this section. The manager table

contains both simple and nested collection types. A simple collection is a collection type that does not contain any fields that

are themselves collection types. The direct_reports column of the manager table is a simple collection. A nested collection is

a collection type that contains another collection type. The projects column of the manager table is a nested collection.

Figure 148. The manager table

CREATE TABLE manager
(
 mgr_name VARCHAR(30),
 department VARCHAR(12),
 direct_reports SET(VARCHAR(30) NOT NULL),
 projects LIST(ROW(pro_name VARCHAR(15),
 pro_members SET(VARCHAR(20) NOT NULL)
) NOT NULL)
)

A query on a column that is a collection type returns, for each row in the table, all the elements that the particular collection

contains. For example, the following query shows a query that returns data in the department column and all elements in the

direct_reports column for each row of the manager table.

Chapter 1. SQL programming

Figure 149. Query

SELECT department, direct_reports FROM manager

Figure 150. Query result

department marketing
direct_reports SET {Smith, Waters, Adams, Davis, Kurasawa}

department engineering
ddirect_reports SET {Joshi, Davis, Smith, Waters, Fosmire, Evans, Jones}

department publications
direct_reports SET {Walker, Fremont, Porat, Johnson}

department accounting
direct_reports SET {Baker, Freeman, Jacobs}
⋮;

The output of a query on a collection type always includes the type constructor that specifies whether the collection is a

SET, MULTISET, or LIST. For example, in the result, the SET constructor precedes the elements of each collection. Braces ({})

demarcate the elements of a collection; commas separate individual elements of a collection.

Select nested collections

The projects column of the manager table (see Figure 148: The manager table on page 286) is a nested collection. A query

on a nested collection type returns all the elements that the particular collection contains. The following query shows a query

that returns all elements from the projects column for a specified row. The WHERE clause limits the query to a single row in

which the value in the mgr_name column is Sayles.

Figure 151. Query

SELECT projects
 FROM manager
 WHERE mgr_name = 'Sayles'

The query result shows a project column collection for a single row of the manager table. The query returns the names of

those projects that the manager Sayles oversees. The collection contains, for each element in the LIST, the project name

(pro_name) and the SET of individuals (pro_members) who are assigned to each project.

Figure 152. Query result

projects LIST {ROW(voyager_project, SET{Simonian, Waters, Adams, Davis})}

projects LIST {ROW(horizon_project, SET{Freeman, Jacobs, Walker, Cannan})}

projects LIST {ROW(sapphire_project, SET{Villers, Reeves, Doyle, Strongin})}
⋮

287

HCL Informix 14.10 - SQL programming Guide

288

The IN keyword to search for elements in a collection

You can use the IN keyword in the WHERE clause of an SQL statement to determine whether a collection contains a certain

element. For example, the following query shows how to construct a query that returns values for mgr_name and department

where Adams is an element of a collection in the direct_reports column.

Figure 153. Query

SELECT mgr_name, department
 FROM manager
 WHERE 'Adams' IN direct_reports

Figure 154. Query result

mgr_name Sayles
department marketing

Although you can use a WHERE clause with the IN keyword to search for a particular element in a simple collection, the query

always returns the complete collection. For example, the following query returns all the elements of the collection where

Adams is an element of a collection in the direct_reports column.

Figure 155. Query

SELECT mgr_name, direct_reports
 FROM manager
 WHERE 'Adams' IN direct_reports

Figure 156. Query result

mgr_name Sayles
direct_reports SET {Smith, Waters, Adams, Davis, Kurasawa}

As the result shows, a query on a collection column returns the entire collection, not a particular element within the

collection.

You can use the IN keyword in a WHERE clause to reference a simple collection only. You cannot use the IN keyword to

reference a collection that contains fields that are themselves collections. For example, you cannot use the IN keyword to

reference the projects column in the manager table because projects is a nested collection.

You can combine the NOT and IN keywords in the WHERE clause of a SELECT statement to search for collections that do not

contain a certain element. For example, the following query shows a query that returns values for mgr_name and department

where Adams is not an element of a collection in the direct_reports column.

Figure 157. Query

SELECT mgr_name, department
 FROM manager
 WHERE 'Adams' NOT IN direct_reports

Chapter 1. SQL programming

Figure 158. Query result

mgr_name Williams
department engineering

mgr_name Lyman
department publications

mgr_name Cole
department accounting

For information about how to count the elements in a collection column, see Cardinality function on page 303.

Select rows within a table hierarchy

This section describes how to query rows from tables within a table hierarchy. For more information about how to create and

use a table hierarchy, see the IBM® Informix® Database Design and Implementation Guide.

The following figure shows the statements that create the type and table hierarchies that the examples in this section use.

289

HCL Informix 14.10 - SQL programming Guide

290

Figure 159. Statements that create the type and table hierarchies.

CREATE ROW TYPE address_t
(
 street VARCHAR (20),
 city VARCHAR(20),
 state CHAR(2),
 zip VARCHAR(9)
)

CREATE ROW TYPE person_t
(
 name VARCHAR(30),
 address address_t,
 soc_sec CHAR(9)
)

CREATE ROW TYPE employee_t
(
salary INTEGER
)
UNDER person_t

CREATE ROW TYPE sales_rep_t
(
 rep_num SERIAL8,
 region_num INTEGER
)
UNDER employee_t

CREATE TABLE person OF TYPE person_t

CREATE TABLE employee OF TYPE employee_t
UNDER person

CREATE TABLE sales_rep OF TYPE sales_rep_t
UNDER employee

The following figure shows the hierarchical relationships of the row types and tables in the previous figure.

Figure 160. Type and table hierarchies

Chapter 1. SQL programming

Select rows of the supertable without the ONLY keyword

A table hierarchy allows you to construct, in a single SQL statement, a query whose scope is a supertable and its subtables.

A query on a supertable returns rows from both the supertable and its subtables. The following query shows a query on the

person table, which is the root supertable in the table hierarchy.

Figure 161. Query

SELECT * FROM person

Figure 42: Query result on page 244 returns all columns in the supertable and those columns in subtables (employee and

sales_rep) that are inherited from the supertable. A query on a supertable does not return columns from subtables that

are not in the supertable. The query result shows the name, address, and soc_sec columns in the person, employee, and

sales_rep tables.

Figure 162. Query result

name Rogers, J.
address ROW(102 Ruby Ave, Belmont, CA, 69055)
soc_sec 454849344

name Sallie, A.
address ROW(134 Rose St, San Carlos, CA, 69025)
soc_sec 348441214
⋮

Select rows from a supertable with the ONLY keyword

Although a SELECT statement on a supertable returns rows from both the supertable and its subtables, you cannot tell which

rows come from the supertable and which rows come from the subtables. To limit the results of a query to the supertable

only, you must include the ONLY keyword in the SELECT statement. For example, the following query returns rows in the

person table only.

Figure 163. Query

SELECT * FROM ONLY(person);

Figure 164. Query result

name Rogers, J.
address ROW(102 Ruby Ave, Belmont, CA, 69055)
soc_sec 454849344
⋮

An alias for a supertable

An alias is a word that immediately follows the name of a table in the FROM clause. You can specify an alias for a typed table

in a SELECT or UPDATE statement and then use the alias (in the same SELECT or UPDATE statement) as an expression by

itself. If you create an alias for a supertable, the alias can represent values from the supertable or the subtables that inherit

from the supertable. In DB-Access, the following query returns row values for all instances of the person, employee, and

sales_rep tables.

291

HCL Informix 14.10 - SQL programming Guide

292

Figure 165. Query

SELECT p FROM person p;

Informix® ESQL/C does not recognize this construct. In Informix® ESQL/C programs, the query returns an error.

Summary

This chapter introduced sample syntax and results for selecting data from complex types using SELECT statements to query

a relational database. The section Select row-type data on page 281 shows how to perform the following actions:

• Select row-type data from typed tables and columns

• Use row-type expressions for field projections

The section Select from a collection on page 286 shows how to perform the following actions:

• Query columns that are defined on collection types

• Search for elements in a collection

• Query columns that are defined on nested collection types

The section Select rows within a table hierarchy on page 289 shows how to perform the following actions:

• Query a supertable with or without the ONLY keyword

• Specify an alias for a supertable

Functions in SELECT statements

In addition to column names and operators, an expression can also include one or more functions. This chapter shows how

to use functions in SELECT statements to perform more complex database queries and data manipulation.

For information about the syntax of the following SQL functions and other SQL functions, see the Expressions segment in the

HCL® Informix® Guide to SQL: Syntax.

Tip: You can also use functions that you create yourself. For information about user-defined functions, see Create

and use SPL routines on page 453, and HCL® Informix® User-Defined Routines and Data Types Developer's Guide.

Functions in SELECT statements

You can use any basic type of expression (column, constant, function, aggregate function, and procedure), or combination

thereof, in the select list.

A function expression uses a function that is evaluated for each row in the query. All function expressions require arguments.

This set of expressions contains the time function and the length function when they are used with a column name as an

argument.

Chapter 1. SQL programming

Aggregate functions

An aggregate function returns one value for a set of queried rows. The aggregate functions take on values that depend on

the set of rows that the WHERE clause of the SELECT statement returns. In the absence of a WHERE clause, the aggregate

functions take on values that depend on all the rows that the FROM clause forms.

You cannot use aggregate functions for expressions that contain the following data types:

• TEXT

• BYTE

• CLOB

• BLOB

• Collection data types (LIST, MULTISET, and SET)

• ROW types

• Opaque data types (except with user-defined aggregate functions that support opaque types)

Aggregates are often used to summarize information about groups of rows in a table. This use is discussed in Compose

advanced SELECT statements on page 320. When you apply an aggregate function to an entire table, the result contains a

single row that summarizes all the selected rows.

All HCL® Informix® database servers support the following aggregate functions.

The AVG function

The following query computes the average unit_price of all rows in the stock table.

Figure 166. Query

SELECT AVG (unit_price) FROM stock;

Figure 167. Query result

 (avg)

$197.14

The following query computes the average unit_price of just those rows in the stock table that have a manu_code of SHM.

Figure 168. Query

SELECT AVG (unit_price) FROM stock WHERE manu_code = 'SHM';

Figure 169. Query result

 (avg)

$204.93

The COUNT function

The following query counts and displays the total number of rows in the stock table.

293

HCL Informix 14.10 - SQL programming Guide

294

Figure 170. Query

SELECT COUNT(*) FROM stock;

Figure 171. Query result

(count(*))

 73

The following query includes a WHERE clause to count specific rows in the stock table, in this case, only those rows that

have a manu_code of SHM.

Figure 172. Query

SELECT COUNT (*) FROM stock WHERE manu_code = 'SHM';

Figure 173. Query result

(count(*))

 17

By including the keyword DISTINCT (or its synonym UNIQUE) and a column name in the following query, you can tally the

number of different manufacturer codes in the stock table.

Figure 174. Query

SELECT COUNT (DISTINCT manu_code) FROM stock;

Figure 175. Query result

(count)

 9

The MAX and MIN functions

You can combine aggregate functions in the same SELECT statement. For example, you can include both the MAX and the

MIN functions in the select list, as the following query shows.

Figure 176. Query

SELECT MAX (ship_charge), MIN (ship_charge) FROM orders;

The query finds and displays both the highest and lowest ship_charge in the orders table.

Figure 177. Query result

 (max) (min)

$25.20 $5.00

The RANGE function

The RANGE function computes the difference between the maximum and the minimum values for the selected rows.

Chapter 1. SQL programming

You can apply the RANGE function only to numeric columns. The following query finds the range of prices for items in the

stock table.

Figure 178. Query

SELECT RANGE(unit_price) FROM stock;

Figure 179. Query result

(range)

955.50

As with other aggregates, the RANGE function applies to the rows of a group when the query includes a GROUP BY clause,

which the following query shows.

Figure 180. Query

SELECT RANGE(unit_price) FROM stock
 GROUP BY manu_code;

Figure 181. Query result

(range)

820.20
595.50
720.00
225.00
632.50
 0.00
460.00
645.90
425.00

The STDEV function

The STDEV function computes the standard deviation for the column of the selected rows without Bessel correction. It

has the aliases STDEV_POP, STDDEV and STDDEV_POP - the "pop" part of the name indicating that this is the population

standard deviation. It is returning the square root of the VARIANCE of the selected columns.

You can apply the STDEV function only to numeric columns. The following query finds the standard deviation on a

population:

SELECT STDEV(age) FROM u_pop WHERE age > 21;

As with the other aggregates, the STDEV function applies to the rows of a group when the query includes a GROUP BY

clause, as the following example shows:

SELECT STDEV(age) FROM u_pop
 GROUP BY state
 WHERE STDEV(age) > 21;

295

HCL Informix 14.10 - SQL programming Guide

296

Nulls are ignored unless every value in the specified column is null. If every column value is null, the STDEV function returns

a null for that column. For more information about the STDEV function, see the Expression segment in the HCL® Informix®

Guide to SQL: Syntax.

The SUM function

The following query calculates the total ship_weight of orders that were shipped on July 13, 1998.

Figure 182. Query

SELECT SUM (ship_weight) FROM orders
 WHERE ship_date = '07/13/1998';

Figure 183. Query result

(sum)

130.5

The VARIANCE function

The VARIANCE function returns the variance for the column of the selected rows without Bessel correction. This is the

population variance. The function has an according alias VARIANCE_POP. It computes the following value:

(SUM(Xi**2) - (SUM(Xi)**2)/N)/(N-1)

In this example, Xi is each value in the column and N is the total number of values in the column. You can apply the

VARIANCE function only to numeric columns. The following query finds the variance on a population:

SELECT VARIANCE(age) FROM u_pop WHERE age > 21;

As with the other aggregates, the VARIANCE function applies to the rows of a group when the query includes a GROUP BY

clause, which the following example shows:

SELECT VARIANCE(age) FROM u_pop
 GROUP BY birth
 WHERE VARIANCE(age) > 21;

Nulls are ignored unless every value in the specified column is null. If every column value is null, the VARIANCE function

returns a null for that column. For more information about the VARIANCE function, see the Expression segment in the HCL®

Informix® Guide to SQL: Syntax.

Apply aggregate functions to expressions

The following query shows how you can apply aggregate functions to arithmetic expressions, and declare display labels for

their results:

Figure 184. Query

SELECT MAX (res_dtime - call_dtime) maximum,
 MIN (res_dtime - call_dtime) minimum,
 AVG (res_dtime - call_dtime) average
 FROM cust_calls;

Chapter 1. SQL programming

The query finds and displays the maximum, minimum, and average amounts of time (in days, hours, and minutes) between

the reception and resolution of a customer call, and labels the derived values appropriately. The query result shows these

aggregate time-interval values that the query calculates:

Figure 185. Query result

maximum minimum average

5 20:55 0 00:01 1 02:56

Time functions

You can use the time functions DAY, MONTH, WEEKDAY, and YEAR in either the Projection clause or the WHERE clause of a

query. These functions return a value that corresponds to the expressions or arguments that you use to call the function. You

can also use the CURRENT or SYSDATE function to return a value with the current date and time, or use the EXTEND function

to adjust the precision of a DATE or DATETIME value.

The DAY and CURRENT functions

The following query returns the day of the month for the call_dtime and res_dtime columns in two expression columns.

Figure 186. Query

SELECT customer_num, DAY (call_dtime), DAY (res_dtime)
 FROM cust_calls;

Figure 187. Query result

customer_num (expression) (expression)

 106 12 12
 110 7 7
 119 1 2
 121 10 10
 127 31
 116 28 28
 116 21 27

The following query uses the DAY and CURRENT functions to compare column values to the current day of the month. It

selects only those rows where the value is earlier than the current day. In this example, the CURRENT day is 15.

Figure 188. Query

SELECT customer_num, DAY (call_dtime), DAY (res_dtime)
 FROM cust_calls
 WHERE DAY (call_dtime) < DAY (CURRENT);

Figure 189. Query result

customer_num (expression) (expression)
 106 12 12
 110 7 7
 119 1 2
 121 10 10

297

HCL Informix 14.10 - SQL programming Guide

298

The following query uses the CURRENT function to select all calls except those that came in today.

Figure 190. Query

SELECT customer_num, call_code, call_descr
 FROM cust_calls
 WHERE call_dtime < CURRENT YEAR TO DAY;

Figure 191. Query result

customer_num 106
call_code D
call_descr Order was received, but two of the cans of ANZ tennis balls
 within the case were empty

customer_num 110
call_code L
call_descr Order placed one month ago (6/7) not received.
⋮;
customer_num 116
call_code I
call_descr Second complaint from this customer! Received two cases
 right-handed outfielder gloves (1 HRO) instead of one case
 lefties.

The SYSDATE function closely resembles the CURRENT function, but the default precision of its returned value is DATETIME

YEAR TO FRACTION(5), rather than the default DATETIME YEAR TO FRACTION(3) precision of CURRENT when no DATETIME

qualifier is specified.

The MONTH function

The following query uses the MONTH function to extract and show what month the customer call was received and resolved,

and it uses display labels for the resulting columns. However, it does not make a distinction between years.

Figure 192. Query

SELECT customer_num,
 MONTH (call_dtime) call_month,
 MONTH (res_dtime) res_month
 FROM cust_calls;

Figure 193. Query result

customer_num call_month res_month

 106 6 6
 110 7 7
 119 7 7
 121 7 7
 127 7
 116 11 11
 116 12 12

The following query uses the MONTH function plus DAY and CURRENT to show what month the customer call was received

and resolved if DAY is earlier than the current day.

Chapter 1. SQL programming

Figure 194. Query

SELECT customer_num,
 MONTH (call_dtime) called,
 MONTH (res_dtime) resolved
 FROM cust_calls
 WHERE DAY (res_dtime) < DAY (CURRENT);

Figure 195. Query result

customer_num called resolved

 106 6 6
 119 7 7
 121 7 7

The WEEKDAY function

The following query uses the WEEKDAY function to indicate which day of the week calls are received and resolved (0

represents Sunday, 1 is Monday, and so on), and the expression columns are labeled.

Figure 196. Query

SELECT customer_num,
 WEEKDAY (call_dtime) called,
 WEEKDAY (res_dtime) resolved
 FROM cust_calls
 ORDER BY resolved;

Figure 197. Query result

customer_num called resolved

 127 3
 110 0 0
 119 1 2
 121 3 3
 116 3 3
 106 3 3
 116 5 4

The following query uses the COUNT and WEEKDAY functions to count how many calls were received on a weekend. This

kind of statement can give you an idea of customer-call patterns or indicate whether overtime pay might be required.

Figure 198. Query

SELECT COUNT(*)
 FROM cust_calls
 WHERE WEEKDAY (call_dtime) IN (0,6);

Figure 199. Query result

(count(*))

 4

299

HCL Informix 14.10 - SQL programming Guide

300

The YEAR function

The following query retrieves rows where the call_dtime is earlier than the beginning of the current year.

Figure 200. Query

SELECT customer_num, call_code,
 YEAR (call_dtime) call_year,
 YEAR (res_dtime) res_year
 FROM cust_calls
 WHERE YEAR (call_dtime) < YEAR (TODAY);

Figure 201. Query result

customer_num call_code call_year res_year

 116 I 1997 1997
 116 I 1997 1997

Format DATETIME values

In the following query, the EXTEND function displays only the specified subfields to restrict the two DATETIME values.

Figure 202. Query

SELECT customer_num,
 EXTEND (call_dtime, month to minute) call_time,
 EXTEND (res_dtime, month to minute) res_time
 FROM cust_calls
 ORDER BY res_time;

The query returns the month-to-minute range for the columns labeled call_time and res_time and gives an indication of the

work load.

Figure 203. Query result

customer_num call_time res_time

 127 07-31 14:30
 106 06-12 08:20 06-12 08:25
 119 07-01 15:00 07-02 08:21
 110 07-07 10:24 07-07 10:30
 121 07-10 14:05 07-10 14:06
 116 11-28 13:34 11-28 16:47
 116 12-21 11:24 12-27 08:19

The TO_CHAR function can also format DATETIME values. See The TO_CHAR function on page 301 for information

about this built-in function, which can also accept DATE values or numeric values as an argument, and returns a formatted

character string.

Besides the built-in time functions that these examples illustrate, HCL Informix® also supports the ADD_MONTHS,

LAST_DAY, MDY, MONTHS_BETWEEN, NEXT_DAY, and QUARTER functions. In addition to these functions, the TRUNC and

ROUND functions can return values that change the precision of DATE or DATETIME arguments. These additional time

functions are described in the HCL® Informix® Guide to SQL: Syntax.

Chapter 1. SQL programming

Date-conversion functions

You can use a date-conversion function anywhere you use an expression.

The following conversion functions convert between date and character values:

The DATE function

The DATE function converts a character string to a DATE value. In the following query, the DATE function converts a

character string to a DATE value to allow for comparisons with DATETIME values. The query retrieves DATETIME values only

when call_dtime is later than the specified DATE.

Figure 204. Query

SELECT customer_num, call_dtime, res_dtime
 FROM cust_calls
 WHERE call_dtime > DATE ('12/31/97');

Figure 205. Query result

customer_num call_dtime res_dtime

 106 1998-06-12 08:20 1998-06-12 08:25
 110 1998-07-07 10:24 1998-07-07 10:30
 119 1998-07-01 15:00 1998-07-02 08:21
 121 1998-07-10 14:05 1998-07-10 14:06
 127 1998-07-31 14:30

The following query converts DATETIME values to DATE format and displays the values, with labels, only when call_dtime is

greater than or equal to the specified date.

Figure 206. Query

SELECT customer_num,
 DATE (call_dtime) called,
 DATE (res_dtime) resolved
 FROM cust_calls
 WHERE call_dtime >= DATE ('1/1/98');

Figure 207. Query result

customer_num called resolved

 106 06/12/1998 06/12/1998
 110 07/07/1998 07/07/1998
 119 07/01/1998 07/02/1998
 121 07/10/1998 07/10/1998
 127 07/31/1998

The TO_CHAR function

The TO_CHAR function converts DATETIME or DATE values to character string values. The TO_CHAR function evaluates a

DATETIME value according to the date-formatting directive that you specify and returns an NVARCHAR value. For a complete

list of the supported date-formatting directives, see the description of the GL_DATETIME environment variable in the HCL®

Informix® GLS User's Guide.

301

HCL Informix 14.10 - SQL programming Guide

302

You can also use the TO_CHAR function to convert a DATETIME or DATE value to an LVARCHAR value.

The following query uses the TO_CHAR function to convert a DATETIME value to a more readable character string.

Figure 208. Query

SELECT customer_num,
 TO_CHAR(call_dtime, "%A %B %d %Y") call_date
 FROM cust_calls
 WHERE call_code = "B";

Figure 209. Query result

customer_num 119
call_date Friday July 01 1998

The following query uses the TO_CHAR function to convert DATE values to more readable character strings.

Figure 210. Query

SELECT order_num,
 TO_CHAR(ship_date,"%A %B %d %Y") date_shipped
 FROM orders
 WHERE paid_date IS NULL;

Figure 211. Query result

order_num 1004
date_shipped Monday May 30 1998

order_num 1006
date_shipped

order_num 1007
date_shipped Sunday June 05 1998

order_num 1012
date_shipped Wednesday June 29 1998

order_num 1016
date_shipped Tuesday July 12 1998

order_num 1017
date_shipped Wednesday July 13 1998

The TO_CHAR function can also format numeric values. For more information about the built-in TO_CHAR function, see the

HCL® Informix® Guide to SQL: Syntax.

The TO_DATE function

The TO_DATE function accepts an argument of a character data type and converts this value to a DATETIME value. The

TO_DATE function evaluates a character string according to the date-formatting directive that you specify and returns a

DATETIME value. For a complete list of the supported date-formatting directives, see the description of the GL_DATETIME

environment variable in the HCL® Informix® GLS User's Guide.

You can also use the TO_DATE function to convert an LVARCHAR value to a DATETIME value.

Chapter 1. SQL programming

The following query uses the TO_DATE function to convert character string values to DATETIME values whose format you

specify.

Figure 212. Query

SELECT customer_num, call_descr
 FROM cust_calls
 WHERE call_dtime = TO_DATE("2008-07-07 10:24",
 "%Y-%m-%d %H:%M");

Figure 213. Query result

customer_num 110

call_descr Order placed one month ago (6/7) not received.

You can use the DATE or TO_DATE function to convert a character string to a DATE value. One advantage of the TO_DATE

function is that it allows you to specify a format for the value returned. (You can use the TO_DATE function, which always

returns a DATETIME value, to convert a character string to a DATE value because the database server implicitly handles

conversions between DATE and DATETIME values.)

Cardinality function

The CARDINALITY function counts the number of elements that a collection contains. You can use the CARDINALITY

function with simple or nested collections. Any duplicates in a collection are counted as individual elements. The following

query shows a query that returns, for every row in the manager table, department values and the number of elements in each

direct_reports collection.

Figure 214. Query

SELECT department, CARDINALITY(direct_reports) FROM manager;

Figure 215. Query result

department marketing 5

department engineering 7

department publications 4

department accounting 3

You can also evaluate the number of elements in a collection from within a predicate expression, as the following query

shows.

Figure 216. Query

SELECT department, CARDINALITY(direct_reports) FROM manager
 WHERE CARDINALITY(direct_reports) < 6
 GROUP BY department;

303

HCL Informix 14.10 - SQL programming Guide

304

Figure 217. Query result

department accounting 3

department marketing 5

department publications 4

Smart large object functions

The database server provides four SQL functions that you can call from within an SQL statement to import and export smart

large objects. The following table shows the smart-large-object functions.

Table 57. SQL functions for smart large objects

Function name Purpose

FILETOBLOB() Copies a file into a BLOB column

FILETOCLOB() Copies a file into a CLOB column

LOCOPY() Copies BLOB or CLOB data into another BLOB or CLOB column

LOTOFILE() Copies a BLOB or CLOB into a file

For detailed information and the syntax of smart-large-object functions, see the Expression segment in the HCL® Informix®

Guide to SQL: Syntax.

You can use any of the functions that the table shows in SELECT, UPDATE, and INSERT statements. For examples of how to

use the preceding functions in INSERT and UPDATE statements, see Modify data on page 358.

Suppose you create the inmate and fbi_list tables, as the following figure shows.

Figure 218. Create the inmate and fbi_list tables.

CREATE TABLE inmate
(
 id_num INT,
 picture BLOB,
 felony CLOB
);

CREATE TABLE fbi_list
(
 id INTEGER,
 mugshot BLOB
) PUT mugshot IN (sbspace1);

The following SELECT statement uses the LOTOFILE() function to copy data from the felony column into the

felon_322.txt file that is located on the client computer:

SELECT id_num, LOTOFILE(felony, 'felon_322.txt', 'client')
 FROM inmate
 WHERE id = 322;

Chapter 1. SQL programming

The first argument for LOTOFILE() specifies the name of the column from which data is to be exported. The second

argument specifies the name of the file into which data is to be copied. The third argument specifies whether the target file is

located on the client computer ('client') or server computer ('server').

The following rules apply for specifying the path of a file name in a function argument, depending on whether the file resides

on the client or server computer:

• If the source file resides on the server computer, you must specify the full path name to the file (not the path name

relative to the current working directory).

• If the source file resides on the client computer, you can specify either the full or relative path name to the file.

String-manipulation functions

String-manipulation functions accept arguments of type CHAR, NCHAR, VARCHAR, NVARCHAR, or LVARCHAR. You can use a

string-manipulation function anywhere you use an expression.

The following functions convert between upper and lowercase letters in a character string:

• LOWER

• UPPER

• INITCAP

The following functions manipulate character strings in various ways:

• REPLACE

• SUBSTR

• SUBSTRING

• LPAD

• RPAD

Restriction: You cannot overload any of the string-manipulation functions to handle extended data types.

The LOWER function

Use the LOWER function to replace every uppercase letter in a character string with a lowercase letter. The LOWER function

accepts an argument of a character data type and returns a value of the same data type as the argument you specify.

The following query uses the LOWER function to convert any uppercase letters in a character string to lowercase letters.

Figure 219. Query

SELECT manu_code, LOWER(manu_code)
 FROM items
 WHERE order_num = 1018

305

HCL Informix 14.10 - SQL programming Guide

306

Figure 220. Query result

manu_code (expression)

PRC prc
KAR kar
PRC prc
SMT smt
HRO hro

The UPPER function

Use the UPPER function to replace every lowercase letter in a character string with an uppercase letter. The UPPER function

accepts an argument of a character data type and returns a value of the same data type as the argument you specify.

The following query uses the UPPER function to convert any lowercase letters in a character string to uppercase letters.

Figure 221. Query

SELECT call_code, UPPER(code_descr) FROM call_type

Figure 222. Query result

call_code (expression)

B BILLING ERROR
D DAMAGED GOODS
I INCORRECT MERCHANDISE SENT
L LATE SHIPMENT
O OTHER

The INITCAP function

Use the INITCAP function to replace the first letter of every word in a character string with an uppercase letter. The INITCAP

function assumes a new word whenever the function encounters a letter that is preceded by any character other than a

letter. The INITCAP function accepts an argument of a character data type and returns a value of the same data type as the

argument you specify.

The following query uses the INITCAP function to convert the first letter of every word in a character string to an uppercase

letter.

Figure 223. Query

SELECT INITCAP(description) FROM stock
 WHERE manu_code = "ANZ";

Chapter 1. SQL programming

Figure 224. Query result

(expression)

Tennis Racquet
Tennis Ball
Volleyball
Volleyball Net
Helmet
Golf Shoes
3 Golf Balls
Running Shoes
Watch
Kick Board
Swim Cap

The REPLACE function

Use the REPLACE function to replace a certain set of characters in a character string with other characters.

In the following query, the REPLACE function replaces the unit column value each with item for every row that the query

returns. The first argument of the REPLACE function is the expression to be evaluated. The second argument specifies the

characters that you want to replace. The third argument specifies a new character string to replace the characters removed.

Figure 225. Query

SELECT stock_num, REPLACE(unit,"each", "item") cost_per, unit_price
 FROM stock
 WHERE manu_code = "HRO";

Figure 226. Query result

stock_num cost_per unit_price

1 case $250.00
2 case $126.00
4 case $480.00
7 case $600.00
110 case $260.00
205 case $312.00
301 item $42.50
302 item $4.50
304 box $280.00
305 case $48.00
309 case $40.00
312 box $72.00

The SUBSTRING and SUBSTR functions

You can use the SUBSTRING and SUBSTR functions to return a portion of a character string. You specify the start position

and length (optional) to determine which portion of the character string the function returns.

307

HCL Informix 14.10 - SQL programming Guide

308

Restriction: The units of measurement in the arguments to these two functions are bytes, rather than logical

characters. This is of no importance in the default locale, nor in other single-byte locales, but you should not invoke

SUBSTRING or SUBSTR in locales in which the logical characters of the code set can differ in their storage lengths.

The SUBSTRING function

You can use the SUBSTRING function to return some portion of a character string. You specify the start position and length

(optional) to determine which portion of the character string the function returns. You can specify a positive or negative

number for the start position. A start position of 1 specifies that the SUBSTRING function begins from the first position in

the string. When the start position is zero (0) or a negative number, the SUBSTRING function counts backward from the

beginning of the string.

The following query shows an example of the SUBSTRING function, which returns the first four characters for any sname

column values that the query returns. In this example, the SUBSTRING function starts at the beginning of the string and

returns four characters counting forward from the start position.

Figure 227. Query

SELECT sname, SUBSTRING(sname FROM 1 FOR 4) FROM state
 WHERE code = "AZ";

Figure 228. Query result

sname (expression)

Arizona Ariz

In the following query, the SUBSTRING function specifies a start position of 6 but does not specify the length. The function

returns a character string that extends from the sixth position to the end of the string.

Figure 229. Query

SELECT sname, SUBSTRING(sname FROM 6) FROM state
 WHERE code = "WV";

Figure 230. Query result

sname (expression)

West Virginia Virginia

In the following query, the SUBSTRING function returns only the first character for any sname column value that the query

returns. For the SUBSTRING function, a start position of -2 counts backward three positions (0, -1, -2) from the start

position of the string (for a start position of 0, the function counts backward one position from the beginning of the string).

Figure 231. Query

SELECT sname, SUBSTRING(sname FROM -2 FOR 4) FROM state
 WHERE code = "AZ";

Chapter 1. SQL programming

Figure 232. Query result

sname (expression)

Arizona A

The SUBSTR function

The SUBSTR function serves the same purpose as the SUBSTRING function, but the syntax of the two functions differs.

To return a portion of a character string, specify the start position and length (optional) to determine which portion of the

character string the SUBSTR function returns. The start position that you specify for the SUBSTR function can be a positive

or a negative number. However, the SUBSTR function treats a negative number in the start position differently than does the

SUBSTRING function. When the start position is a negative number, the SUBSTR function counts backward from the end of

the character string, which depends on the length of the string, not the character length of a word or visible characters that

the string contains. The SUBSTR function recognizes zero (0) or 1 in the start position as the first position in the string.

The following query shows an example of the SUBSTR function that includes a negative number for the start position. Given

a start position of -15, the SUBSTR function counts backward 15 positions from the end of the string to find the start position

and then returns the next five characters.

Figure 233. Query

SELECT sname, SUBSTR(sname, -15, 5) FROM state
 WHERE code = "CA";

Figure 234. Query result

sname (expression)

California Calif

To use a negative number for the start position, you need to know the length of the value that is evaluated. The sname

column is defined as CHAR(15), so a SUBSTR function that accepts an argument of type sname can use a start position of 0,

1, or -15 for the function to return a character string that begins from the first position in the string.

The following query returns the same result as Figure 233: Query on page 309.

Figure 235. Query

SELECT sname, SUBSTR(sname, 1, 5) FROM state
 WHERE code = "CA";

The LPAD function

Use the LPAD function to return a copy of a string that has been left padded with a sequence of characters that are repeated

as many times as necessary or truncated, depending on the specified length of the padded portion of the string. Specify the

source string, the length of the string to be returned, and the character string to serve as padding.

The data type of the source string and the character string that serves as padding can be any data type that converts to

VARCHAR or NVARCHAR.

309

HCL Informix 14.10 - SQL programming Guide

310

The following query shows an example of the LPAD function with a specified length of 21 characters. Because the source

string has a length of 15 characters (sname is defined as CHAR(15)), the LPAD function pads the first six positions to the left

of the source string.

Figure 236. Query

SELECT sname, LPAD(sname, 21, "-")
 FROM state
 WHERE code = "CA" OR code = "AZ";

Figure 237. Query result

sname (expression)

California ------California
Arizona ------Arizona

The RPAD function

Use the RPAD function to return a copy of a string that has been right padded with a sequence of characters that are

repeated as many times as necessary or truncated, depending on the specified length of the padded portion of the string.

Specify the source string, the length of the string to be returned, and the character string to serve as padding.

The data type of the source string and the character string that serves as padding can be any data type that converts to

VARCHAR or NVARCHAR.

The following query shows an example of the RPAD function with a specified length of 21 characters. Because the source

string has a length of 15 characters (sname is defined as CHAR(15)), the RPAD function pads the first six positions to the

right of the source string.

Figure 238. Query

SELECT sname, RPAD(sname, 21, "-")
 FROM state
 WHERE code = "WV" OR code = "AZ";

Figure 239. Query result

sname (expression)
West Virginia West Virginia ------
Arizona Arizona ------

In addition to these functions, the LTRIM and RTRIM functions can return a value that drops specified leading or trailing

padding characters from their string argument, and the ASCII function can return the numeric value of the codepoint within

the ASCII character set of the first character in its string argument. These built-in functions for operations on string values

are described in theHCL® Informix® Guide to SQL: Syntax.

Other functions

You can also use the LENGTH, USER, CURRENT, SYSDATE, and TODAY functions anywhere in an SQL expression that you

would use a constant. In addition, you can include the DBSERVERNAME function in a SELECT statement to display the name

of the database server where the current database resides.

Chapter 1. SQL programming

You can use these functions to select an expression that consists entirely of constant values or an expression that includes

column data. In the first instance, the result is the same for all rows of output.

In addition, you can use the HEX function to return the hexadecimal encoding of an expression, the ROUND function to

return the rounded value of an expression, and the TRUNC function to return the truncated value of an expression. For more

information on the preceding functions, see the HCL® Informix® Guide to SQL: Syntax.

The LENGTH function

In the following query, the LENGTH function calculates the number of bytes in the combined fname and lname columns for

each row where the length of company is greater than 15.

Figure 240. Query

SELECT customer_num,
 LENGTH (fname) + LENGTH (lname) namelength
 FROM customer
 WHERE LENGTH (company) > 15;

Figure 241. Query result

customer_num namelength

 101 11
 105 13
 107 11
 112 14
 115 11
 118 10
 119 10
 120 10
 122 12
 124 11
 125 10
 126 12
 127 10
 128 11

Although the LENGTH function might not be useful when you work with DB-Access, it can be important to determine the

string length for programs and reports. The LENGTH function returns the clipped length of a CHARACTER or VARCHAR string

and the full number of bytes in a TEXT or BYTE string.

HCL Informix® also supports the CHAR_LENGTH function, which returns the number of logical characters in its string

argument, rather than the number of bytes. This function is useful in locales where a single logical character might require

more than a single byte of storage. For more information about the CHAR_LENGTH function, see the HCL® Informix® Guide

to SQL: Syntax and the HCL® Informix® GLS User's Guide.

The USER function

Use the USER function when you want to define a restricted view of a table that contains only rows that include your user

ID. For information about how to create views, see the IBM® Informix® Database Design and Implementation Guide and the

GRANT and CREATE VIEW statements in the HCL® Informix® Guide to SQL: Syntax.

311

HCL Informix 14.10 - SQL programming Guide

312

The following query returns the user name (login account name) of the user who executes the query. It is repeated once for

each row in the table.

Figure 242. Query

SELECT * FROM cust_calls
 WHERE user_id = USER;

If the user name of the current user is richc, the query retrieves only those rows in the cust_calls table where user_id =

richc.

Figure 243. Query result

customer_num 110
call_dtime 1998-07-07 10:24
user_id richc
call_code L
call_descr Order placed one month ago (6/7) not received.
res_dtime 1998-07-07 10:30
res_descr Checked with shipping (Ed Smith). Order sent yesterday-we
 were waiting for goods from ANZ. Next time will call with
 delay if necessary

customer_num 119
call_dtime 1998-07-01 15:00
user_id richc
call_code B
call_descr Bill does not reflect credit from previous order
res_dtime 1998-07-02 08:21
res_descr Spoke with Jane Akant in Finance. They found the error and are
 sending new bill to customer

The TODAY function

The TODAY function returns the current system date. If the following query is issued when the current system date is July 10,

1998, it returns this one row.

Figure 244. Query

SELECT * FROM orders WHERE order_date = TODAY;

Figure 245. Query result

order_num 1018
order_date 07/10/1998
customer_num 121
ship_instruct SW corner of Biltmore Mall
backlog n
po_num S22942
ship_date 07/13/1998
ship_weight 70.50
ship_charge $20.00
paid_date 08/06/1998

Chapter 1. SQL programming

The DBSERVERNAME and SITENAME functions

You can include the function DBSERVERNAME (or its synonym, SITENAME) in a SELECT statement to find the name of the

database server. You can query the DBSERVERNAME for any table that has rows, including system catalog tables.

In the following query, you assign the label server to the DBSERVERNAME expression and also select the tabid column from

the systables system catalog table. This table describes database tables, and tabid is the table identifier.

Figure 246. Query

SELECT DBSERVERNAME server, tabid
 FROM systables
 WHERE tabid <= 4;

Figure 247. Query result

 server tabid

montague 1
montague 2
montague 3
montague 4

The WHERE clause restricts the numbers of rows displayed. Otherwise, the database server name would be displayed once

for each row of the systables table.

The HEX function

In the following query, the HEX function returns the hexadecimal format of two columns in the customer table, as the result

shows.

Figure 248. Query

SELECT HEX (customer_num) hexnum, HEX (zipcode) hexzip
 FROM customer;

Figure 249. Query result

hexnum hexzip

0x00000065 0x00016F86
0x00000066 0x00016FA5
0x00000067 0x0001705F
0x00000068 0x00016F4A
0x00000069 0x00016F46
0x0000006A 0x00016F6F
⋮

The DBINFO function

You can call the DBINFO function in a SELECT statement to find any of the following information:

• The name of a dbspace corresponding to a tblspace number or expression

• The last SERIAL, SERIAL8 or BIGSERIAL value inserted into a table

313

HCL Informix 14.10 - SQL programming Guide

314

• The number of rows processed by the SELECT, INSERT, DELETE, UPDATE, MERGE, EXECUTE FUNCTION, EXECUTE

PROCEDURE, or EXECUTE ROUTINE statement

• The session ID of the current session

• The name of the current database to which the session is connected

• Whether an INSERT, UPDATE, or DELETE statement is being performed as part of a replicated transaction.

• The name of the host computer on which the database server runs

• The type of operating system and the word length of the host computer

• The local time zone and the current date and time in Coordinated Universal Time (UTC) format

• The DATETIME value corresponding to a specified integer column or to a specified UTC time value (as an integer

number of seconds since 1970-01-01 00:00:00+00:00)

• The exact version of the database server to which a client application is connected, or a specified component of the

full version string.

You can use the DBINFO function anywhere within SQL statements and within SPL routines.

The following query shows how you might use the DBINFO function to find out the name of the host computer on which the

database server runs.

Figure 250. Query

SELECT FIRST 1 DBINFO('dbhostname') FROM systables;

Figure 251. Query result

(constant)

lyceum

Without the FIRST 1 clause to restrict the values in the tabid, the host name of the computer on which the database server

runs would be repeated for each row of the systables table. The following query shows how you might use the DBINFO

function to find out the complete version number and the type of the current database server.

Figure 252. Query

SELECT FIRST 1 DBINFO('version','full') FROM systables;

For more information about how to use the DBINFO function to find information about your current database server,

database session, or database, see the HCL® Informix® Guide to SQL: Syntax.

The DECODE function

You can use the DECODE function to convert an expression of one value to another value. The DECODE function has the

following form:

DECODE(test, a, a_value, b, b_value, ..., n, n_value, exp_m)

The DECODE function returns a_value when a equals test, and returns b_value when b equals test, and, in general, returns

n_value when n equals test.

Chapter 1. SQL programming

If several expressions match test, DECODE returns n_value for the first expression found. If no expression matches test,

DECODE returns exp_m; if no expression matches test and there is no exp_m, DECODE returns NULL.

Restriction: The DECODE function does not support arguments of type TEXT or BYTE.

Suppose an employee table exists that includes emp_id and evaluation columns. Suppose also that execution of the

following query on the employee table returns the rows that the result shows.

Figure 253. Query

SELECT emp_id, evaluation FROM employee;

Figure 254. Query result

emp_id evaluation

012233 great
012344 poor
012677 NULL
012288 good
012555 very good

In some cases, you might want to convert a set of values. For example, suppose you want to convert the descriptive values

of the evaluation column in the preceding example to corresponding numeric values. The following query shows how

you might use the DECODE function to convert values from the evaluation column to numeric values for each row in the

employee table.

Figure 255. Query

SELECT emp_id, DECODE(evaluation, "poor", 0, "fair", 25, "good",
50, "very good", 75, "great", 100, -1) AS evaluation
 FROM employee;

Figure 256. Query result

emp_id evaluation

012233 100
012344 0
012677 -1
012288 50
012555 75
⋮;

You can specify any data type for the arguments of the DECODE function provided that the arguments meet the following

requirements:

• The arguments test, a,b, ..., n all have the same data type or evaluate to a common compatible data type.

• The arguments a_value, b_value, ..., n_value all have the same data type or evaluate to a common compatible data

type.

315

HCL Informix 14.10 - SQL programming Guide

316

The NVL function

You can use the NVL function to convert an expression that evaluates to NULL to a value that you specify. The NVL function

accepts two arguments: the first argument takes the name of the expression to be evaluated; the second argument specifies

the value that the function returns when the first argument evaluates to NULL. If the first argument does not evaluate to

NULL, the function returns the value of the first argument. Suppose a student table exists that includes name and address

columns. Suppose also that execution of the following query on the student table returns the rows that the result shows.

Figure 257. Query

SELECT name, address FROM student;

Figure 258. Query result

name address

John Smith 333 Vista Drive
Lauren Collier 1129 Greenridge Street
Fred Frith NULL
Susan Jordan NULL

The following query includes the NVL function, which returns a new value for each row in the table where the address column

contains a NULL value.

Figure 259. Query

SELECT name, NVL(address, "address is unknown") AS address
 FROM student;

Figure 260. Query result

name address

John Smith 333 Vista Drive
Lauren Collier 1129 Greenridge Street
Fred Frith address is unknown
Susan Jordan address is unknown

You can specify any data type for the arguments of the NVL function provided that the two arguments evaluate to a common

compatible data type.

If both arguments of the NVL function evaluate to NULL, the function returns NULL.

HCL Informix® also supports the NULLIF function, which resembles the NVL function, but has different semantics. NULLIF

returns NULL if its two arguments are equal, or returns its first argument if its arguments are not equal. For more information

about the NULLIF function, see the HCL® Informix® Guide to SQL: Syntax.

SPL routines in SELECT statements

Previous examples in this chapter show SELECT statement expressions that consist of column names, operators, and SQL

functions. This section shows expressions that contain an SPL routine call.

Chapter 1. SQL programming

SPL routines contain special Stored Procedure Language (SPL) statements as well as SQL statements. For more information

on SPL routines, see Create and use SPL routines on page 453.

HCL Informix® allows you to write external routines in C and in Java™. For more information, see HCL® Informix® User-

Defined Routines and Data Types Developer's Guide.

When you include an SPL routine expression in a projection list, the SPL routine must be one that returns a single value (one

column of one row). For example, the following statement is valid only if test_func() returns a single value:

SELECT col_a, test_func(col_b) FROM tab1
 WHERE col_c = "Davis";

SPL routines that return more than a single value are not supported in the Projection clause of SELECT statements. In the

preceding example, if test_func() returns more than one value, the database server returns an error message.

SPL routines provide a way to extend the range of functions available by allowing you to perform a subquery on each row you

select.

For example, suppose you want a listing of the customer number, the customer's last name, and the number of orders the

customer has made. The following query shows one way to retrieve this information. The customer table has customer_num

and lname columns but no record of the number of orders each customer has made. You could write a get_orders routine,

which queries the orders table for each customer_num and returns the number of corresponding orders (labeled n_orders).

Figure 261. Query

SELECT customer_num, lname, get_orders(customer_num) n_orders
 FROM customer;

The result shows the output from this SPL routine.

Figure 262. Query result

customer_num lname n_orders

 101 Pauli 1
 102 Sadler 9
 103 Currie 9
 104 Higgins 4
 ⋮;
 123 Hanlon 1
 124 Putnum 1
 125 Henry 0
 126 Neelie 1
 127 Satifer 1
 128 Lessor 0

Use SPL routines to encapsulate operations that you frequently perform in your queries. For example, the condition in the

following query contains a routine, conv_price, that converts the unit price of a stock item to a different currency and adds

any import tariffs.

Figure 263. Query

SELECT stock_num, manu_code, description FROM stock
 WHERE conv_price(unit_price, ex_rate = 1.50,
 tariff = 50.00) < 1000;

317

HCL Informix 14.10 - SQL programming Guide

318

Data encryption functions

You can use the SET ENCRYPTION PASSWORD statement with built-in SQL encryption functions that use Advanced

Encryption Standard (AES) and Triple DES (3DES) encryption to secure your sensitive data. When you use encryption, only

those users who have the correct password will be able to read, copy, or modify the data.

Use the SET ENCRYPTION PASSWORD statement with the following built-in encryption and decryption functions:

• ENCRYPT_AES

ENCRYPT_AES(data-string-expression
[, password-string-expression [, hint-string-expression]])

• ENCRYPT_TDES

ENCRYPT_TDES (data-string-expression
 [, password-string-expression [, hint-string-expression]])

• DECRYPT_CHAR

DECRYPT_CHAR(EncryptedData [, PasswordOrPhrase])

• DECRYPT_BINARY

DECRYPT_BINARY(EncryptedData [, PasswordOrPhrase])

• GETHINT

GETHINT(EncryptedData)

If you have used the SET ENCRYPTION PASSWORD statement to specify a default password, then the database server

applies that password in subsequent calls to encryption and decryption functions that you invoke in the same session.

Use ENCRYPT_AES and ENCRYPT_TDES to define encrypted data and use DECRYPT_CHAR and DECRYPT_BINARY to query

encrypted data. Use GETHINT to display the password hint string, if set, on the server.

You can use these SQL built-in functions to implement column-level or cell-level encryption.

• Use column-level encryption to encrypt all values in a given column with the same password.

• Use cell-level encryption to encrypt data within the column with different passwords.

Tip: If you intend to select encrypted data from a large table, specify an unencrypted column on which to select the

rows. You can create indexes or foreign-key constraints on columns that contain encrypted data, but to do so is an

inefficient use of resources, because such indexes and foreign-key constraints are not used by the query optimizer.

Using column-level data encryption to secure credit card data

About this task

The following example uses column-level encryption to secure credit card data.

To use column-level data encryption to secure credit card data:

Chapter 1. SQL programming

1. Create the table: create table customer (id char(30), creditcard lvarchar(67));

2. Insert the encryption data:

a. Set session password: SET ENCRYPTION PASSWORD "credit card number is encrypted";

b. Encrypt data.

 INSERT INTO customer VALUES
("Alice", encrypt_aes("1234567890123456"));
 INSERT INTO customer VALUES
("Bob", encrypt_aes("2345678901234567"));

3. Query encryption data with decryption function.

 SET ENCRYPTION PASSWORD "credit card number is encrypted";
 SELECT id FROM customer
 WHERE DECRYPT_CHAR(creditcard) = "2345678901234567";

Results

Important: Encrypted data values occupy more storage space than the corresponding unencrypted data. A column

whose width is sufficient to store plain text might need to be increased before it can support column-level encryption

or cell-level encryption. If you attempt to insert an encrypted value into a column whose declared width is shorter

than the encrypted string, the column stores a truncated value that cannot be decrypted.

For more information on encryption security, see HCL® Informix® Administrator's Guide.

For more information on the syntax and storage requirements of built-in encryption and decryption functions, see HCL®

Informix® Guide to SQL: Syntax.

Summary

This chapter introduced sample syntax and results for functions in basic SELECT statements to query a relational database

and to manipulate the returned data. Functions in SELECT statements on page 292 shows how to perform the following

actions:

• Use the aggregate functions in the Projection clause to calculate and retrieve specific data.

• Include the time functions DATE, DAY, MDY, MONTH, WEEKDAY, YEAR, CURRENT, and EXTEND plus the TODAY,

LENGTH, and USER functions in your SELECT statements.

• Use conversion functions in the SELECT clause to convert between date and character values.

• Use string-manipulation functions in the SELECT clause to convert between upper and lower case letters or to

manipulate character strings in various ways.

SPL routines in SELECT statements on page 316 shows how to include SPL routines in your SELECT statements.

Data encryption functions on page 318 shows how the use of the SET ENCRYPTION statement and built-in encryption and

decryption functions can prevent users who cannot provide a password from viewing or modifying sensitive data.

319

HCL Informix 14.10 - SQL programming Guide

320

Compose advanced SELECT statements

This section increases the scope of what you can do with the SELECT statement and enables you to perform more complex

database queries and data manipulation. Compose SELECT statements on page 232, focused on five of the clauses in

the SELECT statement syntax. This section adds the GROUP BY clause and the HAVING clause. You can use the GROUP BY

clause with aggregate functions to organize rows returned by the FROM clause. You can include a HAVING clause to place

conditions on the values that the GROUP BY clause returns.

This section also extends the earlier discussion of joins. It illustrates self-joins, which enable you to join a table to itself,

and four kinds of outer joins, in which you apply the keyword OUTER to treat two or more joined tables unequally. It also

introduces correlated and uncorrelated subqueries and their operational keywords, shows how to combine queries with the

UNION operator, and defines the set operations known as union, intersection, and difference.

Examples in this section show how to use some or all of the SELECT statement clauses in your queries. The clauses must

appear in the following order:

1. Projection

2. FROM

3. WHERE

4. GROUP BY

5. HAVING

6. ORDER BY

7. INTO TEMP

For an example of a SELECT statement that uses all these clauses in the correct order, see Figure 278: Query on page 324.

An additional SELECT statement clause, INTO, which you can use to specify program and host variables in SQL APIs, is

described in SQL programming on page 400, as well as in the publications that come with the product.

This section also describes nested SELECT statements, in which subqueries are specified within the Projection, FROM, or

WHERE clauses of the main query. Other sections show how SELECT statements can define and manipulate collections, and

how to perform set operations on query results.

The GROUP BY and HAVING clauses

The optional GROUP BY and HAVING clauses add functionality to your SELECT statement. You can include one or both in a

basic SELECT statement to increase your ability to manipulate aggregates.

The GROUP BY clause combines similar rows, producing a single result row for each group of rows that have the same

values, for each column listed in the Projection clause. The HAVING clause sets conditions on those groups after you form

them. You can use a GROUP BY clause without a HAVING clause, or a HAVING clause without a GROUP BY clause.

Chapter 1. SQL programming

The GROUP BY clause

The GROUP BY clause divides a table into sets. This clause is most often combined with aggregate functions that produce

summary values for each of those sets. Some examples in Compose SELECT statements on page 232 show the use of

aggregate functions applied to a whole table. This section illustrates aggregate functions applied to groups of rows.

Using the GROUP BY clause without aggregates is much like using the DISTINCT (or UNIQUE) keyword in the SELECT clause.

The following query is described in Select specific columns on page 242.

Figure 264. Query

SELECT DISTINCT customer_num FROM orders;

You could also write the statement as the following query shows.

Figure 265. Query

SELECT customer_num FROM orders
 GROUP BY customer_num;

Figure 264: Query on page 321 and Figure 265: Query on page 321 return the following rows.

Figure 266. Query result

customer_num

 101
 104
 106
 110
 ⋮;
 124
 126
 127

The GROUP BY clause collects the rows into sets so that each row in each set has the same customer numbers. With no

other columns selected, the result is a list of the unique customer_num values.

The power of the GROUP BY clause is more apparent when you use it with aggregate functions.

The following query retrieves the number of items and the total price of all items for each order.

Figure 267. Query

SELECT order_num, COUNT (*) number, SUM (total_price) price
 FROM items
 GROUP BY order_num;

The GROUP BY clause causes the rows of the items table to be collected into groups, each group composed of rows that

have identical order_num values (that is, the items of each order are grouped together). After the database server forms the

groups, the aggregate functions COUNT and SUM are applied within each group.

Figure 267: Query on page 321 returns one row for each group. It uses labels to give names to the results of the COUNT

and SUM expressions, as the result shows.

321

HCL Informix 14.10 - SQL programming Guide

322

Figure 268. Query result

 order_num number price

 1001 1 $250.00
 1002 2 $1200.00
 1003 3 $959.00
 1004 4 $1416.00
 ⋮;
 1021 4 $1614.00
 1022 3 $232.00
 1023 6 $824.00

The result collects the rows of the items table into groups that have identical order numbers and computes the COUNT of

rows in each group and the SUM of the prices.

You cannot include a TEXT, BYTE, CLOB, or BLOB column in a GROUP BY clause. To group, you must be able to sort, and no

natural sort order exists for these data types.

Unlike the ORDER BY clause, the GROUP BY clause does not order data. Include an ORDER BY clause after your GROUP BY

clause if you want to sort data in a particular order or sort on an aggregate in the projection list.

The following query is the same as Figure 267: Query on page 321 but includes an ORDER BY clause to sort the retrieved

rows in ascending order of price, as the result shows.

Figure 269. Query

SELECT order_num, COUNT(*) number, SUM (total_price) price
 FROM items
 GROUP BY order_num
 ORDER BY price;

Figure 270. Query result

 order_num number price

 1010 2 $84.00
 1011 1 $99.00
 1013 4 $143.80
 1022 3 $232.00
 1001 1 $250.00
 1020 2 $438.00
 1006 5 $448.00
 ⋮;
 1002 2 $1200.00
 1004 4 $1416.00
 1014 2 $1440.00
 1019 1 $1499.97
 1021 4 $1614.00
 1007 5 $1696.00

The topic Select specific columns on page 242 describes how to use an integer in an ORDER BY clause to indicate the

position of a column in the projection list. You can also use an integer in a GROUP BY clause to indicate the position of

column names or display labels in the GROUP BY list.

Chapter 1. SQL programming

The following query returns the same rows as Figure 269: Query on page 322 shows.

Figure 271. Query

SELECT order_num, COUNT(*) number, SUM (total_price) price
 FROM items
 GROUP BY 1
 ORDER BY 3;

When you build a query, all non-aggregate columns that are in the projection list in the Projection clause must also be

included in the GROUP BY clause. A SELECT statement with a GROUP BY clause must return only one row per group.

Columns that are listed after GROUP BY are certain to reflect only one distinct value within a group, and that value can be

returned. However, a column not listed after GROUP BY might contain different values in the rows that are contained in the

group.

The following query shows how to use the GROUP BY clause in a SELECT statement that joins tables.

Figure 272. Query

SELECT o.order_num, SUM (i.total_price)
 FROM orders o, items i
 WHERE o.order_date > '01/01/98'
 AND o.customer_num = 110
 AND o.order_num = i.order_num
 GROUP BY o.order_num;

The query joins the orders and items tables, assigns table aliases to them, and returns the rows.

Figure 273. Query result

 order_num (sum)

 1008 $940.00
 1015 $450.00

The HAVING clause

To complement a GROUP BY clause, use a HAVING clause to apply one or more qualifying conditions to groups after they

are formed. The effect of the HAVING clause on groups is similar to the way the WHERE clause qualifies individual rows. One

advantage of using a HAVING clause is that you can include aggregates in the search condition, whereas you cannot include

aggregates in the search condition of a WHERE clause.

Each HAVING condition compares one column or aggregate expression of the group with another aggregate expression of

the group or with a constant. You can use HAVING to place conditions on both column values and aggregate values in the

group list.

The following query returns the average total price per item on all orders that have more than two items. The HAVING clause

tests each group as it is formed and selects those that are composed of more than two rows.

Figure 274. Query

SELECT order_num, COUNT(*) number, AVG (total_price) average
 FROM items
 GROUP BY order_num
 HAVING COUNT(*) > 2;

323

HCL Informix 14.10 - SQL programming Guide

324

Figure 275. Query result

 order_num number average

 1003 3 $319.67
 1004 4 $354.00
 1005 4 $140.50
 1006 5 $89.60
 1007 5 $339.20
 1013 4 $35.95
 1016 4 $163.50
 1017 3 $194.67
 1018 5 $226.20
 1021 4 $403.50
 1022 3 $77.33
 1023 6 $137.33

If you use a HAVING clause without a GROUP BY clause, the HAVING condition applies to all rows that satisfy the search

condition. In other words, all rows that satisfy the search condition make up a single group.

The following query, a modified version of Figure 274: Query on page 323, returns just one row, the average of all

total_price values in the table, as the result shows.

Figure 276. Query

SELECT AVG (total_price) average
 FROM items
 HAVING count(*) > 2;

Figure 277. Query result

 average

 $270.97

If Figure 276: Query on page 324, like Figure 274: Query on page 323, had included the non-aggregate column order_num

in the Projection clause, you would have to include a GROUP BY clause with that column in the group list. In addition, if the

condition in the HAVING clause was not satisfied, the output would show the column heading and a message would indicate

that no rows were found.

The following query contains all the SELECT statement clauses that you can use in the HCL® Informix® version of

interactive SQL (the INTO clause that names host variables is available only in an SQL API).

Figure 278. Query

SELECT o.order_num, SUM (i.total_price) price,
 paid_date - order_date span
 FROM orders o, items i
 WHERE o.order_date > '01/01/98'
 AND o.customer_num > 110
 AND o.order_num = i.order_num
 GROUP BY 1, 3
 HAVING COUNT (*) < 5
 ORDER BY 3
 INTO TEMP temptab1;

Chapter 1. SQL programming

The query joins the orders and items tables; employs display labels, table aliases, and integers that are used as column

indicators; groups and orders the data; and puts the results in a temporary table, as the result shows.

Figure 279. Query result

 order_num price span

 1017 $584.00
 1016 $654.00
 1012 $1040.00
 1019 $1499.97 26
 1005 $562.00 28
 1021 $1614.00 30
 1022 $232.00 40
 1010 $84.00 66
 1009 $450.00 68
 1020 $438.00 71

Create advanced joins

The topic Create a join on page 270 shows how to include a WHERE clause in a SELECT statement to join two or more

tables on one or more columns. It illustrates natural joins and equi-joins.

This section discusses how to use two more complex kinds of joins, self-joins and outer joins. As described for simple joins,

you can define aliases for tables and assign display labels to expressions to shorten your multiple-table queries. You can

also issue a SELECT statement with an ORDER BY clause that sorts data into a temporary table.

Self-joins

A join does not always have to involve two different tables. You can join a table to itself, creating a self-join. Joining a table to

itself can be useful when you want to compare values in a column to other values in the same column.

To create a self-join, list a table twice in the FROM clause, and assign it a different alias each time. Use the aliases to refer

to the table in the Projection and WHERE clauses as if it were two separate tables. (Aliases in SELECT statements are

discussed in Aliases on page 277 and in the HCL® Informix® Guide to SQL: Syntax.)

Just as in joins between tables, you can use arithmetic expressions in self-joins. You can test for null values, and you can use

an ORDER BY clause to sort the values in a specified column in ascending or descending order.

The following query finds pairs of orders where the ship_weight differs by a factor of five or more and the ship_date is not

null. The query then orders the data by ship_date.

Figure 280. Query

SELECT x.order_num, x.ship_weight, x.ship_date,
 y.order_num, y.ship_weight, y.ship_date
 FROM orders x, orders y
 WHERE x.ship_weight >= 5 * y.ship_weight
 AND x.ship_date IS NOT NULL
 AND y.ship_date IS NOT NULL
 ORDER BY x.ship_date;

325

HCL Informix 14.10 - SQL programming Guide

326

Table 58. Query result

order_num ship_weight ship_date order_num ship_weight ship_date

1004 95.80 05/30/1998 1011 10.40 07/03/1998

1004 95.80 05/30/1998 1020 14.00 07/16/1998

1004 95.80 05/30/1998 1022 15.00 07/30/1998

1007 125.90 06/05/1998 1015 20.60 07/16/1998

1007 125.90 06/05/1998 1020 14.00 07/16/1998

If you want to store the results of a self-join into a temporary table, append an INTO TEMP clause to the SELECT statement

and assign display labels to at least one set of columns to rename them. Otherwise, the duplicate column names cause an

error and the temporary table is not created.

The following query, which is similar to Figure 280: Query on page 325, labels all columns selected from the orders table

and puts them in a temporary table called shipping.

Figure 281. Query

SELECT x.order_num orders1, x.po_num purch1,
 x.ship_date ship1, y.order_num orders2,
 y.po_num purch2, y.ship_date ship2
 FROM orders x, orders y
 WHERE x.ship_weight >= 5 * y.ship_weight
 AND x.ship_date IS NOT NULL
 AND y.ship_date IS NOT NULL
 ORDER BY orders1, orders2
 INTO TEMP shipping;

If you query with SELECT * from table shipping, you see the following rows.

Figure 282. Query result

 orders1 purch1 ship1 orders2 purch2 ship2

 1004 8006 05/30/1998 1011 B77897 07/03/1998
 1004 8006 05/30/1998 1020 W2286 07/16/1998
 1004 8006 05/30/1998 1022 W9925 07/30/1998
 1005 2865 06/09/1998 1011 B77897 07/03/1998
 ⋮;
 1019 Z55709 07/16/1998 1020 W2286 07/16/1998
 1019 Z55709 07/16/1998 1022 W9925 07/30/1998
 1023 KF2961 07/30/1998 1011 B77897 07/03/1998

You can join a table to itself more than once. The maximum number of self-joins depends on the resources available to you.

The self-join in the following query creates a list of those items in the stock table that are supplied by three manufacturers.

The self-join includes the last two conditions in the WHERE clause to eliminate duplicate manufacturer codes in rows that

are retrieved.

Chapter 1. SQL programming

Figure 283. Query

SELECT s1.manu_code, s2.manu_code, s3.manu_code,
 s1.stock_num, s1.description
 FROM stock s1, stock s2, stock s3
 WHERE s1.stock_num = s2.stock_num
 AND s2.stock_num = s3.stock_num
 AND s1.manu_code < s2.manu_code
 AND s2.manu_code < s3.manu_code
 ORDER BY stock_num;

Figure 284. Query result

manu_code manu_code manu_code stock_num description

HRO HSK SMT 1 baseball gloves
ANZ NRG SMT 5 tennis racquet
ANZ HRO HSK 110 helmet
ANZ HRO PRC 110 helmet
ANZ HRO SHM 110 helmet
ANZ HSK PRC 110 helmet
ANZ HSK SHM 110 helmet
ANZ PRC SHM 110 helmet
HRO HSK PRC 110 helmet
HRO HSK SHM 110 helmet
HRO PRC SHM 110 helmet
⋮;
KAR NKL PRC 301 running shoes
KAR NKL SHM 301 running shoes
KAR PRC SHM 301 running shoes
NKL PRC SHM 301 running shoes

If you want to select rows from a payroll table to determine which employees earn more than their manager, you might

construct the self-join as the following SELECT statement shows:

SELECT emp.employee_num, emp.gross_pay, emp.level,
 emp.dept_num, mgr.employee_num, mgr.gross_pay,
 mgr.dept_num, mgr.level
 FROM payroll emp, payroll mgr
 WHERE emp.gross_pay > mgr.gross_pay
 AND emp.level < mgr.level
 AND emp.dept_num = mgr.dept_num
 ORDER BY 4;

The following query uses a correlated subquery to retrieve and list the 10 highest-priced items ordered.

Figure 285. Query

SELECT order_num, total_price
 FROM items a
 WHERE 10 >
 (SELECT COUNT (*)
 FROM items b
 WHERE b.total_price < a.total_price)
 ORDER BY total_price;

The query returns the 10 rows.

327

HCL Informix 14.10 - SQL programming Guide

328

Figure 286. Query result

 order_num total_price

 1018 $15.00
 1013 $19.80
 1003 $20.00
 1005 $36.00
 1006 $36.00
 1013 $36.00
 1010 $36.00
 1013 $40.00
 1022 $40.00
 1023 $40.00

You can create a similar query to find and list the 10 employees in the company who have the most seniority.

For more information about correlated subqueries, refer to Subqueries in SELECT statements on page 335.

Outer joins

This section shows how to create and use outer joins in a SELECT statement. The topic Create a join on page 270

discusses inner joins. Whereas an inner join treats two or more joined tables equally, an outer join treats two or more

joined tables asymmetrically. An outer join makes one of the tables dominant (also called the outer table) over the other

subordinate tables (also called inner tables).

In an inner join or in a simple join, the result contains only the combinations of rows that satisfy the join conditions. Rows

that do not satisfy the join conditions are discarded.

In an outer join, the result contains the combinations of rows that satisfy the join conditions and the rows from the dominant

table that would otherwise be discarded because no matching row was found in the subordinate table. The rows from the

dominant table that do not have matching rows in the subordinate table contain NULL values in the columns selected from

the subordinate table.

An outer join allows you to apply join filters to the inner table before the join condition is applied.

The database server supports syntax for outer joins that is an extension to the ANSI standard for the SQL language. Besides

outer join syntax based on this HCL® Informix® extension, the database server also supports the ANSI standard syntax,

which provides more flexibility for creating queries that join a dominant table with one or more subordinate tables. With the

exception of joins in view definitions, it is recommended that you use the ANSI standard syntax for creating new outer-join

queries.

In view definitions, however, the Informix®-extension syntax does not require materialized views, and so it might offer

performance advantages over ISO/ANSI join syntax in those contexts, including business-analytic operations that query

complex views joining multiple tables.

Whichever form of outer-join syntax you use, however, a single query cannot mix both syntax modes. All of the outer join

operations in the same query block must either use SQL syntax that complies with the ISO/ANSI standard, or else use the

HCL® Informix® extension syntax.

Chapter 1. SQL programming

Important: Before you rely on outer joins, determine whether one or more inner joins can work. You can often use an

inner join when you do not need supplemental information from other tables.

Restriction: You cannot combine HCL® Informix® and ANSI outer-join syntax in the same query block.

For information on the syntax of outer joins, see the HCL® Informix® Guide to SQL: Syntax.

HCL Informix® extension to outer join syntax

The HCL Informix® extension to outer-join syntax begins an outer join with the OUTER keyword. When you use the Informix®

syntax, you must include the join condition in the WHERE clause. When you use the Informix® syntax for an outer join, the

database server supports the following three basic types of outer joins:

• A simple outer join on two tables

• An outer join for a simple join to a third table

• An outer join of two tables to a third table

An outer join must have a Projection clause, a FROM clause, and a WHERE clause. The join conditions are expressed in

a WHERE clause. To transform a simple join into an outer join, insert the keyword OUTER directly before the name of the

subordinate tables in the FROM clause. As shown later in this section, you can include the OUTER keyword more than once in

your query.

No Informix® extension to outer-join syntax is equivalent to the ANSI right outer join.

ANSI join syntax

The following ANSI joins are supported:

• Left outer join

• Right outer join

The ANSI outer-join syntax begins an outer join with the LEFT JOIN, LEFT OUTER JOIN, RIGHT JOIN, or RIGHT OUTER JOIN

keywords. The OUTER keyword is optional. Queries can specify a join condition and optional join filters in the ON clause. The

WHERE clause specifies a post-join filter. In addition, you can explicitly specify the type of join using the LEFT or right clause.

ANSI join syntax also allows the dominant or subordinate part of an outer join to be the result set of another join, when you

begin the join with a left parenthesis.

If you use ANSI syntax for an outer join, you must use the ANSI syntax for all outer joins in a single query block.

329

HCL Informix 14.10 - SQL programming Guide

330

Tip: The examples in this section use table aliases for brevity. Aliases on page 277 discusses table aliases.

Left outer join
In the syntax of a left outer join, the dominant table of the outer join appears to the left of the keyword that begins the outer

join. A left outer join returns all of the rows for which the join condition is true and, in addition, returns all other rows from the

dominant table and displays the corresponding values from the subservient table as NULL.

The following query uses ANSI syntax for a LEFT OUTER JOIN to join the customer and cust_calls tables, with customer the

dominant table:

Figure 287. Query 1

SELECT c.customer_num, c.lname, c.company, c.phone,
 u.call_dtime, u.call_descr
 FROM customer c LEFT OUTER JOIN cust_calls u
 ON c.customer_num = u.customer_num;

The next query similarly uses the ON clause to specify the join condition, and adds an additional filter in the WHERE clause to

limit your result set; such a filter is a post-join filter.

The query returns only rows in which customers have not made any calls to customer service. In this query, the database

server applies the filter in the WHERE clause after it performs the outer join on the customer_num column of the customer

and cust_calls tables.

Figure 288. Query 2

SELECT c.customer_num, c.lname, c.company, c.phone,
 u.call_dtime, u.call_descr
 FROM customer c LEFT OUTER JOIN cust_calls u
 ON c.customer_num = u.customer_num
 WHERE u.customer_num IS NULL;

The next example shows the HCL® Informix®-extension syntax that us equivalent to the previous ANSI-compliant left outer

join:

Figure 289. Query 3

SELECT c.customer_num, c.lname, c.company, c.phone,
 u.call_dtime, u.call_descr
 FROM customer c OUTER cust_calls u
 WHERE c.customer_num = u.customer_num
 AND u.customer_num IS NULL;

Here the WHERE clause defines the join condition, and excludes rows with non-NULL cust_calls values.

Examples of ISO/ANSI LEFT OUTER JOIN queries

The following examples illustrate various query constructions that ANSI join syntax can support:

SELECT *
FROM (t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)
 ON t1.c1=t3.c1) JOIN (t4 LEFT OUTER JOIN t5 ON t4.c1=t5.c1)
 ON t1.c1=t4.c1;

Chapter 1. SQL programming

SELECT *
FROM (t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)
 ON t1.c1=t3.c1),
 (t4 LEFT OUTER JOIN t5 ON t4.c1=t5.c1)
 WHERE t1.c1 = t4.c1;

SELECT *
FROM (t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)
 ON t1.c1=t3.c1) LEFT OUTER JOIN (t4 JOIN t5 ON t4.c1=t5.c1)
 ON t1.c1=t4.c1;

SELECT *
FROM t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)
 ON t1.c1=t2.c1;

SELECT *
FROM t1 LEFT OUTER JOIN (t2 LEFT OUTER JOIN t3 ON t2.c1=t3.c1)
 ON t1.c1=t3.c1;

SELECT *
FROM (t1 LEFT OUTER JOIN t2 ON t1.c1=t2.c1)
 LEFT OUTER JOIN t3 ON t2.c1=t3.c1;

SELECT *
FROM (t1 LEFT OUTER JOIN t2 ON t1.c1=t2.c1)
 LEFT OUTER JOIN t3 ON t1.c1=t3.c1;

SELECT *
FROM t9, (t1 LEFT JOIN t2 ON t1.c1=t2.c1),
 (t3 LEFT JOIN t4 ON t3.c1=10), t10, t11,
 (t12 LEFT JOIN t14 ON t12.c1=100);

SELECT * FROM
 ((SELECT c1,c2 FROM t3) AS vt3(v31,v32)
 LEFT OUTER JOIN
 ((SELECT c1,c2 FROM t1) AS vt1(vc1,vc2)
 LEFT OUTER JOIN
 (SELECT c1,c2 FROM t2) AS vt2(vc3,vc4)
 ON vt1.vc1 = vt2.vc3)
ON vt3.v31 = vt2.vc3);

The last example above includes ANSI-compliant joins on derived tables. It specifies a left outer join on the results of a

subquery in the FROM clause of the outer query with the results of another left outer join on two other subquery results.

See the section Subqueries in the FROM clause on page 338 for less complex examples of the ANSI-compliant syntax for

subqueries.

Right outer join
In the syntax of a right outer join, the dominant table of the outer join appears to the right of the keyword that begins the

outer join. A right outer join returns all of the rows for which the join condition is true and, in addition, returns all other rows

from the dominant table and displays the corresponding values from the subservient table as NULL.

The following query is an example of a right outer join on the customer and orders tables.

331

HCL Informix 14.10 - SQL programming Guide

332

Figure 290. Query

SELECT c.customer_num, c.fname, c.lname, o.order_num,
o.order_date, o.customer_num
FROM customer c RIGHT OUTER JOIN orders o
ON (c.customer_num = o.customer_num);

The query returns all rows from the dominant table orders and, as necessary, displays the corresponding values from the

subservient table customer as NULL.

Figure 291. Query result

customer_num fname lname order_num order_date customer_num
 104 Anthony Wiggins 1001 05/30/1998 104
 101 Ludwig Pauli 1002 05/30/1998 101
 104 Anthony Wiggins 1003 05/30/1998 104
 <NULL> <NULL> <NULL> 1004 06/05/1998 106

Simple join

The following query is an example of a simple join on the customer and cust_calls tables.

Figure 292. Query

SELECT c.customer_num, c.lname, c.company,
 c.phone, u.call_dtime, u.call_descr
 FROM customer c, cust_calls u
 WHERE c.customer_num = u.customer_num;

The query returns only those rows in which the customer has made a call to customer service, as the result shows.

Figure 293. Query result

customer_num 106
lname Watson
company Watson & Son
phone 415-389-8789
call_dtime 1998-06-12 08:20
call_descr Order was received, but two of the cans of
 ANZ tennis balls within the case were empty
⋮;
customer_num 116
lname Parmelee
company Olympic City
phone 415-534-8822
call_dtime 1997-12-21 11:24
call_descr Second complaint from this customer! Received
 two cases right-handed outfielder gloves (1 HRO)
 instead of one case lefties.

Simple outer join on two tables

The following query uses the same Projection clause, tables, and comparison condition as the preceding example, but this

time it creates a simple outer join in HCL® Informix® extension syntax.

Chapter 1. SQL programming

Figure 294. Query

SELECT c.customer_num, c.lname, c.company,
 c.phone, u.call_dtime, u.call_descr
 FROM customer c, OUTER cust_calls u
 WHERE c.customer_num = u.customer_num;

The addition of the keyword OUTER before the cust_calls table makes it the subservient table. An outer join causes the query

to return information on all customers, whether or not they have made calls to customer service. All rows from the dominant

customer table are retrieved, and NULL values are assigned to columns of the subservient cust_calls table, as the result

shows.

Figure 295. Query result

customer_num 101
lname Pauli
company All Sports Supplies
phone 408-789-8075
call_dtime
call_descr

customer_num 102
lname Sadler
company Sports Spot
phone 415-822-1289
call_dtime
call_descr
⋮;
customer_num 107
lname Ream
company Athletic Supplies
phone 415-356-9876
call_dtime
call_descr

customer_num 108
lname Quinn
company Quinn's Sports
phone 415-544-8729
call_dtime
call_descr

Outer join for a simple join to a third table

Using the HCL® Informix® syntax, the following query shows an outer join that is the result of a simple join to a third table.

This second type of outer join is known as a nested simple join.

Figure 296. Query

SELECT c.customer_num, c.lname, o.order_num,
 i.stock_num, i.manu_code, i.quantity
 FROM customer c, OUTER (orders o, items i)
 WHERE c.customer_num = o.customer_num
 AND o.order_num = i.order_num
 AND manu_code IN ('KAR', 'SHM')
 ORDER BY lname;

333

HCL Informix 14.10 - SQL programming Guide

334

The query first performs a simple join on the orders and items tables, retrieving information on all orders for items with

a manu_code of KAR or SHM. It then performs an outer join to combine this information with data from the dominant

customer table. An optional ORDER BY clause reorganizes the data into the following form.

Figure 297. Query result

customer_num lname order_num stock_num manu_code quantity

 114 Albertson
 118 Baxter
 113 Beatty
 ⋮;
 105 Vector
 121 Wallack 1018 302 KAR 3
 106 Watson

Outer join of two tables to a third table

Using the HCL® Informix® extension syntax, the following query shows an outer join that is the result of an outer join of each

of two tables to a third table. In this third type of outer join, join relationships are possible only between the dominant table

and the subservient tables.

Figure 298. Query

SELECT c.customer_num, c.lname, o.order_num,
 order_date, call_dtime
 FROM customer c, OUTER orders o, OUTER cust_calls x
 WHERE c.customer_num = o.customer_num
 AND c.customer_num = x.customer_num
 ORDER BY lname
 INTO TEMP service;

The query individually joins the subservient tables orders and cust_calls to the dominant customer table; it does not join the

two subservient tables. An INTO TEMP clause selects the results into a temporary table for further manipulation or queries,

as the result shows.

Figure 299. Query result

customer_num lname order_num order_date call_dtime

 114 Albertson
 118 Baxter
 113 Beatty
 103 Currie
 115 Grant 1010 06/17/1998
 ⋮;
 117 Sipes 1012 06/18/1998
 105 Vector
 121 Wallack 1018 07/10/1998 1998-07-10 14:05
 106 Watson 1004 05/22/1998 1998-06-12 08:20
 106 Watson 1014 06/25/1998 1998-06-12 08:20

If Figure 298: Query on page 334 had tried to create a join condition between the two subservient tables o and x, as the

following query shows, an error message would indicate the creation of a two-sided outer join.

Chapter 1. SQL programming

Figure 300. Query

WHERE o.customer_num = x.customer_num

Joins that combine outer joins

To achieve multiple levels of nesting, you can create a join that employs any combination of the three types of outer joins.

Using the ANSI syntax, the following query creates a join that is the result of a combination of a simple outer join on two

tables and a second outer join.

Figure 301. Query

SELECT c.customer_num, c.lname, o.order_num,
 stock_num, manu_code, quantity
 FROM customer c, OUTER (orders o, OUTER items i)
 WHERE c.customer_num = o.customer_num
 AND o.order_num = i.order_num
 AND manu_code IN ('KAR', 'SHM')
 ORDER BY lname;

The query first performs an outer join on the orders and items tables, retrieving information on all orders for items with a

manu_code of KAR or SHM. It then performs a second outer join that combines this information with data from the dominant

customer table.

Figure 302. Query result

customer_num lname order_num stock_num manu_code quantity

 114 Albertson
 118 Baxter
 113 Beatty
 103 Currie
 115 Grant 1010
 ⋮;
 117 Sipes 1012
 117 Sipes 1007
 105 Vector
 121 Wallack 1018 302 KAR 3
 106 Watson 1014
 106 Watson 1004

You can specify the join conditions in two ways when you apply an outer join to the result of an outer join to a third table. The

two subservient tables are joined, but you can join the dominant table to either subservient table without affecting the results

if the dominant table and the subservient table share a common column.

Subqueries in SELECT statements

A subquery (the inner SELECT statement, where one SELECT statement is nested within another) can return zero or more

rows or expressions. Each subquery must be delimited by parentheses, and must contain a Projection clause and a FROM

clause. A subquery can itself contain other subqueries.

The database server supports subqueries in the following contexts:

335

HCL Informix 14.10 - SQL programming Guide

336

• A SELECT statement nested in the Projection clause of another SELECT statement

• a SELECT statement nested in the WHERE clause of another SELECT statement

• a SELECT statement nested in the FROM clause of another SELECT statement.

You can also specify a subquery in various clauses of the INSERT, DELETE, MERGE, or UPDATE statements where a subquery

is valid.

Subqueries in the Projection clause or in the WHERE clause can be correlated or uncorrelated. A subquery is correlated

when the value that it produces depends on a value produced by the outer SELECT statement that contains it. For more

information, see Correlated subqueries on page 336.

Any other kind of subquery is considered uncorrelated. Only uncorrelated subqueries are valid in the FROM clause of the

SELECT statement.

Correlated subqueries

A correlated subquery is a subquery that refers to a column of a table that is not listed in its FROM clause. The column can

be in the Projection clause or in the WHERE clause. To find the table to which the correlated subquery refers, search the

columns until a correlation is found.

In general, correlated subqueries diminish performance. Use the table name or alias in the subquery so that there is no doubt

as to which table the column is in.

The database server will use the outer query to get values. For example, if the table taba has the column col1 and table tabb

has the column col2 and they contain the following:

taba.col1 aa,bb,null
tabb.col2 bb, null

And the query is:

select * from taba where col1 in (select col1 from tabb);

Then the results might be meaningless. The database server will provide all values in taba.col1 and then compare them to

taba.col1 (outer query WHERE clause). This will return all rows. You usually use the subquery to return column values from

the inner table. Had the query been written as:

select * from taba where col1 in (select tabb.col1 from tabb);

Then the error -217 column not found would have resulted.

The important feature of a correlated subquery is that, because it depends on a value from the outer SELECT, it must be

executed repeatedly, once for every value that the outer SELECT produces. An uncorrelated subquery is executed only once.

Using subqueries to combine SELECT statements

You can construct a SELECT statement with a subquery to replace two separate SELECT statements.

Subqueries in SELECT statements allow you to perform various tasks, including the following actions:

Chapter 1. SQL programming

• Compare an expression to the result of another SELECT statement

• Determine whether the results of another SELECT statement include a specific expression

• Determine whether another SELECT statement returns any rows

An optional WHERE clause in a subquery is often used to narrow the search condition.

A subquery selects and returns values to the first or outer SELECT statement. A subquery can return no value, a single value,

or a set of values, as follows:

• If a subquery returns no value, the query does not return any rows. Such a subquery is equivalent to a NULL value.

• If a subquery returns one value, the value is in the form of either one aggregate expression or exactly one row and

one column. Such a subquery is equivalent to a single number or character value.

• If a subquery returns a list or set of values, the values can represent one row or one column.

• In the FROM clause of the outer query, a subquery can represent a set of rows (sometimes called a derived table or a

table expression).

Subqueries in a Projection clause

A subquery can occur in the Projection clause of another SELECT statement. The following query shows how you might

use a subquery in a Projection clause to return the total shipping charges (from the orders table) for each customer in the

customer table. You could also write this query as a join between two tables.

Figure 303. Query

SELECT customer.customer_num,
 (SELECT SUM(ship_charge)
 FROM orders
 WHERE customer.customer_num = orders.customer_num)
 AS total_ship_chg
 FROM customer;

Figure 304. Query result

customer_num total_ship_chg

 101 $15.30
 102
 103
 104 $38.00
 105
 ⋮
 123 $8.50
 124 $12.00
 125
 126 $13.00
 127 $18.00
 128

337

HCL Informix 14.10 - SQL programming Guide

338

Subqueries in the FROM clause

This topic describes subqueries that occur as nested SELECT statements in the FROM clause of an outer SELECT statement.

Such subqueries are sometimes called derived tables or table expressions because the outer query uses the results of the

subquery as a data source.

The following query uses asterisk notation in the outer query to return the results of a subquery that retrieves all fields of the

address column in the employee table.

Figure 305. Query

SELECT * FROM (SELECT address.* FROM employee);

Figure 306. Query result

address ROW(102 Ruby, Belmont, CA, 49932, 1000)
address ROW(133 First, San Jose, CA, 85744, 4900)
address ROW(152 Topaz, Willits, CA, 69445, 1000))
⋮;

This illustrates how to specify a derived table, but it is a trivial example of this syntax, because the outer query does not

manipulate any values in the table expression that the subquery in the FROM clause returns. (See Figure 145: Query on

page 286 for a simple query that returns the same results.)

The following query is a more complex example in which the outer query selects only the first qualifying row of a derived

table that a subquery in the FROM clause specifies as a simple join on the customer and cust_calls tables.

Figure 307. Query

SELECT LIMIT 1 * FROM
 (SELECT c.customer_num, c.lname, c.company,
 c.phone, u.call_dtime, u.call_descr
 FROM customer c, cust_calls u
 WHERE c.customer_num = u.customer_num
 ORDER BY u.call_dtime DESC);

The query returns only those rows in which the customer has made a call to customer service, as the result shows.

Figure 308. Query result

customer_num 106
lname Watson
company Watson & Son
phone 415-389-8789
call_dtime 1998-06-12 08:20
call_descr Order was received, but two of the cans of
 ANZ tennis balls within the case were empty

In the preceding example, the subquery includes an ORDER BY clause that specifies a column that appears in Projection

list of the subquery, but the query would also be valid if the Projection list had omitted the u.call_dtime column. The FROM

clause is the only context in which a subquery can specify the ORDER BY clause.

Chapter 1. SQL programming

Subqueries in WHERE clauses

This section describes subqueries that occur as a SELECT statement that is nested in the WHERE clause of another SELECT

statement.

You can use any relational operator with ALL and ANY to compare something to every one of (ALL) or to any one of (ANY)

the values that the subquery produces. You can use the keyword SOME in place of ANY. The operator IN is equivalent to =

ANY. To create the opposite search condition, use the keyword NOT or a different relational operator.

The EXISTS operator tests a subquery to see if it found any values; that is, it asks if the result of the subquery is not null. You

cannot use the EXISTS keyword in a subquery that contains a column with a TEXT or BYTE data type.

For the syntax that you use to create a condition with a subquery, see the HCL® Informix® Guide to SQL: Syntax.

The following keywords introduce a subquery in the WHERE clause of a SELECT statement.

The ALL keyword

Use the keyword ALL preceding a subquery to determine whether a comparison is true for every value returned. If the

subquery returns no values, the search condition is true. (If it returns no values, the condition is true of all the zero values.)

The following query lists the following information for all orders that contain an item for which the total price is less than the

total price on every item in order number 1023.

Figure 309. Query

SELECT order_num, stock_num, manu_code, total_price
 FROM items
 WHERE total_price < ALL
 (SELECT total_price FROM items
 WHERE order_num = 1023);

Figure 310. Query result

 order_num stock_num manu_code total_price

 1003 9 ANZ $20.00
 1005 6 SMT $36.00
 1006 6 SMT $36.00
 1010 6 SMT $36.00
 1013 5 ANZ $19.80
 1013 6 SMT $36.00
 1018 302 KAR $15.00

The ANY keyword

Use the keyword ANY (or its synonym SOME) before a subquery to determine whether a comparison is true for at least one

of the values returned. If the subquery returns no values, the search condition is false. (Because no values exist, the condition

cannot be true for one of them.)

The following query finds the order number of all orders that contain an item for which the total price is greater than the total

price of any one of the items in order number 1005.

339

HCL Informix 14.10 - SQL programming Guide

340

Figure 311. Query

SELECT DISTINCT order_num
 FROM items
 WHERE total_price > ANY
 (SELECT total_price
 FROM items
 WHERE order_num = 1005);

Figure 312. Query result

order_num

 1001
 1002
 1003
 1004
 ⋮;
 1020
 1021
 1022
 1023

Single-valued subqueries

You do not need to include the keyword ALL or ANY if you know the subquery can return exactly one value to the outer-

level query. A subquery that returns exactly one value can be treated like a function. This kind of subquery often uses an

aggregate function because aggregate functions always return single values.

The following query uses the aggregate function MAX in a subquery to find the order_num for orders that include the

maximum number of volleyball nets.

Figure 313. Query

SELECT order_num FROM items
 WHERE stock_num = 9
 AND quantity =
 (SELECT MAX (quantity)
 FROM items
 WHERE stock_num = 9);

Figure 314. Query result

 order_num

 1012

The following query uses the aggregate function MIN in the subquery to select items for which the total price is higher than

10 times the minimum price.

Chapter 1. SQL programming

Figure 315. Query

SELECT order_num, stock_num, manu_code, total_price
 FROM items x
 WHERE total_price >
 (SELECT 10 * MIN (total_price)
 FROM items
 WHERE order_num = x.order_num);

Figure 316. Query result

order_num stock_num manu_code total_price

 1003 8 ANZ $840.00
 1018 307 PRC $500.00
 1018 110 PRC $236.00
 1018 304 HRO $280.00

Correlated subqueries

A correlated subquery is a subquery that refers to a column of a table that is not in its FROM clause. The column can be in

the Projection clause or in the WHERE clause.

In general, correlated subqueries diminish performance. It is recommended that you qualify the column name in subqueries

with the name or alias of the table, in order to remove any doubt regarding in which table the column resides.

The following query is an example of a correlated subquery that returns a list of the 10 latest shipping dates in the orders

table. It includes an ORDER BY clause after the subquery to order the results because (except in the FROM clause) you

cannot include ORDER BY within a subquery.

Figure 317. Query

SELECT po_num, ship_date FROM orders main
 WHERE 10 >
 (SELECT COUNT (DISTINCT ship_date)
 FROM orders sub
 WHERE sub.ship_date < main.ship_date)
 AND ship_date IS NOT NULL
 ORDER BY ship_date, po_num;

The subquery is correlated because the number that it produces depends on main.ship_date, a value that the outer SELECT

produces. Thus, the subquery must be re-executed for every row that the outer query considers.

The query uses the COUNT function to return a value to the main query. The ORDER BY clause then orders the data. The

query locates and returns the 16 rows that have the 10 latest shipping dates, as the result shows.

341

HCL Informix 14.10 - SQL programming Guide

342

Figure 318. Query result

po_num ship_date

4745 06/21/1998
278701 06/29/1998
429Q 06/29/1998
8052 07/03/1998
B77897 07/03/1998
LZ230 07/06/1998
B77930 07/10/1998
PC6782 07/12/1998
DM354331 07/13/1998
S22942 07/13/1998
MA003 07/16/1998
W2286 07/16/1998
Z55709 07/16/1998
C3288 07/25/1998
KF2961 07/30/1998
W9925 07/30/1998

If you use a correlated subquery, such as Figure 317: Query on page 341, on a large table, you should index the ship_date

column to improve performance. Otherwise, this SELECT statement is inefficient, because it executes the subquery once

for every row of the table. For information about indexing and performance issues, see the HCL® Informix® Administrator's

Guide and your .

You cannot use a correlated subquery in the FROM clause, however, as the following invalid example illustrates:

SELECT item_num, stock_num FROM items,
 (SELECT stock_num FROM catalog
 WHERE stock_num = items.item_num) AS vtab;

The subquery in this example fails with error -24138:

ALL COLUMN REFERENCES IN A TABLE EXPRESSION MUST REFER
TO TABLES IN THE FROM CLAUSE OF THE TABLE EXPRESSION.

The database server issues this error because the items.item_num column in the subquery also appears in the Projection

clause of the outer query, but the FROM clause of the inner query specifies only the catalog table. The term table expression

in the error message text refers to the set of column values or expressions that are returned by a subquery in the FROM

clause, where only uncorrelated subqueries are valid.

The EXISTS keyword

The keyword EXISTS is known as an existential qualifier because the subquery is true only if the outer SELECT, as the

following query shows, finds at least one row.

Figure 319. Query

SELECT UNIQUE manu_name, lead_time
 FROM manufact
 WHERE EXISTS
 (SELECT * FROM stock
 WHERE description MATCHES '*shoe*'
 AND manufact.manu_code = stock.manu_code);

Chapter 1. SQL programming

You can often construct a query with EXISTS that is equivalent to one that uses IN. The following query uses an IN predicate

to construct a query that returns the same result as the query above.

Figure 320. Query

SELECT UNIQUE manu_name, lead_time
 FROM stock, manufact
 WHERE manufact.manu_code IN
 (SELECT manu_code FROM stock
 WHERE description MATCHES '*shoe*')
 AND stock.manu_code = manufact.manu_code;

Figure 319: Query on page 342 and Figure 320: Query on page 343 return rows for the manufacturers that produce a kind

of shoe, as well as the lead time for ordering the product. The result shows the return values.

Figure 321. Query result

manu_name lead_time

Anza 5
Hero 4
Karsten 21
Nikolus 8
ProCycle 9
Shimara 30

Add the keyword NOT to IN or to EXISTS to create a search condition that is the opposite of the condition in the preceding

queries. You can also substitute !=ALL for NOT IN.

The following query shows two ways to do the same thing. One way might allow the database server to do less work than the

other, depending on the design of the database and the size of the tables. To find out which query might be better, use the

SET EXPLAIN command to get a listing of the query plan. SET EXPLAIN is discussed in your and HCL® Informix® Guide to

SQL: Syntax.

Figure 322. Query

SELECT customer_num, company FROM customer
 WHERE customer_num NOT IN
 (SELECT customer_num FROM orders
 WHERE customer.customer_num = orders.customer_num);

SELECT customer_num, company FROM customer
 WHERE NOT EXISTS
 (SELECT * FROM orders
 WHERE customer.customer_num = orders.customer_num);

Each statement in the query above returns the following rows, which identify customers who have not placed orders.

343

HCL Informix 14.10 - SQL programming Guide

344

Figure 323. Query result

customer_num company

 102 Sports Spot
 103 Phil's Sports
 105 Los Altos Sports
 107 Athletic Supplies
 108 Quinn's Sports
 109 Sport Stuff
 113 Sportstown
 114 Sporting Place
 118 Blue Ribbon Sports
 125 Total Fitness Sports
 128 Phoenix University

The keywords EXISTS and IN are used for the set operation known as intersection, and the keywords NOT EXISTS and NOT

IN are used for the set operation known as difference. These concepts are discussed in Set operations on page 350.

The following query performs a subquery on the items table to identify all the items in the stock table that have not yet been

ordered.

Figure 324. Query

SELECT * FROM stock
 WHERE NOT EXISTS
 (SELECT * FROM items
 WHERE stock.stock_num = items.stock_num
 AND stock.manu_code = items.manu_code);

The query returns the following rows.

Figure 325. Query result

stock_num manu_code description unit_price unit unit_descr

 101 PRC bicycle tires $88.00 box 4/box
 102 SHM bicycle brakes $220.00 case 4 sets/case
 102 PRC bicycle brakes $480.00 case 4 sets/case
 105 PRC bicycle wheels $53.00 pair pair
 ⋮;
 312 HRO racer goggles $72.00 box 12/box
 313 SHM swim cap $72.00 box 12/box
 313 ANZ swim cap $60.00 box 12/box

No logical limit exists to the number of subqueries a SELECT statement can have.

Perhaps you want to check whether information has been entered correctly in the database. One way to find errors in a

database is to write a query that returns output only when errors exist. A subquery of this type serves as a kind of audit query,

as the following query shows.

Chapter 1. SQL programming

Figure 326. Query

SELECT * FROM items
 WHERE total_price != quantity *
 (SELECT unit_price FROM stock
 WHERE stock.stock_num = items.stock_num
 AND stock.manu_code = items.manu_code);

The query returns only those rows for which the total price of an item on an order is not equal to the stock unit price times

the order quantity. If no discount has been applied, such rows were probably entered incorrectly in the database. The query

returns rows only when errors occur. If information is correctly inserted into the database, no rows are returned.

Figure 327. Query result

item_num order_num stock_num manu_code quantity total_price

 1 1004 1 HRO 1 $960.00
 2 1006 5 NRG 5 $190.00

Subqueries in DELETE and UPDATE statements

Besides subqueries within the WHERE clause of a SELECT statement, you can use subqueries within other data manipulation

language (DML) statements, including the WHERE clause of DELETE and UPDATE statements.

Certain restrictions apply. If the FROM clause of a subquery returns more than one row, and the clause specifies the same

table or view that the outer DML statement is modifying, the DML operation will succeed under these circumstances:

• The DML statement is not an INSERT statement.

• No SPL routine within the subquery references the table that is being modified.

• The subquery does not include a correlated column name.

• The subquery is specified using the Condition with Subquery syntax in the WHERE clause of the DELETE or UPDATE

statement.

If any of these conditions are not met, the DML operation fails with error -360.

The following example updates the stock table by increasing the unit_price value by 10% for a subset of prices. The WHERE

clause specifies which prices to increase by applying the IN operator to the rows returned by a subquery that selects only the

rows of the stock table where the unit_price value is less than 75.

UPDATE stock SET unit_price = unit_price * 1.1
 WHERE unit_price IN
 (SELECT unit_price FROM stock WHERE unit_price < 75);

Handle collections in SELECT statements

The database server provides the following SQL features to handle collection expressions:

Collection subquery

A collection subquery takes a virtual table (the result of a subquery) and converts it into a collection.

345

HCL Informix 14.10 - SQL programming Guide

346

A collection subquery always returns a collection of type MULTISET. You can use a collection subquery to

convert a Query result of relational data into a MULTISET collection. For information about the collection data

types, see the IBM® Informix® Database Design and Implementation Guide.

Collection-derived table

A collection-derived table takes a collection and converts it into a virtual table.

Each element of the collection is constructed as a row in the collection-derived table. You can use a collection-

derived table to access the individual elements of a collection.

The collection subquery and collection-derived table features represent inverse operations: the collection subquery converts

row values from a relational table into a collection whereas the collection-derived table converts the elements of a collection

into rows of a relational table.

Collection subqueries

A collection subquery enables users to construct a collection expression from a subquery expression. A collection subquery

uses the MULTISET keyword immediately before the subquery to convert the values returned into a MULTISET collection.

When you use the MULTISET keyword before a subquery expression, however, the database server does not change the rows

of the underlying table but only modifies a copy of those rows. For example, if a collection subquery is passed to a user-

defined routine that modifies the collection, then a copy of the collection is modified but not the underlying table.

A collection subquery is an expression that can take either of the following forms:

MULTISET(SELECT expression1, expression2... FROM tab_name...)

MULTISET(SELECT ITEM expression FROM tab_name...)

Omit the ITEM keyword in a collection subquery

If you omit the ITEM keyword in the collection subquery expression, the collection subquery is a MULTISET whose element

type is always an unnamed ROW type. The fields of the unnamed ROW type match the data types of the expressions

specified in the Projection clause of the subquery.

Suppose you create the following table that contains a column of type MULTISET:

CREATE TABLE tab2
(
 id_num INT,
 ms_col MULTISET(ROW(a INT) NOT NULL)
);

The following query shows how you might use a collection subquery in a WHERE clause to convert the rows of INT values

that the subquery returns to a collection of type MULTISET. In this example, the database server returns rows when the

ms_col column of tab2 is equal to the result of the collection subquery expression

Figure 328. Query

SELECT id_num FROM tab2
 WHERE ms_col = (MULTISET(SELECT int_col FROM tab1));

Chapter 1. SQL programming

The query omits the ITEM keyword in the collection subquery, so the INT values the subquery returns are of type MULTISET

(ROW(a INT) NOT NULL) that matches the data type of the ms_col column of tab2.

Specify the ITEM keyword in a collection subquery

When the projection list of the subquery contains a single expression, you can preface the projection list of the subquery with

the ITEM keyword to specify that the element type of the MULTISET matches the data type of the subquery result. In other

words, when you include the ITEM keyword, the database server does not put a row wrapper around the projection list. For

example, if the subquery (that immediately follows the MULTISET keyword) returns INT values, the collection subquery is of

type MULTISET(INT NOT NULL).

Suppose you create a function int_func() that accepts an argument of type MULTISET(INT NOT NULL). The following query

shows a collection subquery that converts rows of INT values to a MULTISET and uses the collection subquery as an

argument in the function int_func().

Figure 329. Query

EXECUTE FUNCTION int_func(MULTISET(SELECT ITEM int_col
 FROM tab1
 WHERE int_col BETWEEN 1 AND 10));

The query includes the ITEM keyword in the subquery, so the int_col values that the query returns are converted to a

collection of type MULTISET (INT NOT NULL). Without the ITEM keyword, the collection subquery would return a collection of

type MULTISET (ROW(a INT) NOT NULL).

Collection subqueries in the FROM clause

Collection subqueries are valid in the FROM clause of SELECT statements, where the outer query can use the values returned

by the subquery as a source of data.

The query examples in the section Collection subqueries on page 346 specify collection subqueries by using the TABLE

keyword followed (within parentheses) by the MULTISET keyword, followed by a subquery. This syntax is the HCL®

Informix® extension to the ANSI/ISO standard for the SQL language.

In the FROM clause of the SELECT statement, and only in that context, you can substitute syntax that complies with

the ANSI/ISO standard for SQL by specifying a subquery, omitting the TABLE and MULTISET keywords and the nested

parentheses, to specify a collection subquery.

The following query uses the HCL® Informix® extension syntax to join two collection subqueries in the FROM clause of the

outer query:

Figure 330. Query

SELECT * FROM TABLE(MULTISET(SELECT SUM(C1) FROM T1 GROUP BY C1)),
 TABLE(MULTISET(SELECT SUM(C1) FROM T2 GROUP BY C2));

The following logically equivalent query returns the same results as the query above by using ANSI/ISO-compliant syntax to

join two derived tables in the FROM clause of the outer query:

347

HCL Informix 14.10 - SQL programming Guide

348

Figure 331. Query

SELECT * FROM (SELECT SUM(C1) FROM T1 GROUP BY C1),
 (SELECT SUM(C1) FROM T2 GROUP BY C2);

An advantage of this query over the TABLE(MULTISET(SELECT ...)) HCL® Informix® extension version is that it can also be

executed by any database server that supports the ANSI/ISO-compliant syntax in the FROM clause. For more information

about syntax and restrictions for collection subqueries, see the HCL® Informix® Guide to SQL: Syntax.

Collection-derived tables

A collection-derived table enables you to handle the elements of a collection expression as rows in a virtual table. Use

the TABLE keyword in the FROM clause of a SELECT statement to create a collection-derived table. The database server

supports collection-derived tables in SELECT, INSERT, UPDATE, and DELETE statements.

The following query uses a collection-derived table named c_table to access elements from the sales column of the

sales_rep table in the superstores_demo database. The sales column is a collection of an unnamed row type whose two

fields, month and amount, store sales data. The query returns an element for sales.amount when sales.month equals 98-03.

Because the inner select is itself an expression, it cannot return more than one column value per iteration of the outer query.

The outer query specifies how many rows of the sales_rep table are evaluated.

Figure 332. Query

SELECT (SELECT c_table.amount FROM TABLE (sales_rep.sales) c_table
 WHERE c_table.month = '98-03')
 FROM sales_rep;

Figure 333. Query result

(expression)

$47.22
$53.22

The following query uses a collection-derived table to access elements from the sales collection column where the rep_num

column equals 102. With a collection-derived table, you can specify aliases for the table and columns. If no table name is

specified for a collection-derived table, the database server creates one automatically. This example specifies the derived

column list s_month and s_amount for the collection-derived table c_table.

Figure 334. Query

SELECT * FROM TABLE((SELECT sales FROM sales_rep
 WHERE sales_rep.rep_num = 102)) c_table(s_month, s_amount);

Figure 335. Query result

s_month s_amount

1998-03 $53.22
1998-04 $18.22

Chapter 1. SQL programming

The following query creates a collection-derived table but does not specify a derived table or derived column names. The

query returns the same result as Figure 334: Query on page 348 except the derived columns assume the default field

names of the sales column in the sales_rep table.

Figure 336. Query

SELECT * FROM TABLE((SELECT sales FROM sales_rep
 WHERE sales_rep.rep_num = 102));

Figure 337. Query result

month amount

1998-03 $53.22
1998-04 $18.22

Restriction: A collection-derived table is read-only, so it cannot be the target table of INSERT, UPDATE, or DELETE

statements or the underlying table of an updatable cursor or view.

For a complete description of the syntax and restrictions on collection-derived tables, see the HCL® Informix® Guide to SQL:

Syntax.

ISO-compliant syntax for collection derived tables

The query examples in the topic Collection-derived tables on page 348 specify collection-derived tables by using the TABLE

keyword followed by a SELECT statement enclosed within double parentheses. This syntax is the HCL® Informix® extension

to the ANSI/ISO standard for the SQL language.

In the FROM clause of the SELECT statement, however, and only in that context, you can instead use syntax that complies

with the ANSI/ISO standard for SQL by specifying a subquery, without the TABLE keyword or the nested parentheses, to

define a collection-derived table.

The following example is logically equivalent to Figure 334: Query on page 348, and specifies the derived column list

s_month and s_amount for the collection-derived table c_table.

Figure 338. Query

SELECT * FROM (SELECT sales FROM sales_rep
 WHERE sales_rep.rep_num = 102) c_table(s_month, s_amount);

Figure 339. Query result

s_month s_amount

1998-03 $53.22
1998-04 $18.22

As in the HCL® Informix® extension syntax, declaring names for the derived table or for its columns is optional, rather than

required. The following query uses ANSI/ISO-compliant syntax for a derived table in the FROM clause of the outer query, and

produces the same results as Figure 336: Query on page 349:

349

HCL Informix 14.10 - SQL programming Guide

350

Figure 340. Query

SELECT * FROM (SELECT sales FROM sales_rep
 WHERE sales_rep.rep_num = 102);

Figure 341. Query result

month amount

1998-03 $53.22
1998-04 $18.22

Set operations

The standard set operations union, intersection, and difference let you manipulate database information. These three

operations let you use SELECT statements to check the integrity of your database after you perform an update, insert, or

delete. They can be useful when you transfer data to a history table, for example, and want to verify that the correct data is in

the history table before you delete the data from the original table.

Union

A union operation uses the UNION operator to combine two queries into a single compound query. You can use the UNION

operator between two or more SELECT statements to produce a temporary table that contains rows that exist in any or all of

the original tables. You can also use the UNION operator in the definition of a view.

You cannot use the UNION operator inside a subquery in the following contexts

• in the Projection clause of the SELECT statement

• in the WHERE clause of the SELECT, INSERT, DELETE, or UPDATE statement.

The UNION operator is valid, however, in a subquery in the FROM clause of the SELECT statement, as in the following

example:

SELECT * FROM (SELECT col1 FROM tab1 WHERE col1 = 100) AS vtab1(c1),
 (SELECT col1 FROM tab2 WHERE col1 = 10
 UNION ALL
 SELECT col1 FROM tab1 WHERE col1 < 50) AS vtab2(vc1);

HCL Informix® does not support ordering on ROW types. Because a UNION operation requires a sort to remove duplicate

values, you cannot use a UNION operator when either query in the union operation includes ROW type data. However, the

database server does support UNION ALL with ROW type data, because this type of operation does not require a sort.

The following figure illustrates the UNION set operation.

Chapter 1. SQL programming

Figure 342. The Union set operation

The UNION keyword selects all rows from the two queries, removes duplicates, and returns what is left. Because the results

of the queries are combined into a single result, the projection list in each query must have the same number of columns.

Also, the corresponding columns that are selected from each table must contain compatible data types (CHARACTER data

type columns must be the same length), and these corresponding columns must all allow or all disallow NULL values.

For the complete syntax of the SELECT statement and the UNION operator, see the HCL® Informix® Guide to SQL: Syntax. For

information specific to the IBM® Informix® ESQL/C product and any limitations that involve the INTO clause and compound

queries, see the HCL® Informix® Enterprise Replication Guide.

The following query performs a union on the stock_num and manu_code columns in the stock and items tables.

Figure 343. Query

SELECT DISTINCT stock_num, manu_code FROM stock
 WHERE unit_price < 25.00
UNION
SELECT stock_num, manu_code FROM items
 WHERE quantity > 3;

The query selects those items that have a unit price of less than $25.00 or that have been ordered in quantities greater than

three and lists their stock_num and manu_code, as the result shows.

Figure 344. Query result

stock_num manu_code

 5 ANZ
 5 NRG
 5 SMT
 9 ANZ
 103 PRC
 106 PRC
 201 NKL
 301 KAR
 302 HRO
 302 KAR

351

HCL Informix 14.10 - SQL programming Guide

352

ORDER BY clause with UNION

As the following query shows, when you include an ORDER BY clause, it must follow the final SELECT statement and use an

integer, not an identifier, to refer to the ordering column. Ordering takes place after the set operation is complete.

Figure 345. Query

SELECT DISTINCT stock_num, manu_code FROM stock
 WHERE unit_price < 25.00
UNION
SELECT stock_num, manu_code FROM items
 WHERE quantity > 3
 ORDER BY 2;

The compound query above selects the same rows as Figure 343: Query on page 351 but displays them in order of the

manufacturer code, as the result shows.

Figure 346. Query result

stock_num manu_code

 5 ANZ
 9 ANZ
 302 HRO
 301 KAR
 302 KAR
 201 NKL
 5 NRG
 103 PRC
 106 PRC
 5 SMT

The UNION ALL keywords

By default, the UNION keyword excludes duplicate rows. To retain the duplicate values, add the optional keyword ALL, as the

following query shows.

Figure 347. Query

SELECT stock_num, manu_code FROM stock
 WHERE unit_price < 25.00
UNION ALL
SELECT stock_num, manu_code FROM items
 WHERE quantity > 3
 ORDER BY 2
 INTO TEMP stock item;

The query uses the UNION ALL keywords to unite two SELECT statements and adds an INTO TEMP clause after the final

SELECT to put the results into a temporary table. It returns the same rows as Figure 345: Query on page 352 but also

includes duplicate values.

Chapter 1. SQL programming

Figure 348. Query result

stock_num manu_code

 9 ANZ
 5 ANZ
 9 ANZ
 5 ANZ
 9 ANZ
 ⋮
 5 NRG
 5 NRG
 103 PRC
 106 PRC
 5 SMT
 5 SMT

Different column names

Corresponding columns in the Projection clauses for the combined queries must have compatible data types, but the

columns do not need to use the same column names.

The following query selects the state column from the customer table and the corresponding code column from the state

table.

Figure 349. Query

SELECT DISTINCT state FROM customer
 WHERE customer_num BETWEEN 120 AND 125
UNION
SELECT DISTINCT code FROM state
 WHERE sname MATCHES '*a';

The query returns state code abbreviations for customer numbers 120 through 125 and for states whose sname ends in a.

Figure 350. Query result

state

AK
AL
AZ
CA
DE
⋮;
SD
VA
WV

In compound queries, the column names or display labels in the first SELECT statement are the ones that appear in the

results. Thus, in the query, the column name state from the first SELECT statement is used instead of the column name code

from the second.

353

HCL Informix 14.10 - SQL programming Guide

354

UNION with multiple tables

The following query performs a union on three tables. The maximum number of unions depends on the practicality of the

application and any memory limitations.

Figure 351. Query

SELECT stock_num, manu_code FROM stock
 WHERE unit_price > 600.00
UNION ALL
SELECT stock_num, manu_code FROM catalog
 WHERE catalog_num = 10025
UNION ALL
SELECT stock_num, manu_code FROM items
 WHERE quantity = 10
 ORDER BY 2;

The query selects items where the unit_price in the stock table is greater than $600, the catalog_num in the catalog table

is 10025, or the quantity in the items table is 10; and the query orders the data by manu_code. The result shows the return

values.

Figure 352. Query result

stock_num manu_code

 5 ANZ
 9 ANZ
 8 ANZ
 4 HSK
 1 HSK
 203 NKL
 5 NRG
 106 PRC
 113 SHM

A literal in the Projection clause

The following query uses a literal in the projection list to tag the output of part of a union so it can be distinguished later. The

tag is given the label sortkey. The query uses sortkey to order the retrieved rows.

Figure 353. Query

SELECT '1' sortkey, lname, fname, company,
 city, state, phone
 FROM customer x
 WHERE state = 'CA'
UNION
SELECT '2' sortkey, lname, fname, company,
 city, state, phone
 FROM customer y
 WHERE state <> 'CA'
 INTO TEMP calcust;
SELECT * FROM calcust
 ORDER BY 1;

The query creates a list in which the customers from California appear first.

Chapter 1. SQL programming

Figure 354. Query result

sortkey 1
lname Baxter
fname Dick
company Blue Ribbon Sports
city Oakland
state CA
phone 415-655-0011

sortkey 1
lname Beatty
fname Lana
company Sportstown
city Menlo Park
state CA
phone 415-356-9982
⋮
sortkey 2
lname Wallack
fname Jason
company City Sports
city Wilmington
state DE
phone 302-366-7511

A FIRST clause

You can use the FIRST clause to select the first rows that result from a union query. The following query uses a FIRST clause

to return the first five rows of a union between the stock and items tables.

Figure 355. Query

SELECT FIRST 5 DISTINCT stock_num, manu_code
 FROM stock
 WHERE unit_price < 55.00
UNION
SELECT stock_num, manu_code
 FROM items
 WHERE quantity > 3;

Figure 356. Query result

stock_num manu_code

 5 NRG
 5 ANZ
 6 SMT
 6 ANZ
 9 ANZ

Intersection

The intersection of two sets of rows produces a table that contains rows that exist in both the original tables. Use the

keyword EXISTS or IN to introduce subqueries that show the intersection of two sets. The following figure illustrates the

intersection set operation.

355

HCL Informix 14.10 - SQL programming Guide

356

Figure 357. The intersection set operation

The following query is an example of a nested SELECT statement that shows the intersection of the stock and items tables.

The result contains all the elements that appear in both sets and returns the following rows.

Figure 358. Query

SELECT stock_num, manu_code, unit_price FROM stock
 WHERE stock_num IN
 (SELECT stock_num FROM items)
 ORDER BY stock_num;

Figure 359. Query result

stock_num manu_code unit_price

 1 HRO $250.00
 1 HSK $800.00
 1 SMT $450.00
 2 HRO $126.00
 3 HSK $240.00
 3 SHM $280.00
 ⋮
 306 SHM $190.00
 307 PRC $250.00
 309 HRO $40.00
 309 SHM $40.00

Difference

The difference between two sets of rows produces a table that contains rows in the first set that are not also in the second

set. Use the keywords NOT EXISTS or NOT IN to introduce subqueries that show the difference between two sets. The

following figure illustrates the difference set operation.

Chapter 1. SQL programming

Figure 360. The difference set operation

The following query is an example of a nested SELECT statement that shows the difference between the stock and items

tables.

Figure 361. Query

SELECT stock_num, manu_code, unit_price FROM stock
 WHERE stock_num NOT IN
 (SELECT stock_num FROM items)
 ORDER BY stock_num;

The result contains all the elements from only the first set, which returns 17 rows.

Figure 362. Query result

stock_num manu_code unit_price

 102 PRC $480.00
 102 SHM $220.00
 106 PRC $23.00
 ⋮
 312 HRO $72.00
 312 SHM $96.00
 313 ANZ $60.00
 313 SHM $72.00

Summary

This chapter builds on concepts introduced in Compose SELECT statements on page 232. It provides sample syntax and

results for more advanced kinds of SELECT statements, which are used to query a relational database. This chapter presents

the following material:

• Introduces the GROUP BY and HAVING clauses, which you can use with aggregates to return groups of rows and

apply conditions to those groups

• Shows how to join a table to itself with a self-join to compare values in a column with other values in the same

column and to identify duplicates

• Explains how an outer join treats two or more tables asymmetrically, and provides examples of the four kinds of outer

join using both the HCL® Informix® extension and ANSI join syntax.

357

HCL Informix 14.10 - SQL programming Guide

358

• Describes how to nest a SELECT statement in the WHERE clause of another SELECT statement to create correlated

and uncorrelated subqueries and shows how to use aggregate functions in subqueries

• Describes how to nest SELECT statements in the FROM clause of another SELECT statement to specify uncorrelated

subqueries whose results are a data source for the outer SELECT statement

• Demonstrates how to use the keywords ALL, ANY, EXISTS, IN, and SOME to create subqueries, and the effect of

adding the keyword NOT or a relational operator

• Describes how to use collection subqueries to convert relational data to a collection of type MULTISET and how to

use collection-derived tables to access elements within a collection

• Discusses the union, intersection, and difference set operations

• Shows how to use the UNION and UNION ALL keywords to create compound queries that consist of two or more

SELECT statements

Modify data

This section describes how to modify the data in your databases. Modifying data is fundamentally different from querying

data. Querying data involves examining the contents of tables. To modify data involves changing the contents of tables.

Modify data in your database

The following statements modify data:

• DELETE

• INSERT

• MERGE

• UPDATE

Although these SQL statements are relatively simple when compared with the more advanced SELECT statements, use them

carefully because they change the contents of the database.

Think about what happens if the system hardware or software fails during a query. Even if the effect on the application

is severe, the database itself is unharmed. However, if the system fails while a modification is under way, the state of the

database is in doubt. Obviously, a database in an uncertain state has far-reaching implications. Before you delete, insert, or

update rows in a database, ask yourself the following questions:

• Is user access to the database and its tables secure; that is, are specific users given limited database and table-level

privileges?

• Does the modified data preserve the existing integrity of the database?

• Are systems in place that make the database relatively immune to external events that might cause system or

hardware failures?

If you cannot answer yes to each of these questions, do not panic. Solutions to all these problems are built into the HCL®

Informix® database servers. After a description of the statements that modify data, this section discusses these solutions.

The IBM® Informix® Database Design and Implementation Guide covers these topics in greater detail.

Chapter 1. SQL programming

Delete rows

The DELETE statement removes any row or combination of rows from a table. You cannot recover a deleted row after the

transaction is committed. (Transactions are discussed under Interrupted modifications on page 391. For now, think of a

transaction and a statement as the same thing.)

When you delete a row, you must also be careful to delete any rows of other tables whose values depend on the deleted row.

If your database enforces referential constraints, you can use the ON DELETE CASCADE option of the CREATE TABLE or

ALTER TABLE statements to allow deletes to cascade from one table in a relationship to another. For more information on

referential constraints and the ON DELETE CASCADE option, refer to Referential integrity on page 382.

Delete all rows of a table

The DELETE statement specifies a table and usually contains a WHERE clause that designates the row or rows that are to be

removed from the table. If the WHERE clause is left out, all rows are deleted.

Important: Do not execute the following statement.

DELETE FROM customer;

You can write DELETE statements with or without the FROM keyword.

DELETE customer;

Because these DELETE statements do not contain a WHERE clause, all rows from the customer table are deleted. If you

attempt an unconditional delete using the DB-Access menu options, the program warns you and asks for confirmation.

However, an unconditional DELETE from within a program can occur without warning.

If you want to delete rows from a table named from, you must first set the DELIMIDENT environment variable, or qualify the

name of the table with the name of its owner:

DELETE legree.from;

For more information about delimited identifiers and DELIMIDENT environment variable, see the descriptions of the Quoted

String expression and of the Identifier segment in the HCL® Informix® Guide to SQL: Syntax.

Delete all rows using TRUNCATE

You can use the TRUNCATE statement to quickly remove all rows from a table and also remove all corresponding index data.

You cannot recover deleted rows after the transaction is committed. You can use the TRUNCATE statement on tables that

contain any type of columns, including smart large objects.

Removing rows with the TRUNCATE statement is faster than removing them with the DELETE statement. It is not necessary

to run the UPDATE STATISTICS statement immediately after the TRUNCATE statement. After TRUNCATE executes

successfully, HCL Informix® automatically updates the statistics and distributions for the table and for its indexes in the

system catalog to show no rows in the table or in its dbspace partitions.

For a description of logging, see Transaction logging on page 392.

359

HCL Informix 14.10 - SQL programming Guide

360

TRUNCATE is a data-definition language statement that does not activate DELETE triggers, if any are defined on the table.

For an explanation on using triggers, see Create and use triggers on page 522.

If the table that the TRUNCATE statement specifies is a typed table, a successful TRUNCATE operation removes all the rows

and B-tree structures from that table and from all its subtables within the table hierarchy. TRUNCATE has no equivalent to the

ONLY keyword of the DELETE statement to restricts the operation to a single table within the typed table hierarchy.

HCL Informix® always logs the TRUNCATE operation, even for a non-logging table. In databases that support transaction

logging, only the COMMIT WORK or ROLLBACK WORK statement of SQL is valid after TRUNCATE within the same

transaction. For information on the performance impact of using the TRUNCATE statement, see your . For the complete

syntax, see the HCL® Informix® Guide to SQL: Syntax.

Delete specified rows

The WHERE clause in a DELETE statement has the same form as the WHERE clause in a SELECT statement. You can use it

to designate exactly which row or rows should be deleted. You can delete a customer with a specific customer number, as

the following example shows:

DELETE FROM customer WHERE customer_num = 175;

In this example, because the customer_num column has a unique constraint, you can ensure that no more than one row is

deleted.

Delete selected rows

You can also choose rows that are based on nonindexed columns, as the following example shows:

DELETE FROM customer WHERE company = 'Druid Cyclery';

Because the column that is tested does not have a unique constraint, this statement might delete more than one row. (Druid

Cyclery might have two stores, both with the same name but different customer numbers.)

To find out how many rows a DELETE statement affects, select the count of qualifying rows from the customer table for

Druid Cyclery.

SELECT COUNT(*) FROM customer WHERE company = 'Druid Cyclery';

You can also select the rows and display them to ensure that they are the ones you want to delete.

Using a SELECT statement as a test is only an approximation, however, when the database is available to multiple users

concurrently. Between the time you execute the SELECT statement and the subsequent DELETE statement, other users could

have modified the table and changed the result. In this example, another user might perform the following actions:

• Insert a new row for another customer named Druid Cyclery

• Delete one or more of the Druid Cyclery rows before you insert the new row

• Update a Druid Cyclery row to have a new company name, or update some other customer to have the name Druid

Cyclery.

Chapter 1. SQL programming

Although it is not likely that other users would do these things in that brief interval, the possibility does exist. This same

problem affects the UPDATE statement. Ways of addressing this problem are discussed under Concurrency and locks on

page 394, and in greater detail in Programming for a multiuser environment on page 433.

Another problem you might encounter is a hardware or software failure before the statement finishes. In this case, the

database might have deleted no rows, some rows, or all specified rows. The state of the database is unknown, which is

undesirable. To prevent this situation, use transaction logging, as Interrupted modifications on page 391 discusses.

Delete rows that contain row types

When a row contains a column that is defined on a ROW type, you can use dot notation to specify that the only rows deleted

are those that contain a specific field value. For example, the following statement deletes only those rows from the employee

table in which the value of the city field in the address column is San Jose:

DELETE FROM employee
 WHERE address.city = 'San Jose';

In the preceding statement, the address column might be a named ROW type or an unnamed ROW type. The syntax you use

to specify field values of a ROW type is the same.

Delete rows that contain collection types

When a row contains a column that is defined on a collection type, you can search for a particular element in a collection

and delete the row or rows in which that element is found. For example, the following statement deletes rows in which the

direct_reports column contains a collection with the element Baker:

DELETE FROM manager
 WHERE 'Baker' IN direct_reports;

Delete rows from a supertable

When you delete the rows of a supertable, the scope of the delete is a supertable and its subtables. Suppose you create a

supertable person that has two subtables employee and sales_rep defined under it. The following DELETE statement on the

person table can delete rows from all the tables person, employee, and sales_rep:

DELETE FROM person
 WHERE name ='Walker';

To limit a delete to rows of the supertable only, you must use the ONLY keyword in the DELETE statement. For example, the

following statement deletes rows of the person table only:

DELETE FROM ONLY(person)
 WHERE name ='Walker';

361

HCL Informix 14.10 - SQL programming Guide

362

Important: Use caution when you delete rows from a supertable because the scope of a delete on a supertable

includes the supertable and all its subtables.

Complicated delete conditions

The WHERE clause in a DELETE statement can be almost as complicated as the one in a SELECT statement. It can contain

multiple conditions that are connected by AND and OR, and it might contain subqueries.

Suppose you discover that some rows of the stock table contain incorrect manufacturer codes. Rather than update them,

you want to delete them so that they can be re-entered. You know that these rows, unlike the correct ones, have no matching

rows in the manufact table. The fact that these incorrect rows have no matching rows in the manufact table allows you to

write a DELETE statement such as the one in the following example:

DELETE FROM stock
 WHERE 0 = (SELECT COUNT(*) FROM manufact
 WHERE manufact.manu_code = stock.manu_code);

The subquery counts the number of rows of manufact that match; the count is 1 for a correct row of stock and 0 for an

incorrect one. The latter rows are chosen for deletion.

Tip: One way to develop a DELETE statement with a complicated condition is to first develop a SELECT statement

that returns precisely the rows to be deleted. Write it as SELECT *; when it returns the desired set of rows, change

SELECT * to read DELETE and execute it once more.

The WHERE clause of a DELETE statement cannot use a subquery that tests the same table. That is, when you delete from

stock, you cannot use a subquery in the WHERE clause that also selects from stock.

The key to this rule is in the FROM clause. If a table is named in the FROM clause of a DELETE statement, it cannot also

appear in the FROM clause of a subquery of the DELETE statement.

The Delete clause of MERGE

Instead of writing a subquery in the WHERE clause, you can use the MERGE statement to join rows from a source tables

and a target table, and then delete from the target the rows that match the join condition. (The source table in a Delete

MERGE can also be a collection-derived table whose rows are the result of a query that joins other tables and views, but in

the example that follows, the source is a single table.)

As in the previous example, suppose you discover that some rows of the stock table contain incorrect manufacturer codes.

Rather than update them, you want to delete them so that they can be re-entered. You can use the MERGE statement that

specifies stock as the target table, manufact as the source table, a join condition in the ON clause, and with the Delete clause

for the stock rows with incorrect manufacturer codes, as in the following example:

MERGE INTO stock USING manufact
 ON stock.manu_code != manufact.manu_code
WHEN MATCHED THEN DELETE;

Chapter 1. SQL programming

In this example, all the rows of the stock table for which the join condition in the ON clause is satisfied will be deleted. Here

the inequality predicate in the join condition (stock.manu_code != manufact.manu_code) evaluates to true for the rows of stock

in which the manu_code column value is not equal to any manu_code value in the manufact table.

The source table that is being joined to the target table must be listed in the USING clause.

The MERGE statement can also update rows of the target table, or insert data from the source table into the target table,

according to whether or not the row satisfies the condition that the ON clause specifies for joining the target and source

tables. A single MERGE statement can also combine both DELETE and INSERT operations, or can combine both UPDATE and

INSERT operations without deleting any rows. The source table is unchanged by the MERGE statement. For more information

on the syntax and restrictions for Delete merges, Insert merges, and Update merges, see the description of the MERGE

statement in the HCL® Informix® Guide to SQL: Syntax.

Insert rows

The INSERT statement adds a new row, or rows, to a table. The statement has two basic functions. It can create a single new

row using column values you supply, or it can create a group of new rows using data selected from other tables.

Single rows

In its simplest form, the INSERT statement creates one new row from a list of column values and puts that row in the table.

The following statement shows how to add a row to the stock table:

INSERT INTO stock
 VALUES (115, 'PRC', 'tire pump', 108, 'box', '6/box');

The stock table has the following columns:

stock_num

A number that identifies the type of merchandise.

manu_code

A foreign key to the manufact table.

description

A description of the merchandise.

unit_price

The unit price of the merchandise.

unit

The unit of measure

unit_descr

Characterizes the unit of measure.

363

HCL Informix 14.10 - SQL programming Guide

364

The values that are listed in the VALUES clause in the preceding example have a one-to-one correspondence with the

columns of the stock table. To write a VALUES clause, you must know the columns of the tables as well as their sequence

from first to last.

Possible column values

The VALUES clause accepts only constant values, not general SQL expressions. You can supply the following values:

• Literal numbers

• Literal DATETIME values

• Literal INTERVAL values

• Quoted strings of characters

• The word NULL for a NULL value

• The word TODAY for the current date

• The word CURRENT (or SYSDATE) for the current date and time

• The word USER for your authorization identifier

• The word DBSERVERNAME (or SITENAME) for the name of the computer where the database server is running

Note: An alternative to the INSERT statement is the MERGE statement, which can use the same VALUES clause

syntax as the INSERT statement to insert rows into a table. The MERGE statement performs an outer join of a source

table and a target table, and then inserts into the target table any rows in the result set of the join for which the join

predicate evaluates to FALSE. The source table is unchanged by the MERGE statement. Besides inserting rows,

the MERGE statement can optionally combine both DELETE and INSERT operations, or combine both UPDATE and

INSERT operations. For more information about the syntax and the restrictions on Insert merges, Delete merges, and

Update merges, see the description of the MERGE statement in the HCL® Informix® Guide to SQL: Syntax.

Restrictions on column values

Some columns of a table might not allow null values. If you attempt to insert NULL in such a column, the statement is

rejected. Other columns in the table might not permit duplicate values. If you specify a value that is a duplicate of one that is

already in such a column, the statement is rejected. Some columns might even restrict the possible column values allowed.

Use data integrity constraints to restrict columns. For more information, see Data integrity on page 380.

Restriction: Do not specify the currency symbols for columns that contain money values. Just specify the numeric

value of the amount.

The database server can convert between numeric and character data types. You can give a string of numeric characters (for

example, '-0075.6') as the value of a numeric column. The database server converts the numeric string to a number. An error

occurs only if the string does not represent a number.

You can specify a number or a date as the value for a character column. The database server converts that value to a

character string. For example, if you specify TODAY as the value for a character column, a character string that represents

the current date is used. (The DBDATE environment variable specifies the format that is used.)

Chapter 1. SQL programming

Serial data types

A table can have only one column of the SERIAL data type. It can also have either a SERIAL8 column or a BIGSERIAL column.

When you insert values, specify the value zero for the serial column. The database server generates the next actual value in

sequence. Serial columns do not allow NULL values.

You can specify a nonzero value for a serial column (as long as it does not duplicate any existing value in that column), and

the database server uses the value. That nonzero value might set a new starting point for values that the database server

generates. (The next value the database server generates for you is one greater than the maximum value in the column.)

List specific column names

You do not have to specify values for every column. Instead, you can list the column names after the table name and then

supply values for only those columns that you named. The following example shows a statement that inserts a new row into

the stock table:

INSERT INTO stock (stock_num, description, unit_price, manu_code)
 VALUES (115, 'tyre pump ', 114, 'SHM');

Only the data for the stock number, description, unit price, and manufacturer code is provided. The database server supplies

the following values for the remaining columns:

• It generates a serial number for an unlisted serial column.

• It generates a default value for a column with a specific default associated with it.

• It generates a NULL value for any column that allows nulls but it does not specify a default value for any column that

specifies NULL as the default value.

You must list and supply values for all columns that do not specify a default value or do not permit NULL values.

You can list the columns in any order, as long as the values for those columns are listed in the same order. For information

about how to designate null or default values for a column, see the IBM® Informix® Database Design and Implementation

Guide.

After the INSERT statement in the preceding example is executed, the following new row is inserted into the stock table:

stock_num manu_code description unit_price unit unit_descr

 115 SHM tyre pump 114

Both unit and unit_descr are blank, which indicates that NULL values exist in those two columns. Because the unit column

permits NULL values, the number of tire pumps that can be purchased for $114 is not known. Of course, if a default value of

box were specified for this column, then box would be the unit of measure. In any case, when you insert values into specific

columns of a table, pay attention to what data is needed for that row.

Insert rows into typed tables

You can insert rows into a typed table in the same way you insert rows into a table not based on a ROW type.

365

HCL Informix 14.10 - SQL programming Guide

366

When a typed table contains a row-type column (the named ROW type that defines the typed table contains a nested ROW

type), you insert into the row-type column in the same way you insert into a row-type column for a table not based on a ROW

type. The following section, Syntax rules for inserts on columns on page 366, describes how to perform inserts into row-

type columns.

This section uses row types zip_t, address_t, and employee_t and typed table employee for examples. The following figure

shows the SQL syntax that creates the row types and table.

Figure 363. SQL syntax that creates the row types and table.

CREATE ROW TYPE zip_t
(
 z_code CHAR(5),
 z_suffix CHAR(4)
);

CREATE ROW TYPE address_t
(
 street VARCHAR(20),
 city VARCHAR(20),
 state CHAR(2),
 zip zip_t
);

CREATE ROW TYPE employee_t
(
 name VARCHAR(30),
 address address_t,
 salary INTEGER
);

CREATE TABLE employee OF TYPE employee_t;

Syntax rules for inserts on columns

The following syntax rules apply for inserts on columns that are defined on named ROW types or unnamed ROW types:

• Specify the ROW constructor before the field values to be inserted.

• Enclose the field values of the ROW type in parentheses.

• Cast the ROW expression to the appropriate named ROW type (for named ROW types).

Rows that contain named row types

The following statement shows you how to insert a row into the employee table in Figure 364: Create the student table. on

page 367:

INSERT INTO employee
 VALUES ('Poole, John',
 ROW('402 High St', 'Willits', 'CA',
 ROW(69055,1450))::address_t, 35000);

Because the address column of the employee table is a named ROW type, you must use a cast operator and the name of the

ROW type (address_t) to insert a value of type address_t.

Chapter 1. SQL programming

Rows that contain unnamed row types

Suppose you create the table that the following figure shows. The student table defines the s_address column as an

unnamed row type.

Figure 364. Create the student table.

CREATE TABLE student
(
s_name VARCHAR(30),
s_address ROW(street VARCHAR (20), city VARCHAR(20),
 state CHAR(2), zip VARCHAR(9)),
 grade_point_avg DECIMAL(3,2)
);

The following statement shows you how to add a row to the student table. To insert into the unnamed row-type column

s_address, use the ROW constructor but do not cast the row-type value.

INSERT INTO student
 VALUES ('Keene, Terry',
 ROW('53 Terra Villa', 'Wheeling', 'IL', '45052'),
 3.75);

Specify NULL values for row types

The fields of a row-type column can contain NULL values. You can specify NULL values either at the level of the column or

the field.

The following statement specifies a NULL value at the column level to insert NULL values for all fields of the s_address

column. When you insert a NULL value at the column level, do not include the ROW constructor.

INSERT INTO student VALUES ('Brauer, Howie', NULL, 3.75);

When you insert a NULL value for particular fields of a ROW type, you must include the ROW constructor. The following

INSERT statement shows how you might insert NULL values into particular fields of the address column of the employee

table. (The address column is defined as a named ROW type.)

INSERT INTO employee
 VALUES (
 'Singer, John',
 ROW(NULL, 'Davis', 'CA',
 ROW(97000, 2000))::address_t, 67000
);

When you specify a NULL value for the field of a ROW type, you do not need to explicitly cast the NULL value when the ROW

type occurs in an INSERT statement, an UPDATE statement, or a program variable assignment.

The following INSERT statement shows how you insert NULL values for the street and zip fields of the s_address column for

the student table:

INSERT INTO student
 VALUES(
 'Henry, John',

367

HCL Informix 14.10 - SQL programming Guide

368

 ROW(NULL, 'Seattle', 'WA', NULL), 3.82
);

Insert rows into supertables

No special considerations exist when you insert a row into a supertable. An INSERT statement applies only to the table that

is specified in the statement. For example, the following statement inserts values into the supertable but does not insert

values into any subtables:

INSERT INTO person
 VALUES (
 'Poole, John',
 ROW('402 Saphire St.', 'Elmondo', 'CA', '69055'),
 345605900
);

Insert collection values into columns

This section describes how to insert a collection value into a column with DB-Access. It does not discuss how to insert

individual elements into a collection column. To access or modify the individual elements of a collection, use an SPL routine

or Informix® ESQL/C program. For information about how to create Informix® ESQL/C programs to insert into a collection,

see the HCL® Informix® Enterprise Replication Guide. For information about how to create an SPL routine to insert into a

collection, see Create and use SPL routines on page 453.

The examples that this section provides are based on the manager table in the following figure. The manager table contains

both simple and nested collection types.

Figure 365. Create the manager table.

CREATE TABLE manager
(
 mgr_name VARCHAR(30),
 department VARCHAR(12),
 direct_reports SET(VARCHAR(30) NOT NULL),
 projects LIST(ROW(pro_name VARCHAR(15),
 pro_members SET(VARCHAR(20) NOT NULL))
 NOT NULL)
);

Insert values into simple collections and nested collections

When you insert values into a row that contains a collection column, you insert the values of all the elements that the

collection contains as well as values for the other columns. For example, the following statement inserts a single row into

the manager table, which includes columns for both simple collections and nested collections:

INSERT INTO manager(mgr_name, department,
 direct_reports, projects)
 VALUES
(
'Sayles', 'marketing',
"SET{'Simonian', 'Waters', 'Adams', 'Davis', 'Jones'}",
LIST{
 ROW('voyager_project', SET{'Simonian', 'Waters',

Chapter 1. SQL programming

 'Adams', 'Davis'}),
 ROW ('horizon_project', SET{'Freeman', 'Jacobs',
 'Walker', 'Smith', 'Cannan'}),
 ROW ('saphire_project', SET{'Villers', 'Reeves',
 'Doyle', 'Strongin'})
 }
);

Insert NULL values into a collection that contains a row type

To insert values into a collection that is a ROW type, you must specify a value for each field in the ROW type.

In general, NULL values are not allowed in a collection. However, if the element type of the collection is a ROW type, you can

insert NULL values into individual fields of the row type.

You can also specify an empty collection. An empty collection is a collection that contains no elements. To specify an empty

collection, use the braces ({}). For example, the following statement inserts data into a row in the manager table but specifies

that the direct_reports and projects columns are empty collections:

INSERT INTO manager
 VALUES ('Sayles', 'marketing', "SET{}",
 "LIST{ROW(NULL, SET{})}"
);

A collection column cannot contain NULL elements. The following statement returns an error because NULL values are

specified as elements of collections:

INSERT INTO manager
 VALUES ('Cole', 'accounting', "SET{NULL}",
 "LIST{ROW(NULL, ""SET{NULL}"")}"

The following syntax rules apply for performing inserts and updates on collection types:

• Use braces ({}) to demarcate the elements that each collection contains.

• If the collection is a nested collection, use braces ({}) to demarcate the elements of both the inner and outer

collections.

Insert smart large objects

When you use the INSERT statement to insert an object into a BLOB or CLOB column, the database server stores the object

in an sbspace, rather than the table. The database server provides SQL functions that you can call from within an INSERT

statement to import and export BLOB or CLOB data, otherwise known as smart large objects. For a description of these

functions, see Smart large object functions on page 304.

The following INSERT statement uses the filetoblob() and filetoclob() functions to insert a row of the inmate table. (Figure

218: Create the inmate and fbi_list tables. on page 304 defines the inmate table.)

INSERT INTO inmate
 VALUES (437, FILETOBLOB('datafile', 'client'),
 FILETOCLOB('tmp/text', 'server'));

369

HCL Informix 14.10 - SQL programming Guide

370

In the preceding example, the first argument for the FILETOBLOB() and FILETOCLOB() functions specifies the path of the

source file to be copied into the BLOB and CLOB columns of the inmate table, respectively. The second argument for each

function specifies whether the source file is located on the client computer ('client') or server computer ('server'). To specify

the path of a file name in the function argument, apply the following rules:

• If the source file resides on the server computer, you must specify the full path name to the file (not the path name

relative to the current working directory).

• If the source file resides on the client computer, you can specify either the full or relative path name to the file.

Note: For CLOB columns, direct strings can also be used in place of FILETOCLOB() function.

Multiple rows and expressions

The other major form of the INSERT statement replaces the VALUES clause with a SELECT statement. This feature allows

you to insert the following data:

• Multiple rows with only one statement (each time the SELECT statement returns a row, a row is inserted)

• Calculated values (the VALUES clause permits only constants) because the projection list can contain expressions

For example, suppose a follow-up call is required for every order that has been paid for but not shipped. The INSERT

statement in the following example finds those orders and inserts a row in cust_calls for each order:

INSERT INTO cust_calls (customer_num, call_descr)
 SELECT customer_num, order_num FROM orders
 WHERE paid_date IS NOT NULL
 AND ship_date IS NULL;

This SELECT statement returns two columns. The data from these columns (in each selected row) is inserted into the

named columns of the cust_calls table. Then an order number (from order_num, a SERIAL column) is inserted into the call

description, which is a character column. Remember that the database server allows you to insert integer values into a

character column. It automatically converts the serial number to a character string of decimal digits.

Restrictions on the insert selection

The following list contains the restrictions on the SELECT statement for inserting rows:

• It cannot contain an INTO clause.

• It cannot contain an INTO TEMP clause.

• It cannot contain an ORDER BY clause.

• It cannot refer to the table into which you are inserting rows.

The INTO, INTO TEMP, and ORDER BY clause restrictions are minor. The INTO clause is not useful in this context. (For more

information, see SQL programming on page 400.) To work around the INTO TEMP clause restriction, first select the data

you want to insert into a temporary table and then insert the data from the temporary table with the INSERT statement.

Likewise, the lack of an ORDER BY clause is not important. If you need to ensure that the new rows are physically ordered in

Chapter 1. SQL programming

the table, you can first select them into a temporary table and order it, and then insert from the temporary table. You can also

apply a physical order to the table using a clustered index after all insertions are done.

Important: The last restriction is more serious because it prevents you from naming the same table in both the INTO

clause of the INSERT statement and the FROM clause of the SELECT statement. Naming the same table in both the

INTO clause of the INSERT statement and the FROM clause of the SELECT statement causes the database server to

enter an endless loop in which each inserted row is reselected and reinserted.

In some cases, however, you might want to select from the same table into which you must insert data. For example,

suppose that you have learned that the Nikolus company supplies the same products as the Anza company, but at half the

price. You want to add rows to the stock table to reflect the difference between the two companies. Optimally, you want to

select data from all the Anza stock rows and reinsert it with the Nikolus manufacturer code. However, you cannot select from

the same table into which you are inserting.

To get around this restriction, select the data you want to insert into a temporary table. Then select from that temporary table

in the INSERT statement, as the following example shows:

SELECT stock_num, 'NIK' temp_manu, description, unit_price/2
 half_price, unit, unit_descr FROM stock
 WHERE manu_code = 'ANZ'
 AND stock_num < 110
 INTO TEMP anzrows;

INSERT INTO stock SELECT * FROM anzrows;

DROP TABLE anzrows;

This SELECT statement takes existing rows from stock and substitutes a literal value for the manufacturer code and a

computed value for the unit price. These rows are then saved in a temporary table, anzrows, which is immediately inserted

into the stock table.

When you insert multiple rows, a risk exists that one of the rows contains invalid data that might cause the database server

to report an error. When such an error occurs, the statement terminates early. Even if no error occurs, a small risk exists that

a hardware or software failure might occur while the statement is executing (for example, the disk might fill up).

In either event, you cannot easily tell how many new rows were inserted. If you repeat the statement in its entirety, you might

create duplicate rows, or you might not. Because the database is in an unknown state, you cannot know what to do. The

solution lies in using transactions, as Interrupted modifications on page 391 discusses.

Update rows

Use the UPDATE statement to change the contents of one or more existing rows of a table, according to the specifications

of the SET clause. This statement takes two fundamentally different forms. One lets you assign specific values to columns

by name; the other lets you assign a list of values (that might be returned by a SELECT statement) to a list of columns. In

either case, if you are updating rows, and some of the columns have data integrity constraints, the data that you change

must conform to the constraints placed on those columns. For more information, refer to Data integrity on page 380.

371

HCL Informix 14.10 - SQL programming Guide

372

Note: An alternative to the UPDATE statement is the MERGE statement, which can use the same SET clause syntax

as the UPDATE statement to modify one or more values in existing rows of a table. The MERGE statement performs

an outer join of a source table and a target table, and then updates rows in the target table with values from the

result set of the join for which the join predicate evaluates to TRUE. Values in the source table are unchanged by the

MERGE statement. Besides updating rows, the MERGE statement can optionally combine both UPDATE and INSERT

operations, or can combine both DELETE and INSERT operations without updating any rows. For more information

about the syntax and the restrictions on Update merges, Delete merges, and Insert merges, see the description of the

MERGE statement in the HCL® Informix® Guide to SQL: Syntax.

Select rows to update

Either form of the UPDATE statement can end with a WHERE clause that determines which rows are modified. If you omit

the WHERE clause, all rows are modified. To select the precise set of rows that need changing in the WHERE clause can be

quite complicated. The only restriction on the WHERE clause is that the table that you update cannot be named in the FROM

clause of a subquery.

The first form of an UPDATE statement uses a series of assignment clauses to specify new column values, as the following

example shows:

UPDATE customer
 SET fname = 'Barnaby', lname = 'Dorfler'
 WHERE customer_num = 103;

The WHERE clause selects the row you want to update. In the demonstration database, the customer.customer_num column

is the primary key for that table, so this statement can update no more than one row.

You can also use subqueries in the WHERE clause. Suppose that the Anza Corporation issues a safety recall of their tennis

balls. As a result, any unshipped orders that include stock number 6 from manufacturer ANZ must be put on back order, as

the following example shows:

UPDATE orders
 SET backlog = 'y'
 WHERE ship_date IS NULL
 AND order_num IN
 (SELECT DISTINCT items.order_num FROM items
 WHERE items.stock_num = 6
 AND items.manu_code = 'ANZ');

This subquery returns a column of order numbers (zero or more). The UPDATE operation then tests each row of orders

against the list and performs the update if that row matches.

Update with uniform values

Each assignment after the keyword SET specifies a new value for a column. That value is applied uniformly to every row

that you update. In the examples in the previous section, the new values were constants, but you can assign any expression,

including one based on the column value itself. Suppose the manufacturer code HRO has raised all prices by five percent,

and you must update the stock table to reflect this increase. Use the following statement:

Chapter 1. SQL programming

UPDATE stock
 SET unit_price = unit_price * 1.05
 WHERE manu_code = 'HRO';

You can also use a subquery as part of the assigned value. When a subquery is used as an element of an expression, it must

return exactly one value (one column and one row). Perhaps you decide that for any stock number, you must charge a higher

price than any manufacturer of that product. You need to update the prices of all unshipped orders. The SELECT statements

in the following example specify the criteria:

UPDATE items
 SET total_price = quantity *
 (SELECT MAX (unit_price) FROM stock
 WHERE stock.stock_num = items.stock_num)
 WHERE items.order_num IN
 (SELECT order_num FROM orders
 WHERE ship_date IS NULL);

The first SELECT statement returns a single value: the highest price in the stock table for a particular product. The first

SELECT statement is a correlated subquery because, when a value from items appears in the WHERE clause for the first

SELECT statement, you must execute the query for every row that you update.

The second SELECT statement produces a list of the order numbers of unshipped orders. It is an uncorrelated subquery that

is executed once.

Restrictions on updates

Restrictions exist on the use of subqueries when you modify data. In particular, you cannot query the table that is being

modified. You can refer to the present value of a column in an expression, as in the example that increments the unit_price

column by 5 percent. You can also refer to a value of a column in a WHERE clause in a subquery, as in the example that

updated the stock table, in which the items table is updated and items.stock_num is used in a join expression.

The need to update and query a table at the same time does not occur often in a well-designed database. (For more

information about database design, see the IBM® Informix® Database Design and Implementation Guide.) However, you

might want to update and query at the same time when a database is first being developed, before its design has been

carefully thought through. A typical problem arises when a table inadvertently and incorrectly contains a few rows with

duplicate values in a column that should be unique. You might want to delete the duplicate rows or update only the duplicate

rows. Either way, a test for duplicate rows inevitably requires a subquery on the same table that you want to modify, which

is not allowed in an UPDATE statement or DELETE statement. Modify data through SQL programs on page 423 discusses

how to use an update cursor to perform this kind of modification.

Update with selected values

The second form of UPDATE statement replaces the list of assignments with a single bulk assignment, in which a list of

columns is set equal to a list of values. When the values are simple constants, this form is nothing more than the form of the

previous example with its parts rearranged, as the following example shows:

UPDATE customer
 SET (fname, lname) = ('Barnaby', 'Dorfler')
 WHERE customer_num = 103;

373

HCL Informix 14.10 - SQL programming Guide

374

No advantage exists to writing the statement this way. In fact, it is harder to read because it is not obvious which values are

assigned to which columns.

However, when the values to be assigned come from a single SELECT statement, this form makes sense. Suppose that

changes of address are to be applied to several customers. Instead of updating the customer table each time a change is

reported, the new addresses are collected in a single temporary table named newaddr. It contains columns for the customer

number and the address-related fields of the customer table. Now the time comes to apply all the new addresses at once.

UPDATE customer
 SET (address1, address2, city, state, zipcode) =
 ((SELECT address1, address2, city, state, zipcode
 FROM newaddr
 WHERE newaddr.customer_num=customer.customer_num))
 WHERE customer_num IN (SELECT customer_num FROM newaddr);

A single SELECT statement produces the values for multiple columns. If you rewrite this example in the other form, with an

assignment for each updated column, you must write five SELECT statements, one for each column to be updated. Not only

is such a statement harder to write, but it also takes much longer to execute.

Tip: In SQL API programs, you can use record or host variables to update values. For more information, refer to SQL

programming on page 400.

Update row types

The syntax you use to update a row-type value differs somewhat depending on whether the column is a named ROW type or

unnamed ROW type. This section describes those differences and also describes how to specify NULL values for the fields

of a ROW type.

Update rows that contain named row types

To update a column that is defined on a named ROW type, you must specify all fields of the ROW type. For example, the

following statement updates only the street and city fields of the address column in the employee table, but each field of the

ROW type must contain a value (NULL values are allowed):

UPDATE employee
 SET address = ROW('103 California St',
 San Francisco', address.state, address.zip)::address_t
 WHERE name = 'zawinul, joe';

In this example, the values of the state and zip fields are read from and then immediately reinserted into the row. Only the

street and city fields of the address column are updated.

When you update the fields of a column that are defined on a named ROW type, you must use a ROW constructor and cast

the row value to the appropriate named ROW type.

Chapter 1. SQL programming

Update rows that contain unnamed row types

To update a column that is defined on an unnamed ROW type, you must specify all fields of the ROW type. For example, the

following statement updates only the street and city fields of the address column in the student table, but each field of the

ROW type must contain a value (NULL values are allowed):

UPDATE student
 SET s_address = ROW('13 Sunset', 'Fresno',
 s_address.state, s_address.zip)
 WHERE s_name = 'henry, john';

To update the fields of a column that are defined on an unnamed ROW type, always specify the ROW constructor before the

field values to be inserted.

Specify Null values for the fields of a row type

The fields of a row-type column can contain NULL values. When you insert into or update a row-type field with a NULL value,

you must cast the value to the data type of that field.

The following UPDATE statement shows how you might specify NULL values for particular fields of a named row-type

column:

UPDATE employee
 SET address = ROW(NULL::VARCHAR(20), 'Davis', 'CA',
 ROW(NULL::CHAR(5), NULL::CHAR(4)))::address_t)
 WHERE name = 'henry, john';

The following UPDATE statement shows how you specify NULL values for the street and zip fields of the address column for

the student table.

UPDATE student
 SET address = ROW(NULL::VARCHAR(20), address.city,
 address.state, NULL::VARCHAR(9))
 WHERE s_name = 'henry, john';

Important: You cannot specify NULL values for a row-type column. You can only specify NULL values for the

individual fields of the row type.

Update collection types

When you use DB-Access to update a collection type, you must update the entire collection. The following statement shows

how to update the projects column. To locate the row that needs to be updated, use the IN keyword to perform a search on

the direct_reports column.

UPDATE manager
SET projects = "LIST
{
 ROW('brazil_project', SET{'Pryor', 'Murphy', 'Kinsley',
 'Bryant'}),
 ROW ('cuba_project', SET{'Forester', 'Barth', 'Lewis',
 'Leonard'})

375

HCL Informix 14.10 - SQL programming Guide

376

}"
WHERE 'Williams' IN direct_reports;

The first occurrence of the SET keyword in the preceding statement is part of the UPDATE statement syntax.

Important: Do not confuse the SET keyword of an UPDATE statement with the SET constructor that indicates that a

collection is a SET data type.

Although you can use the IN keyword to locate specific elements of a simple collection, you cannot update individual

elements of a collection column from DB-Access. However, you can create Informix® ESQL/C programs and SPL routines

to update elements within a collection. For information about how to create Informix® ESQL/C programs to update a

collection, see the HCL® Informix® Enterprise Replication Guide. For information about how to create SPL routines to update

a collection, see the section Handle collections on page 487.

Update rows of a supertable

When you update the rows of a supertable, the scope of the update is a supertable and its subtables.

When you construct an UPDATE statement on a supertable, you can update all columns in the supertable and columns of

subtables that are inherited from the supertable. For example, the following statement updates rows from the employee and

sales_rep tables, which are subtables of the supertable person:

UPDATE person
 SET salary=65000
 WHERE address.state = 'CA';

However, an update on a supertable does not allow you to update columns from subtables that are not in the supertable. For

example, in the previous update statement, you cannot update the region_num column of the sales_rep table because the

region_num column does not occur in the employee table.

When you perform updates on supertables, be aware of the scope of the update. For example, an UPDATE statement on

the person table that does not include a WHERE clause to restrict which rows to update, modifies all rows of the person,

employee, and sales_rep table.

To limit an update to rows of the supertable only, you must use the ONLY keyword in the UPDATE statement. For example, the

following statement updates rows of the person table only:

UPDATE ONLY(person)
 SET address = ROW('14 Jackson St', 'Berkeley',
 address.state, address.zip)
 WHERE name = 'Sallie, A.';

Chapter 1. SQL programming

Important: Use caution when you update rows of a supertable because the scope of an update on a supertable

includes the supertable and all its subtables.

CASE expression to update a column

The CASE expression allows a statement to return one of several possible results, depending on which of several condition

tests evaluates to TRUE.

The following example shows how to use a CASE expression in an UPDATE statement to increase the unit price of certain

items in the stock table:

UPDATE stock
 SET unit_price = CASE
 WHEN stock_num = 1
 AND manu_code = "HRO"
 THEN unit_price * 1.2
 WHEN stock_num = 1
 AND manu_code = "SMT"
 THEN unit_price * 1.1
 ELSE 0
 END

You must include at least one WHEN clause within the CASE expression; subsequent WHEN clauses and the ELSE clause are

optional. If no WHEN condition evaluates to true, the resulting value is null.

SQL functions to update smart large objects

You can use an SQL function that you can call from within an UPDATE statement to import and export smart large objects.

For a description of these functions, see page Smart large object functions on page 304.

The following UPDATE statement uses the LOCOPY() function to copy BLOB data from the mugshot column of the fbi_list

table into the picture column of the inmate table. (Figure 218: Create the inmate and fbi_list tables. on page 304 defines

the inmate and fbi_list tables.)

UPDATE inmate (picture)
 SET picture = (SELECT LOCOPY(mugshot, 'inmate', 'picture')
 FROM fbi_list WHERE fbi_list.id = 669)
 WHERE inmate.id_num = 437;

The first argument for LOCOPY() specifies the column (mugshot) from which the object is exported. The second and third

arguments specify the name of the table (inmate) and column (picture) whose storage characteristics the newly created

object will use. After execution of the UPDATE statement, the picture column contains data from the mugshot column.

When you specify the path of a file name in the function argument, apply the following rules:

• If the source file resides on the server computer, you must specify the full path name to the file (not the path name

relative to the current working directory).

• If the source file resides on the client computer, you can specify either the full or relative path name to the file.

377

HCL Informix 14.10 - SQL programming Guide

378

The MERGE statement to update a table

The MERGE statement allows you to apply a Boolean condition to the result of an outer join of a source table and a target

table. If the MERGE statement includes the Update clause, rows that satisfy the join condition that you specify after the ON

keyword are used in UPDATE operations on the target. The SET clause of the MERGE statement supports the same syntax as

the SET clause of the UPDATE statement, and specifies which columns of the target table to update.

The following example illustrates how you can use the Update clause of the MERGE statement to update a target table:

MERGE INTO t_target AS t USING t_source AS s ON t.col_a = s.col_a
 WHEN MATCHED THEN UPDATE
 SET t.col_b = t.col_b + s.col_b ;

In the preceding example, the name of the target table is t_target and the name of the source table is t_source. For rows of

the join result where col_a has the same value in both the source and the target tables, the MERGE statement updates the

t_target table by adding the value of column col_b in the source table to the current value of the col_b column in the t_target

table.

An UPDATE operation of the MERGE statement does not modify the source table, and cannot update any row in the target

table more than once.

A single MERGE statement can combine both UPDATE and INSERT operations, or can combine both DELETE and INSERT

operations but the delete clause is not required. For a different example of MERGE that includes no Update clause, see the

topic The Delete clause of MERGE on page 362

Privileges on a database and on its objects

You can use the following database privileges to control who accesses a database:

• Database-level privileges

• Table-level privileges

• Routine-level privileges

• Language-level privileges

• Type-level privileges

• Sequence-level privileges

• Fragment-level privileges

This section briefly describes database- and table-level privileges. For more information about database privileges, see the

IBM® Informix® Database Design and Implementation Guide. For a list of privileges and a description of the GRANT and

REVOKE statements, see the HCL® Informix® Guide to SQL: Syntax.

Database-level privileges

When you create a database, you are the only one who can access it until you, as the owner or database administrator (DBA)

of the database, grant database-level privileges to others. The following table shows database-level privileges.

Chapter 1. SQL programming

Privilege Effect

Connect Allows you to open a database, issue queries, and create and place indexes on temporary

tables.

Resou

rce

Allows you to create permanent tables.

DBA Allows you to perform several additional functions as the DBA.

Table-level privileges

When you create a table in a database that is not ANSI compliant, all users have access privileges to the table until you, as

the owner of the table, revoke table-level privileges from specific users. The following table introduces the four privileges that

govern how users can access a table.

Privi

lege Purpose

Select Granted on a table-by-table basis and allows you to select rows from a table. (This privilege can be limited to

specific columns in a table.)

Delete Allows you to delete rows.

Insert Allows you to insert rows.

Update Allows you to update existing rows (that is, to change their content).

The people who create databases and tables often grant the Connect and Select privileges to public so that all users have

them. If you can query a table, you have at least the Connect and Select privileges for that database and table.

You need the other table-level privileges to modify data. The owners of tables often withhold these privileges or grant them

only to specific users. As a result, you might not be able to modify some tables that you can query freely.

Because these privileges are granted on a table-by-table basis, you can have only Insert privileges on one table and only

Update privileges on another, for example. The Update privileges can be restricted even further to specific columns in a table.

For more information on these and other table-level privileges, see the IBM® Informix® Database Design and Implementation

Guide.

Display table privileges

If you are the owner of a table (that is, if you created it), you have all privileges on that table. Otherwise, you can determine

the privileges you have for a certain table by querying the system catalog. The system catalog consists of system tables

that describe the database structure. The privileges granted on each table are recorded in the systabauth system table.

To display these privileges, you must also know the unique identifier number of the table. This number is specified in the

systables system table. To display privileges granted on the orders table, you might enter the following SELECT statement:

379

HCL Informix 14.10 - SQL programming Guide

380

SELECT * FROM systabauth
 WHERE tabid = (SELECT tabid FROM systables
 WHERE tabname = 'orders');

The output of the query resembles the following example:

grantorgrantee tabid tabauth

tfecitmutator 101 su-i-x--
tfecitprocrustes101 s--idx--
tfecitpublic 101 s--i-x--

The grantor is the user who grants the privilege. The grantor is usually the owner of the table but the owner can be another

user that the grantor empowered. The grantee is the user to whom the privilege is granted, and the grantee public means any

user with Connect privilege. If your user name does not appear, you have only those privileges granted to public.

The tabauth column specifies the privileges granted. The letters in each row of this column are the initial letters of the

privilege names, except that i means Insert and x means Index. In this example, public has Select, Insert, and Index

privileges. Only the user mutator has Update privileges, and only the user procrustes has Delete privileges.

Before the database server performs any action for you (for example, execution of a DELETE statement), it performs a query

similar to the preceding one. If you are not the owner of the table, and if the database server cannot find the necessary

privilege on the table for your user name or for public, it refuses to perform the operation.

Grant privileges to roles

As DBA, you can create roles to standardize the privileges given to a class of users. When you assign privileges to that role,

every user of that role has those access privileges. The SQL statements used for defining and manipulating roles include:

CREATE ROLE, DROP ROLE, GRANT, REVOKE, and SET ROLE. For more information on the SQL syntax statements for defining

and manipulating roles, see the HCL® Informix® Guide to SQL: Syntax.

Default roles automatically apply upon connection to the database for particular users and groups, without requiring the user

to issue a SET ROLE statement. For example:

GRANT DEFAULT ROLE manager TO larry;

For more information on roles and default roles, see Control database use on page 223 or see the HCL® Informix®

Administrator's Guide.

For more information on granting and revoking privileges, see Grant and revoke privileges in applications on page 421. Also

see IBM® Informix® Database Design and Implementation Guide.

Data integrity

The INSERT, UPDATE, and DELETE statements modify data in an existing database. Whenever you modify existing data, the

integrity of the data can be affected. For example, an order for a nonexistent product could be entered into the orders table,

a customer with outstanding orders could be deleted from the customer table, or the order number could be updated in the

orders table and not in the items table. In each of these cases, the integrity of the stored data is lost.

Chapter 1. SQL programming

Data integrity is actually made up of the following parts:

Entity integrity

Each row of a table has a unique identifier.

Semantic integrity

The data in the columns properly reflects the types of information the column was designed to hold.

Referential integrity

The relationships between tables are enforced.

Well-designed databases incorporate these principles so that when you modify data, the database itself prevents you from

doing anything that might harm the integrity of the data.

Entity integrity

An entity is any person, place, or thing to be recorded in a database. Each table represents an entity, and each row of a table

represents an instance of that entity. For example, if order is an entity, the orders table represents the idea of an order and

each row in the table represents a specific order.

To identify each row in a table, the table must have a primary key. The primary key is a unique value that identifies each row.

This requirement is called the entity integrity constraint.

For example, the orders table primary key is order_num. The order_num column holds a unique system-generated order

number for each row in the table. To access a row of data in the orders table, use the following SELECT statement:

SELECT * FROM orders WHERE order_num = 1001;

Using the order number in the WHERE clause of this statement enables you to access a row easily because the order number

uniquely identifies that row. If the table allowed duplicate order numbers, it would be almost impossible to access one single

row because all other columns of this table allow duplicate values.

For more information on primary keys and entity integrity, see the IBM® Informix® Database Design and Implementation

Guide.

Semantic integrity

Semantic integrity ensures that data entered into a row reflects an allowable value for that row. The value must be within

the domain, or allowable set of values, for that column. For example, the quantity column of the items table permits only

numbers. If a value outside the domain can be entered into a column, the semantic integrity of the data is violated.

The following constraints enforce semantic integrity:

Data type

The data type defines the types of values that you can store in a column. For example, the data type SMALLINT

allows you to enter values from -32,767 to 32,767 into a column.

381

HCL Informix 14.10 - SQL programming Guide

382

Default value

The default value is the value inserted into the column when an explicit value is not specified. For example, the

user_id column of the cust_calls table defaults to the login name of the user if no name is entered.

Check constraint

The check constraint specifies conditions on data inserted into a column. Each row inserted into a table must

meet these conditions. For example, the quantity column of the items table might check for quantities greater

than or equal to one.

For more information on how to use semantic integrity constraints in database design, see the IBM® Informix® Database

Design and Implementation Guide.

Referential integrity

Referential integrity refers to the relationship between tables. Because each table in a database must have a primary key, this

primary key can appear in other tables because of its relationship to data within those tables. When a primary key from one

table appears in another table, it is called a foreign key.

Foreign keys join tables and establish dependencies between tables. tables can form a hierarchy of dependencies in such

a way that if you change or delete a row in one table, you destroy the meaning of rows in other tables. For example, the

following figure shows that the customer_num column of the customer table is a primary key for that table and a foreign key

in the orders and cust_call tables. Customer number 106, George Watson™, is referenced in both the orders and cust_calls

tables. If customer 106 is deleted from the customer table, the link between the three tables and this particular customer is

destroyed.

Figure 366. Referential integrity in the demonstration database

When you delete a row that contains a primary key or update it with a different primary key, you destroy the meaning of any

rows that contain that value as a foreign key. Referential integrity is the logical dependency of a foreign key on a primary key.

The integrity of a row that contains a foreign key depends on the integrity of the row that it references—the row that contains

the matching primary key.

Chapter 1. SQL programming

By default, the database server does not allow you to violate referential integrity and gives you an error message if you

attempt to delete rows from the parent table before you delete rows from the child table. You can, however, use the ON

DELETE CASCADE option to cause deletes from a parent table to trip deletes on child tables. See The ON DELETE CASCADE

option on page 383.

To define primary and foreign keys, and the relationship between them, use the CREATE TABLE and ALTER TABLE

statements. For more information on these statements, see the HCL® Informix® Guide to SQL: Syntax. For information about

how to build a data model with primary and foreign keys, see the IBM® Informix® Database Design and Implementation

Guide.

The ON DELETE CASCADE option

To maintain referential integrity when you delete rows from a primary key for a table, use the ON DELETE CASCADE option in

the REFERENCES clause of the CREATE TABLE and ALTER TABLE statements. This option allows you to delete a row from a

parent table and its corresponding rows in matching child tables with a single delete command.

Lock during cascading deletes

During deletes, locks are held on all qualifying rows of the parent and child tables. When you specify a delete, the delete that

is requested from the parent table occurs before any referential actions are performed.

What happens to multiple children tables

If you have a parent table with two child constraints, one child with cascading deletes specified and one child without

cascading deletes, and you attempt to delete a row from the parent table that applies to both child tables, the DELETE

statement fails, and no rows are deleted from either the parent or child tables.

Logging must be turned on

You must turn on logging in your current database for cascading deletes to work. Logging and cascading deletes are

discussed in Transaction logging on page 392.

Example of cascading deletes

Suppose you have two tables with referential integrity rules applied, a parent table, accounts, and a child table, sub_accounts.

The following CREATE TABLE statements define the referential constraints:

CREATE TABLE accounts (
 acc_num SERIAL primary key,
 acc_type INT,
 acc_descr CHAR(20));

CREATE TABLE sub_accounts (
 sub_acc INTEGER primary key,
 ref_num INTEGER REFERENCES accounts (acc_num)
 ON DELETE CASCADE,
 sub_descr CHAR(20));

383

HCL Informix 14.10 - SQL programming Guide

384

The primary key of the accounts table, the acc_num column, uses a SERIAL data type, and the foreign key of the

sub_accounts table, the ref_num column, uses an INTEGER data type. Combining the SERIAL data type on the primary key

and the INTEGER data type on the foreign key is allowed. Only in this condition can you mix and match data types. The

SERIAL data type is an INTEGER, and the database automatically generates the values for the column. All other primary and

foreign key combinations must match explicitly. For example, a primary key that is defined as CHAR must match a foreign

key that is defined as CHAR.

The definition of the foreign key of the sub_accounts table, the ref_num column, includes the ON DELETE CASCADE option.

This option specifies that a delete of any row in the parent table accounts will automatically cause the corresponding rows of

the child table sub_accounts to be deleted.

To delete a row from the accounts table that will cascade a delete to the sub_accounts table, you must turn on logging. After

logging is turned on, you can delete the account number 2 from both tables, as the following example shows:

DELETE FROM accounts WHERE acc_num = 2;

Restrictions on cascading deletes

You can use cascading deletes for most deletes, including deletes on self-referencing and cyclic queries. The only exception

is correlated subqueries, which are nested SELECT statements in which the value that the subquery (or inner SELECT)

produces depends on a value produced by the outer SELECT statement that contains it. If you have implemented cascading

deletes, you cannot write deletes that use a child table in the correlated subquery. You receive an error when you attempt to

delete from a correlated subquery.

Restriction: You cannot define a DELETE trigger event on a table if the table defines a referential constraint with ON

DELETE CASCADE.

Object modes and violation detection

The object modes and violation detection features of the database can help you monitor data integrity. These features are

particularly powerful when they are combined during schema changes or when insert, delete, and update operations are

performed on large volumes of data over short periods.

Database objects, within the context of a discussion of the object modes feature, are constraints, indexes, and triggers, and

each of them have different modes. Do not confuse database objects that are relevant to the object modes feature with

generic database objects. Generic database objects are things like tables and synonyms.

Definitions of object modes

You can set disabled, enabled, or filtering modes for a constraint or a unique index. You can set disabled or enabled modes

for a trigger or a duplicate index. You can use database object modes to control the effects of INSERT, DELETE, and UPDATE

statements.

Chapter 1. SQL programming

Enabled mode

Constraints, indexes, and triggers are enabled by default.

When a database object is enabled, the database server recognizes the existence of the database object and takes the

database object into consideration while it executes an INSERT, DELETE, or UPDATE statement. Thus, an enabled constraint

is enforced, an enabled index updated, and an enabled trigger is executed when the trigger event takes place.

When you enable constraints and unique indexes, if a violating row exists, the data manipulation statement fails (that is no

rows change) and the database server returns an error message.

You can identify the reason for the failure when you analyze the information in the violations and diagnostic tables. You can

then take corrective action or roll back the operation.

Disabled mode

When a database object is disabled, the database server does not take it into consideration during the execution of an

INSERT, DELETE, or UPDATE statement. A disabled constraint is not enforced, a disabled index is not updated, and a disabled

trigger is not executed when the trigger event takes place. When you disable constraints and unique indexes, any data

manipulation statement that violates the restriction of the constraint or unique index succeed, (that is, the target row is

changed), and the database server does not return an error message.

Filtering mode

When a constraint or unique index is in filtering mode, the statement succeeds and the database server enforces the

constraint or the unique index requirement during an INSERT, DELETE, or UPDATE statement by writing the failed rows to

the violations table associated with the target table. Diagnostic information about the constraint violation is written to the

diagnostics table associated with the target table.

Example of modes with data manipulation statements

An example with the INSERT statement can illustrate the differences between the enabled, disabled, and filtering modes.

Consider an INSERT statement in which a user tries to add a row that does not satisfy an integrity constraint on a table. For

example, assume that user joe created a table named cust_subset, and this table consists of the following columns: ssn

(customer's social security number), fname (customer's first name), lname (customer's last name), and city (city in which the

customer lives). The ssn column has the INT data type. The other three columns have the CHAR data type.

Assume that user joe defined the lname column as not null but has not assigned a name to the not null constraint, so the

database server has implicitly assigned the name n104_7 to this constraint. Finally, assume that user joe created a unique

index named unq_ssn on the ssn column.

Now user linda who has the Insert privilege on the cust_subset table enters the following INSERT statement on this table:

INSERT INTO cust_subset (ssn, fname, city)
 VALUES (973824499, "jane", "los altos");

385

HCL Informix 14.10 - SQL programming Guide

386

To better understand the distinctions among enabled, disabled, and filtering modes, you can view the results of the preceding

INSERT statement in the following three sections.

Results of the insert operation when the constraint is enabled

If the NOT NULL constraint on the cust_subset table is enabled, the INSERT statement fails to insert the new row in this

table. Instead user linda receives the following error message when they enter the INSERT statement:

-292 An implied insert column lname does not accept NULLs.

Results of the insert operation when the constraint is disabled

If the NOT NULL constraint on the cust_subset table is disabled, the INSERT statement that user linda issues successfully

inserts the new row in this table. The new row of the cust_subset table has the following column values.

ssn fname lname city

973824499 jane NULL los altos

Results of the insert when constraint is in filtering mode

If the NOT NULL constraint on the cust_subset table is set to the filtering mode, the INSERT statement that user linda issues

fails to insert the new row in this table. Instead the new row is inserted into the violations table, and a diagnostic row that

describes the integrity violation is added to the diagnostics table.

Assume that user joe has started a violations and diagnostics table for the cust_subset table. The violations table is named

cust_subset_vio, and the diagnostics table is named cust_subset_dia. The new row added to the cust_subset_vio violations

table when user linda issues the INSERT statement on the cust_subset target table has the following column values.

ssn fname lname city informix_tupleid informix_optype informix_recowner

973824499 jane NULL los

altos

1 I linda

This new row in the cust_subset_vio violations table has the following characteristics:

• The first four columns of the violations table exactly match the columns of the target table. These four columns

have the same names and the same data types as the corresponding columns of the target table, and they have the

column values that were supplied by the INSERT statement that user linda entered.

• The value 1 in the informix_tupleid column is a unique serial identifier that is assigned to the nonconforming row.

• The value I in the informix_optype column is a code that identifies the type of operation that has caused this

nonconforming row to be created. Specifically, I stands for an INSERT operation.

• The value linda in the informix_recowner column identifies the user who issued the statement that caused this

nonconforming row to be created.

The INSERT statement that user linda issued on the cust_subset target table also causes a diagnostic row to be added to the

cust_subset_dia diagnostics table. The new diagnostic row added to the diagnostics table has the following column values.

Chapter 1. SQL programming

informix_tupleid objtype objowner objname

1 C joe n104_7

This new diagnostic row in the cust_subset_dia diagnostics table has the following characteristics:

• This row of the diagnostics table is linked to the corresponding row of the violations table by means of the

informix_tupleid column that appears in both tables. The value 1 appears in this column in both tables.

• The value C in the objtype column identifies the type of integrity violation that the corresponding row in the violations

table caused. Specifically, the value C stands for a constraint violation.

• The value joe in the objowner column identifies the owner of the constraint for which an integrity violation was

detected.

• The value n104_7 in the objname column gives the name of the constraint for which an integrity violation was

detected.

By joining the violations and diagnostics tables, user joe (who owns the cust_subset target table and its associated special

tables) or the DBA can find out that the row in the violations table whose informix_tupleid value is 1 was created after an

INSERT statement and that this row is violating a constraint. The table owner or DBA can query the sysconstraints system

catalog table to determine that this constraint is a NOT NULL constraint. Now that the reason for the failure of the INSERT

statement is known, user joe or the DBA can take corrective action.

Multiple diagnostic rows for one violations row

In the preceding example, only one row in the diagnostics table corresponds to the new row in the violations table. However,

more than one diagnostic row can be added to the diagnostics table when a single new row is added to the violations table.

For example, if the ssn value (973824499) that user linda entered in the INSERT statement had been the same as an existing

value in the ssn column of the cust_subset target table, only one new row would appear in the violations table, but the

following two diagnostic rows would be present in the cust_subset_dia diagnostics table.

informix_tupleid objtype objowner objname

1 C joe n104_7

1 I joe unq_ssn

Both rows in the diagnostics table correspond to the same row of the violations table because both of these rows have

the value 1 in the informix_tupleid column. The first diagnostic row, however, identifies the constraint violation caused by

the INSERT statement that user linda issued, while the second diagnostic row identifies the unique-index violation that the

same INSERT statement caused. In this second diagnostic row, the value I in the objtype column stands for a unique-index

violation, and the value unq_ssn in the objname column gives the name of the index for which the integrity violation was

detected.

For more information about how to set database object modes, see the SET Database Object Mode statement in the HCL®

Informix® Guide to SQL: Syntax.

387

HCL Informix 14.10 - SQL programming Guide

388

Violations and diagnostics tables

When you start a violations table for a target table, any rows that violate constraints and unique indexes during INSERT,

UPDATE, and DELETE operations on the target table do not cause the entire operation to fail, but are filtered out to the

violations table. The diagnostics table contains information about the integrity violations caused by each row in the

violations table. By examining these tables, you can identify the cause of failure and take corrective action by either fixing the

violation or rolling back the operation.

After you create a violations table for a target table, you cannot alter the columns or the fragmentation of the base table or

the violations table. If you alter the constraints on a target table after you have started the violations table, nonconforming

rows will be filtered to the violations table.

For information about how to start and stop the violations tables, see the START VIOLATIONS TABLE and STOP VIOLATIONS

TABLE statements in the HCL® Informix® Guide to SQL: Syntax.

Relationship of violations tables and database object modes

If you set the constraints or unique indexes defined on a table to the filtering mode, but you do not create the violations

and diagnostics tables for this target table, any rows that violate a constraint or unique-index requirement during an insert,

update, or delete operation are not filtered to a violations table. Instead, you receive an error message that indicates that you

must start a violations table for the target table.

Similarly, if you set a disabled constraint or disabled unique index to the enabled or filtering mode and you want the ability

to identify existing rows that do not satisfy the constraint or unique-index requirement, you must create the violations tables

before you issue the SET Database Object Mode statement.

Examples of START VIOLATIONS TABLE statements

The examples that follow show different ways to execute the START VIOLATIONS TABLE statement.

Start violations and diagnostics tables without specifying their names

To start a violations and diagnostics table for the target table named customer in the demonstration database, enter the

following statement:

START VIOLATIONS TABLE FOR customer;

Because your START VIOLATIONS TABLE statement does not include a USING clause, the violations table is named

customer_vio by default, and the diagnostics table is named customer_dia by default. The customer_vio table includes the

following columns:

customer_num
fname
lname
company
address1
address2
city
state
zipcode

Chapter 1. SQL programming

phone
informix_tupleid
informix_optype
informix_recowner

The customer_vio table has the same table definition as the customer table except that the customer_vio table has three

additional columns that contain information about the operation that caused the bad row.

The customer_dia table includes the following columns:

informix_tupleid
objtype
objowner
objname

This list of columns shows an important difference between the diagnostics table and violations table for a target table.

Whereas the violations table has a matching column for every column in the target table, the columns of the diagnostics

table are independent of the schema of the target table. The diagnostics table created by any START VIOLATIONS TABLE

statement always has the four columns in the list above, with the same column names and data types.

Start violations and diagnostics tables and specify their names

The following statement starts a violations and diagnostics table for the target table named items. The USING clause

declares explicit names for the violations and diagnostics tables. The violations table is to be named exceptions, and the

diagnostics table is to be named reasons.

START VIOLATIONS TABLE FOR items
 USING exceptions, reasons;

Specify the maximum number of rows in the diagnostics table

The following statement starts violations and diagnostics tables for the target table named orders. The MAX ROWS clause

specifies the maximum number of rows that can be inserted into the orders_diadiagnostics table when a single statement,

such as an INSERT, MERGE, or SET Database Object Mode, is executed on the target table.

START VIOLATIONS TABLE FOR orders MAX ROWS 50000;

If you do not specify a value for MAX ROWS in the START VIOLATIONS TABLE statement, there is no default limit on the

number of rows in the diagnostics table, apart from the available disk space.

The MAX ROWS clause limits the number of rows only for operations in which the table functions as a diagnostics table.

Example of privileges on the violations table

The following example illustrates how the initial set of privileges on a violations table is derived from the current set of

privileges on the target table.

For example, assume that we created a table named cust_subset and that this table consists of the following columns: ssn

(customer's social security number), fname (customer's first name), lname (customer's last name), and city (city in which the

customer lives).

389

HCL Informix 14.10 - SQL programming Guide

390

The following set of privileges exists on the cust_subset table:

• User alvin is the owner of the table.

• User barbara has the Insert and Index privileges on the table. She also has the Select privilege on the ssn and lname

columns.

• User carrie has the Update privilege on the city column. She also has the Select privilege on the ssn column.

• User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a diagnostics table named cust_subset_diags for the

cust_subset table, as follows:

START VIOLATIONS TABLE FOR cust_subset
 USING cust_subset_viols, cust_subset_diags;

The database server grants the following set of initial privileges on the cust_subset_viols violations table:

• User alvin is the owner of the violations table, so he has all table-level privileges on the table.

• User barbara has the Insert, Delete, and Index privileges on the violations table. She also has the Select privilege on

the following columns of the violations table: the ssn column, the lname column, the informix_tupleid column, the

informix_optype column, and the informix_recowner column.

• User carrie has the Insert and Delete privileges on the violations table. She has the Update privilege on the following

columns of the violations table: the city column, the informix_tupleid column, the informix_optype column, and the

informix_recowner column. She has the Select privilege on the following columns of the violations table: the ssn

column, the informix_tupleid column, the informix_optype column, and the informix_recowner column.

• User danny has no privileges on the violations table.

Example of privileges on the diagnostics table

The following example illustrates how the initial set of privileges on a diagnostics table is derived from the current set of

privileges on the target table.

For example, assume that a table called cust_subset consists of the following columns: ssn (customer's social security

number), fname (customer's first name), lname (customer's last name), and city (city in which the customer lives).

The following set of privileges exists on the cust_subset table:

• User alvin is the owner of the table.

• User barbara has the Insert and Index privileges on the table. They also have the Select privilege on the ssn and

lname columns.

• User carrie has the Update privilege on the city column. They also have the Select privilege on the ssn column.

• User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a diagnostics table named cust_subset_diags for the

cust_subset table, as follows:

START VIOLATIONS TABLE FOR cust_subset
 USING cust_subset_viols, cust_subset_diags;

Chapter 1. SQL programming

The database server grants the following set of initial privileges on the cust_subset_diags diagnostics table:

• User alvin is the owner of the diagnostics table, so he has all table-level privileges on the table.

• User barbara has the Insert, Delete, Select, and Index privileges on the diagnostics table.

• User carrie has the Insert, Delete, Select, and Update privileges on the diagnostics table.

• User danny has no privileges on the diagnostics table.

Interrupted modifications

Even if all the software is error-free and all the hardware is utterly reliable, the world outside the computer can interfere.

Lightning might strike the building, interrupting the electrical supply and stopping the computer in the middle of your UPDATE

statement. A more likely scenario occurs when a disk fills up or a user supplies incorrect data, causing your multirow insert

to stop early with an error. In any case, whenever you modify data, you must assume that some unforeseen event can

interrupt the modification.

When an external cause interrupts a modification, you cannot be sure how much of the operation was completed. Even in a

single-row operation, you cannot know whether the data reached the disk or the indexes were properly updated.

If multirow modifications are a problem, multistatement modifications are worse. They are usually embedded in programs

so you do not see the individual SQL statements being executed. For example, to enter a new order in the demonstration

database, perform the following steps:

1. Insert a row in the orders table. (This insert generates an order number.)

2. For each item ordered, insert a row in the items table.

Two ways to program an order-entry application exist. One way is to make it completely interactive so that the program

inserts the first row immediately and then inserts each item as the user enters data. But this approach exposes the operation

to the possibility of many more unforeseen events: the customer's telephone disconnecting, the user pressing the wrong key,

the user's terminal or computer losing power, and so on.

The following list describes the correct way to build an order-entry application:

• Accept all the data interactively.

• Validate the data, and expand it (look up codes in stock and manufact, for example).

• Display the information on the screen for inspection.

• Wait for the operator to make a final commitment.

• Perform the insertions quickly.

Even with these steps, an unforeseen circumstance can halt the program after it inserts the order but before it finishes

inserting the items. If that happens, the database is in an unpredictable condition: its data integrity is compromised.

Transactions

The solution to all these potential problems is called the transaction. A transaction is a sequence of modifications that

must be accomplished either completely or not at all. The database server guarantees that operations performed within the

391

HCL Informix 14.10 - SQL programming Guide

392

bounds of a transaction are either completely and perfectly committed to disk, or the database is restored to the same state

as before the transaction started.

The transaction is not merely protection against unforeseen failures; it also offers a program a way to escape when the

program detects a logical error.

Transaction logging

The database server can keep a record of each change that it makes to the database during a transaction. If something

happens to cancel the transaction, the database server automatically uses the records to reverse the changes. Many things

can make a transaction fail. For example, the program that issues the SQL statements can fail or be terminated. As soon as

the database server discovers that the transaction failed, which might be only after the computer and the database server

are restarted, it uses the records from the transaction to return the database to the same state as before.

The process of keeping records of transactions is called transaction logging or simply logging. The records of the

transactions, called log records, are stored in a portion of disk space separate from the database. This space is called the

logical log because the log records represent logical units of the transactions.

HCL Informix® provides support to:

• Create nonlogging (raw) or logging (standard) tables in a logging database.

• Alter a table from nonlogging to logging and vice-versa using the ALTER TABLE statement.

HCL Informix® supports nonlogging tables for fast loads of very large tables. It is recommended that you do not use

nonlogging tables within a transaction. To avoid concurrency problems, use the ALTER TABLE statement to make the table

standard (that is, logging) before you use the table in a transaction.

For more information about nonlogging tables for HCL Informix®, see the HCL® Informix® Administrator's Guide. For the

performance advantages of nonlogging tables, see the HCL® Informix® Performance Guide. For information about the ALTER

TABLE statement, see the HCL® Informix® Guide to SQL: Syntax.

Most HCL® Informix® databases do not generate transaction records automatically. The DBA decides whether to make a

database use transaction logging. Without transaction logging, you cannot roll back transactions.

Logging and cascading deletes

Logging must be turned on in your database for cascading deletes to work because, when you specify a cascading delete,

the delete is first performed on the primary key of the parent table. If the system fails after the rows of the primary key of

the parent table are performed but before the rows of the foreign key of the child table are deleted, referential integrity is

violated. If logging is turned off, even temporarily, deletes do not cascade. After logging is turned back on, however, deletes

can cascade again.

HCL Informix® allows you to turn on logging with the WITH LOG clause in the CREATE DATABASE statement.

Chapter 1. SQL programming

Specify transactions

You can use two methods to specify the boundaries of transactions with SQL statements. In the most common method, you

specify the start of a multistatement transaction by executing the BEGIN WORK statement. In databases that are created

with the MODE ANSI option, no need exists to mark the beginning of a transaction. One is always in effect; you indicate only

the end of each transaction.

In both methods, to specify the end of a successful transaction, execute the COMMIT WORK statement. This statement tells

the database server that you reached the end of a series of statements that must succeed together. The database server

does whatever is necessary to make sure that all modifications are properly completed and committed to disk.

A program can also cancel a transaction deliberately by executing the ROLLBACK WORK statement. This statement asks the

database server to cancel the current transaction and undo any changes.

An order-entry application can use a transaction in the following ways when it creates a new order:

• Accept all data interactively

• Validate and expand it

• Wait for the operator to make a final commitment

• Execute BEGIN WORK

• Insert rows in the orders and items tables, checking the error code that the database server returns

• If no errors occurred, execute COMMIT WORK; otherwise execute ROLLBACK WORK

If any external failure prevents the transaction from being completed, the partial transaction rolls back when the system

restarts. In all cases, the database is in a predictable state. Either the new order is completely entered, or it is not entered at

all.

Backups and logs with HCL Informix® database servers

By using transactions, you can ensure that the database is always in a consistent state and that your modifications are

properly recorded on disk. But the disk itself is not perfectly safe. It is vulnerable to mechanical failures and to flood, fire, and

earthquake. The only safeguard is to keep multiple copies of the data. These redundant copies are called backup copies.

The transaction log (also called the logical log) complements the backup copy of a database. Its contents are a history of all

modifications that occurred since the last time the database was backed up. If you ever need to restore the database from

the backup copy, you can use the transaction log to roll the database forward to its most recent state.

The database server contains elaborate features to support backups and logging. Your database server archive and backup

guide describes these features.

The database server has stringent requirements for performance and reliability (for example, it supports making backup

copies while databases are in use).

The database server manages its own disk space, which is devoted to logging.

393

HCL Informix 14.10 - SQL programming Guide

394

The database server performs logging concurrently for all databases using a limited set of log files. The log files can be

copied to another medium (backed up) while transactions are active.

Database users never have to be concerned with these facilities because the DBA usually manages them from a central

location.

HCL Informix® supports the onload and onunload utilities. Use the onunload utility to make a personal backup copy of a

single database or table. This program copies a table or a database to tape. Its output consists of binary images of the disk

pages as they were stored in the database server. As a result, the copy can be made quickly, and the corresponding onload

program can restore the file quickly. However, the data format is not meaningful to any other programs. For information

about how to use the onload and onunload utilities, see the IBM® Informix® Migration Guide.

If your DBA uses ON-Bar to create backups and back up logical logs, you might also be able to create your own backup

copies using ON-Bar. For more information, see your HCL® Informix® Backup and Restore Guide.

Concurrency and locks

If your database is contained in a single-user workstation, without a network connecting it to other computers, concurrency

is unimportant. In all other cases, you must allow for the possibility that, while your program is modifying data, another

program is also reading or modifying the same data. Concurrency involves two or more independent uses of the same data

at the same time.

A high level of concurrency is crucial to good performance in a multiuser database system. Unless controls exist on the use

of data, however, concurrency can lead to a variety of negative effects. Programs could read obsolete data; modifications

could be lost even though it seems they were entered successfully.

To prevent errors of this kind, the database server imposes a system of locks. A lock is a claim, or reservation, that a program

can place on a piece of data. The database server guarantees that, as long as the data is locked, no other program can

modify it. When another program requests the data, the database server either makes the program wait or turns it back with

an error.

To control the effect that locks have on your data access, use a combination of SQL statements: SET LOCK MODE and either

SET ISOLATION or SET TRANSACTION. You can understand the details of these statements after reading a discussion on

the use of cursors from within programs. Cursors are covered in SQL programming on page 400, and Modify data through

SQL programs on page 423. For more information about locking and concurrency, see Programming for a multiuser

environment on page 433.

HCL Informix® data replication

Data replication, in the broadest sense of the term, means that database objects have more than one representation at more

than one distinct site. For example, one way to replicate data, so that reports can be run against the data without disturbing

client applications that are using the original database, is to copy the database to a database server on a different computer.

The following list describes the advantages of data replication:

Chapter 1. SQL programming

• Clients who access replicated data locally, as opposed to remote data that is not replicated, experience improved

performance because they do not have to use network services.

• Clients at all sites experience improved availability with replicated data, because if local replicated data is

unavailable, a copy of the data is still available, albeit remotely.

These advantages do not come without a cost. Data replication obviously requires more storage for replicated data than for

unreplicated data, and updating replicated data can take more processing time than updating a single object.

Data replication can actually be implemented in the logic of client applications, by explicitly specifying where data should be

found or updated. However, this method of achieving data replication is costly, error-prone, and difficult to maintain. Instead,

the concept of data replication is often coupled with replication transparency. Replication transparency is functionality

built into a database server (instead of client applications) to handle the details of locating and maintaining data replicas

automatically.

Within the broad framework of data replication, a database server implements nearly transparent data replication of entire

database servers. All the data that one database server manages is replicated and dynamically updated on another database

server, usually at a remote site. Data replication of the HCL Informix® database server is sometimes called hot-site backup,

because it provides a means of maintaining a backup copy of the entire database server that can be used quickly in the event

of a catastrophic failure.

Because the database server provides replication transparency, you generally do not need to be concerned with or aware of

data replication; the DBA takes care of it. However, if your organization decides to use data replication, you should be aware

that special connectivity considerations exist for client applications in a data replication environment. These considerations

are described in the HCL® Informix® Administrator's Guide.

The HCL Informix® Enterprise Replication feature provides a different method of data replication. For information on this

feature, see the HCL Informix® Enterprise Replication Guide.

Summary

Database access is regulated by the privileges that the database owner grants to you. The privileges that let you query data

are often granted automatically, but the ability to modify data is regulated by specific Insert, Delete, and Update privileges

that are granted on a table-by-table basis.

If data integrity constraints are imposed on the database, your ability to modify data is restricted by those constraints. Your

database- and table-level privileges and any data constraints control how and when you can modify data. In addition, the

object modes and violation detection features of the database affect how you can modify data and help to preserve the

integrity of your data.

You can delete one or more rows from a table with the DELETE statement. Its WHERE clause selects the rows; use a SELECT

statement with the same clause to preview the deletes.

The TRUNCATE statement deletes all the rows of a table.

Rows are added to a table with the INSERT statement. You can insert a single row that contains specified column values, or

you can insert a block of rows that a SELECT statement generates.

395

HCL Informix 14.10 - SQL programming Guide

396

Use the UPDATE statement to modify the contents of existing rows. You specify the new contents with expressions that can

include subqueries, so that you can use data that is based on other tables or the updated table itself. The statement has

two forms. In the first form, you specify new values column by column. In the second form, a SELECT statement or a record

variable generates a set of new values.

Use the REFERENCES clause of the CREATE TABLE and ALTER TABLE statements to create relationships between tables.

The ON DELETE CASCADE option of the REFERENCES clause allows you to delete rows from parent and associated child

tables with one DELETE statement.

Use transactions to prevent unforeseen interruptions in a modification from leaving the database in an indeterminate state.

When modifications are performed within a transaction, they are rolled back after an error occurs. The transaction log also

extends the periodically made backup copy of the database. If the database must be restored, it can be brought back to its

most recent state.

Data replication, which is transparent to users, offers another type of protection from catastrophic failures.

Access and modify data in an external database

This section summarizes accessing tables and routines that are not in the current database.

Access other database servers

You can access any table or routine in an external database by qualifying the name of the database object (table, view,

synonym, or routine).

When the external database is on the same database server as the current database, you must qualify the object name with

the database name and a colon. For example, to refer to a table in a database other than the local database, the following

SELECT statement accesses information from an external database:

SELECT name, number FROM salesdb:contacts

In this example, the query returns data from the table, contacts, that is in the database, salesdb.

A remote database server is any database server that is not the current database server. When the external database is on a

remote database server, you must qualify the name of the database object with the database server name and the database

name, as the following example illustrates:

SELECT name, number FROM salesdb@distantserver:contacts

In this example, the query returns data from the table, contacts, that is in the database, salesdb on the remote database

server, distantserver.

For the syntax and rules on how to specify database object names in an external database, see the HCL® Informix® Guide to

SQL: Syntax.

Chapter 1. SQL programming

Access ANSI databases

In ANSI databases, the owner of the object is part of the object name: ownername.objectname. When both the current and

external databases are ANSI databases, unless you are the owner of the object, you must include the owner name. The

following SELECT statement shows a fully-qualified table name:

SELECT name, number FROM salesdb@aserver:ownername.contacts

Tip: You can always over-qualify an object name. That is, you can specify the full object name,

database@servername:ownername.objectname, even in situations that do not require the full object name.

For more information about ANSI-compliant databases, refer to the IBM® Informix® Database Design and Implementation

Guide.

Create joins between external database servers

You can use the same notation in a join. When you specify the database name explicitly, the long table names can become

cumbersome unless you use aliases to shorten them, as the following example shows:

SELECT O.order_num, C.fname, C.lname
 FROM masterdb@central:customer C, sales@boston:orders O
 WHERE C.customer_num = O.Customer_num

Access external routines

To refer to a routine on a database server other than the current database server, qualify the routine name with the database

server name and database name (and the owner name if the remote database is ANSI compliant), as the following SELECT

statement illustrates:

SELECT name, salesdb@boston:how_long()
 FROM salesdb@boston:contacts

Restrictions for remote database access

This section summarizes the restrictions for remote database access.

SQL statements that access more than one database
Only the data manipulation language (DML) statements of SQL, and a subset of the data definition language (DDL)

statements of SQL can reference database objects outside the local database from which the statement is issued, or in

databases of server instances that are not the local HCL Informix® server instance.

You can run the following SQL statements across databases and across database server instances:

• CREATE DATABASE

• CREATE SYNONYM

• CREATE VIEW

• DATABASE

397

HCL Informix 14.10 - SQL programming Guide

398

• DELETE

• DROP DATABASE

• EXECUTE FUNCTION

• EXECUTE PROCEDURE

• INFO

• INSERT

• LOAD

• LOCK TABLE

• MERGE

• SELECT

• UNLOAD

• UNLOCK TABLE

• UPDATE

Restriction:

To run each of these SQL statements successfully across databases or across database servers, the local database

and the external databases must all have the same logging mode. For example, if the local database from which

you issue a distributed query was created as MODE ANSI, any other database that the query accesses cannot be

unlogged, and cannot use explicit transactions.

Return data types in cross-database operations

Distributed operations that use SQL statements or UDRs to access other databases of the local HCL Informix® database

server instance can return values of these data types:

• Any built-in atomic data type that is not opaque

• The built-in opaque types BLOB, BOOLEAN, BSON, CLOB, JSON, and LVARCHAR

• DISTINCT types based on a non-opaque built-in atomic type, or on a built-in opaque type listed above

• User-defined data types (UDTs) that can be cast to built-in types.

The DISTINCT or UDT values above must all be explicitly cast to built-in data types, and all the DISTINCT types, UDTs, and

casts must be defined identically in each of the participating databases.

These data types can be returned by SPL, C, and Java-language UDRs as parameters or as return values, if the UDRs are

defined in all of the participating databases. The DISTINCT data types must have exactly the same data type hierarchy

defined in all databases that participate in the distributed query.

A cross-database distributed query or other cross-database DML operation that accesses another database of the local

Informix® database server will fail with an error if it references a table, view, or synonym that includes a column of any of the

following data types:

Chapter 1. SQL programming

• IMPEXP

• IMPEXPBIN

• LOLIST

• SENDRECV

• DISTINCT of any of the built-in opaque data types in this list

• Complex types, including COLLECTION, LIST, MULTISET, or SET, and named or unnamed ROW types.

This restriction against cross-database distributed operations that access tables with these built-in opaque or complex data

types also applies to operations that access databases of two or more database server instances, which the next section

describes.

Return data types in cross-server operations

A distributed query (or any other distributed DML operation or function call) across databases of two or more Informix®

instances cannot return complex or large-object data types, nor most UDTs or opaque data types. Cross-server distributed

queries, DML operations, and function calls can return only the following data types:

• Any non-opaque built-in data type

• BOOLEAN

• BSON

• JSON

• LVARCHAR

• DISTINCT of non-opaque built-in types

• DISTINCT of BOOLEAN or LVARCHAR

• DISTINCT of BSON or JSON

• DISTINCT of any of the DISTINCT types in this list.

The same cross-database DDL requirements, that all UDRs, casts, and DISTINCT data types have identical definitions in every

participating database, also apply to distributed SQL operations across the databases of two or more Informix® database-

server instances.

A cross-server DML operation that accesses a database of another Informix® instance will fail with an error. however, if it

references a table object that includes a column of any of the following data types:

• BLOB

• BYTE

• CLIENTBINVAL

• CLOB

• IFX_LO_SPEC

• IFX_LO_STAT

• IMPEXP

• IMPEXPBIN

• INDEXKEYARRAY

• LOLIST

399

HCL Informix 14.10 - SQL programming Guide

400

• POINTER

• RTNPARAMTYPES

• SELFUNCARGS

• SENDRECV

• STAT

• TEXT

• XID

• User-defined OPAQUE type

• Complex types, including COLLECTION, LIST, MULTISET, or SET, and named or unnamed ROW types.

• DISTINCT of any of the opaque or complex data types in this list.

Access external database objects

To access external database objects:

• You must hold appropriate access permissions on these objects.

• Both databases must be set to the same locale.

Important: Distributed transactions cannot access objects in a database of another Informix® server instance

unless both server instances support either a TCP/IP or an IPCSTR connection, as defined in their DBSERVERNAME

or DBSERVERALIASES configuration parameters and in the sqlhosts information. This connection-type requirement

applies to any communication between Informix® database server instances, even if both database servers reside

on the same computer.

SQL programming

The previous examples treat SQL as if it were an interactive computer language; that is, as if you could type a SELECT

statement directly into the database server and see rows of data rolling back to you.

Of course, that is not the case. Many layers of software stand between you and the database server. The database server

retains data in a binary form that must be formatted before it can be displayed. It does not return a mass of data at once; it

returns one row at a time, as a program requests it.

You can access information in your database through interactive access with DB-Access, through application programs

written with an SQL API such as Informix® ESQL/C, or through an application language such as SPL.

Almost any program can contain SQL statements, execute them, and retrieve data from a database server. This chapter

explains how these activities are performed and indicates how you can write programs that perform them.

This chapter introduces concepts that are common to SQL programming in any language. Before you can write a successful

program in a particular programming language, you must first become fluent in that language. Then, because the details of

the process are different in every language, you must become familiar with the publication for the Informix® SQL API specific

to that language.

Chapter 1. SQL programming

SQL in programs

You can write a program in any of several languages and mix SQL statements among the other statements of the program,

just as if they were ordinary statements of that programming language. These SQL statements are embedded in the

program, and the program contains embedded SQL, which is often abbreviated as ESQL.

SQL in SQL APIs

ESQL products are Informix® SQL APIs (application programming interfaces). IBM® produces an SQL API for the C

programming language.

The following figure shows how an SQL API product works. You write a source program in which you treat SQL statements

as executable code. Your source program is processed by an embedded SQL preprocessor, a program that locates the

embedded SQL statements and converts them into a series of procedure calls and special data structures.

Figure 367. Overview of processing a program with embedded SQL statements

The converted source program then passes through the programming language compiler. The compiler output becomes an

executable program after it is linked with a static or dynamic library of SQL API procedures. When the program runs, the SQL

API library procedures are called; they set up communication with the database server to carry out the SQL operations.

If you link your executable program to a threading library package, you can develop Informix® ESQL/C multithreaded

applications. A multithreaded application can have many threads of control. It separates a process into multiple execution

threads, each of which runs independently. The major advantage of a multithreaded Informix® ESQL/C application is that

each thread can have many active connections to a database server simultaneously. While a nonthreaded Informix® ESQL/

C application can establish many connections to one or more databases, it can have only one connection active at a time. A

multithreaded Informix® ESQL/C application can have one active connection per thread and many threads per application.

For more information on multithreaded applications, see the HCL® Informix® Enterprise Replication Guide.

SQL in application languages

Whereas Informix® SQL API products allow you to embed SQL in the host language, some languages include SQL as a

natural part of their statement set. Informix® Stored Procedure Language (SPL) uses SQL as a natural part of its statement

set. You use an SQL API product to write application programs. You use SPL to write routines that are stored with a database

and called from an application program.

Static embedding

You can introduce SQL statements into a program through static embedding or dynamic statements. The simpler and more

common way is by static embedding, which means that the SQL statements are written as part of the code. The statements

401

HCL Informix 14.10 - SQL programming Guide

402

are static because they are a fixed part of the source text. For more information on static embedding, see Retrieve single

rows on page 407 and Retrieve multiple rows on page 411.

Dynamic statements

Some applications require the ability to compose SQL statements dynamically, in response to user input. For example, a

program might have to select different columns or apply different criteria to rows, depending on what the user wants.

With dynamic SQL, the program composes an SQL statement as a string of characters in memory and passes it to the

database server to be executed. Dynamic statements are not part of the code; they are constructed in memory during

execution. For more information, see Dynamic SQL on page 417.

Program variables and host variables

Application programs can use program variables within SQL statements. In SPL, you put the program variable in the SQL

statement as syntax allows. For example, a DELETE statement can use a program variable in its WHERE clause.

The following code example shows a program variable in SPL.

CREATE PROCEDURE delete_item (drop_number INT)
⋮;
DELETE FROM items WHERE order_num = drop_number
⋮;

In applications that use embedded SQL statements, the SQL statements can refer to the contents of program variables.

A program variable that is named in an embedded SQL statement is called a host variable because the SQL statement is

thought of as a guest in the program.

The following example shows a DELETE statement as it might appear when it is embedded in the IBM® Informix® ESQL/C

source program:

EXEC SQL delete FROM items
 WHERE order_num = :onum;

In this program, you see an ordinary DELETE statement, as Modify data on page 358 describes. When the Informix® ESQL/

C program is executed, a row of the items table is deleted; multiple rows can also be deleted.

The statement contains one new feature. It compares the order_num column to an item written as :onum, which is the name

of a host variable.

An SQL API product provides a way to delimit the names of host variables when they appear in the context of an SQL

statement. In Informix® ESQL/C, a host variable can be introduced with either a dollar sign ($) or a colon (:). The colon is the

ANSI-compatible format. The example statement asks the database server to delete rows in which the order number equals

the current contents of the host variable named :onum. This numeric variable was declared and assigned a value earlier in

the program.

In IBM® Informix® ESQL/C, an SQL statement can be introduced with either a leading dollar sign ($) or the words EXEC SQL.

Chapter 1. SQL programming

The differences of syntax as illustrated in the preceding examples are trivial; the essential point is that the SQL API and SPL

languages let you perform the following tasks:

• Embed SQL statements in a source program as if they were executable statements of the host language.

• Use program variables in SQL expressions the way literal values are used.

If you have programming experience, you can immediately see the possibilities. In the example, the order number to be

deleted is passed in the variable onum. That value comes from any source that a program can use. It can be read from a file,

the program can prompt a user to enter it, or it can be read from the database. The DELETE statement itself can be part of a

subroutine (in which case onum can be a parameter of the subroutine); the subroutine can be called once or repetitively.

In short, when you embed SQL statements in a program, you can apply to them all the power of the host language. You can

hide the SQL statements under many interfaces, and you can embellish the SQL functions in many ways.

Call the database server

Executing an SQL statement is essentially calling the database server as a subroutine. Information must pass from the

program to the database server, and information must be returned from the database server to the program.

Some of this communication is done through host variables. You can think of the host variables named in an SQL statement

as the parameters of the procedure call to the database server. In the preceding example, a host variable acts as a parameter

of the WHERE clause. Host variables receive data that the database server returns, as Retrieve multiple rows on page 411

describes.

SQL Communications Area

The database server always returns a result code, and possibly other information about the effect of an operation, in a data

structure known as the SQL Communications Area (SQLCA). If the database server executes an SQL statement in a user-

defined routine, the SQLCA of the calling application contains the values that the SQL statement triggers in the routine.

The principal fields of the SQLCA are listed in Table 59: Values of SQLCODE on page 404 through Table 61: Fields of

SQLWARN on page 406. The syntax that you use to describe a data structure such as the SQLCA, as well as the syntax that

you use to refer to a field in it, differs among programming languages. For details, see your SQL API publication.

In particular, the subscript by which you name one element of the SQLERRD and SQLWARN arrays differs. Array elements

are numbered starting with zero in IBM® Informix® ESQL/C, but starting with one in other languages. In this discussion, the

fields are named with specific words such as third, and you must translate these words into the syntax of your programming

language.

You can also use the SQLSTATE variable of the GET DIAGNOSTICS statement to detect, handle, and diagnose errors. See

SQLSTATE value on page 407.

SQLCODE field

The SQLCODE field is the primary return code of the database server. After every SQL statement, SQLCODE is set to an

integer value as the following table shows. When that value is zero, the statement is performed without error. In particular,

403

HCL Informix 14.10 - SQL programming Guide

404

when a statement is supposed to return data into a host variable, a code of zero means that the data has been returned and

can be used. Any nonzero code means the opposite. No useful data was returned to host variables.

Table 59. Values of SQLCODE

Return value Interpretation

value < 0 Specifies an error code.

value = 0 Indicates success.

0 < value < 100 After a DESCRIBE statement, an integer value that represents the type of SQL statement that is

described.

100 After a successful query that returns no rows, indicates the NOT FOUND condition. NOT FOUND

can also occur in an ANSI-compliant database after an INSERT INTO/SELECT, UPDATE, DELETE,

or SELECT... INTO TEMP statement fails to access any rows.

End of data

The database server sets SQLCODE to 100 when the statement is performed correctly but no rows are found. This condition

can occur in two situations.

The first situation involves a query that uses a cursor. (Retrieve multiple rows on page 411 describes queries that use

cursors.) In these queries, the FETCH statement retrieves each value from the active set into memory. After the last row

is retrieved, a subsequent FETCH statement cannot return any data. When this condition occurs, the database server sets

SQLCODE to 100, which indicates end of data, no rows found.

The second situation involves a query that does not use a cursor. In this case, the database server sets SQLCODE to 100

when no rows satisfy the query condition. In databases that are not ANSI compliant, only a SELECT statement that returns no

rows causes SQLCODE to be set to 100.

In ANSI-compliant databases, SELECT, DELETE, UPDATE, and INSERT statements all set SQLCODE to 100 if no rows are

returned.

Negative Codes

When something unexpected goes wrong during a statement, the database server returns a negative number in SQLCODE to

explain the problem. The meanings of these codes are documented in the online error message file.

SQLERRD array

Some error codes that can be reported in SQLCODE reflect general problems. The database server can set a more detailed

code in the second field of SQLERRD that reveals the error that the database server I/O routines or the operating system

encountered.

The integers in the SQLERRD array are set to different values following different statements. The first and fourth elements of

the array are used only in IBM® Informix® ESQL/C. The following table shows how the fields are used.

Chapter 1. SQL programming

Table 60. Fields of SQLERRD

Field Interpretation

First After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or DELETE statement, or after a

Select cursor is opened, this field contains the estimated number of rows affected.

Second When SQLCODE contains an error code, this field contains either zero or an additional error code, called the

ISAM error code, that explains the cause of the main error. After a successful insert operation of a single

row, this field contains the value of any SERIAL, BIGSERIAL, or SERIAL8 value generated for that row. (This

field is not updated, however, when a serial column is directly inserted as a triggered action by a trigger on

a table, or by an INSTEAD OF trigger on a view.)

Third After a successful multirow insert, update, or delete operation, this field contains the number of rows

that were processed. After a multirow insert, update, or delete operation that ends with an error, this field

contains the number of rows that were successfully processed before the error was detected.

Fourth After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or DELETE statement, or after a

select cursor has been opened, this field contains the estimated weighted sum of disk accesses and total

rows processed.

Fifth After a syntax error in a PREPARE, EXECUTE IMMEDIATE, DECLARE, or static SQL statement, this field

contains the offset in the statement text where the error was detected.

Sixth After a successful fetch of a selected row, or a successful insert, update, or delete operation, this field

contains the rowid (physical address) of the last row that was processed. Whether this rowid value

corresponds to a row that the database server returns to the user depends on how the database server

processes a query, particularly for SELECT statements.

Seventh Reserved.

These additional details can be useful. For example, you can use the value in the third field to report how many rows were

deleted or updated. When your program prepares an SQL statement that the user enters and an error is found, the value in

the fifth field enables you to display the exact point of error to the user. (DB-Access uses this feature to position the cursor

when you ask to modify a statement after an error.)

SQLWARN array

The eight character fields in the SQLWARN array are set to either a blank or to W to indicate a variety of special conditions.

Their meanings depend on the statement just executed.

A set of warning flags appears when a database opens, that is, following a CONNECT, DATABASE, or CREATE DATABASE

statement. These flags tell you some characteristics of the database as a whole.

A second set of flags appears following any other statement. These flags reflect unusual events that occur during the

statement, which are usually not serious enough to be reflected by SQLCODE.

Both sets of SQLWARN values are summarized in the following table.

405

HCL Informix 14.10 - SQL programming Guide

406

Table 61. Fields of SQLWARN

Field When opening or connecting to a database All other SQL operations

First Set to W when any other warning field is set to W. If

blank, others need not be checked.

Set to W when any other warning field is set to W.

Second Set to W when the database now open uses a

transaction log.

Set to W if a column value is truncated when it is fetched

into a host variable using a FETCH or a SELECT...INTO

statement. On a REVOKE ALL statement, set to W when

not all seven table-level privileges are revoked.

Third Set to W when the database now open is ANSI

compliant.

Set to W when a FETCH or SELECT statement returns an

aggregate function (SUM, AVG, MIN, MAX) value that is

NULL.

Fourth Set to W when the database server is HCL

Informix®.

On a SELECT ... INTO, FETCH ... INTO, or EXECUTE ...

INTO statement, set to W when the number of projection

list items is not the same as the number of host

variables given in the INTO clause to receive them. On

a GRANT ALL statement, set to W when not all seven

table-level access privileges are granted.

Fifth Set to W when the database server stores the

FLOAT data type in DECIMAL form (done when

the host system lacks support for FLOAT types).

Set to W after a DESCRIBE statement if the prepared

object contains a DELETE statement or an UPDATE

statement without a WHERE clause.

Sixth Reserved. Set to W following execution of a statement that does

not use ANSI-standard SQL syntax (provided the

DBANSIWARN environment variable is set).

Seventh Set to W when the application is connected to

a database server that is the secondary server

in a data-replication pair. That is, the server is

available only for read operations.

Set to W when a data fragment (a dbspace) has been

skipped during query processing (when the DATASKIP

feature is on).

Eighth Set to W when client DB_LOCALE does not match

the database locale. For more information, see

the HCL® Informix® GLS User's Guide.

Set to W when SET EXPLAIN ON AVOID_EXECUTE

statement prevents query execution.

SQLERRM character string

SQLERRM can store a character string of up to 72 bytes. The SQLERRM character string contains identifiers, such as a

table names, that are placed in the error message. For some networked applications, it contains an error message that the

networking software generates.

If an INSERT operation fails because a constraint is violated, the name of the constraint that failed is written to SQLERRM.

Chapter 1. SQL programming

Tip: If an error string is longer than 72 bytes, the overflow is silently discarded. In some contexts, this can result in

the loss of information about runtime errors.

SQLSTATE value

Certain HCL® Informix® products, such as IBM® Informix® ESQL/C, support the SQLSTATE value in compliance with

X/Open and ANSI SQL standards. The GET DIAGNOSTICS statement reads the SQLSTATE value to diagnose errors after you

run an SQL statement. The database server returns a result code in a five-character string that is stored in a variable called

SQLSTATE. The SQLSTATE error code, or value, tells you the following information about the most recently executed SQL

statement:

• If the statement was successful

• If the statement was successful but generated warnings

• If the statement was successful but generated no data

• If the statement failed

For more information on the GET DIAGNOSTICS statement, the SQLSTATE variable, and the meaning of the SQLSTATE return

codes, see the GET DIAGNOSTICS statement in the HCL® Informix® Guide to SQL: Syntax.

Tip: If your HCL® Informix® product supports GET DIAGNOSTICS and SQLSTATE, it is recommended that you use

them as the primary structure to detect, handle, and diagnose errors. Using SQLSTATE allows you to detect multiple

errors, and it is ANSI compliant.

Retrieve single rows

The set of rows that a SELECT statement returns is its active set. A singleton SELECT statement returns a single row. You can

use embedded SELECT statements to retrieve single rows from the database into host variables. When a SELECT statement

returns more than one row of data, however, a program must use a cursor to retrieve rows one at a time. Multiple-row select

operations are discussed in Retrieve multiple rows on page 411.

To retrieve a single row of data, simply embed a SELECT statement in your program. The following example shows how you

can write the embedded SELECT statement using IBM® Informix® ESQL/C:

EXEC SQL SELECT avg (total_price)
 INTO :avg_price
 FROM items
 WHERE order_num in
 (SELECT order_num from orders
 WHERE order_date < date('6/1/98'));

The INTO clause is the only detail that distinguishes this statement from any example in Compose SELECT statements on

page 232 or Compose advanced SELECT statements on page 320. This clause specifies the host variables that are to

receive the data that is produced.

407

HCL Informix 14.10 - SQL programming Guide

408

When the program executes an embedded SELECT statement, the database server performs the query. The example

statement selects an aggregate value so that it produces exactly one row of data. The row has only a single column, and its

value is deposited in the host variable named avg_price. Subsequent lines of the program can use that variable.

You can use statements of this kind to retrieve single rows of data into host variables. The single row can have as many

columns as desired. If a query produces more than one row of data, the database server cannot return any data. It returns an

error code instead.

You should list as many host variables in the INTO clause as there are items in the select list. If, by accident, these lists are

of different lengths, the database server returns as many values as it can and sets the warning flag in the fourth field of

SQLWARN.

Data type conversion

The following Informix® ESQL/C example retrieves the average of a DECIMAL column, which is itself a DECIMAL value.

However, the host variable into which the average of the DECIMAL column is placed is not required to have that data type.

EXEC SQL SELECT avg (total_price) into :avg_price
 FROM items;

The declaration of the receiving variable avg_price in the previous example of Informix® ESQL/C code is not shown. The

declaration could be any one of the following definitions:

int avg_price;
double avg_price;
char avg_price[16];
dec_t avg_price; /* typedef of decimal number structure */

The data type of each host variable that is used in a statement is noted and passed to the database server with the

statement. The database server does its best to convert column data into the form that the receiving variables use. Almost

any conversion is allowed, although some conversions cause a precision loss. The results of the preceding example differ,

depending on the data type of the receiving host variable, as the following table shows.

Data type Result

FLOAT The database server converts the decimal result to FLOAT, possibly truncating some fractional

digits. If the magnitude of a decimal exceeds the maximum magnitude of the FLOAT format, an

error is returned.

INTEGER The database server converts the result to INTEGER, truncating fractional digits if necessary. If the

integer part of the converted number does not fit the receiving variable, an error occurs.

CHARACTER The database server converts the decimal value to a CHARACTER string. If the string is too long

for the receiving variable, it is truncated. The second field of SQLWARN is set to W and the value in

the SQLSTATE variable is 01004.

Chapter 1. SQL programming

What if the program retrieves a NULL value?

NULL values can be stored in the database, but the data types that programming languages support do not recognize a NULL

state. A program must have some way to recognize a NULL item to avoid processing it as data.

Indicator variables meet this need in SQL APIs. An indicator variable is an additional variable that is associated with a host

variable that might receive a NULL item. When the database server puts data in the main variable, it also puts a special value

in the indicator variable to show whether the data is NULL. In the following IBM® Informix® ESQL/C example, a single row is

selected, and a single value is retrieved into the host variable op_date:

EXEC SQL SELECT paid_date
 INTO :op_date:op_d_ind
 FROM orders
 WHERE order_num = $the_order;
if (op_d_ind < 0) /* data was null */
 rstrdate ('01/01/1900', :op_date);

Because the value might be NULL, an indicator variable named op_d_ind is associated with the host variable. (It must be

declared as a short integer elsewhere in the program.)

Following execution of the SELECT statement, the program tests the indicator variable for a negative value. A negative

number (usually -1) means that the value retrieved into the main variable is NULL. If the variable is NULL, this program uses

the Informix® ESQL/C library function to assign a default value to the host variable. (The function rstrdate is part of the

IBM® Informix® ESQL/C product.)

The syntax that you use to associate an indicator variable with a host variable differs with the language you are using, but the

principle is the same in all languages.

Dealing with errors

Although the database server automatically handles conversion between data types, several things still can go wrong with a

SELECT statement. In SQL programming, as in any kind of programming, you must anticipate errors and provide for them at

every point.

End of data

One common event is that no rows satisfy a query. This event is signalled by an SQLSTATE code of 02000 and by a code

of 100 in SQLCODE after a SELECT statement. This code indicates an error or a normal event, depending entirely on your

application. If you are sure a row or rows should satisfy the query (for example, if you are reading a row using a key value that

you just read from a row of another table), then the end-of-data code represents a serious failure in the logic of the program.

On the other hand, if you select a row based on a key that a user supplies or some other source supplies that is less reliable

than a program, a lack of data can be a normal event.

End of data with databases that are not ANSI compliant

If your database is not ANSI compliant, the end-of-data return code, 100, is set in SQLCODE following SELECT statements

only. In addition, the SQLSTATE value is set to 02000. (Other statements, such as INSERT, UPDATE, and DELETE, set the third

409

HCL Informix 14.10 - SQL programming Guide

410

element of SQLERRD to show how many rows they affected; Modify data through SQL programs on page 423 covers this

topic.)

Serious errors

Errors that set SQLCODE to a negative value or SQLSTATE to a value that begins with anything other than 00, 01, or 02 are

usually serious. Programs that you have developed and that are in production should rarely report these errors. Nevertheless,

it is difficult to anticipate every problematic situation, so your program must be able to deal with these errors.

For example, a query can return error -206, which means that a table specified in the query is not in the database. This

condition occurs if someone dropped the table after the program was written, or if the program opened the wrong database

through some error of logic or mistake in input.

Interpret end of data with aggregate functions

A SELECT statement that uses an aggregate function such as SUM, MIN, or AVG always succeeds in returning at least one

row of data, even when no rows satisfy the WHERE clause. An aggregate value based on an empty set of rows is null, but it

exists nonetheless.

However, an aggregate value is also null if it is based on one or more rows that all contain null values. If you must be able

to detect the difference between an aggregate value that is based on no rows and one that is based on some rows that are

all null, you must include a COUNT function in the statement and an indicator variable on the aggregate value. You can then

work out the following cases.

Count Value Indicator Case

0 -1 Zero rows selected

>0 -1 Some rows selected; all were null

>0 0 Some non-null rows selected

Default values

You can handle these inevitable errors in many ways. In some applications, more lines of code are used to handle errors than

to execute functionality. In the examples in this section, however, one of the simplest solutions, the default value, should

work, as the following example shows:

avg_price = 0; /* set default for errors */
EXEC SQL SELECT avg (total_price)
 INTO :avg_price:null_flag
 FROM items;
if (null_flag < 0) /* probably no rows */
 avg_price = 0; /* set default for 0 rows */

The previous example deals with the following considerations:

Chapter 1. SQL programming

• If the query selects some non-null rows, the correct value is returned and used. This result is the expected and most

frequent one.

• If the query selects no rows, or in the much less likely event, selects only rows that have null values in the total_price

column (a column that should never be null), the indicator variable is set, and the default value is assigned.

• If any serious error occurs, the host variable is left unchanged; it contains the default value initially set. At this point in

the program, the programmer sees no need to trap such errors and report them.

Retrieve multiple rows

When any chance exists that a query could return more than one row, the program must execute the query differently.

Multirow queries are handled in two stages. First, the program starts the query. (No data is returned immediately.) Then the

program requests the rows of data one at a time.

These operations are performed using a special data object called a cursor. A cursor is a data structure that represents the

current state of a query. The following list shows the general sequence of program operations:

1. The program declares the cursor and its associated SELECT statement, which merely allocates storage to hold the

cursor.

2. The program opens the cursor, which starts the execution of the associated SELECT statement and detects any

errors in it.

3. The program fetches a row of data into host variables and processes it.

4. The program closes the cursor after the last row is fetched.

5. When the cursor is no longer needed, the program frees the cursor to deallocate the resources it uses.

These operations are performed with SQL statements named DECLARE, OPEN, FETCH, CLOSE, and FREE.

Declare a cursor

You use the DECLARE statement to declare a cursor. This statement gives the cursor a name, specifies its use, and

associates it with a statement. The following example is written in IBM® Informix® ESQL/C:

EXEC SQL DECLARE the_item CURSOR FOR
 SELECT order_num, item_num, stock_num
 INTO :o_num, :i_num, :s_num
 FROM items
 FOR READ ONLY;

The declaration gives the cursor a name (the_item in this case) and associates it with a SELECT statement. (Modify data

through SQL programs on page 423 discusses how a cursor can also be associated with an INSERT statement.)

The SELECT statement in this example contains an INTO clause. The INTO clause specifies which variables receive data.

You can also use the FETCH statement to specify which variables receive data, as Locate the INTO clause on page 413

discusses.

The DECLARE statement is not an active statement; it merely establishes the features of the cursor and allocates storage for

it. You can use the cursor declared in the preceding example to read through the items table once. Cursors can be declared

to read backward and forward (see Cursor input modes on page 413). This cursor, because it lacks a FOR UPDATE clause

411

HCL Informix 14.10 - SQL programming Guide

412

and because it is designated FOR READ ONLY, is used only to read data, not to modify it. Modify data through SQL programs

on page 423 covers the use of cursors to modify data.

Open a cursor

The program opens the cursor when it is ready to use it. The OPEN statement activates the cursor. It passes the associated

SELECT statement to the database server, which begins the search for matching rows. The database server processes

the query to the point of locating or constructing the first row of output. It does not actually return that row of data, but it

does set a return code in SQLSTATE and in SQLCODE for SQL APIs. The following example shows the OPEN statement in

Informix® ESQL/C:

EXEC SQL OPEN the_item;

Because the database server is seeing the query for the first time, it might detect a number of errors. After the program

opens the cursor, it should test SQLSTATE or SQLCODE. If the SQLSTATE value is greater than 02000 or the SQLCODE

contains a negative number, the cursor is not usable. An error might be present in the SELECT statement, or some other

problem might prevent the database server from executing the statement.

If SQLSTATE is equal to 00000, or SQLCODE contains a zero, the SELECT statement is syntactically valid, and the cursor is

ready to use. At this point, however, the program does not know if the cursor can produce any rows.

Fetch rows

The program uses the FETCH statement to retrieve each row of output. This statement names a cursor and can also name

the host variables that receive the data. The following example shows the completed IBM® Informix® ESQL/C code:

EXEC SQL DECLARE the_item CURSOR FOR
 SELECT order_num, item_num, stock_num
 INTO :o_num, :i_num, :s_num
 FROM items;
EXEC SQL OPEN the_item;
while(SQLCODE == 0)
{
 EXEC SQL FETCH the_item;
 if(SQLCODE == 0)
 printf("%d, %d, %d", o_num, i_num, s_num);
}

Detect end of data

In the previous example, the WHILE condition prevents execution of the loop in case the OPEN statement returns an error.

The same condition terminates the loop when SQLCODE is set to 100 to signal the end of data. However, the loop contains

a test of SQLCODE. This test is necessary because, if the SELECT statement is valid yet finds no matching rows, the OPEN

statement returns a zero, but the first fetch returns 100 (end of data) and no data. The following example shows another way

to write the same loop:

EXEC SQL DECLARE the_item CURSOR FOR
 SELECT order_num, item_num, stock_num
 INTO :o_num, :i_num, :s_num
 FROM items;
EXEC SQL OPEN the_item;

Chapter 1. SQL programming

if(SQLCODE == 0)
 EXEC SQL FETCH the_item; /* fetch 1st row*/
while(SQLCODE == 0)
{
 printf("%d, %d, %d", o_num, i_num, s_num);
 EXEC SQL FETCH the_item;
}

In this version, the case of no returned rows is handled early, so no second test of SQLCODE exists within the loop. These

versions have no measurable difference in performance because the time cost of a test of SQLCODE is a tiny fraction of the

cost of a fetch.

Locate the INTO clause

The INTO clause names the host variables that are to receive the data that the database server returns. The INTO clause

must appear in either the SELECT or the FETCH statement. However it cannot appear in both statements. The following

example specifies host variables in the FETCH statement:

EXEC SQL DECLARE the_item CURSOR FOR
 SELECT order_num, item_num, stock_num
 FROM items;
EXEC SQL OPEN the_item;
while(SQLCODE == 0)
{
 EXEC SQL FETCH the_item INTO :o_num, :i_num, :s_num;
 if(SQLCODE == 0)
 printf("%d, %d, %d", o_num, i_num, s_num);
}

This form lets you fetch different rows into different locations. For example, you could use this form to fetch successive rows

into successive elements of an array.

Cursor input modes

For purposes of input, a cursor operates in one of two modes, sequential or scrolling. A sequential cursor can fetch only the

next row in sequence, so a sequential cursor can read through a table only once each time the cursor is opened. A scroll

cursor can fetch the next row or any of the output rows, so a scroll cursor can read the same rows multiple times. The

following example shows a sequential cursor declared in IBM® Informix® ESQL/C.

EXEC SQL DECLARE pcurs cursor for
 SELECT customer_num, lname, city
 FROM customer;

After the cursor is opened, it can be used only with a sequential fetch that retrieves the next row of data, as the following

example shows:

EXEC SQL FETCH p_curs into:cnum, :clname, :ccity;

Each sequential fetch returns a new row.

A scroll cursor is declared with the keywords SCROLL CURSOR, as the following example from IBM® Informix® ESQL/C

shows:

413

HCL Informix 14.10 - SQL programming Guide

414

EXEC SQL DECLARE s_curs SCROLL CURSOR FOR
 SELECT order_num, order_date FROM orders
 WHERE customer_num > 104

Use the scroll cursor with a variety of fetch options. For example, the ABSOLUTE option specifies the absolute row position

of the row to fetch.

EXEC SQL FETCH ABSOLUTE :numrow s_curs
 INTO :nordr, :nodat

This statement fetches the row whose position is given in the host variable numrow. You can also fetch the current row

again, or you can fetch the first row and then scan through all the rows again. However, these features can cause the

application to run more slowly, as the next section describes. For additional options that apply to scroll cursors, see the

FETCH statement in the HCL® Informix® Guide to SQL: Syntax.

Active set of a cursor

Once a cursor is opened, it stands for some selection of rows. The set of all rows that the query produces is called the active

set of the cursor. It is easy to think of the active set as a well-defined collection of rows and to think of the cursor as pointing

to one row of the collection. This situation is true as long as no other programs are modifying the same data concurrently.

Create the active set

When a cursor is opened, the database server does whatever is necessary to locate the first row of selected data. Depending

on how the query is phrased, this action can be easy, or it can require a great deal of work and time. Consider the following

declaration of a cursor:

EXEC SQL DECLARE easy CURSOR FOR
 SELECT fname, lname FROM customer
 WHERE state = 'NJ'

Because this cursor queries only a single table in a simple way, the database server quickly determines whether any rows

satisfy the query and identifies the first one. The first row is the only row the cursor finds at this time. The rest of the rows in

the active set remain unknown. As a contrast, consider the following declaration of a cursor:

EXEC SQL DECLARE hard SCROLL CURSOR FOR
 SELECT C.customer_num, O.order_num, sum (items.total_price)
 FROM customer C, orders O, items I
 WHERE C.customer_num = O.customer_num
 AND O.order_num = I.order_num
 AND O.paid_date is null
 GROUP BY C.customer_num, O.order_num

The active set of this cursor is generated by joining three tables and grouping the output rows. The optimizer might be able

to use indexes to produce the rows in the correct order, but generally the use of ORDER BY or GROUP BY clauses requires the

database server to generate all the rows, copy them to a temporary table, and sort the table, before it can determine which

row to present first.

In cases where the active set is entirely generated and saved in a temporary table, the database server can take quite

some time to open the cursor. Afterwards, the database server could tell the program exactly how many rows the active

Chapter 1. SQL programming

set contains. However, this information is not made available. One reason is that you can never be sure which method the

optimizer uses. If the optimizer can avoid sorts and temporary tables, it does so; but small changes in the query, in the sizes

of the tables, or in the available indexes can change the methods of the optimizer.

Active set for a sequential cursor

The database server attempts to use as few resources as possible to maintain the active set of a cursor. If it can do so, the

database server never retains more than the single row that is fetched next. It can do this for most sequential cursors. On

each fetch, it returns the contents of the current row and locates the next one.

Active set for a SCROLL cursor

All the rows in the active set for a SCROLL cursor must be retained until the cursor closes because the database server

cannot be sure which row the program will ask for next.

Most frequently, the database server implements the active set of a scroll cursor as a temporary table. The database server

might not fill this table immediately, however (unless it created a temporary table to process the query). Usually it creates

the temporary table when the cursor is opened. Then, the first time a row is fetched, the database server copies it into the

temporary table and returns it to the program. When a row is fetched for a second time, it can be taken from the temporary

table. This scheme uses the fewest resources, in the event that the program abandons the query before it fetches all the

rows. Rows that are never fetched are not created or saved.

Active set and concurrency

When only one program is using a database, the members of the active set cannot change. This situation describes most

personal computers, and it is the easiest situation to think about. But some programs must be designed for use in a

multiprogramming system, where two, three, or dozens of different programs can work on the same tables simultaneously.

When other programs can update the tables while your cursor is open, the idea of the active set becomes less useful. Your

program can see only one row of data at a time, but all other rows in the table can be changing.

In the case of a simple query, when the database server holds only one row of the active set, any other row can change. The

instant after your program fetches a row, another program can delete the same row, or update it so that if it is examined

again, it is no longer part of the active set.

When the active set, or part of it, is saved in a temporary table, stale data can present a problem. That is, the rows in the

actual tables from which the active-set rows are derived can change. If they do, some of the active-set rows no longer reflect

the current table contents.

These ideas seem unsettling at first, but as long as your program only reads the data, stale data does not exist, or rather, all

data is equally stale. The active set is a snapshot of the data as it is at one moment. A row is different the next day; it does

not matter if it is also different in the next millisecond. To put it another way, no practical difference exists between changes

that occur while the program is running and changes that are saved and applied the instant that the program terminates.

415

HCL Informix 14.10 - SQL programming Guide

416

The only time that stale data can cause a problem is when the program intends to use the input data to modify the same

database; for example, when a banking application must read an account balance, change it, and write it back. Modify data

through SQL programs on page 423 discusses programs that modify data.

Parts-explosion problem

When you use a cursor supplemented by program logic, you can solve problems that plain SQL cannot solve. One of these

problems is the parts-explosion problem, sometimes called bill-of-materials processing. At the heart of this problem is a

recursive relationship among objects; one object contains other objects, which contain yet others.

The problem is usually stated in terms of a manufacturing inventory. A company makes a variety of parts, for example. Some

parts are discrete, but some are assemblages of other parts.

These relationships are documented in a single table, which might be called contains. The column contains.parent holds the

part numbers of parts that are assemblages. The column contains.child has the part number of a part that is a component

of the parent. If part number 123400 is an assembly of nine parts, nine rows exist with 123400 in the first column and other

part numbers in the second. The following figure shows one of the rows that describe part number 123400.

Figure 368. Parts-explosion problem

Here is the parts-explosion problem: given a part number, produce a list of all parts that are components of that part. The

following example is a sketch of one solution, as implemented in IBM® Informix® ESQL/C:

int part_list[200];

boom(top_part)
int top_part;
{
 long this_part, child_part;
 int next_to_do = 0, next_free = 1;
 part_list[next_to_do] = top_part;

 EXEC SQL DECLARE part_scan CURSOR FOR
 SELECT child INTO child_part FROM contains
 WHERE parent = this_part;
 while(next_to_do < next_free)
 {
 this_part = part_list[next_to_do];
 EXEC SQL OPEN part_scan;
 while(SQLCODE == 0)
 {
 EXEC SQL FETCH part_scan;
 if(SQLCODE == 0)
 {

Chapter 1. SQL programming

 part_list[next_free] = child_part;
 next_free += 1;
 }
 }
 EXEC SQL CLOSE part_scan;
 next_to_do += 1;
 }
 return (next_free - 1);
}

Technically speaking, each row of the contains table is the head node of a directed acyclic graph, or tree. The function

performs a breadth-first search of the tree whose root is the part number passed as its parameter. The function uses a

cursor named part_scan to return all the rows with a particular value in the parent column. The innermost while loop opens

the part_scan cursor, fetches each row in the selection set, and closes the cursor when the part number of each component

has been retrieved.

This function addresses the heart of the parts-explosion problem, but the function is not a complete solution. For example, it

does not allow for components that appear at more than one level in the tree. Furthermore, a practical contains table would

also have a column count, giving the count of child parts used in each parent. A program that returns a total count of each

component part is much more complicated.

The iterative approach described previously is not the only way to approach the parts-explosion problem. If the number of

generations has a fixed limit, you can solve the problem with a single SELECT statement using nested, outer self-joins.

If up to four generations of parts can be contained within one top-level part, the following SELECT statement returns all of

them:

SELECT a.parent, a.child, b.child, c.child, d.child
 FROM contains a
 OUTER (contains b,
 OUTER (contains c, outer contains d))
 WHERE a.parent = top_part_number
 AND a.child = b.parent
 AND b.child = c.parent
 AND c.child = d.parent

This SELECT statement returns one row for each line of descent rooted in the part given as top_part_number. Null values are

returned for levels that do not exist. (Use indicator variables to detect them.) To extend this solution to more levels, select

additional nested outer joins of the contains table. You can also revise this solution to return counts of the number of parts

at each level.

Dynamic SQL

Although static SQL is useful, it requires that you know the exact content of every SQL statement at the time you write the

program. For example, you must state exactly which columns are tested in any WHERE clause and exactly which columns

are named in any select list.

No problem exists when you write a program to perform a well-defined task. But the database tasks of some programs

cannot be perfectly defined in advance. In particular, a program that must respond to an interactive user might need to

compose SQL statements in response to what the user enters.

417

HCL Informix 14.10 - SQL programming Guide

418

Dynamic SQL allows a program to form an SQL statement during execution, so that user input determines the contents of the

statement. This action is performed in the following steps:

1. The program assembles the text of an SQL statement as a character string, which is stored in a program variable.

2. It executes a PREPARE statement, which asks the database server to examine the statement text and prepare it for

execution.

3. It uses the EXECUTE statement to execute the prepared statement.

In this way, a program can construct and then use any SQL statement, based on user input of any kind. For example, it can

read a file of SQL statements and prepare and execute each one.

DB-Access, a utility that you can use to explore SQL interactively, is the IBM® Informix® ESQL/C program that constructs,

prepares, and executes SQL statements dynamically. For example, DB-Access lets you use simple, interactive menus to

specify the columns of a table. When you are finished, DB-Access builds the necessary CREATE TABLE or ALTER TABLE

statement dynamically and prepares and executes it.

Prepare a statement

In form, a dynamic SQL statement is like any other SQL statement that is written into a program, except that it cannot contain

the names of any host variables.

A prepared SQL statement has two restrictions. First, if it is a SELECT statement, it cannot include the INTO variable clause.

The INTO variable clause specifies host variables into which column data is placed, and host variables are not allowed in

the text of a prepared object. Second, wherever the name of a host variable normally appears in an expression, a question

mark (?) is written as a placeholder in the PREPARE statement. Only the PREPARE statement can specify question mark (?)

placeholders.

You can prepare a statement in this form for execution with the PREPARE statement. The following example is written in

IBM® Informix® ESQL/C:

EXEC SQL prepare query_2 from
 'SELECT * from orders
 WHERE customer_num = ? and order_date > ?';

The two question marks in this example indicate that when the statement is executed, the values of host variables are used

at those two points.

You can prepare almost any SQL statement dynamically. The only statements that you cannot prepare are the ones directly

concerned with dynamic SQL and cursor management, such as the PREPARE and OPEN statements. After you prepare an

UPDATE or DELETE statement, it is a good idea to test the fifth field of SQLWARN to see if you used a WHERE clause (see

SQLWARN array on page 405).

The result of preparing a statement is a data structure that represents the statement. This data structure is not the same as

the string of characters that produced it. In the PREPARE statement, you give a name to the data structure; it is query_2 in the

preceding example. This name is used to execute the prepared SQL statement.

Chapter 1. SQL programming

The PREPARE statement does not limit the character string to one statement. It can contain multiple SQL statements,

separated by semicolons. The following example shows a fairly complex transaction in IBM® Informix® ESQL/C:

strcpy(big_query, "UPDATE account SET balance = balance + ?
WHERE customer_id = ?; \ UPDATE teller SET balance =
balance + ? WHERE teller_id = ?;");
EXEC SQL PREPARE big1 FROM :big_query;

When this list of statements is executed, host variables must provide values for six place-holding question marks. Although

it is more complicated to set up a multistatement list, performance is often better because fewer exchanges take place

between the program and the database server.

Execute prepared SQL

After you prepare a statement, you can execute it multiple times. statements other than SELECT statements, and SELECT

statements that return only a single row, are executed with the EXECUTE statement.

The following IBM® Informix® ESQL/C code prepares and executes a multistatement update of a bank account:

EXEC SQL BEGIN DECLARE SECTION;
char bigquery[270] = "begin work;";
EXEC SQL END DECLARE SECTION;
stcat ("update account set balance = balance + ? where ", bigquery);
stcat ("acct_number = ?;', bigquery);
stcat ("update teller set balance = balance + ? where ", bigquery);
stcat ("teller_number = ?;', bigquery);
stcat ("update branch set balance = balance + ? where ", bigquery);
stcat ("branch_number = ?;', bigquery);
stcat ("insert into history values(timestamp, values);", bigquery);

EXEC SQL prepare bigq from :bigquery;

EXEC SQL execute bigq using :delta, :acct_number, :delta,
 :teller_number, :delta, :branch_number;

EXEC SQL commit work;

The USING clause of the EXECUTE statement supplies a list of host variables whose values are to take the place of the

question marks in the prepared statement. If a SELECT (or EXECUTE FUNCTION) returns only one row, you can use the INTO

clause of EXECUTE to specify the host variables that receive the values.

Dynamic host variables

SQL APIs, which support dynamically allocated data objects, take dynamic statements one step further. They let you

dynamically allocate the host variables that receive column data.

Dynamic allocation of variables makes it possible to take an arbitrary SELECT statement from program input, determine how

many values it produces and their data types, and allocate the host variables of the appropriate types to hold them.

The key to this ability is the DESCRIBE statement. It takes the name of a prepared SQL statement and returns information

about the statement and its contents. It sets SQLCODE to specify the type of statement; that is, the verb with which it begins.

If the prepared statement is a SELECT statement, the DESCRIBE statement also returns information about the selected

419

HCL Informix 14.10 - SQL programming Guide

420

output data. If the prepared statement is an INSERT statement, the DESCRIBE statement returns information about the input

parameters. The data structure to which a DESCRIBE statement returns information is a predefined data structure that is

allocated for this purpose and is known as a system-descriptor area. If you are using IBM® Informix® ESQL/C, you can use a

system-descriptor area or, as an alternative, an sqlda structure.

The data structure that a DESCRIBE statement returns or references for a SELECT statement includes an array of structures.

Each structure describes the data that is returned for one item in the select list. The program can examine the array and

discover that a row of data includes a decimal value, a character value of a certain length, and an integer.

With this information, the program can allocate memory to hold the retrieved values and put the necessary pointers in the

data structure for the database server to use.

Free prepared statements

A prepared SQL statement occupies space in memory. With some database servers, it can consume space that the database

server owns as well as space that belongs to the program. This space is released when the program terminates, but in

general, you should free this space when you finish with it.

You can use the FREE statement to release this space. The FREE statement takes either the name of a statement or the

name of a cursor that was declared for a statement name, and releases the space allocated to the prepared statement. If

more than one cursor is defined on the statement, freeing the statement does not free the cursor.

Quick execution

For simple statements that do not require a cursor or host variables, you can combine the actions of the PREPARE, EXECUTE,

and FREE statements into a single operation. The following example shows how the EXECUTE IMMEDIATE statement takes a

character string, prepares it, executes it, and frees the storage in one operation:

EXEC SQL execute immediate 'drop index my_temp_index';

This capability makes it easy to write simple SQL operations. However, because no USING clause is allowed, the EXECUTE

IMMEDIATE statement cannot be used for SELECT statements.

Embed data-definition statements

Data-definition statements, the SQL statements that create databases and modify the definitions of tables, are not usually

put into programs. The reason is that they are rarely performed. A database is created once, but it is queried and updated

many times.

The creation of a database and its tables is generally done interactively, using DB-Access. These tools can also be run from a

file of statements, so that the creation of a database can be done with one operating-system command. The data-definition

statements are documented in the HCL® Informix® Guide to SQL: Syntax and the IBM® Informix® Database Design and

Implementation Guide.

Chapter 1. SQL programming

Grant and revoke privileges in applications

One task related to data definition is performed repeatedly: granting and revoking privileges. Because privileges must be

granted and revoked frequently, possibly by users who are not skilled in SQL, one strategy is to package the GRANT and

REVOKE statements in programs to give them a simpler, more convenient user interface.

The GRANT and REVOKE statements are especially good candidates for dynamic SQL. Each statement takes the following

parameters:

• A list of one or more privileges

• A table name

• The name of a user

You probably need to supply at least some of these values based on program input (from the user, command-line

parameters, or a file) but none can be supplied in the form of a host variable. The syntax of these statements does not allow

host variables at any point.

An alternative is to assemble the parts of a statement into a character string and to prepare and execute the assembled

statement. Program input can be incorporated into the prepared statement as characters.

The following IBM® Informix® ESQL/C function assembles a GRANT statement from parameters, and then prepares and

executes it:

char priv_to_grant[100];
char table_name[20];
char user_id[20];

table_grant(priv_to_grant, table_name, user_id)
char *priv_to_grant;
char *table_name;
char *user_id;
{
 EXEC SQL BEGIN DECLARE SECTION;
 char grant_stmt[200];
 EXEC SQL END DECLARE SECTION;

 sprintf(grant_stmt, " GRANT %s ON %s TO %s",
 priv_to_grant, table_name, user_id);
 PREPARE the_grant FROM :grant_stmt;
 if(SQLCODE == 0)
 EXEC SQL EXECUTE the_grant;
 else
 printf("Sorry, got error # %d attempting %s",
 SQLCODE, grant_stmt);

 EXEC SQL FREE the_grant;
}

The opening statement of the function that the following example shows specifies its name and its three parameters. The

three parameters specify the privileges to grant, the name of the table on which to grant privileges, and the ID of the user to

receive them.

421

HCL Informix 14.10 - SQL programming Guide

422

table_grant(priv_to_grant, table_name, user_id)
char *priv_to_grant;
char *table_name;
char *user_id;

The function uses the statements in the following example to define a local variable, grant_stmt, which is used to assemble

and hold the GRANT statement:

EXEC SQL BEGIN DECLARE SECTION;
 char grant_stmt[200];
EXEC SQL END DECLARE SECTION;

As the following example illustrates, the GRANT statement is created by concatenating the constant parts of the statement

and the function parameters:

sprintf(grant_stmt, " GRANT %s ON %s TO %s",priv_to_grant,
 table_name, user_id);

This statement concatenates the following six character strings:

• 'GRANT'

• The parameter that specifies the privileges to be granted

• 'ON'

• The parameter that specifies the table name

• 'TO'

• The parameter that specifies the user

The result is a complete GRANT statement composed partly of program input. The PREPARE statement passes the

assembled statement text to the database server for parsing.

If the database server returns an error code in SQLCODE following the PREPARE statement, the function displays an error

message. If the database server approves the form of the statement, it sets a zero return code. This action does not

guarantee that the statement is executed properly; it means only that the statement has correct syntax. It might refer to a

nonexistent table or contain many other kinds of errors that can be detected only during execution. The following portion of

the example checks that the_grant was prepared successfully before executing it:

if(SQLCODE == 0)
 EXEC SQL EXECUTE the_grant;
else
 printf("Sorry, got error # %d attempting %s", SQLCODE, grant_stmt);

If the preparation is successful, SQLCODE = = 0, the next step executes the prepared statement.

Assign roles

Alternatively, the DBA can define a role with the CREATE ROLE statement, and use the GRANT and REVOKE statements to

cancel or assign roles to users, and to grant and revoke privileges of roles. For example:

GRANT engineer TO nmartin;

Chapter 1. SQL programming

The SET ROLE statement is needed to activate a non-default role. For more information on roles and privileges, see Access-

management strategies on page 223 and Privileges on a database and on its objects on page 378. For more information

on the GRANT and REVOKE statements, see the IBM® Informix® Database Design and Implementation Guide. For more

information about the syntax of these statements, see HCL® Informix® Guide to SQL: Syntax.

Summary

SQL statements can be written into programs as if they were normal statements of the programming language. Program

variables can be used in WHERE clauses, and data from the database can be fetched into them. A preprocessor translates

the SQL code into procedure calls and data structures.

Statements that do not return data, or queries that return only one row of data, are written like ordinary imperative

statements of the language. Queries that can return more than one row are associated with a cursor that represents the

current row of data. Through the cursor, the program can fetch each row of data as it is needed.

Static SQL statements are written into the text of the program. However, the program can form new SQL statements

dynamically, as it runs, and execute them also. In the most advanced cases, the program can obtain information about the

number and types of columns that a query returns and dynamically allocate the memory space to hold them.

Modify data through SQL programs

The previous chapter describes how to insert or embed SQL statements, especially the SELECT statement, into programs

written in other languages. Embedded SQL enables a program to retrieve rows of data from a database.

This chapter discusses the issues that arise when a program needs to delete, insert, or update rows to modify the database.

As in SQL programming on page 400, this chapter prepares you for reading your HCL® Informix® embedded language

publication.

The general use of the INSERT, UPDATE, and DELETE statements is discussed in Modify data on page 358. This chapter

examines their use from within a program. You can easily embed the statements in a program, but it can be difficult to handle

errors and to deal with concurrent modifications from multiple programs.

The DELETE statement

To delete rows from a table, a program executes a DELETE statement. The DELETE statement can specify rows in the usual

way, with a WHERE clause, or it can refer to a single row, the last one fetched through a specified cursor.

Whenever you delete rows, you must consider whether rows in other tables depend on the deleted rows. This problem of

coordinated deletions is covered in Modify data on page 358. The problem is the same when deletions are made from

within a program.

Direct deletions

You can embed a DELETE statement in a program. The following example uses IBM® Informix® ESQL/C:

EXEC SQL delete from items
 WHERE order_num = :onum;

423

HCL Informix 14.10 - SQL programming Guide

424

You can also prepare and execute a statement of the same form dynamically. In either case, the statement works directly on

the database to affect one or more rows.

The WHERE clause in the example uses the value of a host variable named onum. Following the operation, results are posted

in SQLSTATE and in the sqlca structure, as usual. The third element of the SQLERRD array contains the count of rows deleted

even if an error occurs. The value in SQLCODE shows the overall success of the operation. If the value is not negative, no

errors occurred and the third element of SQLERRD is the count of all rows that satisfied the WHERE clause and were deleted.

Errors during direct deletions

When an error occurs, the statement ends prematurely. The values in SQLSTATE and in SQLCODE and the second element of

SQLERRD explain its cause, and the count of rows reveals how many rows were deleted. For many errors, that count is zero

because the errors prevented the database server from beginning the operation. For example, if the named table does not

exist, or if a column tested in the WHERE clause is renamed, no deletions are attempted.

However, certain errors can be discovered after the operation begins and some rows are processed. The most common of

these errors is a lock conflict. The database server must obtain an exclusive lock on a row before it can delete that row. Other

programs might be using the rows from the table, preventing the database server from locking a row. Because the issue of

locking affects all types of modifications, Programming for a multiuser environment on page 433, discusses it.

Other, rarer types of errors can strike after deletions begin. For example, hardware errors that occur while the database is

being updated.

Transaction logging

The best way to prepare for any kind of error during a modification is to use transaction logging. In the event of an error, you

can tell the database server to put the database back the way it was. The following example is based on the example in the

section Direct deletions on page 423, which is extended to use transactions:

EXEC SQL begin work; /* start the transaction*/
EXEC SQL delete from items
 where order_num = :onum;
del_result = sqlca.sqlcode; /* save two error */
del_isamno = sqlca.sqlerrd[1]; /* code numbers */
del_rowcnt = sqlca.sqlerrd[2]; /* and count of rows */
if (del_result < 0) /* problem found: */
 EXEC SQL rollback work; /* put everything back */
else /* everything worked OK:*/
 EXEC SQL commit work; /* finish transaction */

A key point in this example is that the program saves the important return values in the sqlca structure before it ends the

transaction. Both the ROLLBACK WORK and COMMIT WORK statements, like other SQL statements, set return codes in the

sqlca structure. However, if you want to report the codes that the error generated, you must save them before executing

ROLLBACK WORK. The ROLLBACK WORK statement removes all of the pending transaction, including its error codes.

The advantage of using transactions is that the database is left in a known, predictable state no matter what goes wrong. No

question remains about how much of the modification is completed; either all of it or none of it is completed.

Chapter 1. SQL programming

In a database with logging, if a user does not start an explicit transaction, the database server initiates an internal

transaction prior to execution of the statement and terminates the transaction after execution completes or fails. If the

statement execution succeeds, the internal transaction is committed. If the statement fails, the internal transaction is rolled

back.

Coordinated deletions

The usefulness of transaction logging is particularly clear when you must modify more than one table. For example, consider

the problem of deleting an order from the demonstration database. In the simplest form of the problem, you must delete

rows from two tables, orders and items, as the following example of IBM® Informix® ESQL/C shows:

EXEC SQL BEGIN WORK;
EXEC SQL DELETE FROM items
 WHERE order_num = :o_num;
if (SQLCODE >= 0)
{
 EXEC SQL DELETE FROM orders
 WHERE order_num == :o_num;

{
 if (SQLCODE >= 0)
 EXEC SQL COMMIT WORK;

{
 else
{
 printf("Error %d on DELETE", SQLCODE);
 EXEC SQL ROLLBACK WORK;
}

The logic of this program is much the same whether or not transactions are used. If they are not used, the person who sees

the error message has a much more difficult set of decisions to make. Depending on when the error occurred, one of the

following situations applies:

• No deletions were performed; all rows with this order number remain in the database.

• Some, but not all, item rows were deleted; an order record with only some items remains.

• All item rows were deleted, but the order row remains.

• All rows were deleted.

In the second and third cases, the database is corrupted to some extent; it contains partial information that can cause

some queries to produce wrong answers. You must take careful action to restore consistency to the information. When

transactions are used, all these uncertainties are prevented.

Delete with a cursor

You can also write a DELETE statement with a cursor to delete the row that was last fetched. Deleting rows in this manner

lets you program deletions based on conditions that cannot be tested in a WHERE clause, as the following example shows.

The following example applies only to databases that are not ANSI compliant because of the way that the beginning and

ending of the transaction are set up.

425

HCL Informix 14.10 - SQL programming Guide

426

Warning: The design of the Informix® ESQL/C function in this example is unsafe. It depends on the current isolation

level for correct operation. Isolation levels are discussed later in the chapter. For more information on isolation levels,

see Programming for a multiuser environment on page 433. Even when the function works as intended, its effects

depend on the physical order of rows in the table, which is not generally a good idea.

int delDupOrder()
{
 int ord_num;
 int dup_cnt, ret_code;

 EXEC SQL declare scan_ord cursor for
 select order_num, order_date
 into :ord_num, :ord_date
 from orders for update;
 EXEC SQL open scan_ord;
 if (sqlca.sqlcode != 0)
 return (sqlca.sqlcode);
 EXEC SQL begin work;
 for(;;)
 {
 EXEC SQL fetch next scan_ord;
 if (sqlca.sqlcode != 0) break;
 dup_cnt = 0; /* default in case of error */
 EXEC SQL select count(*) into dup_cnt from orders
 where order_num = :ord_num;
 if (dup_cnt > 1)
 {
 EXEC SQL delete from orders
 where current of scan_ord;
 if (sqlca.sqlcode != 0)
 break;
 }
 }
 ret_code = sqlca.sqlcode;
 if (ret_code == 100) /* merely end of data */
 EXEC SQL commit work;
 else /* error on fetch or on delete */
 EXEC SQL rollback work;
 return (ret_code);
}

The purpose of the function is to delete rows that contain duplicate order numbers. In fact, in the demonstration database,

the orders.order_num column has a unique index, so duplicate rows cannot occur in it. However, a similar function can be

written for another database; this one uses familiar column names.

The function declares scan_ord, a cursor to scan all rows in the orders table. It is declared with the FOR UPDATE clause,

which states that the cursor can modify data. If the cursor opens properly, the function begins a transaction and then loops

over rows of the table. For each row, it uses an embedded SELECT statement to determine how many rows of the table

have the order number of the current row. (This step fails without the correct isolation level, as Programming for a multiuser

environment on page 433 describes.)

Chapter 1. SQL programming

In the demonstration database, with its unique index on this table, the count returned to dup_cnt is always one. However, if it

is greater, the function deletes the current row of the table, reducing the count of duplicates by one.

Cleanup functions of this sort are sometimes needed, but they generally need more sophisticated design. This function

deletes all duplicate rows except the last one that the database server returns. That order has nothing to do with the content

of the rows or their meanings. You can improve the function in the previous example by adding, perhaps, an ORDER BY

clause to the cursor declaration. However, you cannot use ORDER BY and FOR UPDATE together. An insert example on

page 429 presents a better approach.

The INSERT statement

You can embed the INSERT statement in programs. Its form and use in a program are the same as described in Modify data

on page 358 with the additional feature that you can use host variables in expressions, both in the VALUES and WHERE

clauses. Moreover, in a program you have the additional ability to insert rows with a cursor.

An insert cursor

The DECLARE CURSOR statement has many variations. Most are used to create cursors for different kinds of scans over

data, but one variation creates a special kind of cursor, called an insert cursor. You use an insert cursor with the PUT and

FLUSH statements to efficiently insert rows into a table in bulk.

Declare an insert cursor

To create an insert cursor, declare a cursor to be for an INSERT statement instead of a SELECT statement. You cannot use

such a cursor to fetch rows of data; you can use it only to insert them.

The following 4GL code fragment shows the declaration of an insert cursor:

DEFINE the_company LIKE customer.company,
 the_fname LIKE customer.fname,
 the_lname LIKE customer.lname
DECLARE new_custs CURSOR FOR
 INSERT INTO customer (company, fname, lname)
 VALUES (the_company, the_fname, the_lname)

When you open an insert cursor, a buffer is created in memory to hold a block of rows. The buffer receives rows of data

as the program produces them; then they are passed to the database server in a block when the buffer is full. The buffer

reduces the amount of communication between the program and the database server, and it lets the database server insert

the rows with less difficulty. As a result, the insertions go faster.

The buffer is always made large enough to hold at least two rows of inserted values. It is large enough to hold more than two

rows when the rows are shorter than the minimum buffer size.

Insert with a cursor

The code in the previous example (Declare an insert cursor on page 427) prepares an insert cursor for use. The

continuation, as the following example shows, demonstrates how the cursor can be used. For simplicity, this example

427

HCL Informix 14.10 - SQL programming Guide

428

assumes that a function named next_cust returns either information about a new customer or null data to signal the end of

input.

EXEC SQL BEGIN WORK;
EXEC SQL OPEN new_custs;
while(SQLCODE == 0)
{
 next_cust();
 if(the_company == NULL)
 break;
 EXEC SQL PUT new_custs;
}
if(SQLCODE == 0) /* if no problem with PUT */
{
 EXEC SQL FLUSH new_custs; /* write any rows left */
 if(SQLCODE == 0) /* if no problem with FLUSH */
 EXEC SQL COMMIT WORK; /* commit changes */
}
else
 EXEC SQL ROLLBACK WORK; /* else undo changes */

The code in this example calls next_cust repeatedly. When it returns non-null data, the PUT statement sends the returned

data to the row buffer. When the buffer fills, the rows it contains are automatically sent to the database server. The loop

normally ends when next_cust has no more data to return. Then the FLUSH statement writes any rows that remain in the

buffer, after which the transaction terminates.

Re-examine the information about the INSERT statement. See The INSERT statement on page 427. The statement by itself,

not part of a cursor definition, inserts a single row into the customer table. In fact, the whole apparatus of the insert cursor

can be dropped from the example code, and the INSERT statement can be written into the code where the PUT statement

now stands. The difference is that an insert cursor causes a program to run somewhat faster.

Status codes after PUT and FLUSH

When a program executes a PUT statement, the program should test whether the row is placed in the buffer successfully.

If the new row fits in the buffer, the only action of PUT is to copy the row to the buffer. No errors can occur in this case.

However, if the row does not fit, the entire buffer load is passed to the database server for insertion, and an error can occur.

The values returned into the SQL Communications Area (SQLCA) give the program the information it needs to sort out each

case. SQLCODE and SQLSTATE are set to zero after every PUT statement if no error occurs and to a negative error code if an

error occurs.

The database server sets the third element of SQLERRD to the number of rows actually inserted into the table, as follows

• Zero, if the new row is merely moved to the buffer

• The number of rows that are in the buffer, if the buffer load is inserted without error

• The number of rows inserted before an error occurs, if one did occur

Read the code once again to see how SQLCODE is used (see the previous example). First, if the OPEN statement yields an

error, the loop is not executed because the WHILE condition fails, the FLUSH operation is not performed, and the transaction

rolls back. Second, if the PUT statement returns an error, the loop ends because of the WHILE condition, the FLUSH operation

Chapter 1. SQL programming

is not performed, and the transaction rolls back. This condition can occur only if the loop generates enough rows to fill the

buffer at least once; otherwise, the PUT statement cannot generate an error.

The program might end the loop with rows still in the buffer, possibly without inserting any rows. At this point, the SQL status

is zero, and the FLUSH operation occurs. If the FLUSH operation produces an error code, the transaction rolls back. Only

when all inserts are successfully performed is the transaction committed.

Rows of constants

The insert cursor mechanism supports one special case where high performance is easy to obtain. In this case, all the values

listed in the INSERT statement are constants: no expressions and no host variables are listed, just literal numbers and strings

of characters. No matter how many times such an INSERT operation occurs, the rows it produces are identical. When the

rows are identical, copying, buffering, and transmitting each identical row is pointless.

Instead, for this kind of INSERT operation, the PUT statement does nothing except to increment a counter. When a FLUSH

operation is finally performed, a single copy of the row and the count of inserts are passed to the database server. The

database server creates and inserts that many rows in one operation.

You do not usually insert a quantity of identical rows. You can insert identical rows when you first establish a database to

populate a large table with null data.

An insert example

Delete with a cursor on page 425 contains an example of the DELETE statement whose purpose is to look for and delete

duplicate rows of a table. A better way to perform this task is to select the desired rows instead of deleting the undesired

ones. The code in the following IBM® Informix® ESQL/C example shows one way to do this task:

EXEC SQL BEGIN DECLARE SECTION;
 long last_ord = 1;
 struct {
 long int o_num;
 date o_date;
 long c_num;
 char o_shipinst[40];
 char o_backlog;
 char o_po[10];
 date o_shipdate;
 decimal o_shipwt;
 decimal o_shipchg;
 date o_paiddate;
 } ord_row;
EXEC SQL END DECLARE SECTION;

EXEC SQL BEGIN WORK;
EXEC SQL INSERT INTO new_orders
 SELECT * FROM orders main
 WHERE 1 = (SELECT COUNT(*) FROM orders minor
 WHERE main.order_num = minor.order_num);
EXEC SQL COMMIT WORK;

EXEC SQL DECLARE dup_row CURSOR FOR
 SELECT * FROM orders main INTO :ord_row

429

HCL Informix 14.10 - SQL programming Guide

430

 WHERE 1 < (SELECT COUNT(*) FROM orders minor
 WHERE main.order_num = minor.order_num)
 ORDER BY order_date;
EXEC SQL DECLARE ins_row CURSOR FOR
 INSERT INTO new_orders VALUES (:ord_row);

EXEC SQL BEGIN WORK;
EXEC SQL OPEN ins_row;
EXEC SQL OPEN dup_row;
while(SQLCODE == 0)
{
 EXEC SQL FETCH dup_row;
 if(SQLCODE == 0)
 {
 if(ord_row.o_num != last_ord)
 EXEC SQL PUT ins_row;
 last_ord = ord_row.o_num
 continue;
 }
 break;
}
if(SQLCODE != 0 && SQLCODE != 100)
 EXEC SQL ROLLBACK WORK;
else
 EXEC SQL COMMIT WORK;
EXEC SQL CLOSE ins_row;
EXEC SQL CLOSE dup_row;

This example begins with an ordinary INSERT statement, which finds all the nonduplicated rows of the table and inserts

them into another table, presumably created before the program started. That action leaves only the duplicate rows. (In the

demonstration database, the orders table has a unique index and cannot have duplicate rows. Assume that this example

deals with some other database.)

The code in the previous example then declares two cursors. The first, called dup_row, returns the duplicate rows in the

table. Because dup_row is for input only, it can use the ORDER BY clause to impose some order on the duplicates other than

the physical record order used in the example on page Delete with a cursor on page 425. In this example, the duplicate

rows are ordered by their dates (the oldest one remains), but you can use any other order based on the data.

The second cursor, ins_row, is an insert cursor. This cursor takes advantage of the ability to use a C structure, ord_row, to

supply values for all columns in the row.

The remainder of the code examines the rows that are returned through dup_row. It inserts the first one from each group of

duplicates into the new table and disregards the rest.

For the sake of brevity, the preceding example uses the simplest kind of error handling. If an error occurs before all rows have

been processed, the sample code rolls back the active transaction.

How many rows were affected?

When your program uses a cursor to select rows, it can test SQLCODE for 100 (or SQLSTATE for 02000), the end-of-data return

code. This code is set to indicate that no rows, or no more rows, satisfy the query conditions. For databases that are not

ANSI compliant, the end-of-data return code is set in SQLCODE or SQLSTATE only following SELECT statements; it is not

Chapter 1. SQL programming

used following DELETE, INSERT, or UPDATE statements. For ANSI-compliant databases, SQLCODE is also set to 100 for

updates, deletes, and inserts that affect zero rows.

A query that finds no data is not a success. However, an UPDATE or DELETE statement that happens to update or delete no

rows is still considered a success. It updated or deleted the set of rows that its WHERE clause said it should; however, the

set was empty.

In the same way, the INSERT statement does not set the end-of-data return code even when the source of the inserted rows

is a SELECT statement, and the SELECT statement selected no rows. The INSERT statement is a success because it inserted

as many rows as it was asked to (that is, zero).

To find out how many rows are inserted, updated, or deleted, a program can test the third element of SQLERRD. The count of

rows is there, regardless of the value (zero or negative) in SQLCODE.

The UPDATE statement

You can embed the UPDATE statement in a program in any of the forms that Modify data on page 358 describes with

the additional feature that you can name host variables in expressions, both in the SET and WHERE clauses. Moreover, a

program can update the row that a cursor addresses.

An update cursor

An update cursor permits you to delete or update the current row; that is, the most recently fetched row. The following

example in IBM® Informix® ESQL/C shows the declaration of an update cursor:

EXEC SQL
 DECLARE names CURSOR FOR
 SELECT fname, lname, company
 FROM customer
 FOR UPDATE;

The program that uses this cursor can fetch rows in the usual way.

EXEC SQL
 FETCH names INTO :FNAME, :LNAME, :COMPANY;

If the program then decides that the row needs to be changed, it can do so.

if (strcmp(COMPANY, "SONY") ==0)
 {
 EXEC SQL
 UPDATE customer
 SET fname = 'Midori', lname = 'Tokugawa'
 WHERE CURRENT OF names;
 }

The words CURRENT OF names take the place of the usual test expressions in the WHERE clause. In other respects, the UPDATE

statement is the same as usual, even including the specification of the table name, which is implicit in the cursor name but

still required.

431

HCL Informix 14.10 - SQL programming Guide

432

The purpose of the keyword UPDATE

The purpose of the keyword UPDATE in a cursor is to let the database server know that the program can update (or delete)

any row that it fetches. The database server places a more demanding lock on rows that are fetched through an update

cursor and a less demanding lock when it fetches a row for a cursor that is not declared with that keyword. This action

results in better performance for ordinary cursors and a higher level of concurrent use in a multiprocessing system.

(Programming for a multiuser environment on page 433 discusses levels of locks and concurrent use.)

Important: A normal update inside the FETCH loop of a cursor cannot guarantee that the updated rows are not

fetched again after the UPDATE. The WHERE CURRENT OF specification relates the UPDATE to the Update cursor,

and guarantees that each row is updated no more than once, by internally keeping a list of the rows that have

already been updated. These rows will not be fetched again by the Update cursor. See the FOR UPDATE clause on

page .

Update specific columns

The following example has updated specific columns of the preceding example of an update cursor:

EXEC SQL
 DECLARE names CURSOR FOR
 SELECT fname, lname, company, phone
 INTO :FNAME,:LNAME,:COMPANY,:PHONE FROM customer
 FOR UPDATE OF fname, lname
END-EXEC.

Only the fname and lname columns can be updated through this cursor. A statement such as the following one is rejected as

an error:

EXEC SQL
 UPDATE customer
 SET company = 'Siemens'
 WHERE CURRENT OF names
END-EXEC.

If the program attempts such an update, an error code is returned and no update occurs. An attempt to delete with WHERE

CURRENT OF is also rejected, because deletion affects all columns.

UPDATE keyword not always needed

The ANSI standard for SQL does not provide for the FOR UPDATE clause in a cursor definition. When a program uses an

ANSI-compliant database, it can update or delete with any cursor.

Cleanup a table

A final, hypothetical example of how to use an update cursor presents a problem that should never arise with an established

database but could arise in the initial design phases of an application.

In the example, a large table named target is created and populated. A character column, dactyl, inadvertently acquires some

null values. These rows should be deleted. Furthermore, a new column, serials, is added to the table with the ALTER TABLE

../sqs/ids_sqs_0161.html#ids_sqs_0161
../sqs/ids_sqs_0161.html#ids_sqs_0161
../sqs/ids_sqs_0161.html#ids_sqs_0161
../sqs/ids_sqs_0161.html#ids_sqs_0161
../sqs/ids_sqs_0161.html#ids_sqs_0161
../sqs/ids_sqs_0161.html#ids_sqs_0161

Chapter 1. SQL programming

statement. This column is to have unique integer values installed. The following example shows the IBM® Informix® ESQL/C

code you use to accomplish these tasks:

EXEC SQL BEGIN DECLARE SECTION;
char dcol[80];
short dcolint;
int sequence;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE target_row CURSOR FOR
 SELECT datcol
 INTO :dcol:dcolint
 FROM target
 FOR UPDATE OF serials;
EXEC SQL BEGIN WORK;
EXEC SQL OPEN target_row;
if (sqlca.sqlcode == 0) EXEC SQL FETCH NEXT target_row;
for(sequence = 1; sqlca.sqlcode == 0; ++sequence)
{
 if (dcolint < 0) /* null datcol */
 EXEC SQL DELETE WHERE CURRENT OF target_row;
 else
 EXEC SQL UPDATE target SET serials = :sequence
 WHERE CURRENT OF target_row;
}
if (sqlca.sqlcode >= 0)
 EXEC SQL COMMIT WORK;
else EXEC SQL ROLLBACK WORK;

Summary

A program can execute the INSERT, DELETE, and UPDATE statements, as Modify data on page 358 describes. A program

can also scan through a table with a cursor, updating or deleting selected rows. It can also use a cursor to insert rows, with

the benefit that the rows are buffered and sent to the database server in blocks.

In all these activities, you must make sure that the program detects errors and returns the database to a known state when

an error occurs. The most important tool for doing this is transaction logging. Without transaction logging, it is more difficult

to write programs that can recover from errors.

Programming for a multiuser environment

This section describes several programming issues you need to be aware of when you work in a multiuser environment.

If your database is contained in a single-user workstation and does not access data from another computer, your programs

can modify data freely. In all other cases, you must allow for the possibility that, while your program is modifying data,

another program is reading or modifying the same data. This situation is described as concurrency: two or more independent

uses of the same data at the same time. This section addresses concurrency, locking, and isolation levels.

This section also describes the statement cache feature, which can reduce per-session memory allocation and speed up

query processing. The statement cache stores statements that can then be shared among different user sessions that use

identical SQL statements.

433

HCL Informix 14.10 - SQL programming Guide

434

Concurrency and performance

Concurrency is crucial to good performance in a multiprogramming system. When access to the data is serialized so that

only one program at a time can use it, processing slows dramatically.

Locks and integrity

Unless controls are placed on the use of data, concurrency can lead to a variety of negative effects. Programs can read

obsolete data, or modifications can be lost even though they were apparently completed.

To prevent errors of this kind, the database server imposes a system of locks. A lock is a claim, or reservation, that a program

can place on a piece of data. The database server guarantees that, as long as the data is locked, no other program can

modify it. When another program requests the data, the database server either makes the program wait or turns it back with

an error.

Locks and performance

Because a lock serializes access to one piece of data, it reduces concurrency; any other programs that want access to that

data must wait. The database server can place a lock on a single row, a disk page, a whole table, or an entire database. (A

disk page might hold multiple rows and a row might require multiple disk pages.) The more locks it places and the larger

the objects it locks, the more concurrency is reduced. The fewer the locks and the smaller the locked objects, the greater

concurrency and performance can be.

The following sections discuss how you can achieve the following goals with your program:

• Place all the locks necessary to ensure data integrity.

• Lock the fewest, smallest pieces of data possible consistent with the preceding goal.

Concurrency issues

To understand the hazards of concurrency, you must think in terms of multiple programs, each executing at its own speed.

Suppose that your program is fetching rows through the following cursor:

EXEC SQL DECLARE sto_curse CURSOR FOR
 SELECT * FROM stock
 WHERE manu_code = 'ANZ';

The transfer of each row from the database server to the program takes time. During and between transfers, other programs

can perform other database operations. At about the same time that your program fetches the rows produced by that query,

another user's program might execute the following update:

EXEC SQL UPDATE stock
 SET unit_price = 1.15 * unit_price
 WHERE manu_code = 'ANZ';

In other words, both programs are reading through the same table, one fetching certain rows and the other changing the

same rows. The following scenarios are possible:

Chapter 1. SQL programming

1. The other program finishes its update before your program fetches its first row.

Your program shows you only updated rows.

2. Your program fetches every row before the other program has a chance to update it.

Your program shows you only original rows.

3. After your program fetches some original rows, the other program catches up and goes on to update some rows that

your program has yet to read; then it executes the COMMIT WORK statement.

Your program might return a mixture of original rows and updated rows.

4. Same as number 3, except that after updating the table, the other program issues a ROLLBACK WORK statement.

Your program can show you a mixture of original rows and updated rows that no longer exist in the database.

The first two possibilities are harmless. In possibility number 1, the update is complete before your query begins. It makes no

difference whether the update finished a microsecond ago or a week ago.

In possibility number 2, your query is, in effect, complete before the update begins. The other program might have been

working just one row behind yours, or it might not start until tomorrow night; it does not matter.

The last two possibilities, however, can be important to the design of some applications. In possibility number 3, the query

returns a mix of updated and original data. That result can be detrimental in some applications. In others, such as one that is

taking an average of all prices, it might not matter at all.

Possibility number 4 can be disastrous if a program returns some rows of data that, because their transaction was cancelled,

can no longer be found in the table.

Another concern arises when your program uses a cursor to update or delete the last-fetched row. Erroneous results occur

with the following sequence of events:

• Your program fetches the row.

• Another program updates or deletes the row.

• Your program updates or deletes WHERE CURRENT OF cursor_name.

To control concurrent events such as these, use the locking and isolation level features of the database server.

How locks work
HCL® Informix® database servers support a complex, flexible set of locking features that the topics in this section describe.

Kinds of locks

The following table shows the types of locks that HCL® Informix® database servers support for different situations.

435

HCL Informix 14.10 - SQL programming Guide

436

L

ock

t

ype Use

Sh

a

red

A shared lock reserves its object for reading only. It prevents the object from changing while the lock remains. More

than one program can place a shared lock on the same object. More than one object can read the record while it is

locked in shared mode.

Exc

lus

ive

An exclusive lock reserves its object for the use of a single program. This lock is used when the program intends to

change the object.

You cannot place an exclusive lock where any other kind of lock exists. After you place an exclusive lock, you cannot

place another lock on the same object.

Pro

mo

ta

ble

(or

Up

da

te)

A promotable (or update) lock establishes the intent to update. You can only place it where no other promotable or

exclusive lock exists. You can place promotable locks on records that already have shared locks. When the program

is about to change the locked object, you can promote the promotable lock to an exclusive lock, but only if no other

locks, including shared locks, are on the record at the time the lock would change from promotable to exclusive.

If a shared lock was on the record when the promotable lock was set, you must drop the shared lock before the

promotable lock can be promoted to an exclusive lock.

Lock scope

You can apply locks to entire databases, entire tables, disk pages, single rows, or index-key values. The size of the object that

is being locked is referred to as the scope of the lock (also called the lock granularity). In general, the larger the scope of a

lock, the more concurrency is reduced, but the simpler programming becomes.

Database locks

You can lock an entire database. The act of opening a database places a shared lock on the name of the database. A

database is opened with the CONNECT, DATABASE, or CREATE DATABASE statements. As long as a program has a database

open, the shared lock on the name prevents any other program from dropping the database or putting an exclusive lock on it.

The following statement shows how you might lock an entire database exclusively:

DATABASE database_one EXCLUSIVE

This statement succeeds if no other program has opened that database. After the lock is placed, no other program can open

the database, even for reading, because its attempt to place a shared lock on the database name fails.

A database lock is released only when the database closes. That action can be performed explicitly with the DISCONNECT or

CLOSE DATABASE statements or implicitly by executing another DATABASE statement.

Chapter 1. SQL programming

Because locking a database reduces concurrency in that database to zero, it makes programming simple; concurrent effects

cannot happen. However, you should lock a database only when no other programs need access. Database locking is often

used before applying massive changes to data during off-peak hours.

Table locks

You can lock entire tables. In some cases, the database server performs this action automatically. You can also use the

LOCK TABLE statement to lock an entire table explicitly.

The LOCK TABLE statement or the database server can place the following types of table locks:

Shared lock

No users can write to the table. In shared mode, the database server places one shared lock on the table, which

informs other users that no updates can be performed. In addition, the database server adds locks for every

row updated, deleted, or inserted.

Exclusive lock

No other users can read from or write to the table. In exclusive mode, the database server places only one

exclusive lock on the table, no matter how many rows it updates. An exclusive table lock prevents any

concurrent use of the table and, therefore, can have a serious effect on performance if many other programs

are contending for the use of the table. However, when you need to update most of the rows in a table, place an

exclusive lock on the table.

Lock a table with the LOCK TABLE statement

A transaction tells the database server to use table-level locking for a table with the LOCK TABLE statement. The following

example shows how to place an exclusive lock on a table:

LOCK TABLE tab1 IN EXCLUSIVE MODE

The following example shows how to place a shared lock on a table:

LOCK TABLE tab2 IN SHARE MODE

Tip: You can set the isolation level for your database server to achieve the same degree of protection as the shared

table lock while providing greater concurrency.

When the database server automatically locks a table

The database server always locks an entire table while it performs operations for any of the following statements:

• ALTER FRAGMENT

• ALTER INDEX

• ALTER TABLE

• CREATE INDEX

• DROP INDEX

437

HCL Informix 14.10 - SQL programming Guide

438

• RENAME COLUMN

• RENAME TABLE

Completion of the statement (or end of the transaction) releases the lock. An entire table can also be locked automatically

during certain queries.

Avoid table locking with the ONLINE keyword
For indexes that are not defined with the IN TABLE keyword option, you can minimize the duration of an exclusive lock on the

indexed table when you CREATE or DROP an index using the ONLINE keyword.

While the index is being created or dropped online, no DDL operations on the table are supported, but operations that were

concurrent when the CREATE INDEX or DROP INDEX statement was issued can be completed. The specified index is not

created or dropped until no other processes are concurrently accessing the table. Then locks are held briefly to write the

system catalog data associated with the index. This increases the availability of the system, because the table is still

readable by ongoing and new sessions. The following statement shows how to use the ONLINE keyword to avoid automatic

table locking with a CREATE INDEX statement:

CREATE INDEX idx_1 ON customer (lname) ONLINE;

For in-table indexes, however, that are defined with the IN TABLE keyword option, the indexed table remains locked for the

duration of the CREATE INDEX or DROP INDEX operation that includes the ONLINE keyword. Attempted access by other

sessions to the locked table would fail with at least one of these errors:

107: ISAM error: record is locked.
211: Cannot read system catalog (systables).
710: Table (table.tix) has been dropped, altered or renamed.

Row and key locks

You can lock one row of a table. A program can lock one row or a selection of rows while other programs continue to work on

other rows of the same table.

Row and key locking are not the default behaviors. You must specify row-level locking when you create the table. The

following example creates a table with row-level locking:

CREATE TABLE tab1
(
col1...
) LOCK MODE ROW;

If you specify a LOCK MODE clause when you create a table, you can later change the lock mode with the ALTER TABLE

statement. The following statement changes the lock mode on the reservations table to page-level locking:

ALTER TABLE tab1 LOCK MODE PAGE

In certain cases, the database server has to lock a row that does not exist. To do this, the database server places a lock on

an index-key value. Key locks are used identically to row locks. When the table uses row locking, key locks are implemented

as locks on imaginary rows. When the table uses page locking, a key lock is placed on the index page that contains the key or

that would contain the key if it existed.

Chapter 1. SQL programming

When you insert, update, or delete a key (performed automatically when you insert, update, or delete a row), the database

server creates a lock on the key in the index.

Row and key locks generally provide the best performance overall when you update a relatively small number of rows

because they increase concurrency. However, the database server incurs some overhead in obtaining a lock.

When one or more rows in a table are locked by an exclusive lock, the effect on other users partly depends on their

transaction isolation level. Other users whose isolation levels is not Dirty Read might encounter transactions that fail

because the exclusive lock was not released within a specified time limit.

For Committed Read or Dirty Read isolation level operations that attempt to access tables on which a concurrent session

has set exclusive row-level locks, the risk of locking conflicts can be reduced by enabling transactions to read the most

recently committed version of the data in the locked rows, rather than waiting for the transaction that set the lock to be

committed or rolled back. Enabling access to the last committed version of exclusively locked rows can be accomplished in

several ways:

• For an individual session, issue this SQL statement

 SET ISOLATION TO COMMITTED READ LAST COMMITTED;

• For all sessions using the Committed Read or Read Committed isolation level, the DBA can set the

USELASTCOMMITTED configuration parameter to 'ALL' or to 'COMMITTED READ'.

• For an individual session using the Committed Read or Read Committed isolation level, any user can issue the

SET ENVIRONMENT USELASTCOMMITTED statement with 'ALL' or 'COMMITTED READ' as the value of this session

environment option.

• For all sessions using Dirty Read or Read Uncommitted isolation levels, the DBA can set the USELASTCOMMITTED

configuration parameter to 'ALL' or to 'DIRTY READ'.

• For an individual session using the Dirty Read or Read Uncommitted isolation levels, any user can issue the

SET ENVIRONMENT USELASTCOMMITTED statement with 'ALL' or 'DIRTY READ' as the value of this session

environment option.

This LAST COMMITTED feature is useful only when row-level locking is in effect, rather than when another session holds

an exclusive lock on the entire table. This feature is disabled for any table on which the LOCK TABLE statement applies a

table-level lock. See the description of the SET ENVIRONMENT statement in the HCL® Informix® Guide to SQL: Syntax and

the description of the USELASTCOMMITTED configuration parameter inHCL® Informix® Administrator's Reference for more

information about this feature for concurrent access to tables in which some rows are locked by exclusive locks, and for

restrictions on the kinds of tables that can support this feature.

Page locks

The database server stores data in units called disk pages. A disk page contains one or more rows. In some cases, it is better

to lock a disk page than to lock individual rows on it. For example, with operations that require changing a large number of

rows, you might choose page-level locking because row-level locking (one lock per row) might not be cost effective.

439

HCL Informix 14.10 - SQL programming Guide

440

If you do not specify a LOCK MODE clause when you create a table, the default behavior for the database server is page-level

locking. With page locking, the database server locks the entire page that contains the row. If you update several rows that

are stored on the same page, the database server uses only one lock for the page.

Set the row or page lock mode for all CREATE TABLE statements

HCL Informix® allows you to set the lock mode to page-level locking or row-level locking for all newly created tables for a

single user (per session) or for multiple users (per server). You no longer need to specify the lock mode every time that you

create a new table with the CREATE TABLE statement.

If you want every new table created within your session to be created with a particular lock mode, you have to set the

IFX_DEF_TABLE_LOCKMODE environment variable. For example, for every new table created within your session to be

created with lock mode row, set IFX_DEF_TABLE_LOCKMODE to ROW. To override this behavior, use the CREATE TABLE or

ALTER TABLE statements and redefine the LOCK MODE clause.

Single-user lock mode

Set the single-user lock mode if all of the new tables that you create in your session require the same lock mode. Set the

single-user lock mode with the IFX_DEF_TABLE_LOCKMODE environment variable. For example, for every new table created

within your session to be created with row-level locking, set IFX_DEF_TABLE_LOCKMODE to ROW. To override this behavior,

use the CREATE TABLE or ALTER TABLE statements and redefine the LOCK MODE clause. For more information on setting

environment variables, see the HCL® Informix® Guide to SQL: Reference.

Multiple-user lock mode

Database administrators can use the multiple-user lock mode to create greater concurrency by designating the lock mode

for all users on the same server. All tables that any user creates on that server will then have the same lock mode. To enable

multiple-user lock mode, set the IFX_DEF_TABLE_LOCKMODE environment variable before starting the database server or

set the DEF_TABLES_LOCKMODE configuration parameter.

Rules of precedence

Locking mode for CREATE TABLE or ALTER TABLE has the following rules of precedence, listed in order of highest

precedence to lowest:

1. CREATE TABLE or ALTER TABLE SQL statements that use the LOCK MODE clause

2. Single-user environment variable setting

3. Multi-user environment variable setting in the server environment

4. Configuration parameters in the configuration file

5. Default behavior (page-level locking)

Chapter 1. SQL programming

Coarse index locks

When you change the lock mode of an index from normal to coarse lock mode, index-level locks are acquired on the index

instead of item-level or page-level locks, which are the normal locks. This mode reduces the number of lock calls on an

index.

Use the coarse lock mode when you know the index is not going to change; that is, when read-only operations are performed

on the index.

Use the normal lock mode to have the database server place item-level or page-level locks on the index as necessary. Use

this mode when the index gets updated frequently.

When the database server executes the command to change the lock mode to coarse, it acquires an exclusive lock on the

table for the duration of the command. Any transactions that are currently using a lock of finer granularity must complete

before the database server switches to the coarse lock mode.

Smart-large-object locks

Locks on a CLOB or BLOB column are separate from the lock on the row. Smart large objects are locked only when they are

accessed. When you lock a table that contains a CLOB or BLOB column, no smart large objects are locked. If accessed for

writing, the smart large object is locked in update mode, and the lock is promoted to exclusive when the actual write occurs.

If accessed for reading, the smart large object is locked in shared mode. The database server recognizes the transaction

isolation mode, so if Repeatable Read isolation level is set, the database server does not release smart-large-object read

locks before end of transaction.

When the database server retrieves a row and updates a smart large object that the row points to, only the smart large object

is exclusively locked during the time it is being updated.

Byte-range locks

You can lock a range of bytes for a smart large object. Byte-range locks allow a transaction to selectively lock only those

bytes that are accessed so that writers and readers simultaneously can access different byte ranges in the same smart large

object.

For information about how to use byte-range locks, see your .

Byte-range locks support deadlock detection. For information about deadlock detection, see Handle a deadlock on

page 450.

Duration of a lock

The program controls the duration of a database lock. A database lock is released when the database closes.

Depending on whether the database uses transactions, table lock durations vary. If the database does not use transactions

(that is, if no transaction log exists and you do not use a COMMIT WORK statement), a table lock remains until it is removed

by the execution of the UNLOCK TABLE statement.

441

HCL Informix 14.10 - SQL programming Guide

442

The duration of table, row, and index locks depends on what SQL statements you use and on whether transactions are in use.

When you use transactions, the end of a transaction releases all table, row, page, and index locks. When a transaction ends,

all locks are released.

Locks while modifying

When the database server fetches a row through an update cursor, it places a promotable lock on the fetched row. If this

action succeeds, the database server knows that no other program can alter that row. Because a promotable lock is not

exclusive, other programs can continue to read the row. A promotable lock can improve performance because the program

that fetched the row can take some time before it issues the UPDATE or DELETE statement, or it can simply fetch the next

row. When it is time to modify a row, the database server obtains an exclusive lock on the row. If it already has a promotable

lock, it changes that lock to exclusive status.

The duration of an exclusive row lock depends on whether transactions are in use. If they are not in use, the lock is released

as soon as the modified row is written to disk. When transactions are in use, all such locks are held until the end of the

transaction. This action prevents other programs from using rows that might be rolled back to their original state.

When transactions are in use, a key lock is used whenever a row is deleted. Using a key lock prevents the following error from

occurring:

• Program A deletes a row.

• Program B inserts a row that has the same key.

• Program A rolls back its transaction, forcing the database server to restore its deleted row.

What is to be done with the row inserted by Program B?

By locking the index, the database server prevents a second program from inserting a row until the first program commits its

transaction.

The locks placed while the database server reads various rows are controlled by the current isolation level, as discussed in

the next section.

Lock with the SELECT statement
The type and duration of locks that the database server places depend on the isolation set in the application and whether the

SELECT statement is within an update cursor.

This section describes the different isolation levels and update cursors.

Set the isolation level

The isolation level is the degree to which your program is isolated from the concurrent actions of other programs. The

database server offers a choice of isolation levels that reflect a different set of rules for how a program uses locks when it

reads data.

Chapter 1. SQL programming

To set the isolation level, use either the SET ISOLATION or SET TRANSACTION statement. The SET TRANSACTION statement

also lets you set access modes. For more information about access modes, see Control data modification with access

modes on page 449.

SET TRANSACTION versus SET ISOLATION

The SET TRANSACTION statement complies with ANSI SQL-92. This statement is similar to the HCL® Informix® SET

ISOLATION statement; however, the SET ISOLATION statement is not ANSI compliant and does not provide access modes.

The following table shows the relationships between the isolation levels that you set with the SET TRANSACTION and SET

ISOLATION statements.

SET TRANSACTION correlates with SET ISOLATION

Read Uncommitted Dirty Read

Read Committed Committed Read

Not Supported Cursor Stability

(ANSI) Repeatable Read

Serializable

(HCL® Informix®) Repeatable Read

(HCL® Informix®) Repeatable Read

The major difference between the SET TRANSACTION and SET ISOLATION statements is the behavior of the isolation levels

within transactions. The SET TRANSACTION statement can be issued only once for a transaction. Any cursors opened

during that transaction are guaranteed to have that isolation level (or access mode if you are defining an access mode).

With the SET ISOLATION statement, after a transaction is started, you can change the isolation level more than once within

the transaction. The following examples illustrate the difference between the use of SET ISOLATION and the use of SET

TRANSACTION.

SET ISOLATION

EXEC SQL BEGIN WORK;
EXEC SQL SET ISOLATION TO DIRTY READ;
EXEC SQL SELECT ... ;
EXEC SQL SET ISOLATION TO REPEATABLE READ;
EXEC SQL INSERT ... ;
EXEC SQL COMMIT WORK;
 -- Executes without error

SET TRANSACTION

EXEC SQL BEGIN WORK;
EXEC SQL SET TRANSACTION ISOLATION LEVEL TO SERIALIZABLE;
EXEC SQL SELECT ... ;
EXEC SQL SET TRANSACTION ISOLATION LEVEL TO READ COMMITTED;
Error -876: Cannot issue SET TRANSACTION once a transaction has started.

443

HCL Informix 14.10 - SQL programming Guide

444

ANSI Read Uncommitted and HCL Informix® Dirty Read isolation

The simplest isolation level, ANSI Read Uncommitted and HCL® Informix® Dirty Read, amounts to virtually no isolation.

When a program fetches a row, it places no locks, and it respects none; it simply copies rows from the database without

regard to what other programs are doing.

A program always receives complete rows of data. Even under ANSI Read Uncommitted or HCL® Informix® Dirty Read

isolation, a program never sees a row in which some columns are updated and some are not. However, a program that

uses ANSI Read Uncommitted or HCL® Informix® Dirty Read isolation sometimes reads updated rows before the updating

program ends its transaction. If the updating program later rolls back its transaction, the reading program processes data

that never really existed (possibility number 4 on page 435 in the list of concurrency issues).

ANSI Read Uncommitted or HCL® Informix® Dirty Read is the most efficient isolation level. The reading program never waits

and never makes another program wait. It is the preferred level in any of the following cases:

• All tables are static; that is, concurrent programs only read and never modify data.

• The table is held in an exclusive lock.

• Only one program is using the table.

ANSI Read Committed and HCL Informix® Committed Read isolation

When a program requests the ANSI Read Committed or HCL Informix® Committed Read isolation level, the database server

guarantees that it never returns a row that is not committed to the database. This action prevents reading data that is not

committed and that is subsequently rolled back.

ANSI Read Committed or HCL Informix® Committed Read is implemented simply. Before it fetches a row, the database

server tests to determine whether an updating process placed a lock on the row; if not, it returns the row. Because rows that

have been updated (but that are not yet committed) have locks on them, this test ensures that the program does not read

uncommitted data.

ANSI Read Committed or HCL Informix® Committed Read does not actually place a lock on the fetched row, so this isolation

level is almost as efficient as ANSI Read Uncommitted or HCL Informix® Dirty Read. This isolation level is appropriate to use

when each row of data is processed as an independent unit, without reference to other rows in the same or other tables.

Locking conflicts can occur in ANSI Read Committed or HCL Informix® Committed Read sessions, however, if the attempt

to place the test lock is not successful because a concurrent session holds a shared lock on the row. To avoid waiting for

concurrent transactions to release shared locks (by committing or rolling back), Informix® supports the Last Committed

option to the Committed Read isolation level. When this Last Committed option is in effect, a shared lock by another session

causes the query to return the most recently committed version of the row.

The Last Committed feature can also be activated by setting the USELASTCOMMITTED configuration parameter to

'COMMITTED READ' or to 'ALL', or by setting USELASTCOMMITTED session environment option in the SET ENVIRONMENT

statement in the sysdbopen() procedure when the user connects to the database. For more information about the Last

Committed option to the ANSI Read Committed or HCL Informix® Committed Read isolation levels, see the description of

Chapter 1. SQL programming

the SET ISOLATION statement in the HCL® Informix® Guide to SQL: Syntax. For information about the USELASTCOMMITTED

configuration parameter, see the HCL® Informix® Administrator's Reference.

HCL Informix® Cursor Stability isolation

The next level, Cursor Stability, is available only with the Informix® SQL statement SET ISOLATION.

When Cursor Stability is in effect, Informix® places a lock on the latest row fetched. It places a shared lock for an ordinary

cursor or a promotable lock for an update cursor. Only one row is locked at a time; that is, each time a row is fetched,

the lock on the previous row is released (unless that row is updated, in which case the lock holds until the end of the

transaction). Because Cursor Stability locks only one row at a time, it restricts concurrency less than a table lock or database

lock.

Cursor Stability ensures that a row does not change while the program examines it. Such row stability is important when

the program updates some other table based on the data it reads from the row. Because of Cursor Stability, the program is

assured that the update is based on current information. It prevents the use of stale data.

The following example illustrates effective use of Cursor Stability isolation. In terms of the demonstration database, Program

A wants to insert a new stock item for manufacturer Hero (HRO). Concurrently, Program B wants to delete manufacturer HRO

and all stock associated with it. The following sequence of events can occur:

1. Program A, operating under Cursor Stability, fetches the HRO row from the manufact table to learn the manufacturer

code. This action places a shared lock on the row.

2. Program B issues a DELETE statement for that row. Because of the lock, the database server makes the program

wait.

3. Program A inserts a new row in the stock table using the manufacturer code it obtained from the manufact table.

4. Program A closes its cursor on the manufact table or reads a different row of it, releasing its lock.

5. Program B, released from its wait, completes the deletion of the row and goes on to delete the rows of stock that use

manufacturer code HRO, including the row that Program A just inserted.

If Program A used a lesser level of isolation, the following sequence could occur:

1. Program A reads the HRO row of the manufact table to learn the manufacturer code. No lock is placed.

2. Program B issues a DELETE statement for that row. It succeeds.

3. Program B deletes all rows of stock that use manufacturer code HRO.

4. Program B ends.

5. Program A, not aware that its copy of the HRO row is now invalid, inserts a new row of stock using the manufacturer

code HRO.

6. Program A ends.

At the end, a row occurs in stock that has no matching manufacturer code in manufact. Furthermore, Program B apparently

has a bug; it did not delete the rows that it was supposed to delete. Use of the Cursor Stability isolation level prevents these

effects.

445

HCL Informix 14.10 - SQL programming Guide

446

The preceding scenario could be rearranged to fail even with Cursor Stability. All that is required is for Program B to operate

on tables in the reverse sequence to Program A. If Program B deletes from stock before it removes the row of manufact, no

degree of isolation can prevent an error. Whenever this kind of error is possible, all programs that are involved must use the

same sequence of access.

ANSI Serializable, ANSI Repeatable Read, and HCL Informix® Repeatable Read isolation

Where ANSI Serializable or ANSI Repeatable Read are required, a single isolation level is provided, called HCL Informix®

Repeatable Read. This is logically equivalent to ANSI Serializable. Because ANSI Serializable is more restrictive than ANSI

Repeatable Read, HCL Informix® Repeatable Read can be used when ANSI Repeatable Read is desired (although HCL

Informix® Repeatable Read is more restrictive than is necessary in such contexts).

The Repeatable Read isolation level asks the database server to put a lock on every row the program examines and fetches.

The locks that are placed are shareable for an ordinary cursor and promotable for an update cursor. The locks are placed

individually as each row is examined. They are not released until the cursor closes or a transaction ends.

Repeatable Read allows a program that uses a scroll cursor to read selected rows more than once and to be sure that

they are not modified or deleted between readings. (SQL programming on page 400 describes scroll cursors.) No lower

isolation level guarantees that rows still exist and are unchanged the second time they are read.

Repeatable Read isolation places the largest number of locks and holds them the longest. Therefore, it is the level that

reduces concurrency the most. If your program uses this level of isolation, think carefully about how many locks it places,

how long they are held, and what the effect can be on other programs.

In addition to the effect on concurrency, the large number of locks can be a problem. The database server records the

number of locks by each program in a lock table. If the maximum number of locks is exceeded, the lock table fills up, and the

database server cannot place a lock. An error code is returned. The person who administers the Informix® database server

system can monitor the lock table and tell you when it is heavily used.

The isolation level in an ANSI-compliant database is set to Serializable by default. The Serializable isolation level is required

to ensure that operations behave according to the ANSI standard for SQL.

Update cursors

An update cursor is a special kind of cursor that applications can use when the row might potentially be updated. To use an

update cursor, execute SELECT FOR UPDATE in your application. Update cursors use promotable locks; that is, the database

server places an update lock (meaning other users can still view the row) when the application fetches the row, but the

lock is changed to an exclusive lock when the application updates the row using an update cursor and UPDATE...WHERE

CURRENT OF.

The advantage of using an update cursor is that you can view the row with the confidence that other users cannot change it

or view it with an update cursor while you are viewing it and before you update it.

Chapter 1. SQL programming

Tip: In an ANSI-compliant database, update cursors are unnecessary because any select cursor behaves the same

as an update cursor.

The pseudocode in the following figure shows when the database server places and releases locks with a cursor.

Figure 369. Locks Placed for Update

Retain update locks

If a user has the isolation level set lower than Repeatable Read, the database server releases update locks placed on rows as

soon as the next row is fetched from a cursor. With this feature, you can use the RETAIN UPDATE LOCKS clause to retain an

update lock until the end of a transaction when you set any of the following isolation levels:

• Dirty Read

• Committed Read

• Cursor Stability

This feature lets you avoid the overhead of Repeatable Read isolation level or workarounds such as dummy updates on a

row. When the RETAIN UPDATE LOCKS feature is turned on and an update lock is implicitly placed on a row during a fetch of

a SELECT...FOR UPDATE statement, the update lock is not released until the end of the transaction. With the RETAIN UPDATE

LOCKS feature, only update locks are held until end of transaction, whereas the Repeatable Read isolation level holds both

update locks and shared locks until end of transaction.

The following example shows how to use the RETAIN UPDATE LOCKS clause when you set the isolation level to Committed

Read.

SET ISOLATION TO COMMITTED READ RETAIN UPDATE LOCKS

To turn off the RETAIN UPDATE LOCKS feature, set the isolation level without the RETAIN UPDATE LOCKS clause. When

you turn off the feature, update locks are not released directly. However, from this point on, a subsequent fetch releases the

update lock of the immediately preceding fetch but not of earlier fetch operations. A close cursor releases the update lock on

the current row.

For more information about how to use the RETAIN UPDATE LOCKS feature when you specify an isolation level, see the

HCL® Informix® Guide to SQL: Syntax.

447

HCL Informix 14.10 - SQL programming Guide

448

Exclusive locks that occur with some SQL statements
When you execute an INSERT, UPDATE, or DELETE statement, the database server uses exclusive locks. An exclusive lock

means that no other users can update or delete the item until the database server removes the lock. In addition, no other

users can view the row unless they are using the Dirty Read isolation level.

When the database server removes the exclusive lock depends on whether the database supports transaction logging.

For more information about these exclusive locks, see Locks placed with INSERT, UPDATE, and DELETE statements on

page .

The behavior of the lock types

HCL® Informix® database servers store locks in an internal lock table. When the database server reads a row, it checks if the

row or its associated page, table, or database is listed in the lock table. If it is in the lock table, the database server must also

check the lock type. The lock table can contain the following types of locks.

Lock name Description Statement usually placing the lock

S Shared lock SELECT

X Exclusive lock INSERT, UPDATE, DELETE

U Update lock SELECT in an update cursor

B Byte lock Any statement that updates VARCHAR columns

In addition, the lock table might store intent locks. An intent lock can be an intent shared (IS), intent exclusive (IX), or intent

shared exclusive (SIX). An intent lock is the lock the database server (lock manager) places on a higher granularity object

when a lower granularity object needs to be locked. For example, when a user locks a row or page in Shared lock mode, the

database server places an IS (intent shared) lock on the table to provide an instant check that no other user holds an X lock

on the table. In this case, intent locks are placed on the table only and not on the row or page. Intent locks can be placed at

the level of a row, page, or table only.

The user does not have direct control over intent locks; the lock manager internally manages all intent locks.

The following table shows what locks a user (or the database server) can place if another user (or the database server) holds

a certain type of lock. For example, if one user holds an exclusive lock on an item, another user requesting any kind of lock

(exclusive, update or shared) receives an error. In addition, the database server is unable to place any intent locks on an item

if a user holds an exclusive lock on the item.

Hold X lock Hold U lock Hold S lock Hold IS lock Hold SIX lock Hold IX lock

Request X lock No No No No No No

Request U lock No No Yes Yes No No

Request S lock No Yes Yes Yes No No

Request IS lock No Yes Yes Yes Yes Yes

../prf/ids_prf_432.html#ids_prf_432
../prf/ids_prf_432.html#ids_prf_432
../prf/ids_prf_432.html#ids_prf_432
../prf/ids_prf_432.html#ids_prf_432
../prf/ids_prf_432.html#ids_prf_432
../prf/ids_prf_432.html#ids_prf_432

Chapter 1. SQL programming

Hold X lock Hold U lock Hold S lock Hold IS lock Hold SIX lock Hold IX lock

Request SIX lock No No No Yes No No

Request IX lock No No No Yes No Yes

For information about how locking affects performance, see your .

Control data modification with access modes

HCL® Informix® database servers support access modes. Access modes affect read and write concurrency for rows within

transactions and are set with the SET TRANSACTION statement. You can use access modes to control data modification

among shared files.

Transactions are read-write by default. If you specify that a transaction is read-only, that transaction cannot perform the

following tasks:

• Insert, delete, or update table rows

• Create, alter, or drop any database object such as a schema, table, temporary table, index, or stored routine

• Grant or revoke privileges

• Update statistics

• Rename columns or tables

Read-only access mode prohibits updates.

You can execute stored routines in a read-only transaction as long as the routine does not try to perform any restricted

operations.

For information about how to use the SET TRANSACTION statement to specify an access mode, see the HCL® Informix®

Guide to SQL: Syntax.

Set the lock mode

The lock mode determines what happens when your program encounters locked data. One of the following situations occurs

when a program attempts to fetch or modify a locked row:

• The database server immediately returns an error code in SQLCODE or SQLSTATE to the program.

• The database server suspends the program until the program that placed the lock removes the lock.

• The database server suspends the program for a time and then, if the lock is not removed, the database server sends

an error-return code to the program.

You choose among these results with the SET LOCK MODE statement.

Waiting for locks

When a user encounters a lock, the default behavior of a database server is to return an error to the application. If you prefer

to wait indefinitely for a lock (this choice is best for many applications), you can execute the following SQL statement:

449

HCL Informix 14.10 - SQL programming Guide

450

SET LOCK MODE TO WAIT

When this lock mode is set, your program usually ignores the existence of other concurrent programs. When your program

needs to access a row that another program has locked, it waits until the lock is removed, then proceeds. In most cases, the

delays are imperceptible.

You can also wait for a specific number of seconds, as in the following example:

SET LOCK MODE TO WAIT 20

Not waiting for locks

The disadvantage of waiting for locks is that the wait might become long (although properly designed applications should

hold their locks briefly). When the possibility of a long delay is not acceptable, a program can execute the following

statement:

SET LOCK MODE TO NOT WAIT

When the program requests a locked row, it immediately receives an error code (for example, error -107 Record is locked),

and the current SQL statement terminates. The program must roll back its current transaction and try again.

The initial setting is not waiting when a program starts up. If you are using SQL interactively and see an error related

to locking, set the lock mode to wait. If you are writing a program, consider making that one of the first embedded SQL

statements that the program executes.

Limited time wait

You can ask the database server to set an upper limit on a wait with the following statement:

SET LOCK MODE TO WAIT 17

This statement places an upper limit of 17 seconds on the length of any wait. If a lock is not removed in that time, the error

code is returned.

Handle a deadlock

A deadlock is a situation in which a pair of programs blocks the progress of each other. Each program has a lock on some

object that the other program wants to access. A deadlock arises only when all programs concerned set their lock modes to

wait for locks.

The HCL® Informix® database server detects deadlocks immediately when they only involve data at a single network server.

It prevents the deadlock from occurring by returning an error code (error -143 ISAM error: deadlock detected) to the second

program to request a lock. The error code is the one the program receives if it sets its lock mode to not wait for locks. If your

program receives an error code related to locks even after it sets lock mode to wait, you know the cause is an impending

deadlock.

Chapter 1. SQL programming

Handling external deadlock

A deadlock can also occur between programs on different database servers. In this case, the database server cannot

instantly detect the deadlock. (Perfect deadlock detection requires excessive communications traffic among all database

servers in a network.) Instead, each database server sets an upper limit on the amount of time that a program can wait to

obtain a lock on data at a different database server. If the time expires, the database server assumes that a deadlock was the

cause and returns a lock-related error code.

In other words, when external databases are involved, every program runs with a maximum lock-waiting time. The DBA can

set or modify the maximum for the database server.

Simple concurrency

If you are not sure which choice to make concerning locking and concurrency, you can use the following guideline: If your

application accesses non-static tables, and there is no risk of deadlock, have your program execute the following statements

when it starts up (immediately after the first CONNECT or DATABASE statement):

SET LOCK MODE TO WAIT
SET ISOLATION TO REPEATABLE READ

Ignore the return codes from both statements. Proceed as if no other programs exist. If no performance problems arise, you

do not need to read this section again.

Hold cursors

When transaction logging is used, HCL Informix® guarantees that anything done within a transaction can be rolled back at

the end of it. To handle transactions reliably, the database server normally applies the following rules:

• When a transaction ends, all cursors are closed.

• When a transaction ends, all locks are released.

The rules that are used to handle transactions reliably are normal with most database systems that support transactions,

and they do not cause any trouble for most applications. However, circumstances exist in which using standard transactions

with cursors is not possible. For example, the following code works fine without transactions. However, when transactions

are added, closing the cursor conflicts with using two cursors simultaneously.

EXEC SQL DECLARE master CURSOR FOR
EXEC SQL DECLARE detail CURSOR FOR FOR UPDATE
EXEC SQL OPEN master;
while(SQLCODE == 0)
{
 EXEC SQL FETCH master INTO
 if(SQLCODE == 0)
 {
 EXEC SQL BEGIN WORK;
 EXEC SQL OPEN detail USING
 EXEC SQL FETCH detail
 EXEC SQL UPDATE WHERE CURRENT OF detail
 EXEC SQL COMMIT WORK;
 }

451

HCL Informix 14.10 - SQL programming Guide

452

}
EXEC SQL CLOSE master;

In this design, one cursor is used to scan a table. Selected records are used as the basis for updating a different table. The

problem is that when each update is treated as a separate transaction (as the pseudocode in the previous example shows),

the COMMIT WORK statement following the UPDATE closes all cursors, including the master cursor.

The simplest alternative is to move the COMMIT WORK and BEGIN WORK statements to be the last and first statements,

respectively, so that the entire scan over the master table is one large transaction. Treating the scan of the master table as

one large transaction is sometimes possible, but it can become impractical if many rows need to be updated. The number of

locks can be too large, and they are held for the duration of the program.

A solution that HCL® Informix® database servers support is to add the keywords WITH HOLD to the declaration of the

master cursor. Such a cursor is referred to as a hold cursor and is not closed at the end of a transaction. The database server

still closes all other cursors, and it still releases all locks, but the hold cursor remains open until it is explicitly closed.

Before you attempt to use a hold cursor, you must be sure that you understand the locking mechanism described here, and

you must also understand the programs that are running concurrently. Whenever COMMIT WORK is executed, all locks are

released, including any locks placed on rows fetched through the hold cursor.

The removal of locks has little importance if the cursor is used as intended, for a single forward scan over a table.

However, you can specify WITH HOLD for any cursor, including update cursors and scroll cursors. Before you do this, you

must understand the implications of the fact that all locks (including locks on entire tables) are released at the end of a

transaction.

The SQL statement cache

The SQL statement cache is a feature that lets you store in a buffer identical SQL statements that are executed repeatedly so

the statements can be reused among different user sessions without the need for per-session memory allocation. Statement

caching can dramatically improve performance for applications that contain a large number of prepared statements.

However, performance improvements are less dramatic when statement caching is used to cache statements that are

prepared once and executed many times.

Use SQL to turn on or turn off statement caching for an individual database session when statement caching is enabled for

the database server. The following statement shows how to use SQL to turn on caching for the current database session:

SET STATEMENT CACHE ON

The following statement shows how to use SQL to turn off caching for the current database session:

SET STATEMENT CACHE OFF

If you attempt to turn on or turn off statement caching when caching is disabled, the database server returns an error.

For information about syntax for the SET STATEMENT CACHE statement, see the HCL® Informix® Guide to SQL: Syntax.

For information about the STMT_CACHE and STMT_CACHE_SIZE configuration parameters, see the HCL® Informix®

Administrator's Reference and your . For information about the STMT_CACHE environment variable, see the HCL® Informix®

Guide to SQL: Reference.

Chapter 1. SQL programming

Summary

Whenever multiple programs have access to a database concurrently (and when at least one of them can modify data), all

programs must allow for the possibility that another program can change the data even as they read it. The database server

provides a mechanism of locks and isolation levels that usually allow programs to run as if they were alone with the data.

The SET STATEMENT CACHE statement allows you to store in a buffer identical SQL statements that are used repeatedly.

When statement caching is turned on, the database server stores the identical statements so they can be reused among

different user sessions without the need for per-session memory allocation.

Create and use SPL routines

This section describes how to create and use SPL routines. An SPL routine is a user-defined routine written in HCL®

Informix® Stored Procedure Language (SPL). HCL® Informix® SPL is an extension to SQL that provides flow control, such as

looping and branching. Anyone who has the Resource privilege on a database can create an SPL routine.

Routines written in SQL are parsed, optimized as far as possible, and then stored in the system catalog tables in executable

format. An SPL routine might be a good choice for SQL-intensive tasks. SPL routines can execute routines written in C or

other external languages, and external routines can execute SPL routines.

You can use SPL routines to perform any task that you can perform in SQL and to expand what you can accomplish with SQL

alone. Because SPL is a language native to the database, and because SPL routines are parsed and optimized when they are

created rather than at runtime, SPL routines can improve performance for some tasks. SPL routines can also reduce traffic

between a client application and the database server and reduce program complexity.

The syntax for each SPL statement is described in the HCL® Informix® Guide to SQL: Syntax. Examples accompany the

syntax for each statement.

Introduction to SPL routines

An SPL routine is a generic term that includes SPL procedures and SPL functions. An SPL procedure is a routine written in

SPL and SQL that does not return a value. An SPL function is a routine written in SPL and SQL that returns a single value, a

value with a complex data type, or multiple values. Generally, a routine written in SPL that returns a value is an SPL function.

You use SQL and SPL statements to write an SPL routine. SPL statements can be used only inside the CREATE PROCEDURE,

CREATE PROCEDURE FROM, CREATE FUNCTION, and CREATE FUNCTION FROM statements. All these statements are

available with SQL APIs such as IBM® Informix® ESQL/C. The CREATE PROCEDURE and CREATE FUNCTION statements are

available with DB-Access.

To list all SPL routines in a database, run this command, which creates and displays the schema for a database:

dbschema -d database_name -f all

453

HCL Informix 14.10 - SQL programming Guide

454

What you can do with SPL routines

You can accomplish a wide range of objectives with SPL routines, including improving database performance, simplifying

writing applications, and limiting or monitoring access to data.

Because an SPL routine is stored in an executable format, you can use it to execute frequently repeated tasks to improve

performance. When you execute an SPL routine rather than straight SQL code, you can bypass repeated parsing, validity

checking, and query optimization.

You can use an SPL routine in a data-manipulation SQL statement to supply values to that statement. For example, you can

use a routine to perform the following actions:

• Supply values to be inserted into a table

• Supply a value that makes up part of a condition clause in a SELECT, DELETE, or UPDATE statement

These actions are two possible uses of a routine in a data-manipulation statement, but others exist. In fact, any expression in

a data-manipulation SQL statement can consist of a routine call.

You can also issue SQL statements in an SPL routine to hide those SQL statements from a database user. Rather than having

all users learn how to use SQL, one experienced SQL user can write an SPL routine to encapsulate an SQL activity and let

others know that the routine is stored in the database so that they can execute it.

You can write an SPL routine to be run with the DBA privilege by a user who does not have the DBA privilege. This feature

allows you to limit and control access to data in the database. Alternatively, an SPL routine can monitor the users who

access certain tables or data. For more information about how to use SPL routines to control access to data, see the IBM®

Informix® Database Design and Implementation Guide.

You also can write SPL routines that use Dynamic SQL. For an overview with detailed examples of how to create and use

prepared objects and Dynamic SQL in SPL routines, see this IBM® developerWorks® article: Dynamic SQL support in

Informix® Dynamic Server Stored Procedure Language.

SPL routines format

An SPL routine consists of a beginning statement, a statement block, and an ending statement. Within the statement block,

you can use SQL or SPL statements.

The CREATE PROCEDURE or CREATE FUNCTION statement

You must first decide if the routine that you are creating returns values or not. If the routine does not return a value, use

the CREATE PROCEDURE statement to create an SPL procedure. If the routine returns a value, use the CREATE FUNCTION

statement to create an SPL function.

To create an SPL routine, use one CREATE PROCEDURE or CREATE FUNCTION statement to write the body of the routine and

register it.

http://www.ibm.com/developerworks/data/library/techarticle/dm-0806mottupalli/index.dital
http://www.ibm.com/developerworks/data/library/techarticle/dm-0806mottupalli/index.dital
http://www.ibm.com/developerworks/data/library/techarticle/dm-0806mottupalli/index.dital
http://www.ibm.com/developerworks/data/library/techarticle/dm-0806mottupalli/index.dital

Chapter 1. SQL programming

Begin and end the routine

To create an SPL routine that does not return values, start with the CREATE PROCEDURE statement and end with the END

PROCEDURE keyword. The following figure shows how to begin and end an SPL procedure.

Figure 370. Begin and end an SPL procedure.

CREATE PROCEDURE new_price(per_cent REAL)
. . .
END PROCEDURE;

For more information about naming conventions, see the Identifier segment in the HCL® Informix® Guide to SQL: Syntax.

To create an SPL function that returns one or more values, start with the CREATE FUNCTION statement and end with the END

FUNCTION keyword. The following figure shows how to begin and end an SPL function.

Figure 371. Begin and end an SPL function.

CREATE FUNCTION discount_price(per_cent REAL)
 RETURNING MONEY;
. . .
END FUNCTION;

In SPL routines, the END PROCEDURE or END FUNCTION keywords are required.

Important: For compatibility with earlier HCL Informix® products, you can use CREATE PROCEDURE with a

RETURNING clause to create a user-defined routine that returns a value. Your code will be easier to read and to

maintain, however, it you use CREATE PROCEDURE for SPL routines that do not return values (SPL procedures) and

CREATE FUNCTION for SPL routines that return one or more values (SPL functions).

Specify a routine name

You specify a name for the SPL routine immediately following the CREATE PROCEDURE or CREATE FUNCTION statement

and before the parameter list, as the figure shows.

Figure 372. Specify a name for the SPL routine.

CREATE PROCEDURE add_price (arg INT)

HCL Informix® allows you to create more than one SPL routine with the same name but with different parameters. This

feature is known as routine overloading. For example, you might create each of the following SPL routines in your database:

CREATE PROCEDURE multiply (a INT, b FLOAT)
CREATE PROCEDURE multiply (a INT, b SMALLINT)
CREATE PROCEDURE multiply (a REAL, b REAL)

If you call a routine with the name multiply(), the database server evaluates the name of the routine and its arguments to

determine which routine to execute.

455

HCL Informix 14.10 - SQL programming Guide

456

Routine resolution is the process in which the database server searches for a routine signature that it can use, given the

name of the routine and a list of arguments. Every routine has a signature that uniquely identifies the routine based on the

following information:

• The type of routine (procedure or function)

• The routine name

• The number of parameters

• The data types of the parameters

• The order of the parameters

The routine signature is used in a CREATE, DROP, or EXECUTE statement if you enter the full parameter list of the routine. For

example, each statement in the following figure uses a routine signature.

Figure 373. Routine signatures.

CREATE FUNCTION multiply(a INT, b INT);

DROP PROCEDURE end_of_list(n SET, row_id INT);

EXECUTE FUNCTION compare_point(m point, n point);

Add a specific name

Because HCL Informix® supports routine overloading, an SPL routine might not be uniquely identified by its name alone.

However, a routine can be uniquely identified by a specific name. A specific name is a unique identifier that you define in the

CREATE PROCEDURE or CREATE FUNCTION statement, in addition to the routine name. A specific name is defined with the

SPECIFIC keyword and is unique in the database. Two routines in the same database cannot have the same specific name,

even if they have different owners.

A specific name can be up to 128 bytes long. The following figure shows how to define the specific name calc1 in a CREATE

FUNCTION statement that creates the calculate() function.

Figure 374. Define the specific name.

CREATE FUNCTION calculate(a INT, b INT, c INT)
 RETURNING INT
 SPECIFIC calc1;
. . .
END FUNCTION;

Because the owner bsmith has given the SPL function the specific name calc1, no other user can define a routine—SPL or

external—with the specific name calc1. Now you can refer to the routine as bsmith.calculate or with the SPECIFIC keyword

calc1 in any statement that requires the SPECIFIC keyword.

Add a parameter list

When you create an SPL routine, you can define a parameter list so that the routine accepts one or more arguments when it

is invoked. The parameter list is optional.

Chapter 1. SQL programming

A parameter to an SPL routine must have a name and can be defined with a default value. The following are the categories of

data types that a parameter can specify:

• Built-in data types

• Opaque data types

• Distinct data types

• Row types

• Collection types

• Smart large objects (CLOB and BLOB)

The parameter list cannot specify any of the following data types directly:

• SERIAL

• SERIAL8

• BIGSERIAL

• TEXT

• BYTE

For the serial data types, however, a routine can return numerically equivalent values that are cast to a corresponding integer

type (INT, INT8, or BIGINT). Similarly, for a routine to support the simple large object data types, the parameter list can

include the REFERENCES keyword to return a descriptor that points to the storage location of the TEXT or BYTE object.

The following figure shows examples of parameter lists.

Figure 375. Examples of different parameter lists.

CREATE PROCEDURE raise_price(per_cent INT);

CREATE FUNCTION raise_price(per_cent INT DEFAULT 5);

CREATE PROCEDURE update_emp(n employee_t);
CREATE FUNCTION update_nums(list1 LIST(ROW (a VARCHAR(10),
 b VARCHAR(10),
 c INT) NOT NULL));

When you define a parameter, you accomplish two tasks at once:

• You request that the user supply a value when the routine is executed.

• You implicitly define a variable (with the same name as the parameter name) that you can use as a local variable in

the body of the routine.

If you define a parameter with a default value, the user can execute the SPL routine with or without the corresponding

argument. If the user executes the SPL routine without the argument, the database server assigns the parameter the default

value as an argument.

When you invoke an SPL routine, you can give an argument a NULL value. SPL routines handle NULL values by default.

However, you cannot give an argument a NULL value if the argument is a collection element.

457

HCL Informix 14.10 - SQL programming Guide

458

Simple large objects as parameters

Although you cannot define a parameter with a simple large object (a large object that contains TEXT or BYTE data types),

you can use the REFERENCES keyword to define a parameter that points to a simple large object, as the following figure

shows.

Figure 376. Use of the REFERENCES keyword.

CREATE PROCEDURE proc1(lo_text REFERENCES TEXT)

CREATE FUNCTION proc2(lo_byte REFERENCES BYTE DEFAULT NULL)

The REFERENCES keyword means that the SPL routine is passed a descriptor that contains a pointer to the simple large

object, not the object itself.

Undefined arguments

When you invoke an SPL routine, you can specify all, some, or none of the defined arguments. If you do not specify an

argument, and if its corresponding parameter does not have a default value, the argument, which is used as a variable within

the SPL routine, is given a status of undefined.

Undefined is a special status used for SPL variables that have no value. The SPL routine executes without error, as long as

you do not attempt to use the variable that has the status undefined in the body of the routine.

The undefined status is not the same as a NULL value. (The NULL value means that the value is not known, or does not exist,

or is not applicable.)

Add a return clause

If you use CREATE FUNCTION to create an SPL routine, you must specify a return clause that returns one or more values.

Tip: If you use the CREATE PROCEDURE statement to create an SPL routine, you have the option of specifying a

return clause. Your code will be easier to read and to maintain, however, it you instead use the CREATE FUNCTION

statement to create a routine that returns values.

To specify a return clause, use the RETURNING or RETURNS keyword with a list of data types the routine will return. The data

types can be any SQL data types except SERIAL, SERIAL8, TEXT, or BYTE.

The return clause in the following figure specifies that the SPL routine will return an INT value and a REAL value.

Figure 377. Specify the return clause.

FUNCTION find_group(id INT)
 RETURNING INT, REAL;
. . .
END FUNCTION;

Chapter 1. SQL programming

After you specify a return clause, you must also specify a RETURN statement in the body of the routine that explicitly returns

the values to the calling routine. For more information on writing the RETURN statement, see Return values from an SPL

function on page 483.

To specify that the function should return a simple large object (a TEXT or BYTE value), you must use the REFERENCES

clause, as in the following figure, because an SPL routine returns only a pointer to the object, not the object itself.

Figure 378. Use of the REFERENCES clause.

CREATE FUNCTION find_obj(id INT)
 RETURNING REFERENCES BYTE;

Add display labels

You can use CREATE FUNCTION to create a routine that specifies names for the display labels for the values returned. If you

do not specify names for the display labels, the labels will display as expression.

In addition, although using CREATE FUNCTION for routines that return values is recommended, you can use CREATE

PROCEDURE to create a routine that returns values and specifies display labels for the values returned.

If you choose to specify a display label for one return value, you must specify a display label for every return value. In

addition, each return value must have a unique display label.

To add display labels, you must specify a return clause, use the RETURNING keyword. The return clause in the following

figure specifies that the routine will return an INT value with a serial_num display label, a CHAR value with a name display

label, and an INT value with a points display label. You could use either CREATE FUNCTION or CREATE PROCEDURE in the

following figure.

Figure 379. Specify the return clause.

CREATE FUNCTION p(inval INT DEFAULT 0)
 RETURNING INT AS serial_num, CHAR (10) AS name, INT AS points;
 RETURN (inval + 1002), "Newton", 100;
END FUNCTION;

The returned values and their display labels are shown in the following figure.

Figure 380. Returned values and their display labels.

serial_num name points

1002 Newton 100

459

HCL Informix 14.10 - SQL programming Guide

460

Tip: Because you can specify display labels for return values directly in a SELECT statement, when a SPL routine is

used in a SELECT statement, the labels will display as expression. For more information on specifying display labels

for return values in a SELECT statement, see Compose SELECT statements on page 232.

Specify whether the SPL function is variant

When you create an SPL function, the function is variant by default. A function is variant if it returns different results when

it is invoked with the same arguments or if it modifies a database or variable state. For example, a function that returns the

current date or time is a variant function.

Although SPL functions are variant by default, if you specify WITH NOT VARIANT when you create a function, the function

cannot contain any SQL statements. You can define a functional index only on a nonvariant function.

Add a modifier

When you write SPL functions, you can use the WITH clause to add a modifier to the CREATE FUNCTION statement. In the

WITH clause, you can specify the COMMUTATOR or NEGATOR functions. The other modifiers are for external routines.

Restriction: You can use the COMMUTATOR or NEGATOR modifiers with SPL functions only. You cannot use any

modifiers with SPL procedures.

The COMMUTATOR modifier

The COMMUTATOR modifier allows you to specify an SPL function that is the commutator function of the SPL function you

are creating. A commutator function accepts the same arguments as the SPL function you are creating, but in opposite order,

and returns the same value. The commutator function might be more cost effective for the SQL optimizer to execute.

For example, the functions lessthan(a,b), which returns TRUE if a is less than b, and greaterthan(b,a), which returns TRUE if

b is greater than or equal to a, are commutator functions. The following figure uses the WITH clause to define a commutator

function.

Figure 381. Define a commutator function.

CREATE FUNCTION lessthan(a dtype1, b dtype2)
 RETURNING BOOLEAN
 WITH (COMMUTATOR = greaterthan);
. . .
END FUNCTION;

The optimizer might use greaterthan(b,a) if it is less expensive to execute than lessthan(a,b). To specify a commutator

function, you must own both the commutator function and the SPL function you are writing. You must also grant the user of

your SPL function the Execute privilege on both functions.

For a detailed description of granting privileges, see the description of the GRANT statement in the HCL® Informix® Guide to

SQL: Syntax.

Chapter 1. SQL programming

The NEGATOR modifier

The NEGATOR modifier is available for Boolean functions. Two Boolean functions are negator functions if they take the same

arguments, in the same order, and return complementary Boolean values.

For example, the functions equal(a,b), which returns TRUE if a is equal to b, and notequal(a,b), which returns FALSE if a

is equal to b, are negator functions. The optimizer might choose to execute the negator function you specify if it is less

expensive than the original function.

Tthe following figure shows how to use the WITH clause of a CREATE FUNCTION statement to specify a negator function.

Figure 382. Specify a negator function.

CREATE FUNCTION equal(a dtype1, b dtype2)
 RETURNING BOOLEAN
 WITH (NEGATOR = notequal);
. . .
END FUNCTION;

Tip: By default, any SPL routine can handle NULL values that are passed to it in the argument list. In other words, the

HANDLESNULLS modifier is set to YES for SPL routines, and you cannot change its value.

For more information on the COMMUTATOR and NEGATOR modifiers, see the Routine Modifier segment in the HCL®

Informix® Guide to SQL: Syntax.

Specify a DOCUMENT clause

The DOCUMENT and WITH LISTING IN clauses follow END PROCEDURE or END FUNCTION statements.

The DOCUMENT clause lets you add comments to your SPL routine that another routine can select from the system catalog

tables, if needed. The DOCUMENT clause in the following figure contains a usage statement that shows a user how to run

the SPL routine.

Figure 383. Usage statement that shows a user how to run the SPL routine.

CREATE FUNCTION raise_prices(per_cent INT)
. . .
END FUNCTION
 DOCUMENT "USAGE: EXECUTE FUNCTION raise_prices (xxx)",
 "xxx = percentage from 1 - 100";

Remember to place single or double quotation marks around the literal clause. If the literal clause extends past one line,

place quotation marks around each line.

Specify a listing file

The WITH LISTING IN option allows you to direct any compile-time warnings that might occur to a file.

The following figure shows how to log the compile-time warnings in /tmp/warn_file when you work on UNIX™.

461

HCL Informix 14.10 - SQL programming Guide

462

Figure 384. Log the compile-time warnings on UNIX™.

CREATE FUNCTION raise_prices(per_cent INT)
. . .
END FUNCTION
 WITH LISTING IN '/tmp/warn_file'

The following figure shows how to log the compile-time warnings in \tmp\listfile when you work on Windows™.

Figure 385. Log the compile-time warnings on Windows™.

CREATE FUNCTION raise_prices(per_cent INT)
. . .
END FUNCTION
 WITH LISTING IN 'C:\tmp\listfile'

Always remember to place single or double quotation marks around the file name or path name.

Add comments

You can add a comment to any line of an SPL routine, even a blank line.

To add a comment, use any of the following comment notation styles:

• Place a double hyphen (--) at the left of the comment.

• Enclose the comment text between a pair of braces ({ . . . }).

• Delimit the comment between C-style "slash and asterisk" comment indicators (/* . . . */).

To add a multiple-line comment, take one of the following actions:

• Place a double hyphen before each line of the comment

• Enclose the entire comment within the pair of braces.

• Place /* at the left of the first line of the comment, and place */ at the end of the last line of the comment.

Braces as comment indicators are HCL® Informix® an extension to the ANSI/ISO standard for the SQL language. All three

comment styles are also valid in SPL routines.

If you use braces or C-style comment indicators to delimit the text of a comment, the opening indicator must be in the same

style as the closing indicator.

All the examples in the following figure are valid comments.

Chapter 1. SQL programming

Figure 386. Valid comment examples.

SELECT * FROM customer -- Selects all columns and rows

SELECT * FROM customer
 -- Selects all columns and rows
 -- from the customer table

SELECT * FROM customer
 { Selects all columns and rows
 from the customer table }

SELECT * FROM customer
 /* Selects all columns and rows
 from the customer table */

Important: Braces ({ }) can be used to delimit comments and also to delimit the list of elements in a collection. To

ensure that the parser correctly recognizes the end of a comment or list of elements in a collection, use the double

hyphen (--) for comments in an SPL routine that handles collection data types.

Example of a complete routine

The following CREATE FUNCTION statement creates a routine that reads a customer address:

CREATE FUNCTION read_address (lastname CHAR(15)) -- one argument
 RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),CHAR(2)
 CHAR(5); -- 6 items

 DEFINE p_lname,p_fname, p_city CHAR(15);
 --define each routine variable
 DEFINE p_add CHAR(20);
 DEFINE p_state CHAR(2);
 DEFINE p_zip CHAR(5);

 SELECT fname, address1, city, state, zipcode
 INTO p_fname, p_add, p_city, p_state, p_zip
 FROM customer
 WHERE lname = lastname;

 RETURN p_fname, lastname, p_add, p_city, p_state, p_zip;
 --6 items
END FUNCTION;

DOCUMENT 'This routine takes the last name of a customer as',
 --brief description
 'its only argument. It returns the full name and address',
 'of the customer.'

WITH LISTING IN 'pathname' -- modify this pathname according
-- to the conventions that your operating system requires

-- compile-time warnings go here
; -- end of the routine read_address

463

HCL Informix 14.10 - SQL programming Guide

464

Create an SPL routine in a program

To use an SQL API to create an SPL routine, put the text of the CREATE PROCEDURE or CREATE FUNCTION statement in a

file. Use the CREATE PROCEDURE FROM or CREATE FUNCTION FROM statement and refer to that file to compile the routine.

For example, to create a routine to read a customer name, you can use a statement such as the one in the previous example

and store it in a file. If the file is named read_add_source, the following statement compiles the read_address routine:

CREATE PROCEDURE FROM 'read_add_source';

The following example shows how the previous SQL statement looks in the Informix® ESQL/C program:

/* This program creates whatever routine is in *
 * the file 'read_add_source'.
 */
#include <stdio.h>
EXEC SQL include sqlca;
EXEC SQL include sqlda;
EXEC SQL include datetime;
/* Program to create a routine from the pwd */

main()
{
EXEC SQL database play;
EXEC SQL create procedure from 'read_add_source';
}

Dropping a routine in a local or remote database

After you create an SPL routine, you cannot change the body of the routine. Instead, you need to drop the routine and re-

create it. Before you drop the routine, however, make sure that you have a copy of its text somewhere outside the database.

In general, use DROP PROCEDURE with an SPL procedure name and DROP FUNCTION with an SPL function name, as the

following figure shows.

Figure 387. DROP PROCEDURE and DROP FUNCTION.

DROP PROCEDURE raise_prices;
DROP FUNCTION read_address;

Tip: You can also use DROP PROCEDURE with a function name to drop an SPL function. However, it is recommended

that you use DROP PROCEDURE only with procedure names and DROP FUNCTION only with function names.

If the database has other routines of the same name (overloaded routines), you cannot drop the SPL routine by its routine

name alone. To drop a routine that has been overloaded, you must specify either its signature or its specific name. The

following figure shows two ways that you might drop a routine that is overloaded.

Figure 388. Drop a routine that is overloaded.

DROP FUNCTION calculate(INT, INT, INT);
 -- this is a signature

DROP SPECIFIC FUNCTION calc1;
 -- this is a specific name

Chapter 1. SQL programming

If you do not know the type of a routine (function or procedure), you can use the DROP ROUTINE statement to drop it. DROP

ROUTINE works with either functions or procedures. DROP ROUTINE also has a SPECIFIC keyword, as the following figure

shows.

Figure 389. The DROP ROUTINE statement.

DROP ROUTINE calculate;
DROP SPECIFIC ROUTINE calc1;

Before you drop an SPL routine stored on a remote database server, be aware of the following restriction. You can drop an

SPL routine with a fully qualified routine name in the form database@dbservername:owner.routinename only if the routine name

alone, without its arguments, is enough to identify the routine.

Restrictions on data types in distributed operations

SPL routines that access tables in databases of non-local database servers, or that are invoked as UDRs of a database of

another database server, can only have non-opaque built-in data types as their arguments or returned values.

If the tables or the UDR resides on another database of the same Informix® instance, however, the arguments and returned

values of routines written in SPL (or in external languages that Informix® supports) can be the built-in opaque data types

BLOB, BOOLEAN, CLOB, and LVARCHAR. They can also be UDTs or DISTINCT data types if the following conditions are true:

• The remote database has the same server as the current database.

• The UDT arguments are explicitly cast to a built-in data type.

• The DISTINCT types are based on built-in types and are explicitly cast to built-in types.

• The SPL routine and all the casts are defined in all participating databases.

Define and use variables

Any variable that you use in an SPL routine, other than a variable that is implicitly defined in the parameter list of the routine,

must be defined in the body of the routine.

The value of a variable is held in memory; the variable is not a database object. Therefore, rolling back a transaction does not

restore the values of SPL variables.

To define a variable in an SPL routine, use the DEFINE statement. DEFINE is not an executable statement. DEFINE must

appear after the CREATE PROCEDURE statement and before any other statements. The examples in the following figure are

all legal variable definitions.

Figure 390. Variable definitions.

DEFINE a INT;
DEFINE person person_t;
DEFINE GLOBAL gl_out INT DEFAULT 13;

For more information on DEFINE, see the description in the HCL® Informix® Guide to SQL: Syntax.

An SPL variable has a name and a data type. The variable name must be a valid identifier, as described in the Identifier

segment in the HCL® Informix® Guide to SQL: Syntax.

465

HCL Informix 14.10 - SQL programming Guide

466

Declare local variables

You can define a variable to be either local or global in scope. This section describes local variables. In an SPL routine, local

variables:

• Are valid only for the duration of the SPL routine

• Are reset to their initial values or to a value the user passes to the routine, each time the routine is executed

• Cannot have default values

You can define a local variable on any of the following data types:

• Built-in data types (except SERIAL, SERIAL8, BIGSERIAL, TEXT, or BYTE)

• Any extended data type (row type, opaque, distinct, or collection type) that is defined in the database prior to

execution of the SPL routine

The scope of a local variable is the statement block in which it is declared. You can use the same variable name outside the

statement block with a different definition.

For more information on defining global variables, see Declare global variables on page 472.

Scope of local variables

A local variable is valid within the statement block in which it is defined and within any nested statement blocks, unless you

redefine the variable within the statement block.

In the beginning of the SPL procedure in the following figure, the integer variables x, y, and z are defined and initialized.

Figure 391. Define and initialize variables.

CREATE PROCEDURE scope()
 DEFINE x,y,z INT;
 LET x = 5;
 LET y = 10;
 LET z = x + y; --z is 15
 BEGIN
 DEFINE x, q INT;
 DEFINE z CHAR(5);
 LET x = 100;
 LET q = x + y; -- q = 110
 LET z = 'silly'; -- z receives a character value
 END
 LET y = x; -- y is now 5
 LET x = z; -- z is now 15, not 'silly'
END PROCEDURE;

The BEGIN and END statements mark a nested statement block in which the integer variables x and q are defined as well as

the CHAR variable z. Within the nested block, the redefined variable x masks the original variable x. After the END statement,

which marks the end of the nested block, the original value of x is accessible again.

Chapter 1. SQL programming

Declare variables of built-in data types

A variable that you declare as a built-in SQL data type can hold a value retrieved from a column of that built-in type. You can

declare an SPL variable as most built-in types, except BIGSERIAL, SERIAL, and SERIAL8, as the following figure illustrates.

Figure 392. Built-in type variables.

DEFINE x INT;
DEFINE y INT8;
DEFINE name CHAR(15);
DEFINE this_day DATETIME YEAR TO DAY;

You can declare SPL variables of appropriate integer data types (such as BIGINT, INT, or INT8) to store the values of serial

columns or of sequence objects.

Declare variables for smart large objects

A variable for a BLOB or CLOB object (or a data type that contains a smart large object) does not contain the object itself but

rather a pointer to the object. The following figure shows how to define a variable for BLOB and CLOB objects.

Figure 393. Variables for BLOB or CLOB objects.

DEFINE a_blob BLOB;
DEFINE b_clob CLOB;

Declare variables for simple large objects

A variable for a simple large object (a TEXT or BYTE object) does not contain the object itself but rather a pointer to the

object. When you define a variable on the TEXT or BYTE data type, you must use the keyword REFERENCES before the data

type, as the following figure shows.

Figure 394. Use the REFERENCES keyword before the data type.

DEFINE t REFERENCES TEXT;
DEFINE b REFERENCES BYTE;

Declare collection variables

In order to hold a collection fetched from the database, a variable must be of type SET, MULTISET, or LIST.

Important: A collection variable must be defined as a local variable. You cannot define a collection variable as a

global variable.

A variable of SET, MULTISET, or LIST type is a collection variable that holds a collection of the type named in the DEFINE

statement. The following figure shows how to define typed collection variables.

467

HCL Informix 14.10 - SQL programming Guide

468

Figure 395. Define typed collection variables.

DEFINE a SET (INT NOT NULL);

DEFINE b MULTISET (ROW (b1 INT,
 b2 CHAR(50),
) NOT NULL);

DEFINE c LIST (SET (DECIMAL NOT NULL) NOT NULL);

You must always define the elements of a collection variable as NOT NULL. In this example, the variable a is defined to hold

a SET of non-NULL integers; the variable b holds a MULTISET of non-NULL row types; and the variable c holds a LIST of non-

NULL sets of non-NULL decimal values.

In a variable definition, you can nest complex types in any combination or depth to match the data types stored in your

database.

You cannot assign a collection variable of one type to a collection variable of another type. For example, if you define a

collection variable as a SET, you cannot assign another collection variable of MULTISET or LIST type to it.

Declare row-type variables

Row-type variables hold data from named or unnamed row types. You can define a named row variable or an unnamed row

variable. Suppose you define the named row types that the following figure shows.

Figure 396. Named and unnamed row variables.

CREATE ROW TYPE zip_t
(
 z_code CHAR(5),
 z_suffix CHAR(4)
);

CREATE ROW TYPE address_t
(
 street VARCHAR(20),
 city VARCHAR(20),
 state CHAR(2),
 zip zip_t
);

CREATE ROW TYPE employee_t
(
 name VARCHAR(30),
 address address_t
 salary INTEGER
);

CREATE TABLE employee OF TYPE employee_t;

If you define a variable with the name of a named row type, the variable can only hold data of that row type. In the following

figure, the person variable can only hold data of employee_t type.

Chapter 1. SQL programming

Figure 397. Defining the person variable.

DEFINE person employee_t;

To define a variable that holds data stored in an unnamed row type, use the ROW keyword followed by the fields of the row

type, as the following figure shows.

Figure 398. Use the ROW keyword followed by the fields of the row type.

DEFINE manager ROW (name VARCHAR(30),
 department VARCHAR(30),
 salary INTEGER);

Because unnamed row types are type-checked for structural equivalence only, a variable defined with an unnamed row type

can hold data from any unnamed row type that has the same number of fields and the same type definitions. Therefore, the

variable manager can hold data from any of the row types in the following figure.

Figure 399. Unnamed row types.

ROW (name VARCHAR(30),
 department VARCHAR(30),
 salary INTEGER);

ROW (french VARCHAR(30),
 spanish VARCHAR(30),
 number INTEGER);

ROW (title VARCHAR(30),
 musician VARCHAR(30),
 price INTEGER);

Important: Before you can use a row type variable, you must initialize the row variable with a LET statement or

SELECTINTO statement.

Declare opaque- and distinct-type variables

Opaque-type variables hold data retrieved from opaque data types. Distinct-type variables hold data retrieved from distinct

data types. If you define a variable with an opaque data type or a distinct data type, the variable can only hold data of that

type.

If you define an opaque data type named point and a distinct data type named centerpoint, you can define SPL variables to

hold data from the two types, as the following figure shows.

Figure 400. Defining SPL variables to hold opaque and distinct data types.

DEFINE a point;
DEFINE b centerpoint;

The variable a can only hold data of type point, and b can only hold data of type centerpoint.

469

HCL Informix 14.10 - SQL programming Guide

470

Declare variables for column data with the LIKE clause

If you use the LIKE clause, the database server defines a variable to have the same data type as a column in a table or view.

If the column contains a collection, row type, or nested complex type, the variable has the complex or nested complex type

defined in the column.

In the following figure, the variable loc1 defines the data type for the locations column in the image table.

Figure 401. Define the loc1 data type for the locations column in the image table.

DEFINE loc1 LIKE image.locations;

Declare PROCEDURE type variables

In an SPL routine, you can define a variable of type PROCEDURE and assign the variable the name of an existing SPL routine

or external routine. Defining a variable of PROCEDURE type indicates that the variable is a call to a user-defined routine, not a

built-in routine of the same name.

For example, the statement in the following figure defines length as an SPL procedure or SPL function, not as the built-in

LENGTH function.

Figure 402. Define length as an SPL procedure.

DEFINE length PROCEDURE;
LET x = length(a,b,c);

This definition disables the built-in LENGTH function within the scope of the statement block. You would use such a

definition if you had already created an SPL or external routine with the name LENGTH.

Because HCL Informix® supports routine overloading, you can define more than one SPL routine or external routine with the

same name. If you call any routine from an SPL routine, Informix® determines which routine to use, based on the arguments

specified and the routine determination rules. For information about routine overloading and routine determination, see

HCL® Informix® User-Defined Routines and Data Types Developer's Guide.

Tip: If you create an SPL routine with the same name as an aggregate function (SUM, MAX, MIN, AVG, COUNT) or

with the name extend, you must qualify the routine name with an owner name.

Subscripts with variables

You can use subscripts with variables of CHAR, VARCHAR, NCHAR, NVARCHAR, BYTE, or TEXT data type. The subscripts

indicate the starting and ending character positions that you want to use within the variable.

Subscripts must always be constants. You cannot use variables as subscripts. The following figure illustrates how to use a

subscript with a CHAR(15) variable.

Chapter 1. SQL programming

Figure 403. A subscript with a CHAR(15) variable.

DEFINE name CHAR(15);
LET name[4,7] = 'Ream';
SELECT fname[1,3] INTO name[1,3] FROM customer
 WHERE lname = 'Ream';

In this example, the customer's last name is placed between positions 4 and 7 of name. The first three characters of the

customer's first name is retrieved into positions 1 through 3 of name. The part of the variable that is delimited by the two

subscripts is referred to as a substring.

Variable and keyword ambiguity

If you declare a variable whose name is an SQL keyword, ambiguities can occur. The following rules for identifiers help you

avoid ambiguities for SPL variables, SPL routine names, and built-in function names:

• Defined variables take the highest precedence.

• Routines defined with the PROCEDURE keyword in a DEFINE statement take precedence over SQL functions.

• SQL functions take precedence over SPL routines that exist but are not identified with the PROCEDURE keyword in a

DEFINE statement.

In general, avoid using an ANSI-reserved word for the name of the variable. For example, you cannot define a variable with

the name count or max because they are the names of aggregate functions. For a list of the reserved keywords that you

should avoid using as variable names, see the Identifier segment in the HCL® Informix® Guide to SQL: Syntax.

For information about ambiguities between SPL routine names and SQL function names, see the HCL® Informix® Guide to

SQL: Syntax.

Variables and column names

If you use the same identifier for an SPL variable that you use for a column name, the database server assumes that each

instance of the identifier is a variable. Qualify the column name with the table name, using dot notation, in order to use the

identifier as a column name.

In the SELECT statement in the following figure, customer.lname is a column name and lname is a variable name.

Figure 404. Column names and variable names in a SELECT statement.

CREATE PROCEDURE table_test()

 DEFINE lname CHAR(15);
 LET lname = 'Miller';

 SELECT customer.lname INTO lname FROM customer
 WHERE customer_num = 502;
. . .
END PROCEDURE;

471

HCL Informix 14.10 - SQL programming Guide

472

Variables and SQL functions

If you use the same identifier for an SPL variable as for an SQL function, the database server assumes that an instance of

the identifier is a variable and disallows the use of the SQL function. You cannot use the SQL function within the block of

code in which the variable is defined. The example in the following figure shows a block within an SPL procedure in which the

variable called user is defined. This definition disallows the use of the USER function in the BEGIN END block.

Figure 405. A procedure that disallows the use of the USER function in the BEGIN END block.

CREATE PROCEDURE user_test()
 DEFINE name CHAR(10);
 DEFINE name2 CHAR(10);
 LET name = user; -- the SQL function

 BEGIN
 DEFINE user CHAR(15); -- disables user function
 LET user = 'Miller';
 LET name = user; -- assigns 'Miller' to variable name
 END
 . . .
 LET name2 = user; -- SQL function again

Declare global variables

A global variable has its value stored in memory and is available to other SPL routines, run by the same user session, on the

same database. A global variable has the following characteristics:

• It requires a default value.

• It can be used in any SPL routine, although it must be defined in each routine in which it is used.

• It carries its value from one SPL routine to another until the session ends.

Restriction: You cannot define a collection variable as a global variable.

The following figure shows two SPL functions that share a global variable.

Figure 406. Two SPL functions that share a global variable.

CREATE FUNCTION func1() RETURNING INT;
 DEFINE GLOBAL gvar INT DEFAULT 2;
 LET gvar = gvar + 1;
 RETURN gvar;
END FUNCTION;

CREATE FUNCTION func2() RETURNING INT;
 DEFINE GLOBAL gvar INT DEFAULT 5;
 LET gvar = gvar + 1;
 RETURN gvar;
END FUNCTION;

Although you must define a global variable with a default value, the variable is only set to the default the first time you use it.

If you execute the two functions in the following figure in the order given, the value of gvar would be 4.

Chapter 1. SQL programming

Figure 407. Global variable default values.

EXECUTE FUNCTION func1();
EXECUTE FUNCTION func2();

But if you execute the functions in the opposite order, as the following figure shows, the value of gvar would be 7.

Figure 408. Global variable default values.

EXECUTE FUNCTION func2();
EXECUTE FUNCTION func1();

For more information, see Executing routines on page 505.

Assign values to variables

Within an SPL routine, use the LET statement to assign values to the variables you have already defined.

If you do not assign a value to a variable, either by an argument passed to the routine or by a LET statement, the variable has

an undefined value.

An undefined value is different from a NULL value. If you attempt to use a variable with an undefined value within the SPL

routine, you receive an error.

You can assign a value to a routine variable in any of the following ways:

• Use a LET statement.

• Use a SELECT INTO statement.

• Use a CALL statement with a procedure that has a RETURNING clause.

• Use an EXECUTE PROCEDURE INTO or EXECUTE FUNCTION INTO statement.

The LET statement

With a LET statement, you can use one or more variable names with an equal (=) sign and a valid expression or function

name. Each example in the following figure is a valid LET statement.

Figure 409. Valid LET statements.

LET a = 5;
LET b = 6; LET c = 10;
LET a,b = 10,c+d;
LET a,b = (SELECT cola,colb
 FROM tab1 WHERE cola=10);
LET d = func1(x,y);

HCL Informix® allows you to assign a value to an opaque-type variable, a row-type variable, or a field of a row type. You can

also return the value of an external function or another SPL function to an SPL variable.

Suppose you define the named row types zip_t and address_t, as Figure 396: Named and unnamed row variables. on

page 468 shows. Anytime you define a row-type variable, you must initialize the variable before you can use it. The

473

HCL Informix 14.10 - SQL programming Guide

474

following figure shows how you might define and initialize a row-type variable. You can use any row-type value to initialize the

variable.

Figure 410. Define and initialize a row-type variable.

DEFINE a address_t;
LET a = ROW ('A Street', 'Nowhere', 'AA',
 ROW(NULL, NULL))::address_t

After you define and initialize the row-type variable, you can write the LET statements that the following figure shows.

Figure 411. Write the LET statements.

LET a.zip.z_code = 32601;
LET a.zip.z_suffix = 4555;
 -- Assign values to the fields of address_t

Tip: Use dot notation in the form variable.field or variable.field.field to access the fields of a row type, as Handle

row-type data on page 486 describes.

Suppose you define an opaque-type point that contains two values that define a two-dimensional point, and the text

representation of the values is '(x,y)'. You might also have a function circum() that calculates the circumference of a circle,

given the point '(x,y)' and a radius r.

If you define an opaque-type center that defines a point as the center of a circle, and a function circum() that calculates

the circumference of a circle, based on a point and the radius, you can write variable declarations for each. In the following

figure, c is an opaque type variable and d holds the value that the external function circum() returns.

Figure 412. Writing variable declarations.

DEFINE c point;
DEFINE r REAL;
DEFINE d REAL;

LET c = '(29.9,1.0)' ;
 -- Assign a value to an opaque type variable

LET d = circum(c, r);
 -- Assign a value returned from circum()

The HCL® Informix® Guide to SQL: Syntax describes in detail the syntax of the LET statement.

Other ways to assign values to variables

You can use the SELECT statement to fetch a value from the database and assign it directly to a variable, as the following

figure shows.

Figure 413. Fetch a value from the database and assign it directly to a variable.

SELECT fname, lname INTO a, b FROM customer
 WHERE customer_num = 101

Chapter 1. SQL programming

Use the CALL or EXECUTE PROCEDURE statements to assign values returned by an SPL function or an external function to

one or more SPL variables. You might use either of the statements in the following figure to return the full name and address

from the SPL function read_address into the specified SPL variables.

Figure 414. Return the full name and address from the SPL function.

EXECUTE FUNCTION read_address('Smith')
 INTO p_fname, p_lname, p_add, p_city, p_state,
 p_zip;

CALL read_address('Smith')
 RETURNING p_fname, p_lname, p_add, p_city,
 p_state, p_zip;

Expressions in SPL routines

You can use any SQL expression in an SPL routine, except for an aggregate expression. The HCL® Informix® Guide to SQL:

Syntax provides the complete syntax and descriptions for SQL expressions.

The following examples contain SQL expressions:

var1
var1 + var2 + 5
read_address('Miller')
read_address(lastname = 'Miller')
get_duedate(acct_num) + 10 UNITS DAY
 fname[1,5] || ''|| lname '(415)' || get_phonenum(cust_name)

Writing the statement block

Every SPL routine has at least one statement block, which is a group of SQL and SPL statements between the CREATE

statement and the END statement. You can use any SPL statement or any allowed SQL statement within a statement block.

For a list of SQL statements that are not allowed within an SPL statement block, see the description of the statement block

segment in the HCL® Informix® Guide to SQL: Syntax.

Implicit and explicit statement blocks

In an SPL routine, the implicit statement block extends from the end of the CREATE statement to the beginning of the END

statement. You can also define an explicit statement block, which starts with a BEGIN statement and ends with an END

statement, as the following figure shows.

Figure 415. Explicit statement block.

BEGIN
 DEFINE distance INT;
 LET distance = 2;
END

The explicit statement block allows you to define variables or processing that are valid only within the statement block. For

example, you can define or redefine variables, or handle exceptions differently, for just the scope of the explicit statement

block.

475

HCL Informix 14.10 - SQL programming Guide

476

The SPL function in the following figure has an explicit statement block that redefines a variable defined in the implicit block.

Figure 416. An explicit statement block that redefines a variable defined in the implicit block.

CREATE FUNCTION block_demo()
 RETURNING INT;
 DEFINE distance INT;
 LET distance = 37;
 BEGIN
 DEFINE distance INT;
 LET distance = 2;
 END
 RETURN distance;

END FUNCTION;

In this example, the implicit statement block defines the variable distance and gives it a value of 37. The explicit statement

block defines a different variable named distance and gives it a value of 2. However, the RETURN statement returns the value

stored in the first distance variable, or 37.

The FOREACH loop

A FOREACH loop defines a cursor, a specific identifier that points to one item in a group, whether a group of rows or the

elements in a collection.

The FOREACH loop declares and opens a cursor, fetches rows from the database, works on each item in the group, and

then closes the cursor. You must declare a cursor if a SELECT, EXECUTE PROCEDURE, or EXECUTE FUNCTION statement

might return more than one row. After you declare the cursor, you place the SELECT, EXECUTE PROCEDURE, or EXECUTE

FUNCTION statement within it.

An SPL routine that returns a group of rows is called a cursor routine because you must use a cursor to access the data

it returns. An SPL routine that returns no value, a single value, or any other value that does not require a cursor is called a

noncursor routine. The FOREACH loop declares and opens a cursor, fetches rows or a collection from the database, works

on each item in the group, and then closes the cursor. You must declare a cursor if a SELECT, EXECUTE PROCEDURE, or

EXECUTE FUNCTION statement might return more than one row or a collection. After you declare the cursor, you place the

SELECT, EXECUTE PROCEDURE, or EXECUTE FUNCTION statement within it.

In a FOREACH loop, you can use an EXECUTE FUNCTION or SELECT INTO statement to execute an external function that is

an iterator function.

The FOREACH loop to define cursors

A FOREACH loop begins with the FOREACH keyword and ends with END FOREACH. Between FOREACH and END FOREACH,

you can declare a cursor or use EXECUTE PROCEDURE or EXECUTE FUNCTION. The two examples in the following figure

show the structure of FOREACH loops.

Chapter 1. SQL programming

Figure 417. Structure of FOREACH loops.

FOREACH cursor FOR
 SELECT column INTO variable FROM table
. . .
END FOREACH;

FOREACH
 EXECUTE FUNCTION name() INTO variable;
END FOREACH;

The following figure creates a routine that uses a FOREACH loop to operate on the employee table.

Figure 418. A FOREACH loop that operates on the employee table.

CREATE_PROCEDURE increase_by_pct(pct INTEGER)
 DEFINE s INTEGER;

 FOREACH sal_cursor FOR
 SELECT salary INTO s FROM employee
 WHERE salary > 35000
 LET s = s + s * (pct/100);
 UPDATE employee SET salary = s
 WHERE CURRENT OF sal_cursor;
 END FOREACH;

END PROCEDURE;

The routine in preceding figure performs these tasks within the FOREACH loop:

• Declares a cursor

• Selects one salary value at a time from employee

• Increases the salary by a percentage

• Updates employee with the new salary

• Fetches the next salary value

The SELECT statement is placed within a cursor because it returns all the salaries in the table greater than 35000.

The WHERE CURRENT OF clause in the UPDATE statement updates only the row on which the cursor is currently positioned,

and sets an update cursor on the current row. An update cursor places an update lock on the row so that no other user can

update the row until your update occurs.

An SPL routine will set an update cursor automatically if an UPDATE or DELETE statement within the FOREACH loop uses the

WHERE CURRENT OF clause. If you use WHERE CURRENT OF, you must explicitly reference the cursor within the FOREACH

statement. If you are using an update cursor, you can add a BEGIN WORK statement before the FOREACH statement and a

COMMIT WORK statement after END FOREACH, as the following figure shows.

477

HCL Informix 14.10 - SQL programming Guide

478

Figure 419. Set an update cursor automatically.

BEGIN WORK;
 FOREACH sal_cursor FOR
 SELECT salary INTO s FROM employee WHERE salary > 35000;
 LET s = s + s * (pct/100);
 UPDATE employee SET salary = s WHERE CURRENT OF sal_cursor
 END FOREACH;
COMMIT WORK;

For each iteration of the FOREACH loop in the preceding figure, a new lock is acquired (if you use row level locking). The

COMMIT WORK statement releases all of the locks (and commits all of the updated rows as a single transaction) after the

last iteration of the FOREACH loop.

To commit an updated row after each iteration of the loop, you must open the cursor WITH HOLD, and include the BEGIN

WORK and COMMIT WORK statements within the FOREACH loop, as in the following SPL routine.

Figure 420. Committing an updated row after each iteration of the loop.

CREATE PROCEDURE serial_update();
 DEFINE p_col2 INT;
 DEFINE i INT;
 LET i = 1;
 FOREACH cur_su WITH HOLD FOR
 SELECT col2 INTO p_col2 FROM customer WHERE 1=1
 BEGIN WORK;
 UPDATE customer SET customer_num = p_col2 WHERE CURRENT OF cur_su;
 COMMIT WORK;
 LET i = i + 1;
 END FOREACH;
END PROCEDURE;

SPL routine serial_update() commits each row as a separate transaction.

Restriction for FOREACH loops

Within a FOREACH loop, the SELECT query must complete execution before any DELETE, INSERT, or UPDATE operation that

changes the data set of the SELECT cursor. One way to ensure that the SELECT query completes, use an ORDER BY clause

in the SELECT statement. The ORDER BY clause creates an index on the columns and prevents errors caused by UPDATE,

INSERT, DELETE statements modifying the query results of the SELECT statement in the same FOREACH loop

An IF - ELIF - ELSE structure

The following SPL routine uses an IF - ELIF - ELSE structure to compare the two arguments that the routine accepts.

Chapter 1. SQL programming

Figure 421. An IF - ELIF - ELSE structure to compare two arguments.

CREATE FUNCTION str_compare(str1 CHAR(20), str2 CHAR(20))
 RETURNING INTEGER;

 DEFINE result INTEGER;

 IF str1 > str2 THEN
 LET result = 1;
 ELIF str2 > str1 THEN
 LET result = -1;
 ELSE
 LET result = 0;
 END IF
 RETURN result;
END FUNCTION;

Suppose you define a table named manager with the columns that the following figure shows.

Figure 422. Define the manager table.

CREATE TABLE manager
(
 mgr_name VARCHAR(30),
 department VARCHAR(12),
 dept_no SMALLINT,
 direct_reports SET(VARCHAR(30) NOT NULL),
 projects LIST(ROW (pro_name VARCHAR(15),
 pro_members SET(VARCHAR(20) NOT NULL))
 NOT NULL),
 salary INTEGER,
);

The following SPL routine uses an IF - ELIF - ELSE structure to check the number of elements in the SET in the direct_reports

column and call various external routines based on the results.

479

HCL Informix 14.10 - SQL programming Guide

480

Figure 423. An IF - ELIF - ELSE structure to check the number of elements in the SET.

CREATE FUNCTION checklist(d SMALLINT)
 RETURNING VARCHAR(30), VARCHAR(12), INTEGER;

 DEFINE name VARCHAR(30);
 DEFINE dept VARCHAR(12);
 DEFINE num INTEGER;

 SELECT mgr_name, department,
 CARDINALITY(direct_reports)
 FROM manager INTO name, dept, num
 WHERE dept_no = d;
 IF num > 20 THEN
 EXECUTE FUNCTION add_mgr(dept);
 ELIF num = 0 THEN
 EXECUTE FUNCTION del_mgr(dept);
 ELSE
 RETURN name, dept, num;
 END IF;

END FUNCTION;

The cardinality() function counts the number of elements that a collection contains. For more information, see Cardinality

function on page 303.

An IF - ELIF - ELSE structure in an SPL routine has up to the following four parts:

• An IF THEN condition

If the condition following the IF statement is TRUE, the routine executes the statements in the IF block. If the

condition is false, the routine evaluates the ELIF condition.

The expression in an IF statement can be any valid condition, as the Condition segment of the HCL® Informix®

Guide to SQL: Syntax describes. For the complete syntax and a detailed discussion of the IF statement, see the HCL®

Informix® Guide to SQL: Syntax.

• One or more ELIF conditions (optional)

The routine evaluates the ELIF condition only if the IF condition is false. If the ELIF condition is true, the routine

executes the statements in the ELIF block. If the ELIF condition is false, the routine either evaluates the next ELIF

block or executes the ELSE statement.

• An ELSE condition (optional)

The routine executes the statements in the ELSE block if the IF condition and all of the ELIF conditions are false.

• An END IF statement

The END IF statement ends the statement block.

Chapter 1. SQL programming

Add WHILE and FOR loops

Both the WHILE and FOR statements create execution loops in SPL routines. A WHILE loop starts with a WHILE condition,

executes a block of statements as long as the condition is true, and ends with END WHILE.

The following figure shows a valid WHILE condition. The routine executes the WHILE loop as long as the condition specified

in the WHILE statement is true.

Figure 424. Routine to execute the WHILE loop as long as the condition specified in the WHILE statement is true.

CREATE PROCEDURE test_rows(num INT)

 DEFINE i INTEGER;
 LET i = 1;

 WHILE i < num
 INSERT INTO table1 (numbers) VALUES (i);
 LET i = i + 1;
 END WHILE;

END PROCEDURE;

The SPL routine in the previous figure accepts an integer as an argument and then inserts an integer value into the numbers

column of table1 each time it executes the WHILE loop. The values inserted start at 1 and increase to num - 1.

Be careful that you do not create an endless loop, as the following figure shows.

Figure 425. Routine to accept an integer as an argument and then insert an integer value into the numbers column.

CREATE PROCEDURE endless_loop()

 DEFINE i INTEGER;
 LET i = 1;
 WHILE (1 = 1) -- don't do this!
 LET i = i + 1;
 INSERT INTO table1 VALUES (i);
 END WHILE;

END PROCEDURE;

A FOR loop extends from a FOR statement to an END FOR statement and executes for a specified number of iterations,

which are defined in the FOR statement. The following figure shows several ways to define the iterations in the FOR loop.

For each iteration of the FOR loop, the iteration variable (declared as i in the examples that follow) is reset, and the

statements within the loop are executed with the new value of the variable.

481

HCL Informix 14.10 - SQL programming Guide

482

Figure 426. Defining iterations in the FOR loop.

FOR i = 1 TO 10
. . .
END FOR;

FOR i = 1 TO 10 STEP 2
. . .
END FOR;

FOR i IN (2,4,8,14,22,32)
. . .
END FOR;

FOR i IN (1 TO 20 STEP 5, 20 to 1 STEP -5, 1,2,3,4,5)
. . .
END FOR:

In the first example, the SPL procedure executes the FOR loop as long as i is between 1 and 10, inclusive. In the second

example, i steps from 1 to 3, 5, 7, and so on, but never exceeds 10. The third example checks whether i is within a defined set

of values. In the fourth example, the SPL procedure executes the loop when i is 1, 6, 11, 16, 20, 15, 10, 5, 1, 2, 3, 4, or 5—in other

words, 13 times.

Tip: The main difference between a WHILE loop and a FOR loop is that a FOR loop is guaranteed to finish, but a

WHILE loop is not. The FOR statement specifies the exact number of times the loop executes, unless a statement

causes the routine to exit the loop. With WHILE, it is possible to create an endless loop.

Exit a loop

In a FOR, FOREACH, LOOP, or WHILE loop that has no label, you can use the CONTINUE or EXIT statement to control the

execution of the loop.

• CONTINUE causes the routine to skip the statements in the rest of the loop and move to the next iteration of the FOR,

LOOP, or WHILE statement.

• EXIT ends the loop and causes the routine to continue executing with the first statement following the END FOR, the

END LOOP, or the END WHILE keywords.

Remember that EXIT must be followed by the FOREACH keyword when it appears within a FOREACH statement that is the

innermost loop of nested loop statements. EXIT can appear with no immediately following keyword when it appears within

the FOR, LOOP, or WHILE statement, but an error is issued if you specify a keyword that does not match the loop statement

from which the EXIT statement was issued. An error is also issued if EXIT appears outside the context of a loop statement.

For more information about loops in SPL routines, including labelled loops, see HCL® Informix® Guide to SQL: Syntax.

The following figure shows examples of CONTINUE and EXIT within a FOR loop.

Chapter 1. SQL programming

Figure 427. Examples of CONTINUE and EXIT within a FOR loop.

FOR i = 1 TO 10
 IF i = 5 THEN
 CONTINUE FOR;
. . .
 ELIF i = 8 THEN
 EXIT FOR;
 END IF;

END FOR;

Tip: You can use CONTINUE and EXIT to improve the performance of SPL routines so that loops do not execute

unnecessarily.

Return values from an SPL function

SPL functions can return one or more values. To have your SPL function return values, you need to include the following two

parts:

1. Write a RETURNING clause in the CREATE PROCEDURE or CREATE FUNCTION statement that specifies the number of

values to be returned and their data types.

2. In the body of the function, enter a RETURN statement that explicitly returns the values.

Tip: You can define a routine with the CREATE PROCEDURE statement that returns values, but in that case, the

routine is actually a function. It is recommended that you use the CREATE FUNCTION statement when the routine

returns values.

After you define a return clause (with a RETURNING statement), the SPL function can return values that match those

specified in number and data type, or no values at all. If you specify a return clause, and the SPL routine returns no actual

values, it is still considered a function. In that case, the routine returns a NULL value for each value defined in the return

clause.

An SPL function can return variables, expressions, or the result of another function call. If the SPL function returns a variable,

the function must first assign the variable a value by one of the following methods:

• A LET statement

• A default value

• A SELECT statement

• Another function that passes a value into the variable

Each value an SPL function returns can be up to 32 kilobytes long.

483

HCL Informix 14.10 - SQL programming Guide

484

Important: The return value for an SPL function must be a specific data type. You cannot specify a generic row or

generic collection data type as a return type.

Return a single value

The following figure shows how an SPL function can return a single value.

Figure 428. SPL function that returns a single value.

CREATE FUNCTION increase_by_pct(amt DECIMAL, pct DECIMAL)
 RETURNING DECIMAL;

 DEFINE result DECIMAL;

 LET result = amt + amt * (pct/100);

 RETURN result;

END FUNCTION;

The increase_by_pct function receives two arguments of DECIMAL value, an amount to be increased and a percentage by

which to increase it. The return clause specifies that the function will return one DECIMAL value. The RETURN statement

returns the DECIMAL value stored in result.

Return multiple values

An SPL function can return more than one value from a single row of a table. The following figure shows an SPL function that

returns two column values from a single row of a table.

Figure 429. SPL function that returns two column values from a single row of a table.

CREATE FUNCTION birth_date(num INTEGER)
 RETURNING VARCHAR(30), DATE;

 DEFINE n VARCHAR(30);
 DEFINE b DATE;

 SELECT name, bdate INTO n, b FROM emp_tab
 WHERE emp_no = num;
 RETURN n, b;

END FUNCTION;

The function returns two values (a name and birthdate) to the calling routine from one row of the emp_tab table. In this case,

the calling routine must be prepared to handle the VARCHAR and DATE values returned.

The following figure shows an SPL function that returns more than one value from more than one row.

Chapter 1. SQL programming

Figure 430. SPL function that returns more than one value from more than one row.

CREATE FUNCTION birth_date_2(num INTEGER)
 RETURNING VARCHAR(30), DATE;
 DEFINE n VARCHAR(30);
 DEFINE b DATE;
 FOREACH cursor1 FOR
 SELECT name, bdate INTO n, b FROM emp_tab
 WHERE emp_no > num
 RETURN n, b WITH RESUME;
 END FOREACH;
END FUNCTION;

In preceding figure, the SELECT statement fetches two values from the set of rows whose employee number is higher than

the number the user enters. The set of rows that satisfy the condition could contain one row, many rows, or zero rows.

Because the SELECT statement can return many rows, it is placed within a cursor.

Tip: When a statement within an SPL routine returns no rows, the corresponding SPL variables are assigned NULL

values.

The RETURN statement uses the WITH RESUME keywords. When RETURN WITH RESUME is executed, control is returned

to the calling routine. But the next time the SPL function is called (by a FETCH or the next iteration of a cursor in the calling

routine), all the variables in the SPL function keep their same values, and execution continues at the statement immediately

following the RETURN WITH RESUME statement.

If your SPL routine returns multiple values, the calling routine must be able to handle the multiple values through a cursor or

loop, as follows:

• If the calling routine is an SPL routine, it needs a FOREACH loop.

• If the calling routine is an ESQL/C program, it needs a cursor declared with the DECLARE statement.

• If the calling routine is an external routine, it needs a cursor or loop appropriate to the language in which the routine is

written.

Important: The values returned by a UDR from external databases of a local server must be built-in data types or

UDTs explicitly cast to built-in types or DISTINCT types based on built-in types and explicitly cast to built-in types. In

addition, you must define the UDR and all the casts in the participating databases.

An example of SQL operations you can perform across databases follows:

database db1;
create table ltab1(lcol1 integer, lcol2 boolean, lcol3 lvarchar);
insert into ltab1 values(1, 't', "test string 1");

database db2;
create table rtab1(r1col1 boolean, r1col2 blob, r1col3 integer)
put r1col2 in (sbsp);
create table rtab2(r2col1 lvarchar, r2col2 clob) put r2col2 in (sbsp);
create table rtab3(r3col1 integer, r3col2 boolean,
r3col3 lvarchar, r3col4 circle);

485

HCL Informix 14.10 - SQL programming Guide

486

create view rvw1 as select * from rtab3;

(The example is a cross-database Insert.)

database db1;
create view lvw1 as select * from db2:rtab2;
insert into db2:rtab1 values('t',
filetoblob('blobfile', 'client', 'db2:rtab1', 'r1col2'), 100);
insert into db2:rtab2 values("inserted directly to rtab2",
filetoclob('clobfile', 'client', 'db2:rtab2', 'r2col2'));
insert into db2:rtab3 (r3col1, r3col2, r3col3)
select lcol1, lcol2, lcol3 from ltab1;
insert into db2:rvw1 values(200, 'f', "inserted via rvw1");
insert into lvw1 values ("inserted via lvw1", NULL);

Handle row-type data

In an SPL routine, you can use named ROW types and unnamed ROW types as parameter definitions, arguments, variable

definitions, and return values. For information about how to declare a ROW variable in SPL, see Declare row-type variables on

page 468.

The following figure defines a row type salary_t and an emp_info table, which are the examples that this section uses.

Figure 431. Define a row type salary_t and an emp_info table

CREATE ROW TYPE salary_t(base MONEY(9,2), bonus MONEY(9,2))

CREATE TABLE emp_info (emp_name VARCHAR(30), salary salary_t);

The emp_info table has columns for the employee name and salary information.

Precedence of dot notation

With HCL Informix®, a value that uses dot notation (as in proj.name) in an SQL statement in an SPL routine is interpreted as

having one of three meanings, in the following order of precedence:

1. variable.field

2. column.field

3. table.column

In other words, the expression proj.name is first evaluated as variable.field. If the routine does not find a variable proj,

it evaluates the expression as column.field. If the routine does not find a column proj, it evaluates the expression as

table.column. (If the names cannot be resolved as identifiers of objects in the database or of variables or fields that were

declared in the SPL routine, then an error is returned.)

Chapter 1. SQL programming

Update a row-type expression

From within an SPL routine, you can use a ROW variable to update a row-type expression. The following figure shows an

SPL procedure emp_raise that is used to update the emp_info table when an employee's base salary increases by a certain

percentage.

Figure 432. SPL procedure used to update the emp_info table.

CREATE PROCEDURE emp_raise(name VARCHAR(30),
 pct DECIMAL(3,2))

 DEFINE row_var salary_t;

 SELECT salary INTO row_var FROM emp_info
 WHERE emp_name = name;

 LET row_var.base = row_var.base * pct;

 UPDATE emp_info SET salary = row_var
 WHERE emp_name = name;
END PROCEDURE;

The SELECT statement selects a row from the salary column of emp_info table into the ROW variable row_var.

The emp_raise procedure uses SPL dot notation to directly access the base field of the variable row_var. In this case, the dot

notation means variable.field. The emp_raise procedure recalculates the value of row_var.base as (row_var.base * pct). The

procedure then updates the salary column of the emp_info table with the new row_var value.

Important: A row-type variable must be initialized as a row before its fields can be set or referenced. You can

initialize a row-type variable with a SELECT INTO statement or LET statement.

Handle collections

A collection is a group of elements of the same data type, such as a SET, MULTISET, or LIST.

A table might contain a collection stored as the contents of a column or as a field of a ROW type within a column. A

collection can be either simple or nested. A simple collection is a SET, MULTISET, or LIST of built-in, opaque, or distinct data

types. A nested collection is a collection that contains other collections.

Collection data types

The following sections of the chapter rely on several different examples to show how you can manipulate collections in SPL

programs.

The basics of handling collections in SPL programs are illustrated with the numbers table, as the following figure shows.

487

HCL Informix 14.10 - SQL programming Guide

488

Figure 433. Handle collections in SPL programs.

CREATE TABLE numbers
(
 id INTEGER PRIMARY KEY,
 primes SET(INTEGER NOT NULL),
 evens LIST(INTEGER NOT NULL),
 twin_primes LIST(SET(INTEGER NOT NULL)
 NOT NULL)

The primes and evens columns hold simple collections. The twin_primes column holds a nested collection, a LIST of SETs.

(Twin prime numbers are pairs of consecutive prime numbers whose difference is 2, such as 5 and 7, or 11 and 13. The

twin_primes column is designed to allow you to enter such pairs.

Some examples in this chapter use the polygons table in the following figure to illustrate how to manipulate collections.

The polygons table contains a collection to represent two-dimensional graphical data. For example, suppose that you define

an opaque data type named point that has two double-precision values that represent the x and y coordinates of a two-

dimensional point whose coordinates might be represented as '1.0, 3.0'. Using the point data type, you can create a table

that contains a set of points that define a polygon.

Figure 434. Manipulate collections.

CREATE OPAQUE TYPE point (INTERNALLENGTH = 8);

CREATE TABLE polygons
(
 id INTEGER PRIMARY KEY,
 definition SET(point NOT NULL)
);

The definition column in the polygons table contains a simple collection, a SET of point values.

Prepare for collection data types

Before you can access and handle an individual element of a simple or nested collection, you must perform the following

tasks:

• Declare a collection variable to hold the collection.

• Declare an element variable to hold an individual element of the collection.

• Select the collection from the database into the collection variable.

After you take these initial steps, you can insert elements into the collection or select and handle elements that are already in

the collection.

Each of these steps is explained in the following sections, using the numbers table as an example.

Chapter 1. SQL programming

Tip: You can handle collections in any SPL routine.

Declare a collection variable

Before you can retrieve a collection from the database into an SPL routine, you must declare a collection variable. The

following figure shows how to declare a collection variable to retrieve the primes column from the numbers table.

Figure 435. Declare a collection variable.

DEFINE p_coll SET(INTEGER NOT NULL);

The DEFINE statement declares a collection variable p_coll, whose type matches the data type of the collection stored in the

primes column.

Declare an element variable

After you declare a collection variable, you declare an element variable to hold individual elements of the collection. The data

type of the element variable must match the data type of the collection elements.

For example, to hold an element of the SET in the primes column, use an element variable declaration such as the one that

the following figure shows.

Figure 436. An element variable declaration.

DEFINE p INTEGER;

To declare a variable that holds an element of the twin_primes column, which holds a nested collection, use a variable

declaration such as the one that the following figure shows.

Figure 437. A variable declaration.

DEFINE s SET(INTEGER NOT NULL);

The variable s holds a SET of integers. Each SET is an element of the LIST stored in twin_primes.

Select a collection into a collection variable

After you declare a collection variable, you can fetch a collection into it. To fetch a collection into a collection variable, enter a

SELECT INTO statement that selects the collection column from the database into the collection variable you have named.

For example, to select the collection stored in one row of the primes column of numbers, add a SELECT statement, such as

the one that the following figure shows, to your SPL routine.

Figure 438. Add a SELECT statement to select the collection stored in one row.

SELECT primes INTO p_coll FROM numbers
 WHERE id = 220;

The WHERE clause in the SELECT statement specifies that you want to select the collection stored in just one row of

numbers. The statement places the collection into the collection variable p_coll, which Figure 435: Declare a collection

variable. on page 489 declares.

489

HCL Informix 14.10 - SQL programming Guide

490

The variable p_coll now holds a collection from the primes column, which could contain the value SET {5,7,31,19,13}.

Insert elements into a collection variable

After you retrieve a collection into a collection variable, you can insert a value into the collection variable. The syntax of the

INSERT statement varies slightly, depending on the type of the collection to which you want to add values.

Insert into a SET or MULTISET

To insert into a SET or MULTISET stored in a collection variable, use an INSERT statement and follow the TABLE keyword

with the collection variable, as the following figure shows.

Figure 439. Insert into a SET or MULTISET stored in a collection variable.

INSERT INTO TABLE(p_coll) VALUES(3);

The TABLE keyword makes the collection variable a collection-derived table. Collection-derived tables are described in the

section Handle collections in SELECT statements on page 345. The collection that the previous figure derives is a virtual

table of one column, with each element of the collection representing a row of the table. Before the insert, consider p_coll as

a virtual table that contains the rows (elements) that the following figure shows.

Figure 440. Virtual table elements.

5
7
31
19
13

After the insert, p_coll might look like the virtual table that the following figure shows.

Figure 441. Virtual table elements.

5
7
31
19
13
3

Because the collection is a SET, the new value is added to the collection, but the position of the new element is undefined.

The same principle is true for a MULTISET.

Tip: You can only insert one value at a time into a simple collection.

Insert into a LIST

If the collection is a LIST, you can add the new element at a specific point in the LIST or at the end of the LIST. As with a SET

or MULTISET, you must first define a collection variable and select a collection from the database into the collection variable.

Chapter 1. SQL programming

The following figure shows the statements you need to define a collection variable and select a LIST from the numbers table

into the collection variable.

Figure 442. Defining a collection variable and selecting a LIST.

DEFINE e_coll LIST(INTEGER NOT NULL);

SELECT evens INTO e_coll FROM numbers
 WHERE id = 99;

At this point, the value of e_coll might be LIST {2,4,6,8,10}. Because e_coll holds a LIST, each element has a numbered

position in the list. To add an element at a specific point in a LIST, add an AT position clause to the INSERT statement, as the

following figure shows.

Figure 443. Add an element at a specific point in a LIST.

INSERT AT 3 INTO TABLE(e_coll) VALUES(12);

Now the LIST in e_coll has the elements {2,4,12,6,8,10}, in that order.

The value you enter for the position in the AT clause can be a number or a variable, but it must have an INTEGER or

SMALLINT data type. You cannot use a letter, floating-point number, decimal value, or expression.

Check the cardinality of a LIST collection

At times you might want to add an element at the end of a LIST. In this case, you can use the cardinality() function to find the

number of elements in a LIST and then enter a position that is greater than the value cardinality() returns.

HCL Informix® allows you to use the cardinality() function with a collection that is stored in a column but not with a

collection that is stored in a collection variable. In an SPL routine, you can check the cardinality of a collection in a column

with a SELECT statement and return the value to a variable.

Suppose that in the numbers table, the evens column of the row whose id column is 99 still contains the collection LIST

{2,4,6,8,10}. This time, you want to add the element 12 at the end of the LIST. You can do so with the SPL procedure

end_of_list, as the following figure shows.

491

HCL Informix 14.10 - SQL programming Guide

492

Figure 444. The end_of_list SPL procedure.

CREATE PROCEDURE end_of_list()

 DEFINE n SMALLINT;
 DEFINE list_var LIST(INTEGER NOT NULL);

 SELECT CARDINALITY(evens) FROM numbers INTO n
 WHERE id = 100;

 LET n = n + 1;

 SELECT evens INTO list_var FROM numbers
 WHERE id = 100;

 INSERT AT n INTO TABLE(list_var) VALUES(12);

END PROCEDURE;

In end_of_list, the variable n holds the value that cardinality() returns, that is, the count of the items in the LIST. The LET

statement increments n, so that the INSERT statement can insert a value at the last position of the LIST. The SELECT

statement selects the collection from one row of the table into the collection variable list_var. The INSERT statement inserts

the element 12 at the end of the list.

Syntax of the VALUES clause

The syntax of the VALUES clause is different when you insert into an SPL collection variable from when you insert into a

collection column. The syntax rules for inserting literals into collection variables are as follows:

• Use parentheses after the VALUES keyword to enclose the complete list of values.

• If you are inserting into a simple collection, you do not need to use a type constructor or brackets.

• If you are inserting into a nested collection, you need to specify a literal collection.

Select elements from a collection

Suppose you want your SPL routine to select elements from the collection stored in the collection variable, one at time, so

that you can handle the elements.

To move through the elements of a collection, you first need to declare a cursor using a FOREACH statement, just as

you would declare a cursor to move through a set of rows. The following figure shows the FOREACH and END FOREACH

statements, with no statements between them yet.

Figure 445. FOREACH and END FOREACH statements.

FOREACH cursor1 FOR
. . .
END FOREACH

The FOREACH statement is described in The FOREACH loop on page 476 and the HCL® Informix® Guide to SQL: Syntax.

Chapter 1. SQL programming

The next topic, The collection query on page 493, describes the statements that are omitted between the FOREACH and

END FOREACH statements.

The examples in the following sections are based on the polygons table of Figure 434: Manipulate collections. on

page 488.

The collection query
After you declare the cursor between the FOREACH and END FOREACH statements, you enter a special, restricted form of

the SELECT statement known as a collection query.

A collection query is a SELECT statement that uses the FROM TABLE keywords followed by the name of a collection variable.

The following figure shows this structure, which is known as a collection-derived table.

Figure 446. Collection-derived table.

FOREACH cursor1 FOR

 SELECT * INTO pnt FROM TABLE(vertexes)
 . . .
END FOREACH

The SELECT statement uses the collection variable vertexes as a collection-derived table. You can think of a collection-

derived table as a table of one column, with each element of the collection being a row of the table. For example, you can

visualize the SET of four points stored in vertexes as a table with four rows, such as the one that the following figure shows.

Figure 447. Table with four rows.

'(3.0,1.0)'
'(8.0,1.0)'
'(3.0,4.0)'
'(8.0,4.0)'

After the first iteration of the FOREACH statement in the previous figure, the collection query selects the first element in

vertexes and stores it in pnt, so that pnt contains the value '(3.0,1.0)'.

Tip: Because the collection variable vertexes contains a SET, not a LIST, the elements in vertexes have no defined

order. In a real database, the value '(3.0,1.0)' might not be the first element in the SET.

Add the collection query to the SPL routine

Now you can add the cursor defined with FOREACH and the collection query to the SPL routine, as the following example

shows.

493

HCL Informix 14.10 - SQL programming Guide

494

Figure 448. Cursor defined with FOREACH and the collection query.

CREATE PROCEDURE shapes()

 DEFINE vertexes SET(point NOT NULL);
 DEFINE pnt point;

 SELECT definition INTO vertexes FROM polygons
 WHERE id = 207;

 FOREACH cursor1 FOR
 SELECT * INTO pnt FROM TABLE(vertexes)
 . . .
 END FOREACH
. . .
END PROCEDURE;

The statements shown above form the framework of an SPL routine that handles the elements of a collection variable.

To decompose a collection into its elements, use a collection-derived table. After the collection is decomposed into its

elements, the routine can access elements individually as rows of the collection-derived table. Now that you have selected

one element in pnt, you can update or delete that element, as Update a collection element on page 497 and Delete a

collection element on page 494 describe.

For the complete syntax of the collection query, see the SELECT statement in the HCL® Informix® Guide to SQL: Syntax.

For the syntax of a collection-derived table, see the Collection-Derived Table segment in the HCL® Informix® Guide to SQL:

Syntax.

Tip: If you are selecting from a collection that contains no elements or zero elements, you can use a collection query

without declaring a cursor. However, if the collection contains more than one element and you do not use a cursor,

you will receive an error message.

Attention: In the program fragment above, the database server would have issued a syntax error if the query (

SELECT * INTO pnt FROM TABLE(vertexes)

) within the FOREACH cursor definition had ended with a semicolon (;) character as a statement terminator. Here

the END FOREACH keywords are the logical statement terminator.

Delete a collection element

After you select an individual element from a collection variable into an element variable, you can delete the element from

the collection. For example, after you select a point from the collection variable vertexes with a collection query, you can

remove the point from the collection.

The steps involved in deleting a collection element include:

1. Declare a collection variable and an element variable.

2. Select the collection from the database into the collection variable.

Chapter 1. SQL programming

3. Declare a cursor so that you can select elements one at a time from the collection variable.

4. Write a loop or branch that locates the element that you want to delete.

5. Delete the element from the collection using a DELETE WHERE CURRENT OF statement that uses the collection

variable as a collection-derived table.

The following figure shows a routine that deletes one of the four points in vertexes, so that the polygon becomes a triangle

instead of a rectangle.

Figure 449. Routine that deletes one of the four points.

CREATE PROCEDURE shapes()

 DEFINE vertexes SET(point NOT NULL);
 DEFINE pnt point;

 SELECT definition INTO vertexes FROM polygons
 WHERE id = 207;

 FOREACH cursor1 FOR
 SELECT * INTO pnt FROM TABLE(vertexes)
 IF pnt = '(3,4)' THEN
 -- calls the equals function that
 -- compares two values of point type
 DELETE FROM TABLE(vertexes)
 WHERE CURRENT OF cursor1;
 EXIT FOREACH;
 ELSE
 CONTINUE FOREACH;
 END IF;
 END FOREACH
. . .
END PROCEDURE;

In previous figure, the FOREACH statement declares a cursor. The SELECT statement is a collection-derived query that

selects one element at a time from the collection variable vertexes into the element variable pnt.

The IF THEN ELSE structure tests the value currently in pnt to see if it is the point '(3,4)'. Note that the expression pnt =

'(3,4)' calls the instance of the equal() function defined on the point data type. If the current value in pnt is '(3,4)', the

DELETE statement deletes it, and the EXIT FOREACH statement exits the cursor.

Tip: Deleting an element from a collection stored in a collection variable does not delete it from the collection stored

in the database. After you delete the element from a collection variable, you must update the collection stored in the

database with the new collection. For an example that shows how to update a collection column, see Update the

collection in the database on page 496.

The syntax for the DELETE statement is described in the HCL® Informix® Guide to SQL: Syntax.

495

HCL Informix 14.10 - SQL programming Guide

496

Update the collection in the database

After you change the contents of a collection variable in an SPL routine (by deleting, updating, or inserting an element), you

must update the database with the new collection.

To update a collection in the database, add an UPDATE statement that sets the collection column in the table to the contents

of the updated collection variable. For example, the UPDATE statement in the following figure shows how to update the

polygons table to set the definition column to the new collection stored in the collection variable vertexes.

Figure 450. Update a collection in the database.

CREATE PROCEDURE shapes()

 DEFINE vertexes SET(point NOT NULL);
 DEFINE pnt point;

 SELECT definition INTO vertexes FROM polygons
 WHERE id = 207;

 FOREACH cursor1 FOR
 SELECT * INTO pnt FROM TABLE(vertexes)
 IF pnt = '(3,4)' THEN
 -- calls the equals function that
 -- compares two values of point type
 DELETE FROM TABLE(vertexes)
 WHERE CURRENT OF cursor1;
 EXIT FOREACH;
 ELSE
 CONTINUE FOREACH;
 END IF;
 END FOREACH

 UPDATE polygons SET definition = vertexes
 WHERE id = 207;

END PROCEDURE;

Now the shapes() routine is complete. After you run shapes(), the collection stored in the row whose ID column is 207 is

updated so that it contains three values instead of four.

You can use the shapes() routine as a framework for writing other SPL routines that manipulate collections.

The elements of the collection now stored in the definition column of row 207 of the polygons table are listed as follows:

'(3,1)'
'(8,1)'
'(8,4)'

Delete the entire collection

If you want to delete all the elements of a collection, you can use a single SQL statement. You do not need to declare a

cursor. To delete an entire collection, you must perform the following tasks:

Chapter 1. SQL programming

• Define a collection variable.

• Select the collection from the database into a collection variable.

• Enter a DELETE statement that uses the collection variable as a collection-derived table.

• Update the collection from the database.

The following figure shows the statements that you might use in an SPL routine to delete an entire collection.

Figure 451. SPL routine to delete an entire collection.

DEFINE vertexes SET(INTEGER NOT NULL);

SELECT definition INTO vertexes FROM polygons
 WHERE id = 207;

DELETE FROM TABLE(vertexes);

UPDATE polygons SET definition = vertexes
 WHERE id = 207;

This form of the DELETE statement deletes the entire collection in the collection variable vertexes. You cannot use a WHERE

clause in a DELETE statement that uses a collection-derived table.

After the UPDATE statement, the polygons table contains an empty collection where the id column is equal to 207.

The syntax for the DELETE statement is described in the HCL® Informix® Guide to SQL: Syntax.

Update a collection element

You can update a collection element by accessing the collection within a cursor just as you select or delete an individual

element.

If you want to update the collection SET{100, 200, 300, 500} to change the value 500 to 400, retrieve the SET from the

database into a collection variable and then declare a cursor to move through the elements in the SET, as the following figure

shows.

Figure 452. Update the collection element.

DEFINE s SET(INTEGER NOT NULL);
DEFINE n INTEGER;

SELECT numbers INTO s FROM orders
 WHERE order_num = 10;

FOREACH cursor1 FOR
 SELECT * INTO n FROM TABLE(s)
 IF (n == 500) THEN
 UPDATE TABLE(s)(x)
 SET x = 400 WHERE CURRENT OF cursor1;
 EXIT FOREACH;
 ELSE
 CONTINUE FOREACH;
 END IF;
END FOREACH

497

HCL Informix 14.10 - SQL programming Guide

498

The UPDATE statement uses the collection variable s as a collection-derived table. To specify a collection-derived table, use

the TABLE keyword. The value (x) that follows (s) in the UPDATE statement is a derived column, a column name you supply

because the SET clause requires it, even though the collection-derived table does not have columns.

Think of the collection-derived table as having one row and looking something like the following example:

100 200 300 500

In this example, x is a fictitious column name for the "column" that contains the value 500. You only specify a derived column

if you are updating a collection of built-in, opaque, distinct, or collection type elements. If you are updating a collection of row

types, use a field name instead of a derived column, as Update a collection of row types on page 499 describes.

Update a collection with a variable

You can also update a collection with the value stored in a variable instead of a literal value.

The SPL procedure in the following figure uses statements that are similar to the ones that Figure 452: Update the collection

element. on page 497 shows, except that this procedure updates the SET in the direct_reports column of the manager

table with a variable, rather than with a literal value. Figure 422: Define the manager table. on page 479 defines the

manager table.

Figure 453. Update a collection with a variable.

CREATE PROCEDURE new_report(mgr VARCHAR(30),
 old VARCHAR(30), new VARCHAR(30))

 DEFINE s SET (VARCHAR(30) NOT NULL);
 DEFINE n VARCHAR(30);

 SELECT direct_reports INTO s FROM manager
 WHERE mgr_name = mgr;

 FOREACH cursor1 FOR
 SELECT * INTO n FROM TABLE(s)
 IF (n == old) THEN
 UPDATE TABLE(s)(x)
 SET x = new WHERE CURRENT OF cursor1;
 EXIT FOREACH;
 ELSE
 CONTINUE FOREACH;
 END IF;
 END FOREACH

 UPDATE manager SET mgr_name = s
 WHERE mgr_name = mgr;

END PROCEDURE;

The UPDATE statement nested in the FOREACH loop uses the collection- derived table s and the derived column x. If the

current value of n is the same as old, the UPDATE statement changes it to the value of new. The second UPDATE statement

stores the new collection in the manager table.

Chapter 1. SQL programming

Update the entire collection

If you want to update all the elements of a collection to the same value, or if the collection contains only one element, you

do not need to use a cursor. The statements in the following figure show how you can retrieve the collection into a collection

variable and then update it with one statement.

Figure 454. Retrieve and update the collection.

DEFINE s SET (INTEGER NOT NULL);

SELECT numbers INTO s FROM orders
 WHERE order_num = 10;

UPDATE TABLE(s)(x) SET x = 0;

UPDATE orders SET numbers = s
 WHERE order_num = 10;

The first UPDATE statement in this example uses a derived column named x with the collection-derived table s and gives all

the elements in the collection the value 0. The second UPDATE statement stores the new collection in the database.

Update a collection of row types

To update a collection of ROW types, you can take these steps:

1. Declare a collection variable whose field data types match those of the ROW types in the collection.

2. Set the individual fields of the collection variable to the correct data values for the ROW type.

3. For each ROW type, update the entire row of the collection derived table using the collection variable.

The manager table in Figure 422: Define the manager table. on page 479 has a column named projects that contains a

LIST of ROW types with the definition that the following figure shows.

Figure 455. LIST of ROW types definition.

projects LIST(ROW(pro_name VARCHAR(15),
 pro_members SET(VARCHAR(20) NOT NULL)) NOT NULL)

To access the ROW types in the LIST, declare a cursor and select the LIST into a collection variable. After you retrieve each

ROW type value in the projects column, however, you cannot update the pro_name or pro_members fields individually.

Instead, for each ROW value that needs to be updated in the collection, you must replace the entire ROW with values from a

collection variable that include the new field values, as the following figure shows.

499

HCL Informix 14.10 - SQL programming Guide

500

Figure 456. Access the ROW types in the LIST.

CREATE PROCEDURE update_pro(mgr VARCHAR(30),
 pro VARCHAR(15))

 DEFINE p LIST(ROW(a VARCHAR(15), b SET(VARCHAR(20)
 NOT NULL)) NOT NULL);
 DEFINE r ROW(p_name VARCHAR(15), p_member SET(VARCHAR(20) NOT NULL));
 LET r = ROW("project", "SET{'member'}");

SELECT projects INTO p FROM manager
 WHERE mgr_name = mgr;

 FOREACH cursor1 FOR
 SELECT * INTO r FROM TABLE(p)
 IF (r.p_name == 'Zephyr') THEN
 LET r.p_name = pro;
 UPDATE TABLE(p)(x) SET x = r
 WHERE CURRENT OF cursor1;
 EXIT FOREACH;
 END IF;
 END FOREACH

 UPDATE manager SET projects = p
 WHERE mgr_name = mgr;

END PROCEDURE;

Before you can use a row-type variable in an SPL program, you must initialize the row variable with a LET statement or a

SELECT INTO statement. The UPDATE statement nested in the FOREACH loop of the previous figure sets the pro_name field

of the row type to the value supplied in the variable pro.

Tip: To update a value in a SET in the pro_members field of the ROW type, declare a cursor and use an UPDATE

statement with a derived column, as Update a collection element on page 497 explains.

Update a nested collection

If you want to update a collection of collections, you must declare a cursor to access the outer collection and then declare a

nested cursor to access the inner collection.

For example, suppose that the manager table has an additional column, scores, which contains a LIST whose element type is

a MULTISET of integers, as the following figure shows.

Figure 457. Update a collection of collections.

scores LIST(MULTISET(INT NOT NULL) NOT NULL);

To update a value in the MULTISET, declare a cursor that moves through each value in the LIST and a nested cursor that

moves through each value in the MULTISET, as the following figure shows.

Chapter 1. SQL programming

Figure 458. Update a value in the MULTISET.

CREATE FUNCTION check_scores (mgr VARCHAR(30))
 SPECIFIC NAME nested;
 RETURNING INT;

 DEFINE l LIST(MULTISET(INT NOT NULL) NOT NULL);
 DEFINE m MULTISET(INT NOT NULL);
 DEFINE n INT;
 DEFINE c INT;

 SELECT scores INTO l FROM manager
 WHERE mgr_name = mgr;

 FOREACH list_cursor FOR
 SELECT * FROM TABLE(l) INTO m;

 FOREACH set_cursor FOR
 SELECT * FROM TABLE(m) INTO n;
 IF (n == 0) THEN
 DELETE FROM TABLE(m)
 WHERE CURRENT OF set_cursor;
 ENDIF;
 END FOREACH;
 LET c = CARDINALITY(m);
 RETURN c WITH RESUME;
 END FOREACH

END FUNCTION
 WITH LISTING IN '/tmp/nested.out';

The SPL function selects each MULTISET in the scores column into l, and then each value in the MULTISET into m. If a value

in m is 0, the function deletes it from the MULTISET. After the values of 0 are deleted, the function counts the remaining

elements in each MULTISET and returns an integer.

Tip: Because this function returns a value for each MULTISET in the LIST, you must use a cursor to enclose the

EXECUTE FUNCTION statement when you execute the function.

Insert into a collection

You can insert a value into a collection without declaring a cursor. If the collection is a SET or MULTISET, the value is added

to the collection but the position of the new element is undefined because the collection has no particular order. If the value

is a LIST, you can add the new element at a specific point in the LIST or at the end of the LIST.

In the manager table, the direct_reports column contains collections of SET type, and the projects column contains a LIST.

To add a name to the SET in the direct_reports column, use an INSERT statement with a collection-derived table, as the

following figure shows.

501

HCL Informix 14.10 - SQL programming Guide

502

Figure 459. Insert a value into a collection.

CREATE PROCEDURE new_emp(emp VARCHAR(30), mgr VARCHAR(30))

 DEFINE r SET(VARCHAR(30) NOT NULL);

 SELECT direct_reports INTO r FROM manager
 WHERE mgr_name = mgr;

 INSERT INTO TABLE (r) VALUES(emp);

 UPDATE manager SET direct_reports = r
 WHERE mgr_name = mgr;

END PROCEDURE;

This SPL procedure takes an employee name and a manager name as arguments. The procedure then selects the collection

in the direct_reports column for the manager the user has entered, adds the employee name the user has entered, and

updates the manager table with the new collection.

The INSERT statement in the previous figure inserts the new employee name that the user supplies into the SET contained in

the collection variable r. The UPDATE statement then stores the new collection in the manager table.

Notice the syntax of the VALUES clause. The syntax rules for inserting literal data and variables into collection variables are

as follows:

• Use parentheses after the VALUES keyword to enclose the complete list of values.

• If the collection is SET, MULTISET, or LIST, use the type constructor followed by brackets to enclose the list of values

to be inserted. In addition, the collection value must be enclosed in quotes.

VALUES("SET{ 1,4,8,9 }")

• If the collection contains a row type, use ROW followed by parentheses to enclose the list of values to be inserted:

VALUES(ROW('Waters', 'voyager_project'))

• If the collection is a nested collection, nest keywords, parentheses, and brackets according to how the data type is

defined:

VALUES("SET{ ROW('Waters', 'voyager_project'),
 ROW('Adams', 'horizon_project') }")

For more information on inserting values into collections, see Modify data on page 358.

Insert into a nested collection

If you want to insert into a nested collection, the syntax of the VALUES clause changes. Suppose, for example, that you want

to insert a value into the twin_primes column of the numbers table that Figure 433: Handle collections in SPL programs. on

page 488 shows.

With the twin_primes column, you might want to insert a SET into the LIST or an element into the inner SET. The following

sections describe each of these tasks.

Chapter 1. SQL programming

Insert a collection into the outer collection

Inserting a SET into the LIST is similar to inserting a single value into a simple collection.

To insert a SET into the LIST, declare a collection variable to hold the LIST and select the entire collection into it. When you

use the collection variable as a collection-derived table, each SET in the LIST becomes a row in the table. You can then insert

another SET at the end of the LIST or at a specified point.

For example, the twin_primes column of one row of numbers might contain the following LIST, as the following figure shows.

Figure 460. Sample LIST.

LIST(SET{3,5}, SET{5,7}, SET{11,13})

If you think of the LIST as a collection-derived table, it might look similar to the following.

Figure 461. Thinking of the LIST as a collection-derived table.

{3,5}
{5,7}
{11,13}

You might want to insert the value "SET{17,19}" as a second item in the LIST. The statements in the following figure show

how to do this.

Figure 462. Insert a value in the LIST.

CREATE PROCEDURE add_set()

 DEFINE l_var LIST(SET(INTEGER NOT NULL) NOT NULL);

 SELECT twin_primes INTO l_var FROM numbers
 WHERE id = 100;

 INSERT AT 2 INTO TABLE (l_var) VALUES("SET{17,19}");

 UPDATE numbers SET twin_primes = l
 WHERE id = 100;

END PROCEDURE;

In the INSERT statement, the VALUES clause inserts the value SET {17,19} at the second position of the LIST. Now the LIST

looks like the following figure.

Figure 463. LIST items.

{3,5}
{17,19}
{5,7}
{11,13}

You can perform the same insert by passing a SET to an SPL routine as an argument, as the following figure shows.

503

HCL Informix 14.10 - SQL programming Guide

504

Figure 464. Passing a SET to an SPL routine as an argument.

CREATE PROCEDURE add_set(set_var SET(INTEGER NOT NULL),
 row_id INTEGER);

 DEFINE list_var LIST(SET(INTEGER NOT NULL) NOT NULL);
 DEFINE n SMALLINT;

 SELECT CARDINALITY(twin_primes) INTO n FROM numbers
 WHERE id = row_id;

 LET n = n + 1;

 SELECT twin_primes INTO list_var FROM numbers
 WHERE id = row_id;

 INSERT AT n INTO TABLE(list_var) VALUES(set_var);

 UPDATE numbers SET twin_primes = list_var
 WHERE id = row_id;

END PROCEDURE;

In add_set(), the user supplies a SET to add to the LIST and an INTEGER value that is the id of the row in which the SET will

be inserted.

Insert a value into the inner collection

In an SPL routine, you can also insert a value into the inner collection of a nested collection. In general, to access the inner

collection of a nested collection and add a value to it, perform the following steps:

1. Declare a collection variable to hold the entire collection stored in one row of a table.

2. Declare an element variable to hold one element of the outer collection. The element variable is itself a collection

variable.

3. Select the entire collection from one row of a table into the collection variable.

4. Declare a cursor so that you can move through the elements of the outer collection.

5. Select one element at a time into the element variable.

6. Use a branch or loop to locate the inner collection you want to update.

7. Insert the new value into the inner collection.

8. Close the cursor.

9. Update the database table with the new collection.

As an example, you can use this process on the twin_primes column of numbers. For example, suppose that twin_primes

contains the values that the following figure shows, and you want to insert the value 18 into the last SET in the LIST.

Figure 465. The twin_primes list.

LIST(SET({3,5}, {5,7}, {11,13}, {17,19}))

The following figure shows the beginning of a procedure that inserts the value.

Chapter 1. SQL programming

Figure 466. Procedure that inserts the value.

CREATE PROCEDURE add_int()

 DEFINE list_var LIST(SET(INTEGER NOT NULL) NOT NULL);
 DEFINE set_var SET(INTEGER NOT NULL);

 SELECT twin_primes INTO list_var FROM numbers
 WHERE id = 100;

So far, the attaint procedure has performed steps 1 on page 504, 2 on page 504, and 3 on page 504. The first DEFINE

statement declares a collection variable that holds the entire collection stored in one row of numbers.

The second DEFINE statement declares an element variable that holds an element of the collection. In this case, the element

variable is itself a collection variable because it holds a SET. The SELECT statement selects the entire collection from one

row into the collection variable, list_var.

The following figure shows how to declare a cursor so that you can move through the elements of the outer collection.

Figure 467. Declare a cursor to move through the elements of the outer collection.

FOREACH list_cursor FOR
 SELECT * INTO set_var FROM TABLE(list_var);

 FOREACH element_cursor FOR

Executing routines

You can execute an SPL routine or external routine in any of these ways:

• Using a stand-alone EXECUTE PROCEDURE or EXECUTE FUNCTION statement that you execute from DB-Access

• Calling the routine explicitly from another SPL routine or an external routine

• Using the routine name with an expression in an SQL statement

An additional mechanism for executing routines supports only the sysdbopen and sysdbclose procedures, which the DBA

can define. If a sysdbopen procedure whose owner matches the login identifier of a user exists in the database when

the user connects to the database by the CONNECT or DATABASE statement, that routine is executed automatically. If

no sysdbopen routine has an owner that matches the login identifier of the user, but a PUBLIC.sysdbopen routine exists,

that routine is executed. This automatic invocation enables the DBA to customize the session environment for users at

connection time. The sysdbclose routine is similarly invoked when the user disconnects from the database. (For more

information about these session configuration routines, see the HCL® Informix® Guide to SQL: Syntax and the HCL®

Informix® Administrator's Guide.)

An external routine is a routine written in C or some other external language.

The EXECUTE statements

You can use EXECUTE PROCEDURE or EXECUTE FUNCTION to execute an SPL routine or external routine. In general, it is

best to use EXECUTE PROCEDURE with procedures and EXECUTE FUNCTION with functions.

505

HCL Informix 14.10 - SQL programming Guide

506

Tip: For backward compatibility, the EXECUTE PROCEDURE statement allows you to use an SPL function name

and an INTO clause to return values. However, it is recommended that you use EXECUTE PROCEDURE only with

procedures and EXECUTE FUNCTION only with functions.

You can issue EXECUTE PROCEDURE and EXECUTE FUNCTION statements as stand-alone statements from DB-Access or

from within an SPL routine or external routine. If the routine name is unique within the database, and if it does not require

arguments, you can execute it by entering just its name and parentheses after EXECUTE PROCEDURE, as the following figure

shows.

Figure 468. Execute a procedure.

EXECUTE PROCEDURE update_orders();

The INTO clause is never present when you invoke a procedure with the EXECUTE statement because a procedure does not

return a value.

If the routine expects arguments, you must enter the argument values within parentheses, as the following figure shows.

Figure 469. Execute a procedure with arguments.

EXECUTE FUNCTION scale_rectangles(107, 1.9)
 INTO new;

The statement executes a function. Because a function returns a value, EXECUTE FUNCTION uses an INTO clause that

specifies a variable where the return value is stored. The INTO clause must always be present when you use an EXECUTE

statement to execute a function.

If the database has more than one procedure or function of the same name, HCL Informix® locates the right function based

on the data types of the arguments. For example, the statement in the previous figure supplies INTEGER and REAL values as

arguments, so if your database contains multiple routines named scale_rectangles(), the database server executes only the

scale_rectangles() function that accepts INTEGER and REAL data types.

The parameter list of an SPL routine always has parameter names as well as data types. When you execute the routine, the

parameter names are optional. However, if you pass arguments by name (instead of just by value) to EXECUTE PROCEDURE

or EXECUTE FUNCTION, as in the following figure, Informix® resolves the routine-by-routine name and arguments only, a

process known as partial routine resolution.

Figure 470. Execute a routine passing arguments by name.

EXECUTE FUNCTION scale_rectangles(rectid = 107,
 scale = 1.9) INTO new_rectangle;

You can also execute an SPL routine stored on another database server by adding a qualified routine name to the statement;

that is, a name in the form database@dbserver:owner_name.routine_name, as in the following figure.

Figure 471. Execute an SPL routine stored on another database server.

EXECUTE PROCEDURE informix@davinci:bsmith.update_orders();

When you execute a routine remotely, the owner_name in the qualified routine name is optional.

Chapter 1. SQL programming

The CALL statement

You can call an SPL routine or an external routine from an SPL routine using the CALL statement. CALL can execute both

procedures and functions. If you use CALL to execute a function, add a RETURNING clause and the name of an SPL variable

(or variables) that will receive the value (or values) the function returns.

Suppose, for example, that you want the scale_rectangles function to call an external function that calculates the area of the

rectangle and then returns the area with the rectangle description, as in the following figure.

Figure 472. Call an external function.

CREATE FUNCTION scale_rectangles(rectid INTEGER,
 scale REAL)
 RETURNING rectangle_t, REAL;

 DEFINE rectv rectangle_t;
 DEFINE a REAL;
 SELECT rect INTO rectv
 FROM rectangles WHERE id = rectid;
 IF (rectv IS NULL) THEN
 LET rectv.start = (0.0,0.0);
 LET rectv.length = 1.0;
 LET rectv.width = 1.0;
 LET a = 1.0;
 RETURN rectv, a;
 ELSE
 LET rectv.length = scale * rectv.length;
 LET rectv.width = scale * rectv.width;
 CALL area(rectv.length, rectv.width) RETURNING a;
 RETURN rectv, a;
 END IF;

END FUNCTION;

The SPL function uses a CALL statement that executes the external function area(). The value area() returns is stored in a

and returned to the calling routine by the RETURN statement.

In this example, area() is an external function, but you can use CALL in the same manner with an SPL function.

Execute routines in expressions

Just as with built-in functions, you can execute SPL routines (and external routines from SPL routines) by using them in

expressions in SQL and SPL statements. A routine used in an expression is usually a function, because it returns a value to

the rest of the statement.

For example, you might execute a function by a LET statement that assigns the return value to a variable. The statements in

the following figure perform the same task. They execute an external function within an SPL routine and assign the return

value to the variable a.

507

HCL Informix 14.10 - SQL programming Guide

508

Figure 473. Execute an external function within an SPL routine.

LET a = area(rectv.length, rectv.width);

CALL area(rectv.length, rectv.width) RETURNING a;
 -- these statements are equivalent

You can also execute an SPL routine from an SQL statement, as the following figure shows. Suppose you write an SPL

function, increase_by_pct, which increases a given price by a given percentage. After you write an SPL routine, it is available

for use in any other SPL routine.

Figure 474. Execute an SPL routine from an SQL statement.

CREATE FUNCTION raise_price (num INT)
 RETURNING DECIMAL;

 DEFINE p DECIMAL;

 SELECT increase_by_pct(price, 20) INTO p
 FROM inventory WHERE prod_num = num;

 RETURN p;

END FUNCTION;

The example selects the price column of a specified row of inventory and uses the value as an argument to the SPL function

increase_by_pct. The function then returns the new value of price, increased by 20 percent, in the variable p.

Execute an external function with the RETURN statement

You can use a RETURN statement to execute any external function from within an SPL routine. The following figure shows an

external function that is used in the RETURN statement of an SPL program.

Figure 475. A RETURN statement to execute an external function from within an SPL routine.

CREATE FUNCTION c_func() RETURNS int
LANGUAGE C;

CREATE FUNCTION spl_func() RETURNS INT;
 RETURN(c_func());
END FUNCTION;

EXECUTE FUNCTION spl_func();

When you execute the spl_func() function, the c_func() function is invoked, and the SPL function returns the value that the

external function returns.

Execute cursor functions from an SPL routine

A cursor function is a user-defined function that returns one or more rows of data and therefore requires a cursor to execute.

A cursor function can be either of the following functions:

Chapter 1. SQL programming

• An SPL function whose RETURN statement includes WITH RESUME

• An external function that is defined as an iterator function

The behavior of a cursor function is the same whether the function is an SPL function or an external function. However, an

SPL cursor function can return more than one value per iteration, whereas an external cursor function (iterator function) can

return only one value per iteration.

To execute a cursor function from an SPL routine, you must include the function in a FOREACH loop of an SPL routine. The

following examples show different ways to execute a cursor function in a FOREACH loop:

FOREACH SELECT cur_func1(col_name) INTO spl_var FROM tab1
 INSERT INTO tab2 VALUES (spl_var);
END FOREACH

FOREACH EXECUTE FUNCTION cur_func2() INTO spl_var
 INSERT INTO tab2 VALUES (spl_var);
END FOREACH

Dynamic routine-name specification

Dynamic routine-name specification allows you to execute an SPL routine from another SPL routine, by building the name of

the called routine within the calling routine. Dynamic routine-name specification simplifies how you can write an SPL routine

that calls another SPL routine whose name is not known until runtime. The database server lets you specify an SPL variable

instead of the explicit name of an SPL routine in the EXECUTE PROCEDURE or EXECUTE FUNCTION statement.

In the following figure, the SPL procedure company_proc updates a large company sales table and then assigns an SPL

variable named salesperson_proc to hold the dynamically created name of an SPL procedure that updates another, smaller

table that contains the monthly sales of an individual salesperson.

Figure 476. Dynamic routine-name specification.

CREATE PROCEDURE company_proc (no_of_items INT,
 itm_quantity SMALLINT, sale_amount MONEY,
 customer VARCHAR(50), sales_person VARCHAR(30))

DEFINE salesperson_proc VARCHAR(60);

-- Update the company table
INSERT INTO company_tbl VALUES (no_of_items, itm_quantity,
 sale_amount, customer, sales_person);

-- Generate the procedure name for the variable salesperson_proc
LET salesperson_proc = sales_person || "." || "tbl" ||
 current_month || "_" || current_year || "_proc" ;

-- Execute the SPL procedure that the salesperson_proc
-- variable specifies
EXECUTE PROCEDURE salesperson_proc (no_of_items,
 itm_quantity, sale_amount, customer)
END PROCEDURE;

509

HCL Informix 14.10 - SQL programming Guide

510

In example, the procedure company_proc accepts five arguments and inserts them into company_tbl. Then the LET

statement uses various values and the concatenation operator || to generate the name of another SPL procedure to execute.

In the LET statement:

sales_person

An argument passed to the company_proc procedure.

current_month

The current month in the system date.

current_year

The current year in the system date.

Therefore, if a salesperson named Bill makes a sale in July 1998, company_proc inserts a record in company_tbl and

executes the SPL procedure bill.tbl07_1998_proc, which updates a smaller table that contains the monthly sales of an

individual salesperson.

Rules for dynamic routine-name specification

You must define the SPL variable that holds the name of the dynamically executed SPL routine as CHAR, VARCHAR, NCHAR,

or NVARCHAR type. You must also give the SPL variable a valid and non-NULL name.

The SPL routine that the dynamic routine-name specification identifies must exist before it can be executed. If you assign

the SPL variable the name of a valid SPL routine, the EXECUTE PROCEDURE or EXECUTE FUNCTION statement executes the

routine whose name is contained in the variable, even if a built-in function of the same name exists.

In an EXECUTE PROCEDURE or EXECUTE FUNCTION statement, you cannot use two SPL variables to create a variable

name in the form owner.routine_name. However, you can use an SPL variable that contains a fully qualified routine name, for

example, bill.proc1. The following figure shows both cases.

Figure 477. SPL variable that contains a fully qualified routine name.

EXECUTE PROCEDURE owner_variable.proc_variable;
 -- this is not allowed

LET proc1 = bill.proc1;
EXECUTE PROCEDURE proc1; -- this is allowed

Privileges on routines

Privileges differentiate users who can create a routine from users who can execute a routine. Some privileges accrue as part

of other privileges. For example, the DBA privilege includes permissions to create routines, execute routines, and grant these

privileges to other users.

Chapter 1. SQL programming

Privileges for registering a routine

To register a routine in the database, an authorized user wraps the SPL commands in a CREATE FUNCTION or CREATE

PROCEDURE statement. The database server stores a registered SPL routine internally. The following users qualify to

register a new routine in the database:

• Any user with the DBA privilege can register a routine with or without the DBA keyword in the CREATE statement.

For an explanation of the DBA keyword, see DBA privileges for executing a routine on page 514.

• A user who does not have the DBA privilege needs the Resource privilege to register an SPL routine. The creator is the

owner of the routine.

A user who does not have the DBA privilege cannot use the DBA keyword to register the routine.

A DBA must give other users the Resource privilege needed to create routines. The DBA can also revoke the Resource

privilege, preventing the user from creating further routines.

• Besides holding the DBA privilege or the Resource privilege on the database in which the UDR is registered, the user

who creates a UDR must also hold the Usage privilege on the programming language in which the UDR is written.

These SQL statements can grant language-level Usage privileges for specific programming languages:

◦ GRANT USAGE ON LANGUAGE C

◦ GRANT USAGE ON LANGUAGE JAVA

◦ GRANT USAGE ON LANGUAGE SPL

Besides an individual user, the grantee of these privileges can also be a user-defined role, or the PUBLIC group. After

language-level Usage privileges are granted to a role, any user who holds that role can enable all the access privileges

of the role by using the SET ROLE statement of SQL to specify that role as the current role.

For external routines written in the C language or the Java™ language, if the IFX_EXTEND_ROLE configuration parameter

is enabled, only users to whom the DBSA has granted EXTERNAL role has been granted can register, drop, or alter external

UDRs or DataBlade® modules. This parameter is enabled by default. By setting the IFX_EXTEND_ROLE configuration

parameter to OFF or to 0, the DBSA can disable the requirement of holding the EXTEND role for DDL operations on

DataBlade® modules and external UDRs. This security feature has no effect, however, on SPL routines.

In summary, a user who holds the database-level and language-level discretionary access privileges that are identified above

(and who also holds the EXTEND role, if IFX_EXTEND_ROLE is enabled and the UDR is an external routine) can reference

UDRs in the following SQL statements:

• The DBA or a user can register a new UDR with the CREATE FUNCTION, CREATE FUNCTION FROM, CREATE

PROCEDURE, CREATE PROCEDURE FROM, CREATE ROUTINE, or CREATE ROUTINE FROM statement.

• The DBA or the owner of an existing UDR can cancel the registration of that UDR with the DROP FUNCTION, DROP

PROCEDURE, or DROP ROUTINE statement.

• The DBA or the owner of an existing UDR can modify the definition of that UDR with the ALTER FUNCTION, ALTER

PROCEDURE, or ALTER ROUTINE statement.

511

HCL Informix 14.10 - SQL programming Guide

512

Privileges for executing a routine

The Execute privilege enables users to invoke a routine. The routine might be invoked by the EXECUTE or CALL statements,

or by using a function in an expression. The following users have a default Execute privilege, which enables them to invoke a

routine:

• By default, any user with the DBA privilege can execute any routine in the database.

• If the routine is registered with the qualified CREATE DBA FUNCTION or CREATE DBA PROCEDURE statements, only

users with the DBA privilege have a default Execute privilege for that routine.

• If the database is not ANSI compliant, user public (any user with Connect database privilege) automatically has the

Execute privilege to a routine that is not registered with the DBA keyword.

• In an ANSI-compliant database, the procedure owner and any user with the DBA privilege can execute the routine

without receiving additional privileges.

Grant and revoke the Execute privilege

Routines have the following GRANT and REVOKE requirements:

• The DBA can grant or revoke the Execute privilege to any routine in the database.

• The creator of a routine can grant or revoke the Execute privilege on that particular routine. The creator forfeits the

ability to grant or revoke by including the AS grantor clause with the GRANT EXECUTE ON statement.

• Another user can grant the Execute privilege if the owner applied the WITH GRANT keywords in the GRANT EXECUTE

ON statement.

A DBA or the routine owner must explicitly grant the Execute privilege to non-DBA users for the following conditions:

• A routine that was registered with the DBA keyword

• A routine in an ANSI-compliant database

• A routine in a database that is not ANSI-compliant, but with the NODEFDAC environment variable set to yes.

•

An owner can restrict the Execute privilege on a routine even though the database server grants that privilege to public by

default. To do this, issue the REVOKE EXECUTE ON PUBLIC statement. The DBA and owner can still execute the routine and

can grant the Execute privilege to specific users, if applicable.

Execute privileges with COMMUTATOR and NEGATOR functions

Important: If you explicitly grant the Execute privilege on an SPL function that is the commutator or negator function

of a UDR, you must also grant that privilege on the commutator or the negator function before the grantee can use

either. You cannot specify COMMUTATOR or NEGATOR modifiers with SPL procedures.

The following example demonstrates both limiting privileges for a function and its negator to one group of users. Suppose

you create the following pair of negator functions:

Chapter 1. SQL programming

CREATE FUNCTION greater(y PERCENT, z PERCENT)
RETURNS BOOLEAN
NEGATOR= less(y PERCENT, z PERCENT);
. . .
CREATE FUNCTION less(y PERCENT, z PERCENT)
RETURNS BOOLEAN
NEGATOR= greater(y PERCENT, z PERCENT);

By default, any user can execute both the function and negator. The following statements allow only accounting to execute

these functions:

REVOKE EXECUTE ON FUNCTION greater FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION less FROM PUBLIC;
GRANT accounting TO mary, jim, ted;
GRANT EXECUTE ON FUNCTION greater TO accounting;
GRANT EXECUTE ON FUNCTION less TO accounting;

A user might receive the Execute privilege accompanied by the WITH GRANT OPTION authority to grant the Execute privilege

to other users. If a user loses the Execute privilege on a routine, the Execute privilege is also revoked from all users who were

granted the Execute privilege by that user.

For more information, see the GRANT and REVOKE statement descriptions in the HCL® Informix® Guide to SQL: Syntax.

Privileges on objects associated with a routine

The database server checks the existence of any referenced objects and verifies that the user invoking the routine has the

necessary privileges to access the referenced objects.

Objects referenced by a routine can include:

• Tables and columns

• Sequence objects

• User-defined data types

• Other routines executed by the routine

When a routine is run, the effective privilege is defined as the union of:

• The privileges of the user running the routine,

• The privileges that the owner has with the GRANT option.

By default, the database administrator has all the privileges in a database with the GRANT option. Therefore, users executing

routines that are owned by database administrators can select from all of the tables in a given database.

A GRANT EXECUTE ON statement confers to the grantee any table-level privileges that the grantor received from a GRANT

statement that contained the WITH GRANT keywords.

The owner of the routine, and not the user who runs the routine, owns the unqualified objects created in the course of

executing the routine. For example, assume user howie registers an SPL routine that creates two tables, with the following

SPL routine:

513

HCL Informix 14.10 - SQL programming Guide

514

CREATE PROCEDURE promo()
. . .
 CREATE TABLE newcatalog
 (
 catlog_num INTEGER
 cat_advert VARCHAR(255, 65)
 cat_picture BLOB
) ;
 CREATE TABLE dawn.mailers
 (
 cust_num INTEGER
 interested_in SET(catlog_num INTEGER)
);
END PROCEDURE;

User julia runs the routine, which creates the table newcatalog. Because no owner name qualifies table name newcatalog,

the routine owner (howie) owns newcatalog. By contrast, the qualified name dawn.maillist identifies dawn as the owner of

maillist.

DBA privileges for executing a routine

If a DBA creates a routine using the DBA keyword, the database server automatically grants the Execute privilege only to

other users with the DBA privilege. A DBA can, however, explicitly grant the Execute privilege on a DBA routine to a user who

does not have the DBA privilege.

When a user executes a routine that was registered with the DBA keyword, that user assumes the privileges of a DBA for

the duration of the routine. If a user who does not have the DBA privilege runs a DBA routine, the database server implicitly

grants a temporary DBA privilege to the invoker. Before exiting a DBA routine, the database server implicitly revokes the

temporary DBA privilege.

Objects created in the course of running a DBA routine are owned by the user who executes the routine, unless a statement

in the routine explicitly names someone else as the owner. For example, suppose that tony registers the promo() routine with

the DBA keyword, as follows:

CREATE DBA PROCEDURE promo()
 . . .
 CREATE TABLE catalog
 . . .
 CREATE TABLE libby.mailers
 . . .
END PROCEDURE;

Although tony owns the routine, if marty runs it, then marty owns the catalog table, but user libby owns libby.mailers

because their name qualifies the table name, making them the table owner.

A called routine does not inherit the DBA privilege. If a DBA routine executes a routine that was created without the DBA

keyword, the DBA privileges do not affect the called routine.

If a routine that is registered without the DBA keyword calls a DBA routine, the caller must have Execute privileges on the

called DBA routine. Statements within the DBA routine execute as they would within any DBA routine.

Chapter 1. SQL programming

The following example demonstrates what occurs when a DBA and non-DBA routine interact. Suppose procedure

dbspc_cleanup() executes another procedure clust_catalog(). Suppose also that the procedure clust_catalog() creates an

index and that the SPL source code for clust_catalog() includes the following statements:

CREATE CLUSTER INDEX c_clust_ix ON catalog (catalog_num);

The DBA procedure dbspc_cleanup() invokes the other routine with the following statement:

EXECUTE PROCEDURE clust_catalog(catalog);

Assume tony registered dbspc_cleanup() as a DBA procedure and clust_catalog() is registered without the DBA keyword, as

the following statements show:

CREATE DBA PROCEDURE dbspc_cleanup(loc CHAR)
CREATE PROCEDURE clust_catalog(catalog CHAR)
GRANT EXECUTE ON dbspc_cleanup(CHAR) to marty;

Suppose user marty runs dbspc_cleanup(). Because index c_clust_ix is created by a non-DBA routine, tony, who owns both

routines, also owns c_clust_ix. By contrast, marty would own index c_clust_ix if clust_catalog() is a DBA procedure, as the

following registering and grant statements show:

CREATE PROCEDURE dbspc_cleanup(loc CHAR);
CREATE DBA PROCEDURE clust_catalog(catalog CHAR);
GRANT EXECUTE ON clust_catalog(CHAR) to marty;

Notice that dbspc_cleanup() need not be a DBA procedure to call a DBA procedure.

Find errors in an SPL routine

When you use CREATE PROCEDURE or CREATE FUNCTION to write an SPL routine with DB-Access, the statement fails when

you select Run from the menu, if a syntax error occurs in the body of the routine.

If you are creating the routine in DB-Access, when you choose the Modify option from the menu, the cursor moves to the line

that contains the syntax error. You can select Run and Modify again to check subsequent lines.

Compile-time warnings

If the database server detects a potential problem, but the syntax of the SPL routine is correct, the database server generates

a warning and places it in a listing file. You can examine this file to check for potential problems before you execute the

routine.

The file name and path name of the listing file are specified in the WITH LISTING IN clause of the CREATE PROCEDURE

or CREATE FUNCTION statement. For information about how to specify the path name of the listing file, see Specify a

DOCUMENT clause on page 461.

If you are working on a network, the listing file is created on the system where the database resides. If you provide an

absolute path name and file name for the file, the file is created at the location you specify.

For UNIX™, if you provide a relative path name for the listing file, the file is created in your home directory on the computer

where the database resides. (If you do not have a home directory, the file is created in the root directory.)

515

HCL Informix 14.10 - SQL programming Guide

516

For Windows™, if you provide a relative path name for the listing file, the default directory is your current working directory if

the database is on the local computer. Otherwise the default directory is %INFORMIXDIR%\bin.

After you create the routine, you can view the file that is specified in the WITH LISTING IN clause to see the warnings that it

contains.

Generate the text of the routine

After you create an SPL routine, it is stored in the sysprocbody system catalog table. The sysprocbody system catalog table

contains the executable routine, as well as its text.

To retrieve the text of the routine, select the data column from the sysprocbody system catalog table. The datakey column

for a text entry has the code T.

The SELECT statement in the following figure reads the text of the SPL routine read_address.

Figure 478. SELECT statement to read the text of the SPL routine.

SELECT data FROM informix.sysprocbody
 WHERE datakey = 'T' -- find text lines
 AND procid =
 (SELECT procid
 FROM informix.sysprocedures
 WHERE informix.sysprocedures.procname =
 'read_address')

Debug an SPL routine

After you successfully create and run an SPL routine, you can encounter logic errors. If the routine has logic errors, use the

TRACE statement to help find them. You can trace the values of the following items:

• Variables

• Arguments

• Return values

• SQL error codes

• ISAM error codes

To generate a listing of traced values, first use the SQL statement SET DEBUG FILE to name the file that is to contain the

traced output. When you create the SPL routine, include a TRACE statement.

The following methods specify the form of TRACE output.

Statement

Action

TRACE ON

Traces all statements except SQL statements. Prints the contents of variables before they are used. Traces

routine calls and returned values.

Chapter 1. SQL programming

TRACE PROCEDURE

Traces only the routine calls and returned values.

TRACE expression

Prints a literal or an expression. If necessary, the value of the expression is calculated before it is sent to the

file.

The following figure demonstrates how you can use the TRACE statement to monitor how an SPL function executes.

Figure 479. The TRACE statement.

CREATE FUNCTION read_many (lastname CHAR(15))
 RETURNING CHAR(15), CHAR(15), CHAR(20), CHAR(15),
 CHAR(2), CHAR(5);

 DEFINE p_lname,p_fname, p_city CHAR(15);
 DEFINE p_add CHAR(20);
 DEFINE p_state CHAR(2);
 DEFINE p_zip CHAR(5);
 DEFINE lcount, i INT;

 LET lcount = 1;

 TRACE ON; -- Trace every expression from here on
 TRACE 'Foreach starts'; -- Trace statement with a literal

 FOREACH
 SELECT fname, lname, address1, city, state, zipcode
 INTO p_fname, p_lname, p_add, p_city, p_state, p_zip

 FROM customer
 WHERE lname = lastname
 RETURN p_fname, p_lname, p_add, p_city, p_state, p_zip
 WITH RESUME;
 LET lcount = lcount + 1; -- count of returned addresses
 END FOREACH

 TRACE 'Loop starts'; -- Another literal
 FOR i IN (1 TO 5)
 BEGIN
 RETURN i , i+1, i*i, i/i, i-1,i WITH RESUME;
 END
 END FOR;

END FUNCTION;

With the TRACE ON statement, each time you execute the traced routine, entries are added to the file you specified in the SET

DEBUG FILE statement. To see the debug entries, view the output file with any text editor.

The following list contains some of the output that the function in previous example generates. Next to each traced

statement is an explanation of its contents.

Statement

Action

517

HCL Informix 14.10 - SQL programming Guide

518

TRACE ON

Echoes TRACE ON statement.

TRACE Foreach starts

Traces expression, in this case, the literal string Foreach starts.

start select cursor

Provides notification that a cursor is opened to handle a FOREACH loop.

select cursor iteration

Provides notification of the start of each iteration of the select cursor.

expression: (+lcount, 1)

Evaluates the encountered expression, (lcount+1), to 2.

let lcount = 2

Echoes each LET statement with the value.

Exception handling

You can use the ON EXCEPTION statement to trap any exception (or error) that the database server returns to your SPL

routine or any exception that the routine raises. The RAISE EXCEPTION statement lets you generate an exception within the

SPL routine.

In an SPL routine, you cannot use exception handling to handle the following conditions:

• Success (row returned)

• Success (no rows returned)

Error trapping and recovering

The ON EXCEPTION statement provides a mechanism to trap any error.

To trap an error, enclose a group of statements in a statement block marked with BEGIN and END and add an ON EXCEPTION

IN statement at the beginning of the statement block. If an error occurs in the block that follows the ON EXCEPTION

statement, you can take recovery action.

The following figure shows an ON EXCEPTION statement within a statement block.

Chapter 1. SQL programming

Figure 480. Trap errors.

BEGIN
DEFINE c INT;
ON EXCEPTION IN
 (
 -206, -- table does not exist
 -217 -- column does not exist
) SET err_num

IF err_num = -206 THEN
 CREATE TABLE t (c INT);
 INSERT INTO t VALUES (10);
 -- continue after the insert statement
 ELSE
 ALTER TABLE t ADD(d INT);
 LET c = (SELECT d FROM t);
 -- continue after the select statement.
 END IF
END EXCEPTION WITH RESUME

INSERT INTO t VALUES (10); -- fails if t does not exist

LET c = (SELECT d FROM t); -- fails if d does not exist
END

When an error occurs, the SPL interpreter searches for the innermost ON EXCEPTION declaration that traps the error. The

first action after trapping the error is to reset the error. When execution of the error action code is complete, and if the ON

EXCEPTION declaration that was raised included the WITH RESUME keywords, execution resumes automatically with the

statement following the statement that generated the error. If the ON EXCEPTION declaration did not include the WITH

RESUME keywords, execution exits the current block entirely.

Scope of control of an ON EXCEPTION statement
The scope of the ON EXCEPTION statement extends from the statement that immediately follows the ON EXCEPTION

statement, and ends at the end of the statement block in which the ON EXCEPTION statement is issued. If the SPL routine

includes no explicit statement blocks, the scope is all subsequent statements in the routine.

For the exceptions specified in the IN clause (or for all exceptions, if no IN clause is specified), the scope of the ON

EXCEPTION statement includes all statements that follow the ON EXCEPTION statement within the same statement block.

If other statement blocks are nested within that block, the scope also includes all statements in the nested statement blocks

that follow the ON EXCEPTION statement, and any statements in statement blocks that are nested within those nested

blocks.

The following pseudocode shows where the exception is valid within the routine. That is, if error 201 occurs in any of the

indicated blocks, the action labeled a201 occurs.

519

HCL Informix 14.10 - SQL programming Guide

520

Figure 481. ON EXCEPTION statement scope of control.

CREATE PROCEDURE scope()
 DEFINE i INT;
 . . .
 BEGIN -- begin statement block A
 . . .
 ON EXCEPTION IN (201)
 -- do action a201
 END EXCEPTION
 BEGIN -- nested statement block aa
 -- do action, a201 valid here
 END
 BEGIN -- nested statement block bb
 -- do action, a201 valid here
 END
 WHILE i < 10
 -- do something, a201 is valid here
 END WHILE

 END -- end of statement block A
 BEGIN -- begin statement block B
 -- do something
 -- a201 is NOT valid here
 END
END PROCEDURE;

User-generated exceptions

You can generate your own error using the RAISE EXCEPTION statement, as the following figure shows.

Figure 482. The RAISE EXCEPTION statement.

BEGIN
 ON EXCEPTION SET esql, eisam -- trap all errors
 IF esql = -206 THEN -- table not found
 -- recover somehow
 ELSE
 RAISE exception esql, eisam; -- pass the error up
 END IF
 END EXCEPTION
 -- do something
END

In the example, the ON EXCEPTION statement uses two variables, esql and eisam, to hold the error numbers that the

database server returns. The IF clause executes if an error occurs and if the SQL error number is -206. If any other SQL error

is caught, it is passed out of this BEGINEND block to the last BEGINEND block of the previous example.

Simulate SQL errors

You can generate errors to simulate SQL errors, as the following figure shows. If the user is pault, then the SPL routine acts

as if that user has no update privileges, even if the user really does have that privilege.

Chapter 1. SQL programming

Figure 483. Simulate SQL errors.

BEGIN
 IF user = 'pault' THEN
 RAISE EXCEPTION -273; -- deny Paul update privilege
 END IF
END

RAISE EXCEPTION to exit nested code

The following figure shows how you can use the RAISE EXCEPTION statement to break out of a deeply nested block.

Figure 484. The RAISE EXCEPTION statement.

BEGIN
 ON EXCEPTION IN (1)
 END EXCEPTION WITH RESUME -- do nothing significant (cont)

 BEGIN
 FOR i IN (1 TO 1000)
 FOREACH select ..INTO aa FROM t
 IF aa < 0 THEN
 RAISE EXCEPTION 1; -- emergency exit
 END IF
 END FOREACH
 END FOR
 RETURN 1;
 END

 --do something; -- emergency exit to
 -- this statement.
 TRACE 'Negative value returned';
 RETURN -10;
END

If the innermost condition is true (if aa is negative), then the exception is raised and execution jumps to the code following

the END of the block. In this case, execution jumps to the TRACE statement.

Remember that a BEGINEND block is a single statement. If an error occurs somewhere inside a block and the trap is outside

the block, the rest of the block is skipped when execution resumes, and execution begins at the next statement.

Unless you set a trap for this error somewhere in the block, the error condition is passed back to the block that contains

the call and back to any blocks that contain the block. If no ON EXCEPTION statement exists that is set to handle the error,

execution of the SPL routine stops, creating an error for the routine that is executing the SPL routine.

Check the number of rows processed in an SPL routine

Within SPL routines, you can use the DBINFO function to find out the number of rows that have been processed in SELECT,

INSERT, UPDATE, DELETE, EXECUTE PROCEDURE, and EXECUTE FUNCTION statements.

The following figure shows an SPL function that uses the DBINFO function with the 'sqlca.sqlerrd2' option to determine the

number of rows that are deleted from a table.

521

HCL Informix 14.10 - SQL programming Guide

522

Figure 485. Determine the number of rows deleted from a table.

CREATE FUNCTION del_rows (pnumb INT)
RETURNING INT;

DEFINE nrows INT;

DELETE FROM sec_tab WHERE part_num = pnumb;
LET nrows = DBINFO('sqlca.sqlerrd2');

RETURN nrows;

END FUNCTION;

To ensure valid results, use this option after SELECT and EXECUTE PROCEDURE or EXECUTE FUNCTION statements have

completed executing. In addition, if you use the 'sqlca.sqlerrd2' option within cursors, make sure that all rows are fetched

before the cursors are closed, to ensure valid results.

Summary

SPL routines provide many opportunities for streamlining your database process, including enhanced database performance,

simplified applications, and limited or monitored access to data. You can also use SPL routines to handle extended data

types, such as collection types, row types, opaque types, and distinct types. For syntax diagrams of SPL statements, see the

HCL® Informix® Guide to SQL: Syntax.

Create and use triggers

This section describes each component of the CREATE TRIGGER statement, illustrates some uses for triggers, and describes

the advantages of using an SPL routine as a triggered action.

In addition, this section describes INSTEAD OF trigger that can be defined on views.

An SQL trigger is a mechanism that resides in the database. It is available to any user who has permission to use it. An

SQL trigger specifies that when a data-manipulation language (DML) operation (an INSERT, SELECT, DELETE, or UPDATE

statement) occurs on a particular table, the database server automatically performs one or more additional actions. For

triggers defined on views, the triggered action on the base tables of the view replaces the triggering event. For triggers on

tables or views, the triggered actions can be INSERT, DELETE, UPDATE, EXECUTE PROCEDURE or EXECUTE FUNCTION

statements.

HCL Informix® also supports user-defined routines written in C or in Java™ as triggered actions.

For information on how to write a C UDR to obtain metadata information about trigger events, see the HCL® Informix®

DataBlade® API Programmer's Guide.

Chapter 1. SQL programming

When to use triggers

Because a trigger resides in the database and anyone who has the required privilege can use it, a trigger lets you write a

set of SQL statements that multiple applications can use. It lets you avoid redundant code when multiple programs need to

perform the same database operation.

You can use triggers to perform the following actions, as well as others that are not found in this list:

• Create an audit trail of activity in the database. For example, you can track updates to the orders table by updating

corroborating information to an audit table.

• Implement a business rule. For example, you can determine when an order exceeds a customer's credit limit and

display a message to that effect.

• Derive additional data that is not available within a table or within the database. For example, when an update occurs

to the quantity column of the items table, you can calculate the corresponding adjustment to the total_price column.

• Enforce referential integrity. When you delete a customer, for example, you can use a trigger to delete corresponding

rows that have the same customer number in the orders table.

How to create a trigger

You use the CREATE TRIGGER statement to define a new trigger. The CREATE TRIGGER statement is a data-definition

statement that associates SQL statements, called the triggered action, with a precipitating event on a table. When the event

occurs, it triggers the associated SQL statements, which are stored in the database.

In this example, the triggering event is an UPDATE statement that references the quantity column of the items table. The

following figure illustrates the relationship of the DML operation that activates the trigger, called the trigger event, to the

triggered action.

Figure 486. Trigger event and triggered action

The CREATE TRIGGER statement consists of clauses that perform the following actions:

• Declare a name for the trigger .

• Specify the DML operation on a specified table or view as the triggering event.

• Define the SQL operations that this event triggers.

An optional clause, called the REFERENCING clause, is discussed in FOR EACH ROW triggered actions on page 526.

523

HCL Informix 14.10 - SQL programming Guide

524

To create a trigger, use DB-Access or one of the SQL APIs. This section describes the CREATE TRIGGER statement as you

enter it with the interactive Query-language option in DB-Access. In an SQL API, you precede the statement with the symbol

or keywords that identify it as an embedded statement.

Declare a trigger name

The trigger name identifies the trigger, and must be unique among trigger names within the database. The trigger name

follows the words CREATE TRIGGER in the statement. Like any SQL identifier, can be up to 128 bytes in length, beginning with

a letter and consisting of letters, digits, and the underscore (_) symbol. In the following example, the portion of the CREATE

TRIGGER statement that is shown declares the name upqty for the trigger:

CREATE TRIGGER upqty -- declare trigger name

Specify the trigger event

The trigger event is the type of DML statement that activates the trigger. When a statement of this type is performed on the

table, the database server executes the SQL statements that make up the triggered action. For tables, the trigger event can

be an INSERT, SELECT, DELETE, or UPDATE statement. For UPDATE or SELECT trigger event, you can specify one or more

columns in the table to activate the trigger. If you do not specify any columns, then an UPDATE or SELECT of any column in

the table activates the trigger. You can define multiple INSERT, DELETE, UPDATE and SELECT triggers on the same table, and

multiple INSERT, DELETE, and UPDATE triggers on the same view.

You can only create a trigger on a table or view in the current database. Triggers cannot reference a remote table or view.

In the following excerpt from a CREATE TRIGGER statement, the trigger event is defined as an update of the quantity column

in the items table:

CREATE TRIGGER upqty
 UPDATE OF quantity ON items -- an UPDATE trigger event

This portion of the statement identifies the table on which you define the trigger. If the trigger event is an insert or delete

operation, only the type of statement and the table name are required, as the following example shows:

CREATE TRIGGER ins_qty
 INSERT ON items -- an INSERT trigger event

Define the triggered actions

The triggered actions are the SQL statements that are performed when the trigger event occurs. The triggered actions can

consist of INSERT, DELETE, UPDATE, EXECUTE FUNCTION and EXECUTE PROCEDURE statements. In addition to specifying

what actions are to be performed, however, you must also specify when they are to be performed in relation to the triggering

statement. You have the following choices:

• Before the triggering statement executes

• After the triggering statement executes

• For each row that is affected by the triggering statement

A single trigger on a table can define actions for each of these times.

Chapter 1. SQL programming

To define a triggered action, specify when it occurs and then provide the SQL statement or statements to execute. You

specify when the action is to occur with the keywords BEFORE, AFTER, or FOR EACH ROW. The triggered actions follow,

enclosed in parentheses. The following triggered-action definition specifies that the SPL routine upd_items_p1 is to be

executed before the triggering statement:

BEFORE(EXECUTE PROCEDURE upd_items_p1) -- a BEFORE action

A complete CREATE TRIGGER statement

To define a complete CREATE TRIGGER statement, combine the trigger-name clause, the trigger-event clause, and the

triggered-action clause. The following CREATE TRIGGER statement is the result of combining the components of the

statement from the preceding examples. This trigger executes the SPL routine upd_items_p1 whenever the quantity column

of the items table is updated.

CREATE TRIGGER upqty
 UPDATE OF quantity ON items
 BEFORE(EXECUTE PROCEDURE upd_items_p1);

If a database object in the trigger definition, such as the SPL routine upd_items_p1 in this example, does not exist when the

database server processes the CREATE TRIGGER statement, it returns an error.

Triggered actions

To use triggers effectively, you need to understand the relationship between the triggering statement and the resulting

triggered actions. You define this relationship when you specify the time that the triggered action occurs; that is, BEFORE,

AFTER, or FOR EACH ROW.

BEFORE and AFTER triggered actions

Triggered actions that occur before or after the trigger event execute only once. A BEFORE triggered action executes before

the triggering statement, that is, before the occurrence of the trigger event. An AFTER triggered action executes after the

action of the triggering statement is complete. BEFORE and AFTER triggered actions execute even if the triggering statement

does not process any rows.

Among other uses, you can use BEFORE and AFTER triggered actions to determine the effect of the triggering statement. For

example, before you update the quantity column in the items table, you could call the SPL routine upd_items_p1 to calculate

the total quantity on order for all items in the table, as the following example shows. The procedure stores the total in a

global variable called old_qty.

CREATE PROCEDURE upd_items_p1()
 DEFINE GLOBAL old_qty INT DEFAULT 0;
 LET old_qty = (SELECT SUM(quantity) FROM items);
END PROCEDURE;

After the triggering update completes, you can calculate the total again to see how much it has changed. The following

SPL routine, upd_items_p2, calculates the total of quantity again and stores the result in the local variable new_qty. Then

it compares new_qty to the global variable old_qty to see if the total quantity for all orders has increased by more than 50

percent. If so, the procedure uses the RAISE EXCEPTION statement to simulate an SQL error.

525

HCL Informix 14.10 - SQL programming Guide

526

CREATE PROCEDURE upd_items_p2()
 DEFINE GLOBAL old_qty INT DEFAULT 0;
 DEFINE new_qty INT;
 LET new_qty = (SELECT SUM(quantity) FROM items);
 IF new_qty > old_qty * 1.50 THEN
 RAISE EXCEPTION -746, 0, 'Not allowed - rule violation';
 END IF
END PROCEDURE;

The following trigger calls upd_items_p1 and upd_items_p2 to prevent an extraordinary update on the quantity column of the

items table:

CREATE TRIGGER up_items
 UPDATE OF quantity ON items
 BEFORE(EXECUTE PROCEDURE upd_items_p1())
 AFTER(EXECUTE PROCEDURE upd_items_p2());

If an update raises the total quantity on order for all items by more than 50 percent, the RAISE EXCEPTION statement in

upd_items_p2 terminates the trigger with an error. When a trigger fails in a database that has transaction logging, the

database server rolls back the changes that both the triggering statement and the triggered actions make. For more

information on what happens when a trigger fails, see the CREATE TRIGGER statement in the HCL® Informix® Guide to SQL:

Syntax.

FOR EACH ROW triggered actions

A FOR EACH ROW triggered action executes once for each row that the triggering statement affects. For example, if the

triggering statement has the following syntax, a FOR EACH ROW triggered action executes once for each row in the items

table in which the manu_code column has a value of ‘KAR':

UPDATE items SET quantity = quantity * 2
 WHERE manu_code = 'KAR';

If the triggering event does not process any rows, a FOR EACH ROW triggered action does not execute.

For a trigger on a table, if the triggering event is a SELECT statement, the trigger is a called a Select trigger, and the triggered

actions execute after all processing on the retrieved row is complete. The triggered actions might not execute immediately;

however, because a FOR EACH ROW action executes for every instance of a row that the query returns. For example, in a

SELECT statement with an ORDER BY clause, all rows must be qualified against the WHERE clause before they are sorted

and returned.

The REFERENCING clause

When you create a FOR EACH ROW triggered action, you must usually indicate in the triggered action statements whether

you are referring to the value of a column before or after the effect of the triggering statement. For example, imagine that you

want to track updates to the quantity column of the items table. To do this, create the following table to record the activity:

CREATE TABLE log_record
 (item_num SMALLINT,
 ord_num INTEGER,
 username CHARACTER(8),
 update_time DATETIME YEAR TO MINUTE,

Chapter 1. SQL programming

 old_qty SMALLINT,
 new_qty SMALLINT);

To supply values for the old_qty and new_qty columns in this table, you must be able to refer to the old and new values of

quantity in the items table; that is, the values before and after the effect of the triggering statement. The REFERENCING

clause enables you to do this.

The REFERENCING clause lets you create two prefixes that you can combine with a column name, one to reference the old

value of the column, and one to reference its new value. These prefixes are called correlation names. You can create one or

both correlation names, depending on your requirements. You indicate which one you are creating with the keywords OLD

and NEW. The following REFERENCING clause creates the correlation names pre_upd and post_upd to refer to the old and

new values in a row:

REFERENCING OLD AS pre_upd NEW AS post_upd

The following triggered action creates a row in log_record when quantity is updated in a row of the items table. The INSERT

statement refers to the old values of the item_num and order_num columns and to both the old and new values of the

quantity column.

FOR EACH ROW(INSERT INTO log_record
 VALUES (pre_upd.item_num, pre_upd.order_num, USER,
 CURRENT, pre_upd.quantity, post_upd.quantity));

The correlation names defined in the REFERENCING clause apply to all rows that the triggering statement affects.

Important: If you refer to a column name that is not qualified by a correlation name, the database server makes no

special effort to search for the column in the definition of the triggering table. You must always use a correlation

name with a column name in SQL statements in a FOR EACH ROW triggered action, unless the statement is valid

independent of the triggered action. For more information, see the CREATE TRIGGER statement in the HCL®

Informix® Guide to SQL: Syntax.

The WHEN condition

As an option for triggers on tables, you can precede a triggered action with a WHEN clause to make the action dependent

on the outcome of a test. The WHEN clause consists of the keyword WHEN followed by the condition statement given in

parentheses. In the CREATE TRIGGER statement, the WHEN clause follows the keywords BEFORE, AFTER, or FOR EACH ROW

and precedes the triggered-action list.

When a WHEN condition is present, if it evaluates to true, the triggered actions execute in the order in which they appear.

If the WHEN condition evaluates to false or unknown, the actions in the triggered-action list do not execute. If the trigger

specifies FOR EACH ROW, the condition is evaluated for each row also.

In the following trigger example, the triggered action executes only if the condition in the WHEN clause is true; that is, if the

post-update unit price is greater than two times the pre-update unit price:

CREATE TRIGGER up_price
 UPDATE OF unit_price ON stock
 REFERENCING OLD AS pre NEW AS post
 FOR EACH ROW WHEN(post.unit_price > pre.unit_price * 2)

527

HCL Informix 14.10 - SQL programming Guide

528

 (INSERT INTO warn_tab
 VALUES(pre.stock_num, pre.manu_code, pre.unit_price,
 post.unit_price, CURRENT));

For more information on the WHEN condition, see the CREATE TRIGGER statement in the HCL® Informix® Guide to SQL:

Syntax.

SPL routines as triggered actions

Probably the most powerful feature of triggers is the ability to call an SPL routine as a triggered action. The EXECUTE

PROCEDURE or EXECUTE FUNCTION statement, which calls an SPL routine, lets you pass data from the triggering table

to the SPL routine and also to update the triggering table with data returned by the SPL routine. SPL also lets you define

variables, assign data to them, make comparisons, and use procedural statements to accomplish complex tasks within a

triggered action.

Pass data to an SPL routine

You can pass data to an SPL routine in the argument list of the EXECUTE PROCEDURE or EXECUTE FUNCTION statement.

The EXECUTE PROCEDURE statement in the following example passes values from the quantity and total_price columns of

the items table to the SPL routine calc_totpr:

CREATE TRIGGER upd_totpr
 UPDATE OF quantity ON items
 REFERENCING OLD AS pre_upd NEW AS post_upd
 FOR EACH ROW(EXECUTE PROCEDURE calc_totpr(pre_upd.quantity,
 post_upd.quantity, pre_upd.total_price) INTO total_price);

Passing data to an SPL routine lets you use data values in the operations that the routine performs.

Using SPL

The EXECUTE PROCEDURE statement in the preceding trigger calls the SPL routine that the following example shows. The

procedure uses SPL to calculate the change that needs to be made to the total_price column when quantity is updated in the

items table. The procedure receives both the old and new values of quantity and the old value of total_price. It divides the

old total price by the old quantity to derive the unit price. It then multiplies the unit price by the new quantity to obtain the new

total price.

CREATE PROCEDURE calc_totpr(old_qty SMALLINT, new_qty SMALLINT,
 total MONEY(8)) RETURNING MONEY(8);
 DEFINE u_price LIKE items.total_price;
 DEFINE n_total LIKE items.total_price;
 LET u_price = total / old_qty;
 LET n_total = new_qty * u_price;
 RETURN n_total;
END PROCEDURE;

In this example, SPL lets the trigger derive data that is not directly available from the triggering table.

Chapter 1. SQL programming

Update nontriggering columns with data from an SPL routine

Within a triggered action, the INTO clause of the EXECUTE PROCEDURE statement lets you update nontriggering columns in

the triggering table. The EXECUTE PROCEDURE statement in the following example calls the calc_totpr SPL procedure that

contains an INTO clause, which references the column total_price:

FOR EACH ROW(EXECUTE PROCEDURE calc_totpr(pre_upd.quantity,
 post_upd.quantity, pre_upd.total_price) INTO total_price);

The value that is updated into total_price is returned by the RETURN statement at the conclusion of the SPL procedure. The

total_price column is updated for each row that the triggering statement affects.

Trigger routines

You can define specialized SPL routines, called trigger routines, that can be invoked only from the FOR EACH ROW section

of the triggered action. Unlike ordinary UDRs that EXECUTE FUNCTION or EXECUTE PROCEDURE routines can call from the

triggered action list, trigger routines include their own REFERENCING clause that defines correlation names for the old and

new column values in rows that the triggered action modifies. These correlation names can be referenced in SPL statements

within the trigger routine, providing greater flexibility in how the triggered action can modify data in the table or view.

Trigger routines can also use trigger-type Boolean operators, called DELETING, INSERTING, SELECTING, and UPDATING, to

identify what type of trigger has called the trigger routine. Trigger routines can also invoke the mi_trigger* routines, which are

sometimes called trigger introspection routines, to obtain information about the context in which the trigger routine has been

called.

Trigger routines are invoked by EXECUTE FUNCTION or EXECUTE PROCEDURE statements that include the WITH TRIGGER

REFERENCES keywords. These statements must call the trigger routine from the FOR EACH ROW section of the triggered

action, rather than from the BEFORE or AFTER sections.

For information about syntax features that the CREATE FUNCTION, CREATE PROCEDURE, EXECUTE FUNCTION, and

EXECUTE PROCEDURE statements of SQL support for defining and executing trigger routines, see your HCL® Informix®

Guide to SQL: Syntax. For more information about the mi_trigger* routines, see your HCL® Informix® DataBlade® API

Programmer's Guide.

Triggers in a table hierarchy

When you define a trigger on a supertable, any subtables in the table hierarchy also inherit the trigger. Consequently when

you perform operations on tables in the hierarchy, triggers can execute for any table in the hierarchy that is a subtable of the

table on which a trigger is defined.

Select triggers

When the CREATE TRIGGER statement defines as its triggering event any query on a specific table (

SELECT ON table

or

SELECT ON column-list ON table

529

HCL Informix 14.10 - SQL programming Guide

530

), the resulting trigger object is a Select trigger on the specified table. The same trigger can also be activated by queries on a

view that includes triggering columns from table as its base table. SELECT statements cannot, however, be the trigger events

for INSTEAD OF triggers on a view.

If the CREATE TRIGGER statement also includes a column-list in the definition of an enabled Select trigger event, and the

Projection list of a subsequent query on the specified table does not include any of the specified columns, that query cannot

be a triggering event for the Select trigger.

Warning:

Select triggers are not reliable for auditing. Do not attempt to create a Select trigger on a table, or on a subset of

its columns, for the purpose of performing application-specific auditing. In general, it is not possible, to track the

number of SELECT actions on a table by creating a Select trigger to insert an audit record into an audit table each

time a user queries a certain table.

For example, suppose that you define a Select trigger on the table AuditedTable and that a user who holds Select

privileges on AuditedTable issues the following query:

SELECT a.* FROM (SELECT * FROM AuditedTable) AS a;

The database server issues no error, but the SELECT trigger on AuditedTable will not be activated by this query. A

query that included a set operator, such as UNION or INTERSECT, or any other syntax that Select triggers do not

support, would be similarly invisible to an audit-record strategy that is based on Select triggers.

Because of the numerous restrictions on the execution of Select triggers, as partially listed in this chapter, the

resulting Select trigger actions will typically correspond to only a subset (that might be empty) of whatever logical

Select events you are attempting to enumerate.

SELECT statements that execute triggered actions

When you create a select trigger, only certain types of select statements can execute the actions defined on that trigger. A

select trigger executes for the following types of SELECT statements only:

• Stand-alone SELECT statements

• Collection subqueries in the select list of a SELECT statement

• SELECT statements embedded in user-defined routines

• Views

Stand-alone SELECT statements

Suppose you define the following Select trigger on a table:

CREATE TRIGGER hits_trig SELECT OF col_a ON tab_a
 REFERENCING OLD AS hit
 FOR EACH ROW (INSERT INTO hits_log
 VALUES (hit.col_a, CURRENT, USER));

Chapter 1. SQL programming

A Select trigger executes when the triggering column appears in the select list of a stand-alone SELECT statement. The

following statement executes a triggered action on the hits_trig trigger for each instance of a row that the database server

returns:

SELECT col_a FROM tab_a;

Collection subqueries in the projection list of a query

A Select trigger executes when the triggering column appears in a collection subquery that occurs in the projection list of

another SELECT statement. The following statement executes a triggered action on the hits_trig trigger for each instance of

a row that the collection subquery returns:

SELECT MULTISET(SELECT col_a FROM tab_a) FROM ...

SELECT statements embedded in user-defined routines

A select trigger that is defined on a SELECT statement embedded in a user defined routine (UDR) executes a triggered action

in the following instances only:

• The UDR appears in the select list of a SELECT statement

• The UDR is invoked with an EXECUTE PROCEDURE statement

Suppose you create a routine new_proc that contains the statement SELECT col_a FROM tab_a. Each of the following

statements executes a triggered action on the hits_trig trigger for each instance of a row that the embedded SELECT

statement returns:

SELECT new_proc() FROM tab_b;
EXECUTE PROCEDURE new_proc;

Views

Select triggers execute a triggered action for views whose base tables contain a reference to a triggering column. You

cannot, however, define a Select trigger on a view.

Suppose you create the following view:

CREATE VIEW view_tab AS
 SELECT * FROM tab_a;

The following statements execute a triggered action on the hits_trig trigger for each instance of a row that the view returns:

SELECT * FROM view_tab;

SELECT col_a FROM tab_a;

Restrictions on execution of Select triggers

The following types of SELECT statements do not trigger any actions when they reference a table or column on which an

enabled Select trigger is defined.

531

HCL Informix 14.10 - SQL programming Guide

532

• No triggering column is referenced in the Projection list (for example, a column that appears only in the WHERE

clause of a SELECT statement does not execute a Select trigger).

• The SELECT statement references a remote table.

• The SELECT statement calls an aggregate function or an OLAP window aggregation function.

• The SELECT statement includes a set operator (UNION, UNION ALL, INTERSECT, MINUS, or EXCEPT)

• The SELECT statement includes the DISTINCT or UNIQUE keyword.

• The UDR expression that contains the SELECT statement is not in the Projection list.

• The SELECT statement appears within an INSERT INTO statement.

• The SELECT statement appears within a scroll cursor.

• The trigger is a cascading Select trigger.

A cascading Select trigger is a trigger whose actions includes an SPL routine that itself has a triggering SELECT

statement. The actions of a cascading Select trigger do not execute, however, and the database server does not

return an error.

Select triggers on tables in a table hierarchy

When you define a select trigger on a supertable, any subtables in the table hierarchy also inherit the trigger.

For information about overriding and disabling inherited triggers, see Triggers in a table hierarchy on page 529.

Re-entrant triggers

A re-entrant trigger refers to a case in which the triggered action can reference the triggering table. In other words, both

the triggering event and the triggered action can operate on the same table. For example, suppose the following UPDATE

statement represents the triggering event:

UPDATE tab1 SET (col_a, col_b) = (col_a + 1, col_b + 1);

The following triggered action is legal because column col_c is not a column that the triggering event has updated:

UPDATE tab1 SET (col_c) = (col_c + 3);

In the preceding example, a triggered action on col_a or col_b would be illegal because a triggered action cannot be an

UPDATE statement that references a column that was updated by the triggering event.

Important: Select triggers cannot be re-entrant triggers. If the triggering event is a SELECT statement, the triggered

action cannot operate on the same table.

For a list of the rules that describe those situations in which a trigger can and cannot be re-entrant, see the CREATE TRIGGER

statement in the HCL® Informix® Guide to SQL: Syntax.

INSTEAD OF triggers on views

A view is a synthetic table that you create with the CREATE VIEW statement and define with a SELECT statement. Each view

consists of the set of rows and columns that the SELECT statement in the view definition returns each time you refer to the

view in a query. To insert, update, or delete rows in the base tables of a view, you can define an INSTEAD OF trigger.

Chapter 1. SQL programming

Unlike a trigger on a table, the INSTEAD OF trigger on a view causes HCL Informix® to ignore the triggering event, and

instead perform only the triggered action.

For information on the CREATE VIEW statement and the INSTEAD OF trigger syntax and rules, including an example of an

INSTEAD OF trigger that will insert rows on a view, see the HCL® Informix® Guide to SQL: Syntax.

INSTEAD OF trigger to update on a view

After you create one or more tables (like those named dept and emp in the following example), and then created a view (like

the one named manager_info) from dept and emp, you can use an INSTEAD OF trigger to update that view.

The following CREATE TRIGGER statement creates manager_info_update, an INSTEAD OF trigger that is designed to update

rows within the dept and emp tables through the manager_info view.

CREATE TRIGGER manager_info_update
 INSTEAD OF UPDATE ON manager_info
 REFERENCING NEW AS n
 FOR EACH ROW
 (EXECUTE PROCEDURE updtab (n.empno, n.empname, n.deptno,));

CREATE PROCEDURE updtab (eno INT, ename CHAR(20), dno INT,)
 DEFINE deptcode INT;
 UPDATE dept SET manager_num = eno where deptno = dno;
 SELECT deptno INTO deptcode FROM emp WHERE empno = eno;
 IF dno !=deptcode THEN
 UPDATE emp SET deptno = dno WHERE empno = eno;
 END IF;
 END PROCEDURE;

After the tables, view, trigger, and SPL routine have been created, the database server treats the following UPDATE statement

as a triggering event:

UPDATE manager_info
 SET empno = 3666, empname = "Steve"
 WHERE deptno = 01;

This triggering UPDATE statement is not executed, but this event causes the trigger action to be executed instead, invoking

the updtab() SPL routine. The UPDATE statements in the SPL routine update values into both the emp and dept base tables

of the manager_info view.

Trace triggered actions

If a triggered action does not behave as you expect, place it in an SPL routine and use the SPL TRACE statement to monitor

its operation. Before you start the trace, you must direct the output to a file with the SET DEBUG FILE TO statement.

Example of TRACE statements in an SPL routine

The following example shows TRACE statements that you add to the SPL routine items_pct. The SET DEBUG FILE TO

statement directs the trace output to the file that the path name specifies. The TRACE ON statement begins tracing the

statements and variables within the procedure.

533

HCL Informix 14.10 - SQL programming Guide

534

CREATE PROCEDURE items_pct(mac CHAR(3))
DEFINE tp MONEY;
DEFINE mc_tot MONEY;
DEFINE pct DECIMAL;
SET DEBUG FILE TO 'pathname';

TRACE 'begin trace';
TRACE ON;
LET tp = (SELECT SUM(total_price) FROM items);
LET mc_tot = (SELECT SUM(total_price) FROM items
 WHERE manu_code = mac);
LET pct = mc_tot / tp;
IF pct > .10 THEN
 RAISE EXCEPTION -745;
END IF
TRACE OFF;
END PROCEDURE;

CREATE TRIGGER items_ins
INSERT ON items
REFERENCING NEW AS post_ins
FOR EACH ROW(EXECUTE PROCEDURE items_pct (post_ins.manu_code));

Example of TRACE output

The following example shows sample trace output from the items_pct procedure as it appears in the file that was named

in the SET DEBUG FILE TO statement. The output reveals the values of procedure variables, procedure arguments, return

values, and error codes.

trace expression :begin trace
trace on
expression:
 (select (sum total_price)
 from items)
evaluates to $18280.77 ;
let tp = $18280.77
expression:
 (select (sum total_price)
 from items
 where (= manu_code, mac))
evaluates to $3008.00 ;
let mc_tot = $3008.00
expression:(/ mc_tot, tp)
evaluates to 0.16
let pct = 0.16
expression:(> pct, 0.1)
evaluates to 1
expression:(- 745)
evaluates to -745
raise exception :-745, 0, ''
exception : looking for handler
SQL error = -745 ISAM error = 0 error string = = ''
exception : no appropriate handler

For more information about how to use the TRACE statement to diagnose logic errors in SPL routines, see Create and use

SPL routines on page 453.

Chapter 1. SQL programming

Generate error messages

When a trigger fails because of an SQL statement, the database server returns the SQL error number that applies to the

specific cause of the failure.

When the triggered action is an SPL routine, you can generate error messages for other error conditions with one of two

reserved error numbers. The first one is error number -745, which has a generalized and fixed error message. The second one

is error number -746, which allows you to supply the message text, up to a maximum of 70 bytes.

Apply a fixed error message

You can apply error number -745 to any trigger failure that is not an SQL error. The following fixed message is for this error:

-745 Trigger execution has failed.

You can apply this message with the RAISE EXCEPTION statement in SPL. The following example generates error -745 if

new_qty is greater than old_qty multiplied by 1.50:

CREATE PROCEDURE upd_items_p2()
 DEFINE GLOBAL old_qty INT DEFAULT 0;
 DEFINE new_qty INT;
 LET new_qty = (SELECT SUM(quantity) FROM items);
 IF new_qty > old_qty * 1.50 THEN
 RAISE EXCEPTION -745;
 END IF
END PROCEDURE

If you are using DB-Access, the text of the message for error -745 displays on the bottom of the screen, as the following

figure shows.

Figure 487. Error message -745 with fixed message

Press CTRL-W for Help
SQL: New Run Modify Use-editor Output Choose Save Info Drop Exit
Modify the current SQL statements using the SQL editor.

--------------------- stores8@myserver --------- Press CTRL-W for Help ----

INSERT INTO items VALUES(2, 1001, 2, 'HRO', 1, 126.00);

 745: Trigger execution has failed.

If your trigger calls a procedure that contains an error through an SQL statement in your SQL API, the database server sets

the SQL error status variable to -745 and returns it to your program. To display the text of the message, follow the procedure

that your HCL® Informix® application development tool provides for retrieving the text of an SQL error message.

535

HCL Informix 14.10 - SQL programming Guide

536

Generate a variable error message

Error number -746 allows you to provide the text of the error message. Like the preceding example, the following one also

generates an error if new_qty is greater than old_qty multiplied by 1.50. However, in this case the error number is -746, and

the message text Too many items for Mfr. is supplied as the third argument in the RAISE EXCEPTION statement. For more

information on the syntax and use of this statement, see the RAISE EXCEPTION statement in Create and use SPL routines on

page 453.

CREATE PROCEDURE upd_items_p2()
 DEFINE GLOBAL old_qty INT DEFAULT 0;
 DEFINE new_qty INT;
 LET new_qty = (SELECT SUM(quantity) FROM items);
 IF new_qty > old_qty * 1.50 THEN
 RAISE EXCEPTION -746, 0, 'Too many items for Mfr.';
 END IF
END PROCEDURE;

If you use DB-Access to submit the triggering statement, and if new_qty is greater than old_qty, you will get the result that the

following figure shows.

Figure 488. Error Number -746 with User-Specified message Text

Press CTRL-W for Help
SQL: New Run Modify Use-editor Output Choose Save Info Drop Exit
Modify the current SQL statements using the SQL editor.

-------------------- store7@myserver --------- Press CTRL-W for Help -----

INSERT INTO items VALUES(2, 1001, 2, 'HRO', 1, 126.00);

746: Too many items for Mfr.

If you invoke the trigger through an SQL statement in an SQL API, the database server sets sqlcode to -746 and returns the

message text in the sqlerrm field of the SQL communications area (SQL;CA). For more information about how to use the

SQL;CA, see your SQL API publication.

Summary

To introduce triggers, this chapter discussed the following topics:

• The components of the CREATE TRIGGER statement

• Types of DML statements that can be triggering events

• Types of SQL statements that can be triggered actions

• How to create BEFORE and AFTER triggered actions and how to use them to determine the impact of the triggering

statement

Chapter 1. SQL programming

• How to create a FOR EACH ROW triggered action and how to use the REFERENCING clause to refer to the values of

columns both before and after the action of the triggering statement

• INSTEAD OF triggers on views, whose triggering event is ignored, but whose triggered actions can modify the base

tables of the view

• The advantages of using SPL routines as triggered actions

• Special features of calls to trigger routines as triggered actions

• How to trace triggered actions if they behave unexpectedly

• How to generate two types of error messages within a triggered action.

537

Index
Special Characters

([]), brackets
substring operator 89, 139

!=, not equal, relational operator 249
?, question mark

as placeholder in PREPARE 418
' VERSION' table 65
(_), underscore

in SQL identifiers 172
(;), semicolon

list separator 192, 204
(:), colon

cast (::) operator 137, 139
DATETIME delimiter 93
INTERVAL delimiter 101
list separator 166, 174, 192, 199, 204

(!=), not equal to
relational operator 139

('), single quotation
string delimiter 162

('), single quotation symbols
string delimiter 172

("), double quotation marks
string delimiter 103

("), double quotation symbols
delimited SQL identifiers 172
string delimiter 81, 106, 113

(()), parentheses
delimiters in expressions 127

({ }), braces
collection delimiters 103, 106
pathname delimiters 143

(/), slash
DATE separator 92, 127, 157
division operator 123, 139
pathname delimiter 145, 163, 199

(\), backslash
invalid as delimiter 159
pathname delimiter 146, 194

(#), sharp
comment indicator 141

(%), percentage
DBTIME escape symbol 167
pathname indicator 166

(<), less than
angle (< >) brackets 89
relational operator 139, 159

(>), greater than
angle (< >) brackets 89
relational operator 9, 139

(|), vertical bar
absolute value delimiter 100
concatenation (||) operator 139
field delimiter 159

($), dollar sign
currency symbol 105, 162
pathname indicator 204

(-), hyphen
DATE separator 157
DATETIME delimiter 93
INTERVAL delimiter 101
subtraction operator 123, 139
symbol in syscolauth 4, 22
symbol in sysfragauth 36
symbol in systabauth 64
unary operator 124, 139

(,), comma

decimal point 162
list separator 106, 110, 166
thousands separator 105

(.), period
DATE separator 157, 157
DATETIME delimiter 93
decimal point 97, 105, 162
execution symbol 141
INTERVAL delimiter 101
membership operator 139
nested dot notation 131

(), blank space
DATETIME delimiter 93
INTERVAL delimiter 101
padding CHAR values 91
padding VARCHAR values 117

(*), asterisk
multiplication operator 87, 123, 128, 139
systabauth value 4, 64
wildcard symbol 20, 77

(+), plus sign
addition operator 123, 139
truncation indicator 179
unary operator 139

(=), equality
assignment operator 146
relational operator 20, 87, 91, 139

(~), tilde
pathname indicator 145

=, equals, relational operator 248, 271
>=, greater than or equal to, relational
operator 249

A
Abbreviated year values 93, 154, 156, 157, 167
ACCESS keyword 122
Access method

B-tree 14, 14, 41, 172
built-in 14, 14
primary 14, 63, 63
R-Tree 172
secondary 14, 28, 43, 108
sysams data 14
sysindices data 43
sysopclasses data 48
systabamdata data 63

Access modes, description of 449
Access privilege on UDRs 511
ACCESS_METHOD keyword 14
Active set

definition of 247, 407
of a cursor 414

Activity-log files 198
Addition (+) operator 123, 139
Administrative listener port 186
Aggregate functions 115

and GROUP BY clause 321
AVG 293
built-in 103, 106, 113
COUNT 293
description of 293, 301
finding NULL values 410
in ESQL 407
in expressions 292
in SPL routine 475
in subquery 340
MAX 294
MIN 294

no BYTE argument 89
no collection arguments 103, 106, 113
null value signalled 405
RANGE 294
standard deviation 295
STDEV 295
SUM 296
sysaggregates data 13
user-defined 13
VARIANCE 296

AIX operating system 178, 200
Alias

for table name 277
to assign column names in temporary
table 325
using

as a query shortcut 277
with a supertable 291

with self-join 325
Alias of a table 4
Alignment of data type 75
Alignment of data types 20
ALL keyword

beginning a subquery 339
in subquery 339

ALL operator 139
ALTER INDEX statement, locking table 437
ALTER OPTICAL CLUSTER statement 48
Alter privilege 4, 64, 78
ALTER SEQUENCE statement 215
ALTER TABLE statement

casting effects 134
changing data types 81
lock mode 175
next extent size 9
SERIAL columns 111
SERIAL8 columns 113
synonyms 215

am_beginscan() function 14
am_close() function 14
am_getnext() function 14
am_insert() function 14
am_open() function 14
AND logical operator 253
AND operator 20, 139
ANSI

isolation levels 446
SQL version 230

ANSI compliance
-ansi flag 153
DATETIME literals 167
DBANSIWARN environment variable 153
DECIMAL range 97
DECIMAL(p) data type 96
Information Schema views 76
isolation level 80
public synonyms 63, 65

ANSI standard
as extension to
Informix
syntax
 230

ANSI-compliant database
FOR UPDATE not required in 432
signalled in SQLWARN 405

ANSIOWNER environment variable 148
ANY keyword, in SELECT statement 339
ANY operator 139

538

Application
handling errors 409
isolation level 442
update cursor 446

Arabic locales 90
Archiving

database server methods 393
description of 393
setting DBREMOTECMD 165
transaction log 393

Arithmetic
DATE operands 92, 126
DATETIME operands 124
integer operands 87, 100, 100, 115
INTERVAL operands 101, 125
operators 139
string operands 90
time operands 123

Arithmetic expressions 262
Arithmetic operators, in expression 262
AS keyword 137, 137
Ascending order in SELECT 240
assign() support function 129
Asterisk notation, in a SELECT statement 285
Asterisk, wildcard character in SELECT 238
AT keyword 103
Attached index 172
Attached indexes 39, 156, 210
Audit Analysis officer 195, 195
Authorization identifier 71, 80, 364
AUTO_STAT_MODE configuration
parameter 31, 37
AUTO_STAT_MODE session environment
setting 31, 37
AVG function, as aggregate function 293

B
B-tree access method 14, 41, 172
B-tree index 39
Backslash (\) symbol 159
Backup

file prefix 182
Bandwidth 182
BEGIN WORK statement 393
BETWEEN keyword

using in WHERE clause 247
using to specify a range of rows 249

BETWEEN operator 139
BIGINT data type 86

coltype code 23
length (syscolumns) 27

BIGSERIAL data type 87
coltype code 23
last BIGSERIAL value inserted 313
length (syscolumns) 27

bin subdirectory 143
Binding style 79
BLOB data type

casting unavailable 87
defined 87
inserting data 87
syscolattribs data 21

Blobspaces
defined 122
memory cache for staging 192
names 172
sysblobs data 19

BOOLEAN data type
defined 88

Boolean expression 253
with BOOLEAN data type 88

with BYTE data type 89
Boolean expression with TEXT data type 115
Borland C compiler 187
Bourne shell 141, 142
Braces ({ }) comment delimiters 462
Bracket ([]) symbols 115
brackets substring 115
Buffers

BYTE or TEXT storage (DBBLOBBUF) 154
fetch buffer (FET_BUFFER_SIZE) 174
fetch buffer (SRV_FET_BUFFER_SIZE) 211
floating-point display (DBFLTMASK) 160
network buffer (IFX_NETBUF_SIZE) 180
private network buffer pool 180

Built-in access method 14, 14
Built-in aggregates 13, 103, 106, 113
Built-in casts 20, 134
Built-in data type, declaring variables 467
Built-in data types

casts 134, 138
listed 118
syscolumns.coltype code 23
sysdistrib.type code 31
sysxtdtypes data 75

Built-in opaque data types 137
BY clause 115
BY keyword 89, 115
BY ORDER 115
BYTE data type

casting to BLOB 89
coltype code 23
defined 89
increasing buffer size 154
inserting values 89
restrictions

in Boolean expression 89
systables.npused 65
with GROUP BY 89
with LIKE or MATCHES 89
with ORDER BY 89

restrictions with GROUP BY 321
selecting from BYTE columns 89
setting buffer size 154
sysblobs data 19, 19
syscolumns data 27
sysfragments data 39
sysopclstr data 48, 48
using LENGTH function on 311
with relational expression 247

C
C compiler

default name 187
INFORMIXC setting 187
thread package 214

C shell 141
.cshrc file 142
.login file 142

C++ map file 192
CALL statement, in SPL function 507
Cardinality function

description of 303
CARDINALITY function 303
CARDINALITY() function 103, 106, 113
Cartesian product

basis of joins 270
description of 269

Cascading deletes 56
child tables 383
definition of 383
locking associated with 383

logging 383, 392
referential integrity 383
restriction 384

Cascading Select trigger 531
Case conversion

with INITCAP function 306
with LOWER function 305
with UPPER function 306

CASE expression
description of 265
in UPDATE statement 377
using 265

Case-insensitive databases 10, 107, 107
Cast (::) operator 137, 139
CAST AS keywords 137
casting to CLOB 115
Casts 133, 138

built-in 20, 134, 137
distinct data type 138
explicit 20, 137, 137
from BYTE to BLOB 89
implicit 20, 137, 137
rules of precedence 137
syscasts data 20
user-defined (UDCs) 20

Casts from TEXT 115
CHAR data type

built-in casts 136
collation 90, 90
converting to a DATE value 301
converting to a DATETIME value 302
defined 90
in relational expressions 247
nonprintable characters 91, 91
storing numeric values 90
substrings of 246
truncation signalled 405

CHARACTER data type 91
Character data types

Boolean comparisons 117
casting between 134
data strings 81
listed 118

Character string
CHAR data type 90
CHARACTER VARYING data type 91
CLOB data type 91
converting to a DATE value 301
converting to a DATETIME value 302
DATETIME literals 93, 127, 167
INTERVAL literals 101
LVARCHAR data type 104
NCHAR data type 107
NVARCHAR data type 107
VARCHAR data type 117
with DELIMIDENT set 172

CHARACTER VARYING data type
defined 91

Character-based applications 195, 212
Check constraints

creation-time value 156, 158
syschecks data 20
syscheckudrdep data 21
syscoldepend data 23
sysconstraints data 28

Check constraints, definition of 381
chkenv utility 141

error message 144
syntax 144

Chunks 122
Class libraries, shared 228

539

CLIEN_LABEL environment variable 150
CLIENT_LOCALE environment variable 157
Client/server

DataBlade API 122
default database 193
INFORMIXSQLHOSTS environment
variable 194
shared memory communication
segments 193
stacksize for client session 195

CLOB data type
casting unavailable 91
code-set conversion 92
collation 92
defined 91
inserting data 92
multibyte characters 92
syscolattribs data 21

CLOB TEXT 115
CLOSE DATABASE statement, effect on
database locks 436
CLOSE statement 203
Clustering 14, 39, 43
CMCONFIG environment variable 149
Code sets

East Asian 91, 167
EBCDIC 80
ISO 8859-1 34

Collation 115
CHAR data type 90, 90
CLOB data type 92
GL_COLLATE table 65
NCHAR data type 107
NVARCHAR data type 107
server_attribute data 80

Collection data type
casting matrix 138
defined 130
empty 130
LIST 103
MULTISET 106
SET 113
sysattrtypes data 17
sysxtddesc data 74
sysxtdtypes data 74, 75

COLLECTION data type
coltype code 23

Collection data types
accessing 281, 286
counting elements in 303, 303
description of 286
element, searching for with IN 288
simple 286
updating 375, 375
using the CARDINALITY function 303

collection delimiters 113, 130
Collection subquery

description of 345
ITEM keyword 346, 347
using ITEM keyword in 347

Collection types
in an SPL routine 462
in DELETE statement 361

Collection values, inserting into columns 368
Collection variable

defining, restrictions on 467
nested 286, 287
selecting 287

collection-derived table
using in SPL 497

Collection-derived table 348

accessing elements in a collection 348
description of 345, 493
restrictions on 348

Collections, with INSERT statement 368
Colon

cast (::) operator 137
DATETIME delimiter 93
INTERVAL delimiter 101

Color and intensity screen attributes 195
Column number, using 242
Column-level privileges

systabauth data 4
systabauth table 64

Columns
changing data type 81, 133
constraints (sysconstraints) 28
default values (sysdefaults) 29
definition of 233
descending order 240
description of 227
hashed 39
in relational model 227
in superstores_demo database 217
in trigger-event definitions 529
inserting BLOB data 87
label on 353
ordering the selection of 239
range of values 28
row-type, definition of 283
syscolumns data 23

columns Information Schema view 76
Combine function 13
Comment indicator 141
Comment lines 141
COMMIT WORK statement

closing cursors 451
releasing locks 441, 451
setting SQLCODE 424

Committed read 80
Committed Read isolation level (
Informix
)
 444
Communications support module 189
commutator function

definition 460
Commutator function 52
Comparison condition, description of 247
Compiling

ESQL/C programs 149
INFORMIXC setting 187
JAVA_COMPILER setting 199
multithreaded ESQL/C applications 214

Complex data type 129, 132
collection types 130
ROW types 132
sysattrtypes data 17

Compliance
ANSI/ISO standard for SQL 76, 153
sql_languages.conformance 79
X/Open CAE standards 76
XPG4 standard 78

Composite index 41
Compound query 350
Concatenation (||) operator 139
concsm.cfg file 189
Concurrency

access modes 449
active set 415
ANSI isolation levels 444
Cursor Stability isolation (

Informix
)
 445
database lock 436
deadlock 450
description of 394, 433
Informix
isolation levels
 444
isolation level 442
kinds of locks 435
lock duration 441
lock scope 436
multiple programs 434
table lock 437

Confidence level 37
Configuration file

.cshrc file 142

.informix 141, 144, 174, 175

.login file 142

.profile file 142
for communications support module 189
for connectivity 187, 193, 194
for database servers 174, 201
for High-Performance Loader 205
for MaxConnect 187
for terminal I/O 195

Configuration parameters
DBSPACETEMP 166
DEF_TABLE_LOCKMODE 175
DIRECTIVES 176
DISABLE_B162428_XA_FIX 185
EXT_DIRECTIVES 31, 177
ISOLATION_LOCKS 445
MITRACE_OFF 68, 69
OPCACHEMAX 192
OPT_GOAL 203
OPTCOMPIND 202
RESIDENT 178
shared memory base 186
SQL_LOGICAL_CHAR 65
STACKSIZE 195
STMT_CACHE 212
USEOSTIME 93

CONNECT DEFAULT statement 193
Connect privilege 9, 71
CONNECT statement 163, 190, 193
Connections

INFORMIXCONRETRY environment
variable 189
INFORMIXCONTIME environment
variable 190
INFORMIXSERVER environment
variable 193

Connectivity information 186, 194
Constant expressions 364
Constraints

check
creation-time value 158
syschecks data 20
syscheckudrdep data 21
syscoldepend data 23

column
sysconstraints data 28

not null
collection data types 106, 113, 130

NOT NULL
collection data types 103
syscoldepend data 23
syscolumns data 23
sysconstraints data 28

540

object mode 47
primary key

sysconstraints data 28
sysreferences data 56
unique SERIAL values 111
unique SERIAL8 values 112

referential
sysconstraints data 28
sysreferences data 56

table
sysconstraints data 28

unique
sysconstraints data 28
sysviolations data 72

violations 72
Constraints, entity integrity 381
Constructors 113, 130
Conversion function, description of 301
Converting data types

DATE and DATETIME 136
INTEGER and DATE 136
number and string 136
number to number 135
retyping a column 133

Coordinated deletes 425
Coordinated Universal Time (UTC) 313
Correlated subquery

definition of 335
restriction with cascading deletes 384

COUNT function
and GROUP BY 321
as aggregate function 293
count rows to delete 360
use in a subquery 362
with DISTINCT 293

CPFIRST environment variable 149
CPU cost 210
CREATE ACCESS_METHOD statement 14
CREATE CAST statement 20, 136
CREATE DATABASE statement 163

setting shared lock 436
SQLWARN after 405

CREATE DISTINCT TYPE statement 75, 98, 217
CREATE EXTERNAL TABLE statement 34, 35
CREATE FUNCTION FROM statement, in
embedded languages 464
CREATE FUNCTION statement 57

inside CREATE FUNCTION FROM
statement 464
using 454
WITH LISTING IN clause 515

CREATE FUNCTION, return clause 458
CREATE IMPLICIT CAST statement 217
CREATE INDEX statement 41, 43, 65, 172

storage options 172
CREATE INDEX statement, locking table 437
CREATE OPAQUE TYPE statement 108
CREATE OPERATOR CLASS statement 48
CREATE OPTICAL CLUSTER statement 48
CREATE PROCEDURE FROM statement, in
embedded languages 464
CREATE PROCEDURE statement 57, 200

inside CREATE PROCEDURE FROM 464
using 454
WITH LISTING IN clause 515

CREATE ROLE statement 56
CREATE ROUTINE FROM statement 57, 200
CREATE ROW TYPE statement 23, 108
CREATE SCHEMA statement 4
CREATE SEQUENCE statement 61
CREATE SYNONYM statement 62, 63

CREATE TABLE statement
assigning data types 81
cascading deletes 383
collection types 286
default lock mode 175
default privileges 200
hierarchy 289
multiset columns 346
ON DELETE CASCADE clause 359
primary keys 382
row type columns 281
SET constructor 113
setting the lock mode 440
smart large object columns 304
typed table 281
typed tables 108

CREATE TEMP TABLE statement 166
CREATE TRIGGER statement 70, 525
CREATE VIEW statement 4, 72
CREATE XADATASOURCE statement 73
CREATE XADATASOURCETYPE statement 73
Cross join 271
Cross-database SQL operations 397
Cross-server connection requirements 400
Cross-server SQL operations 397
Currency symbol 105, 162
Current date 29, 154
CURRENT function

as constant expression 364
comparing column values 297
using 297

CURRENT keyword 123
Cursor

active set of 414
closing 451
declaring 411
definition of 411
end of transaction 451
for insert 427
for update 431, 442
opening 412, 414
retrieving values with FETCH 412
scroll 413
sequence of program operations 411
sequential 413, 415

Cursor Stability isolation level (
Informix
)
 445
Cyclic query 384

D
Data corruption 9, 21
Data definition statements 420
Data dependencies

syscheckudrdep data 21
syscoldepend data 23
sysdepend data 30

Data dictionary 3
Data distributions 9, 31, 171
Data encryption functions 318
Data integrity 79, 380

failures 391
Data models, description of 220
Data pages 21, 41, 65
Data replication 394
data type collation 115
data type restrictions 115
data type restrictions in Boolean
expression 115
data type UPDATE statements 115

Data types
approximate 78
automatic conversions 408
BIGINT 86
BIGSERIAL 87
BLOB 87
BOOLEAN 88
BYTE 89
casting 133, 138
CHAR 90
CHARACTER 91
CHARACTER VARYING 91
classified by category 81
CLOB 91
collection 130
collection, accessing 281, 286
complex 129
conversion 133, 364, 408
DATE 92
DATETIME 93
DEC 96
DECIMAL 96
distinct 132
DISTINCT 98
DOUBLE PRECISION 99
exact numeric 78
extended 129
fixed point 97
FLOAT 99
floating-point 96, 99, 114
IDSSECURITYLABEL 100, 119
inheritance 108
INT 100
INT8 100
INTEGER 100
internal 81
INTERVAL 101
length (syscolumns) 27
LIST 103
LVARCHAR 104
MONEY 105
MULTISET 106
named ROW 108
NCHAR 107, 107
NUMERIC 107
NVARCHAR 107
opaque 132
OPAQUE 108
Opaque data types

smart large objects 122
REAL 108
ROW 108, 110
sequential integer 112
SERIAL 111
SERIAL8 112
SET 113
simple large object 122
SMALLFLOAT 114
SMALLINT 115
smart large object 122
summary list 81
unique numeric value 112
unnamed ROW 110
VARCHAR 117

Data-type promotion 119
Database identifiers 172
Database object

constraints as a 384
index as a 384
object modes 384
trigger as a 384

541

violation detection 384
Database object mode

examples 385
Database server administrator (DBSA) 4
Database Server Administrator (DBSA) 195
Database servers

archiving 393
attributes in Information Schema view 80
code set 80
default connection 193
default isolation level 80
identifying host computer name 313
identifying version number 313
locking tables 437
optimizing queries 203
pathname for 163
remote 174
role separation 195
server name 29, 163
signalled in SQLWARN 405
statement caching 452

DATABASE statement 163
locking 436
SQLWARN after 405

Databases
ANSI-compliant 231
compared to file 221
concurrent use 223
control of 223
data types 81
Databases

superstores_demo 217
definition of 227
demonstration databases

superstores_demo 217
external 396
identifiers 172
joins in stores_demo 215
locking 436
management of 226
modifying contents of 223
object-relational 217
object-relational, description of 228
objects, sysobjstate data 47
privileges 71
relational, description of 226
remote 396
server 223
stores_demo 215
superstores_demo

demonstration database 217
syscrd 4
sysmaster 4
sysutils 4
sysuuid 4

DataBlade modules 228
Client and Server API 122
data types (sysbuiltintypes) 4
trace messages (systracemsgs) 68, 69
user messages (syserrors) 34

DATE data type
abbreviated year values 154
casting to integer 136
coltype code 23
converting to a character string 301
converting to DATETIME 136
defined 92
display format 157
functions returning 297
in expressions 123, 126
in ORDER BY sequence 240

in relational expressions 247
international date formats 92
source data 126

DATE function, as conversion function 301
DATE() function 126, 157
DATETIME data type

abbreviated year values 154
coltype code 23
converting to a character string 301
converting to DATE 136, 136
defined 93
display format 167, 167
displaying format 300
EXTEND function 126
extending precision 124
field qualifiers 93
functions returning 297
in expressions 123, 128
in ORDER BY sequence 240
in relational expressions 247
international formats 93, 93, 101
length (syscolumns) 27
literal values 93
localized values 93
precision and size 93
source data 127
two-digit year values and DBDATE
variable 93
year to fraction example 93

DATETIME values, formatting 300
DAY function 297
DAY keyword

DATETIME qualifier 93
INTERVAL qualifier 101
UNITS operator 92, 127

DB-Access
creating database with 420

DB-Access utility 9, 77, 145, 160, 163, 167, 193
DBA privilege 34, 68, 69, 71
DBA routines 52
DBACCNOIGN environment variable 152, 153
DBANSIWARN environment variable 153
DBBLOBBUF environment variable 154, 154
DBCENTURY environment variable

defined 154
effect on functionality of DBDATE 157
expanding abbreviated years 93, 155

DBDATE environment variable 92, 93, 157, 364
DBDELIMITER environment variable 159
DBEDIT environment variable 159
dbexport utility 159
DBFLTMASK environment variable 160
DBINFO function, in SELECT statement 313
dbinfo utility 160
DBINFO_DBSPACE_RETURN_NULL_FOR_INVALID_PARTNUM
environment variable 160
DBLANG environment variable 161, 161
dbload utility 87, 89, 115, 159
DBMONEY environment variable 105, 162
DBPATH environment variable 163
DBPRINT environment variable 165
DBREMOTECMD environment variable 165
dbschema utility 52
DBSECADM role 100, 119
DBSERVERALIASES configuration
parameter 400
DBSERVERNAME configuration parameter 400
DBSERVERNAME function, in INSERT
statement 364
DBSERVERNAME function, in SELECT
statement 313

dbservername.cmd batch file 147
dbspace

for BYTE or TEXT values 19
for system catalog 4
for table fragments 36
for temporary tables 166
name 172

dbspace, name returned by DBINFO
function 313
DBSPACETEMP configuration parameter 166
DBSPACETEMP environment variable 166
DBTEMP environment variable 167
DBTIME environment variable 93, 167, 167
DBUPSPACE environment variable 171
Deadlock detection 450
DEC data type 96
DECIMAL data type

built-in casts 135, 136
coltype code 23
defined 96
disk storage 97
display format 160, 162
fixed point 97
floating point 96
length (syscolumns) 27

DECIMAL data type, signalled in
SQLWARN 405
Decimal digits, display of 160
Decimal point

DBFLTMASK setting 160
DBMONEY setting 162
DECIMAL radix 97

Decimal separator 162
DECLARE CURSOR statement 427
DECLARE statement 203

description of 411
FOR INSERT clause 427
FOR UPDATE 431
SCROLL keyword 413
WITH HOLD clause 451

DECODE function 314
DECRYPT_BINARY function 91, 318
DECRYPT_CHAR function 91, 318
DEF_TABLE_LOCKMODE configuration
parameter 175
DEF_TABLES_LOCKMODE configuration
parameter 440
Default database locale 10
Default values

in column 381
using 410

DEFAULT_ATTACH environment variable 172
Defaults

C compiler 187
century 154, 167
CHAR length 90
character set for SQL identifiers 172
compilation order 149
configuration file 201
connection 193
data type 110
database server 163, 193
DATE display format 92
DATE separator 157
DATETIME display format 93
DECIMAL precision 96
disk space for sorting 171
fetch buffer size 174
heap size 199
index storage location 172
isolation level 80

542

join method 202
level of parallelism 205
lock mode 175
message directory 161
MONEY scale 105
operator class 14, 48
printing program 165
query optimizer goal 203
sysdefaults.default 29
table privileges 200
temporary dbspace 166
terminfo direcotry 213
text editor 159

DEFINE statement of SPL 111, 112
defined Data types 115
Delete MERGE operations 362
Delete privilege 36, 64, 200
DELETE statement 72
DELETE statements 9

collection types 361
coordinated deletes 425
count of rows 423
description of 359
developing 362
duplicate rows 429
embedded 402, 423
lock mode 448
number of rows 404
preparing 418
remove all rows 359
row types 361
selected rows 360
specific rows 360
transactions with 424
using 423
using subquery 362
WHERE clause restriction 362
with cursor 425
with supertables 361

Delete trigger 70
Delete using TRUNCATE 359
DELIMIDENT environment variable 172
Delimited identifiers 172, 172
Delimiter

for DATETIME values 93
for fields 159
for identifiers 172
for INTERVAL values 101

demonstration databases
stores_demo 215

Demonstration databases
tables 217

Descending index 41
Descending order in SELECT 240
DESCRIBE statement 185
Describe-for-updates 185
destroy() support function 129
Detached index 172
Deutsche mark (DM) currency symbol 162
Diagnostics table 72

description of 388
example of privileges 390
examples of starting 388

Difference set operation 356
DIRECTIVES configuration parameter 176
Directives for query optimization 176, 202, 203
Dirty Read isolation level (
Informix
)
 444
Disabled database objects 72

Disk space
for data distributions 171
for temporary data 166

Display label
in ORDER BY clause 267
with SELECT 264

Distinct data types
casts 138
sysxtdtypes data 75

DISTINCT data types
defined 98
sysxtddesc data 74
sysxtdtypes data 75, 98

DISTINCT keyword
relation to GROUP BY 321
using in SELECT 242
using with COUNT function 293

Distinct-type variable 469
Distributed Computing Environment (DCE) 214
Distributed queries 129, 174
Distributed SQL operations 397
DOCUMENT clause, use in SPL routine 461
Dollar ($) sign 105, 162
Domain of column 381
Dot notation 284
double (C) data type 99
double hyphen (--) comment indicator 462
Double-precision floating-point number 99
DROP CAST statement 217
DROP DATABASE statement 163
DROP FUNCTION statement 52
DROP INDEX statement 65
DROP INDEX statement, locking table 437
DROP OPTICAL CLUSTER statement 48
DROP PROCEDURE statement 52
DROP ROUTINE statement 52
DROP ROW TYPE statement 108
DROP SEQUENCE statement 215
DROP TABLE statement 215
DROP TYPE statement 98, 108
DROP VIEW statement 77, 215
Duplicate values, finding 268
Dynamic routine-name specification

for SPL function 509
for SPL routine 509
rules for 510

Dynamic SQL
description of 402, 417
freeing prepared statements 420

E
EBCDIC collation 80
Editor, DBEDIT setting 159
EMACS text editor 159
Embedded SQL

definition of 401
languages available 401

Empty set 130
ENCRYPT_AES function 318
ENCRYPT_DES function 91
ENCRYPT_TDES function 91, 318
End of data

signal in SQLCODE 404, 409
signal only for SELECT 430
SQLCODE 412
when opening cursor 412

Enterprise Replication 4
Entity integrity 381
env utility 144
ENVIGNORE environment variable

defined 141, 174

relation to chkenv utility 144
Environment configuration file

debugging with chkenv 144
setting environment variables in UNIX 141,
141

Environment variables
ANSIOWNER 148
CLIENT_LABEL 150
CLIENT_LOCALE 157, 157
CMCONFIG 149
Colon

pathname separator 199
command-line utilities 146
CPFIRST 149
DBACCNOIGN 152, 153
DBANSIWARN 153
DBBLOBBUF 154, 154
DBCENTURY 154
DBDATE 92, 93, 157
DBDELIMITER 159
DBEDIT 159
DBFLTMASK 160
DBINFO_DBSPACE_RETURN_NULL_FOR_INVALID_PARTNUM 160
DBLANG 161
DBMONEY 105, 162
DBPATH 163
DBPRINT 165
DBREMOTECMD 165
DBSPACETEMP 166, 166
DBTEMP 167
DBTIME 93, 167
DBUPSPACE 171
DEFAULT_ATTACH 172
DELIMIDENT 172
displaying current settings 144, 146
ENVIGNORE 174
FET_BUF_SIZE 174
GL_DATE 92, 93, 156
GL_DATETIME 93, 156
how to set

in Bourne shell 143
in C shell 143
in Korn shell 143

how to set in Bourne shell 143
how to set in Korn shell 143
IFMXMONGOAUTH 175
IFX_DEF_TABLE_LOCKMODE 175
IFX_DIRECTIVES 176
IFX_EXTDIRECTIVES 31, 177
IFX_LARGE_PAGES 178
IFX_LOB_XFERSIZE 179
IFX_LONGID 179
IFX_NETBUF_PVTPOOL_SIZE 180
IFX_NETBUF_SIZE 180
IFX_NO_SECURITY_CHECK 181
IFX_NO_TIMELIMIT_WARNING 181
IFX_NODBPROC 182
IFX_NOT_STRICT_THOUS_SEP 182
IFX_ONTAPE_FILE_PREFIX 182
IFX_PAD_VARCHAR 182
IFX_SMX_TIMEOUT 183, 184
IFX_SMX_TIMEOUT_RETRY 184
IFX_UNLOAD_EILSEQ_MODE 184
IFX_UPDDESC 185
IFX_XASTDCOMPLIANCE_XAEND 185
IFX_XFER_SHMBASE 186
IMCADMIN 186
IMCCONFIG 187
IMCSERVER 187
INF_ROLE_SEP 195, 195
INFORMIXC 187

543

INFORMIXCMCONUNITNAME 188
INFORMIXCMNAME 188
INFORMIXCONCSMCFG 189
INFORMIXCONRETRY 189
INFORMIXCONTIME 190
INFORMIXCPPMAP 192
INFORMIXDIR 192
INFORMIXOPCACHE 192
INFORMIXSERVER 193
INFORMIXSHMBASE 193
INFORMIXSQLHOSTS 194, 194
INFORMIXSTACKSIZE 195
INFORMIXTERM 195
INTERACTIVE_DESKTOP_OFF 196
ISM_COMPRESSION 197
ISM_DEBUG_FILE 197
ISM_DEBUG_LEVEL 197
ISM_ENCRYPTION 197
ISM_MAXLOGSIZE 198
ISM_MAXLOGVERS 198
JAR_TEMP_PATH 198
JAVA_COMPILER 199
JVM_MAX_HEAP_SIZE 199
LD_LIBRARY_PATH 199
LIBPATH 200
limitations 140
manipulating in Windows
environments 145
modifying settings 143
NODEFDAC 200
ONCONFIG 201
ONINIT_STDOUT 201
OPT_GOAL 203
OPTCOMPIND 202
OPTMSG 202
OPTOFC 203
overriding a setting 141, 174
PATH 204, 204
Pathname

for client or shared libraries 199
PDQPRIORITY 204
PLCONFIG 205
PLOAD_LO_PATH 206
PLOAD_SHMBASE 206
PSM_ACT_LOG 206, 207
PSM_DBS_POOL 207
PSM_DEBUG 207
PSM_DEBUG_LOG 208
PSM_LOG_POOL 208
PSORT_DBTEMP 209
PSORT_NPROCS 209
RTREE_COST_ADJUST_VALUE 210
rules of precedence in UNIX 145
rules of precedence in Windows 148
scope of reference 146
setting 146

at the command line 141
in a configuration file 141
in a login file 141
in a shell file 142
in Windows environments 145
with the System applet 146

setting in autoexec.bat 146
SHLIB_PATH 211
SRV_FET_BUF_SIZE 211
standard UNIX system 140
STMT_CACHE 212
TERM 212
TERMCAP 213
TERMINFO 213
THREADLIB 214

types of 140
unsetting 143, 146, 172
USE_DTENV 93, 93
USETABLENAME 215
view current setting 144
where to set 142

equal() support function 129
Equality (=) operator 91
Equals (=) relational operator 248, 271
Equi-join 271, 271
Era-based dates 167
Error checking

simulating errors 520
SPL routines 518, 521

Error message files 161, 406
Error messages

applying fixed 535
for trigger failure 535
generating a variable 536
generating in a trigger 535
retrieving trigger text in a program 535, 536

Errors
after DELETE 424
codes for 404
dealing with 409
detected on opening cursor 412
during updates 391
inserting with a cursor 428
ISAM error code 404

ESCAPE keyword, using in WHERE clause 258
esql command 149, 187
ESQL/C

cursor use 411, 416
DATETIME routines 167
DELETE statement in 423
delimiting host variables 402
dynamic embedding 402, 417
error handling 409
esqlc command 149
fetching rows from cursor 412
host variable 402, 403
indicator variable 409
INSERT in 427
long identifiers 179
message chaining 202
multithreaded applications 214
overview 400, 423, 423
preprocessor 401
program compilation order 149
scroll cursor 413
selecting single rows 407
SQL Communications Area 403
SQLCODE 403
SQLERRD fields 404
static embedding 401
UPDATE in 431

Exact numeric data types 78
EXCLUSIVE keyword

in DATABASE statement 436
Exclusive lock 435
Executable programs 204
EXECUTE FUNCTION statement

with SPL 505
EXECUTE IMMEDIATE statement, description
of 420
Execute privilege 50, 200

DBA keyword, effect of 514
objects referenced by a routine 513

EXECUTE PROCEDURE statement
with SPL 505

EXISTS keyword 355

in a WHERE clause 339
in SELECT statement 342

explain output file 171
Explicit cast 20, 137
Explicit pathnames 146, 164
Explicit temporary tables 166
Exponent 97
Exponential notation 96
export utility 143
export_binary() support function 129
export() support function 129
Expression

CASE 265
date-oriented 297
description of 262
display label for 264
in SPL routine 475

Expression-based fragmentation 37, 39, 156,
158
EXT_DIRECTIVES configuration parameter 31,
177
EXTEND function 126

using in expression 300
with DATE and DATETIME values 297

EXTEND role 511
Extended data types 75, 129, 129, 217
Extensibility, description of 228
Extensible Markup Language (XML) 91
Extension checking (DBANSIWARN) 153
Extents, changing size 9
External database 63, 396
External directives for query optimization 177
External routines 52, 511
External tables

sysextcols data 34
sysextdfiles data 35
sysexternal data 35
systables data 65

External view 63
extspace 14

F
FALSE setting

BOOLEAN value 88
Farsi locales 90
FET_BUF_SIZE environment variable 174
Fetch buffer 174
Fetch buffer size 174
FETCH statement 203, 413

ABSOLUTE keyword 413
description of 412
sequential 413
with sequential cursor 415

Field delimiter
DBDELIMITER 159
Statements of SQL

LOAD 159
UNLOAD 159

Utilities
dbexport 159

Field of a ROW data type 132
Field projection 284
Field qualifier

DATETIME values 93
EXTEND function 126
INTERVAL values 101

Field, definition of 283
Fields of a ROW data type 132
File extensions

.a 179

.cfg 189

544

.cmd 147

.ec 149

.ecp 149

.iem 161

.jar 198

.rc 141, 145, 174, 175

.so 179

.sql 77, 163, 163, 172

.std 201, 212
Files

environment configuration files 144
installation directory 192
permission settings 141
shell 142
temporary 166, 167, 209
temporary for SE 167
termcap, terminfo 195, 213, 213

Files, compared to database 220
FILETOBLOB function 87
FILETOCLOB function 91
Filtering mode 47, 72, 385
Finalization function 13
FIRST clause

description of 259
using 260
with ORDER BY clause 260

Fixed point decimal 97, 105, 162
Fixed-length opaque data types 23
Fixed-length UDT 75
FLOAT data type

built-in casts 135, 136
coltype code 23
defined 99
display format 160, 162

Floating-point decimal 96, 99, 114, 160
FLUSH statement

count of rows inserted 428
rollback 428
writing rows to buffer 427

FOR UPDATE keywords
conflicts with ORDER BY 425
not needed in ANSI-compliant
database 432
specific columns 432

FOREACH statement 476
Foreign key 382
Formatting

DATE values with DBDATE 157
DATE values with GL_DATE 167
DATETIME values with DBTIME 167
DATETIME values with GL_DATETIME 167
DATETIME values with USE_DTENV 167
DECIMAL(p) values with DBFLTMASK 160
FLOAT values with DBFLTMASK 160
MONEY values with DBMONEY 162
SMALLFLOAT values with DBFLTMASK 160

Formatting mask
with DBDATE 157
with DBFLTMASK 160
with DBMONEY 162
with DBTIME 167
with GL_DATE 167
with GL_DATETIME 167
with USE_DTENV 167

FRACTION keyword
DATETIME qualifier 93

FRAGMENT BY clause 166
Fragment-level statistics 37
Fragmentation

distribution strategy 39
encrypted distribution 37

expression 37, 39, 156, 158
fragment statistics 37
list 39
PDQPRIORITY environment variable 205
PSORT_NPROCS environment variable 210
round robin 37, 39
setting priority levels for PDQ 204
sysfragauth data 36
sysfragdist data 37
sysfragments data 39

FREE statement, freeing prepared
statements 420
FROM clause

subqueries in 338
FROM keyword 9, 20
FROM keyword, alias names 277
Function keys 195
Functional index 41, 131, 172
Functions

aggregate 293
aggregates of arithmetic expressions 296
conversion 301
DATE 301
date-oriented 297
DBINFO 313
DECODE 314
for BLOB columns 87
for CLOB columns 91
for MULTISET columns 106
in SELECT statements 292
INITCAP 306
LOWER 305
LPAD 309
name confusion in SPL routine 472
NVL 316
REPLACE 307
RPAD 310
smart large object 304
string manipulation 305
SUBSTR 309
SUBSTRING 308
support for complex types 129
time 297
TO_CHAR 301
TO_DATE 302
UPPER 306

Functions, data encryption 318
fwritable gcc option 187

G
gcc compiler 187
Generic B-trees 41
GET DIAGNOSTICS statement 34, 407
getenv utility 141
GETHINT function 318
GL_COLLATE table 65
GL_CTYPE table 65
GL_DATE environment variable 92, 93, 156,
157
GL_DATETIME environment variable 93, 156
Global network buffer pool 180
Global variable

declaring 472
description of 472

GLS environment variables 145
GNU C compiler 187
GRANT statement 56, 64
GRANT statement, in embedded SQL 421, 421
GRANT USAGE ON LANGUAGE statement 511
Granularity, of locks 436
Graphic characters 195

Greater than or equal to (>=) relational
operator 249
GROUP BY clause 89, 115, 166

description of 320
GROUP BY keywords

column number with 321
description of 320

GROUP BY TEXT 115
Group informix 161

H
Hash-join 202
hash() support function 129
Hashed columns 39
Hashing parameters 63
HAVING clause, description of 320
HAVING keyword 323
HCL
Informix
ESQL/C
 149, 157, 167, 179, 202
Heap size 199
Hebrew locales 90
HEX function, using in expression 313
Hexadecimal digits 159
hierarchy

table and row 289
HIGH INTEG keywords

ALTER TABLE statement 122
CREATE TABLE statement 122

HIGH keyword
in UPDATE STATISTICS statement 37
PDQPRIORITY 204
UPDATE STATISTICS 9, 31

High-Performance Loader 205
Histogram 31
Hold cursor, definition of 451
Host language 79
Host variable 87, 89, 115, 131, 403

delimiter for 402
description of 402
fetching data into 412
in DELETE statement 423
in INSERT statement 427
in UPDATE statement 431
in WHERE clause 407
INTO keyword sets 407
null indicator 409
restrictions in prepared statement 418
truncation signalled 405

HOUR keyword
DATETIME qualifier 93
INTERVAL qualifier 101

HP-UX operating system 211
HTML (Hypertext Markup Language) 91
Hyphen

DATETIME delimiter 93
INTERVAL delimiter 101

I
I/O overhead 210
IBM
Informix
Storage Manager (ISM)
 198
IDSSECURITYLABEL data type

definition 100
IF statement, in SPL 478
IFMXMONGOAUTH environment variable 175
IFX_DEF_TABLE_LOCKMODE environment
variable 175, 440
IFX_DIRECTIVES environment variable 176

545

IFX_EXTDIRECTIVES environment variable 31,
177
IFX_EXTEND_ROLE configuration
parameter 511
IFX_LARGE_PAGES environment variable 178
IFX_LOB_XFERSIZE environment variable 179
IFX_LONGID environment variable 179
IFX_NETBUF_PVTPOOL_SIZE environment
variable 180
IFX_NETBUF_SIZE environment variable 180
IFX_NO_SECURITY_CHECK environment
variable 181
IFX_NO_TIMELIMIT_WARNING environment
variable 181
IFX_NODBPROC environment variable 182
IFX_NOT_STRICT_THOUS_SEP environment
variable 182
IFX_ONTAPE_FILE_PREFIX environment
variable 182
IFX_PAD_VARCHAR environment variable 182
IFX_SMX_TIMEOUT environment variable 183,
184
IFX_SMX_TIMEOUT_RETRY environment
variable 184
IFX_UNLOAD_EILSEQ_MODE environment
variable 184
IFX_UPDDESC environment variable 185
IFX_XASTDCOMPLIANCE_XAEND
environment variable 185
IFX_XFER_SHMBASE environment
variable 186
imcadmin administrative tool 186
IMCADMIN environment variable 186
IMCCONFIG environment variable 187
IMCSERVER environment variable 187
IMPEXP data type 137
IMPEXPBIN data type 137
Implicit cast 20, 137
Implicit connection 193
Implicit temporary tables 166
import_binary() support function 129
import() support function 129
IN clause 166
IN keyword 89, 106, 111, 113, 139

to form an intersection 355
using in WHERE clause 247

IN relational operator 339
in SET VIOLATIONS TABLE statement

MAX ROWS keywords 388
USING keyword 388

IN TABLE keywords
CREATE INDEX statement 438

IN TABLE storage option 172
Index

attached 39, 156, 172, 210
B-tree 41, 172
clustered 41, 43
composite 41, 41
default values for attached 210
descending 41
detached 172
distribution scheme 172
forest of trees 172
fragmented 37, 39
functional 41, 131, 172
nonfragmented 172, 172
of data types 81
of system catalog tables 10
R-Tree 172
sysindexes data 41
sysindices data 43

sysobjstate data 47
threads for sorting 210
unique 28, 41, 111, 112

Index key structure 43
Index privilege 64
Indicator variable, definition of 409
Indirect typing 111, 112
Industry standards, compliance with 79
INF_ROLE_SEP environment variable 195, 195
Information Schema views

accessing 77
columns 78
defined 76, 76
generating 77
server_info 80
sql_languages 79
tables 78

Informational messages 34
Informix
database, object-relational databases
 228
Informix
extension checking (DBANSIWARN)
 153
informix owner name 9, 20, 31, 41, 43, 65, 161,
195
informix.rc file 141, 145, 175
INFORMIXC environment variable 187
INFORMIXCMCONUNITNAME environment
variable 188
INFORMIXCMNAME environment variable 188
INFORMIXCONCSMCFG environment
variable 189
INFORMIXCONRETRY environment
variable 189
INFORMIXCONTIME environment variable 190
INFORMIXCPPMAP environment variable 192
INFORMIXDIR environment variable 192
INFORMIXOPCACHE environment variable 192
INFORMIXSERVER environment variable 193
INFORMIXSHMBASE environment variable 193
INFORMIXSTACKSIZE environment
variable 195
INFORMIXTERM environment variable 195
Inheritance hierarchy 46, 110
INITCAP function, as string manipulation
function 306
Initialization function 13, 57
Input support function 104
input() support function 129
Insert cursor

definition of 427
using 429

Insert MERGE operations 364
Insert privilege 36, 64, 200
INSERT statements 68, 72, 93, 130, 152, 157

and end of data 430
collection columns 368
constant data with 429
count of rows inserted 428
description 363
embedded 427
inserting

collections 368
into supertables 368
multiple rows 370

lock mode 448
named row type 366
null values in collection 369
number of rows 404
SELECT restrictions 370

SELECT statement in 370
selected columns 365
serial values 365
smart large objects in 369
unnamed row type 367
VALUES clause 363
with row-type columns 366
with SELECT statement 370

Insert trigger 70
Inserting rows of constant data 429
Installation directory 192
INSTEAD OF trigger 70, 532
INT data type 100
INT8 data type

built-in casts 135, 136
coltype code 23
defined 100
using with SERIAL8 87

INTEG keyword 122
INTEGER data type

built-in casts 135, 136
coltype code 23
defined 100
length (syscolumns) 27

Intensity attributes 195
Intent lock 448
INTERACTIVE_DESKTOP_OFF environment
variable 196
Internationalized trace messages 69
Interprocess communications (IPC) 193
Intersection

definition of 355
set operation 354

INTERVAL data type
coltype code 23
defined 101
field delimiters 101
in expressions 123, 123, 128, 129
in relational expressions 247
length (syscolumns) 27

INTO clause 413
INTO keyword

choice of location 413
in FETCH statement 413
mismatch signalled in SQLWARN 405
restrictions in INSERT 370
restrictions in prepared statement 418
retrieving multiple rows 411
retrieving single rows 407

INTO TEMP keywords, description of 279
ipcshm protocol 193
IPCSTR connection 400
IS NOT NULL keywords 252
IS NULL keywords 252
IS NULL operator 89
ISAM error code 404
ISM_COMPRESSION environment variable 197
ISM_DEBUG_FILE environment variable 197
ISM_DEBUG_LEVEL environment variable 197
ISM_ENCRYPTION environment variable 197
ISM_MAXLOGSIZE environment variable 198
ISM_MAXLOGVERS environment variable 198
ISO 8859-1 code set 80
Isolation level 80, 202

ANSI 444, 446
Cursor Stability (
Informix
)
 445
description of 442
dirty read 444

546

Informix
 444
read uncommitted 444
repeatable read 446

ISOLATION_LOCKS configuration
parameter 445
ITEM keyword, collection subquery 346, 347
Iterator functions 13

J
Japanese eras 167
Jar management procedures 198
JAR_TEMP_PATH environment variable 198
Java virtual machine (JVM) 148, 198, 199, 199
JAVA_COMPILER environment variable 199
JIT compiler 199
Join

ANSI outer-join syntax 329
associative 274
composite 268
condition 268
creating 270
cross 271
definition of 236, 268
equi-join 271
in MERGE statement 362, 364, 371
Informix
outer join syntax
 329
left outer 330
multiple-table join 275
natural 274
nested simple 332
on derived tables 330
outer 328
right outer 331
self-join 325
simple 268

Join methods 202
Join operations 9, 166
JVM_MAX_HEAP_SIZE environment
variable 199

K
KEEP ACCESS TIME keywords

ALTER TABLE statement 122
CREATE TABLE statement 122

Key
primary 28, 56, 56, 72, 217

Key scan 14
Keyboard I/O

INFORMIXTERM setting 195
TERM setting 212
TERMCAP setting 213
TERMINFO setting 213

keyword MATCHES 115
Keywords

in a subquery 339
in a WHERE clause 247

Korn shell 141, 142

L
Label 264, 353
Label-based access control (LBAC) 100, 119
Language

C 57, 149, 187
C++ 192
CLIENT_LOCALE setting 157
DBLANG setting 161
Extensible Markup Language (XML) 91
Hypertext Markup Language (HTML) 91
Informix

ESQL/C
 122, 131, 214
Java 148, 198, 199
sql_languages information schema view 79
Stored Procedure Language (SPL) 131,
156, 158
syslangauth data 46
sysroutinelangs data 57

Large pages for virtual memory segments 178
Large-object data type

defined 121
listed 118

LD_LIBRARY_PATH environment variable 199
Leaf pages 39
Left outer join 330
LENGTH function

on TEXT or BYTE strings 311
on VARCHAR 311
use in expression 311

Less than or equal to (>=) relational
operator 249
LET statement 473, 473
libos.a library 179
LIBPATH environment variable 200
LIKE 115
LIKE clause

in SPL function 470
LIKE keyword

description of 254
using in WHERE clause 247

LIKE keyword of SPL 111, 112
LIKE operator 89, 139
Linearized code 69
List

of data types 81
of system catalog tables 10

LIST data type
coltype code 23

LIST data type, defined 103
LO_handles() support function 129
LOAD statement 87, 89, 115, 159
Local variable, description of 466
Locales

collation order 65
multibyte 91
of trace messages 69
right-to-left 90

Localized collation 119
LOCK TABLE statement, locking a table
explicitly 437
Lock-table overflow 175
Locking

and concurrency 394
behavior of different lock types 448
deadlock 450
description of 435
end of transaction 451
integrity 434
intent locks 448
lock duration 441
number of rows to lock 445
row and key locks 438
scope of lock 436
setting lock mode 449
time limit 450
types of locks 435

coarse index lock 441
database lock 436
exclusive 435
page lock 438, 439
promotable 435

promotable lock 442
row and key locks 438
shared 435
smart-large-object locks 441
table lock 437

update cursor 442
update lock 447
WAIT keyword 449
with DELETE 424

LOCKMODE keyword 175
LOCOPY function 87, 91
LOG keyword

ALTER TABLE statement 122
CREATE TABLE statement 122

Logging mode 21
Logical characters 119
Logical log

and backups 393
description of 392

Logical operator
= (equals) 253
AND 253
NOT 253
OR 253

Long identifiers
client version 179
IFX_LONGID setting 179
Information Schema views 77

Loop, exiting with RAISE exception 521
LOTOFILE function 87, 91
LOW keyword

PDQPRIORITY 204
UPDATE STATISTICS 31

LOWER function, as string manipulation
function 305
Lowercase mode codes 52
Lowercase privilege codes 4, 22, 64
LPAD function, as string manipulation
function 309
LVARCHAR data type

casting opaque types 137
coltype code (for client) 23
defined 104

M
Machine notes 195
Machine-independent integer types 27
Magnetic storage media 19
Mantissa precision 78, 97
Map file for C++ programs 192
MATCHES 115
MATCHES keyword

using in WHERE clause 247
MATCHES operator 89, 139
MATCHES relational operator

in WHERE clause 254
MAX function, as aggregate function 294
MaxConnect 186, 187
MEDIUM keyword 9, 28, 31
MEDIUM keyword, in UPDATE STATISTICS
statement 37
Membership operator 139
Memory cache, for staging blobspace 192
MERGE statement 72

using Insert join 364
using Update join 371

MERGE statements
using Delete join 362

Message file
specifying subdirectory with DBLANG 161

Messages

547

chaining 202
error in syserrors 34
optimized transfers 202
reducing requests 203
trace message template 69
warning in syserrors 34

mi_collection_card() function 103, 106, 113
mi_db_error_raise() function 34
Microsoft C compiler 187
MIN function, as aggregate function 294
MINUTE keyword

DATETIME qualifier 93
INTERVAL qualifier 101

MITRACE_OFF configuration parameter 68, 69
mkdir utility 161
MODE ANSI keywords, specifying
transactions 393
MODERATE INTEG keywords

ALTER TABLE statement 122
CREATE TABLE statement 122

Modifiers
CLASS 52
COSTFUNC 52
HANDLESNULLS 52
INTERNAL 52
NEGATOR 52
NOT VARIANT 52
PARALLELIZABLE 52
SELCONST 52
STACK 52
VARIANT 52

MODIFY NEXT SIZE keywords 9
MONEY data type

built-in casts 136
coltype code 23
defined 105
display format 162
in INSERT statement 364
international money formats 105
length (syscolumns) 27

MONTH function
using, TIME function

MONTH 298
MONTH function, as time function 297
MONTH keyword

DATETIME qualifier 93
INTERVAL qualifier 101

Multibyte characters
CLOB data type 92

Multiple-table join 275
Multiple-Table SELECTs 268
MULTISET data type

coltype code 23
constructor 130
defined 106

MULTISET keyword
collection subquery 346

Multithreaded application, definition of 401

N
N setting

sysroleauth.is_grantable 56
Named ROW data type

casting permitted 138
defined 108
defining 108
equivalence 108
inheritance 46, 108
typed tables 108

Named row type, in VALUES clause 366
Namer ROW data type

coltype code 23
National Language Support (NLS) 119
Natural join 274
NCHAR data type

collation order 107
coltype code 23
defined 107
multibyte characters 107

NCHAR data type, querying on 233
Negator functions 52
Nested dot notation 131
Nested ordering, in SELECT 241
Nested-loop join 202
Network buffers 180
Network environment variable, DBPATH 163
NFS directory 167
NLS data types

in system catalog tables 10
NO KEEP ACCESS TIME keywords

ALTER TABLE statement 122
CREATE TABLE statement 122

no setting of NODEFDAC 200
NODEFDAC environment variable 200
NODEFDAC environment variable, effect on
privileges of public 512
NOLOG keyword

ALTER TABLE statement 122
CREATE TABLE statement 122

Non-default database locales 10
NONE setting

JAVA_COMPILER 199
Nonfragmented index 172
Nonprintable characters

CHAR data type 91
TEXT data type 116
VARCHAR data type 117

NOT BETWEEN keywords in WHERE
clause 250
Not equal (!=) relational operator 249
NOT EXISTS keywords 356
NOT IN keywords 356
NOT logical operator 253
NOT NULL 115
NOT NULL constraint

collection elements 103, 106, 113, 130
syscoldepend data 23
sysconstraints data 28

NOT NULL keywords 89, 103
NOT operator 139
NOT VARIANT routine 52
NULL data type

coltype code 23
NULL value

allowed or not allowed 13, 23
BOOLEAN literal 88
BYTE data type 89

Null values
detecting in ESQL 409
testing for 252
with logical operator 253

Numeric data types
casting between 135
casting to character types 136
listed 118

NVARCHAR data type
collation order 107
coltype code 23
defined 107
multibyte characters 107

NVARCHAR data type, querying on 233
NVL function 316

O
Object mode

description of 384
disabled 385
enabled 385
filtering 385

Object mode of database objects 47
Object-relational database, description of 228
Object-relational schema 217
ODBC driver 199, 211
OFF setting

IFX_DIRECTIVES 176, 177
PDQPRIORITY 204

ON DELETE CASCADE option 383
ON EXCEPTION statement

scope of control 519
trapping errors 518
user-generated errors 520

ON setting
IFX_DIRECTIVES 176, 177

ONCONFIG environment variable 201
onconfig.std file 212
oninit command 175
ONINIT_STDOUT environment variable 201
ONLINE keyword

CREATE INDEX statement 438
DROP INDEX statement 438

Online transaction processing (OLTP) 39
onload utility 87, 89, 115, 393
onpload utility 206
onsecurity utility 181
onstat utility 140
onunload utility 393
Opaque data types

cast matrix 138
comparing 137
storage 104
sysxtddesc data 74
sysxtdtypes data 75

OPAQUE data types
defined 108

Opaque-type variable 469
OPCACHEMAX configuration parameter 192
OPEN statement 203, 412
Opening a cursor 414
Operator class

sysams data 14
sysindices data 43
sysopclasses data 48

operator LIKE 115
Operator precedence 139
operator TEXT 115
OPT_GOAL configuration parameter 203
OPT_GOAL environment variable 203
OPTCOMPIND configuration parameter 202
OPTCOMPIND environment variable 202
Optical cluster

INFORMIXOPCACHE setting 192
sysblobs.type column 19
sysopclstr data 48

Optimizer
setting IFX_DIRECTIVES 176
setting IFX_EXTDIRECTIVES 177
setting OPT_GOAL 203
setting OPTCOMPIND 202
setting OPTOFC 203

Optimizer directives
sysdirectives data 31

OPTMSG environment variable 202
OPTOFC environment variable 203

548

OR logical operator 253
OR operator 139
OR relational operator 251
ORDER 115
ORDER BY clause 89, 166
ORDER BY keywords

ascending order 240
DESC keyword 240, 242
display label with 267
multiple columns 241
relation to GROUP BY 321
restrictions in INSERT 370
restrictions with FOR UPDATE 425
select columns by number 242
sorting rows 239

Ordinal positions 103
Outer-join syntax

ANSI 329
Informix
 329

Output support function 104
output() support function 129
Overflow error 97
Owner routines 52, 200

P
Page footers in sbspaces 122
Page headers in sbspaces 122
PAGE lock mode 65, 175
Page locking 438
Parallel distributed queries, setting with
PDQPRIORITY 204
Parallel sorting, setting with
PSORT_NPROCS 209
Partial characters 90
Partial-column index 43
Parts explosion 416
PATH environment variable 204, 204
Pathname

Configuration file
for terminal I/O 213

for C compiler 187, 187
for C++ map file 192
for concsm.cfg file 189
for connectivity information 194
for database server 163
for dynamic-link libraries 200, 211
for environment-configuration file 144
for executable programs 204
for installation 192
for message files 161, 161
for parallel sorting 209
for remote shell 165
for smart-large-object handles 206
for temporary .jar files 198
for termcap file 213
for terminfo directory 213
separator symbols 204

PDQ
OPTCOMPIND environment variable 202
PDQPRIORITY environment variable 204

Percentage (%) symbol 167
Performance

effect of concurrency 434
increasing with stored routines 454

Period
DATE delimiter 157
DATETIME delimiter 93
INTERVAL delimiter 101

Permissions 141, 161
PLCONFIG environment variable 205

plconfig file 205
PLOAD_LO_PATH environment variable 206
PLOAD_SHMBASE environment variable 206
PostScript 91
Precedence rules

for casts 137
for lock mode 175
for SQL operators 139
for UNIX environment variables 145
for Windows environment variables 148

Precision
of currency values 105
of numbers 78, 96, 99, 100, 100, 114
of time values 93, 101, 124, 128

PREPARE statement 65
description of 418
error return in SQLERRD 404
multiple SQL statements 418

Prepared statement 65
Primary access method 14, 63
Primary key 28, 56, 72, 111, 112, 217
Primary key constraint, definition of 382
Primary key, definition of 381
Primary thread 195
printenv utility 144
Printing with DBPRINT 165
Private environment-configuration file 144, 174
Private network buffer pool 180, 180
Private synonym 65
Privilege

default table privileges 200
on columns (syscolauth table) 22
on procedures and functions (sysprocauth
table) 50
on table fragments (sysfragauth table) 36
on tables (systabauth table) 64
on the database (sysusers table) 71
on UDTs and named row types
(sysxtdtypeauth) 74

Privileges
database-level 378
displaying 379
needed to modify data 378
on a database 378
overview 223
table-level 379

Procedure-type variables 470
Program variables

SPL 402
Projection, definition of 235
Projects, description of 228
Promotable lock 435, 442
Protected routines 52
Protected rows 100, 119
Pseudo-machine code (p-code) 51
PSM_ACT_LOG environment variable 206
PSM_CATALOG_PATH environment
variable 207
PSM_DBS_POOL environment variable 207
PSM_DEBUG environment variable 207
PSM_DEBUG_LOG environment variable 208
PSM_LOG_POOL environment variable 208
PSORT_DBTEMP environment variable 209
PSORT_NPROCS environment variable 209
Public synonym 63, 65
public user name 77
Purpose functions 14
PUT statement

constant data with 429
count of rows inserted 428
insert data 427

sends returned data to buffer 427
status code 428

putenv utility 141

Q
Qualifier field

DATETIME 93
EXTEND 127
INTERVAL 101
UNITS 127

Qualifier, existential 342
Query

audit 342
compound 350
cyclic 384
self-referencing 384
stated in terms of data model 222

Query optimizer
directives 176, 177
sysdistrib data 31
sysprocplan data 55
updating distribution data 9

Quoted string
DATE and DATETIME literals 127
DELIMIDENT setting 172
INTERVAL literals 101
invalid with BYTE 89
LVARCHAR data type 104

Quoted string invalid with TEXT 115
Quoted string, as constant expression 364

R
R-tree index 172, 210
RAISE EXCEPTION statement 518
RANGE function, as aggregate function 294
Re-entrant trigger, description of 532
Read committed 80
Read Committed isolation level (ANSI) 444
Read uncommitted 80
Read Uncommitted isolation level (ANSI) 444
Recursive relationship, example of 416
recv() support function 129
REFERENCES keyword

in CREATE FUNCTION statement 456
in CREATE PROCEDURE statement 456

REFERENCES keyword, in SPL function 467
References privilege 22, 64
Referential constraint 28, 56, 72
Referential constraint, definition of 382
Referential integrity, definition of 382
Relational database, description of 226
Relational model

join 236
projection 234
selection 234

Relational operation 234
Relational operators 91, 139

BETWEEN 249
EXISTS 339
IN 339
in a WHERE clause 247
LIKE 254
MATCHES 254
NULL 252
OR 251

Remote database 396
Remote database server 63, 174
Remote shell 165
Remote tape devices 165
RENAME SEQUENCE statement 215
Repeatable read 202
Repeatable read isolation level 446

549

REPLACE function, as string manipulation
function 307
Replica identifier 39
Replication

of data 394
transparency 394

RESIDENT configuration parameter 178
Resource contention 204
Resource Grant Manager (RGM) 39
Resource privilege 9

Role
sysusers data 71

System catalog
authorization identifiers 71

Return types, in SPL function 458
REVOKE statement 64
REVOKE statement, in embedded SQL 421,
421
Right outer join 331
Right-to-left locales 90
Role

default role 71
INF_ROLE_SEP setting 195
sysroleauth data 56

Role separation 195
Roles

default 223
definition 223

ROLLBACK WORK statement
closes cursors 451
releases locks 441, 451
setting SQLCODE 424

Rolling-window fragmentation 39
Round-robin fragmentation 37, 39
Routines

DataBlade API routine 68
DATETIME formatting 167
identifier 52
owner 52
privileges 50
protected 52
restricted 52
Stored Procedure Language (SPL) 131
syserrors data 34
syslangauth data 46
sysprocauth data 50
sysprocbody data 51
sysprocedures data 52
sysprocplan data 55
sysroutinelangs data 57
systraceclasses data 68
systracemsgs data 69
trigger 52

ROW data types 132
casting permitted 138
dot notation with 284
equivalence 108
field projection 284
field projections in SELECT 285
field, definition of 283
fields 17, 132
in DELETE statement 361
inheritance 46, 108
inserting values 111
named 108, 132
selecting columns from 283
selecting data from 281
sysattrtypes data 17
sysxtddesc data 74
sysxtdtypes data 74, 75
unnamed 110, 132

updating 374
using asterisk notation with SELECT 285

ROW lock mode 65, 175
Row type columns

definition of 283
Null values 375

Row-type data, selecting columns of 283
Row-type variables, delcaring 468
ROWID, using to locate internal row
numbers 268
ROWIDS 14
Rows

checking rows processed in SPL
routines 521
definition of 227, 233
finding number of rows processed 313
in relational model 227
inserting 363
locking 438
number of rows returned 259
removing 359
updating 371

RPAD function, as string manipulation
function 310
RTNPARAMTYPES data type 52
RTREE_COST_ADJUST_VALUE environment
variable 210
Runtime

warnings (DBANSIWARN) 153

S
Sample size 31
Sampling data 37
SAVE EXTERNAL DIRECTIVES statement 177
SBSPACENAME configuration parameter 31,
37
sbspaces

defined 91, 122
name 172
sysams data 14
syscolattribs data 21
systabamdata data 63

Scale of numbers 78, 97, 160
Scan cost 14
Schema Tools 145
Screens, example 535
Scroll cursors

active set 415
definition of 413

SCROLL keyword, using in DECLARE 413
SECOND keyword

DATETIME qualifier 93
FRACTION keyword

INTERVAL qualifier 101
INTERVAL qualifier 101

Secondary-access methods 14, 28, 43, 48, 108
Security policy 100
Select cursor

opening 412
using 411

SELECT INTO TEMP statement 166
Select list

display label 264
expressions in 262
functions in 292, 313
labels in 353
selecting all columns 238
selecting specific columns 242
specifying a substring in 246

Select privilege 22, 64, 77, 200
SELECT statements 9, 31

accessing collections 281, 286
active set 247, 407
advanced 320
aggregate functions in 293, 301
alias names 277
ALL keyword 339
and end-of-data return code 430
ANY keyword 339
basic concepts 233
collection expressions 345
collection subquery 346
collection-derived table 348
compound query 350
cursor for 411, 411
date-oriented functions in 297
description of 232
display label 264
DISTINCT keyword 242
embedded 407, 409
executing triggered actions 530
EXISTS keyword 342, 342
FIRST clause 259
for joined tables 279
for single tables 238, 313
forms of 233
functions 292, 313
GROUP BY clause 321
HAVING clause 323
in UPDATE statement 372, 372
INTO clause with ESQL 407
INTO TEMP clause 279
isolation level 442
join 270
multiple-table 268
natural join 274
ORDER BY clause 239
outer join 328
select list 234
selecting a row type 281
selecting a substring 246
selecting expressions 262
selection list 238
self-join 325
set operations 350
simple 232
single-table 238
singleton 247, 407
smart-large-object functions in 304
stand-alone 530
subquery 335
UNION operator 350
using

for join 236
for projection 235
for selection 234

using functions 292
Select trigger, description of 529
SELECT triggers 70
Select, description of 228
Selection, description of 234
Selectivity constant 52, 52
Self-join 4, 325

assigning column names with INTO
TEMP 325
description of 325

Self-referencing query 325, 384
Semantic integrity 381
send() support function 129
SENDRECV data type 137
Sequence

definition of 228

550

syssequences data 61
syssynonyms data 62
syssyntable data 63
systabauth data 64
systables data 65

Sequential cursor, definition of 413
Sequential integers

am_id code 14
classid code 68
constrid code 28
extended_id code 75
langid code 57
msgid code 69
opclassid code 48
planid code 55
procid code 52, 52
seqid code 61
SERIAL data type 111
SERIAL8 data type 112
tabid code 4, 61, 65

SERIAL data type
coltype code 23
defined 111
generated number in SQLERRD 404
inserting a starting value 365
inserting values 111
last SERIAL value inserted 313
length (syscolumns) 27
resetting values 111

SERIAL8 data type
assigning a starting value 113
coltype code 23
defined 112
inserting values 113
last SERIAL8 value inserted 313
length (syscolumns) 27
resetting values 113
using with INT8 87

Serializable transactions 80
server_info Information Schema view 76
Session ID, returned by DBINFO function 313
SET clause, in UPDATE statement 373
SET data type

coltype code 23
SET data type, defined 113
SET Database Object Mode statement 388
SET ENVIRONMENT IFX_AUTO_REPREPARE
statement 65
SET ENVIRONMENT statement 141, 145, 202
Set intersection 355, 529
SET ISOLATION statement

and SET TRANSACTION 443, 443
use of 442

SET keyword, in MERGE statement 371
SET keyword, in UPDATE statement 372
SET LOCK MODE statement, description
of 449
Set operation

difference 356
intersection 354
union 350
use of 350

SET OPTIMIZATION statement 203, 203
SET PDQPRIORITY statement 204
SET SESSION AUTHORIZATION statement 52
SET STMT_CACHE statement 212, 212
SET TRANSACTION statement

and SET ISOLATION 443
use of 442

set utility 146
setenv utility 143

Setnet32 148
Setnet32 utility 145
Setting environment variables

in UNIX 141
in Windows 145

SGML (Standard Graphic Markup
Language) 91
Shared class libraries 228
Shared environment-configuration file 144
Shared libraries 179
Shared lock 435
Shared memory

INFORMIXSHMBASE 193
PLOAD_SHMBASE 206

Shell
remote 165
search path 204
setting environment variables in a file 142
specifying with DBREMOTECMD 165

SHLIB_PATH environment variable 211
simple large object

defined 89
Simple large objects

defined 122
location (sysblobs) 19

Simple large objects, SPL variable 467
Single-precision floating-point number 108,
114
Singleton SELECT statement 247, 407
SITENAME function, in INSERT statement 364
SITENAME function, in SELECT statement 313
SMALLFLOAT data type

built-in casts 135, 136
coltype code 23
defined 114
display format 160, 162

SMALLINT data type
built-in casts 135, 136
coltype code 23
defined 115
length (syscolumns) 27

Smart large objects
defined 122
functions for copying 304
importing and exporting 304, 369
in an UPDATE statement 377
SPL variables 467
syscolattribs data 21
using SQL functions

in a SELECT statement 304
in an INSERT statement 369

Smart-large-object handles 206
Solaris operating system 178
SOME keyword, beginning a subquery 339
SOME operator 139
Sort-merge join 202
Sorting

DBSPACETEMP environment variable 166
nested 241
PSORT_DBTEMP environment variable 209
PSORT_NPROCS environment variable 209
with ORDER BY 240

Space
DATETIME delimiter 93
INTERVAL delimiter 101

Spatial queries 210
Special character, protecting 258
Specific name, for SPL routine 456
SPL

assigning values to variables 473, 473, 475
FOREACH loop 476

LET statement 473
parameter list 456
program variable 402
relation to SQL 453, 453
return clause 458
statement block 475
tracing triggered actions 533
using cursors 476
WITH LISTING IN clause 461

SPL function
CALL statement 507
collection query 493
dynamic routine-name specification 509
large object variables 467
variant vs. nonvariant 460
WITH clause 460

SPL routines 52, 131, 156, 158
adding comments to 461
as triggered action 528
collection data types 487
comments 462
compiler messages 515
CONTINUE statement 482
debugging 516
definition of 453
dot notation 486
dropping 464
dynamic routine-name specification 509
example of 463
exceptions 518, 521
EXECUTE PROCEDURE 528
executing 505
EXIT statement 482
exiting a loop 482
finding errors 515
FOR loop 481
IF..ELIF..ELSE structure 478
in an embedded language 464
in SELECT statements 316
introduction to 453
name confusion with SQL functions 471
passing data 528
privileges 510
return types 458
returning values 483
row-type data 486
specific name 456
SQL expressions 475
syntax error 515
system catalog entries 516
text of 516
TRACE statement 533
updating nontriggering columns 529
uses 454
variables, scope of 466
WHILE loop 481
writing 454

SPL variables 131
SQL

application languages 401
Application Programming Interfaces 401
compliance of statements with ANSI
standard 230
cursor 411
description of 229
difference between
Informix
syntax and ANSI standard
 230
dynamic statements 402
error handling 409

551

history 230
Informix
SQL and ANSI SQL
 230
interactive use 230
standardization 230
static embedding 401

SQL (Structured Query Language) 153
SQL character set 172
SQL Communications Area 153

altered by end of transaction 424
description of 403
inserting rows 428

SQL statement cache 452
sql_languages Information Schema view 76
SQL_LOGICAL_CHAR configuration
parameter 65, 65, 119
SQLCODE

end of data 412
negative values 410

SQLCODE field
after opening cursor 412
and FLUSH operation 428
description of 403
end of data on SELECT only 430
end of data signalled 409
set by DELETE statement 423
set by PUT statement 428

SQLERRD array
count of deleted rows 423
count of inserted rows 428
count of rows 430
description of 404
syntax of naming 403

SQLERRM character string 406
sqlhosts file 186, 193, 194, 400
SQLHOSTS subkey 194
SQLSTATE values 34, 407
SQLSTATE variable

in non-ANSI-compliant databases 409
using with a cursor 412

SQLSTATE, problem values 410
sqltypes.h file 23
SQLWARN array 153

description of 405
syntax of naming 403
with PREPARE 418

SRV_FET_BUF_SIZE environment variable 211
Stack size 52, 195
STACKSIZE configuration parameter 195
Staging-area blobspace 192
Standard deviation, aggregate function 295
Standard Graphic Markup Language
(SGML) 91
START DATABASE statement 163
START VIOLATIONS TABLE 388
START VIOLATIONS TABLE statement 72
STAT data type 31
STATCHANGE configuration parameter 31, 37
STATCHANGE table attribute 31, 37
Statement block 475
Statement cache 212
Statement cache, SQL 452
Statements of SQL

ALTER INDEX 43
ALTER OPTICAL CLUSTER 48
ALTER SEQUENCE 61, 215
ALTER TABLE 9, 56, 65, 215
CLOSE 203
CONNECT 163, 163, 190, 193
CREATE ACCESS_METHOD 14

CREATE AGGREGATE 13
CREATE CAST 20, 136
CREATE DATABASE 163
CREATE DISTINCT TYPE 75, 98, 217
CREATE EXTERNAL TABLE 34, 35
CREATE FUNCTION 57, 200
CREATE IMPLICIT CAST 217
CREATE INDEX 4, 41, 43, 65, 172, 172
CREATE OPAQUE TYPE 75, 108
CREATE OPERATOR CLASS 48
CREATE OPTICAL CLUSTER 48, 48
CREATE PROCEDURE 51, 57
CREATE ROLE 56, 71
CREATE ROUTINE FROM 57
CREATE ROW TYPE 75, 108
CREATE SCHEMA AUTHORIZATION 4
CREATE SEQUENCE 61
CREATE SYNONYM 63
CREATE TABLE 29, 56, 63
CREATE TRIGGER 70
CREATE VIEW 72
CREATE XADATASOURCE 73
CREATE XADATASOURCETYPE 73
DATABASE 163
DECLARE 203
DELETE 9, 55, 72, 72
DESCRIBE 185
DROP CAST 217
DROP DATABASE 163
DROP FUNCTION 52
DROP INDEX 65
DROP OPTICAL CLUSTER 48
DROP PROCEDURE 52
DROP ROUTINE 52
DROP ROW TYPE 108
DROP SEQUENCE 215
DROP TABLE 215
DROP TYPE 98, 108
DROP VIEW 77, 215
FETCH 203
GET DIAGNOSTICS 34
GRANT 36, 56, 64, 64, 77
INSERT 72, 130, 152, 157
LOAD 89, 153, 153
MERGE 72
OPEN 203
PREPARE 65
RENAME SEQUENCE 215
RENAME TABLE 215
REVOKE 64, 71
SELECT 9, 31, 55, 166
SET ENVIRONMENT 202
SET OPTIMIZATION 203
SET PDQPRIORITY 204
SET SESSION AUTHORIZATION 52
SET STMT_CACHE 212
START DATABASE 163
START VIOLATIONS TABLE 72
UNLOAD 154
UPDATE 152
UPDATE STATISTICS 9, 43, 171
UPDATE STATISTICS FOR PROCEDURE 55
UPDATE STATISTICS FOR TABLE 28

Statements of SQL LOAD 115
Statements of SQL UPDATE 115
static option of ESQL/C 179
Static SQL 401
STATLEVEL table attribute 37
STDEV function, as aggregate function 295
STMT_CACHE configuration parameter 212
STMT_CACHE environment variable 212

STMT_CACHE keyword 212
Storage identifiers 172
Stored procedure language (SPL) 52, 131, 156
Stored routine, general programming 231
stores_demo database 215

join columns 215
Stream pipe connection 400
strings option of gcc 187
Structured Query Language (SQL) 153
Subquery

ALL keyword 339
ANY keyword 339
correlated 335, 341, 384
in DELETE statement 362
in FROM clause 338
in select list 337
in SELECT statement 335
in UPDATE statement 372

with SET clause 372
in WHERE clause 339
single-valued 340

Subscripting
in a WHERE clause 258
SPL variables 470

Subscripts 89
Subscripts ([]), 115
SUBSTR function, as string manipulation
function 309
Substring 246, 470
SUBSTRING function 9
SUBSTRING function, as string manipulation
function 308
Subtable 37, 39, 46, 219
Subtype 46, 108
SUM function, as aggregate function 296
Summary

of data types 81
of system catalog tables 10

superstores_demo database
structure of tables 217

Supertable 46, 219, 291
in a table hierarchy 289
inserting into 368
selecting from 291
using an alias 291

Supertype 46, 108
Support functions

DISTINCT data types 132
OPAQUE data types 108, 129
routine identifier 52

Symbol table 52, 52
Synonym

syssynonyms data 62
syssyntable data 63
systables data 65
USETABLENAME setting 215

sysaggregates system catalog table 13
sysams system catalog table 14
sysattrtypes system catalog table 17
sysautolocate system catalog table 18
sysblobs system catalog table 19
sysbuiltintypes table 4
syscasts system catalog table 20, 133
syschecks system catalog table 20
syscheckudrdep system catalog table 21
syscolattribs system catalog table 21
syscolauth system catalog table 22
syscoldepend system catalog table 23
syscolumns system catalog table 23
sysconstraints system catalog table 28
syscrd database 4

552

SYSDATE function, as time function 297, 364
sysdbclose

disabling with IFX_NODBPROC 182
sysdbopen

disabling with IFX_NODBPROC 182
sysdefaults system catalog table 29
sysdepend system catalog table 30
sysdirectives system catalog table 31
sysdistrib system catalog table 31
sysdomains system catalog view 33
syserrors system catalog table 34
sysextcols system catalog table 34
sysextdfiles system catalog table 35
sysexternal system catalog table 35
sysfragauth system catalog table 36
sysfragdist system catalog table 37
sysfragments system catalog table 39
sysindexes system catalog table 41
sysindexes system catalog tables 43
sysinherits system catalog table 46
syslangauth system catalog table 46
syslogmap system catalog table 47
sysmaster database 4

contrasted with system catalog tables 4
initialization 140

sysobjstate system catalog table 47
sysopclasses system catalog table 48
sysopclstr system catalog table 48
sysprocauth system catalog table 50
sysprocbody system catalog table 51
sysprocbody, system catalog table 516
sysproccolumns system catalog table 52
sysprocedures system catalog table 52
sysprocplan system catalog table 55
sysreferences system catalog table 56
sysroleauth system catalog table 56
sysroutinelangs system catalog table 57
sysseclabelauth system catalog table 57
sysseclabelcomponentelements system
catalog table 58
sysseclabelcomponents system catalog
table 58
sysseclabelnames system catalog table 59
sysseclabels system catalog table 59
syssecpolicies system catalog table 59
syssecpolicycomponents system catalog
table 60
syssecpolicyexemptions system catalog
table 60
syssequences system catalog table 61
syssurrogateauth system catalog table 61
syssynonyms system catalog table 62
syssyntable system catalog table 63
systabamdata system catalog table 63
systabauth system catalog table 64
systables system catalog table 65
System administrator (DBA) 4
System applet 146
System catalog

access methods 14, 63
access privileges 22, 36
accessing 9
altering contents 9
casts 20
columns 23
complex data types 17, 75
constraint violations 72
constraints 20, 23, 28
data distributions 31
database tables 65
default values 29

defined 3
dependencies 30
discretionary access privileges 64
drvurity policies 59
example 4
external directives 31
external tables 34, 35, 35
fragment distributions 37
fragment privileges 36
fragments 39
indexes 41, 43
inheritance 46
list of tables 10
messages 34
operator classes 48
optical clusters 48
privileges 71, 74
programming languages 46, 57
referential constraints 28, 56, 72
roles 56
routine parameters 52
routines 50, 52, 55
security label components 58
sequence objects 61
simple large objects 19
smart large objects 21
synonyms 62
text of routines 51
trace classes 68
trace messages 69
triggers 69, 70
updating 9
use by database server 4
user-defined aggregates 13
user-defined data types 74, 75
views 65, 72
XA data source types 73
XA data sources 73

System catalog tables
synonyms 63
sysaggregates 13
sysams 14
sysattrtypes 17
sysautolocate 18
sysblobs 19
syscasts 20
syschecks 20
syscheckudrdep 21
syscolattribs 21
syscolauth 22
syscoldepend 23
syscolumns 23
sysconstraints 28
sysdefaults 29
sysdepend 30
sysdirectives 31
sysdistrib 31
sysdomains 33
syserrors 34
sysextcols 34
sysextdfiles 35
sysexternal 35
sysfragauth 36
sysfragdist 37
sysfragments 39
sysindexes 41
sysindices 43
sysinherits 46
syslangauth 46
syslogmap 47
sysobjstate 47

sysopclasses 48
sysopclstr 48
sysprocauth 50
sysprocbody 51
sysproccolumns 52
sysprocedures 52
sysprocplan 55
sysreferences 56
sysroleauth 56
sysroutinelangs 57
sysseclabelauth 57
sysseclabelcomponentelements 58
sysseclabelcomponents 58
sysseclabelnames 59
sysseclabels 59
syssecpolicies 59
syssecpolicycomponents 60
syssecpolicyexemptions 60
syssequences 61
syssurrogateauth 61
syssynonyms 62
syssyntable 63
systabamdata 63
systabauth 64
systables 65
systraceclasses 68
systracemsgs 69
systrigbody 69
systriggers 70
sysusers 71
sysviews 72
sysviolations 72
sysxadatasources 73
sysxasourcetypes 73
sysxtddesc 74
sysxtdtypeauth 74
sysxtdtypes 75

System catalogs
privileges in 379
querying 379
sysprocbody 516
systabauth 379

System descriptor area 419
SYSTEM() command, on NT 196
systraceclasses system catalog table 68
systracemsgs system catalog table 69
systrigbody system catalog table 69
systriggers system catalog table 70
sysusers system catalog table 71
sysutils database 4
sysuuid database 4
sysviews system catalog table 72
sysviolations system catalog table 72
sysxadatasources system catalog table 73
sysxasourcetypes system catalog table 73
sysxtddesc system catalog table 74
sysxtdtypeauth system catalog table 74
sysxtdtypes system catalog table 75, 108, 108

T
tabid 4, 65
Table

changing a column data type 133
dependencies, in sysdepend 30
description of 227
diagnostic 72
extent size 65
fragmented 37, 39
hashing parameters 63
hierarchy 37, 39, 46, 108, 219, 289
in relational model 227

553

inheritance, sysinherits data 46
loading data

with onload utility 393
lock 437
lock mode 65, 175
nonfragmented 172
not in the current database 253
operations on a 228
separate from large object storage 121
structure in superstores_demo
database 217
synonyms in syssyntable 62
systables data 65
system catalog tables 13
temporary 166, 167
temporary in SE 167
untyped, and unnamed ROW 110
version value 65
violations 72

Table hierarchy
triggers in 529
UPDATE statements 376

Table-based fragmentation 39
Table-level privileges

PUBLIC 77
sysfragauth data 36
systabauth data 4, 64

tables Information Schema view 76
Tape management

setting DBREMOTECMD 165
TCP/IP connection 400
Temporary dbspace 166
Temporary files 167

in SE, specifying directory with
DBTEMP 167
setting DBSPACETEMP 166
setting PSORT_DBTEMP 209

Temporary tables 166
and active set of cursor 414
assigning column names 325
example 370
in SE, specifying directory with
DBTEMP 167
specifying dbspace with
DBSPACETEMP 166

TERM environment variable 212
TERMCAP environment variable 213
termcap file

setting INFORMIXTERM 195
setting TERMCAP 213

Terminal handling
setting INFORMIXTERM 195
setting TERM 212
setting TERMCAP 213
setting TERMINFO 213

terminfo directory 195, 213
TERMINFO environment variable 213
TEXT 115
TEXT argument 115
TEXT Character string TEXT 115
TEXT data type 115, 115

coltype code 23
increasing buffer size 154
length (syscolumns) 27
nonprintable characters 116
restrictions

with GROUP BY 321
setting buffer size 154
sysblobs data 19
sysfragments data 39
using LENGTH function on 311

with control characters 116
with relational expressions 247

TEXT data type IS NULL 115
TEXT data type restrictions 115
Text editor 159
thousands separator 182
Thousands separator 105
thread flag of ESQL/C 214
THREADLIB environment variable 214
Time data types

arithmetic 123
length (syscolumns) 27
listed 118

Time function
description of 297
use in SELECT 292

TIME function
DAY and CURRENT 297
WEEKDAY 299
YEAR 300

Time values
DBCENTURY setting 154
DBDATE setting 157
DBTIME setting 167
GL_DATETIME settings 167
USEOSTIME configuration parameter 93

Time-limited licenses
(IFX_NO_TIMELIMIT_WARNING) 181
Timezone

setting TZ 214
TO keyword

DATETIME qualifier 93
EXTEND function 126
INTERVAL qualifier 101

TO_CHAR function, as conversion
function 301
TO_DATE function, as conversion function 302
TODAY function, in constant expression 312,
364
TODAY operator 29
Trace class 68
Trace messages 69
TRACE statement

debugging an SPL routine 516
output 534

Trace statements 69
Transaction isolation level 80, 202
Transaction logging 21, 80

contents of log 393
description of 392

Transactions
description of 391
end of 451
example with DELETE 424
locks held to end of 442
locks released at end of 441
logging 392
use signalled in SQLWARN 405

Trigger action
definition of 524
REFERENCING clause 526

Trigger event
definition of 524
example of 524

Trigger events
recommendation against for auditing 529

Trigger routines 52, 529
Triggered action

BEFORE and AFTER 525
FOR EACH ROW 526
generating an error message 535

in relation to triggering statement 524
SELECT statements 530
statements 522
tracing 533
using 525
using SPL routines 528
WHEN condition 527

Triggers
creating 523
creation-time value 156, 158
declaring the name 524
definition of 522
in a table hierarchy 529
INSTEAD OF 532
re-entrant 532
restrictions on Select trigger execution 531
select

defining on a table hierarchy 532
Select 529
sysobjstate data 47
systrigbody data 69, 69
systriggers data 70
when to use 523

TRUE setting
BOOLEAN values 88
sysams table 14, 14, 14, 14, 14

TRUNCATE statement 359
Truncation 90
Truncation, signalled in SQLWARN 405
TYPE keyword 110
Typed table

definition of 281
inserting rows 365
selecting from 282

TZ environment variable 214

U
UDT indexes 210
Unary arithmetic operators 139
Uncommitted read 80
Under privilege 64
UNION keyword, in set operations 350
UNION operator, display labels with 353
Union set operation 350
Unique constraint 72, 111, 112
Unique index 41, 111
Unique keys 14
UNIQUE keyword, in SELECT statement 242
Unique numeric values

SERIAL data type 111
SERIAL8 data type 112

UNITS operator 92, 123, 127, 139
UNIX

BSD, default print utility 165
environment variables 140
PATH environment variable 204
System V

default print utility 165
terminfo libraries 195, 213

temporary files 209
TERM environment variable 212
TERMCAP environment variable 213
TERMINFO environment variable 213

UNLOAD statement 154, 159
Unnamed ROW data type

coltype code 23
declaring 110
defined 110
inserting values 111

Unnamed row type, in VALUES clause 367
unset utility 143

554

unsetenv utility 143
Unsetting an environment variable 143
untyped 467
Untyped table 65
Update cursor 446
Update cursor, definition of 431
UPDATE keyword 432
Update locks, retaining 447
Update MERGE operations 371
Update privilege 22, 36, 64, 200
UPDATE statement 72
UPDATE statements 185

and end of data 430
collection data types 375
description of 371, 371
embedded 431
failures 391
lock mode 448
number of rows 404
preparing 418
restrictions on subqueries 373
SET clause 373
smart large objects 377
WHERE clause 372
with a supertable 376
with row data types 374
with uniform values 372

UPDATE STATISTICS FOR PROCEDURE
statement 55
UPDATE STATISTICS statement 43, 171

and DBUPSPACE environment variable 171
effect on sysdistrib table 31
sysindices (index statistics) 48
sysindices data 43
updating system catalog tables 9

Update trigger 70
UPPER function, as string manipulation
function 306
Uppercase mode codes 52
Uppercase privilege codes 4, 22, 64
USE_DTENV environment variable 93, 93
USEOSTIME configuration parameter 93
User environment variable 148
USER function, in expression 311, 364
User informix 9, 20, 134
User name 80
User privileges

syscolauth data 22
sysfragauth data 36
syslangauth data 46
sysprocauth data 50
systabauth data 64
sysusers data 71
sysxtdtypeauth data 74

User-defined aggregates 13
User-defined casts 136
User-defined casts (UDCs) 20
User-defined data types

casting 136
casting into built-in type 133
opaque 132
sysxtddesc data 74
sysxtdtypes data 74, 75

User-defined routines
casts (syscasts) 20
check constraints (syscheckudrdep) 21
error messages (syserrors) 34
for OPAQUE data types 108
functional index 172
language authorization (syslangauth) 46
privileges 50, 200

protected 52
secondary access method 28
sysprocedures data 52

USETABLENAME environment variable 215
Using the GROUP BY and HAVING Clauses 320
UTC time and time zone, returned by DBINFO
function 313
Utilities

chkenv 141, 144
DB-Access 9, 77, 145, 153, 160, 193
dbload 87, 89
dbschema 52, 52
env 144
export 143
gcc 187
getenv 141
ifx_getenv 145
ifx_putenv 145
imcadmin 186, 186
lp 165
lpr 165
MaxConnect 187
oninit 175
onload 87, 89
onpload 206
onsecurity 181
printenv 144
putenv 141
set 146
setenv 143
Setnet32 145
source 141
unset 143
unsetenv 143, 172
vi 159

Utilities dbload 115
Utility program

onload 393
onunload 393

V
VALUES clause

in INSERT statement 363
in MERGE statement 364
NULL values 367
restrictions 364
selected columns 365
valid values 364

VARCHAR data type
([]), brackets

MATCHES range delimiters 117
CHAR data type

collation 117
Code sets

collation order 117
East Asian 117

Collation
VARCHAR data type 117

coltype code 23
defined 117
Locales

collation order 117
MATCHES operator 117
Multibyte characters

VARCHAR data type 117
nonprintable characters 117
SQL_LOGICAL_CHAR configuration
parameter 117
storing numeric values 117
VARCHAR data type

collation 117

multibyte characters 117
Zero (0)

C null as terminator 117
VARCHAR data type, using LENGTH function
on 311
Variable-length opaque data types 23
Variable-length packets 182
Variable-length UDT 75
Variables

defining and using in SPL routine 465
scope in SPL routine 466
with same name as a keyword 471

VARIANCE function, as aggregate
function 296
VARIANT routine 52
variant SPL function 460
Version number, returned by DBINFO
function 313
Version of a table 65
vi text editor 159
View

columns view 78
definition of 227
deleting in a 532
Information Schema 76
inserting into a 532
INSTEAD OF trigger on a 533
server_info view 80
sql_languages view 79
sysdepend data 30
sysindexes view 43
syssynonyms data 62
syssyntable data 63
systabauth data 64
systables data 65
sysviews data 72
tables view 78
updating in a 532

Violation detection 384
Violations

sysobjstate data 47
sysviolations data 72

Violations table 388
assigning a name 388
description of 388
example of privileges 389
examples 385
examples of starting 388
starting 388

Virtual machine 148, 199
Virtual processors 210

W
Warning message 34, 153
Warnings, with SPL routine at compile
time 515
WEEKDAY function

as time function 297, 299
using 299

WHERE 115
WHERE clause

Boolean expression in 253
comparison condition 247
date-oriented functions in 299
description of 247
equal sign relational operator 248
host variables in 407
in DELETE 359
in UPDATE statement 372
less-than relational operator 249
not-equal relational operator 249

555

relational operators 247
selecting a range of characters 258
subqueries in 339
wildcard comparisons 254
with NOT keyword 250
with OR keyword 251

WHERE CURRENT OF clause
in DELETE statement 425
in UPDATE statement 431

WHERE keyword 9, 20
null data tests 252
range of values 249

Whitespace in identifiers 172
Wildcard character

asterisk 238
protecting 258

Wildcard comparison in WHERE clause 254
Wildcard, using single character 255
Window borders 195
Windows environments

manipulating environment variables 145
setting environment variables 145

WITH clause, in SPL function 460
WITH HOLD keywords, declaring a hold
cursor 451
WITH LISTING IN clause, use in SPL
routine 461

X
X setting

sysams.am_sptype 14
systabauth.tabauth 64

X/Open
compliance 80
server_info view 80

X/Open CAE standards 76
XA data source types 73
XA data sources 73
XML (Extensible Markup Language) 91
XPG4 standard 78, 78

Y
Y setting

DBDATE 157
DBTIME 167
sysroleauth.is_grantable 56

Year 2000 154
YEAR function

as time function 297
using 300

YEAR keyword
DATETIME qualifier 93
EXTEND function 126
INTERVAL qualifier 101

Year values, two and four digit 93, 154, 157,
167
yes setting

NODEFDAC 200
YES setting

columns.is_nullable 78
sql_languages.integrity 79

Z
Zero

extent size encoding 43
Zero (0)

DBDATE separator 157
DECIMAL scale 96
hexadecimal digit 159
IFX_DIRECTIVES setting 176, 177
IFX_LARGE_PAGES setting 178
IFX_LONGID setting 179

IFX_NETBUF_PVTPOOL_SIZE setting 180
INFORMIXOPCACHE setting 192
integer scale 78, 96
OPTCOMPIND setting 202
OPTMSG setting 202
padding of 1-digit years 154
padding with DBFLTMASK 160
padding with DBTIME 167
PDQPRIORITY setting 204
PSORT_NPROCS setting 210
STMT_CACHE setting 212
sysams values 14, 14, 14, 14, 14
sysfragments.hybdpos 39
sysindices.nrows 43
systables.type_xid 65
sysxdtypes values 75

556

	HCL Informix 14.10 - SQL programming Guide
	Contents
	Chapter 1. SQL programming
	Guide to SQL: Reference
	System catalog tables
	Objects that the system catalog tables track
	Using the system catalog
	Rows added to the systables system catalog table
	Rows added to the syscolumns system catalog table
	Rows added to the sysviews system catalog table
	Rows added to the systabauth system catalog table
	Rows added to the syscolauth system catalog table
	Rows added to the sysindexes or the sysindices table
	Accessing the system catalog
	Update system catalog data

	Structure of the System Catalog
	Character columns in databases that are not case-sensitive

	SYSAGGREGATES
	SYSAMS
	SYSATTRTYPES
	SYSAUTOLOCATE
	SYSBLOBS
	SYSCASTS
	SYSCHECKS
	SYSCHECKUDRDEP
	SYSCOLATTRIBS
	SYSCOLAUTH
	SYSCOLDEPEND
	SYSCOLUMNS
	NOT NULL constraints
	Storing the column data type
	Storing column length
	Integer-based data types
	Varying-length character data types
	Time data types
	Fixed-point data types
	Simple-large-object data types

	Storing Maximum and Minimum Values

	SYSCONSTRAINTS
	SYSDEFAULTS
	SYSDEPEND
	SYSDIRECTIVES
	SYSDISTRIB
	SYSDOMAINS
	SYSERRORS
	SYSEXTCOLS
	SYSEXTDFILES
	SYSEXTERNAL
	SYSFRAGAUTH
	SYSFRAGDIST
	SYSFRAGMENTS
	SYSINDEXES
	SYSINDICES
	SYSINHERITS
	SYSLANGAUTH
	SYSLOGMAP
	SYSOBJSTATE
	SYSOPCLASSES
	SYSOPCLSTR
	SYSPROCAUTH
	SYSPROCBODY
	SYSPROCCOLUMNS
	SYSPROCEDURES
	SYSPROCPLAN
	SYSREFERENCES
	SYSROLEAUTH
	SYSROUTINELANGS
	SYSSECLABELAUTH
	SYSSECLABELCOMPONENTS
	SYSSECLABELCOMPONENTELEMENTS
	SYSSECLABELNAMES
	SYSSECLABELS
	SYSSECPOLICIES
	SYSSECPOLICYCOMPONENTS
	SYSSECPOLICYEXEMPTIONS
	SYSSEQUENCES
	SYSSURROGATEAUTH
	SYSSYNONYMS
	SYSSYNTABLE
	SYSTABAMDATA
	SYSTABAUTH
	SYSTABLES
	SYSTRACECLASSES
	SYSTRACEMSGS
	SYSTRIGBODY
	SYSTRIGGERS
	SYSUSERS
	SYSVIEWS
	SYSVIOLATIONS
	SYSXADATASOURCES
	SYSXASOURCETYPES
	SYSXTDDESC
	SYSXTDTYPEAUTH
	SYSXTDTYPES
	Information Schema
	Generating the Information Schema Views
	Accessing the Information Schema Views
	Structure of the Information Schema Views
	The tables Information Schema View
	The columns Information Schema View
	The sql_languages Information Schema View
	The server_info Information Schema View

	Data types
	Summary of data types
	Built-in data types supported in local and distributed SQL operations
	Built-in data types supported only in local database SQL operations
	Extended data types in cross-database distributed SQL transactions
	Extended data types in cross-server distributed SQL transactions

	Description of Data Types
	BIGINT data type
	BIGSERIAL data type
	Using SERIAL8 and BIGSERIAL with INT8 or BIGINT

	BLOB data type
	BOOLEAN data type
	BYTE data type
	BYTE objects in DML operations

	CHAR(n) data type
	Treating CHAR Values as Numeric Values
	Sorting and Relational Comparisons
	Nonprintable Characters with CHAR

	CHARACTER(n) data type
	CHARACTER VARYING(m,r) data type
	CLOB data type
	Multibyte characters with CLOB

	DATE data type
	DATETIME data type
	DEC data type
	DECIMAL
	DECIMAL(p) Floating Point
	DECIMAL (p,s) Fixed Point
	DECIMAL Storage

	DISTINCT data types
	DOUBLE PRECISION data types
	FLOAT(n)
	IDSSECURITYLABEL data type
	INT data type
	INT8
	INTEGER data type
	INTERVAL data type
	LIST(e) data type
	LVARCHAR(m) data type
	MONEY(p,s) data type
	MULTISET(e) data type
	Named ROW
	NCHAR(n) data type
	NUMERIC(p,s) data type
	NVARCHAR(m,r) data type
	OPAQUE data types
	REAL data type
	ROW data type, Named
	Defining named ROW types
	Equivalence and named ROW types
	Named ROW types and inheritance
	Typed tables

	ROW data type, Unnamed
	Creating unnamed ROW types
	Inserting Values into Unnamed ROW Type Columns

	SERIAL(n) data type
	SERIAL8(n) data type
	Assigning a Starting Value for SERIAL8

	SET(e) data type
	SMALLFLOAT
	SMALLINT data type
	TEXT data type
	Selecting data in a TEXT column
	Loading data into a TEXT column
	Limitations
	Nonprintable Characters in TEXT Values

	Unnamed ROW
	VARCHAR(m,r) data type
	Nonprintable Characters with VARCHAR
	Storing Numeric Values in a VARCHAR Column
	Multibyte Characters with VARCHAR
	Collating VARCHAR Values

	Built-In Data Types
	Character Data Types
	Built-in Character Types
	Logical Character Semantics in Character Type Declarations
	IDSSECURITYLABEL
	Data Type Promotion
	National Language Support
	NLSCASE lNSENSITIVE Databases

	Large-Object Data Types
	Simple Large Objects
	Smart large objects

	Time Data Types
	Manipulating DATETIME Values
	Manipulating DATETIME with INTERVAL Values
	Manipulating DATE with DATETIME and INTERVAL Values
	Manipulating INTERVAL Values
	Multiplying or Dividing INTERVAL Values

	Extended Data Types
	Complex data types
	Collection Data Types
	Accessing collection data

	ROW Data Types

	Distinct Data Types
	Opaque Data Types
	Built-in opaque data types
	User-defined opaque data types

	Data Type Casting and Conversion
	Using Built-in Casts
	Converting from number to number
	Converting Between Number and Character
	Converting Between INTEGER and DATE
	Converting Between DATE and DATETIME

	Using User-Defined Casts
	Implicit Casts
	Explicit Casts

	Determining Which Cast to Apply
	Casts for distinct types
	What Extended Data Types Can Be Cast?

	Operator Precedence

	Environment variables
	Types of environment variables
	Limitations on environment variables
	Size of a block of environment variables

	Using environment variables on UNIX™
	Setting environment variables in a configuration file
	Setting environment variables at login time
	Syntax for setting environment variables
	Unsetting environment variables
	Modifying an environment-variable setting
	Viewing your environment-variable settings
	Checking environment variables with the chkenv utility
	Rules of precedence for environment variables

	Using environment variables on Windows™
	Where to set environment variables on Windows™
	Setting environment variables on Windows™
	Using the system applet to change environment variables
	Using the command prompt to change environment variables
	Using dbservername.cmd to initialize a command-prompt environment

	Rules of precedence for Windows™ environment variables

	Environment variables in Informix® products
	ANSIOWNER environment variable
	CPFIRST environment variable
	CMCONFIG environment variable
	Examples

	CLIENT_LABEL environment variable
	CSDK Example
	JDBC Example

	DBACCNOIGN environment variable
	LOAD statement example when DBACCNOIGN is set

	DBANSIWARN environment variable
	DBBLOBBUF environment variable
	DBCENTURY environment variable
	Examples of expanding year values
	DBCENTURY = P
	DBCENTURY = F
	DBCENTURY = C
	DBCENTURY = R or DBCENTURY Not Set

	Abbreviated years and expressions in database objects
	For legacy objects to acquire this feature

	DBDATE environment variable
	DATE expressions in database objects

	DBDELIMITER environment variable
	DBEDIT environment variable
	DBFLTMASK environment variable
	DBINFO_DBSPACE_RETURN_NULL_FOR_INVALID_PARTNUM environment variable
	DBLANG environment variable
	To use a message directory other than $INFORMIXDIR/msg

	DBMONEY environment variable
	DBPATH environment variable
	Using DBPATH with DB-Access
	Searching local directories
	Searching networked computers for databases
	Specifying a servername

	DBPRINT environment variable
	DBREMOTECMD environment variable (UNIX™)
	DBSPACETEMP environment variable
	DBTEMP environment variable
	DBTIME environment variable
	DBTIME formats in nondefault locales

	DBUPSPACE environment variable
	DEFAULT_ATTACH environment variable
	DELIMIDENT environment variable
	ENVIGNORE environment variable (UNIX™)
	FET_BUF_SIZE environment variable
	IFMXMONGOAUTH environment variable
	IFX_DEF_TABLE_LOCKMODE environment variable
	IFX_DIRECTIVES environment variable
	IFX_EXTDIRECTIVES environment variable
	IFX_LARGE_PAGES environment variable
	IFX_LOB_XFERSIZE environment variable
	IFX_LONGID environment variable
	IFX_NETBUF_PVTPOOL_SIZE environment variable (UNIX™)
	IFX_NETBUF_SIZE environment variable
	IFX_NO_SECURITY_CHECK environment variable (UNIX™)
	IFX_NO_TIMELIMIT_WARNING environment variable
	IFX_NODBPROC environment variable
	IFX_NOT_STRICT_THOUS_SEP environment variable
	IFX_ONTAPE_FILE_PREFIX environment variable
	IFX_PAD_VARCHAR environment variable
	IFX_SMX_TIMEOUT environment variable
	IFX_SMX_TIMEOUT_RETRY environment variable
	IFX_UNLOAD_EILSEQ_MODE environment variable
	IFX_UPDDESC environment variable
	IFX_XASTDCOMPLIANCE_XAEND environment variable
	IFX_XFER_SHMBASE environment variable
	IMCADMIN environment variable
	IMCCONFIG environment variable
	IMCSERVER environment variable
	INFORMIXC environment variable (UNIX™)
	INFORMIXCMNAME environment variable
	INFORMIXCMCONUNITNAME environment variable
	INFORMIXCONCSMCFG environment variable
	INFORMIXCONRETRY environment variable
	Order of precedence among INFORMIXCONRETRY settings

	INFORMIXCONTIME environment variable
	Order of precedence among INFORMIXCONTIME settings

	INFORMIXCPPMAP environment variable
	INFORMIXDIR environment variable
	INFORMIXOPCACHE environment variable
	INFORMIXSERVER environment variable
	INFORMIXSHMBASE environment variable (UNIX™)
	INFORMIXSQLHOSTS environment variable
	INFORMIXSTACKSIZE environment variable
	INFORMIXTERM environment variable (UNIX™)
	INF_ROLE_SEP environment variable
	INTERACTIVE_DESKTOP_OFF environment variable (Windows™)
	ISM_COMPRESSION environment variable
	ISM_DEBUG_FILE environment variable
	ISM_DEBUG_LEVEL environment variable
	ISM_ENCRYPTION environment variable
	ISM_MAXLOGSIZE environment variable
	ISM_MAXLOGVERS environment variable
	JAR_TEMP_PATH environment variable
	JAVA_COMPILER environment variable
	JVM_MAX_HEAP_SIZE environment variable
	LD_LIBRARY_PATH environment variable (UNIX™)
	LIBPATH environment variable (UNIX™)
	NODEFDAC environment variable
	ONCONFIG environment variable
	ONINIT_STDOUT environment variable (Windows™)
	OPTCOMPIND environment variable
	OPTMSG environment variable
	OPTOFC environment variable
	OPT_GOAL environment variable (UNIX™)
	PATH environment variable
	PDQPRIORITY environment variable
	Using PDQPRIORITY with Informix®

	PLCONFIG environment variable
	PLOAD_LO_PATH environment variable
	PLOAD_SHMBASE environment variable
	PSM_ACT_LOG environment variable
	PSM_CATALOG_PATH environment variable
	PSM_DBS_POOL environment variable
	PSM_DEBUG environment variable
	PSM_DEBUG_LOG environment variable
	PSM_LOG_POOL environment variable
	PSORT_DBTEMP environment variable
	PSORT_NPROCS environment variable
	Default PSORT_NPROCS values for detached indexes
	Default PSORT_NPROCS values for attached indexes

	RTREE_COST_ADJUST_VALUE environment variable
	SHLIB_PATH environment variable (UNIX™)
	SRV_FET_BUF_SIZE environment variable
	STMT_CACHE environment variable
	TERM environment variable (UNIX™)
	TERMCAP environment variable (UNIX™)
	TERMINFO environment variable (UNIX™)
	THREADLIB environment variable (UNIX™)
	TZ environment variable
	USETABLENAME environment variable

	Appendixes
	The stores_demo Database
	The stores_demo Database Map

	The superstores_demo database
	Structure of the superstores_demo Tables
	User-defined routines and extended data types
	location_t definition
	loc_us_t definition
	loc_non_us_t definition
	name_t definition
	customer_t definition
	retail_t definition
	whlsale_t definition
	ship_t definition

	Table Hierarchies

	Guide to SQL: Tutorial
	Database concepts
	Illustration of a data model
	Store data
	Query data
	Modify data

	Concurrent use and security
	Control database use
	Access-management strategies
	Creating and granting a role
	Defining and granting privileges for a default role
	Built-in roles

	Centralized management

	Important database terms
	The relational database model
	Tables
	Columns
	Rows
	Views
	Sequences
	Operations on tables
	The object-relational model

	Structured Query Language
	Standard SQL
	Informix® SQL and ANSI SQL
	Interactive SQL
	General programming
	ANSI-compliant databases
	Global Language Support

	Summary

	Compose SELECT statements
	SELECT statement overview
	Output from SELECT statements
	Output from large object data types
	Output from user-defined data types
	Output in non-default code sets

	Some basic concepts
	Privileges
	Relational operations
	Selection and projection
	Join

	Single-table SELECT statements
	The asterisk symbol (*)
	Reorder the columns

	The ORDER BY clause to sort the rows
	Ascending order
	Descending order
	Sorting on multiple columns

	Select specific columns
	Select substrings

	The WHERE clause
	Create a comparison condition
	Include rows
	Exclude rows
	Specify a range of rows
	Exclude a range of rows
	Use a WHERE clause to find a subset of values
	Identify NULL values
	Form compound conditions
	Exact-text comparisons
	Variable-text searches
	A single-character wildcard
	WHERE clause to specify a range of initial characters
	WHERE clause with variable-length wildcard

	Protect special characters
	Subscripting in a WHERE clause

	FIRST clause to select specific rows
	FIRST clause without an ORDER BY clause
	FIRST clause with an ORDER BY clause

	Expressions and derived values
	Arithmetic expressions
	Display labels

	CASE expressions
	Sorting on derived columns

	Rowid values in SELECT statements

	Multiple-table SELECT statements
	Create a Cartesian product
	Create a join
	Cross join
	Equi-join
	Natural join
	Multiple-table join

	Some query shortcuts
	Aliases
	The INTO TEMP clause

	Summary

	Select data from complex types
	Select row-type data
	Select columns of a typed table
	Select columns that contain row-type data
	Field projections
	Field projections to select nested fields
	Select individual fields of a row type

	Asterisk notation to access all fields of a row type

	Select from a collection
	Select nested collections
	The IN keyword to search for elements in a collection

	Select rows within a table hierarchy
	Select rows of the supertable without the ONLY keyword
	Select rows from a supertable with the ONLY keyword
	An alias for a supertable

	Summary

	Functions in SELECT statements
	Functions in SELECT statements
	Aggregate functions
	The AVG function
	The COUNT function
	The MAX and MIN functions
	The RANGE function
	The STDEV function
	The SUM function
	The VARIANCE function
	Apply aggregate functions to expressions

	Time functions
	The DAY and CURRENT functions
	The MONTH function
	The WEEKDAY function
	The YEAR function
	Format DATETIME values

	Date-conversion functions
	The DATE function
	The TO_CHAR function
	The TO_DATE function

	Cardinality function
	Smart large object functions
	String-manipulation functions
	The LOWER function
	The UPPER function
	The INITCAP function
	The REPLACE function
	The SUBSTRING and SUBSTR functions
	The SUBSTRING function
	The SUBSTR function
	The LPAD function
	The RPAD function

	Other functions
	The LENGTH function
	The USER function
	The TODAY function
	The DBSERVERNAME and SITENAME functions
	The HEX function
	The DBINFO function
	The DECODE function
	The NVL function

	SPL routines in SELECT statements
	Data encryption functions
	Using column-level data encryption to secure credit card data

	Summary

	Compose advanced SELECT statements
	The GROUP BY and HAVING clauses
	The GROUP BY clause
	The HAVING clause

	Create advanced joins
	Self-joins
	Outer joins
	HCL Informix® extension to outer join syntax
	ANSI join syntax
	Left outer join
	Examples of ISO/ANSI LEFT OUTER JOIN queries

	Right outer join
	Simple join
	Simple outer join on two tables
	Outer join for a simple join to a third table
	Outer join of two tables to a third table
	Joins that combine outer joins

	Subqueries in SELECT statements
	Correlated subqueries
	Using subqueries to combine SELECT statements
	Subqueries in a Projection clause
	Subqueries in the FROM clause
	Subqueries in WHERE clauses
	The ALL keyword
	The ANY keyword
	Single-valued subqueries
	Correlated subqueries
	The EXISTS keyword

	Subqueries in DELETE and UPDATE statements

	Handle collections in SELECT statements
	Collection subqueries
	Omit the ITEM keyword in a collection subquery
	Specify the ITEM keyword in a collection subquery
	Collection subqueries in the FROM clause

	Collection-derived tables
	ISO-compliant syntax for collection derived tables

	Set operations
	Union
	ORDER BY clause with UNION
	The UNION ALL keywords
	Different column names
	UNION with multiple tables
	A literal in the Projection clause
	A FIRST clause

	Intersection
	Difference

	Summary

	Modify data
	Modify data in your database
	Delete rows
	Delete all rows of a table
	Delete all rows using TRUNCATE
	Delete specified rows
	Delete selected rows
	Delete rows that contain row types
	Delete rows that contain collection types
	Delete rows from a supertable
	Complicated delete conditions
	The Delete clause of MERGE

	Insert rows
	Single rows
	Possible column values
	Restrictions on column values
	Serial data types
	List specific column names

	Insert rows into typed tables
	Syntax rules for inserts on columns
	Rows that contain named row types
	Rows that contain unnamed row types
	Specify NULL values for row types

	Insert rows into supertables
	Insert collection values into columns
	Insert values into simple collections and nested collections
	Insert NULL values into a collection that contains a row type

	Insert smart large objects
	Multiple rows and expressions
	Restrictions on the insert selection

	Update rows
	Select rows to update
	Update with uniform values
	Restrictions on updates
	Update with selected values
	Update row types
	Update rows that contain named row types
	Update rows that contain unnamed row types
	Specify Null values for the fields of a row type

	Update collection types
	Update rows of a supertable
	CASE expression to update a column
	SQL functions to update smart large objects
	The MERGE statement to update a table

	Privileges on a database and on its objects
	Database-level privileges
	Table-level privileges
	Display table privileges
	Grant privileges to roles

	Data integrity
	Entity integrity
	Semantic integrity
	Referential integrity
	The ON DELETE CASCADE option
	Lock during cascading deletes
	What happens to multiple children tables
	Logging must be turned on

	Example of cascading deletes
	Restrictions on cascading deletes

	Object modes and violation detection
	Definitions of object modes
	Enabled mode
	Disabled mode
	Filtering mode

	Example of modes with data manipulation statements
	Results of the insert operation when the constraint is enabled
	Results of the insert operation when the constraint is disabled
	Results of the insert when constraint is in filtering mode
	Multiple diagnostic rows for one violations row

	Violations and diagnostics tables
	Relationship of violations tables and database object modes
	Examples of START VIOLATIONS TABLE statements
	Start violations and diagnostics tables without specifying their names
	Start violations and diagnostics tables and specify their names
	Specify the maximum number of rows in the diagnostics table
	Example of privileges on the violations table
	Example of privileges on the diagnostics table

	Interrupted modifications
	Transactions
	Transaction logging
	Logging and cascading deletes

	Specify transactions

	Backups and logs with HCL Informix® database servers
	Concurrency and locks
	HCL Informix® data replication
	Summary

	Access and modify data in an external database
	Access other database servers
	Access ANSI databases
	Create joins between external database servers
	Access external routines

	Restrictions for remote database access
	SQL statements that access more than one database
	Return data types in cross-database operations
	Return data types in cross-server operations

	Access external database objects

	SQL programming
	SQL in programs
	SQL in SQL APIs
	SQL in application languages
	Static embedding
	Dynamic statements
	Program variables and host variables

	Call the database server
	SQL Communications Area
	SQLCODE field
	End of data
	Negative Codes

	SQLERRD array
	SQLWARN array
	SQLERRM character string
	SQLSTATE value

	Retrieve single rows
	Data type conversion
	What if the program retrieves a NULL value?
	Dealing with errors
	End of data
	End of data with databases that are not ANSI compliant
	Serious errors
	Interpret end of data with aggregate functions
	Default values

	Retrieve multiple rows
	Declare a cursor
	Open a cursor
	Fetch rows
	Detect end of data
	Locate the INTO clause

	Cursor input modes
	Active set of a cursor
	Create the active set
	Active set for a sequential cursor
	Active set for a SCROLL cursor
	Active set and concurrency

	Parts-explosion problem

	Dynamic SQL
	Prepare a statement
	Execute prepared SQL
	Dynamic host variables
	Free prepared statements
	Quick execution

	Embed data-definition statements
	Grant and revoke privileges in applications
	Assign roles

	Summary

	Modify data through SQL programs
	The DELETE statement
	Direct deletions
	Errors during direct deletions
	Transaction logging
	Coordinated deletions

	Delete with a cursor

	The INSERT statement
	An insert cursor
	Declare an insert cursor
	Insert with a cursor
	Status codes after PUT and FLUSH

	Rows of constants
	An insert example
	How many rows were affected?

	The UPDATE statement
	An update cursor
	The purpose of the keyword UPDATE
	Update specific columns
	UPDATE keyword not always needed

	Cleanup a table

	Summary

	Programming for a multiuser environment
	Concurrency and performance
	Locks and integrity
	Locks and performance
	Concurrency issues
	How locks work
	Kinds of locks
	Lock scope
	Database locks
	Table locks
	Lock a table with the LOCK TABLE statement
	When the database server automatically locks a table
	Avoid table locking with the ONLINE keyword

	Row and key locks
	Page locks
	Set the row or page lock mode for all CREATE TABLE statements
	Single-user lock mode
	Multiple-user lock mode
	Rules of precedence

	Coarse index locks
	Smart-large-object locks
	Byte-range locks

	Duration of a lock
	Locks while modifying

	Lock with the SELECT statement
	Set the isolation level
	SET TRANSACTION versus SET ISOLATION
	SET ISOLATION
	SET TRANSACTION

	ANSI Read Uncommitted and HCL Informix® Dirty Read isolation
	ANSI Read Committed and HCL Informix® Committed Read isolation
	HCL Informix® Cursor Stability isolation
	ANSI Serializable, ANSI Repeatable Read, and HCL Informix® Repeatable Read isolation

	Update cursors

	Retain update locks
	Exclusive locks that occur with some SQL statements
	The behavior of the lock types
	Control data modification with access modes
	Set the lock mode
	Waiting for locks
	Not waiting for locks
	Limited time wait
	Handle a deadlock
	Handling external deadlock

	Simple concurrency
	Hold cursors
	The SQL statement cache
	Summary

	Create and use SPL routines
	Introduction to SPL routines
	What you can do with SPL routines

	SPL routines format
	The CREATE PROCEDURE or CREATE FUNCTION statement
	Begin and end the routine
	Specify a routine name
	Add a specific name
	Add a parameter list
	Simple large objects as parameters
	Undefined arguments

	Add a return clause
	Add display labels
	Specify whether the SPL function is variant
	Add a modifier
	The COMMUTATOR modifier
	The NEGATOR modifier

	Specify a DOCUMENT clause
	Specify a listing file
	Add comments

	Example of a complete routine
	Create an SPL routine in a program
	Dropping a routine in a local or remote database
	Restrictions on data types in distributed operations

	Define and use variables
	Declare local variables
	Scope of local variables
	Declare variables of built-in data types
	Declare variables for smart large objects
	Declare variables for simple large objects
	Declare collection variables
	Declare row-type variables
	Declare opaque- and distinct-type variables
	Declare variables for column data with the LIKE clause
	Declare PROCEDURE type variables
	Subscripts with variables
	Variable and keyword ambiguity
	Variables and column names
	Variables and SQL functions

	Declare global variables
	Assign values to variables
	The LET statement
	Other ways to assign values to variables

	Expressions in SPL routines
	Writing the statement block
	Implicit and explicit statement blocks
	The FOREACH loop
	The FOREACH loop to define cursors
	Restriction for FOREACH loops

	An IF - ELIF - ELSE structure
	Add WHILE and FOR loops
	Exit a loop

	Return values from an SPL function
	Return a single value
	Return multiple values

	Handle row-type data
	Precedence of dot notation
	Update a row-type expression

	Handle collections
	Collection data types
	Prepare for collection data types
	Declare a collection variable
	Declare an element variable
	Select a collection into a collection variable

	Insert elements into a collection variable
	Insert into a SET or MULTISET
	Insert into a LIST
	Check the cardinality of a LIST collection
	Syntax of the VALUES clause

	Select elements from a collection
	The collection query
	Add the collection query to the SPL routine

	Delete a collection element
	Update the collection in the database
	Delete the entire collection

	Update a collection element
	Update a collection with a variable

	Update the entire collection
	Update a collection of row types
	Update a nested collection

	Insert into a collection
	Insert into a nested collection
	Insert a collection into the outer collection
	Insert a value into the inner collection

	Executing routines
	The EXECUTE statements
	The CALL statement
	Execute routines in expressions
	Execute an external function with the RETURN statement
	Execute cursor functions from an SPL routine
	Dynamic routine-name specification
	Rules for dynamic routine-name specification

	Privileges on routines
	Privileges for registering a routine
	Privileges for executing a routine
	Grant and revoke the Execute privilege
	Execute privileges with COMMUTATOR and NEGATOR functions

	Privileges on objects associated with a routine
	DBA privileges for executing a routine

	Find errors in an SPL routine
	Compile-time warnings
	Generate the text of the routine

	Debug an SPL routine
	Exception handling
	Error trapping and recovering
	Scope of control of an ON EXCEPTION statement
	User-generated exceptions
	Simulate SQL errors
	RAISE EXCEPTION to exit nested code

	Check the number of rows processed in an SPL routine
	Summary

	Create and use triggers
	When to use triggers
	How to create a trigger
	Declare a trigger name
	Specify the trigger event
	Define the triggered actions
	A complete CREATE TRIGGER statement

	Triggered actions
	BEFORE and AFTER triggered actions
	FOR EACH ROW triggered actions
	The REFERENCING clause
	The WHEN condition

	SPL routines as triggered actions
	Pass data to an SPL routine
	Using SPL
	Update nontriggering columns with data from an SPL routine

	Trigger routines
	Triggers in a table hierarchy
	Select triggers
	SELECT statements that execute triggered actions
	Stand-alone SELECT statements
	Collection subqueries in the projection list of a query
	SELECT statements embedded in user-defined routines
	Views

	Restrictions on execution of Select triggers
	Select triggers on tables in a table hierarchy

	Re-entrant triggers
	INSTEAD OF triggers on views
	INSTEAD OF trigger to update on a view

	Trace triggered actions
	Example of TRACE statements in an SPL routine
	Example of TRACE output

	Generate error messages
	Apply a fixed error message
	Generate a variable error message

	Summary

	Index

