
HCL Informix 14.10 - Performance Guide



ii

Contents
Chapter 1. Performance Guide..........................................4

Performance basics.........................................................4
Developing a basic approach to performance 
measurement and tuning.........................................5
Quick start for acceptable performance on a small 
database....................................................................6
Performance goals...................................................6
Measurements of performance...............................7
Resource utilization and performance..................11
Factors that affect resource utilization.................17
Maintenance of good performance...................... 18

Performance monitoring and the tools you use...........19
Evaluate the current configuration........................ 19
Create a performance history................................20
Monitor database server resources...................... 25
Monitor transactions..............................................31
Monitor sessions and queries...............................32

Effect of configuration on CPU utilization....................33
UNIX™  configuration parameters that affect CPU 
utilization.................................................................33
Windows™  configuration parameters that affect 
CPU utilization........................................................ 35
Configuration parameters and environment 
variables that affect CPU utilization......................36
Network buffer pools............................................. 50
Virtual processors and CPU utilization................. 53
Connections and CPU utilization...........................59

Effect of configuration on memory utilization............. 61
Shared memory...................................................... 61
Configuration parameters that affect memory 
utilization.................................................................69
Configure and monitor memory caches............... 83
Session memory...................................................103
Data-replication buffers and memory 
utilization...............................................................105
Memory latches....................................................105
Encrypted values.................................................. 106

Effect of configuration on I/O activity........................ 107
Chunk and dbspace configuration...................... 107
I/O for cooked files for dbspace chunks............ 108
Placement of critical data................................... 111
Configuration parameters that affect critical 
data........................................................................114
Configure dbspaces for temporary tables and sort 
files........................................................................ 115
Configure sbspaces for temporary smart large 
objects...................................................................121
Placement of simple large objects..................... 123

Factors that affect I/O for smart large 
objects...................................................................128
How the Optical Subsystem affects 
performance......................................................... 132
Environment variables and configuration 
parameters for the Optical Subsystem...............132
Table I/O............................................................... 134
Configuration parameters that affect table 
I/O..........................................................................136
Background I/O activities.................................... 137

Table performance considerations.............................157
Placing tables on disk..........................................158
Estimating table size............................................162
Managing the size of first and next extents for the 
tblspace tblspace.................................................167
Managing sbspaces.............................................168
Managing extents.................................................178
Storing multiple table fragments in a single 
dbspace.................................................................188
Displaying a list of table and index partitions.....188
Changing tables to improve performance.......... 189
Denormalize the data model to improve 
performance......................................................... 204
Reduce disk space in tables with variable length 
rows.......................................................................208
Reduce disk space by compressing tables and 
fragments..............................................................208

Boosted Partition Free Space Caches (PFSC)........... 209
Indexes and index performance considerations........210

Types of indexes.................................................. 210
Estimating index pages....................................... 213
Managing indexes................................................ 217
Improve query performance with a forest of trees 
index...................................................................... 223
Creating and dropping an index in an online 
environment.......................................................... 227
Improving performance for index builds.............229
Storing multiple index fragments in a single 
dbspace.................................................................232
Improving performance for index checks...........232
Indexes on user-defined data types.................... 233

Locking......................................................................... 244
Locks.....................................................................244
Configuring the lock mode.................................. 247
Setting the lock mode to wait............................. 248
Locks with the SELECT statement......................248
Locks placed with INSERT, UPDATE, and DELETE 
statements............................................................253
The internal lock table......................................... 254
Monitoring locks...................................................254



Contents  | iii

Locks for smart large objects............................. 260
Fragmentation guidelines............................................264

Planning a fragmentation strategy......................265
Distribution schemes........................................... 270
Strategy for fragmenting indexes........................275
Strategy for fragmenting temporary tables........ 278
Distribution schemes that eliminate 
fragments..............................................................278
Improve the performance of operations that attach 
and detach fragments..........................................284
Monitoring Fragment Use....................................294

Queries and the query optimizer.................................295
The query plan......................................................296
Factors that affect the query plan.......................315
Time costs of a query..........................................320
Optimization when SQL is within an SPL 
routine................................................................... 327
Trigger execution..................................................331

Optimizer directives.....................................................333
What optimizer directives are..............................333
Reasons to use optimizer directives...................334
Preparation for using directives.......................... 335
Guidelines for using directives............................336
Types of optimizer directives that are supported in 
SQL statements....................................................336
Configuration parameters and environment 
variables for optimizer directives .......................346
Optimizer directives and SPL routines ...............346
Forcing reoptimization to avoid an index and 
previously prepared statement problem.............346
External optimizer directives .............................. 348

Parallel database query (PDQ)....................................350
What PDQ is......................................................... 351
Structure of a PDQ query.....................................351
Database server operations that use PDQ..........352
The Memory Grant Manager............................... 356
The allocation of resources for parallel database 
queries...................................................................357
Managing PDQ queries........................................ 363
Monitoring resources used for PDQ and DSS 
queries...................................................................366

Improving individual query performance....................370
Test queries using a dedicated test system....... 370
Display the query plan......................................... 371
Improve filter selectivity.......................................371
Automatic statistics updating............................. 376
Update statistics when they are not generated 
automatically........................................................ 383
Improve performance by adding or removing 
indexes.................................................................. 393
Optimizer estimates of distributed queries........ 417

Improve sequential scans....................................418
Enable view folding to improve query 
performance......................................................... 419
Reduce the join and sort operations...................419
Optimize user-response time for queries........... 422
Optimize queries for user-defined data types.....425
Optimize queries with the SQL statement 
cache.....................................................................428
Monitor sessions and threads.............................438
Monitor transactions............................................447

The onperf utility on UNIX...........................................452
Overview of the onperf utility.............................. 452
Requirements for running the onperf utility........455
Starting the onperf utility and exiting from it......455
The onperf user interface....................................456
Why you might want to use onperf..................... 464
onperf utility metrics............................................465

Appendix.......................................................................471
Case studies and examples................................ 471

Index.............................................................................475

iii



4

Chapter 1. Performance Guide
These topics describe how to configure and operate your HCL Informix®  database server to improve overall system 

throughput and to improve the performance of SQL queries.

This information contains performance tuning issues and methods that are relevant to daily database server administration 

and query execution. Performance measurement and tuning encompass a broad area of research and practice and can 

involve information beyond the scope of this publication.

This information is intended for the following users:

• Database administrators

• Database server administrators

• Database-application programmers

• Performance engineers

This information assumes that you have the following background:

• A working knowledge of your computer, your operating system, and the utilities that your operating system provides

• Some experience working with relational databases or exposure to database concepts

• Some experience with database server administration, operating-system administration, or network administration

Information in these topics can help you perform the following tasks:

• Monitor the system resources that are critical to performance

• Identify database activities that affect these critical resources

• Identify and monitor queries that are critical to performance

• Use the database server utilities (especially onperf  and onstat) for performance monitoring and tuning

• Eliminate performance bottlenecks by:

◦ Balancing the load on system resources

◦ Adjusting the configuration parameters or environment variables of your database server

◦ Adjusting the arrangement of your data

◦ Allocating resources for decision-support queries

◦ Creating indexes to speed up retrieval of your data

Performance measurement and tuning encompass a broad area of research and practice and can involve information 

beyond the scope of these topics.

These topics are taken from the HCL®  Informix®  Performance Guide.

Performance basics
Performance measurement and tuning issues and methods are relevant to daily database server administration and query 

execution.



Chapter 1. Performance Guide

These topics:

• Describe a basic approach for performance measurement and tuning

• Provide guidelines for a quick start to obtain acceptable initial performance on a small database

• Describe roles in maintaining good performance

Developing a basic approach to performance measurement and tuning
To maintain optimum performance for your database applications, develop a plan for measuring system performance, 

making adjustments to maintain good performance and taking corrective measures when performance degrades. Regular, 

specific measurements can help you to anticipate and correct performance problems.

About this task

By recognizing problems early, you can prevent them from affecting users significantly. Early indications of a performance 

problem are often vague; users might report that the system seems sluggish. Users might complain that they cannot get all 

their work done, that transactions take too long to complete, that queries take too long to process, or that the application 

slows down at certain times during the day.

To determine the nature of the problem, you must measure the actual use of system resources and evaluate the results.

Users typically report performance problems in the following situations:

• Response times for transactions or queries take longer than expected.

• Transaction throughput is insufficient to complete the required workload.

• Transaction throughput decreases.

An iterative approach to optimizing database server performance is recommended. If repeating the steps found in the 

following list does not produce the desired improvement, insufficient hardware resources or inefficient code in one or more 

client applications might be causing the problem.

To optimize performance:

1. Establish performance objectives.

2. Take regular measurements of resource utilization and database activity.

3. Identify symptoms of performance problems: disproportionate utilization of CPU, memory, or disks.

4. Tune the operating-system configuration.

5. Tune the database server configuration.

6. Optimize the chunk and dbspace configuration, including placement of logs, sort space, and space for temporary 

tables and sort files.

7. Optimize the table placement, extent sizing, and fragmentation.

8. Improve the indexes.

9. Optimize background I/O activities, including logging, checkpoints, and page cleaning.

10. Schedule backup and batch operations for off-peak hours.

5



HCL Informix 14.10 - Performance Guide

6

11. Optimize the implementation of the database application.

12. Repeat steps 2 through 11.

Quick start for acceptable performance on a small database
If you have a small database with each table residing on only one disk and using only one CPU virtual processor, you can take 

specific measurements to help you anticipate and correct performance problems.

To achieve acceptable initial performance on a small database:

1. Generate statistics of your tables and indexes to provide information to the query optimizer to enable it to choose 

query plans with the lowest estimated cost.

These statistics are a minimum starting point to obtain good performance for individual queries. For guidelines, see 

Update statistics when they are not generated automatically  on page 383. To see the query plan that the optimizer 

chooses for each query, see Display the query plan  on page 371.

2. If you want a query to run in parallel with other queries, you must turn on the Parallel Database Query (PDQ) feature.

Without table fragmentation across multiple disks, parallel scans do not occur. With only one CPU virtual processor, 

parallel joins or parallel sorts do not occur. However, PDQ priority can obtain more memory to perform the sort. For 

more information, see Parallel database query (PDQ)  on page 350.

3. If you want to mix online transaction processing (OLTP) and decision-support system (DSS) query applications, you 

can control the amount of resources a long-running query can obtain so that your OLTP transactions are not affected.

For information about how to control PDQ resources, see The allocation of resources for parallel database queries  on 

page 357.

4. Monitor sessions and drill down into various details to improve the performance of individual queries.

For information about the various tools and session details to monitor, see Monitoring memory usage for each 

session  on page 432 and Monitor sessions and threads  on page 438.

Performance goals
When you plan for measuring and tuning performance, you should consider performance goals and determine which goals 

are the most important.

Many considerations go into establishing performance goals for the database server and the applications that it supports. 

Be clear and consistent about articulating performance goals and priorities, so that you can provide realistic and consistent 

expectations about the performance objectives for your application. Consider the following questions when you establish 

performance goals:

• Is your top priority to maximize transaction throughput, minimize response time for specific queries, or achieve the 

best overall mix?

• What sort of mix between simple transactions, extended decision-support queries, and other types of requests does 

the database server typically handle?



Chapter 1. Performance Guide

• At what point are you willing to trade transaction-processing speed for availability or the risk of loss for a particular 

transaction?

• Is this database server instance used in a client/server configuration? If so, what are the networking characteristics 

that affect its performance?

• What is the maximum number of users that you expect?

• Is your configuration limited by memory, disk space, or CPU resources?

The answers to these questions can help you set realistic performance goals for your resources and your mix of 

applications.

Measurements of performance
You can use throughput, response time, cost per transaction, and resource utilization measures to evaluate performance.

Throughput, response time, and cost per transaction are described in the topics that follow.

Resource utilization can have one of two meanings, depending on the context. The term can refer to the amount of a 

resource that a particular operation requires or uses, or it can refer to the current load on a particular system component. 

The term is used in the former sense to compare approaches for accomplishing a given task. For instance, if a given sort 

operation requires 10 megabytes of disk space, its resource utilization is greater than another sort operation that requires 

only 5 megabytes of disk space. The term is used in the latter sense to refer, for instance, to the number of CPU cycles that 

are devoted to a particular query during a specific time interval.

For a discussion about the performance impact of different load levels on various system components, see Resource 

utilization and performance  on page 11.

Throughput
Throughput measures the overall performance of the system. For transaction processing systems, throughput is typically 

measured in transactions per second  (TPS) or transactions per minute  (TPM).

Throughput depends on the following factors:

• The specifications of the host computer

• The processing overhead in the software

• The layout of data on disk

• The degree of parallelism that both hardware and software support

• The types of transactions being processed

Ways to measure throughput
The best way to measure throughput for an application is to include code in the application that logs the time stamps of 

transactions as they commit.

If your application does not provide support for measuring throughput directly, you can obtain an estimate by tracking the 

number of COMMIT WORK statements that the database server logs during a given time interval. You can use the onlog 

7



HCL Informix 14.10 - Performance Guide

8

utility to obtain a listing of logical-log records that are written to log files. You can use information from this command to 

track insert, delete, and update operations as well as committed transactions. However, you cannot obtain information 

stored in the logical-log buffer until that information is written to a log file.

If you need more immediate feedback, you can use onstat -p  to gather an estimate. You can use the SET LOG statement to 

set the logging mode to unbuffered for the databases that contain tables of interest. You can also use the trusted auditing 

facility in the database server to record successful COMMIT WORK events or other events of interest in an audit log file. 

Using the auditing facility can increase the overhead involved in processing any audited event, which can reduce overall 

throughput.

Related information

Auditing data security  on page 

Standard throughput benchmarks
The Transaction Processing Performance Council (TPC) provides standard benchmarks that allow reasonable throughput 

comparisons across hardware configurations and database servers. IBM®  is an active member in good standing of the TPC.

The TPC provides the following standardized benchmarks for measuring throughput:

• TPC-A

This benchmark is used for simple online transaction-processing (OLTP) comparisons. It characterizes the 

performance of a simple transaction-processing system, emphasizing update-intensive services. TPC-A simulates a 

workload that consists of multiple user sessions connected over a network with significant disk I/O activity.

• TPC-B

This benchmark is used for stress-testing peak database throughput. It uses the same transaction load as TPC-A but 

removes any networking and interactive operations to provide a best-case throughput measurement.

• TPC-C

This benchmark is used for complex OLTP applications. It is derived from TPC-A and uses a mix of updates, read-only 

transactions, batch operations, transaction rollback requests, resource contentions, and other types of operations on 

a complex database to provide a better representation of typical workloads.

• TPC-D

This benchmark measures query-processing power in terms of completion times for very large queries. TPC-D is a 

decision-support benchmark built around a set of typical business questions phrased as SQL  queries against large 

databases (in the gigabyte or terabyte range).

Because every database application has its own particular workload, you cannot use TPC benchmarks to predict the 

throughput for your application. The actual throughput that you achieve depends largely on your application.

../sec/ids_sec_019.html#ids_sec_019
../sec/ids_sec_019.html#ids_sec_019
../sec/ids_sec_019.html#ids_sec_019
../sec/ids_sec_019.html#ids_sec_019


Chapter 1. Performance Guide

Response time
Response time measures the performance of an individual transaction or query. Response time is typically treated as the 

elapsed time from the moment that a user enters a command or activates a function until the time that the application 

indicates that the command or function has completed.

The response time for a typical Informix®  application includes the following sequence of actions. Each action requires a 

certain amount of time. The response time does not include the time that it takes for the user to think of and enter a query or 

request:

1. The application forwards a query to the database server.

2. The database server performs query optimization and retrieves any user-defined routines (UDRs). UDRs include both 

SPL routines and external routines.

3. The database server retrieves, adds, or updates the appropriate records and performs disk I/O operations directly 

related to the query.

4. The database server performs any background I/O operations, such as logging and page cleaning, that occur during 

the period in which the query or transaction is still pending.

5. The database server returns a result to the application.

6. The application displays the information or issues a confirmation and then issues a new prompt to the user.

Figure 1: Components of the response time for a single transaction  on page 9 contains a diagram that shows how the 

actions just described in steps 1 through 6 contribute to the overall response time.

Figure  1. Components of the response time for a single transaction

Response time and throughput
Response time and throughput are related. The response time for an average transaction tends to decrease as you increase 

overall throughput.

However, you can decrease the response time for a specific query, at the expense of overall throughput, by allocating a 

disproportionate amount of resources to that query. Conversely, you can maintain overall throughput by restricting the 

resources that the database allocates to a large query.

9



HCL Informix 14.10 - Performance Guide

10

The trade-off between throughput and response time becomes evident when you try to balance the ongoing need for high 

transaction throughput with an immediate need to perform a large decision-support query. The more resources that you 

apply to the query, the fewer you have available to process transactions, and the larger the impact your query can have on 

transaction throughput. Conversely, the fewer resources you allow the query, the longer the query takes.

Response-time measurement
To measure the response time for a query or application, you can use the timing commands and performance monitoring 

and timing functions that your operating system provides.

Operating-system timing commands
Your operating system typically has a utility that you can use to time a command. You can often use this timing utility to 

measure the response times to SQL  statements that a DB-Access  command file issues.

UNIX™  Only

If you have a command file that performs a standard set of SQL  statements, you can use the time  command on 

many systems to obtain an accurate timing for those commands.

The following example shows the output of the UNIX™  time  command:

time commands.dba
...
4.3 real          1.5 user              1.3 sys 

The time  output lists the amount of elapsed time (real), the user CPU time, and the system CPU time. If you 

use the C shell, the first three columns of output from the C shell time  command show the user, system, and 

elapsed times, respectively. In general, an application often performs poorly when the proportion of system 

CPU time exceeds one-third of the total elapsed time.

The time  command gathers timing information about your application. You can use this command to invoke 

an instance of your application, perform a database operation, and then exit to obtain timing figures, as the 

following example illustrates:

time sqlapp
   (enter SQL command through sqlapp, then exit)
10.1 real          6.4 user           3.7 sys

You can use a script to run the same test repeatedly, which allows you to obtain comparable results under 

different conditions. You can also obtain estimates of your average response time by dividing the elapsed time 

for the script by the number of database operations that the script performs.

Operating-system tools for monitoring performance
Operating systems usually have a performance monitor that you can use to measure response time for a query or process.

Windows™  Only

You can often use the Performance Logs and Alerts that the Windows™  operating system supplies to measure 

the following times:



Chapter 1. Performance Guide

• User time

• Processor time

• Elapsed time

Timing functions within your application
Most programming languages have a library function for the time of day. If you have access to the source code, you can 

insert pairs of calls to this function to measure the elapsed time between specific actions.

ESQL/C Only

For example, if the application is written in IBM®  Informix®  ESQL/C, you can use the dtcurrent()  function to 

obtain the current time. To measure response time, you can call dtcurrent()  to report the time at the start of a 

transaction and again to report the time when the transaction commits.

Elapsed time, in a multiprogramming system or network environment where resources are shared among multiple processes, 

does not always correspond to execution time. Most operating systems and C libraries contain functions that return the CPU 

time of a program.

Cost per transaction
The cost per transaction is a financial measure that is typically used to compare overall operating costs among applications, 

database servers, or hardware platforms. You can measure the cost per transaction.

To measure the cost per transaction:

1. Calculate all the costs associated with operating an application. These costs can include the installed price of the 

hardware and software; operating costs, including salaries; and other expenses.

These costs can include the installed price of the hardware and software; operating costs, including salaries; and 

other expenses.

2. Project the total number of transactions and queries for the effective life of an application.

3. Divide the total cost over the total number of transactions.

Results

Although this measure is useful for planning and evaluation, it is seldom relevant to the daily issues of achieving optimum 

performance.

Resource utilization and performance
A typical transaction-processing application undergoes different demands throughout its various operating cycles. Peak 

loads during the day, week, month, and year, as well as the loads imposed by decision-support (DSS) queries or backup 

operations, can significantly impact any system that is running near capacity. You can use direct historical data derived from 

your particular system to pinpoint this impact.

You must take regular measurements of the workload and performance of your system to predict peak loads and compare 

performance measurements at different points in your usage cycle. Regular measurements help you to develop an overall 

11



HCL Informix 14.10 - Performance Guide

12

performance profile for your database server applications. This profile is critical in determining how to improve performance 

reliably.

For the measurement tools that the database server provides, see Database server tools  on page 22. For the tools that 

your operating system provides for measuring performance impacts on system and hardware resources, see Operating-

system tools  on page 21.

Utilization  is the percentage of time that a component is actually occupied, as compared with the total time that the 

component is available for use. For instance, if a CPU processes transactions for a total of 40 seconds during a single 

minute, its utilization during that interval is 67 percent.

Measure and record utilization of the following system resources regularly:

• CPU

• Memory

• Disk

A resource is said to be critical  to performance when it becomes overused or when its utilization is disproportionate to that 

of other components. For instance, you might consider a disk to be critical or overused when it has a utilization of 70 percent 

and all other disks on the system have 30 percent. Although 70 percent does not indicate that the disk is severely overused, 

you can improve performance by rearranging data to balance I/O requests across the entire set of disks.

How you measure resource utilization depends on the tools that your operating system provides for reporting system activity 

and resource utilization. After you identify a resource that seems overused, you can use the performance-monitoring utilities 

that the database server provides to gather data and make inferences about the database activities that might account for 

the load on that component. You can adjust your database server configuration or your operating system to reduce those 

database activities or spread them among other components. In some cases, you might need to provide additional hardware 

resources to resolve a performance bottleneck.

Resource utilization
Whenever a system resource, such as a CPU or a particular disk, is occupied by a transaction or query, the resource is 

unavailable for processing other requests. Pending requests must wait for the resources to become available before they 

can complete.

When a component is too busy to keep up with all its requests, the overused component becomes a bottleneck in the flow of 

activity. The higher the percentage of time that the resource is occupied, the longer each operation must wait for its turn.

You can use the following formula to estimate the service time for a request based on the overall utilization of the 

component that services the request. The expected service time includes the time that is spent both waiting for and using 

the resource in question. Think of service time as that portion of the response time accounted for by a single component 

within your computer, as the following formula shows:

S= P/(1-U)



Chapter 1. Performance Guide

S

is the expected service time.

P

is the processing time that the operation requires after it obtains the resource.

U

is the utilization for the resource (expressed as a decimal).

As Figure 2: Service Time for a Single Component as a Function of Resource Utilization  on page 13 shows, the service 

time for a single component increases dramatically as the utilization increases beyond 70 percent. For instance, if a 

transaction requires 1 second of processing by a given component, you can expect it to take 2 seconds on a component at 

50 percent utilization and 5 seconds on a component at 80 percent utilization. When utilization for the resource reaches 90 

percent, you can expect the transaction to take 10 seconds to make its way through that component.

Figure  2. Service Time for a Single Component as a Function of Resource Utilization

If the average response time for a typical transaction soars from 2 or 3 seconds to 10 seconds or more, users are certain to 

notice and complain.

Important:  Monitor any system resource that shows a utilization of over 70 percent or any resource that exhibits 

symptoms of overuse as described in the following sections.

When you consider resource utilization, also consider whether increasing the page size of a standard or temporary dbspace 

is beneficial in your environment. If you want a longer key length than is available for the default page size of a standard or 

temporary dbspace, you can increase the page size.

CPU utilization
Estimates of CPU utilization and response time can help you determine if you need to eliminate or reschedule some 

activities.

You can use the resource-utilization formula in the previous topic (Resource utilization  on page 12) to estimate the 

response time for a heavily loaded CPU. However, high utilization for the CPU does not always indicate a performance 

problem. The CPU performs all calculations that are needed to process transactions. The more transaction-related 

calculations that it performs within a given period, the higher the throughput will be for that period. As long as transaction 

throughput is high and seems to remain proportional to CPU utilization, a high CPU utilization indicates that the computer is 

being used to the fullest advantage.

13



HCL Informix 14.10 - Performance Guide

14

On the other hand, when CPU utilization is high but transaction throughput does not keep pace, the CPU is either processing 

transactions inefficiently or it is engaged in activity not directly related to transaction processing. CPU cycles are being 

diverted to internal housekeeping tasks such as memory management.

You can easily eliminate the following activities:

• Large queries that might be better scheduled at an off-peak time

• Unrelated application programs that might be better performed on another computer

If the response time for transactions increases to such an extent that delays become unacceptable, the processor might be 

swamped; the transaction load might be too high for the computer to manage. Slow response time can also indicate that the 

CPU is processing transactions inefficiently or that CPU cycles are being diverted.

When CPU utilization is high, a detailed analysis of the activities that the database server performs can reveal any sources 

of inefficiency that might be present due to improper configuration. For information about analyzing database server activity, 

see Database server tools  on page 22.

Memory utilization
Memory is not managed as a single component, such as a CPU or disk, but as a collection of small components called 

pages.

The size of a typical page in memory can range from 1 to 8 kilobytes, depending on your operating system. A computer with 

64 megabytes of memory and a page size of 2 kilobytes contains approximately 32,000 pages.

When the operating system needs to allocate memory for use by a process, it scavenges any unused pages within memory 

that it can find. If no free pages exist, the memory-management system has to choose pages that other processes are still 

using and that seem least likely to be needed in the short run. CPU cycles are required to select those pages. The process of 

locating such pages is called a page scan. CPU utilization increases when a page scan is required.

Memory-management systems typically use a least recently used  algorithm to select pages that can be copied out to disk 

and then freed for use by other processes. When the CPU has identified pages that it can appropriate, it pages out  the old 

page images by copying the old data from those pages to a dedicated disk. The disk or disk partition that stores the page 

images is called the swap disk, swap space, or swap area. This paging activity requires CPU cycles as well as I/O operations.

Eventually, page images that have been copied to the swap disk must be brought back in for use by the processes that 

require them. If there are still too few free pages, more must be paged out to make room. As memory comes under 

increasing demand and paging activity increases, this activity can reach a point at which the CPU is almost fully occupied 

with paging activity. A system in this condition is said to be thrashing. When a computer is thrashing, all useful work comes 

to a halt.

To prevent thrashing, some operating systems use a coarser memory-management algorithm after paging activity crosses 

a certain threshold. This algorithm is called swapping. When the memory-management system resorts to swapping, it 

appropriates all pages that constitute an entire process image at once, rather than a page at a time.



Chapter 1. Performance Guide

Swapping frees up more memory with each operation. However, as swapping continues, every process that is swapped 

out must be read in again, dramatically increasing disk I/O to the swap device and the time required to switch between 

processes. Performance is then limited to the speed at which data can be transferred from the swap disk back into memory. 

Swapping is a symptom of a system that is severely overloaded, and throughput is impaired.

Many systems provide information about paging activity that includes the number of page scans performed, the number of 

pages sent out of memory (paged out), and the number of pages brought in from memory (paged in):

• Paging out is the critical factor because the operating system pages out only when it cannot find pages that are free 

already.

• A high rate of page scans provides an early indicator that memory utilization is becoming a bottleneck.

• Pages for terminated processes are freed in place and simply reused, so paging-in activity does not provide an 

accurate reflection of the load on memory. A high rate of paging in can result from a high rate of process turnover 

with no significant performance impact.

Although the principle for estimating the service time for memory is the same as that described in Resource utilization and 

performance  on page 11, you use a different formula to estimate the performance impact of memory utilization than you 

do for other system components.

You can use the following formula to calculate the expected paging delay for a given CPU utilization level and paging rate:

PD= (C/(1-U)) * R  * T

PD

is the paging delay.

C

is the CPU service time for a transaction.

U

is the CPU utilization (expressed as a decimal).

R

is the paging-out rate.

T

is the service time for the swap device.

As paging increases, CPU utilization also increases, and these increases are compounded. If a paging rate of 10 per second 

accounts for 5 percent of CPU utilization, increasing the paging rate to 20 per second might increase CPU utilization by an 

additional 5 percent. Further increases in paging lead to even sharper increases in CPU utilization, until the expected service 

time for CPU requests becomes unacceptable.

Disk utilization
Because transfer rates vary among disks, most operating systems do not report disk utilization directly. Instead, they report 

the number of data transfers per second (in operating-system memory-page-size units.)

15



HCL Informix 14.10 - Performance Guide

16

Because each disk acts as a single resource, you can use the following basic formula to estimate the service time, which is 

described in detail in Resource utilization  on page 12:

S= P/(1-U)

To compare the load on disks with similar access times, simply compare the average number of transfers per second.

If you know the access time for a given disk, you can use the number of transfers per second that the operating system 

reports to calculate utilization for the disk. To do so, multiply the average number of transfers per second by the access 

time for the disk as listed by the disk manufacturer. Depending on how your data is laid out on the disk, your access times 

can vary from the rating of the manufacturer. To account for this variability, you should add 20 percent to the access-time 

specification of the manufacturer.

The following example shows how to calculate the utilization for a disk with a 30-millisecond access time and an average of 

10 transfer requests per second:

U  =     (A  * 1.2) * X

  =     (.03 * 1.2) * 10
  =     .36

U

is the resource utilization (this time of a disk).

A

is the access time (in seconds) that the manufacturer lists.

X

is the number of transfers per second that your operating system reports.

You can use the utilization to estimate the processing time at the disk for a transaction that requires a given number of disk 

transfers. To calculate the processing time at the disk, multiply the number of disk transfers by the average access time. 

Include an extra 20 percent to account for access-time variability:

P  = D  (A  * 1.2) 

P

is the processing time at the disk.

D

is the number of disk transfers.

A

is the access time (in seconds) that the manufacturer lists.

For example, you can calculate the processing time for a transaction that requires 20 disk transfers from a 30-millisecond 

disk as follows:

P  =    20 (.03 * 1.2)
  =    20 * .036
  =    .72



Chapter 1. Performance Guide

Use the processing time and utilization values that you calculated to estimate the expected service time for I/O at the 

particular disk, as the following example shows:

S  =    P/(1-U)
  =    .72 / (1 - .36)
  =    .72 / .64
  =    1.13

Factors that affect resource utilization
The performance of your database server application depends many factors, including hardware and software configuration, 

your network configuration, and the design of your database.

You must consider these factors when you attempt to identify performance problems or make adjustments to your system:

• Hardware resources

As discussed earlier in this chapter, hardware resources include the CPU, physical memory, and disk I/O subsystems.

• Operating-system configuration

The database server depends on the operating system to provide low-level access to devices, process scheduling, 

interprocess communication, and other vital services.

The configuration of your operating system has a direct impact on how well the database server performs. The 

operating-system kernel takes up a significant amount of physical memory that the database server or other 

applications cannot use. However, you must reserve adequate kernel resources for the database server to use.

• Network configuration and traffic

Applications that depend on a network for communication with the database server, and systems that rely on data 

replication to maintain high availability, are subject to the performance constraints of that network. Data transfers 

over a network are typically slower than data transfers from a disk. Network delays can have a significant impact on 

the performance of the database server and other application programs that run on the host computer.

• Database server configuration

Characteristics of your database server instance, such as the number of CPU virtual processors (VPs), the size of 

your resident and virtual shared-memory portions, and the number of users, play an important role in determining the 

capacity and performance of your applications.

• Dbspace, blobspace, and chunk configuration

The following factors can affect the time that it takes the database server to perform disk I/O and process 

transactions:

◦ The placement of the root dbspace, physical logs, logical logs, and temporary-table dbspaces

◦ The presence or absence of mirroring

◦ The use of devices that are buffered or unbuffered by the operation system

• Database and table placement

17



HCL Informix 14.10 - Performance Guide

18

The placement of tables and fragments within dbspaces, the isolation of high-use fragments in separate dbspaces, 

and the spreading of fragments across multiple dbspaces can affect the speed at which the database server can 

locate data pages and transfer them to memory.

• Tblspace organization and extent sizing

Fragmentation strategy and the size and placement of extents can affect the ability of the database server to scan a 

table rapidly for data. Avoid interleaved extents and allocate extents that are sufficient to accommodate growth of a 

table to prevent performance problems.

• Query efficiency

Proper query construction and cursor use can decrease the load that any one application or user imposes. Remind 

users and application developers that others require access to the database and that each person's activities affect 

the resources that are available to others.

• Scheduling background I/O activities

Logging, checkpoints, page cleaning, and other operations, such as making backups or running large decision-

support queries, can impose constant overhead and large temporary loads on the system. Schedule backup and 

batch operations for off-peak times whenever possible.

• Remote client/server operations and distributed join operations

These operations have an important impact on performance, especially on a host system that coordinates distributed 

joins.

• Application-code efficiency

Application programs introduce their own load on the operating system, the network, and the database server. These 

programs can introduce performance problems if they make poor use of system resources, generate undue network 

traffic, or create unnecessary contention in the database server. Application developers must make proper use of 

cursors and locking levels to ensure good database server performance.

Maintenance of good performance
Performance is affected in some way by all system users: the database server administrator, the database administrator, the 

application designers, and the client application users.

The database server administrator usually coordinates the activities of all users to ensure that system performance meets 

overall expectations. For example, the operating-system administrator might need to reconfigure the operating system 

to increase the amount of shared memory. Bringing down the operating system to install the new configuration requires 

bringing the database server down. The database server administrator must schedule this downtime and notify all affected 

users when the system will be unavailable.

The database server administrator should:



Chapter 1. Performance Guide

• Be aware of all performance-related activities that occur.

• Educate users about the importance of performance, how performance-related activities affect them, and how they 

can assist in achieving and maintaining optimal performance.

The database administrator should pay attention to:

• How tables and queries affect the overall performance of the database server

• The placement of tables and fragments

• How the distribution of data across disks affects performance

Application developers should:

• Carefully design applications to use the concurrency and sorting facilities that the database server provides, rather 

than attempt to implement similar facilities in the application.

• Keep the scope and duration of locks to the minimum to avoid contention for database resources.

• Include routines within applications that, when temporarily enabled at runtime, allow the database server 

administrator to monitor response times and transaction throughput.

Database users should:

• Pay attention to performance and report problems to the database server administrator promptly.

• Be courteous when they schedule large, decision-support queries and request as few resources as possible to get the 

work done.

Performance monitoring and the tools you use
You can use performance monitoring tools to create a performance history, to monitor database resources at scheduled 

times, or to monitor ongoing transaction or query performance.

This chapter also contains cross-references to topics that about how to interpret the results of performance monitoring

The kinds of data that you need to collect depend on the kinds of applications that you run on your system. The causes 

of performance problems on OLTP (online transaction processing) systems are different from the causes of problems on 

systems that are used primarily for DSS query applications. Systems with mixed use provide a greater performance-tuning 

challenge and require a sophisticated analysis of performance-problem causes.

Evaluate the current configuration
Before you begin to adjust the configuration of your database server, evaluate the performance of your current configuration. 

You can view the contents of your configuration file with onstat  commands.

To alter certain database server characteristics, you must bring down the database server, which can affect your production 

system. Some configuration adjustments can unintentionally decrease performance or cause other negative side effects.

If your database applications satisfy user expectations, avoid frequent adjustments, even if those adjustments might 

theoretically improve performance. If your users are reasonably satisfied, take a measured approach to reconfiguring the 

19



HCL Informix 14.10 - Performance Guide

20

database server. When possible, use a test instance of the database server to evaluate configuration changes before you 

reconfigure your production system.

When performance problems relate to backup operations, you might also examine the number or transfer rates for tape 

drives. You might need to alter the layout or fragmentation of your tables to reduce the impact of backup operations. For 

information about disk layout and table fragmentation, see Table performance considerations  on page 157 and Indexes 

and index performance considerations  on page 210.

For client/server configurations, consider network performance and availability. Evaluating network performance is beyond 

the scope of this publication. For information about monitoring network activity and improving network availability, see your 

network administrator or see the documentation for your networking package.

Determine whether you want to set the configuration parameters that help maintain server performance by automatically 

adjusting properties of the database server while it is running, for example:

• AUTO_AIOVPS: Adds AIO virtual processors when I/O workload increases.

• AUTO_CKPTS: Increases the frequency of checkpoints to avoid transaction blocking.

• AUTO_LRU_TUNING: Manages cached data flushing as the server load changes.

• AUTO_READAHEAD: Changes the automatic read-ahead mode or disables automatic read-ahead operations for a 

query.

• AUTO_REPREPARE: Reoptimizes SPL routines and reprepares prepared objects after a schema change.

• AUTO_STAT_MODE: Enables or disables the mode for selectively updating only stale or missing data distributions in 

UPDATE STATISTICS operations.

• AUTO_TUNE: Enables or disables all automatic tuning configuration parameters that have values that are not present 

in your configuration file.

• DYNAMIC_LOGS: Allocates additional log files when necessary.

• LOCKS: Allocates additional locks when necessary.

• RTO_SERVER_RESTART: Provides the best performance possible while meeting the recovery time objective after a 

problem.

Related information

onstat -c command: Print ONCONFIG file contents  on page 

onstat -g cfg command: Print the current values of configuration parameters  on page 

Create a performance history
As soon as you set up your database server and begin to run applications on it, you should begin scheduled monitoring of 

resource use. As you accumulate data, you can analyze performance information.

To accumulate data for performance analysis, use the command-line utilities described in Database server tools  on 

page 22 and Operating-system tools  on page 21 in operating scripts or batch files.

../%20adr/ids_adr_0502.html#ids_adr_0502
../%20adr/ids_adr_0502.html#ids_adr_0502
../%20adr/ids_adr_0502.html#ids_adr_0502
../%20adr/ids_adr_0502.html#ids_adr_0502
../%20adr/ids_adr_1154.html#ids_adr_1154
../%20adr/ids_adr_1154.html#ids_adr_1154
../%20adr/ids_adr_1154.html#ids_adr_1154
../%20adr/ids_adr_1154.html#ids_adr_1154


Chapter 1. Performance Guide

The importance of a performance history
If you have a history of the performance of your system, you can begin to track the cause of problems as soon as users 

report slow response or inadequate throughput.

If a history is not available, you must start tracking performance after a problem arises, and you might not be able to tell 

when and how the problem began. Trying to identify problems after the fact significantly delays resolution of a performance 

problem.

To build a performance history and profile of your system, take regular snapshots of resource-utilization information.

For example, if you chart the CPU utilization, paging-out rate, and the I/O transfer rates for the various disks on your system, 

you can begin to identify peak-use levels, peak-use intervals, and heavily loaded resources.

If you monitor fragment use, you can determine whether your fragmentation scheme is correctly configured. Monitor other 

resource use as appropriate for your database server configuration and the applications that run on it.

Choose tools from those described in the following sections, and create jobs that build up a history of disk, memory, I/O, 

and other database server resource use. To help you decide which tools to use to create a performance history, this chapter 

briefly describes the output of each tool.

Tools that create a performance history
When you monitor database server performance, you use tools from the host operating system and command-line utilities 

that you can run at regular intervals from scripts or batch files.

You also use performance monitoring tools with a graphical interface to monitor critical aspects of performance as queries 

and transactions are performed.

Operating-system tools
The database server relies on the operating system of the host computer to provide access to system resources such as 

the CPU, memory, and various unbuffered disk I/O interfaces and files. Each operating system has its own set of utilities for 

reporting how system resources are used.

Different implementations of some operating systems have monitoring utilities with the same name but different options and 

informational displays.

UNIX™  Only

The following table lists some UNIX™  utilities that monitor system resources.

UNIX™ 

Utility Description

vmstat  utility Displays virtual-memory statistics

iostat  utility Displays I/O utilization statistics

21



HCL Informix 14.10 - Performance Guide

22

UNIX™ 

Utility Description

sar  utility Displays a variety of resource 

statistics

ps  utility Displays active process information

For details on how to monitor your operating-system resources, consult the reference manual or your system administration 

guide.

To capture the status of system resources at regular intervals, use scheduling tools that are available with your host 

operating system (for example, cron) as part of your performance monitoring system.

Windows™  Only

You can often use the Performance Logs and Alerts that the Windows™  operating system supplies to monitor resources 

such as processor, memory, cache, threads, and processes. The Performance Logs and Alerts also provide charts, alerts, 

reports, and the ability to save information to log files for later analysis.

For more information about how to use the Performance Logs and Alerts, consult your operating-system manuals.

Database server tools
The database server provides tools and utilities that capture snapshot information about your configuration and 

performance.

You can use these utilities regularly to build a historical profile of database activity, which you can compare with current 

operating-system resource-utilization data. These comparisons can help you discover which database server activities have 

the greatest impact on system-resource utilization. You can use this information to identify and manage your high-impact 

activities or adjust your database server or operating-system configuration.

The database server tools and utilities that you can use for performance monitoring include:

• The onstat  utility

• The onlog  utility

• The oncheck  utility

• The ON-Monitor  utility (on UNIX™  only)

• The onperf  utility (on UNIX™  only)

• DB-Access  and the system-monitoring interface (SMI), which you can use to monitor performance from within your 

application

• SQL administration API commands

You can use onstat, onlog, or oncheck  commands invoked by the cron  scheduling facility to capture performance-related 

information at regular intervals and build a historical performance profile of your database server application. The following 

sections describe these utilities.



Chapter 1. Performance Guide

You can use SQL  SELECT statements to query the system-monitoring interface (SMI) from within your application.

The SMI tables are a collection of tables and pseudo-tables in the sysmaster  database that contain dynamically updated 

information about the operation of the database server. The database server constructs these tables in memory but does not 

record them on disk. The onstat  utility options obtain information from these SMI tables.

You can use cron  and SQL  scripts with DB-Access  or onstat  utility options to query SMI tables at regular intervals.

Tip:  The SMI tables are different from the system catalog tables. System catalog tables contain permanently 

stored and updated information about each database and its tables (sometimes referred to as metadata  or a data 

dictionary).

You can use ON-Monitor  to check the current database server configuration.

You can use onperf  to display database server activity with the Motif window manager.

Related information

The onstat utility  on page 

The onlog utility  on page 

The oncheck Utility  on page 

DB-Access User's Guide  on page 

The System-Monitoring Interface Tables  on page 

System catalog tables  on page 

The onperf utility on UNIX  on page 452

SQL administration API portal: Arguments by functional category  on page 

SQL administration API portal: Arguments by privilege groups  on page 

Performance information that HCL Informix®  Server Administrator provides
IBM®  Informix®  Server Administrator  (ISA) is a browser-based tool that provides Web-based system administration for the 

entire range of HCL Informix®  database servers.

ISA  is the first in a new generation of browser-based, cross-platform administrative tools. It provides access to every 

Informix®  database server command-line function and presents the output in an easy-to-read format.

The database server CD-ROM distributed with your product includes ISA. For information on how to install ISA, see the 

following file on the CD-ROM.

23

../%20adr/ids_adr_0488.html#ids_adr_0488
../%20adr/ids_adr_0488.html#ids_adr_0488
../%20adr/ids_adr_0488.html#ids_adr_0488
../%20adr/ids_adr_0488.html#ids_adr_0488
../%20adr/ids_adr_0402.html#ids_adr_0402
../%20adr/ids_adr_0402.html#ids_adr_0402
../%20adr/ids_adr_0402.html#ids_adr_0402
../%20adr/ids_adr_0402.html#ids_adr_0402
../%20adr/ids_adr_0369.html#ids_adr_0369
../%20adr/ids_adr_0369.html#ids_adr_0369
../%20adr/ids_adr_0369.html#ids_adr_0369
../%20adr/ids_adr_0369.html#ids_adr_0369
../dba/dba.html#dba
../dba/dba.html#dba
../dba/dba.html#dba
../dba/dba.html#dba
../%20adr/ids_adr_0210.html#ids_adr_0210
../%20adr/ids_adr_0210.html#ids_adr_0210
../%20adr/ids_adr_0210.html#ids_adr_0210
../%20adr/ids_adr_0210.html#ids_adr_0210
../sqr/ids_sqr_009.html#ids_sqr_009
../sqr/ids_sqr_009.html#ids_sqr_009
../sqr/ids_sqr_009.html#ids_sqr_009
../sqr/ids_sqr_009.html#ids_sqr_009
../%20adr/ids_sapi_095.html#ids_sapi_095
../%20adr/ids_sapi_095.html#ids_sapi_095
../%20adr/ids_sapi_095.html#ids_sapi_095
../%20adr/ids_sapi_095.html#ids_sapi_095
../%20adr/ids_sapi_147.html#ids_sapi_147
../%20adr/ids_sapi_147.html#ids_sapi_147
../%20adr/ids_sapi_147.html#ids_sapi_147
../%20adr/ids_sapi_147.html#ids_sapi_147


HCL Informix 14.10 - Performance Guide

24

Table  1. Operating system file

Operating 

System File

UNIX™ /SVR_ADM/README

Windows™ \SVR_ADM\readme.

txt

With ISA, you can use a browser to perform these common database server administrative tasks:

• Change configuration parameters temporarily or permanently

• Change the database server mode between online and offline and its intermediate states

• Modify connectivity information in the sqlhosts  file

• Check dbspaces, sbspaces, logs, and other objects

• Manage logical and physical logs

• Examine memory use and adding and freeing memory segments

• Read the message log

• Back up and restore dbspaces and sbspaces

• Run various onstat  commands to monitor performance

• Enter simple SQL  statements and examine database schemas

• Add and remove chunks, dbspaces, and sbspaces

• Examine and manage user sessions

• Examine and manage virtual processors (VPs)

• Use the High-Performance Loader (HPL), dbimport, and dbexport

• Manage Enterprise Replication

• Manage an HCL Informix®  MaxConnect  server

• Use the following utilities: dbaccess, dbschema, onbar, oncheck, ondblog, oninit, onlog, onmode, onparams, 

onspaces, and onstat

You also can enter any Informix®  utility, UNIX™  shell command, or Windows™  command (for example, oncheck -cd; ls -l).

Performance information that the onstat utility displays
The onstat  utility displays a wide variety of performance-related and status information contained within the SMI tables. You 

can use the onstat  utility to check the current status of the database server and monitor the activities of the database server.

For a complete list of all onstat  options, use the onstat - -  command. For a complete display of all the information that onstat 

gathers, use the onstat -a  command.

Tip:  Profile information displayed by onstat  commands, such as onstat -p, accumulates from the time the database 

server was started. To clear performance profile statistics so that you can create a new profile, run the onstat -z. If 



Chapter 1. Performance Guide

you use onstat -z  to reset statistics for a performance history or appraisal, ensure that other users do not also enter 

the command at different intervals.

The following table lists some of the onstat  commands that display general performance-related information.

Table  2. onstat commands that display performance information

onstat co

mmand Description

onstat -p Displays a performance profile that includes the number of reads and writes, the number of times that a 

resource was requested but was not available, and other miscellaneous information

onstat -b Displays information about buffers currently in use

onstat -l Displays information about the physical and logical logs

onstat -x Displays information about transactions, including the thread identifier of the user who owns the transaction

onstat -u Displays a user activity profile that provides information about user threads including the thread owner's session 

ID and login name

onstat -R Displays information about buffer pools, including information about buffer pool page size.

onstat -F Displays page-cleaning statistics that include the number of writes of each type that flushes pages to disk

onstat -g Requires an additional argument that specifies the information to be displayed

For example, onstat -g mem  displays memory statistics.

For more information about options that provide performance-related information, see Monitoring fragmentation with the 

onstat -g ppf command  on page 294 and Monitor database server resources  on page 25.

Related information

onstat -g monitoring options  on page 

Monitor database server resources
Monitor specific database server resources to identify performance bottlenecks and potential trouble spots and to improve 

resource use and response time.

One of the most useful commands for monitoring system resources is onstat -g  and its many options.

Monitor resources that impact CPU utilization
Threads, network communications, and virtual processors impact CPU utilization. You can use onstat -g  arguments to 

monitor threads, network communications, and virtual processors.

Use the following onstat -g  command options to monitor threads.

25

../%20adr/ids_adr_0510.html#ids_adr_0510
../%20adr/ids_adr_0510.html#ids_adr_0510
../%20adr/ids_adr_0510.html#ids_adr_0510
../%20adr/ids_adr_0510.html#ids_adr_0510


HCL Informix 14.10 - Performance Guide

26

onstat -g 

Option Description

act Displays active threads.

ath Displays all threads.

The sqlexec  threads represent portions of client sessions; the rstcb  value corresponds to the user field of the 

onstat -u  command.

cpu Displays the last time the thread ran, how much CPU time the thread used, the number of times the thread ran, 

and other statistics about all the threads running in the server.

rea Displays ready threads.

sle Displays all sleeping threads.

sts Displays maximum and current stack use per thread.

tpf  tid Displays a thread profile for tid.

If tid  is 0, this argument displays profiles for all threads.

wai Displays waiting threads, including all threads waiting on mutex or condition, or yielding.

Use the following onstat -g  command options to monitor the network.

onstat -g  Command Option Description

ntd Displays network statistics by service.

ntt Displays network user times.

ntu Displays network user statistics.

qst Displays queue statistics.

Use the following onstat -g  command options to monitor virtual processors.

onstat 

-g Com

mand 

Option Description

glo Displays global multithreading information, including CPU-use information about virtual processors, the total 

number of sessions, and other multithreading global counters.

sch Displays the number of semaphore operations, spins, and busy waits for each VP.

spi Displays spin locks that are acquired by virtual processors after they have spun more than 10,000 times.

To reduce contention, reduce the number of virtual processors, reduce the load on the computer, or, on 

some platforms, use the no-age  or processor affinity  options of virtual processors. If sh_lock  mutexes 



Chapter 1. Performance Guide

onstat 

-g Com

mand 

Option Description

have highly contended spin locks, create private memory caches for CPU virtual processors by setting the 

VP_MEMORY_CACHE_KB configuration parameter.

wst Displays wait statistics.

Monitor memory utilization
You can use some specific onstat -g  command options to monitor memory utilization.

Use the following onstat -g  options to monitor memory utilization. For overall memory information, omit table name, pool 

name, or  session id  from the commands that permit those optional parameters.

Table  3. onstat -g  Options for monitoring memory utilization

Argument Description

ffr  pool 

name  | 

session id

Displays free fragments for a pool of shared memory or by session

dic table 

name

Displays one line of information for each table cached in the shared-memory dictionary

If you provide a specific table name as a parameter, this argument displays internal SQL information about that 

table.

dsc Displays one line of information for each column of distribution statistics cached in the data distribution cache.

mem  pool 

name  | 

session id

Displays memory statistics for the pools that are associated with a session

If you omit pool_name  | session id, this argument displays pool information for all sessions.

mgm Displays Memory Grant Manager resource information, including:

• The values of the PDQ configuration parameters

• Memory and scan information

• Load information, such as the number of queries that are waiting for memory, the number of queries 

that are waiting for scans, the number of queries that are waiting for queries with higher PDQ priority to 

run, and the number of queries that are waiting for a query slot

• Active queries and the number of queries at each gate

• Statistics on free resources

27



HCL Informix 14.10 - Performance Guide

28

Table  3. onstat -g  Options for monitoring memory utilization  (continued)

Argument Description

• Statistics on queries

• The resource/lock cycle prevention count, which shows the number of times the system immediately 

activated a query to avoid a potential deadlock

nsc  client 

id

Displays shared-memory status by client ID

If you omit client id, this argument displays all client status areas.

nsd Displays network shared-memory data for poll threads

nss 

session id

Displays network shared-memory status by session id

If you omit session id, this argument displays all session status areas.

osi Displays information about your operating system resources and parameters, including shared memory and 

semaphore parameters, the amount of memory currently configured on the computer, and the amount of 

memory that is unused

Use this option when the server is not online.

prc Displays one line of information for each user-defined routine (SPL  routine or external routine written in C or 

Java™  programming language) cached in the UDR cache

seg Displays shared-memory-segment statistics

This argument shows the number and size of all attached segments.

ses 

session id

Displays memory usage for session id

If you omit session id, this argument displays memory usage for all sessions.

ssc Displays one line of information for each query cached in the SQL  statement cache

stm 

session id

Displays memory usage of each SQL  statement for session id

If you omit session id, this argument displays memory usage for all sessions.

ufr  pool 

name  | 

session id

Displays allocated pool fragments by user or session

Related information

onstat -g monitoring options  on page 

../%20adr/ids_adr_0510.html#ids_adr_0510
../%20adr/ids_adr_0510.html#ids_adr_0510
../%20adr/ids_adr_0510.html#ids_adr_0510
../%20adr/ids_adr_0510.html#ids_adr_0510


Chapter 1. Performance Guide

Monitor disk I/O utilization
You can use some specific onstat -g  arguments and the oncheck  utility to determine if your disk I/O operations are efficient 

for your applications.

Using onstat -g to monitor I/O utilization
You can use some specific onstat -g  command arguments to monitor disk IO.

Use the following onstat -g  command arguments to monitor disk I/O utilization.

onstat -g 

Argument Description

iof Displays asynchronous I/O statistics by chunk or file

This argument is similar to the  onstat -d, except that information about nonchunk files also appears. This 

argument displays information about temporary dbspaces and sort files.

iog Displays asynchronous I/O global information

ioq Displays asynchronous I/O queuing statistics

iov Displays asynchronous I/O statistics by virtual processor

For a detailed case study that uses various onstat  outputs, see Case studies and examples  on page 471.

Using the oncheck utility to monitor I/O utilization
Disk I/O operations are usually the longest component of the response time for a query. You can use the oncheck  Utility to 

monitor disk I/O operations.

Contiguously allocated disk space improves sequential disk I/O operations, because the database server can read in larger 

blocks of data and use the read-ahead feature to reduce the number of I/O operations.

The oncheck  utility displays information about storage structures on a disk, including chunks, dbspaces, blobspaces, extents, 

data rows, system catalog tables, and other options. You can also use oncheck  to determine the number of extents that exist 

within a table and whether or not a table occupies contiguous space.

The oncheck  utility provides the following options and information that apply to contiguous space and extents.

Option Information

-pB Blobspace simple large object (TEXT or BYTE data)

For information about how to use this option to determine the efficiency of blobpage size, see Determine 

blobpage fullness with oncheck -pB output  on page 125.

-pe Chunks and extents

29



HCL Informix 14.10 - Performance Guide

30

Option Information

For information about how to use this option to monitor extents, see Checking for extent interleaving  on 

page 183 and Eliminating interleaved extents  on page 184.

-pk Index key values.

For information about how to improve the performance of this option, see Improving performance for 

index checks  on page 232.

-pK Index keys and row IDs

For information about how to improve the performance of this option, see Improving performance for 

index checks  on page 232.

-pl Index-leaf key values

For information about how to improve the performance of this option, see Improving performance for 

index checks  on page 232.

-pL Index-leaf key values and row IDs

For information about how to improve the performance of this option, see Improving performance for 

index checks  on page 232.

-pp Pages by table or fragment

For information about how to use this option to monitor space, see Considering the upper limit on 

extents  on page 183.

-pP Pages by chunk

For information about how to use this option to monitor extents, see Considering the upper limit on 

extents  on page 183.

-pr Root reserved pages

For information about how to use this option, see Estimating tables with fixed-length rows  on 

page 162.

-ps Space used by smart large objects and metadata in sbspace.

-pS Space used by smart large objects and metadata in sbspace and storage characteristics

For information about how to use this option to monitor space, see Monitoring sbspaces  on page 171.

-pt Space used by table or fragment



Chapter 1. Performance Guide

Option Information

For information about how to use this option to monitor space, see Estimating table size  on page 162.

-pT Space used by table, including indexes

For information about how to use this option to monitor space, see Performance of in-place alters for 

DDL operations  on page 201.

For more information about using oncheck  to monitor space, see Estimating table size  on page 162. For more information 

about concurrency during oncheck  execution, see Improving performance for index checks  on page 232.

Related information

The oncheck Utility  on page 

Monitor transactions
You can use the onlog  and onstat  utilities to monitor transactions.

Using the onlog utility to monitor transactions
The onlog  utility displays all or selected portions of the logical log. This utility can help you identify a problematic transaction 

or gauge transaction activity that corresponds to a period of high utilization, as indicated by your periodic snapshots of 

database activity and system-resource consumption.

This onlog  utility can take input from selected log files, the entire logical log, or a backup tape of previous log files.

Use onlog  with caution when you read logical-log files still on disk, because attempting to read unreleased log files stops 

other database activity. For greatest safety, back up the logical-log files first and then read the contents of the backup files. 

With proper care, you can use the onlog  -n  option to restrict onlog  only to logical-log files that have been released.

To check on the status of logical-log files, use onstat -l.

Related information

The onlog utility  on page 

Using the onstat utility to monitor transactions
If the throughput of transactions is not very high, you can use some onstat  utility commands to identify a transaction that 

might be a bottleneck.

Use the following onstat  utility commands to monitor transactions.

31

../%20adr/ids_adr_0369.html#ids_adr_0369
../%20adr/ids_adr_0369.html#ids_adr_0369
../%20adr/ids_adr_0369.html#ids_adr_0369
../%20adr/ids_adr_0369.html#ids_adr_0369
../%20adr/ids_adr_0402.html#ids_adr_0402
../%20adr/ids_adr_0402.html#ids_adr_0402
../%20adr/ids_adr_0402.html#ids_adr_0402
../%20adr/ids_adr_0402.html#ids_adr_0402


HCL Informix 14.10 - Performance Guide

32

onstat command Description

onstat -x Displays transaction information such as number of locks held and isolation 

level.

onstat -u Displays information about each user thread

onstat -k Displays locks held by each session

onstat -g sql Displays last SQL  statement this session executed

Related information

The onstat utility  on page 

Monitor sessions and queries
Monitoring sessions and threads is important for sessions that perform queries as well as sessions that perform inserts, 

updates, and deletes. Some of the information that you can monitor for sessions and threads allows you to determine if an 

application is using a disproportionate amount of the resources.

To monitor database server activity, you can view the number of active sessions and the amount of resources that they are 

using.

Monitoring memory usage for each session
You can use some specific onstat -g  command arguments to get memory information for each session.

Use the following command arguments to get memory information for each session.

onstat -g comm

and argument Description

ses Displays one-line summaries of all active sessions

ses  session id Displays session information by session id

sql  session id Displays SQL information by session

If you omit session id, this argument displays summaries of all sessions.

stm  session id Displays amount of memory used by each prepared SQL statement in a session

If you omit session id, this argument displays information for all prepared 

statements.

For examples and discussions of session-monitoring command-line utilities, see Monitoring memory usage for each session 

on page 432 and Monitor sessions and threads  on page 438.

../%20adr/ids_adr_0488.html#ids_adr_0488
../%20adr/ids_adr_0488.html#ids_adr_0488
../%20adr/ids_adr_0488.html#ids_adr_0488
../%20adr/ids_adr_0488.html#ids_adr_0488


Chapter 1. Performance Guide

Using the SET EXPLAIN statement
You can use the SET EXPLAIN statement or the EXPLAIN directive to display the query plan that the optimizer creates for an 

individual query.

About this task

For more information, see Display the query plan  on page 371.

Effect of configuration on CPU utilization
The combination of operating-system and Informix®  configuration parameters can affect CPU utilization. You can change 

the settings of the Informix®  configuration parameters that directly affect CPU utilization, and you can adjust the settings for 

different types of workloads.

Multiple database server instances that run on the same host computer perform poorly when compared with a single 

database server instance that manages multiple databases. Multiple database server instances cannot balance their loads 

as effectively as a single database server. Avoid multiple residency for production environments in which performance is 

critical.

UNIX™  configuration parameters that affect CPU utilization
Your database server distribution includes a machine notes file that contains recommended values for UNIX™  configuration 

parameters. Because the UNIX™  parameters affect CPU utilization, you should compare the values in the machine notes file 

with your current operating-system configuration.

The following UNIX™  parameters affect  CPU utilization:

• Semaphore parameters

• Parameters that set the maximum number of open file descriptors

• Memory configuration parameters

UNIX™  semaphore parameters
Semaphores  are kernel resources with a typical size of 1 byte each. Semaphores for the database server are in addition to 

any that you allocate for other software packages. You can set some UNIX™  semaphore parameters.

Each instance of the database server requires the following semaphore sets:

• One set for each group of up to 100 virtual processors (VPs) that are started with the database server

• One set for each additional VP that you might add dynamically while the database server is running

• One set for each group of 100 or fewer user sessions connected through the shared-memory communication 

interface

33



HCL Informix 14.10 - Performance Guide

34

Tip:  For best performance, allocate enough semaphores for double the number of ipcshm  connections that you 

expect. Use the NETTYPE configuration parameter to configure database server poll threads for this doubled number 

of connections.

Because utilities such as onmode  use shared-memory connections, you must configure a minimum of two semaphore 

sets for each instance of the database server: one for the initial set of VPs and one for the shared-memory connections 

that database server utilities use. The SEMMNI operating-system configuration parameter typically specifies the number 

of semaphore sets to allocate. For information about how to set semaphore-related parameters, see the configuration 

instructions for your operating system.

The SEMMSL operating-system configuration parameter typically specifies the maximum number of semaphores per set. Set 

this parameter to at least 100.

Some operating systems require that you configure a maximum total number of semaphores across all sets, which the 

SEMMNS operating-system configuration parameter typically specifies. Use the following formula to calculate the total 

number of semaphores that each instance of the database server requires:

SEMMNS  = init_vps  + added_vps  + (2 * shmem_users) + concurrent_utils 

init_vps

is the number of virtual processors (VPs) that are started with the database server. This number includes CPU, 

PIO, LIO, AIO, SHM, TLI, SOC, and ADM VPs. The minimum value is 15.

added_vps

is the number of VPs that you intend to add dynamically.

shmem_users

is the number of shared-memory connections that you allow for this instance of the database server.

concurrent_utils

is the number of concurrent database server utilities that can connect to this instance. It is suggested that you 

allow for a minimum of six utility connections: two for ON-Bar  and four for other utilities such as onstat, and 

oncheck.

If you use software packages that require semaphores, the SEMMNI configuration parameter must include the total 

number of semaphore sets that the database server and your other software packages require. You must set the SEMMSL 

configuration parameter to the largest number of semaphores per set that any of your software packages require. For 

systems that require the SEMMNS configuration parameter, multiply SEMMNI by the value of SEMMSL to calculate an 

acceptable value.

Related information

Configuring poll threads  on page 46



Chapter 1. Performance Guide

UNIX™  file-descriptor parameters
Some operating systems require you to specify a limit on the number of file descriptors that a process can have open at 

any one time. To specify this limit, use an operating-system configuration parameter, typically NOFILE, NOFILES, NFILE, or 

NFILES.

The number of open file descriptors that each instance of the database server needs depends on the number of chunks in 

your database, the number of VPs that you run, and the number of network connections that your database server instance 

must support.

Use the following formula to calculate the number of file descriptors that your instance of the database server requires:

NFILES = (chunks  * NUMBER_OF_AIO_VPS) + NUMBER_of_CPU_VPS + net_connections 

chunks

is the number of chunks to be configured.

net_connections

is the number of network connections that you specify in either of the following places:

• sqlhosts  file

• NETTYPE configuration entries

Network connections include all but those specified as the ipcshm  connection type.

Each open file descriptor is about the same length as an integer within the kernel. Allocating extra file descriptors is an 

inexpensive way to allow for growth in the number of chunks or connections on your system.

UNIX™  memory configuration parameters
The configuration of memory in the operating system can affect other resources, including CPU and I/O.

Insufficient physical memory for the overall system load can lead to thrashing, as Memory utilization  on page 14

describes. Insufficient memory for the database server can result in excessive buffer-management activity. For more 

information about configuring memory, see Configuring UNIX shared memory  on page 68.

Windows™  configuration parameters that affect CPU utilization
The Informix®  distribution includes a machine notes file that contains recommended values for Informix®  configuration 

parameters on Windows™. Compare the values in this file with your current ONCONFIG configuration file settings.

About this task

Informix®  runs in the background. For best performance, give the same priority to foreground and background applications.

On Windows™, to change the priorities of foreground and background applications, go to Start >  Settings >  Control 

Panel, open the System icon, and click the Advanced Tab. Select the Performance Options button and select either the 

Applications or  Background Services  radio button.

35



HCL Informix 14.10 - Performance Guide

36

The configuration of memory in the operating system can impact other resources, including CPU and I/O. Insufficient 

physical memory for the overall system load can lead to thrashing, as Memory utilization  on page 14 describes. 

Insufficient memory for Informix®  can result in excessive buffer-management activity. When you set the Virtual Memory 

values in the System icon on the Control Panel, ensure that you have enough paging space for the total amount of physical 

memory.

Configuration parameters and environment variables that affect CPU utilization
Some configuration parameters and environment variables affect CPU utilization. You might need to adjust the settings of 

these parameters and variables when you consider methods of improving performance.

The following configuration parameters in the database server configuration file have a significant impact on CPU utilization:

• DS_MAX_QUERIES

• DS_MAX_SCANS

• FASTPOLL

• MAX_PDQPRIORITY

• MULTIPROCESSOR

• NETTYPE

• OPTCOMPIND

• SINGLE_CPU_VP

• VPCLASS

• VP_MEMORY_CACHE_KB

The following environment variables affect CPU utilization:

• OPTCOMPIND

• PDQPRIORITY

• PSORT_NPROCS

The OPTCOMPIND  environment variable, when set in the environment of a client application, indicates the preferred way to 

perform join operations. This variable overrides the value that the OPTCOMPIND configuration parameter sets. For details on 

how to select a preferred join method, see Optimizing access methods  on page 43.

The PDQPRIORITY  environment variable, when set in the environment of a client application, places a limit on the percentage 

of CPU VP utilization, shared memory, and other resources that can be allocated to any query that the client starts.

A client can also use the SET PDQPRIORITY statement in SQL  to set a value for PDQ  priority. The actual percentage allocated 

to any query is subject to the factor that the MAX_PDQPRIORITY configuration parameter sets. For more information about 

how to limit resources that can be allocated to a query, see Limiting PDQ resources in queries  on page 44.

PSORT_NPROCS, when set in the environment of a client application, indicates the number of parallel sort threads that 

the application can use. The database server imposes an upper limit of 10 sort threads per query for any application. For 

more information about parallel sorts and PSORT_NPROCS, see Configure dbspaces for temporary tables and sort files  on 

page 115.



Chapter 1. Performance Guide

Related information

Database configuration parameters  on page 

Environment variables  on page 

Specifying virtual processor class information
Use the VPCLASS configuration parameter to specify a class of virtual processors, the number of virtual processors that the 

database server should start for a specific class, and the maximum number allowed.

To execute user-defined routines (UDRs), you can define a new class of virtual processors to isolate UDR execution from 

other transactions that execute on the CPU virtual processors. Typically you write user-defined routines to support user-

defined data types.

If you do not want a user-defined routine to affect the normal processing of user queries in the CPU class, you can use the 

CREATE FUNCTION statement to assign the routine to a user-defined class of virtual processors. The class name that you 

specify in the VPCLASS configuration parameter must match the name specified in the CLASS modifier of the CREATE 

FUNCTION statement.

For guidelines, on using the cpu  and num  options of the VPCLASS configuration parameter, see Setting the number of CPU 

VPs  on page 37.

Related information

VPCLASS configuration parameter  on page 

CREATE FUNCTION statement  on page 

Setting the number of CPU VPs
You can configure the number of CPU virtual processors (VPs) that the database server uses. Do not allocate more CPU VPs 

than there are CPU processors available to service them.

When the database server starts, the number of CPU VPs is automatically increased to half the number of CPU processors 

on the database server computer, unless the SINGLE_CPU_VP configuration parameter is enabled. However, you might want 

to change the number of CPU VPs based on your performance needs.

You can enable the database server to add CPU VPs as needed, up to the number of CPU processors on the computer. 

Include the autotune=1  option in the VPCLASS setting:

VPCLASS cpu,autotune=1

If you do not set the VPCLASS configuration parameter to autotune=1, use the following guidelines to set the number of CPU 

VPs.

Use the following guidelines to set the number of CPU VPs.

37

../%20adr/ids_adr_0007.html#ids_adr_0007
../%20adr/ids_adr_0007.html#ids_adr_0007
../%20adr/ids_adr_0007.html#ids_adr_0007
../%20adr/ids_adr_0007.html#ids_adr_0007
../sqr/ids_sqr_179.html#ids_sqr_179
../sqr/ids_sqr_179.html#ids_sqr_179
../sqr/ids_sqr_179.html#ids_sqr_179
../sqr/ids_sqr_179.html#ids_sqr_179
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../sqs/ids_sqs_0388.html#ids_sqs_0388
../sqs/ids_sqs_0388.html#ids_sqs_0388
../sqs/ids_sqs_0388.html#ids_sqs_0388
../sqs/ids_sqs_0388.html#ids_sqs_0388


HCL Informix 14.10 - Performance Guide

38

Uniprocessor computers

For uniprocessor computers, specify one CPU VP:

VPCLASS cpu,num=1

Dual-processor computers

For dual-processor systems, you might improve performance by running with two CPU VPs. To test if 

performance improves, set the num  field of the VPCLASS configuration parameter to 1 in the onconfig  file 

and then add a CPU VP dynamically at run time by running the onmode -p  command.

Multiprocessor computers that are primarily database servers

For multiprocessor systems with four or more CPUs that are primarily used as database servers, set the num 

option of the VPCLASS configuration parameter in the onconfig  file to one less than the total number of 

processors. For example, if you have four CPUs, use the following specification:

VPCLASS cpu,num=3

When you use this setting, one processor is available to run the database server utilities or the client 

application.

Multiprocessor computers that are not primarily database servers

For multiprocessor systems that you do not use primarily to support database servers, you can start with 

somewhat fewer CPU VPs to allow for other activities on the system and then gradually add more if necessary.

Multi-core or hardware multithreading computers with logical CPUs

For multiprocessor systems that use multi-core processors or hardware multithreading to support more logical 

CPUs than physical processors, you can assign the number of CPU VPs according to the number of logical CPU 

VPs available for that purpose. The amount of processing that an additional logical CPU can provide might be 

only a fraction of what a dedicated physical processor can support.

On systems, where multi-core processors are installed, the optimal configuration in most cases is the same as 

for systems with a number of individual processors equal to the total number of cores. Setting the number of 

CPU VPs to N-1, where N is number of cores is close to optimal for CPU-intensive workloads.

On computers where the CPU uses multiple threads per core, operating systems show more logical processors 

than actual processing cores. To take advantage of more CPU threads, the database server must be configured 

with the number of CPU VPs in the range between N and M, where N is number of cores and M is total number 

of logical CPUs reported by system. The number of CPU VPs where optimal performance is achieved depends 

on the workload.

When increasing the number of CPU VPs to use more threads per core, the expected gain in performance is 

only a fraction of what dedicated physical processor or core can provide.

If you are migrating Informix®  from multi-CPU/multicore systems to systems with multiple threads per core, 

take special care in regard to processor affinity. When binding Informix®  CPU VPs to the logical processors 

of the operating system, you must be aware of the architecture for the CPU. If you are not sure, do not use the 

CPU affinity so that the operating system schedules CPU VPs to logical processors with available resources. 



Chapter 1. Performance Guide

Using affinity without understanding the relationship between the logical CPUs and processing cores can result 

in severe performance degradation.

For example, to bind each of 8 configured CPU VPs to a separate core on an 8-core system with two threads 

per core (16 logical CPUs), use the following setting:

VPCLASS cpu,num=8,aff=(0-14/2)

Related information

Automatic addition of CPU virtual processors  on page 54

VPCLASS configuration parameter  on page 

Disabling process priority aging for CPU VPs
Use the noage  option of the VPCLASS configuration parameter to disable process priority aging for database server CPU VPs 

on operating systems that support this feature. Priority aging occurs when the operating system lowers the priority of long-

running processes as they accumulate processing time. You might want to disable priority aging because it can cause the 

performance of the database server processes to decline over time.

Your database server distribution includes a machine notes file that contains information about whether your version of the 

database server supports this feature.

Specify the noage  option of VPCLASS if your operating system supports this feature.

Related information

VPCLASS configuration parameter  on page 

Specifying processor affinity
Use the aff  option of the VPCLASS parameter to specify the processors to which you want to bind CPU VPs or AIO VPs. 

When you assign a CPU VP to a specific CPU, the VP runs only on that CPU. However, other processes can also run on that 

CPU.

The database server supports automatic binding of CPU VPs to processors on multiprocessor host computers that support 

processor affinity. Your database server distribution includes a machine notes file that contains information about whether 

your version of the database server supports this feature.

You can use processor affinity for the purposes that the following sections describe.

Related information

VPCLASS configuration parameter  on page 

39

../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189


HCL Informix 14.10 - Performance Guide

40

Distributing computation impact
You can use processor affinity to distribute the computation impact of CPU virtual processors (VPs) and other processes. On 

computers that are dedicated to the database server, assigning CPU VPs to all but one of the CPUs achieves maximum CPU 

utilization.

On computers that support both database server and client applications, you can bind applications to certain CPUs through 

the operating system. By doing so, you effectively reserve the remaining CPUs for use by database server CPU VPs, which 

you bind to the remaining CPUs with the VPCLASS configuration parameter. Set the aff  option of the VPCLASS configuration 

parameter to the numbers of the CPUs on which to bind CPU VPs. For example, the following VPCLASS setting assigns CPU 

VPs to processors 4 to 7:

VPCLASS cpu,num=4,aff=(4-7)

When specifying a range of processors, you can also specify an incremental value with the range that indicates which CPUs 

in the range should be assigned to the virtual processors. For example, you can specify that the virtual processors are 

assigned to every other CPU in the range 0-6, starting with CPU 0.

VPCLASS CPU,num=4,aff=(0-6/2)

The virtual processors are assigned to CPUs 0, 2, 4, 6.

If you specify VPCLASS CPU,num=4,aff=(1-10/3), the virtual processors are assigned to every third CPU in the range 1-10, 

starting with CPU 1. The virtual processors are assigned to CPUs 1, 4, 7, 10.

When you specify more than one value or range, the values and ranges do not have to be incremental or in any particular 

order. For example you can specify aff=(8,12,7-9,0-6/2).

The database server assigns CPU virtual processors to CPUs in a circular pattern, starting with the first processor number 

that you specify in the aff  option. If you specify a larger number of CPU virtual processors than physical CPUs, the database 

server continues to assign CPU virtual processors starting with the first CPU. For example, suppose you specify the following 

VPCLASS settings:

VPCLASS cpu,num=8,aff=(4-7)

The database server makes the following assignments:

• CPU virtual processor number 0  to CPU 4

• CPU virtual processor number 1  to CPU 5

• CPU virtual processor number 2  to CPU 6

• CPU virtual processor number 3  to CPU 7

• CPU virtual processor number 4  to CPU 4

• CPU virtual processor number 5  to CPU 5

• CPU virtual processor number 6  to CPU 6

• CPU virtual processor number 7  to CPU 7



Chapter 1. Performance Guide

Related information

VPCLASS configuration parameter  on page 

Isolating AIO VPs from CPU VPs
On a system that runs database server and client (or other) applications, you can bind asynchronous I/O (AIO) VPs to the 

same CPUs to which you bind other application processes through the operating system. In this way, you isolate client 

applications and database I/O operations from the CPU VPs.

This isolation can be especially helpful when client processes are used for data entry or other operations that require waiting 

for user input. Because AIO VP activity usually comes in quick bursts followed by idle periods waiting for the disk, you can 

often interweave client and I/O operations without their unduly impacting each other.

Binding a CPU VP to a processor does not prevent other processes from running on that processor. Application (or other) 

processes that you do not bind to a CPU are free to run on any available processor. On a computer that is dedicated to the 

database server, you can leave AIO VPs free to run on any processor, which reduces delays on database operations that are 

waiting for I/O. Increasing the priority of AIO VPs can further improve performance by ensuring that data is processed quickly 

once it arrives from disk.

Avoiding a certain CPU
The database server assigns CPU VPs to CPUs serially, starting with the CPU number you specify in this parameter. You 

might want to avoid assigning CPU VPs to a certain CPU that has a specialized hardware or operating-system function (such 

as interrupt handling).

Setting the number of AIO VPs
Use the aio  and num  options of the VPCLASS configuration parameter to indicate the number of AIO virtual processors that 

the database server starts initially.

If your operating system does not support kernel asynchronous I/O (KAIO), the database server uses AIO virtual processors 

(VPs) to manage all database I/O requests.

If the VPCLASS configuration parameter does not specify the number of AIO VPs to start in the onconfig  file, the number of 

AIO VPs initially started is equal to the number of chunks that use AIO, up to a maximum of 128.

You can enable the database server to increase the number of AIO VPs as needed to improve performance. Include the 

autotune=1  option in the VPCLASS configuration parameter setting:

VPCLASS aio,autotune=1

If the VPCLASS configuration parameter does not specify the number of AIO VPs to start in the onconfig  file, then the 

setting of the AUTO_AIOVPS configuration parameter controls the number of AIO VPs:

41

../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189


HCL Informix 14.10 - Performance Guide

42

• If AUTO_AIOVPS is set to 1  (on), the number of AIO VPs initially started is equal to the number of chunks that use AIO, 

up to a maximum of 128.

• If AUTO_AIOVPS is set to 0  (off), the number of AIO VPs started is equal to the greater of 6 or twice the number of 

chunks that use AIO, up to a maximum of 128.

The recommended number of AIO virtual processors depends on how many disks your configuration supports. If KAIO is not 

implemented on your platform, you should allocate one AIO virtual processor for each disk that contains database tables. 

You can add an additional AIO virtual processor for each chunk that the database server accesses frequently.

You can use the AUTO_AIOVPS configuration parameter to enable the database server to automatically increase the number 

of AIO virtual processors and page-cleaner threads when the server detects that AIO virtual processors are not keeping up 

with the I/O workload.

The machine notes file for your version of the database server indicates whether the operating system supports KAIO. If 

KAIO is supported, the machine notes describe how to enable KAIO on your specific operating system.

If your operating system supports KAIO, the CPU VPs make asynchronous I/O requests to the operating system instead of 

AIO virtual processors. In this case, configure only one AIO virtual processor, plus two additional AIO virtual processor for 

every file chunk that does not use KAIO.

If you use cooked files and if you enable direct I/O using the DIRECT_IO configuration parameter, you can reduce the number 

of AIO virtual processors. If the database server implements KAIO and if direct I/O is enabled, the database server will 

attempt to use KAIO, so you probably do not need more than one AIO virtual processor. Temporary dbspaces do not use 

direct I/O. If you have temporary dbspaces, you will probably need more than one AIO virtual processors.

Even when direct I/O is enabled with the DIRECT_IO configuration parameter, if the file system does not support either direct 

I/O or KAIO, you still must allocate two additional AIO virtual processors for every active dbspace chunk that is not using 

KAIO.

The goal in allocating AIO virtual processors is to allocate enough of them so that the lengths of the I/O request queues 

are kept short (that is, the queues have as few I/O requests in them as possible). When the I/O request queues remain 

consistently short, I/O requests are processed as fast as they occur. Use the onstat -g ioq  command to monitor the length of 

the I/O queues for the AIO virtual processors.

Allocate enough AIO VPs to accommodate the peak number of I/O requests. Generally, allocating a few extra AIO VPs is 

not detrimental. To start additional AIO VPs while the database server is in online mode, use the onmode -p  command. You 

cannot drop AIO VPs in online mode.

Related information

AUTO_AIOVPS configuration parameter  on page 

VPCLASS configuration parameter  on page 

../%20adr/ids_adr_0023.html#ids_adr_0023
../%20adr/ids_adr_0023.html#ids_adr_0023
../%20adr/ids_adr_0023.html#ids_adr_0023
../%20adr/ids_adr_0023.html#ids_adr_0023
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189


Chapter 1. Performance Guide

Setting the MULTIPROCESSOR configuration parameter when using multiple CPU VPs
If you are running multiple CPU VPs, set the MULTIPROCESSOR configuration parameter to 1. When you set 

MULTIPROCESSOR to 1, the database server performs locking in a manner that is appropriate for a multiprocessor. 

Otherwise, set this parameter to 0.

The number of CPU VPs is used as a factor in determining the number of scan threads for a query. Queries perform best 

when the number of scan threads is a multiple (or factor) of the number of CPU VPs. Adding or removing a CPU VP can 

improve performance for a large query because it produces an equal distribution of scan threads among CPU VPs. For 

instance, if you have 6 CPU VPs and scan 10 table fragments, you might see a faster response time if you reduce the number 

of CPU VPs to 5, which divides evenly into 10. You can use onstat -g ath  to monitor the number of scan threads per CPU VP 

or use  onstat -g ses  to focus on a particular session.

Related information

MULTIPROCESSOR configuration parameter  on page 

Setting the SINGLE_CPU_VP configuration parameter when using one CPU VP
If you are running only one CPU VP, set the SINGLE_CPU_VP configuration parameter to 1. Otherwise, set this parameter to 0.

Important:  If you set the SINGLE_CPU_VP parameter to 1, the value of the num  option of the VPCLASS configuration 

parameter must also be 1.

Note:  The database server treats user-defined virtual-processor classes (that is, VPs defined with VPCLASS) as if 

they were CPU VPs. Thus, if you set SINGLE_CPU_VP to nonzero, you cannot create any user-defined classes.

When you set the SINGLE_CPU_VP parameter to 1, you cannot add CPU VPs while the database server is in online mode.

Related information

SINGLE_CPU_VP configuration parameter  on page 

VPCLASS configuration parameter  on page 

Optimizing access methods
The OPTCOMPIND configuration parameter helps the query optimizer choose an appropriate access method for your 

application. When the optimizer examines join plans, OPTCOMPIND indicates the preferred method for performing the join 

operation for an ordered pair of tables.

About this task

43

../%20adr/ids_adr_0113.html#ids_adr_0113
../%20adr/ids_adr_0113.html#ids_adr_0113
../%20adr/ids_adr_0113.html#ids_adr_0113
../%20adr/ids_adr_0113.html#ids_adr_0113
../%20adr/ids_adr_0161.html#ids_adr_0161
../%20adr/ids_adr_0161.html#ids_adr_0161
../%20adr/ids_adr_0161.html#ids_adr_0161
../%20adr/ids_adr_0161.html#ids_adr_0161
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189


HCL Informix 14.10 - Performance Guide

44

If OPTCOMPIND is equal to 0, the optimizer gives preference to an existing index (nested-loop join) even when a table scan 

might be faster. If OPTCOMPIND is set to 1  and the isolation level for a given query is set to Repeatable Read, the optimizer 

uses nested-loop joins.

When OPTCOMPIND is equal to 2, the optimizer selects a join method based on cost alone even though table scans can 

temporarily lock an entire table. For more information about OPTCOMPIND and the different join methods, see Effect of 

OPTCOMPIND on the query plan  on page 319.

To set the value for OPTCOMPIND for specific applications or user sessions, set the OPTCOMPIND  environment variable for 

those sessions. Values for this environment variable have the same range and semantics as for the configuration parameter.

Related information

OPTCOMPIND configuration parameter  on page 

Setting the value of OPTCOMPIND within a session
You can set or change the value of OPTCOMPIND  within a session for different kinds of queries. To do this, use the SET 

ENVIRONMENT OPTCOMPIND  statement, not the OPTCOMPIND configuration parameter or the OPTCOMPIND  environment 

variable.

For a DSS query, you should set the value of OPTCOMPIND  to 2  or 1, and you should be sure that the isolation level is not set 

to Repeatable Read. For an OLTP query, you could set the value to 0  or 1  with the isolation level not set to Repeatable Read.

The value that you enter using the SET ENVIRONMENT OPTCOMPIND  command takes precedence over the default setting 

specified by the OPTCOMPIND  environment variable or by the OPTCOMPIND configuration parameter in the ONCONFIG  file. 

The default OPTCOMPIND setting is restored when the routine that issued the SET ENVIRONMENT OPTCOMPIND statement 

exits, or until the same routine resets the value of OPTCOMPIND to the system default by issuing the following statement:

SET ENVIRONMENT OPTCOMPIND DEFAULT;

No other user sessions or routines are affected by SET ENVIRONMENT OPTCOMPIND  statements that you execute, because 

their scope is local to the routine in which they are issued, rather than the entire session.

Related information

OPTCOMPIND session environment option  on page 

Limiting PDQ resources in queries
The MAX_PDQPRIORITY configuration parameter limits the percentage of parallel database query (PDQ) resources that a 

query can use. Use MAX_PDQPRIORITY to limit the impact of large CPU-intensive queries on transaction throughput.

About this task

To limit the impact of large CPU-intensive queries on transaction throughput

../%20adr/ids_adr_0129.html#ids_adr_0129
../%20adr/ids_adr_0129.html#ids_adr_0129
../%20adr/ids_adr_0129.html#ids_adr_0129
../%20adr/ids_adr_0129.html#ids_adr_0129
../sqs/ids_sqs_1150.html#ids_sqs_1150
../sqs/ids_sqs_1150.html#ids_sqs_1150
../sqs/ids_sqs_1150.html#ids_sqs_1150
../sqs/ids_sqs_1150.html#ids_sqs_1150


Chapter 1. Performance Guide

Set the value of the MAX_PDQPRIORITY configuration parameter to an integer that represents a percentage of the following 

PDQ resources that a query can request:

• Memory

• CPU VPs

• Disk I/O

• Scan threads

Example

When a query requests a percentage of PDQ resources, the database server allocates the MAX_PDQPRIORITY percentage of 

the amount requested, as the following formula shows:

Resources allocated = PDQPRIORITY/100 * MAX_PDQPRIORITY/100

For example, if a client uses the SET PDQPRIORITY 80  statement to request 80 percent of PDQ resources, but 

MAX_PDQPRIORITY is set to 50, the database server allocates only 40 percent of the resources (50 percent of the request) to 

the client.

For decision support and online transaction processing (OLTP), setting MAX_PDQPRIORITY allows the database server 

administrator to control the impact that individual decision-support queries have on concurrent OLTP performance. Reduce 

the value of MAX_PDQPRIORITY when you want to allocate more resources to OLTP processing. Increase the value of 

MAX_PDQPRIORITY when you want to allocate more resources to decision-support processing.

What to do next

For more information about how to control the use of PDQ resources, see The allocation of resources for parallel database 

queries  on page 357.

Related information

MAX_PDQPRIORITY configuration parameter  on page 

Limiting the performance impact of CPU-intensive queries
The DS_MAX_QUERIES configuration parameter specifies a maximum number of decision-support queries that can run at 

any one time. Queries with a low PDQ priority use proportionally fewer resources, so a larger number of those queries can 

run simultaneously. You can use the DS_MAX_QUERIES configuration parameter to limit the performance impact of CPU-

intensive queries.

The DS_MAX_QUERIES configuration parameter controls only queries with a PDQ priority that is nonzero.

The database server uses the value of DS_MAX_QUERIES with DS_TOTAL_MEMORY to calculate quantum units of 

memory to allocate to a query. For more information about how the database server allocates memory to queries, see The 

DS_TOTAL_MEMORY configuration parameter and memory utilization  on page 74.

45

../%20adr/ids_adr_0107.html#ids_adr_0107
../%20adr/ids_adr_0107.html#ids_adr_0107
../%20adr/ids_adr_0107.html#ids_adr_0107
../%20adr/ids_adr_0107.html#ids_adr_0107


HCL Informix 14.10 - Performance Guide

46

Related information

DS_MAX_QUERIES configuration parameter  on page 

The DS_TOTAL_MEMORY configuration parameter and memory utilization  on page 74

Limiting the number of PDQ scan threads that can run concurrently
The DS_MAX_SCANS configuration parameter limits the number of PDQ scan threads that can run concurrently. This 

configuration parameter prevents the database server from being flooded with scan threads from multiple decision-support 

queries.

To calculate the number of scan threads allocated to a query, use the following formula:

scan_threads = min (nfrags, (DS_MAX_SCANS * pdqpriority / 100
   * MAX_PDQPRIORITY / 100) )

nfrags

is the number of fragments in the table with the largest number of fragments.

pdqpriority

is the PDQ priority value set by either the PDQPRIORITY environment variable or the SQL  statement SET 

PDQPRIORITY.

Reducing the number of scan threads can reduce the time that a large query waits in the ready queue, particularly when 

many large queries are submitted concurrently. However, if the number of scan threads is less than nfrags, the query takes 

longer once it is underway.

For example, if a query needs to scan 20 fragments in a table, but the scan_threads  formula lets the query begin when only 

10 scan threads are available, each scan thread scans two fragments serially. Query execution takes approximately twice as 

long as if 20 scan threads were used.

Related information

DS_MAX_SCANS configuration parameter  on page 

Configuring poll threads
The NETTYPE configuration parameter configures poll threads for each connection type that your instance of the database 

server supports. If your database server instance supports connections over more than one interface or protocol, you must 

specify a separate NETTYPE configuration parameter for each connection type.

You typically include a separate NETTYPE parameter for each connection type that is associated with a dbservername. You 

list dbservernames in the DBSERVERNAME and DBSERVERALIASES configuration parameters. You associate connection 

types with dbservernames in the sqlhosts information. For details about connection types and the sqlhosts information, see 

Connectivity configuration  on page   in your.HCL®  Informix®  Administrator's Guide.

../%20adr/ids_adr_0062.html#ids_adr_0062
../%20adr/ids_adr_0062.html#ids_adr_0062
../%20adr/ids_adr_0062.html#ids_adr_0062
../%20adr/ids_adr_0062.html#ids_adr_0062
../%20adr/ids_adr_0063.html#ids_adr_0063
../%20adr/ids_adr_0063.html#ids_adr_0063
../%20adr/ids_adr_0063.html#ids_adr_0063
../%20adr/ids_adr_0063.html#ids_adr_0063
../admin%20/ids_admin_0026.html#ids_admin_0026
../admin%20/ids_admin_0026.html#ids_admin_0026
../admin%20/ids_admin_0026.html#ids_admin_0026
../admin%20/ids_admin_0026.html#ids_admin_0026


Chapter 1. Performance Guide

Related reference

UNIX semaphore parameters  on page 33

Related information

NETTYPE configuration parameter  on page 

Specifying the connection protocol
The first NETTYPE entry, which specifies the protocol for a given connection type, applies to all dbservernames associated 

with that type. Subsequent NETTYPE entries for that connection type are ignored.

NETTYPE entries are required for connection types that are used for outgoing communication only even if those connection 

types are not listed in the sqlhosts  information.

UNIX™  Only

The following protocols apply to UNIX™  platforms:

• IPCSHM

• TLITCP

• IPCSTR

• SOCTCP

• TLIIMC

• SOCIMC

• SQLMUX

• SOCSSL

Windows™  Only

The following protocols apply to Windows™  platforms:

• SOCTCP

• IPCNMP

• SQLMUX

• SOCSSL

Related information

NETTYPE configuration parameter  on page 

Specifying virtual-processor classes for poll threads
Each poll thread that is configured or added dynamically by a NETTYPE entry runs in a separate VP. A poll thread can run 

in one of two types of VP classes: NET (network) and CPU. Network VP classes include SOC, STR, SHM, and TLI. For best 

47

../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114


HCL Informix 14.10 - Performance Guide

48

performance, use a NETTYPE entry to assign only one poll thread to the CPU VP class. Assign all additional poll threads to 

network VP classes by specifying NET in the NETTYPE configuration parameter values.

Related information

NETTYPE configuration parameter  on page 

Specifying the number of connections and poll threads
The optimum number of connections per poll thread is approximately 300 for uniprocessor computers and up to 350 for 

multiprocessor computers, although this can vary depending on the platform and database server workload.

A poll thread can support 1024 or more connections. If the FASTPOLL configuration parameter is enabled, you might be able 

to configure fewer poll threads, but test the performance to determine the optimal configuration for your environment.

Each NETTYPE entry configures the number of poll threads for a specific connection type, the number of connections per 

poll thread, and the type of virtual-processor class in which those poll threads run. If the number of connections per thread 

exceeds 350 and the number of poll threads for the current connection type is less than the number of CPU VPs, you can 

improve performance by specifying the CPU VP class, adding poll threads (do not exceed the number of CPU VPs), and 

resetting the number of connections per thread. The default number of connections per thread is 50.

Important:  Each ipcshm connection requires a semaphore. Some operating systems require that you configure a 

maximum number of semaphores that can be requested by all software packages that run on the computer. For best 

performance, double the number of actual ipcshm connections when you allocate semaphores for shared-memory 

communications. See UNIX semaphore parameters  on page 33.

If your computer is a uniprocessor and your database server instance is configured for only one connection type, you can 

omit the NETTYPE parameter. The database server uses the information that is provided in the sqlhosts information to 

establish client/server connections.

If your computer is a uniprocessor and your database server instance is configured for more than one connection type, 

include a separate NETTYPE entry for each connection type. If the number of connections of any one type significantly 

exceeds 300, assign two or more poll threads, up to a maximum of the number of CPU VPs, and specify NET for a network 

VP class, as the following example shows:

NETTYPE ipcshm,1,50,CPU
NETTYPE tlitcp,2,200,NET # supports 400 connections

For ipcshm, the number of poll threads correspond to the number of memory segments. For example, if NETTYPE is set to 

3,100  and you want one poll thread, set the poll thread to 1,300.

If your computer is a multiprocessor, your database server instance is configured for only one connection type, and the 

number of connections does not exceed 350, you can use NETTYPE to specify a single poll thread on either the CPU or 

a network VP class. If the number of connections exceeds 350, set the VP class type to NET, increase the number of poll 

threads, and recalculate conn_per_thread.

../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114


Chapter 1. Performance Guide

Important:  Carefully distinguish between poll threads for network connections and poll threads for shared memory 

connections, which run one per CPU virtual processor. Configure TCP connections to run in network virtual 

processors, and configure the minimum that is needed to maintain responsiveness. Configure shared memory 

connections to run in every CPU virtual processor.

Related information

NETTYPE configuration parameter  on page 

VPCLASS configuration parameter  on page 

Improve connection performance and scalability  on page 49

Improve connection performance and scalability
You can improve connection performance and scalability by specifying information in the NUMFDSERVERS and NS_CACHE 

configuration parameters and by using multiple listen threads.

Informix®  SQL sessions can migrate across CPU VPs. You can improve the performance and scalability of network 

connections on UNIX™  by using the NUMFDSERVERS configuration parameter to specify a number for the poll threads to use 

when distributing a TCP/IP connection across VPs. Specifying NUMFDSERVERS information is useful if the database server 

has a high rate of new connect and disconnect requests or if you find a high amount of contention between network shared 

file (NSF) locks.

You should also review and, if necessary, change the information in the NETTYPE configuration parameter, which defines the 

number of poll threads for a specific connection type, the number of connections per poll thread, and the virtual-processor 

class in which those poll threads run. You specify NETTYPE configuration parameter information as follows:

NETTYPE connection_type,poll_threads,conn_per_thread,vp_class 

On UNIX™, if vp_class  is NET, poll_threads  can be a value that is greater than or equal to 1. If vp_class  is CPU, the number 

of poll_threads  can be 1 through the number of CPU VPs. On Windows™, poll_threads  can be value that is greater than or 

equal to 1.

For example, suppose you specify 8 poll threads in the NETTYPE configuration parameter, as follows:

NETTYPE soctcp,8,300,NET

You can also specify 8 in the NUMFDSERVERS configuration parameter to enable the server to use all 8 poll thread to handle 

network connections migrating between VPs.

You can use the NS_CACHE configuration parameter to define the maximum retention time for an individual entry in the host 

name/IP address cache, the service cache, the user cache, and the group cache. The server can get information from the 

cache faster than it does when querying the operating system.

49

../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189


HCL Informix 14.10 - Performance Guide

50

You can improve service for connection requests by using multiple listen threads. When you specify DBSERVERNAME and 

DBSERVERALIASES configuration parameter information for onimcsoc  or onsoctcp  protocols, you can specify the number of 

multiple listen threads for the database server aliases in your sqlhosts information. The default value of number is 1.

The DBSERVERNAME and DBSERVERALIASES configuration parameters define database server names (dbservernames) 

that have corresponding entries in the sqlhosts information. Each dbservername parameter in the sqlhosts information has 

a nettype  entry that specifies an interface/protocol combination. The database server runs one or more poll threads for each 

unique nettype  entry.

You can use the onstat -g ath  command to display information about all threads.

Related information

NETTYPE configuration parameter  on page 

NUMFDSERVERS configuration parameter  on page 

NS_CACHE configuration parameter  on page 

DBSERVERNAME configuration parameter  on page 

DBSERVERALIASES configuration parameter  on page 

Multiple listen threads  on page 

Name service maximum retention time set in the NS_CACHE configuration parameter  on page 

Specifying the number of connections and poll threads  on page 48

Monitor threads with onstat -g ath output  on page 441

Enabling fast polling
You can use the FASTPOLL configuration parameter to enable or disable fast polling of your network, if your operating-

system platform supports fast polling. Fast polling is beneficial if you have a large number of connections.

For example, if you have more than 300 concurrent connections with the database server, you can enable the FASTPOLL 

configuration parameter for better performance.

Related information

FASTPOLL configuration parameter  on page 

Network buffer pools
The sizes of buffers for TCP/IP connections affect memory and CPU utilization. Sizing these buffers to accommodate a 

typical request can improve CPU utilization by eliminating the need to break up requests into multiple messages.

However, you must use this capability with care; the database server dynamically allocates buffers of the indicated sizes 

for active connections. Unless you carefully size buffers, they can use large amounts of memory. For details on how to size 

network buffers, see Network buffer size  on page 53.

../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_1120.html#ids_adr_1120
../%20adr/ids_adr_1120.html#ids_adr_1120
../%20adr/ids_adr_1120.html#ids_adr_1120
../%20adr/ids_adr_1120.html#ids_adr_1120
../%20adr/ids_adr_1105.html#ids_adr_1105
../%20adr/ids_adr_1105.html#ids_adr_1105
../%20adr/ids_adr_1105.html#ids_adr_1105
../%20adr/ids_adr_1105.html#ids_adr_1105
../%20adr/ids_adr_0045.html#ids_adr_0045
../%20adr/ids_adr_0045.html#ids_adr_0045
../%20adr/ids_adr_0045.html#ids_adr_0045
../%20adr/ids_adr_0045.html#ids_adr_0045
../%20adr/ids_adr_0044.html#ids_adr_0044
../%20adr/ids_adr_0044.html#ids_adr_0044
../%20adr/ids_adr_0044.html#ids_adr_0044
../%20adr/ids_adr_0044.html#ids_adr_0044
../admin%20/ids_admin_0311.html#ids_admin_0311
../admin%20/ids_admin_0311.html#ids_admin_0311
../admin%20/ids_admin_0311.html#ids_admin_0311
../admin%20/ids_admin_0311.html#ids_admin_0311
../admin%20/ids_admin_1378.html#ids_admin_1378
../admin%20/ids_admin_1378.html#ids_admin_1378
../admin%20/ids_admin_1378.html#ids_admin_1378
../admin%20/ids_admin_1378.html#ids_admin_1378
../%20adr/ids_adr_0085.html#ids_adr_0085
../%20adr/ids_adr_0085.html#ids_adr_0085
../%20adr/ids_adr_0085.html#ids_adr_0085
../%20adr/ids_adr_0085.html#ids_adr_0085


Chapter 1. Performance Guide

The database server dynamically allocates network buffers from the global memory pool for request messages from clients. 

After the database server processes client requests, it returns buffers to a common network buffer pool that is shared 

among sessions that use SOCTCP, IPCSTR, or TLITCP network connections.

This common network buffer pool provides the following advantages:

• Prevents frequent allocations and deallocations from the global memory pool

• Uses fewer CPU resources to allocate and deallocate network buffers to and from the common network buffer pool 

for each network transfer

• Reduces contention for allocation and deallocation of shared memory

The free network buffer pool can grow during peak activity periods. To prevent large amounts of unused memory from 

remaining in these network buffer pools when network activity is no longer high, the database server returns free buffers 

when the number of free buffers reaches specific thresholds.

The database server provides the following features to further reduce the allocation and deallocation of and contention for 

the free network buffers:

• A private free network buffer pool for each session to prevent frequent allocations and deallocations of network 

buffers from the common network buffer pool or from the global memory pool in shared memory

• Capability to specify a larger than 4-kilobyte buffer size to receive network packets or messages from clients

As the system administrator, you can control the free buffer thresholds and the size of each buffer with the following 

methods:

• NETTYPE configuration parameter

• IFX_NETBUF_PVTPOOL_SIZE  environment variable

• IFX_NETBUF_SIZE  environment variable and b  (client buffer size) option in the sqlhosts information

Network buffers
The database server implements a threshold of free network buffers to prevent frequent allocations and deallocations of 

shared memory for the network buffer pool. This threshold enables the database server to correlate the number of free 

network buffers with the number of connections that you specify in the NETTYPE configuration parameter.

The database server dynamically allocates network buffers for request messages from clients. After the database server 

processes client requests, it returns buffers to the network free-buffer pool.

If the number of free buffers is greater than the threshold, the database server returns the memory allocated to buffers over 

the threshold to the global pool.

The database server uses the following formula to calculate the threshold for the free buffers in the network buffer pool:

free network buffers threshold =
   100 + (0.7 * number_connections)

51



HCL Informix 14.10 - Performance Guide

52

The value for number_connections  is the total number of connections that you specified in the third field of the NETTYPE 

entry for the different type of network connections (SOCTCP, IPCSTR, or TLITCP). This formula does not use the NETTYPE 

entry for shared memory (IPCSHM).

If you do not specify a value in the third field of the NETTYPE parameter, the database server uses the default value of 50 

connections for each NETTYPE entry corresponding to the SOCTCP, TLITCP, and IPCSTR protocols.

Support for private network buffers
The database server provides support for private network buffers for each session that uses SOCTCP, IPCSTR, or TLITCP 

network connections.

For situations in which many connections and sessions are constantly active, these private network buffers have the 

following advantages:

• Less contention for the common network buffer pool

• Fewer CPU resources to allocate and deallocate network buffers to and from the common network buffer pool for 

each network transfer

The IFX_NETBUF_PVTPOOL_SIZE  environment variable specifies the size of the private network buffer pool for each 

session. The default size is one buffer.

Use the onstat  utility commands in the following table to monitor the network buffer usage.

Command Output Field Description

onstat -g ntu q-pvt The current number and highest number of buffers that are free in 

the private pool for this session

onstat -g ntm q-exceeds The number of times that the free buffer threshold was exceeded

The onstat -g ntu  command displays the following format for the q-pvt  output field:

current number / highest number

If the number of free buffers (value in q-pvt  field) is consistently 0, you can perform one of the following actions:

• Increase the number of buffers with the environment variable IFX_NETBUF_PVTPOOL_SIZE.

• Increase the size of each buffer with the environment variable IFX_NETBUF_SIZE.

The q-exceeds  field indicates the number of times that the threshold for the shared network free-buffer pool was exceeded. 

When this threshold is exceeded, the database server returns the unused network buffers (over this threshold) to the global 

memory pool in shared memory. Optimally, this value should be 0 or a low number so that the server is not allocating or 

deallocating network buffers from the global memory pool.



Chapter 1. Performance Guide

Related information

IFX_NETBUF_PVTPOOL_SIZE environment variable (UNIX)  on page 

IFX_NETBUF_SIZE environment variable  on page 

Network buffer size
The IFX_NETBUF_SIZE  environment variable specifies the size of each network buffer in the common network buffer pool 

and the private network buffer pool.

The default buffer size is 4 kilobytes.

The IFX_NETBUF_SIZE  environment variable allows the database server to receive messages longer than 4 kilobytes in one 

system call. The larger buffer size reduces the amount of overhead required to receive each packet.

Increase the value of IFX_NETBUF_SIZE  if you know that clients send greater than 4-kilobyte packets. Clients send large 

packets during any of the following situations:

• Loading a table

• Inserting rows greater than 4 kilobytes

• Sending simple large objects

The b  option for sqlhosts  allows the client to send and receive greater than 4 kilobytes. The value for the sqlhosts  option 

should typically match the value for IFX_NETBUF_SIZE.

You can use the following onstat  command to see the network buffer size:

onstat -g afr global | grep net 

The size  field in the output shows the network buffer size in bytes.

Related information

Connectivity configuration  on page 

IFX_NETBUF_SIZE environment variable  on page 

Virtual processors and CPU utilization
While the database server is online, you can start and stop virtual processors (VPs) that belong to certain classes.

You can use onmode  -p  or ON-Monitor  to start additional VPs for the following classes while the database server is online: 

CPU, AIO, PIO, LIO, SHM, TLI, and SOC. You can drop VPs of the CPU class only while the database server is online.

You should carefully distinguish between poll threads for network connections and poll threads for shared memory 

connections, which should run one per CPU virtual processor. TCP connections should only be in network virtual processors, 

53

../sqr/ids_sqr_246.html#ids_sqr_246
../sqr/ids_sqr_246.html#ids_sqr_246
../sqr/ids_sqr_246.html#ids_sqr_246
../sqr/ids_sqr_246.html#ids_sqr_246
../sqr/ids_sqr_247.html#ids_sqr_247
../sqr/ids_sqr_247.html#ids_sqr_247
../sqr/ids_sqr_247.html#ids_sqr_247
../sqr/ids_sqr_247.html#ids_sqr_247
../admin%20/ids_admin_0026.html#ids_admin_0026
../admin%20/ids_admin_0026.html#ids_admin_0026
../admin%20/ids_admin_0026.html#ids_admin_0026
../admin%20/ids_admin_0026.html#ids_admin_0026
../sqr/ids_sqr_247.html#ids_sqr_247
../sqr/ids_sqr_247.html#ids_sqr_247
../sqr/ids_sqr_247.html#ids_sqr_247
../sqr/ids_sqr_247.html#ids_sqr_247


HCL Informix 14.10 - Performance Guide

54

and you should only have the minimum needed to maintain responsiveness. Shared memory connections should only be in 

CPU virtual processors and should run in every CPU virtual processor

Adding virtual processors
Whenever you add a network VP (SOC or TLI), you also add a poll thread. Every poll thread runs in a separate VP, which can 

be either a CPU VP or a network VP of the appropriate network type.

Adding more VPs can increase the load on CPU resources, so if the NETTYPE value indicates that an available CPU VP 

can handle the poll thread, the database server assigns the poll thread to that CPU VP. If all the CPU VPs have poll threads 

assigned to them, the database server adds a second network VP to handle the poll thread.

Automatic addition of CPU virtual processors
When the database server starts, the number of CPU virtual processors (VPs) is automatically increased to half the number 

of CPU processors on the computer. This ratio of CPU processors to CPU VPs is a recommended minimum to ensure that 

the database server performs optimally in most situations.

During start up, the database server calculates a target number of CPU VPs that represents an even number equal to or 

greater than half the number of CPU processors and compares the target number with the currently allocated number of CPU 

VPs. The database server adds the necessary number of CPU VPs to equal the target number.

If fewer than eight CPU VPs are configured, the server can dynamically add CPU VPs to a total (configured plus added) of 

eight.

The SINGLE_CPU_VP configuration parameter must be set to 0 for CPU VPs to be automatically added. When CPU VPs are 

automatically added, the value of the VPCLASS configuration parameter is not updated in the onconfig  file; therefore, the 

value of the VPCLASS configuration parameter for CPU VPs might not be the same as the actual number of configured CPU 

VPs.

Use the auto_tune_cpu_vps  task in the Scheduler to control the automatic addition of CPU VPs. To prevent the automatic 

addition of CPU VPs, disable the auto_tune_cpu_vps  task in the ph_task  table in the sysadmin  database:

UPDATE ph_task
  SET tk_enable = 'F'
WHERE tk_name = 'auto_tune_cpu_vps';

Example

The following table shows possible configurations and how many CPU VPs would be added automatically in each situation.

Table  4. Example of how CPU VPs are automatically added

CPU proc

essors

Target 

CPU VPs Allocated CPU VPs

Automatic

ally added CPU VPs

8 4 3 1

3 2 2 0



Chapter 1. Performance Guide

Table  4. Example of how CPU VPs are automatically added  (continued)

CPU proc

essors

Target 

CPU VPs Allocated CPU VPs

Automatic

ally added CPU VPs

24 8 6 2

Related information

Setting the number of CPU VPs  on page 37

Monitoring virtual processors
Monitor the virtual processors to determine if the number of virtual processors configured for the database server is optimal 

for the current level of activity.

To monitor virtual processors:

• Use command-line utilities, such as onstat-g ioq  to view information. See Using some onstat-g commands to monitor 

virtual processors  on page 55

• Use the AUTO_AIOVPS configuration parameter to enable the database server to automatically increase the number 

of AIO virtual processors and page-cleaner threads when the server detects that AIO virtual processors are not 

keeping up with the I/O workload.

• Query SMI tables. See Using SMI tables to monitor virtual processors  on page 57.

Using some onstat-g  commands to monitor virtual processors
You can use the onstat-g glo, onstat-g rea, and onstat-g ioq  commands to monitor virtual processors.

Monitor virtual processors with the onstat-g glo command
Use the onstat-g glo  command to display information about each virtual processor that is running and to display cumulative 

statistics for each virtual-processor class.

The onstat -g glo  command provides the following types of information:

• How many session threads that are running

• How often threads switch, yield, or need to spin many times to obtain a latch or resource

• The virtual processor classes that are running and how much time each class spent running

• The number of virtual processors that are running for each virtual processor class

• The virtual processors that are running and how much time each virtual processor spent running

• The efficiency of each virtual processor

Use the onstat -g rea  command to determine whether you need to increase the number of virtual processors.

55



HCL Informix 14.10 - Performance Guide

56

Related information

onstat -g glo command: Print global multithreading information  on page 

Monitor virtual processors with the onstat-g rea command  on page 56

Monitor virtual processors with the onstat-g rea  command
Use the onstat-g rea  command to monitor the number of threads in the ready queue.

onstat-g rea  displays this information:

• The status  field in the output shows the value ready  when the thread is in the ready queue.

• The vp-class  output field shows the virtual processor class on which the thread executes.

If the number of threads in the ready queue is growing for a class of virtual processors (for example, the CPU class), you 

might have to add more of those virtual processors to your configuration.

Figure  3. onstat-g rea  output

Ready threads:
tid     tcb     rstcb   prty    status                  vp-class   name
 

6       536a38  406464  4       ready                     3cpu    main_loop()
28      60cfe8  40a124  4       ready                     1cpu    onmode_mon
33      672a20  409dc4  2       ready                     3cpu    sqlexec

Related information

Monitor virtual processors with the onstat-g glo command  on page 55

onstat -g rea command: Print ready threads  on page 

Monitor virtual processors with the onstat-g ioq  command
Use the onstat-g ioq  command to determine whether you need to allocate additional AIO virtual processors.

The onstat-g ioq  command displays the length of the I/O queues under the column len, as the figure below shows. You can 

also see the maximum queue length (since the database server started) in the maxlen  column. If the length of the I/O queue 

is growing, I/O requests are accumulating faster than the AIO virtual processors can process them. If the length of the I/O 

queue continues to show that I/O requests are accumulating, consider adding AIO virtual processors.

../%20adr/ids_adr_0533.html#ids_adr_0533
../%20adr/ids_adr_0533.html#ids_adr_0533
../%20adr/ids_adr_0533.html#ids_adr_0533
../%20adr/ids_adr_0533.html#ids_adr_0533
../%20adr/ids_adr_0566.html#ids_adr_0566
../%20adr/ids_adr_0566.html#ids_adr_0566
../%20adr/ids_adr_0566.html#ids_adr_0566
../%20adr/ids_adr_0566.html#ids_adr_0566


Chapter 1. Performance Guide

Figure  4. onstat-g ioq  and onstat -d  output

onstat -g ioq
 

AIO I/O queues:
q name/id    len maxlen totalops  dskread dskwrite  dskcopy
  adt   0      0      0        0        0        0        0
  msc   0      0      1       12        0        0        0
  aio   0      0      4       89       68        0        0
  pio   0      0      1        1        0        1        0
  lio   0      0      1       17        0       17        0
  kio   0      0      0        0        0        0        0
  gfd   3      0      3      254      242       12        0
  gfd   4      0     17      614      261      353        0
 

 

onstat -d
Dbspaces
address  number   flags    fchunk   nchunks  flags    owner    name
a1de1d8  1        1        1        1        N        informix rootdbs
a1df550  2        1        2        1        N        informix space1
 2 active, 32,678 maximum
Chunks
address  chk/dbs offset   size     free     bpages   flags pathname
a1de320  1   1   0        75000    66447             PO-   /ix/root_chunk
a1df698  2   2   0        500      447               PO-   /ix//chunk1
 2 active, 32,678 maximum 

Each chunk serviced by the AIO virtual processors has one line in the onstat-g ioq  output, identified by the value gfd  in the q 

name  column. You can correlate the line in onstat -g ioq  with the actual chunk because the chunks are in the same order as 

in the onstat -d  output. For example, in the onstat-g ioq  output, there are two gfd  queues. The first gfd  queue holds requests 

for root_chunk  because it corresponds to the first chunk shown in the onstat -d  output. Likewise, the second gfd  queue 

holds requests for chunk1  because it corresponds to the second chunk in the onstat -d  output.

If the database server has a mixture of raw devices and cooked files, the gfd  queues correspond only to the cooked files in 

onstat -d  output.

Related information

onstat -g ioq command: Print I/O queue information  on page 

Using SMI tables to monitor virtual processors
You can get information from system-monitoring interface (SMI) tables to use to monitor virtual processors.

You must connect to the sysmaster  database to query the SMI tables. Query the sysvpprof  SMI table to obtain information 

about the virtual processors that are currently running. This table contains the following columns.

Column Description

vpid ID number of the virtual processor

57

../%20adr/ids_adr_0540.html#ids_adr_0540
../%20adr/ids_adr_0540.html#ids_adr_0540
../%20adr/ids_adr_0540.html#ids_adr_0540
../%20adr/ids_adr_0540.html#ids_adr_0540


HCL Informix 14.10 - Performance Guide

58

Column Description

class Class of the virtual processor

user

cpu

Seconds of user CPU consumed

syscpu Seconds of system CPU consumed

Private memory caches
Each CPU virtual processor (VP) or tenant VP  can have a private memory cache to speed access time to memory blocks.

All memory allocations that are requested by threads in the database server are fulfilled by memory pools. When a memory 

pool has insufficient memory blocks to satisfy a memory allocation request, blocks are allocated from the global memory 

pool. Because all threads use the same global memory pool, contention can occur. Private memory caches allow each virtual 

processor to retain its own set of memory blocks that can be used to bypass the global memory pool. The initial allocation 

for private memory caches is from the global memory pool. When the blocks are freed, they are freed to the private memory 

cache on a specific virtual process. When a memory allocation is requested, the thread first checks whether the allocation 

can be satisfied by blocks in the private memory cache. Otherwise, the thread requests memory from the global memory 

pool.

To determine whether private memory caches might improve performance for your database server, run the onstat -g spi 

command and look for the sh_lock  mutex. If onstat -g spi  command output shows contention for the sh_lock  mutex, try 

creating private memory caches.

You set the VP_MEMORY_CACHE_KB configuration parameter to enable private memory caches by specifying the initial 

combined size of all private memory caches. By default, the total size of private memory caches is limited to the size value 

of the VP_MEMORY_CACHE_KB configuration parameter. You can set the mode to DYNAMIC to allow the size of each private 

memory cache to increase or decrease automatically based on the workload of the associated VP. In dynamic mode, the 

total size of private memory caches can exceed the value of the VP_MEMORY_CACHE_KB configuration parameter, but 

cannot exceed the value of the SHMTOTAL configuration parameter.

You can view statistics about VP private memory caches by running the onstat -g vpcache  command. You can view statistics 

about memory pools by running the onstat -g mem  command.

Attention:  If you have multiple VPs, private memory caches can increase the amount of memory that the database 

server uses.

Related information

VP_MEMORY_CACHE_KB configuration parameter  on page 

onstat -g vpcache command: Print CPU virtual processor and tenant virtual processor private memory cache 

statistics  on page 

../%20adr/ids_adr_0188.html#ids_adr_0188
../%20adr/ids_adr_0188.html#ids_adr_0188
../%20adr/ids_adr_0188.html#ids_adr_0188
../%20adr/ids_adr_0188.html#ids_adr_0188
../%20adr/ids_adr_0589.html#ids_adr_0589
../%20adr/ids_adr_0589.html#ids_adr_0589
../%20adr/ids_adr_0589.html#ids_adr_0589
../%20adr/ids_adr_0589.html#ids_adr_0589
../%20adr/ids_adr_0589.html#ids_adr_0589


Chapter 1. Performance Guide

onstat -g mem command: Print pool memory statistics  on page 

onstat -g spi command: Print spin locks with long spins  on page 

Connections and CPU utilization
Some applications have a large number of client/server connections. Opening and closing connections can consume a large 

amount of system CPU time.

The following topics describe ways that you might be able to reduce the system CPU time required to open and close 

connections.

Multiplexed connections and CPU utilization
Many traditional nonthreaded SQL  client applications use multiple database connections to perform work for a single user. 

Each database connection establishes a separate network connection to the database server. The multiplexed connection 

facility provides the ability for one network connection in the database server to handle multiple database connections from 

a client application.

Multiplexed connections enable the database server to create multiple database connections without consuming the 

additional computer resources that are required for additional network connections.

When a nonthreaded client uses a multiplexed connection, the database server still creates the same number of user 

sessions and user threads as with a nonmultiplexed connection. However, the number of network connections decreases 

when you use multiplexed connections. Instead, the database server uses a multiplex listener thread to allow the multiple 

database connections to share the same network connection.

To improve response time for nonthreaded clients, you can use multiplexed connections to execute SQL  queries. The amount 

of performance improvement depends on the following factors:

• The decrease in total number of network connections and the resulting decrease in system CPU time

The usual cause for a large amount of system CPU time is the processing of system calls for the network connection. 

Therefore, the maximum decrease in system CPU time is proportional to the decrease in the total number of network 

connections.

• The ratio of this decrease in system CPU time to the user CPU time

If the queries are simple and use little user CPU time, you might experience a sizable reduction in response time when 

you use a multiplexed connection. But if the queries are complex and use a large amount of user CPU time, you might 

not experience a performance improvement.

To get an idea of the amounts of system CPU time and user CPU times per  virtual processor, use the  onstat -g glo 

option.

To use multiplexed connections for a nonthreaded client application, you must take the following steps before you bring up 

the database server:

59

../%20adr/ids_adr_0546.html#ids_adr_0546
../%20adr/ids_adr_0546.html#ids_adr_0546
../%20adr/ids_adr_0546.html#ids_adr_0546
../%20adr/ids_adr_0546.html#ids_adr_0546
../%20adr/ids_adr_0578.html#ids_adr_0578
../%20adr/ids_adr_0578.html#ids_adr_0578
../%20adr/ids_adr_0578.html#ids_adr_0578
../%20adr/ids_adr_0578.html#ids_adr_0578


HCL Informix 14.10 - Performance Guide

60

1. Define an alias using the DBSERVERALIASES configuration parameter. For example, specify:

DBSERVERALIASES ids_mux

2. Add an SQLHOSTS entry for the alias using sqlmux  as the nettype  entry, which is the second column in the SQLHOSTS 

file. For example, specify:

ids_mux  onsqlmux  ......

The other fields in this entry, the hostname  and servicename, must be present, but they are ignored.

3. Enable multiplexing for the selected connection types by specifying m=1  in the sqlhosts  file or registry that the client 

uses for the database server connection.

4. On Windows™  platforms, you must also set the IFX_SESSION_MUX  environment variable.

Warning:  On Windows™, a multithreaded application must not use the multiplexed connection feature. If a 

multithreaded application enables the multiplexing option in the sqlhosts  registry entry and also defines the 

IFX_SESSION_MUX environment variable, it can produce disastrous results, including crashing and data corruption.

Related information

Multiplexed connections  on page 

Supporting multiplexed connections  on page 

MaxConnect for multiple connections UNIX™
HCL Informix®  MaxConnect  is a networking product for Informix®  database server environments on UNIX™. You can use 

Informix®  MaxConnect  to manage large numbers (from several hundred to tens of thousands) of client/server connections. 

Informix®  MaxConnect  is best for OLTP data transfers, but is not recommended for large multimedia data transfers.

Informix®  MaxConnect  provides the following performance advantages for medium to large OLTP configurations:

• Reduces CPU requirements on the database server by reducing the number of physical connections.

Informix®  MaxConnect  multiplexes connections so that the ratio of client connections to database connections can 

be 100:1 or higher.

• Improves end-user response time by increasing system scalability to many thousands of connections

• Reduces operating-system overhead by aggregating multiple small packets into one transfer operation

To obtain maximum performance benefit, install Informix®  MaxConnect  on either a dedicated computer to which Informix® 

clients connect or on the client application server. Either of these configurations offloads the CPU requirements of handling a 

large number of connections from the database server computer.

To monitor Informix®  MaxConnect, use the onstat -g imc  command on the database server computer and use the imcadmin 

command on the computer where Informix®  MaxConnect  is located.

../esqlc/ids_esqlc_0449.html#ids_esqlc_0449
../esqlc/ids_esqlc_0449.html#ids_esqlc_0449
../esqlc/ids_esqlc_0449.html#ids_esqlc_0449
../esqlc/ids_esqlc_0449.html#ids_esqlc_0449
../admin%20/ids_admin_0130.html#ids_admin_0130
../admin%20/ids_admin_0130.html#ids_admin_0130
../admin%20/ids_admin_0130.html#ids_admin_0130
../admin%20/ids_admin_0130.html#ids_admin_0130


Chapter 1. Performance Guide

For more information about installing, configuring, monitoring, and tuning Informix®  MaxConnect, see the IBM®  Informix® 

MaxConnect User's Guide.

Important:  Informix®  MaxConnect  and the IBM®  Informix®  MaxConnect User's Guide  ship separately from HCL 

Informix®.

Effect of configuration on memory utilization
The combination of operating-system and Informix®  configuration parameters can affect memory utilization.

You can change the settings of the Informix®  configuration parameters that directly affect memory utilization, and you can 

adjust the settings for different types of workloads.

Consider the amount of physical memory that is available on your host when you allocate shared memory for the database 

server by setting operating-system configuration parameters. In general, if you increase space for database server shared 

memory, you can enhance the performance of your database server. You must balance the amount of shared memory that is 

dedicated to the database server against the memory requirements for VPs and other processes.

Related information

The Memory Grant Manager  on page 356

Shared memory
You must configure adequate shared-memory resources for the database server in your operating system. Insufficient 

shared memory can adversely affect performance.

The database server threads and processes require shared memory to share data by sharing access to segments of 

memory.

The shared memory that Informix®  uses can be divided into the following parts, each of which has one or more shared 

memory segments:

• Resident portion

• Virtual portion

• Message portion

• Buffer pool portion

The resident and message portions are static; you must allocate sufficient memory for them before you bring the database 

server into online mode. (Typically, you must reboot the operating system to reconfigure shared memory.) The virtual portion 

of shared memory for the database server grows dynamically, but you must still include an adequate initial amount for this 

portion in your allocation of operating-system shared memory.

The amount of space that is required is the total that all portions of database server shared memory need. You specify the 

total amount of shared memory with the SHMTOTAL configuration parameter.

61



HCL Informix 14.10 - Performance Guide

62

The LOCKS configuration parameter specifies the initial size of the lock table. If the number of locks that sessions allocate 

exceeds the value of LOCKS, the database server dynamically increases the size of the lock table. If you expect the lock 

table to grow dynamically, set SHMTOTAL to 0. When SHMTOTAL is 0, there is no limit on total memory (including shared 

memory) allocation.

Related information

LOCKS configuration parameter  on page 

SHMTOTAL configuration parameter  on page 

Resident portion of shared memory
The resident portion of shared memory includes areas of shared memory that record the state of the database server, 

including locks, log files, and the locations of dbspaces, chunks, and tblspaces. The resident portion of shared memory 

includes areas of shared memory that record the state of the database server, including buffers, locks, log files, and the 

locations of dbspaces, chunks, and tblspaces.

The settings that you use for the LOCKS, LOGBUFF, and PHYSBUFF configuration parameters help determine the size of the 

resident portion.

The BUFFERPOOL configuration parameter determines the number of buffers allocated to the resident segment when the 

database server is started. Subsequent buffer pools that are added while the database server is running are moved into 

virtual memory until the database server is restarted.

In addition to these configuration parameters, which affect the size of the resident portion, the RESIDENT configuration 

parameter can affect memory use. When a computer supports forced residency and the RESIDENT configuration parameter 

is set to a value that locks the resident or resident and virtual portions, the resident portion is never paged out.

The machine notes file for your database server indicates whether your operating system supports forced residency.

On AIX®, Solaris, and Linux™  systems that support large pages, the IFX_LARGE_PAGES environment variable can enable 

the use of large pages for non-message shared memory segments that are locked in physical memory. If large pages 

are configured by operating system commands and the RESIDENT configuration parameter specifies that some or all of 

the resident and virtual portions of shared memory are locked in physical memory, Informix®  uses large pages for the 

corresponding shared memory segments, provided sufficient large pages are available. The use of large pages can offer 

significant performance benefits in large memory configurations.

Related reference

Configuration parameters that affect memory utilization  on page 69

Related information

IFX_LARGE_PAGES environment variable  on page 

../%20adr/ids_adr_0094.html#ids_adr_0094
../%20adr/ids_adr_0094.html#ids_adr_0094
../%20adr/ids_adr_0094.html#ids_adr_0094
../%20adr/ids_adr_0094.html#ids_adr_0094
../%20adr/ids_adr_0158.html#ids_adr_0158
../%20adr/ids_adr_0158.html#ids_adr_0158
../%20adr/ids_adr_0158.html#ids_adr_0158
../%20adr/ids_adr_0158.html#ids_adr_0158
../sqr/ids_sqr_404.html#ids_sqr_404
../sqr/ids_sqr_404.html#ids_sqr_404
../sqr/ids_sqr_404.html#ids_sqr_404
../sqr/ids_sqr_404.html#ids_sqr_404


Chapter 1. Performance Guide

Virtual portion of shared memory
Informix®  uses the virtual portion of shared memory to allocate memory to each database server subsystem, as needed.

The virtual portion of shared memory for the database server includes the following components:

• Large buffers, which are used for large read and write I/O operations

• Sort-space pools

• Active thread-control blocks, stacks, and heaps

• User-session data

• Caches for SQL  statements, data-dictionary information, and user-defined routines

• A global pool for network-interface message buffers and other information

The SHMVIRTSIZE configuration parameter in the onconfig  file provides the initial size of the virtual portion. As the need 

for additional space in the virtual portion arises, the database server adds shared memory in increments that the SHMADD 

configuration parameter specifies. The EXTSHMADD configuration parameter configures the size of the virtual-extension 

shared memory segments that are added for user-defined routines and DataBlade®  routines. The limit on the total shared 

memory allocated to the database server is specified by the SHMTOTAL parameter.

The size of the virtual portion depends primarily on the types of applications and queries that you are running. Depending on 

your application, an initial estimate for the virtual portion might be as low as 100 KB per user or as high as 500 KB per user, 

plus an additional 4 megabytes if you intend to use data distributions.

When a computer supports forced residency and the RESIDENT configuration parameter is set to a value that locks virtual 

segments, the virtual segments that are locked are never paged out.

On AIX®, Solaris, and Linux™  systems that support large pages, the IFX_LARGE_PAGES environment variable can enable 

the use of large pages for non-message shared memory segments that are locked in physical memory. If large pages 

are configured by operating system commands and the RESIDENT configuration parameter specifies that some or all of 

the resident and virtual portions of shared memory are locked in physical memory, Informix®  uses large pages for the 

corresponding shared memory segments, provided sufficient large pages are available. The use of large pages can offer 

significant performance benefits in large memory configurations.

Related reference

Configuration parameters that affect memory utilization  on page 69

Related information

IFX_LARGE_PAGES environment variable  on page 

Creating data distributions  on page 385

EXTSHMADD configuration parameter  on page 

SHMADD configuration parameter  on page 

SHMTOTAL configuration parameter  on page 

SHMVIRTSIZE configuration parameter  on page 

63

../sqr/ids_sqr_404.html#ids_sqr_404
../sqr/ids_sqr_404.html#ids_sqr_404
../sqr/ids_sqr_404.html#ids_sqr_404
../sqr/ids_sqr_404.html#ids_sqr_404
../%20adr/ids_adr_0083.html#ids_adr_0083
../%20adr/ids_adr_0083.html#ids_adr_0083
../%20adr/ids_adr_0083.html#ids_adr_0083
../%20adr/ids_adr_0083.html#ids_adr_0083
../%20adr/ids_adr_0155.html#ids_adr_0155
../%20adr/ids_adr_0155.html#ids_adr_0155
../%20adr/ids_adr_0155.html#ids_adr_0155
../%20adr/ids_adr_0155.html#ids_adr_0155
../%20adr/ids_adr_0158.html#ids_adr_0158
../%20adr/ids_adr_0158.html#ids_adr_0158
../%20adr/ids_adr_0158.html#ids_adr_0158
../%20adr/ids_adr_0158.html#ids_adr_0158
../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0160.html#ids_adr_0160


HCL Informix 14.10 - Performance Guide

64

Message portion of shared memory
The message portion of shared memory contains the message buffers that the shared-memory communication interface 

uses. The amount of space required for these buffers depends on the number of user connections that you allow using a 

given networking interface.

If a particular interface is not used, you do not need to include space for it when you allocate shared memory in the operating 

system.

Buffer pool portion of shared memory
The buffer pool portion of shared memory contains one or more buffer pools. Each page size that is used by a dbspace has a 

buffer pool.

The BUFFERPOOL configuration parameter specifies the size of the buffer pool when the database server is started. If the 

buffer pool is extendable, the database server increases the size of the buffer pool in the buffer pool portion of shared 

memory.

You can determine the current size of the buffer pool portion of shared memory by running the onstat -g buf  command and 

adding the values in the Total Mem  field for each buffer pool. For example, the following output shows that the memory for 

one buffer pool is 32 MB:

Fg Writes     LRU Writes    Avg. LRU Time Chunk Writes  Total Mem
0             0             nan           10883         32Mb    

The maximum size of each buffer pool depends on the amount of available shared memory and the values of the 

BUFFERPOOL configuration parameters.

Related information

Shared-memory buffer pool  on page 

Buffer pool portion of shared memory  on page 

BUFFERPOOL configuration parameter  on page 

onstat -g buf command: Print buffer pool profile information  on page 

Estimating the size of the resident portion of shared memory
You can use formulas to estimate the size of the resident portion (in KB) of shared memory when you allocate operating-

system shared memory.

About this task

The result of your calculations is an estimate that normally, slightly exceeds the actual memory that is used for the resident 

portion of shared memory.

The following estimate was calculated to determine the resident portion of shared memory on a 64-bit server. The sizes that 

are shown are subject to change, and the calculation is approximate.

../admin%20/ids_admin_0358.html#ids_admin_0358
../admin%20/ids_admin_0358.html#ids_admin_0358
../admin%20/ids_admin_0358.html#ids_admin_0358
../admin%20/ids_admin_0358.html#ids_admin_0358
../admin%20/ids_admin_1430.html#ids_admin_0358
../admin%20/ids_admin_1430.html#ids_admin_0358
../admin%20/ids_admin_1430.html#ids_admin_0358
../admin%20/ids_admin_1430.html#ids_admin_0358
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0515.html#ids_adr_0515
../%20adr/ids_adr_0515.html#ids_adr_0515
../%20adr/ids_adr_0515.html#ids_adr_0515
../%20adr/ids_adr_0515.html#ids_adr_0515


Chapter 1. Performance Guide

To estimate the size of the resident portion of shared memory

1. Estimate the size of the data buffer, using the following formula:

buffer_value = (BUFFERS * pagesize) + (BUFFERS * 254) + 250000

pagesize

is the shared-memory page size, as onstat -b  shows it on the last line in the buffer size  field.

If you have multiple buffer pools, add the buffer sizes for each buffer pool together.

2. Calculate the values in the following formulas:

locks_value = LOCKS * 136
logbuff_value = LOGBUFF * 1024 * 3
physbuff_value = PHYSBUFF * 1024 * 2

locks_value = LOCKS * 128
logbuff_value = LOGBUFF * 1024 * 3
physbuff_value = PHYSBUFF * 1024 * 2

3. Calculate the estimated size of the resident portion in KB, using the following formula:

rsegsize = 1.02 * (locks_value  + logbuff_value 

           + physbuff_value  + 1,200,000) / 1024

rsegsize = 1.02 * (buffer_value  + locks_value

 + logbuff_value  + physbuff_value  + 1,200,000) / 1024

Estimating the size of the virtual portion of shared memory
You can use a formula to estimate the initial size of the virtual portion of shared memory. You specify the initial size in the 

SHMVIRTSIZE configuration parameter.

About this task

The formula for estimating an initial size of the virtual portion of shared memory is as follows:

shmvirtsize = fixed overhead  + shared structures  +
            (mncs  * private structures) +
            other buffers

To estimate an SHMVIRTSIZE value with the preceding formula:

1. Estimate the value for the fixed overhead  portion of the formula as follows:

fixed overhead = global pool +
                 thread pool after booting

a. Run the onstat -g mem  command to obtain the pool sizes allocated to sessions.

b. Subtract the value in the freesize field from the value in the totalsize  to obtain the number of bytes allocated 

per session.

c. Estimate a value for the thread pool after booting  variable. This variable is partially dependent on the number 

of virtual processors.

2. Estimate the value of shared structures  with the following formula:

65



HCL Informix 14.10 - Performance Guide

66

shared structures = AIO vectors + sort memory +
            dbspace backup buffers +
            data-dictionary cache size +
            size of user-defined routine cache +
            histogram pool +
            STMT_CACHE_SIZE (SQL statement cache) +
            other pools (See onstat display.)

3. Estimate the next part of the formula, as follows:

a. Estimate the value of mncs  (which is the maximum number of concurrent sessions) with the following formula:

mncs = number of poll threads  *
      number connections per poll thread

The value for number of poll threads is the value that you specify in the second field of the NETTYPE 

configuration parameter.

The value for number of connections per poll thread  is the value that you specify in the third field of the 

NETTYPE configuration parameter.

You can also obtain an estimate of the maximum number of concurrent sessions when you run the onstat 

-u  command during peak processing. The last line of the onstat -u  output contains the maximum number of 

concurrent user threads.

b. Estimate the value of private structures, as follows:

private structures = stack  + heap  +
                   session control-block structures

stack

Generally 32 KB but dependent on recursion in user-defined routines. You can obtain the stack 

size for each thread with the onstat -g sts  option.

heap

About 15 KB. You can obtain the heap size for an SQL statement when you use the onstat -g stm 

option.

session control-block structures

The amount of memory used per session. The onstat -g ses  option displays the amount of 

memory, in bytes, in the total memory  column listed for each session id.

c. Multiply the results of steps 3a and 3b to obtain the following part of the formula:

mncs  * private structures

4. Estimate the value of other buffers to account for private buffers allocated for features such as lightweight I/O 

operations for smart large objects (about 180 KB per user).

5. Add the results of steps 1 through 4 to obtain an estimate for the SHMVIRTSIZE configuration parameter.

Results



Chapter 1. Performance Guide

Tip:  When the database server is running with a stable workload, you can use onstat -g seg  to obtain a precise value 

for the actual size of the virtual portion of shared memory. You can then use the value for shared memory that this 

command reports to reconfigure SHMVIRTSIZE.

To specify the size of segments that are added later to the virtual shared memory, set the SHMADD configuration parameter. 

Use the EXTSHMADD configuration parameter to specify the size of virtual-extension segments that are added for user-

defined routines and DataBlade®  routines.

What to do next

The following table contains a list of additional topics for estimating the size of shared structures in memory.

Table  5. Information for shared-memory structures

Shared-Memory Structure More Information

Sort memory Estimating memory needed for sorting  on page 230

Data-dictionary cache Data-dictionary configuration  on page 87

Data-distribution cache (histogram pool) Data-distribution configuration  on page 88

User-defined routine (UDR) cache SPL routine executable format stored in UDR cache  on 

page 330

SQL statement cache Enabling the SQL statement cache  on page 430 Monitor and 

tune the SQL statement cache  on page 90

Other pools To see how much memory is allocated to the different pools, use 

the onstat -g mem  command.

Related information

SHMVIRTSIZE configuration parameter  on page 

NETTYPE configuration parameter  on page 

Session memory  on page 103

onstat -g mem command: Print pool memory statistics  on page 

Estimating the size of the message portion of shared memory
You can estimate the size of the message portion of shared memory in kilobytes.

About this task

Estimate the size of the message portion of shared memory, using the following formula:

msegsize = (10,531 * ipcshm_conn + 50,000)/1024

67

../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0546.html#ids_adr_0546
../%20adr/ids_adr_0546.html#ids_adr_0546
../%20adr/ids_adr_0546.html#ids_adr_0546
../%20adr/ids_adr_0546.html#ids_adr_0546


HCL Informix 14.10 - Performance Guide

68

ipcshm_conn

is the number of connections that can be made using the shared-memory interface, as determined by the 

NETTYPE parameter for the ipcshm  protocol.

Related information

NETTYPE configuration parameter  on page 

Configuring UNIX™  shared memory
On UNIX™, you can configure shared-memory segments for the database server.

About this task

On UNIX™, perform the following steps to configure the shared-memory segments that your database server configuration 

needs. For information about how to set parameters related to shared memory, see the configuration instructions for your 

operating system.

To configure shared-memory segments for the database server:

1. If your operating system does not have a size limit for shared-memory segments, take the following actions:

a. Set the operating-system configuration parameter for maximum segment size, typically SHMMAX or 

SHMSIZE, to the total size that your database server configuration requires. This size includes the amount of 

memory that is required to start your database server instance and the amount of shared memory that you 

allocate for dynamic growth of the virtual portion.

b. Set the operating-system configuration parameter for the maximum number of segments, typically SHMMNI, 

to at least 1  per instance of the database server.

2. If your operating system has a segment-size limit, take the following actions:

a. Set the operating-system configuration parameter for the maximum segment size, typically SHMMAX or 

SHMSIZE, to the largest value that your system allows.

b. Use the following formula to calculate the number of segments for your instance of the database server. If 

there is a remainder, round up to the nearest integer.

SHMMNI = total_shmem_size / SHMMAX

total_shmem_size

is the total amount of shared memory that you allocate for the database server use.

3. Set the operating-system configuration parameter for the maximum number of segments, typically SHMMNI, to 

a value that yields the total amount of shared memory for the database server when multiplied by SHMMAX or 

../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114
../%20adr/ids_adr_0114.html#ids_adr_0114


Chapter 1. Performance Guide

SHMSIZE. If your computer is dedicated to a single instance of the database server, that total can be up to 90 percent 

of the size of virtual memory (physical memory plus swap space).

4. If your operating system uses the SHMSEG configuration parameter to indicate the maximum number of shared-

memory segments that a process can attach, set this parameter to a value that is equal to or greater than the largest 

number of segments that you allocate for any instance of the database server.

Results

For additional tips on configuring shared memory in the operating system, see the machine notes file for UNIX™  or the 

release notes file for Windows™.

Related information

The SHMADD and EXTSHMADD configuration parameters and memory utilization  on page 80

Freeing shared memory with onmode -F
You can run the onmode -F  command to free shared-memory segments that are unavailable or no longer needed for a 

process.

Restriction:  Do not run the onmode -F  command if Informix®  11.70.xC7 is running on Solaris 11 systems. Upgrade to 

Informix®  11.70.xC8 or a later version, and then run the command.

The database server does not automatically free the shared-memory segments that it adds during its operations. After 

memory has been allocated to the database server virtual portion, the memory remains unavailable for use by other 

processes running on the host computer. When the database server runs a large decision-support query, it might acquire 

a large amount of shared memory. After the query completes, the database server no longer requires that shared memory. 

However, the shared memory that the database server allocated to service the query remains assigned to the virtual portion 

even though it is no longer needed.

The onmode -F  command locates and returns unused 8-kilobyte blocks of shared memory that the database server still 

holds. Although this command runs only briefly (one or two seconds), onmode -F  dramatically inhibits user activity while it 

runs. Systems with multiple CPUs and CPU VPs typically experience less degradation while this utility runs.

You should run onmode -F  during slack periods with an operating-system scheduling facility (such as cron on UNIX™). In 

addition, consider running this utility after you perform any task that substantially increases the size of database server 

shared memory, such as large decision-support queries, index builds, sorts, or backup operations.

Related information

onmode -F: Free unused memory segments  on page 

Configuration parameters that affect memory utilization
A large number of configuration parameters in the ONCONFIG file affect memory utilization and performance.

69

../%20adr/ids_adr_0421.html#ids_adr_0421
../%20adr/ids_adr_0421.html#ids_adr_0421
../%20adr/ids_adr_0421.html#ids_adr_0421
../%20adr/ids_adr_0421.html#ids_adr_0421


HCL Informix 14.10 - Performance Guide

70

The following configuration parameters significantly affect memory utilization:

• BUFFERPOOL

• DS_NONPDQ_QUERY_MEM

• DS_TOTAL_MEMORY

• EXTSHMADD

• LOCKS

• LOGBUFF

• LOW_MEMORY_MGR

• LOW_MEMORY_RESERVE

• PHYSBUFF

• RESIDENT

• SHMADD

• SHMBASE

• SHMTOTAL

• SHMVIRTSIZE

• SHMVIRT_ALLOCSEG

• STACKSIZE

• Memory cache parameters (see Configure and monitor memory caches  on page 83)

• Network buffer size (see Network buffer pools  on page 50)

The SHMBASE parameter indicates the starting address for database server shared memory. When set according to the 

instructions in the machine notes file or release notes file, this parameter has no appreciable effect on performance. For the 

path name of each file, see the Introduction to this guide.

The DS_NONPDQ_QUERY_MEM parameter increases the amount of memory that is available for non-PDQ queries. You can 

only use this parameter if PDQ priority is set to zero. For more information, see Configuring memory for queries with hash 

joins, aggregates, and other memory-intensive elements  on page 421.

The following sections describe the performance effects and considerations associated with some of the configuration 

parameters that are listed at the beginning of this section.

Related information

Resident portion of shared memory  on page 62

Virtual portion of shared memory  on page 63

LOW_MEMORY_MGR configuration parameter  on page 

LOW_MEMORY_RESERVE configuration parameter  on page 

Setting the size of the buffer pool, logical-log buffer, and physical-log buffer
The values that you specify for the BUFFERPOOL, DS_TOTAL_MEMORY, LOGBUFF, and PHYSBUFF configuration parameters 

depend on the type of applications that you are using (OLTP or DSS) and the page size.

../%20adr/ids_adr_1136.html#ids_adr_1136
../%20adr/ids_adr_1136.html#ids_adr_1136
../%20adr/ids_adr_1136.html#ids_adr_1136
../%20adr/ids_adr_1136.html#ids_adr_1136
../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_1122.html#ids_adr_1122


Chapter 1. Performance Guide

Table 6: Guidelines for OLTP and DSS applications  on page 71 lists suggested settings for these parameters or guidelines 

for setting the parameters.

For information about estimating the size of the resident portion of shared memory, see Estimating the size of the resident 

portion of shared memory  on page 64. This calculation includes figuring the size of the buffer pool, logical-log buffer, 

physical-log buffer, and lock table.

Table  6. Guidelines for OLTP and DSS applications

Configuration Parameter OLTP Applications DSS Applications

BUFFERPOOL The percentage of physical memory 

that you need for buffer space depends 

on the amount of memory that is 

available on your system and the 

amount of memory that is used for other 

applications.

Set to a small buffer value and increase 

the DS_TOTAL_MEMORY value for light 

scans, queries, and sorts.

For operations such as index builds 

that read data through the buffer pool, 

configure a larger number of buffers.

DS_TOTAL_MEMORY Set to a value from 20 to 50 percent of 

the value of SHMTOTAL, in kilobytes.

Set to a value from 50 to 90 percent of 

SHMTOTAL.

LOGBUFF The default value for the logical log 

buffer size is 64 KB.

If you decide to use a smaller value, the 

database server generates a message 

a message that indicates that optimal 

performance might not be obtained. 

Using a logical log buffer smaller 

than 64 KB, impacts performance, not 

transaction integrity.

If the database or application is defined 

to use buffered logging, increasing the 

LOGBUFF size beyond 64 KB improves 

performance.

Because database or table logging is 

usually turned off for DSS applications, 

you can set LOGBUFF to 32 KB.

PHYSBUFF The default value for the physical log 

buffer size is 128 KB.

If the RTO_SERVER_RESTART 

configuration parameter is enabled, 

use the 512 kilobyte default value for 

PHYSBUFF.

Because most DSS applications do not 

physically log, you can set PHYSBUFF to 

32 KB.

71



HCL Informix 14.10 - Performance Guide

72

Table  6. Guidelines for OLTP and DSS applications  (continued)

Configuration Parameter OLTP Applications DSS Applications

If you decide to use a value that is 

smaller than the default value, the 

database server generates a message 

that indicates that optimal performance 

might not be obtained. Using a physical 

log buffer that is smaller than the 

default size impacts performance, not 

transaction integrity.

Related information

BUFFERPOOL configuration parameter  on page 

DS_TOTAL_MEMORY configuration parameter  on page 

LOGBUFF configuration parameter  on page 

PHYSBUFF configuration parameter  on page 

RTO_SERVER_RESTART configuration parameter  on page 

The BUFFERPOOL configuration parameter and memory utilization
The BUFFERPOOL configuration parameter specifies the properties of buffer pools. The information that you define in the 

BUFFERPOOL configuration parameter fields affects memory use.

You can have multiple buffer pools if you have dbspaces that use different page sizes. The onconfig  configuration file 

contains a BUFFERPOOL line for each page size. For example, on a computer with a 2 KB page size, the onconfig  file can 

contain up to nine lines, including the default specification. When you create a dbspace with a different page size, a buffer 

pool for that page size is created automatically, if it does not exist. A BUFFERPOOL entry for the page size is added to the 

onconfig  file. The values of the BUFFERPOOL configuration parameter fields are the same as the default specification.

The BUFFERPOOL configuration parameter controls the number of data buffers available to the database server. These 

buffers are in the buffer pool portion of shared memory and are used to cache database data pages in memory.These 

buffers are in the resident portion of shared memory (buffer pool) and are used to cache database data pages in memory.

Increasing the number of buffers increases the likelihood that a needed data page might already be in memory as the result 

of a previous request. However, allocating too many buffers can affect the memory-management system and lead to excess 

operating system paging activity. To take advantage of the large memory available on 64-bit addressing machines, you can 

increase the size of the buffer pool.

The size of the buffer pool has a significant effect on database I/O and transaction throughput.

../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0066.html#ids_adr_0066
../%20adr/ids_adr_0066.html#ids_adr_0066
../%20adr/ids_adr_0066.html#ids_adr_0066
../%20adr/ids_adr_0066.html#ids_adr_0066
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146


Chapter 1. Performance Guide

The size of the buffer pool has a significant effect on database I/O and transaction throughput. You can ensure that the 

buffer pool has enough buffers by making the buffer pool extendable. When the buffer pool is extendable, the database 

server expands the buffer pool as needed to improve performance.

The size of the buffer pool is equal to the number of buffers multiplied by the page size. The percentage of physical memory 

that you need for buffer space depends on the amount of memory that you have available on your system and the amount 

that is used for other applications. For systems with a large amount of available physical memory (4 GB or more), buffer 

space might be as much as 90 percent of physical memory. For systems with smaller amounts of available physical memory, 

buffer space might range from 20 to 25 percent of physical memory.

For example, suppose that your system has a page size of 2 KB and 100 MB of physical memory. You can set the value in the 

buffers  field to 10,000 - 12,500, which allocates 20 - 25 MB of memory.

Calculate all other shared-memory parameters after you specify the size of the buffer pool.

Note:  If you use non-default page sizes, you might need to increase the size of your physical log. If you 

frequently update non-default pages, you might need a 150 - 200 percent increase of the physical log size. Some 

experimentation might be needed to tune the physical log. You can adjust the size of the physical log as necessary 

according to how frequently the filling of the physical log triggers checkpoints.

You can use onstat -g buf  to monitor buffer pool statistics, including the read-cache rate of the buffer pool. This rate 

represents the percentage of database pages that are already present in a shared-memory buffer when a query requests a 

page. (If a page is not already present, the database server must copy it into memory from disk.) If the database server finds 

the page in the buffer pool, it spends less time on disk I/O. Therefore, you want a high read-cache rate for good performance. 

For OLTP applications where many users read small sets of data, the goal is to achieve a read cache rate of 95 percent or 

better. If the buffer pool is extendable, you can specify the read cache hit ratio below which the database server extends the 

buffer pool.

If the read-cache rate is low, you can repeatedly increase buffers and restart the database server. As you increase the 

BUFFERPOOL value of buffers, you reach a point at which increasing the value no longer produces significant gains in the 

read-cache rate, or you reach the upper limit of your operating-system shared-memory allocation.

Use the memory-management monitor utility in your operating system (such as vmstat  or sar  on UNIX™) to note the level of 

page scans and paging-out activity. If these levels rise suddenly or rise to unacceptable levels during peak database activity, 

reduce the size of the buffer pool.

Smart large objects and buffers

Depending upon your situation, you can take one of the following actions to achieve better performance for applications that 

use smart large objects:

• If your applications frequently access smart large objects that are 2 KB or 4 KB in size, use the buffer pool to keep 

them in memory longer. Use the following formula to increase the value of the buffers  field:

Additional_buffers = numcur_open_lo  *
                     (lo_userdata / pagesize)

73



HCL Informix 14.10 - Performance Guide

74

In this formula:

◦ numcur_open_lo  is the number of concurrently opened smart large objects that you can obtain from the 

onstat -g smb fdd  command.

◦ lo_userdata  is the number of bytes of smart-large-object data that you want to buffer.

◦ pagesize  is the default page size in bytes for the computer.

As a rule, try to have enough buffers to hold two smart-large-object pages for each concurrently open smart large 

object. The additional page is available for read-ahead purposes.

• Use lightweight I/O buffers in the virtual portion of shared memory.

Use lightweight I/O buffers only when you read or write smart large objects in operations greater than 8000 bytes 

and seldom access them. That is, if the read or write function calls read large amounts of data in a single-function 

invocation, use lightweight I/O buffers.

When you use lightweight I/O buffers, you can prevent the flood of smart large objects into the buffer pool and leave 

more buffers available for other data pages that multiple users frequently access.

Related information

BUFFERPOOL configuration parameter  on page 

Monitor buffers  on page 

Lightweight I/O for smart large objects  on page 131

BUFFERPOOL and its effect on page cleaning  on page 150

The DS_TOTAL_MEMORY configuration parameter and memory utilization
The DS_TOTAL_MEMORY configuration parameter places a ceiling on the amount of shared memory that a query can obtain. 

You can use this parameter to limit the performance impact of large, memory-intensive queries. The higher you set this 

parameter, the more memory a large query can use, and the less memory is available for processing other queries and 

transactions.

For OLTP applications, set DS_TOTAL_MEMORY to 20 - 50 percent of the value of SHMTOTAL, in KB. For applications that 

involve large decision-support (DSS) queries, increase the value of DS_TOTAL_MEMORY to 50 - 80 percent of SHMTOTAL. If 

you use your database server instance exclusively for DSS queries, set this parameter to 90 percent of SHMTOTAL.

A quantum unit  is the minimum increment of memory that is allocated to a query. The Memory Grant Manager (MGM) 

allocates memory to queries in quantum units. The database server uses the value of DS_MAX_QUERIES with the value of 

DS_TOTAL_MEMORY to calculate a quantum of memory, according to the following formula:

quantum = DS_TOTAL_MEMORY / DS_MAX_QUERIES

The database server can adjust the size of the quantum dynamically when it grants memory. To allow for more simultaneous 

queries with smaller quanta each, increase the value of the DS_MAX_QUERIES configuration parameter.

../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../admin%20/ids_admin_0457.html#ids_admin_0457
../admin%20/ids_admin_0457.html#ids_admin_0457
../admin%20/ids_admin_0457.html#ids_admin_0457
../admin%20/ids_admin_0457.html#ids_admin_0457


Chapter 1. Performance Guide

Related information

The Memory Grant Manager  on page 356

DS_TOTAL_MEMORY configuration parameter  on page 

Limiting the performance impact of CPU-intensive queries  on page 45

Algorithm for determining DS_TOTAL_MEMORY
The database server derives a value for DS_TOTAL_MEMORY if you do not set the DS_TOTAL_MEMORY configuration 

parameter or if you set this configuration parameter to an inappropriate value.

Whenever the database server changes the value that you assigned to DS_TOTAL_MEMORY, it sends the following message 

to your console:

DS_TOTAL_MEMORY recalculated and changed from old_value  Kb
            to new_value  Kb

The variable old_value  represents the value that you assigned to DS_TOTAL_MEMORY in your configuration file. The variable 

new_value  represents the value that the database server derived.

When you receive the preceding message, you can use the algorithm to investigate what values the database server 

considers inappropriate. You can then take corrective action based on your investigation.

The following sections document the algorithm that the database server uses to derive the new value for 

DS_TOTAL_MEMORY.

Deriving a minimum for decision-support memory
In the first part of the algorithm that the database server uses to derive the new value for the DS_TOTAL_MEMORY 

configuration parameter, the database server establishes a minimum amount for decision-support memory.

When you assign a value to the DS_MAX_QUERIES configuration parameter, the database server sets the minimum amount 

of decision-support memory according to the following formula:

min_ds_total_memory  = DS_MAX_QUERIES * 128 kilobytes

When you do not assign a value to the DS_MAX_QUERIES configuration parameter, the database server uses the following 

formula instead, which is based on the value of information in the VPCLASS configuration parameter:

min_ds_total_memory  = NUMBER_CPUVPS * 2 * 128 kilobytes

Deriving a working value for decision-support memory
In the second part of the algorithm that the database server uses to derive the new value for the DS_TOTAL_MEMORY 

configuration parameter, the database server establishes a working value for the amount of decision-support memory.

The database server verifies this amount in the third and final part of the algorithm.

75

../%20adr/ids_adr_0066.html#ids_adr_0066
../%20adr/ids_adr_0066.html#ids_adr_0066
../%20adr/ids_adr_0066.html#ids_adr_0066
../%20adr/ids_adr_0066.html#ids_adr_0066


HCL Informix 14.10 - Performance Guide

76

When the DS_TOTAL_MEMORY configuration parameter is set
When the DS_TOTAL_MEMORY configuration parameter is set, the database server checks whether the SHMTOTAL 

configuration parameter is set and then determines which formula to use to calculate the amount of decision-support 

memory.

When SHMTOTAL is set, the database server uses the following formula to calculate the amount of decision-support 

memory:

IF DS_TOTAL_MEMORY <= SHMTOTAL - nondecision_support_memory THEN
   decision_support_memory = DS_TOTAL_MEMORY
ELSE
    decision_support_memory = SHMTOTAL -
                  nondecision_support_memory

This algorithm effectively prevents you from setting DS_TOTAL_MEMORY to values that the database server cannot possibly 

allocate to decision-support memory.

When SHMTOTAL is not set, the database server sets decision-support memory equal to the value that you specified in 

DS_TOTAL_MEMORY.

Related information

DS_TOTAL_MEMORY configuration parameter  on page 

When the DS_TOTAL_MEMORY configuration parameter is not set
When the DS_TOTAL_MEMORY configuration parameter is not set, the database server uses other sources to calculate a 

value for the amount of decision-support memory.

When SHMTOTAL is set, the database server uses the following formula to calculate the amount of decision-support 

memory:

decision_support_memory = SHMTOTAL -
                  nondecision_support_memory

When the database server finds that you did not set SHMTOTAL, it sets decision-support memory as in the following 

example:

decision_support_memory = min_ds_total_memory

For a description of the variable min_ds_total_memory, see Deriving a minimum for decision-support memory  on page 75.

Checking the derived value for decision-support memory
In the final part of the algorithm that the database server uses to derive the new value for the DS_TOTAL_MEMORY 

configuration parameter, the database server verifies that the amount of shared memory is greater than 

min_ds_total_memory  and less than the maximum possible memory space for your computer.

When the database server finds that the derived value for decision-support memory is less than the value of the 

min_ds_total_memory variable, it sets decision-support memory equal to the value of min_ds_total_memory.

../%20adr/ids_adr_0066.html#ids_adr_0066
../%20adr/ids_adr_0066.html#ids_adr_0066
../%20adr/ids_adr_0066.html#ids_adr_0066
../%20adr/ids_adr_0066.html#ids_adr_0066


Chapter 1. Performance Guide

When the database server finds that the derived value for decision-support memory is greater than the maximum possible 

memory space for your computer, it sets decision-support memory equal to the maximum possible memory space.

The LOGBUFF configuration parameter and memory utilization
The LOGBUFF configuration parameter determines the amount of shared memory that is reserved for each of the three 

buffers that hold the logical-log records until they are flushed to the logical-log file on disk. The size of a buffer determines 

how often it fills and therefore how often it must be flushed to the logical-log file on disk.

If you log smart large objects, increase the size of the logical-log buffers to prevent frequent flushing to the logical-log file on 

disk.

Related reference

Configuration parameters that affect critical data  on page 114

Related information

LOGBUFF configuration parameter  on page 

The LOW_MEMORY_RESERVE configuration parameter and memory utilization
The LOW_MEMORY_RESERVE configuration parameter reserves a specific amount of memory, in kilobytes, for the database 

server to use when critical activities are needed and the server has limited free memory.

If you enable the new LOW_MEMORY_RESERVE configuration parameter by setting it to a specified value in kilobytes, critical 

activities, such as rollback activities, can complete even when you receive out-of-memory errors.

Related information

LOW_MEMORY_RESERVE configuration parameter  on page 

onstat -g seg command: Print shared memory segment statistics  on page 

The PHYSBUFF configuration parameter and memory utilization
The PHYSBUFF configuration parameter determines the amount of shared memory that is reserved for each of the two 

buffers that serve as temporary storage space for data pages that are about to be modified. The size of a buffer determines 

how often it fills and therefore how often it must be flushed to the physical log on disk.

Choose a value for PHYSBUFF that is an even increment of the system page size.

Related information

PHYSBUFF configuration parameter  on page 

77

../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_0573.html#ids_adr_0573
../%20adr/ids_adr_0573.html#ids_adr_0573
../%20adr/ids_adr_0573.html#ids_adr_0573
../%20adr/ids_adr_0573.html#ids_adr_0573
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0133.html#ids_adr_0133


HCL Informix 14.10 - Performance Guide

78

The LOCKS configuration parameter and memory utilization
The LOCKS configuration parameter specifies the initial size of the lock table. The lock table holds an entry for each lock 

that a session uses. Each lock uses 120 bytes within a lock table. You must provide for this amount of memory when you 

configure shared memory.

If the number of locks needed by sessions exceeds the value set in the LOCKS configuration parameter, the database server 

attempts to increase the lock table by doubling its size. Each time that the lock table overflows (when the number of locks 

needed is greater than the current size of the lock table), the database server increases the size of the lock table, up to 

99 times. Each time that the database server increases the size of the lock table, the server attempts to double its size. 

However, the server will limit each actual increase to no more than the maximum number of added locks shown in Table 

7: Maximum number of locks on 32-bit and 64-bit platforms  on page 78. After the 99th time that the database server 

increases the lock table, the server no longer increases the size of the lock table, and an application needing a lock receives 

an error.

The following table shows the maximum number of locks allowed on 32-bit and 64-bit platforms

Table  7. Maximum number of locks on 32-bit and 64-bit platforms

Platf

orm

Maximum Number 

of Initial Locks

Maximum Number of Dynamic 

Lock Table Extensions

Maximum Number of Locks 

Added Per Lock Table Extension

Maximum Number 

of Locks Allowed

32-

bit

8,000,000 99 100,000 8,000,000 + (99 x 

100,000)

64-

bit

500,000,000 99 1,000,000 500,000,000 + (99 x 

1,000,000)

The default value for the LOCKS configuration parameter is 20,000.

To estimate a different value for the LOCKS configuration parameter, estimate the maximum number of locks that a query 

needs and multiply this estimate by the number of concurrent users. You can use the guidelines in the following table to 

estimate the number of locks that a query needs.

Locks per 

Statement
Isolation Level Table Row Key

TEXT or BYTE 

Data
CLOB or BLOB Data

SELECT Dirty Read 0 0 0 0 0

SELECT Committed Read 1 0 0 0 0

SELECT Cursor Stability 1 1 0 0 1 lock for the CLOB 

or BLOB value or (if 

byte-range locking is used) 

1 lock for each range

SELECT Indexed Repeatable 

Read

1 Number 

of rows 

Number 

of rows 

0 1 lock for the CLOB 

or BLOB value or (if 



Chapter 1. Performance Guide

Locks per 

Statement
Isolation Level Table Row Key

TEXT or BYTE 

Data
CLOB or BLOB Data

that satisfy 

conditions

that satisfy 

conditions

byte-range locking is used) 

1 lock for each range

SELECT Sequential 

Repeatable Read

1 0 0 0 1 lock for the CLOB 

or BLOB value or (if 

byte-range locking is used) 

1 lock for each range

INSERT Not applicable 1 1 Number of 

indexes

Number of 

pages in TEXT 

or BYTE data

1 lock for the CLOB or 

BLOB value

DELETE Not applicable 1 1 Number of 

indexes

Number of 

pages in TEXT 

or BYTE data

1 lock for the CLOB or 

BLOB value

UPDATE Not applicable 1 1 2 per 

changed key 

value

Number of 

pages in old 

plus new TEXT 

or BYTE data

1 lock for the CLOB 

or BLOB value or (if 

byte-range locking is used) 

1 lock for each range

Important:  During the execution of the SQL  statement DROP DATABASE, the database server acquires and holds a 

lock on each table in the database until the entire DROP operation completes. Make sure that the value for LOCKS is 

large enough to accommodate the largest number of tables in a database.

Related information

Configuring and managing lock usage  on page 255

LOCKS configuration parameter  on page 

The RESIDENT configuration parameter and memory utilization
The RESIDENT configuration parameter specifies whether shared-memory residency is enforced for the resident portion of 

database server shared memory. This configuration parameter works only on computers that support forced residency.

The resident portion in the database server contains the buffer pools that are used for database read and write activity. 

Performance improves when these buffers remain in physical memory.

You should set the RESIDENT parameter to 1. If forced residency is not an option on your computer, the database server 

issues an error message and ignores this configuration parameter.

79

../%20adr/ids_adr_0094.html#ids_adr_0094
../%20adr/ids_adr_0094.html#ids_adr_0094
../%20adr/ids_adr_0094.html#ids_adr_0094
../%20adr/ids_adr_0094.html#ids_adr_0094


HCL Informix 14.10 - Performance Guide

80

On machines that support 64-bit addressing, you can have a very large buffer pool and the virtual portion of database server 

shared memory can also be very large. The virtual portion contains various memory caches that improve performance of 

multiple queries that access the same tables (see Configure and monitor memory caches  on page 83). To make the 

virtual portion resident in physical memory in addition to the resident portion, set the RESIDENT parameter to -1.

If your buffer pool is very large, but your physical memory is not very large, you can set RESIDENT to a value greater than 1 to 

indicate the number of memory segments to stay in physical memory. This specification makes only a subset of the buffer 

pool resident.

You can turn residency on or off for the resident portion of shared memory in the following ways:

• Use the onmode  utility to reverse temporarily the state of shared-memory residency while the database server is 

online.

• Change the RESIDENT parameter to turn shared-memory residency on or off the next time that you start database 

server shared memory.

Related information

RESIDENT configuration parameter  on page 

The SHMADD and EXTSHMADD configuration parameters and memory utilization
The SHMADD configuration parameter specifies the size of each increment of shared memory that the database server 

dynamically adds to the virtual portion. The EXTSHMADD configuration parameter specifies the size of a virtual-extension 

segment that is added when user-defined routines or DataBlade®  routines run in user-defined virtual processors. Trade-offs 

are involved in determining the size of an increment.

Adding shared memory uses CPU cycles. The larger each increment, the fewer increments are required, but less memory is 

available for other processes. Adding large increments is generally preferred; but when memory is heavily loaded (the scan 

rate or paging-out rate is high), smaller increments allow better sharing of memory resources among competing programs.

The range of values for SHMADD is 1024  through 4294967296  KB for a 64-bit operating system and 1024  through 524288  KB 

for a 32-bit operating system. The following table contains recommendations for setting SHMADD according to the size of 

physical memory.

Memory Size SHMADD Value

256 MB or less 8192 KB (the default)

257 - 512 MB 16,384 KB

Larger than 512 MB 32,768 KB

The range of values for EXTSHMADD is the same as the range of values of SHMADD.

../%20adr/ids_adr_0140.html#ids_adr_0140
../%20adr/ids_adr_0140.html#ids_adr_0140
../%20adr/ids_adr_0140.html#ids_adr_0140
../%20adr/ids_adr_0140.html#ids_adr_0140


Chapter 1. Performance Guide

Note:  A shared memory segment can be as large as 4 terabytes, depending on platform limits and the value of the 

SHMMAX kernel parameter. Use the onstat -g seg  command to display the number of shared-memory segments that 

the database server is currently using.

Related information

SHMADD configuration parameter  on page 

EXTSHMADD configuration parameter  on page 

Configuring UNIX shared memory  on page 68

The SHMTOTAL configuration parameter and memory utilization
The SHMTOTAL configuration parameter places an absolute upper limit on the amount of shared memory that an instance of 

the database server can use.

If the SHMTOTAL configuration parameter is set to 0  or left unassigned, the database server continues to attach additional 

shared memory as needed until no virtual memory is available on the system.

You can usually set the SHMTOTAL configuration parameter to 0, except in the following cases:

• You must limit the amount of virtual memory that the database server uses for other applications or other reasons.

• Your operating system runs out of swap space and performs abnormally. In this case, you can set SHMTOTAL to a 

value that is a few megabytes less than the total swap space that is available on your computer.

• You are using automatic low memory management.

Related information

SHMTOTAL configuration parameter  on page 

The SHMVIRTSIZE configuration parameter and memory utilization
The SHMVIRTSIZE parameter specifies the size of the virtual portion of shared memory to allocate when you start the 

database server. The virtual portion of shared memory holds session- and request-specific data as well as other information.

Although the database server adds increments of shared memory to the virtual portion as needed to process large queries or 

peak loads, allocation of shared memory increases time for transaction processing. Therefore, you should set SHMVIRTSIZE 

to provide a virtual portion large enough to cover your normal daily operating requirements. The size of SHMVIRTSIZE can be 

as large the SHMMAX configuration parameter allows.

The maximum value of SHMVIRTSIZE, which must be a positive integer, is:

• 4 terabytes on a 64-bit database server

• 2 gigabytes on a 32-bit database server

81

../%20adr/ids_adr_0155.html#ids_adr_0155
../%20adr/ids_adr_0155.html#ids_adr_0155
../%20adr/ids_adr_0155.html#ids_adr_0155
../%20adr/ids_adr_0155.html#ids_adr_0155
../%20adr/ids_adr_0083.html#ids_adr_0083
../%20adr/ids_adr_0083.html#ids_adr_0083
../%20adr/ids_adr_0083.html#ids_adr_0083
../%20adr/ids_adr_0083.html#ids_adr_0083
../%20adr/ids_adr_0158.html#ids_adr_0158
../%20adr/ids_adr_0158.html#ids_adr_0158
../%20adr/ids_adr_0158.html#ids_adr_0158
../%20adr/ids_adr_0158.html#ids_adr_0158


HCL Informix 14.10 - Performance Guide

82

For an initial setting, it is suggested that you use the larger of the following values:

• 8000

• connections  * 350

The connections  variable is the number of connections for all network types that are specified in the sqlhosts information by 

one or more NETTYPE configuration parameters. (The database server uses connections  * 200  by default.)

Once system utilization reaches a stable workload, you can reconfigure a new value for SHMVIRTSIZE. As noted in Freeing 

shared memory with onmode -F  on page 69, you can instruct the database server to release shared-memory segments 

that are no longer in use after a peak workload or large query.

Related information

SHMVIRTSIZE configuration parameter  on page 

The SHMVIRT_ALLOCSEG configuration parameter and memory utilization
The SHMVIRT_ALLOCSEG configuration parameter specifies a threshold at which the database server should allocate 

memory. This configuration parameter also defines an alarm event security-code that is activated if the server cannot 

allocate the new memory segment, thus ensuring that the database server never runs out of memory.

When you set the SHMVIRT_ALLOCSEG configuration parameter, you must:

• Specify the percentage of memory used or the whole number of kilobytes remaining on the server. You cannot use 

negative values and values between 0  and .39.

• Specify the alarm event-security code, which is a value ranging from 1  (not noteworthy) to 5  (fatal). If you do not 

specify an event-security code, the server sets the value to 3, which is the default value.

Example 1:

SHMVIRT_ALLOCSEG 3000, 4

This specifies that if the database serve has 3000 kilobytes remaining in virtual memory and additional kilobytes of memory 

cannot be allocated, the server raises an alarm level of 4.

Example 2:

SHMVIRT_ALLOCSEG .8, 4

This specifies that if the database server has twenty percent remaining in virtual memory and additional kilobytes of memory 

cannot be allocated, the server raises an alarm level of 4.

Related information

Event Alarm Parameters  on page 

SHMVIRT_ALLOCSEG configuration parameter  on page 

../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0160.html#ids_adr_0160
../%20adr/ids_adr_0674.html#ids_adr_0674
../%20adr/ids_adr_0674.html#ids_adr_0674
../%20adr/ids_adr_0674.html#ids_adr_0674
../%20adr/ids_adr_0674.html#ids_adr_0674
../%20adr/ids_adr_0159.html#ids_adr_0159
../%20adr/ids_adr_0159.html#ids_adr_0159
../%20adr/ids_adr_0159.html#ids_adr_0159
../%20adr/ids_adr_0159.html#ids_adr_0159


Chapter 1. Performance Guide

The STACKSIZE configuration parameter and memory utilization
The STACKSIZE configuration parameter indicates the initial stack size for each thread. The database server assigns the 

amount of space that this parameter indicates to each active thread. This space comes from the virtual portion of database 

server shared memory. You can reduce the amount of shared memory that the database server adds dynamically.

To reduce the amount of shared memory that the database server adds dynamically, estimate the amount of the stack space 

required for the average number of threads that your system runs and include that amount in the value that you set for the 

SHMVIRTSIZE configuration parameter.

To estimate the amount of stack space that you require, use the following formula:

stacktotal = STACKSIZE * avg_no_of_threads 

avg_no_of_threads

is the average number of threads. You can monitor the number of active threads at regular intervals to 

determine this amount. Use onstat -g sts to check the stack use of threads. A general estimate is between 60 

and 70 percent of the total number of connections (specified in the NETTYPE parameters in your ONCONFIG 

file), depending on your workload.

The database server also executes user-defined routines (UDRs) with user threads that use this stack. Programmers who 

write user-defined routines should take the following measures to avoid stack overflow:

• Do not use large automatic arrays.

• Avoid excessively deep calling sequences.

• For DB-Access only: Use mi_call  to manage recursive calls.

If you cannot avoid stack overflow with these measures, use the STACK modifier of the CREATE FUNCTION statement to 

increase the stack for a particular routine.

Related information

STACKSIZE configuration parameter  on page 

Configure and monitor memory caches
The database server uses caches to store information in memory instead of performing a disk read or another operation 

to obtain the information. These memory caches improve performance for multiple queries that access the same tables. 

You can set some configuration parameters to increase the effectiveness of each cache. You can view information about 

memory caches by running onstat  commands.

The following table lists the main memory caches that have the greatest effect on performance and how to configure and 

monitor those caches.

83

../%20adr/ids_adr_0165.html#ids_adr_0165
../%20adr/ids_adr_0165.html#ids_adr_0165
../%20adr/ids_adr_0165.html#ids_adr_0165
../%20adr/ids_adr_0165.html#ids_adr_0165


HCL Informix 14.10 - Performance Guide

84

Table  8. Main memory caches

Cache Name Cache Description Configuration Parameters
onstat 

command

Data Dictionary Stores information about the table 

definition (such as column names and data 

types).

DD_HASHSIZE: The maximum number 

of buckets in the cache.

DD_HASHMAX: The number of tables 

in each bucket

onstat -g dic

Data Distribution Stores distribution statistics for a column. DS_POOLSIZE: The maximum number 

of entries in the cache.

DS_HASHSIZE: The number of 

buckets in the cache.

onstat -g dsc

SQL Statement Stores parsed and optimized SQL 

statements.

STMT_CACHE: Enable the SQL 

statement cache.

STMT_CACHE_HITS: The number of 

times anSQL  statement is run before 

it is cached.

STMT_CACHE_NOLIMIT: Prohibit 

entries into the SQL  statement cache 

when allocated memory exceeds 

the value of the STMT_CACHE_SIZE 

configuration parameter.

STMT_CACHE_NUMPOOL: The 

number of memory pools for the SQL 

statement cache.

STMT_CACHE_SIZE: The size of the 

SQL  statement cache, in KB.

onstat -g ssc

UDR Stores frequently used user-defined 

routines and SPL  routines.

PC_POOLSIZE: The maximum number 

of user-defined routines and SPL 

routines in the cache.

PC_HASHSIZE: The number of 

buckets in the UDR cache.

onstat -g prc

The following table lists more memory caches and how to configure and monitor those caches.



Chapter 1. Performance Guide

Table  9. Additional memory caches

Cache Name Cache Description Configuration Parameters
onstat 

command

Access method Stores user-defined access methods. None. onstat -g cac 

am

Aggregate Stores user-defined aggregates. DS_POOLSIZE

DS_HASHSIZE

onstat -g cac 

agg

AQT dictionary Stores accelerated query tables that the 

database server uses to determine which 

queries can be processed by Informix® 

Warehouse Accelerator.

None. onstat -g cac 

aqt

Cast Stores user-defined casts. DS_POOLSIZE

DS_HASHSIZE

onstat -g cac 

cast

External directives Stores external directives. None. onstat -g cac ed

LBAC security 

policy information

Stores LBAC security policies. PLCY_POOLSIZE

PLCY_HASHSIZE

onstat -g cac 

lbacplcy

LBAC credential 

memory

Stores LBAC credentials. USRC_POOLSIZE

USRC_HASHSIZE

onstat -g cac 

lbacusrc

Operator class 

instance

Stores user-defined operator classes. DS_POOLSIZE

DS_HASHSIZE

onstat -g cac 

opci

Procedure name Stores user-defined routine and SPL routine 

names.

PC_POOLSIZE

PC_HASHSIZE

onstat -g cac 

prn

Routine resolution Stores user-defined routine resolution 

information.

DS_POOLSIZE

DS_HASHSIZE

onstat -g cac rr

Secondary 

transient

Stores transient unnamed complex 

data types on secondary servers in a 

high-availability cluster.

DS_POOLSIZE

DS_HASHSIZE

onstat -g cac 

ttype

Extended type ID Stores the IDs of user-defined types. DS_POOLSIZE

DS_HASHSIZE

onstat -g cac 

typei

85



HCL Informix 14.10 - Performance Guide

86

Table  9. Additional memory caches  (continued)

Cache Name Cache Description Configuration Parameters
onstat 

command

Extended type 

name

Stores the name of user-defined types. DS_POOLSIZE

DS_HASHSIZE

onstat -g cac 

typen

Related information

SPL routine executable format stored in UDR cache  on page 330

onstat -g cac command: Print information about caches  on page 

onstat -g dsc command: Print distribution cache information  on page 

onstat -g prc command: Print sessions using UDR or SPL routines  on page 

onstat -g ssc command: Print SQL statement occurrences  on page 

Database configuration parameters  on page 

Data-dictionary cache
The first time that the database server accesses a table, it retrieves the information that it needs about the table (such as the 

column names and data types) from the system catalog tables on disk. After the database server has accessed the table, it 

places that information in the data-dictionary cache in shared memory.

Figure 5: Data-dictionary cache  on page 86 shows how the database server uses this cache for multiple users. User 1 

accesses the column information for tabid 120  for the first time. The database server puts the column information in the 

data-dictionary cache. When user 2, user 3 and user 4 access the same table, the database server does not have to read 

from disk to access the data-dictionary information for the table. Instead, it reads the dictionary information from the data-

dictionary cache in memory.

Figure  5. Data-dictionary cache

The database server still places pages for system catalog tables in the buffer pool, as it does all other data and index pages. 

However, the data-dictionary cache offers an additional performance advantage, because the data-dictionary information is 

organized in a more efficient format and organized to allow fast retrieval.

../%20adr/ids_adr_1167.html#onstat-gcac
../%20adr/ids_adr_1167.html#onstat-gcac
../%20adr/ids_adr_1167.html#onstat-gcac
../%20adr/ids_adr_1167.html#onstat-gcac
../%20adr/ids_adr_0528.html#ids_adr_0528
../%20adr/ids_adr_0528.html#ids_adr_0528
../%20adr/ids_adr_0528.html#ids_adr_0528
../%20adr/ids_adr_0528.html#ids_adr_0528
../%20adr/ids_adr_0560.html#ids_adr_0560
../%20adr/ids_adr_0560.html#ids_adr_0560
../%20adr/ids_adr_0560.html#ids_adr_0560
../%20adr/ids_adr_0560.html#ids_adr_0560
../%20adr/ids_adr_0581.html#ids_adr_0581
../%20adr/ids_adr_0581.html#ids_adr_0581
../%20adr/ids_adr_0581.html#ids_adr_0581
../%20adr/ids_adr_0581.html#ids_adr_0581
../%20adr/ids_adr_0007.html#ids_adr_0007
../%20adr/ids_adr_0007.html#ids_adr_0007
../%20adr/ids_adr_0007.html#ids_adr_0007
../%20adr/ids_adr_0007.html#ids_adr_0007


Chapter 1. Performance Guide

Data-dictionary configuration
The database server uses a hashing algorithm to store and locate information within the data-dictionary cache. The 

DD_HASHSIZE and DD_HASHMAX configuration parameters control the size of the data-dictionary cache.

To modify the number of buckets in the data-dictionary cache, use DD_HASHSIZE (must be a prime number). To modify the 

number of tables that can be stored in one bucket, use DD_HASHMAX.

For medium to large systems, you can start with the following values for these configuration parameters:

• DD_HASHSIZE: 503

• DD_HASHMAX: 4

With these values, you can potentially store information about 2012 tables in the data-dictionary cache, and each hash 

bucket can have a maximum of 4 tables.

If the bucket reaches the maximum size, the database server uses a least recently used mechanism to clear entries from the 

data dictionary.

Related information

DD_HASHSIZE configuration parameter  on page 

DD_HASHMAX configuration parameter  on page 

Data-distribution cache
The query optimizer uses distribution statistics generated by the UPDATE STATISTICS statement in the MEDIUM or HIGH 

mode to determine the query plan with the lowest cost. The first time that the optimizer accesses the distribution statistics 

for a column, the database server retrieves the statistics from the sysdistrib  system catalog table on disk and places that 

information in the data-distribution cache in memory.

Figure 6: Data-distribution cache  on page 88 shows how the database server accesses the data-distribution cache for 

multiple users. When the optimizer accesses the column distribution statistics for User 1 for the first time, the database 

server puts the distribution statistics in the data-distribution cache. When the optimizer determines the query plan for user 

2, user 3 and user 4 who access the same column, the database server does not have to read from disk to access the data-

distribution information for the table. Instead, it reads the distribution statistics from the data-distribution cache in shared 

memory.

87

../%20adr/ids_adr_0049.html#ids_adr_0049
../%20adr/ids_adr_0049.html#ids_adr_0049
../%20adr/ids_adr_0049.html#ids_adr_0049
../%20adr/ids_adr_0049.html#ids_adr_0049
../%20adr/ids_adr_0048.html#ids_adr_0048
../%20adr/ids_adr_0048.html#ids_adr_0048
../%20adr/ids_adr_0048.html#ids_adr_0048
../%20adr/ids_adr_0048.html#ids_adr_0048


HCL Informix 14.10 - Performance Guide

88

Figure  6. Data-distribution cache

The database server initially places pages for the sysdistrib system catalog table in the buffer pool as it does all other data 

and index pages. However, the data-distribution cache offers additional performance advantages. It:

• Is organized in a more efficient format

• Is organized to allow fast retrieval

• Bypasses the overhead of the buffer pool management

• Frees more pages in the buffer pool for actual data pages rather than system catalog pages

• Reduces I/O operations to the system catalog table

Data-distribution configuration
The database server uses a hashing algorithm to store and locate information within the data-distribution cache. The 

DS_POOLSIZE configuration parameter controls the size of the data-distribution cache and controls the total number 

of column distributions that can be stored in the data-distribution cache. The value of the DS_POOLSIZE configuration 

parameter represents half of the maximum number of distributions in the data distribution cache.

To modify the number of buckets in the data-distribution cache, use the DS_HASHSIZE configuration parameter.

The following formula determines the number of column distributions that can be stored in one bucket.

Distributions_per_bucket = DS_POOLSIZE / DS_HASHSIZE

To modify the number of distributions per bucket, change either the DS_POOLSIZE or DS_HASHSIZE configuration parameter.

For example, with the default values of 127  for DS_POOLSIZE and 31  for DS_HASHSIZE, you can potentially store distributions 

for about 254 columns in the data-distribution cache. When the cache is full, the database server automatically increases the 

size of the cache by 10%.

For example, with the default values of 127  for DS_POOLSIZE and 31  for DS_HASHSIZE, you can potentially store distributions 

for about 127 columns in the data-distribution cache. The cache has 31 hash buckets, and each hash bucket can have an 

average of 4 entries.

The values that you set for DS_HASHSIZE and DS_POOLSIZE, depend on the following factors:



Chapter 1. Performance Guide

• The number of columns for which you run the UPDATE STATISTICS statement in HIGH or MEDIUM mode and you 

expect to be used most often in frequently run queries.

If you do not specify columns when you run UPDATE STATISTICS for a table, the database server generates 

distributions for all columns in the table.

You can use the values of DD_HASHSIZE and DD_HASHMAX as guidelines for DS_HASHSIZE and DS_POOLSIZE. 

The DD_HASHSIZE and DD_HASHMAX specify the size for the data-dictionary cache, which stores information and 

statistics about tables that queries access.

For medium to large systems, you can start with the following values:

◦ DD_HASHSIZE 503

◦ DD_HASHMAX 4

◦ DS_HASHSIZE 503

◦ DS_POOLSIZE 1000

◦ DS_POOLSIZE 2000

Monitor these caches by running the onstat -g dsc  command to see the actual usage, and you can adjust these 

parameters accordingly.

• The amount of memory available

The amount of memory that is required to store distributions for a column depends on the level at which you run 

UPDATE STATISTICS. Distributions for a single column might require between 1 KB and 2 MB, depending on whether 

you specify medium or high mode or enter a finer resolution percentage when you run UPDATE STATISTICS.

If the size of the data-distribution cache is too small, the following performance problems can occur:

• The database server uses the DS_POOLSIZE value to determine when to remove entries from the data-distribution 

cache. However, if the optimizer needs the dropped distributions for another query, the database server must 

reaccess them from the sysdistrib  system catalog table on disk. The additional I/O and buffer pool operations to 

access sysdistrib  on disk adds to the total response time of the query.

The database server tries to maintain the number of entries in data-distribution cache at the DS_POOLSIZE value. If 

the total number of entries reaches within an internal threshold of DS_POOLSIZE, the database server uses a least 

recently used mechanism to remove entries from the data-distribution cache. The number of entries in a hash bucket 

can go past this DS_POOLSIZE value, but the database server eventually reduces the number of entries when memory 

requirements drop.

• If DS_HASHSIZE is small and DS_POOLSIZE is large, overflow lists can be long and require more search time in the 

cache.

89



HCL Informix 14.10 - Performance Guide

90

Overflow occurs when a hash bucket already contains an entry. When multiple distributions hash to the same bucket, 

the database server maintains an overflow list to store and retrieve the distributions after the first one.

If DS_HASHSIZE and DS_POOLSIZE are approximately the same size, the overflow lists might be smaller or even 

nonexistent, which might waste memory. However, the amount of unused memory is insignificant overall.

You might want to change the values of the DS_HASHSIZE and DS_POOLSIZE configuration parameters if you see the 

following situations:

• If the data-distribution cache is full most of the time and commonly used columns are not listed in the distribution 

name  field, try increasing the values of the DS_HASHSIZE and DS_POOLSIZE configuration parameters.

• If the total number of entries is much lower than the value of the DS_POOLSIZE configuration parameter, you can 

reduce the values of the DS_HASHSIZE and DS_POOLSIZE configuration parameters.

• If the number of hits are not evenly distributed among hash lists, increase the number of hash lists by increasing the 

value of the DS_HASHSIZE configuration parameter. Adjust the number of hash lists to have the least number of high 

hit entries per hash list.

Related information

DD_HASHSIZE configuration parameter  on page 

DD_HASHMAX configuration parameter  on page 

DS_POOLSIZE configuration parameter  on page 

onstat -g dsc command: Print distribution cache information  on page 

Monitor and tune the SQL statement cache
The SQL statement cache stores optimized SQL  statements so that multiple users who run the same SQL statement can 

achieve some performance improvements.

These performance improvements are:

• Reduced response times because they bypass the optimization step, as Figure 7: Database server actions when 

using the SQL statement cache  on page 91 shows

• Reduced memory usage because the database server shares query data structures among users

For more information about the effect of the SQL  statement cache on the performance of individual queries, see Optimize 

queries with the SQL statement cache  on page 428.

Figure 7: Database server actions when using the SQL statement cache  on page 91 shows how the database server 

accesses the SQL  statement cache for multiple users.

../%20adr/ids_adr_0049.html#ids_adr_0049
../%20adr/ids_adr_0049.html#ids_adr_0049
../%20adr/ids_adr_0049.html#ids_adr_0049
../%20adr/ids_adr_0049.html#ids_adr_0049
../%20adr/ids_adr_0048.html#ids_adr_0048
../%20adr/ids_adr_0048.html#ids_adr_0048
../%20adr/ids_adr_0048.html#ids_adr_0048
../%20adr/ids_adr_0048.html#ids_adr_0048
../%20adr/ids_adr_0065.html#ids_adr_0065
../%20adr/ids_adr_0065.html#ids_adr_0065
../%20adr/ids_adr_0065.html#ids_adr_0065
../%20adr/ids_adr_0065.html#ids_adr_0065
../%20adr/ids_adr_0528.html#ids_adr_0528
../%20adr/ids_adr_0528.html#ids_adr_0528
../%20adr/ids_adr_0528.html#ids_adr_0528
../%20adr/ids_adr_0528.html#ids_adr_0528


Chapter 1. Performance Guide

• When the database server runs an SQL  statement for User 1 for the first time, the database server checks whether 

the same exact SQL  statement is in the SQL  statement cache. If it is not in the cache, the database server parses the 

statement, determines the optimal query plan, and runs the statement.

• When User 2 runs the same SQL  statement, the database server finds the statement in the SQL  statement cache and 

does not optimize the statement.

• Similarly, if User 3 and User 4 run the same SQL  statement, the database server does not optimize the statement. 

Instead, it uses the query plan in the SQL  statement cache in memory.

Figure  7. Database server actions when using the SQL  statement cache

Prepared statements and the statement cache
Prepared statements are inherently cached for a single session. This means that if a prepared statement is executed many 

times or if a single cursor is opened many times, the session uses the same prepared query plan.

If a session prepares a statement and then executes it many times, the SQL statement cache does not affect performance, 

because the statement is optimized just once during the PREPARE statement.

However, if other sessions also prepare that same statement, or if the first session prepares the statement several times, 

the statement cache usually provides a direct performance benefit, because the database server only calculates the query 

plan once. Of course, the original session might gain a small benefit from the statement cache, even if it only prepares the 

statement once, because other sessions use less memory, and the database server does less work for the other sessions

91



HCL Informix 14.10 - Performance Guide

92

SQL statement cache configuration
The value of the STMT_CACHE configuration parameter enables or disables the SQL  statement cache.

For more information about how the value of the STMT_CACHE configuration parameter enables the SQL  statement cache, 

see Enabling the SQL statement cache  on page 430 describes.

Figure 8: Configuration parameters that affect the SQL statement cache  on page 92 shows how the database server uses 

the values of the pertinent configuration parameters for the SQL  statement cache. Further explanation follows the figure.

Figure  8. Configuration parameters that affect the SQL statement cache

When the database server uses the SQL  statement cache for a user, it means the database server takes the following 

actions:

• Checks the SQL  statement cache first for a match of the SQL  statement that the user is executing

• If the SQL  statement matches an entry, executes the statement using the query memory structures in the SQL 

statement cache (User 2 in Figure 8: Configuration parameters that affect the SQL statement cache  on page 92)

• If the SQL  statement does not match an entry, the database server checks if it qualifies for the cache.



Chapter 1. Performance Guide

For information about what qualifies an SQL  statement for the cache, see SQL statement cache qualifying criteria  on 

page  .

• If the SQL  statement qualifies, inserts an entry into the cache for subsequent executions of the statement.

The following parameters affect whether or not the database server inserts the SQL  statement into the cache (User 1 in 

Figure 8: Configuration parameters that affect the SQL statement cache  on page 92):

• STMT_CACHE_HITS specifies the number of times the statement executes with an entry in the cache (referred to as 

hit count). The database server inserts one of the following entries, depending on the hit count:

◦ If the value of STMT_CACHE_HITS is 0, inserts a fully cached entry, which contains the text of the SQL 

statement plus the query memory structures

◦ If the value of STMT_CACHE_HITS is not 0 and the statement does not exist in the cache, inserts a key-only 

entry that contains the text of the SQL  statement. Subsequent executions of the SQL  statement increment the 

hit count.

◦ If the value of STMT_CACHE_HITS is equal to the number of hits for a key-only entry, adds the query memory 

structures to make a fully cached entry.

• STMT_CACHE_SIZE specifies the size of the SQL  statement cache, and STMT_CACHE_NOLIMIT specifies whether or 

not to limit the memory of the cache to the value of STMT_CACHE_SIZE. If you do not specify the STMT_CACHE_SIZE 

parameter, it defaults to 524288 (512 * 1024) bytes.

The default value for STMT_CACHE_NOLIMIT is 1, which means the database server will insert entries into the SQL 

statement cache even though the total amount of memory might exceed the value of STMT_CACHE_SIZE.

When STMT_CACHE_NOLIMIT is set to 0, the database server inserts the SQL  statement into the cache if the current 

size of the cache will not exceed the memory limit.

The following sections on STMT_CACHE_HITS, STMT_CACHE_SIZE, STMT_CACHE_NOLIMIT, STMT_CACHE_NUMPOOL and 

provide more details on how the following configuration parameters affect the SQL  statement cache and reasons why you 

might want to change their default values.

Number of SQL statement executions
When the SQL  statement cache is enabled, the database server inserts a qualified SQL  statement and its memory structures 

immediately in the SQL  statement cache by default.

If your workload has a disproportionate number of ad hoc queries, use the STMT_CACHE_HITS configuration parameter 

to specify the number of times an SQL  statement is executed before the database server places a fully cached entry in the 

statement cache.

When the STMT_CACHE_HITS configuration parameter is greater than 0  and the number of times the SQL  statement has 

been executed is less than STMT_CACHE_HITS, the database server inserts key-only entries in the cache. This specification 

minimizes unshared memory structures from occupying the statement cache, which leaves more memory for SQL 

statements that applications use often.

93

../sqs/ids_sqs_0169.html#ids_sqs_0169
../sqs/ids_sqs_0169.html#ids_sqs_0169
../sqs/ids_sqs_0169.html#ids_sqs_0169
../sqs/ids_sqs_0169.html#ids_sqs_0169
../sqs/ids_sqs_0169.html#ids_sqs_0169
../sqs/ids_sqs_0169.html#ids_sqs_0169


HCL Informix 14.10 - Performance Guide

94

Monitor the number of hits on the SQL  statement cache to determine if your workload is using this cache effectively. The 

following sections describe ways to monitor the SQL  statement cache hits.

Related information

STMT_CACHE_HITS configuration parameter  on page 

Too many single-use queries in the SQL statement cache  on page 98

Monitoring the number of hits on the SQL statement cache
To monitor the number of hits in the SQL statement cache, run the onstat -g ssc  command.

About this task

The onstat -g ssc  command displays fully cached entries in the SQL  statement cache. Figure 9: onstat -g ssc output  on 

page 95 shows sample output for onstat -g ssc.

../%20adr/ids_adr_0168.html#ids_adr_0168
../%20adr/ids_adr_0168.html#ids_adr_0168
../%20adr/ids_adr_0168.html#ids_adr_0168
../%20adr/ids_adr_0168.html#ids_adr_0168


Chapter 1. Performance Guide

Figure  9. onstat -g ssc output

onstat -g ssc
 

Statement Cache Summary:
#lrus   currsize  maxsize   Poolsize  #hits   nolimit
4       49456     524288    57344     0       1
 

Statement Cache Entries:
 

lru hash ref_cnt hits flag heap_ptr      database           user
-----------------------------------------------------------------------------
  0  153       0    0   -F  a7e4690      vjp_stores         virginia
  SELECT * FROM customer, orders
    WHERE customer.customer_num = orders.customer_num
    AND order_date > "01/01/07"
 

  1  259       0    0    -F  aa58c20     vjp_stores         virginia
  SELECT * FROM customer, orders
    WHERE customer.customer_num = orders.customer_num
    AND order_date > "01/01/2007"
 

  2  232       0    1    DF  aa3d020     vjp_stores         virginia
  SELECT C.customer_num, O.order_num
    FROM customer C, orders O, items I
    WHERE C.customer_num = O.customer_num
    AND O.order_num = I.order_num
 

  3  232       1    1    -F  aa8b020     vjp_stores         virginia
  SELECT C.customer_num, O.order_num
    FROM customer C, orders O, items I
    WHERE C.customer_num = O.customer_num
    AND O.order_num = I.order_num
 

 

 

    Total number of entries: 4.

To monitor the number of times that the database server reads the SQL  statement within the cache, look at the following 

output columns:

• In the Statement Cache Summary  portion of the onstat -g ssc  output, the  #hits  column is the value of the 

SQL_STMT_HITS configuration parameter.

In Figure 9: onstat -g ssc output  on page 95, the #hits  column in the Statement Cache Summary portion of the 

output has a value of 0, which is the default value of the STMT_CACHE_HITS configuration parameter.

95



HCL Informix 14.10 - Performance Guide

96

Important:  The database server uses entries in the SQL statement cache only if the statements are exactly 

the same. The first two entries in Figure 9: onstat -g ssc output  on page 95 are not the same because 

each contains a different literal value in the order_date  filter.

• In the Statement Cache Entries  portion of the onstat -g ssc  output, the hits column shows the number of times that 

the database server ran each individual SQL  statement from the cache. In other words, the column shows the number 

of times that the database server uses the memory structures in the cache instead of optimizing the statements to 

generate them again.

The first time that it inserts the statement in the cache, the hits  value is 0.

◦ The first two SQL  statements in Figure 9: onstat -g ssc output  on page 95 have a hits  column value of 0, 

which indicates that each statement is inserted into the cache but not yet run from the cache.

◦ The last two SQL  statements in Figure 9: onstat -g ssc output  on page 95 have a hits  column value of 1, 

which indicates that these statements ran once from the cache.

The hits  value for individual entries indicates how much sharing of memory structures is done. Higher values in the 

hits  column indicate that the SQL  statement cache is useful in improving performance and memory usage.

For a complete description of the output fields that onstat -g ssc  displays, see SQL statement cache information in onstat -g 

ssc output  on page 101.

Determining the number of nonshared entries in the SQL statement cache
To determine how many nonshared entries exist in the SQL statement cache, run onstat -g ssc all.

About this task

The onstat -g ssc all  option displays the key-only entries in addition to the fully cached entries in the SQL  statement cache.

To determine how many nonshared entries exist in the cache:

1. Compare the onstat -g ssc all  output with the onstat -g ssc  output.

2. If the difference between these two outputs shows that many nonshared entries exist in the SQL  statement cache, 

increase the value of the STMT_CACHE_HITS configuration parameter to allow more shared statements to reside in 

the cache and reduce the management overhead of the SQL  statement cache.

Results

You can use one of the following methods to change the STMT_CACHE_HITS parameter value:

• Update the ONCONFIG file to specify the STMT_CACHE_HITS configuration parameter. You must restart the database 

server for the new value to take effect.

You can use a text editor to edit the ONCONFIG file. Then bring down the database server with the onmode -ky 

command and restart with the oninit  command.



Chapter 1. Performance Guide

• Increase the STMT_CACHE_HITS configuration parameter dynamically while the database server is running:

You can use any of the following methods to reset the STMT_CACHE_HITS value at run time:

◦ Issue the onmode -W  command. The following example specifies that three (3) instances are required before 

a new query is added to the statement cache:

onmode -W STMT_CACHE_HITS 2

◦ Call the ADMIN  or TASK  function of the SQL administration API. The following example is equivalent to the 

onmode  command in the previous example:

EXECUTE FUNCTION TASK("ONMODE", "W", "STMT_CACHE_HITS", "2");

If you increase STMT_CACHE_HITS dynamically without updating the configuration file, and the database server is 

subsequently restarted, the STMT_CACHE_HITS setting reverts the value in the ONCONFIG file. Therefore, if you want 

the setting to persist after subsequent restarts, modify the ONCONFIG file.

Monitoring and tuning the size of the SQL statement cache
If the size of the SQL  statement cache is too small, performance problems can occur. You can monitor the effectiveness of 

the size of the SQL statement cache.

The following performance problems can occur:

• Frequently executed SQL  statements are not in the cache

The statements used most often should remain in the SQL  statement cache. If the SQL  statement cache is not 

large enough, the database server might not have enough room to keep these statements when other statements 

come into the cache. For subsequent executions, the database server must reparse, reoptimize, and reinsert the SQL 

statement into the cache. Try increasing STMT_CACHE_SIZE.

• The database server spends a lot of time cleaning the SQL  statement cache

The database server tries to prevent the SQL  statement cache from allocating large amounts of memory by using 

a threshold (70 percent of the STMT_CACHE_SIZE parameter) to determine when to remove entries from the SQL 

statement cache. If the new entry causes the size of the SQL  statement cache to exceed the threshold, the database 

server removes least recently used entries (that are not currently in use) before inserting the new entry.

However, if a subsequent query needs the removed memory structures, the database server must reparse and 

reoptimize the SQL  statement. The additional processing time to regenerate these memory structures adds to the 

total response time of the query.

You can set the size of the SQL  statement cache in memory with the STMT_CACHE_SIZE configuration parameter. The value 

of the parameter is the size in kilobytes. If STMT_CACHE_SIZE is not set, the default value is 512 kilobytes.

The onstat -g ssc  output shows the value of STMT_CACHE_SIZE in the maxsize  column. In Figure 9: onstat -g ssc output  on 

page 95, this maxsize  column has a value of 524288, which is the default value (512 * 1024 = 524288).

97



HCL Informix 14.10 - Performance Guide

98

Use the onstat -g  ssc and  onstat -g ssc all options to monitor the effectiveness of size of the SQL  statement cache. If you do 

not see cache entries for the SQL  statements that applications use most, the SQL  statement cache might be too small or too 

many unshared SQL  statement occupy the cache. The following sections describe how to determine these situations.

Related information

STMT_CACHE_SIZE configuration parameter  on page 

Changing the size of the SQL statement cache
You can analyze onstat -g ssc all  output to determine if the SQL statement cache is too small. If the size of the cache is too 

small, you can change it.

To determine if the size of the SQL statement cache is too small:

1. Run onstat -g ssc all  to determine if the cache is too small.

2. Look at the values in the following output columns in the Statement Cache Entries portion of the onstat -g ssc all 

output:

◦ The flags  column shows the current status of an SQL  statement in the cache.

A value of F  in the second position indicates that the statement is currently fully cached.

A value of -  in the second position indicates that only the statement text (key-only entry) is in the cache. 

Entries with this -  value in the second position appear in the onstat -g  ssc all  output, but not in the onstat -g 

ssc  output.

◦ The hits  column shows the number of times the SQL  statement has been executed, excluding the first time it 

is inserted into the cache.

If you do not see fully cached entries for statements that applications use most and the value in the hits  column is 

large for the entries that do occupy the cache, then the SQL  statement cache is too small.

To change the size of the SQL statement cache:

1. Update the value of the STMT_CACHE_SIZE configuration parameter.

2. Restart the database server for the new value to take effect.

Related information

STMT_CACHE_SIZE configuration parameter  on page 

Too many single-use queries in the SQL statement cache
When the database server places many queries that are only used once in the cache, they might replace statements that 

other applications use often. You can view onstat -g ssc all output to determine if too many unshared SQL  statements 

occupy the cache. If so, you can prevent unshared SQL  statements from being fully cached.

../%20adr/ids_adr_0171.html#ids_adr_0171
../%20adr/ids_adr_0171.html#ids_adr_0171
../%20adr/ids_adr_0171.html#ids_adr_0171
../%20adr/ids_adr_0171.html#ids_adr_0171
../%20adr/ids_adr_0171.html#ids_adr_0171
../%20adr/ids_adr_0171.html#ids_adr_0171
../%20adr/ids_adr_0171.html#ids_adr_0171
../%20adr/ids_adr_0171.html#ids_adr_0171


Chapter 1. Performance Guide

Look at the values in the following output columns in the Statement Cache Entries  portion of the onstat -g ssc all output. If 

you see a lot of entries that have both of the following values, too many unshared SQL  statements occupy the cache:

• flags  column value of F  in the second position

A value of F  in the second position indicates that the statement is currently fully cached.

• hits  column value of 0  or 1

The hits  column shows the number of times the SQL  statement has been executed, excluding the first time it is 

inserted into the cache.

Increase the value of the STMT_CACHE_HITS configuration parameter to prevent unshared SQL  statements from being fully 

cached.

Related information

STMT_CACHE_HITS configuration parameter  on page 

Number of SQL statement executions  on page 93

Memory limit and size
Although the database server tries to clean the SQL  statement cache, sometimes entries cannot be removed because 

they are currently in use. In this case, the size of the SQL  statement cache can exceed the value of the STMT_CACHE_SIZE 

configuration parameter.

The default value of the STMT_CACHE_NOLIMIT configuration parameter is 1, which means the database server inserts the 

statement even though the current size of the cache might be greater than the value of the STMT_CACHE_SIZE parameter.

If the value of the STMT_CACHE_NOLIMIT configuration parameter is 0, the database server does not insert either a fully-

qualified or key-only entry into the SQL  statement cache if the size will exceed the value of STMT_CACHE_SIZE.

Use the onstat -g ssc option to monitor the current size of the SQL  statement cache. Look at the values in the following 

output columns of the onstat -g ssc  output:

• The currsize  column shows the number of bytes currently allocated in the SQL  statement cache.

In Figure 9: onstat -g ssc output  on page 95, the currsize  column has a value of 11264.

• The maxsize  column shows the value of STMT_CACHE_SIZE.

In Figure 9: onstat -g ssc output  on page 95, the maxsize  column has a value of 524288, which is the default value 

(512 * 1024 = 524288).

When the SQL  statement cache is full and users are currently executing all statements within it, any new SQL  statements that 

a user executes can cause the SQL  statement cache to grow beyond the size that STMT_CACHE_SIZE specifies. When the 

database server is no longer using an SQL  statement within the SQL  statement cache, it frees memory in the SQL  statement 

99

../%20adr/ids_adr_0168.html#ids_adr_0168
../%20adr/ids_adr_0168.html#ids_adr_0168
../%20adr/ids_adr_0168.html#ids_adr_0168
../%20adr/ids_adr_0168.html#ids_adr_0168


HCL Informix 14.10 - Performance Guide

100

cache until the size reaches a threshold of STMT_CACHE_SIZE. However, if thousands of concurrent users are executing 

several ad hoc queries, the SQL  statement cache can grow very large before any statements are removed. In such cases, 

take one of the following actions:

• Set the STMT_CACHE_NOLIMIT configuration parameter to 0 to prevent insertions when the cache size exceeds the 

value of the STMT_CACHE_SIZE parameter.

• Set the STMT_CACHE_HITS parameter to a value greater than 0 to prevent caching unshared SQL  statements.

You can use one of the following methods to change the STMT_CACHE_NOLIMIT configuration parameter value:

• Update the ONCONFIG file to specify the STMT_CACHE_NOLIMIT configuration parameter. You must restart the 

database server for the new value to take effect.

• Use the onmode -W  command to override the STMT_CACHE_NOLIMIT configuration parameter dynamically while the 

database server is running.

onmode -W STMT_CACHE_NOLIMIT 0

If you restart the database server, the value reverts the value in the ONCONFIG file. Therefore, if you want the setting 

to remain for subsequent restarts, modify the ONCONFIG file.

Related information

STMT_CACHE_HITS configuration parameter  on page 

Multiple SQL statement cache pools
Under some circumstances when the SQL  statement cache is enabled, the database server allocates memory from one pool 

for query structures.

These circumstances are:

• When the database server does not find a matching entry in the cache

• When the database server finds a matching key-only entry in the cache and the hit count reaches the value of the 

STMT_CACHE_HITS configuration parameter

This one pool can become a bottleneck as the number of users increases. The STMT_CACHE_NUMPOOL configuration 

parameter allows you to configure multiple sscpools.

You can monitor the pools in the SQL  statement cache to determine the following situations:

• The number of SQL  statement cache pools is sufficient for your workload.

• The size or limit of the SQL  statement cache is not causing excessive memory management.

../%20adr/ids_adr_0168.html#ids_adr_0168
../%20adr/ids_adr_0168.html#ids_adr_0168
../%20adr/ids_adr_0168.html#ids_adr_0168
../%20adr/ids_adr_0168.html#ids_adr_0168


Chapter 1. Performance Guide

Related information

STMT_CACHE_NUMPOOL configuration parameter  on page 

Number of SQL statement cache pools
When the SQL  statement cache (SSC) is enabled, the database server allocates memory from the SSC pool for unlinked 

SQL  statements. The default value for the STMT_CACHE_NUMPOOL configuration parameter is 1. As the number of users 

increases, this one SSC pool might become a bottleneck.

The number of longspins on the SSC pool indicates whether or not the SSC pool is a bottleneck.

Use the onstat -g spi  option to monitor the number of longspins on an SSC pool. The onstat -g spi  command displays a list 

of the resources in the system for which a wait was required before a latch on the resource could be obtained. During the 

wait, the thread spins (or loops), trying to acquire the resource. The onstat -g spi output displays the number of times a wait 

(Num Waits  column) was required for the resource and the number of total loops (Num Loops  column). The onstat -g spi 

output displays only resources that have at least one wait.

Figure 10: onstat -g spi output  on page 101 shows an excerpt of sample output for onstat -g spi. Figure 10: onstat -g spi 

output  on page 101 indicates that no waits occurred for any SSC pool (the Name  column does not list any SSC pools).

Figure  10. onstat -g spi output

Spin locks with waits:
Num Waits   Num Loops   Avg Loop/Wait    Name
34477       387761      11.25            mtcb sleeping_lock
312         10205       32.71            mtcb vproc_list_lock

If you see an excessive number of longspins (Num Loops  column) on an SSC pool, increase the number of SSC pools in the 

STMT_CACHE_NUMPOOL configuration parameter to improve performance.

Related information

STMT_CACHE_NUMPOOL configuration parameter  on page 

SQL statement cache information in onstat -g ssc  output
The onstat -g ssc  command displays summary information for the SQL  statement cache.

The onstat -g ssc  command displays the following information for the SQL  statement cache.

Table  10. SQL  statement cache information in onstat -g ssc  output

Col

umn Description

#lrus The number of LRU queues. Multiple LRU queues facilitate concurrent lookup and insertion of cache entries.

101

../%20adr/ids_adr_0170.html#ids_adr_0170
../%20adr/ids_adr_0170.html#ids_adr_0170
../%20adr/ids_adr_0170.html#ids_adr_0170
../%20adr/ids_adr_0170.html#ids_adr_0170
../%20adr/ids_adr_0170.html#ids_adr_0170
../%20adr/ids_adr_0170.html#ids_adr_0170
../%20adr/ids_adr_0170.html#ids_adr_0170
../%20adr/ids_adr_0170.html#ids_adr_0170


HCL Informix 14.10 - Performance Guide

102

Table  10. SQL  statement cache information in onstat -g ssc  output  (continued)

Col

umn Description

currs

ize

The number of bytes currently allocated to entries in the SQL statement cache

maxs

ize

The number of bytes specified in the STMT_CACHE_SIZE configuration parameter

pools

ize

The cumulative number of bytes for all pools in the SQL statement cache. Use the onstat -g ssc pool  option to 

monitor individual pool usage.

#hits Setting of the STMT_CACHE_HITS configuration parameter, which specifies the number of times that a query is 

executed before it is inserted into the cache

noli

mit

Setting of STMT_CACHE_NOLIMIT configuration parameter

The onstat -g ssc  command lists the following information for each fully cached entry in the cache. The onstat -g ssc all 

option lists the following information for both the fully cached entries and key-only entries.

Col

umn Description

lru The LRU identifier

h

ash

The hash-bucket identifier

ref_

cnt

The number of sessions currently using this statement

hits The number of times that users read the query from the cache, excluding the first time the statement entered the 

cache

fl

ags

Shows flag codes.

The flag codes for position 1 are:

D

Indicates that the statement has been dropped

A statement in the cache can be dropped (not used any more) when one of its dependencies has 

changed. For example, when you run UPDATE STATISTICS for the table, the optimizer statistics might 

change, making the query plan for the SQL  statement in the cache obsolete. In this case, the database 

server marks the statement as dropped the next time that it tries to use it.

-

Indicates that the statement has not been dropped



Chapter 1. Performance Guide

Col

umn Description

The flag codes for position 2 are:

F

Indicates that the cache entry is fully cached and contains the memory structures for the query

I

Indicates that the statement is in the process of being moved to a fully cached state

-

Indicates that the statement is not fully cached

A statement is not fully cached when the number of times the statement has been executed is less than 

the value of the STMT_CACHE_HITS configuration parameter. Entries with this - value in the second 

position appear in the onstat -g ssc all  but not in the onstat -g ssc  output.

hea

p_

ptr

Pointer to the associated heap for the statement

data

b

ase

Database against which the SQL  statement is executed

user User executing the SQL  statement

stat

em

ent

Statement text as it would be used to test for a match

Session memory
The database server uses the virtual portion of shared memory mainly for user sessions. Most of the memory that each user 

session allocates is for SQL  statements. You can determine which session and which statements are using large amounts 

of memory.  If necessary, you can set the SESSION_LIMIT_MEMORY configuration parameter to limit the amount of memory 

available to a session.

Use the following utility options to determine which session and prepared SQL  statements are using large amounts of 

memory:

• onstat -g mem

• onstat -g stm

103



HCL Informix 14.10 - Performance Guide

104

The onstat -g mem  option displays memory usage of all sessions. You can find the session that is using the most memory 

by looking at the totalsize  and freesize  output columns. The following figure shows sample output for onstat -g mem. This 

sample output shows the memory use for three user sessions with the values 14, 16, 17  in the names  output column.

Figure  11. onstat -g mem  output

onstat -g mem
 

Pool Summary:
name         class addr     totalsize freesize #allocfrag #freefrag
...
14           V     a974020  45056     11960    99         10
16           V     a9ea020  90112     10608    159        5
17           V     a973020  45056     11304    97         13
...
Blkpool Summary:
name         class addr     size      #blks
mt           V     a235688  798720    19
global       V     a232800  0         0

To display the memory that is allocated by each prepared statement, use the onstat -g stm  option. The following figure 

shows sample output for onstat -g stm.

Figure  12. onstat -g stm  output

onstat -g stm
 

 

session   25 --------------------------------------------------
 sdblock  heapsz  statement (‘*' = Open cursor)
 d36b018    9216  select sum(i) from t where i between -1 and ?
 d378018    6240  *select tabname from systables where tabid=7
 d36b114    8400  <SPL statement>

The heapsz  column in the output in Figure 12: onstat -g stm output  on page 104 shows the amount of memory that is used 

by the statement. An asterisk (*) precedes the statement text if a cursor is open on the statement. The output does not show 

the individual SQL  statements in an SPL  routine.

To display the memory for only one session, specify the session ID in the onstat -g stm  option. For an example, see Monitor 

session memory with onstat -g mem and onstat -g stm output  on page 444.

Set the SESSION_LIMIT_MEMORY configuration parameter to limit how much memory a session can allocate, and 

can prevent individual sessions from monopolizing system resources. This limit does not apply to a user who holds 

administrative privileges, such as user informix  or a DBSA user.

For example, to limit each session to 10 MB of memory, set SESSION_LIMIT_MEMORY 102400  in the ONCONFIG file.

Related information

Estimating the size of the virtual portion of shared memory  on page 65

SESSION_LIMIT_MEMORY configuration parameter  on page 

../%20adr/ids_adr_1190.html#ids_adr_1190
../%20adr/ids_adr_1190.html#ids_adr_1190
../%20adr/ids_adr_1190.html#ids_adr_1190
../%20adr/ids_adr_1190.html#ids_adr_1190


Chapter 1. Performance Guide

Data-replication buffers and memory utilization
Data replication requires two instances of the database server, a primary one and a secondary one, running on two 

computers. If you implement data replication for your database server, the database server holds logical-log records in the 

data-replication buffer before it sends them to the secondary database server.

The data-replication buffer is always the same size as the logical-log buffer.

Memory latches
The database server uses latches to control access to shared memory structures such as the buffer pool or the memory 

pools for the SQL  statement cache. You can obtain statistics on latch use and information about specific latches. These 

statistics provide a measure of the system activity.

The statistics include the number of times that threads waited to obtain a latch. A large number of latch waits typically 

results from a high volume of processing activity in which the database server is logging most of the transactions.

Information about specific latches includes a listing of all the latches that are held by a thread and any threads that are 

waiting for latches. This information allows you to locate any specific resource contentions that exist.

You, as the database administrator, cannot configure or tune the number of latches. However, you can increase the number 

of memory structures on which the database server places latches to reduce the number of latch waits. For example, you 

can tune the number of SQL  statement cache memory pools or the number of SQL  statement cache LRU queues. For more 

information, see Multiple SQL statement cache pools  on page 100.

Warning:  Never stop a database server process that is holding a latch. If you do, the database server immediately 

initiates an abort.

Monitoring latches with command-line utilities
You can obtain information about latches by running onstat -p  or onstat -s.

Monitoring latches with onstat -p
Run onstat -p  to obtain the values in the lchwaits  field. This field stores the number of times that a thread was required to 

wait for a shared-memory latch.

Figure 13: Partial onstat -p output showing the lchwaits field  on page 105 shows an excerpt of sample onstat -p  output 

that shows the lchwaits  field.

Figure  13. Partial onstat -p output showing the lchwaits field

...
ixda-RA  idx-RA   da-RA   logrec-RA    RA-pgsused lchwaits
5        0        204      0           148        12

105



HCL Informix 14.10 - Performance Guide

106

Related information

onstat -p command: Print profile counts  on page 

Monitoring latches with onstat -s
Run onstat -s  to obtain general latch information. The output includes the userthread  column, which lists the address of any 

user thread that is waiting for a latch.

You can compare this address with the user addresses in the onstat -u  output to obtain the user-process identification 

number.

Figure 14: onstat -s output  on page 106 shows sample onstat -s output.

Figure  14. onstat -s output

...
Latches with lock or userthread set
name     address  lock wait userthread
LRU1     402e90   0    0        6b29d8
bf[34]   4467c0   0    0        6b29d8
...

Monitoring latches with SMI tables
You can query the sysprofile  SMI table to obtain the number of times a thread waited for a latch.

About this task

The latchwts  column of the sysprofile  table contains the number of times that a thread waited for a latch.

Encrypted values
An encrypted value uses more storage space than the corresponding plain text value because all of the information needed 

to decrypt the value except the encryption key is stored with the value.

Omitting the hint used with the password can reduce encryption overhead by up to 50 bytes. If you are using encrypted 

values, you must make sure that you have sufficient space available for the values.

Note:  Embedding zero bytes in the encrypted result is not recommended.

Related information

Column-level encryption  on page 

Calculating storage requirements for encrypted data  on page 

../%20adr/ids_adr_0602.html#ids_adr_0602
../%20adr/ids_adr_0602.html#ids_adr_0602
../%20adr/ids_adr_0602.html#ids_adr_0602
../%20adr/ids_adr_0602.html#ids_adr_0602
../sec/ids_ce_001.html#ids_ce_001
../sec/ids_ce_001.html#ids_ce_001
../sec/ids_ce_001.html#ids_ce_001
../sec/ids_ce_001.html#ids_ce_001
../sqs/ids_sqs_1504.html#ids_sqs_1504
../sqs/ids_sqs_1504.html#ids_sqs_1504
../sqs/ids_sqs_1504.html#ids_sqs_1504
../sqs/ids_sqs_1504.html#ids_sqs_1504


Chapter 1. Performance Guide

Effect of configuration on I/O activity
The configuration of your database server affects I/O activity.

The following factors affect I/O activity:

• The assignment of chunks and dbspaces can create I/O hot spots, or disk partitions with a disproportionate amount 

of I/O activity.

• Your allocation of critical data, sort areas, and areas for temporary files and index builds can place intermittent loads 

on various disks.

• How you configure read-ahead can increase the effectiveness of individual I/O operations.

• How you configure the background I/O tasks, such as logging and page cleaning, can affect I/O throughput.

Chunk and dbspace configuration
The number of disks that you use and the configuration of your chunks, dbspaces, and blobspaces affect the performance 

of your database server. You can improve performance by planning disk use and the configuration of chunks, dbspaces, and 

blobspaces.

All the data that resides in a database is stored on disk. The speed at which the database server can copy the appropriate 

data pages to and from disk determines how well your application performs.

All the data that resides in a database is stored on disk. The Optical Subsystem  also uses a magnetic disk to access TEXT or 

BYTE data that is retrieved from optical media. The speed at which the database server can copy the appropriate data pages 

to and from disk determines how well your application performs.

Disks are typically the slowest component in the I/O path for a transaction or query that runs entirely on one host computer. 

Network communication can also introduce delays in client/server applications, but these delays are typically outside the 

control of the database server administrator. For information about actions that the database server administrator can take 

to improve network communications, see Network buffer pools  on page 50 and Connections and CPU utilization  on 

page 59.

Disks can become overused or saturated when users request pages too often. Saturation can occur in the following 

situations:

• You use a disk for multiple purposes, such as for both logging and active database tables.

• Disparate data resides on the same disk.

• Table extents become interleaved.

The various functions that your application requires, as well as the consistency-control functions that the database server 

performs, determine the optimal disk, chunk, and dbspace layout for your application. The more disks that you make 

available to the database server, the easier it is to balance I/O across them. For more information about these factors, see 

Table performance considerations  on page 157.

This section outlines important issues for the initial configuration of your chunks, dbspaces, and blobspaces. Consider the 

following issues when you decide how to lay out chunks and dbspaces on disks:

107



HCL Informix 14.10 - Performance Guide

108

• Placement and mirroring of critical data

• Load balancing

• Reduction of contention

• Ease of backup and restore

Together with round-robin fragmentation, you can balance chunks over disks and controllers, saving time and handling 

errors. Placing multiple chunks on a single disk can improve throughput.

Associate disk partitions with chunks
You should assign chunks to entire disk partitions. When a chunk coincides with a disk partition (or device), it is easy to track 

disk-space use, and you avoid errors caused by miscalculated offsets.

The maximum size for a chunk is 4 terabytes.

Associate dbspaces with chunks
You should associate a single chunk with a dbspace, especially when that dbspace is to be used for a table fragment.

For more information about table placement and layout, see Table performance considerations  on page 157.

Placing system catalog tables with database tables
When a disk that contains the system catalog for a particular database fails, the entire database remains inaccessible until 

the system catalog is restored. Because of this potential inaccessibility, do not cluster the system catalog tables for all 

databases in a single dbspace. Instead place the system catalog tables with the database tables that they describe.

About this task

To create a system catalog table in the table dbspace:

1. Create a database in the dbspace in which the table is to reside.

2. Use the SQL  statements DATABASE or CONNECT to make that database the current database.

3. Enter the CREATE TABLE statement to create the table.

I/O for cooked files for dbspace chunks
On UNIX™, you can control the use of direct I/O for cooked files used for dbspace chunks.

On UNIX™, you can allocate disk space in two ways:

• Use files that are buffered through the operating system. These files are often called cooked files.

• Use unbuffered disk access, also called raw  disk space.

When dbspaces reside on raw disk devices (also called character-special devices), the database server uses unbuffered disk 

access. A raw disk directly transfers data between the database server memory and disk without also copying data.



Chapter 1. Performance Guide

While you should generally use raw disk devices on UNIX™  systems to achieve better performance, you might prefer to use 

cooked files, which are easier to allocate and manage than raw devices. If you use cooked files, you might be able to get 

better performance by enabling the Informix®  direct I/O option.

In addition, Informix®  supports a separate concurrent I/O option on AIX®  operating systems. If you enable concurrent 

I/O on AIX®, you get both unbuffered I/O and concurrent I/O. With concurrent I/O, writing to two parts of a file can occur 

concurrently. (On some other operating systems and file systems, enabling direct I/O also enables concurrent I/O as part of 

the same file system direct I/O feature.)

To determine the best performance, perform benchmark testing for the dbspace and table layout on your system.

Direct I/O (UNIX™)
On UNIX™, you can use direct I/O to improve the performance of cooked files. Direct I/O can be beneficial because it avoids 

file system buffering. Because direct I/O uses unbuffered I/O, it is more efficient for reads and writes that go to disk (as 

opposed to those reads and writes that merely access the file system buffers).

Direct I/O generally requires data to be aligned on disk sector boundaries.

Direct I/O also allows the use of kernel asynchronous I/O (KAIO), which can further improve performance. By using direct I/O 

and KAIO where available, the performance of cooked files used for dbspace chunks can approach the performance of raw 

devices.

If your file system supports direct I/O for the page size used for the dbspace chunk, the database server operates as follows:

• Does not use direct I/O by default.

• Uses direct I/O if the DIRECT_IO configuration parameter is set to 1.

• Uses KAIO (if the file system supports it) with direct I/O by default.

• Does not use KAIO with direct I/O if the environment variable KAIOOFF is set.

If Informix®  uses direct I/O for a chunk, and another program tries to open the chunk file without using direct I/O, the open 

will normally succeed, but there can be a performance penalty. The penalty can occur because the file system attempts to 

ensure that each open sees the same file data, either by switching to buffered I/O and not using direct I/O for the duration 

of the conflicting open, or by flushing the file system cache before each direct I/O operation and invalidating the file system 

cache after each direct write.

Informix®  does not use direct I/O for temporary dbspaces.

Related information

DIRECT_IO configuration parameter (UNIX)  on page 

Direct I/O (Windows™)
Direct I/O is used for dbspace chunks on Windows™  platforms regardless of the value of the DIRECT_IO configuration 

parameter.

109

../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052


HCL Informix 14.10 - Performance Guide

110

Concurrent I/O (AIX®  only)
On AIX®  operating systems, you can use concurrent I/O in addition to direct I/O for chunks that use cooked files. Concurrent 

I/O can improve performance, because it allows multiple reads and writes to a file to occur concurrently, without the usual 

serialization of noncompeting read and write operations.

Concurrent I/O can be especially beneficial when you have data in a single chunk file striped across multiple disks.

Concurrent I/O, which you enable by setting the DIRECT_IO configuration parameter to 2, includes the benefit of avoiding file 

system buffering and is subject to the same limitations and use of KAIO as occurs if you use direct I/O without concurrent 

I/O. Thus, when concurrent I/O is enabled, you get both unbuffered I/O and concurrent I/O.

If Informix®  uses concurrent I/O for a chunk, and another program (such as an external backup program) tries to open the 

same chunk file without using concurrent I/O, the open operation will fail.

Informix®  does not use direct or concurrent I/O for cooked files used for temporary dbspace chunks.

Related information

DIRECT_IO configuration parameter (UNIX)  on page 

Enabling the direct I/O or concurrent I/O option (UNIX™)
Use the DIRECT_IO configuration parameter to enable the direct I/O option on UNIX™  or the concurrent I/O option on AIX®.

Before you begin

Prerequisites:

• You must log on as user root  or informix.

• Direct I/O or concurrent I/O must be available and the file system must support direct I/O for the page size used for 

the dbspace chunk.

About this task

To enable direct I/O, set the DIRECT_IO configuration parameter to 1.

To enable concurrent I/O with direct I/O on AIX®  operating systems, set the DIRECT_IO configuration parameter to 2.

If you do not want to enable direct I/O or concurrent I/O, set the DIRECT_IO configuration parameter to 0.

Related information

DIRECT_IO configuration parameter (UNIX)  on page 

Confirming the use of the direct or concurrent I/O option (UNIX™)
You can confirm and monitor the use of direct I/O or concurrent I/O (on AIX®) for cooked file chunks.

../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052


Chapter 1. Performance Guide

About this task

You can confirm the use of direct I/O or concurrent I/O by:

• Displaying onstat -d  information.

The onstat -d  command displays information that includes a flag that identifies whether direct I/O, concurrent I/O (on 

AIX®), or neither is used for cooked file chunks.

• Verifying that the DIRECT_IO configuration parameter is set to 1  (for direct I/O) or 2  (for concurrent I/O).

Related information

DIRECT_IO configuration parameter (UNIX)  on page 

onstat -d command: Print chunk information  on page 

Placement of critical data
The disk or disks that contain the system reserved pages, the physical log, and the dbspaces that contain the logical-log files 

are critical to the operation of the database server. The database server cannot operate if any of these elements becomes 

unavailable. By default, the database server places all three critical elements in the root dbspace.

To arrive at an appropriate placement strategy for critical data, you must make a trade-off between the availability of data 

and maximum logging performance.

The database server also places temporary table and sort files in the root dbspace by default. You should use the 

DBSPACETEMP configuration parameter and the DBSPACETEMP  environment variable to assign these tables and files to 

other dbspaces. For details, see Configure dbspaces for temporary tables and sort files  on page 115.

Consider separate disks for critical data components
If you place the root dbspace, logical log, and physical log in separate dbspaces on separate disks, you can obtain some 

distinct performance advantages. The disks that you use for each critical data component should be on separate controllers.

This approach has the following advantages:

• Isolates logging activity from database I/O and allows physical-log I/O requests to be serviced in parallel with logical-

log I/O requests

• Reduces the time that you need to recover from a failure

However, unless the disks are mirrored, there is an increased risk that a disk that contains critical data might be 

affected in the event of a failure, which will bring the database server to a halt and require the complete restoration of 

all data from a level-0 backup.

111

../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0052.html#ids_adr_0052
../%20adr/ids_adr_0504.html#ids_adr_0504
../%20adr/ids_adr_0504.html#ids_adr_0504
../%20adr/ids_adr_0504.html#ids_adr_0504
../%20adr/ids_adr_0504.html#ids_adr_0504


HCL Informix 14.10 - Performance Guide

112

• Allows for a relatively small root dbspace that contains only reserved pages, the database partition, and the 

sysmaster  database

In many cases, 10,000 kilobytes is sufficient.

The database server uses different methods to configure various portions of critical data. To assign an appropriate dbspace 

for the root dbspace and physical log, set the appropriate database server configuration parameters. To assign the logical-

log files to an appropriate dbspace, use the onparams  utility.

For more information about the configuration parameters that affect each portion of critical data, see Configuration 

parameters that affect critical data  on page 114.

Consider mirroring for critical data components
Consider mirroring for the dbspaces that contain critical data. Mirroring these dbspaces ensures that the database server 

can continue to operate even when a single disk fails.

However, depending on the mix of I/O requests for a given dbspace, a trade-off exists between the fault tolerance of 

mirroring and I/O performance. You obtain a marked performance advantage when you mirror dbspaces that have a read-

intensive usage pattern and a slight performance disadvantage when you mirror write-intensive dbspaces.

Most modern storage devices have excellent mirroring capabilities, and you can use those devices instead of the mirroring 

capabilities of the database server.

When mirroring is in effect, two disks are available to handle read requests, and the database server can process a higher 

volume of those requests. However, each write request requires two physical write operations and does not complete until 

both physical operations are performed. The write operations are performed in parallel, but the request does not complete 

until the slower of the two disks performs the update. Thus, you experience a slight performance penalty when you mirror 

write-intensive dbspaces.

Consider mirroring the root dbspace
You can achieve a certain degree of fault tolerance with a minimum performance penalty if you mirror the root dbspace and 

restrict its contents to read-only or seldom-accessed tables.

When you place update-intensive tables in other, nonmirrored dbspaces, you can use the database server backup-and-restore 

facilities to perform warm restores of those tables in the event of a disk failure. When the root dbspace is mirrored, the 

database server remains online to service other transactions while the failed disk is being repaired.

When you mirror the root dbspace, always place the first chunk on a different device than that of the mirror. The 

MIRRORPATH configuration parameter should have a different value than ROOTPATH.

Related information

MIRRORPATH configuration parameter  on page 

ROOTPATH configuration parameter  on page 

../%20adr/ids_adr_1074.html#ids_adr_1074
../%20adr/ids_adr_1074.html#ids_adr_1074
../%20adr/ids_adr_1074.html#ids_adr_1074
../%20adr/ids_adr_1074.html#ids_adr_1074
../%20adr/ids_adr_0144.html#ids_adr_0144
../%20adr/ids_adr_0144.html#ids_adr_0144
../%20adr/ids_adr_0144.html#ids_adr_0144
../%20adr/ids_adr_0144.html#ids_adr_0144


Chapter 1. Performance Guide

Consider mirroring smart-large-object chunks
You can achieve higher availability and faster access if you mirror chunks that contain metadata pages.

An sbspace is a logical storage unit composed of one or more chunks that store smart large objects, which consist of CLOB 

(character large object) or BLOB (binary large object) data.

The first chunk of an sbspace contains a special set of pages, called metadata, which is used to locate smart large objects 

in the sbspace. Additional chunks that are added to the sbspace can also have metadata pages if you specify them on the 

onspaces  command when you create the chunk.

Consider mirroring chunks that contain metadata pages for the following reasons:

• Higher availability

Without access to the metadata pages, users cannot access any smart large objects in the sbspace. If the first chunk 

of the sbspace contains all of the metadata pages and the disk that contains that chunk becomes unavailable, you 

cannot access a smart large object in the sbspace, even if it resides on a chunk on another disk. For high availability, 

mirror at least the first chunk of the sbspace and any other chunk that contains metadata pages.

• Faster access

By mirroring the chunk that contains the metadata pages, you can spread read activity across the disks that contain 

the primary chunk and mirror chunk.

Related information

Sbspaces  on page 

Mirroring and its effect on the logical log
The logical log is write intensive. If the dbspace that contains the logical-log files is mirrored, you encounter a slight double-

write performance penalty. However, you can adjust the rate at which logging generates I/O requests to a certain extent by 

choosing an appropriate log buffer size and logging mode.

For details on the slight double-write performance penalty, see Consider mirroring for critical data components  on 

page 112.

With unbuffered and ANSI-compliant logging, the database server requests a flush of the log buffer to disk for every 

committed transaction (two when the dbspace is mirrored). Buffered logging generates far fewer I/O requests than 

unbuffered or ANSI-compliant logging.

With buffered logging, the log buffer is written to disk only when it fills and all the transactions that it contains are completed. 

You can reduce the frequency of logical-log I/O even more if you increase the size of your logical-log buffers. However, 

buffered logging leaves transactions in any partially filled buffers vulnerable to loss in the event of a system failure.

113

../admin%20/ids_admin_0491.html#ids_admin_0491
../admin%20/ids_admin_0491.html#ids_admin_0491
../admin%20/ids_admin_0491.html#ids_admin_0491
../admin%20/ids_admin_0491.html#ids_admin_0491


HCL Informix 14.10 - Performance Guide

114

Although database consistency is guaranteed under buffered logging, specific transactions are not guaranteed against a 

failure. The larger the logical-log buffers, the more transactions you might need to reenter when service is restored after a 

failure.

Unlike the physical log, you cannot specify an alternative dbspace for logical-log files in your initial database server 

configuration. Instead, use the onparams  utility first to add logical-log files to an alternative dbspace and then drop logical-

log files from the root dbspace.

Related information

The onparams Utility  on page 

Mirroring and its effect on the physical log
The physical log is write intensive, with activity occurring at checkpoints and when buffered data pages are flushed. I/O 

to the physical log also occurs when a page-cleaner thread is activated. If the dbspace that contains the physical log is 

mirrored, you encounter a slight double-write performance penalty.

For details on the slight double-write performance penalty, see Consider mirroring for critical data components  on 

page 112.

To keep I/O to the physical log at a minimum, you can adjust the checkpoint interval and the LRU minimum and maximum 

thresholds. (See CKPTINTVL and its effect on checkpoints  on page 139 and BUFFERPOOL and its effect on page cleaning 

on page 150.)

Configuration parameters that affect critical data
The configuration parameters that configure the root dbspace and the logical and physical logs affect critical data.

You can use the following configuration parameters to configure the root dbspace:

• ROOTNAME

• ROOTOFFSET

• ROOTPATH

• ROOTSIZE

• MIRRORPATH

• MIRROROFFSET

ROOTNAME, ROOTOFFSET, ROOTPATH and ROOTSIZE determine the location and size of the initial chunk of the root 

dbspace. MIRRORPATH configuration parameter is used to specify the full path name of the mirrored chunk for the initial 

chunk of the root dbspace and MIRROROFFSET specifies the offset into the disk partition or into the device to reach the 

chunk that serves as the mirror for the initial chunk of the root dbspace. These parameters have no major impact on 

performance.

The following configuration parameters affect the logical logs:

../%20adr/ids_adr_0450.html#ids_adr_0450
../%20adr/ids_adr_0450.html#ids_adr_0450
../%20adr/ids_adr_0450.html#ids_adr_0450
../%20adr/ids_adr_0450.html#ids_adr_0450


Chapter 1. Performance Guide

• LOGSIZE

• LOGBUFF

The LOGSIZE configuration parameter determines the size of each logical-log files. The LOGBUFF configuration parameter 

determines the size of the three logical-log buffers that are in shared memory.

The PHYSFILE configuration parameter determines the initial size of the physical log in rootdbs. This configuration 

parameter is used only when the instance is created.

Related information

The LOGBUFF configuration parameter and memory utilization  on page 77

Checkpoints and the physical log  on page 141

Configure dbspaces for temporary tables and sort files
Applications that use temporary tables or large sort operations require a large amount of temporary space. To improve 

performance of these applications, use the DBSPACETEMP configuration parameter or the DBSPACETEMP  environment 

variable to designate one or more dbspaces for temporary tables and sort files.

Depending on how the temporary space is created, the database server uses the following default locations for temporary 

table and sort files when you do not set DBSPACETEMP:

• The dbspace of the current database, when you create an explicit temporary table with the TEMP TABLE clause of 

the CREATE TABLE statement and do not specify a dbspace for the table either in the IN dbspace clause or in the 

FRAGMENT BY clause

This action can severely affect I/O to that dbspace. If the root dbspace is mirrored, you encounter a slight double-

write performance penalty for I/O to the temporary tables and sort files.

• The root dbspace when you create an explicit temporary table with the INTO TEMP option of the SELECT statement

This action can severely affect I/O to the root dbspace. If the root dbspace is mirrored, you encounter a slight double-

write performance penalty for I/O to the temporary tables and sort files.

• The operating-system directory or file that you specify in one of the following variables:

◦ In UNIX™, the operating-system directory or directories that the PSORT_DBTEMP  environment variable 

specifies, if it is set

If PSORT_DBTEMP is not set, the database server writes sort files to the operating-system file space in the /

tmp directory.

◦ In Windows™, the directory specified in TEMP  or TMP  in the User Environment Variables window on Control 

Panel  >  System.

The database server uses the operating-system directory or files to direct any overflow that results from the following 

database operations:

115



HCL Informix 14.10 - Performance Guide

116

◦ SELECT statement with GROUP BY clause

◦ SELECT statement with ORDER BY clause

◦ Hash-join operation

◦ Nested-loop join operation

◦ Index builds

Warning:  If you do not specify a value for the DBSPACETEMP configuration parameter or the DBSPACETEMP 

environment variable, the database server uses this operating-system file for implicit temporary tables. If this file 

system has insufficient space to hold a sort file, the query that performs the sort returns an error. Meanwhile, the 

operating system might be severely impacted until you remove the sort file.

You can improve performance with the use of temporary dbspaces that you create exclusively to store temporary tables and 

sort files. Use the DBSPACETEMP configuration parameter and the DBSPACETEMP  environment variable to assign these 

tables and files to temporary dbspaces.

When you specify dbspaces in either the DBSPACETEMP configuration parameter or the DBSPACETEMP environment 

variable, you gain the following performance advantages:

• Reduced I/O impact on the root dbspace, production dbspaces, or operating-system files

• Use of parallel sorts into the temporary files (to process query clauses such as ORDER BY or GROUP BY, or to sort 

index keys when you execute CREATE INDEX) when you specify more than one dbspace for temporary tables and 

PDQ priority is set to greater than 0.

• Improved speed with which the database server creates temporary tables when you assign two or more temporary 

dbspaces on separate disks

• Automatic fragmentation of the temporary tables across dbspaces when SELECT....INTO TEMP statements are run

The following table shows statements that create temporary tables and information about where the temporary tables are 

created.

Statement That 

Creates Temporary 

Table

Database Logged WITH NO LOG clause
FRAGMENT BY 

clause

Where Temp Table 

Created

CREATE TEMP TABLE Yes No No Root dbspace

CREATE TEMP TABLE Yes Yes No One of dbspaces 

that are specified in 

DBSPACETEMP

CREATE TEMP TABLE Yes No Yes Cannot create temp 

table. Error 229/196

SELECT ..INTO TEMP Yes Yes No Fragmented by 

round-robin only in the 



Chapter 1. Performance Guide

Statement That 

Creates Temporary 

Table

Database Logged WITH NO LOG clause
FRAGMENT BY 

clause

Where Temp Table 

Created

non-logged dbspaces 

that are specified in 

DBSPACETEMP

Important:  Use the DBSPACETEMP configuration parameter or the DBSPACETEMP  environment variable for better 

performance of sort operations and to prevent the database server from unexpectedly filling file systems. The 

dbspaces that you list must be composed of chunks that are allocated as unbuffered devices.

Related information

DBSPACETEMP configuration parameter  on page 

Specify temporary tables in the DBSPACETEMP configuration parameter  on page 118

CREATE TEMP TABLE statement  on page 

INTO TEMP clause  on page 

Creating temporary dbspaces
You can create a dbspace for the exclusive use of temporary tables and sort files. The database server does not perform 

logical or physical logging of temporary dbspaces, and temporary dbspaces are never backed up as part of a full-system 

backup.

About this task

To create a dbspace for the exclusive use of temporary tables and sort files, use onspaces -t. For best performance, use the 

following guidelines:

• If you create more than one temporary dbspace, create each dbspace on a separate disk to balance the I/O impact.

• Place no more than one temporary dbspace on a single disk.

You cannot mirror a temporary dbspace that you create with onspaces -t.

Important:  In the case of a database with logging, you must include the WITH NO LOG clause in the SELECT... INTO 

TEMP statement to place the explicit temporary tables in the dbspaces listed in the DBSPACETEMP configuration 

117

../%20adr/ids_adr_0046.html#ids_adr_0046
../%20adr/ids_adr_0046.html#ids_adr_0046
../%20adr/ids_adr_0046.html#ids_adr_0046
../%20adr/ids_adr_0046.html#ids_adr_0046
../sqs/ids_sqs_0571.html#ids_sqs_0571
../sqs/ids_sqs_0571.html#ids_sqs_0571
../sqs/ids_sqs_0571.html#ids_sqs_0571
../sqs/ids_sqs_0571.html#ids_sqs_0571
../sqs/ids_sqs_1066.html#ids_sqs_1066
../sqs/ids_sqs_1066.html#ids_sqs_1066
../sqs/ids_sqs_1066.html#ids_sqs_1066
../sqs/ids_sqs_1066.html#ids_sqs_1066


HCL Informix 14.10 - Performance Guide

118

parameter and the DBSPACETEMP  environment variable. Otherwise, the database server stores the explicit 

temporary tables in the root dbspace.

Related information

DBSPACETEMP configuration parameter  on page 

create tempdbspace argument: Create a temporary dbspace (SQL administration API)  on page 

onspaces -c -d: Create a dbspace  on page 

Specify temporary tables in the DBSPACETEMP configuration parameter
The DBSPACETEMP configuration parameter specifies a list of dbspaces in which the database server places temporary 

tables and sort files by default. Some or all of the dbspaces that you list in this configuration parameter can be temporary 

dbspaces, which are reserved exclusively to store temporary tables and sort files.

If the database server inserts data into a temporary table through a SELECT INTO TEMP operation that creates the TEMP 

table, that temporary table uses round-robin distributed storage. Its fragments are created in the temporary dbspaces that 

are listed in the DBSPACETEMP configuration parameter or in the DBSPACETEMP  environment variable. For example, the 

following query uses round-robin distributed storage:

SELECT col1 FROM tab1
   INTO TEMP temptab1 WITH NO LOG;

The DBSPACETEMP configuration parameter lets the database administrator restrict which dbspaces the database server 

uses for temporary storage.

Important:  The DBSPACETEMP configuration parameter is not set in the onconfig.std  file. For best performance with 

temporary tables and sort files, use DBSPACETEMP to specify two or more dbspaces on separate disks.

Tips:

• If you work on a small system with a limited number of disks and cannot place temporary dbspaces on 

different disk drives, you might consider using 1 (or possibly 2) temporary dbspaces. This can reduce 

the logging that is associated with the temporary dbspaces.

• If you have many disk drives, you can parallelize many operations (such as sorts, joins, and temporary 

tables) without having multiple temporary dbspaces. The number of temporary dbspaces that you have 

relates to how much you want to spread the I/O out. A good starting place is 4 temporary dbspaces. If 

you create too many small temporary dbspaces, you will not have enough space for nonparallel creation 

of large objects.

../%20adr/ids_adr_0046.html#ids_adr_0046
../%20adr/ids_adr_0046.html#ids_adr_0046
../%20adr/ids_adr_0046.html#ids_adr_0046
../%20adr/ids_adr_0046.html#ids_adr_0046
../%20adr/ids_sapi_023.html#ids_sapi_023
../%20adr/ids_sapi_023.html#ids_sapi_023
../%20adr/ids_sapi_023.html#ids_sapi_023
../%20adr/ids_sapi_023.html#ids_sapi_023
../%20adr/ids_adr_0466.html#ids_adr_0466
../%20adr/ids_adr_0466.html#ids_adr_0466
../%20adr/ids_adr_0466.html#ids_adr_0466
../%20adr/ids_adr_0466.html#ids_adr_0466


Chapter 1. Performance Guide

Related information

Configure dbspaces for temporary tables and sort files  on page 115

DBSPACETEMP configuration parameter  on page 

Distribution schemes  on page 270

CREATE TEMP TABLE statement  on page 

Override the DBSPACETEMP configuration parameter for a session
To override the DBSPACETEMP configuration parameter, you can use the DBSPACETEMP  environment variable for both 

temporary tables and sort files. This environment variable specifies a comma- or colon-separated list of dbspaces in which 

to place temporary tables for the current session.

Important:  Use the DBSPACETEMP configuration parameter or the DBSPACETEMP  environment variable for better 

performance of sort operations and to prevent the database server from unexpectedly filling file systems.

You should use DBSPACETEMP rather than the PSORT_DBTEMP  environment variable to specify sort files for the following 

reasons:

• DBSPACETEMP  typically yields better performance.

When dbspaces reside on character-special devices (also known as raw disk devices), the database server uses 

unbuffered disk access. I/O is faster to unbuffered devices than to regular (buffered) operating-system files because 

the database server manages the I/O operation directly.

• PSORT_DBTEMP  specifies one or more operating-system directories in which to place sort files.

These operating-system files can unexpectedly fill on your computer because the database server does not manage 

them.

Estimating temporary space for dbspaces and hash joins
You can estimate and increase the amount of temporary space for dbspaces and for hash joins. If you do this, you can 

prevent the possible overflow of memory to temporary space on disk.

You can use the following guidelines to estimate the amount of temporary space to allocate:

• For OLTP applications, allocate temporary dbspaces that equal at least 10 percent of the table.

• For DSS applications, allocate temporary dbspaces that equal at least 50 percent of the table.

A hash join, which works by building a table (the hash table) from the rows in one of the tables in a join, and then probing it 

with rows from the other table, can use a significant amount of memory and can potentially overflow to temporary space on 

disk. The hash table size is governed by the size of the table used to build the hash table (which is often the smaller of the 

119

../%20adr/ids_adr_0046.html#ids_adr_0046
../%20adr/ids_adr_0046.html#ids_adr_0046
../%20adr/ids_adr_0046.html#ids_adr_0046
../%20adr/ids_adr_0046.html#ids_adr_0046
../sqs/ids_sqs_0571.html#ids_sqs_0571
../sqs/ids_sqs_0571.html#ids_sqs_0571
../sqs/ids_sqs_0571.html#ids_sqs_0571
../sqs/ids_sqs_0571.html#ids_sqs_0571


HCL Informix 14.10 - Performance Guide

120

two tables in the join), after applying any filters, which can reduce the number of rows and possibly reduce the number of 

columns.

Hash-join partitions are organized into pages. Each page has a header. The header and tuples are larger in databases on 64-

bit platforms than in builds on 32-bit platforms. The size of each page is the base page size (2K or 4K depending on system) 

unless a single row needs more space. If you need more space, you can add bytes to the length of your rows.

You can use the following formula to estimate the amount of memory that is required for the hash table in a hash join:

hash_table_size = (32 bytes + row_size_smalltab) * num_rows_smalltab

where row_size_smalltab  and num_rows_smalltab  refer to the row size and the number of rows, respectively, in the smaller of 

the two tables participating in the hash join.

For example, suppose you have a page head that is 80 bytes in length and a row header that is 48 bytes in length. Because 

each row must be aligned to 8 bytes, you might need to add up to 7 bytes to the row length, as shown in these formulas:

per_row_size = 48 bytes + rowsize + mod(rowsize, 8)
page_size = base_page_size (2K or 4K)
rows_per_page = round_down_to_integer((page_size - 80 bytes) / per_row_size)  

If the value of rows_per_page  is less than one, increase the page_size  value to the smallest multiple of the base_page_size, as 

shown in this formula:

size = (numrows_smalltab / rows_per_page) * page_size

You can use the DS_NONPDQ_QUERY_MEM configuration parameter to configure sort memory for all queries except PDQ 

queries. Its setting has no effect, however, if the PDQ priority setting is greater than zero.

For more information, see Hash join  on page 298 and Configuring memory for queries with hash joins, aggregates, and 

other memory-intensive elements  on page 421.

Related information

DS_NONPDQ_QUERY_MEM configuration parameter  on page 

PSORT_NPROCS environment variable
The PSORT_NPROCS  environment variable specifies the maximum number of threads that the database server can use 

to sort a query. When a query involves a large sort operation, multiple sort threads can execute in parallel to improve the 

performance of the query.

When the value of PDQ priority is 0  and PSORT_NPROCS  is greater than 1, the database server uses parallel sorts. The 

management of PDQ does not limit these sorts. In other words, although the sort is executed in parallel, the database server 

does not regard sorting as a PDQ activity. When PDQ priority is 0, the database server does not control sorting by any of the 

PDQ configuration parameters.

When PDQ priority is greater than 0 and PSORT_NPROCS  is greater than 1, the query benefits both from parallel sorts and 

from PDQ features such as parallel scans and additional memory. Users can use the PDQPRIORITY environment variable 

../%20adr/ids_adr_0064.html#ids_adr_0064
../%20adr/ids_adr_0064.html#ids_adr_0064
../%20adr/ids_adr_0064.html#ids_adr_0064
../%20adr/ids_adr_0064.html#ids_adr_0064


Chapter 1. Performance Guide

to request a specific proportion of PDQ resources for a query. You can use the MAX_PDQPRIORITY parameter to limit the 

number of such user requests. For more information about MAX_PDQPRIORITY, see Limiting PDQ resources in queries  on 

page 44.

The database server allocates a relatively small amount of memory for sorting, and that memory is divided among the 

PSORT_NPROCS  sort threads. Sort processes use temporary space on disk when not enough memory is allocated. For more 

information about memory allocated for sorting, see Estimating memory needed for sorting  on page 230.

Important:  For better performance for a sort operation, set PSORT_NPROCS initially to 2 if your computer 

has multiple CPUs. If the subsequent CPU activity is lower than I/O activity, you can increase the value of 

PSORT_NPROCS.

For more information about sorts during index builds, see Improving performance for index builds  on page 229.

Configure sbspaces for temporary smart large objects
Applications can use temporary smart large objects for text, image, or other user-defined data types that are only required 

during the life of the user session. These applications do not require logging of the temporary smart large objects. Logging 

adds I/O activity to the logical log and increases memory utilization.

You can store temporary smart large objects in a permanent sbspace or a temporary sbspace.

• Permanent sbspaces

If you store the temporary smart large objects in a regular sbspace and keep the default no logging attribute, changes 

to the objects are not logged, but the metadata is always logged.

• Temporary sbspaces

Applications that update temporary smart large objects stored in temporary sbspaces are significantly faster 

because the database server does not log the metadata or the user data in a temporary sbspace.

To improve performance of applications that update temporary smart large objects, specify the LOTEMP  flag in the 

mi_lo_specset_flags  or ifx_lo_specset_flags  API function and specify a temporary sbspace for the temporary smart large 

objects. The database server uses the following order of precedence for locations to place temporary smart large objects:

• The sbspace you specify in the mi_lo_specset_sbspace  or ifx_lo_specset_sbspace  API function when you create the 

smart large object

Specify a temporary sbspace in the API function so that changes to the objects and the metadata are not logged. The 

sbspace you specify in the API function overrides any default sbspaces that the SBSPACETEMP or SBSPACENAME 

configuration parameters might specify.

• The sbspace you specify in the IN Sbspace clause when you create an explicit temporary table with the TEMP TABLE 

clause of the CREATE TABLE statement

121



HCL Informix 14.10 - Performance Guide

122

Specify a temporary sbspace in the IN Sbspace clause so that changes to the objects and the metadata are not 

logged.

• The permanent sbspace you specify in the SBSPACENAME configuration parameter, if you do not specify an sbspace 

in the SBSPACETEMP configuration parameter

If no temporary sbspace is specified in any of the above methods, then the database server issues the following error 

message when you try to create a temporary smart large object:

-12053  Smart Large Objects: No sbspace number specified.

Creating temporary sbspaces
To create an sbspace for the exclusive use of temporary smart large objects, use onspaces -c -S with the -t  option.

For best performance, use the following guidelines:

• If you create more than one temporary sbspace, create each sbspace on a separate disk to balance the I/O impact.

• Place no more than one temporary sbspace on a single disk.

The database server does not perform logical or physical logging of temporary sbspaces, and temporary sbspaces are never 

backed up as part of a full-system backup. You cannot mirror a temporary sbspace that you create with onspaces -t.

Important:  INTO TEMP clause of the SELECT statementIn the case of a database with logging, you must include the WITH NO LOG clause in the SELECT... 

INTO TEMP statement to place the temporary smart large objects in the sbspaces listed in the SBSPACETEMP 

configuration parameter. Otherwise, the database server stores the temporary smart large objects in the sbspace 

listed in the SBSPACENAME configuration parameter.

Related information

onspaces -c -S: Create an sbspace  on page 

Creating a temporary sbspace  on page 

Specify which sbspaces to use for temporary storage
The SBSPACETEMP configuration parameter specifies a list of sbspaces in which the database server places temporary 

smart large objects by default. Some or all of the sbspaces that you list in this configuration parameter can be temporary 

sbspaces, which are reserved exclusively to store temporary smart large objects.

../%20adr/ids_adr_0470.html#ids_adr_0470
../%20adr/ids_adr_0470.html#ids_adr_0470
../%20adr/ids_adr_0470.html#ids_adr_0470
../%20adr/ids_adr_0470.html#ids_adr_0470
../admin%20/ids_admin_0588.html#ids_admin_0588
../admin%20/ids_admin_0588.html#ids_admin_0588
../admin%20/ids_admin_0588.html#ids_admin_0588
../admin%20/ids_admin_0588.html#ids_admin_0588


Chapter 1. Performance Guide

Important:  The SBSPACETEMP configuration parameter is not set in the onconfig.std  file. For best performance with 

temporary smart large objects, use SBSPACETEMP to specify two or more sbspaces on separate disks.

Related information

SBSPACETEMP configuration parameter  on page 

Placement of simple large objects
You can store simple large objects in either the same dbspace in which the table resides or in a blobspace.

A blobspace is a logical storage unit composed of one or more chunks that store only simple large objects (TEXT or BYTE 

data). For information about sbspaces, which store smart large objects (such as BLOB, CLOB, or multirepresentational data), 

see Factors that affect I/O for smart large objects  on page 128.

If you use a blobspace, you can store simple large objects on a separate disk from the table with which the data is 

associated. You can store simple large objects associated with different tables in the same blobspace.

You can create a blobspace with the onspaces  utility or with an SQL administration API command that uses the create 

blobspace  argument with the admin()  or task()  function.

You assign simple large objects to a blobspace when you create the tables with which simple large objects are associated, 

using the CREATE TABLE statement.

Simple large objects are not logged and do not pass through the buffer pool. However, frequency of checkpoints can 

affect applications that access TEXT or BYTE data. For more information, see LOGSIZE and LOGFILES and their effect on 

checkpoints  on page 140.

Related information

CREATE TABLE statement  on page 

create blobspace argument: Create a blobspace (SQL administration API)  on page 

onspaces -c -b: Create a blobspace  on page 

Advantage of blobspaces over dbspaces
If you store simple large objects in a blobspace on a separate disk from the table with which it is associated, instead of 

storing the objects in a dbspace, you can obtain some performance advantages.

The performance advantages of storing simple large objects in a blobspace are:

123

../%20adr/ids_adr_0148.html#ids_adr_0148
../%20adr/ids_adr_0148.html#ids_adr_0148
../%20adr/ids_adr_0148.html#ids_adr_0148
../%20adr/ids_adr_0148.html#ids_adr_0148
../sqs/ids_sqs_0509.html#ids_sqs_0509
../sqs/ids_sqs_0509.html#ids_sqs_0509
../sqs/ids_sqs_0509.html#ids_sqs_0509
../sqs/ids_sqs_0509.html#ids_sqs_0509
../%20adr/ids_sapi_019.html#ids_sapi_019
../%20adr/ids_sapi_019.html#ids_sapi_019
../%20adr/ids_sapi_019.html#ids_sapi_019
../%20adr/ids_sapi_019.html#ids_sapi_019
../%20adr/ids_adr_0465.html#ids_adr_0465
../%20adr/ids_adr_0465.html#ids_adr_0465
../%20adr/ids_adr_0465.html#ids_adr_0465
../%20adr/ids_adr_0465.html#ids_adr_0465


HCL Informix 14.10 - Performance Guide

124

• You have parallel access to the table and simple large objects.

• Unlike simple large objects stored in a dbspace, blobspace data is written directly to disk. Simple large objects do not 

pass through resident shared memory, which leaves memory pages free for other uses.

• Simple large objects are not logged, which reduces logging I/O activity for logged databases.

For more information, see Storing simple large objects in the tblspace or a separate blobspace  on page 166.

Blobpage size considerations
Blobspaces are divided into units called blobpages. The database server retrieves simple large objects from a blobspace in 

blobpage-sized units. You specify the size of a blobpage in multiples of a disk page when you create the blobspace.

The optimal blobpage size for your configuration depends on the following factors:

• The size distribution of the simple large objects

• The trade-off between retrieval speed for your largest simple large object and the amount of disk space that is 

wasted by storing simple large objects in large blobpages

To retrieve simple large objects as quickly as possible, use the size of your largest simple large object rounded up to the 

nearest disk-page-sized increment. This scheme guarantees that the database server can retrieve even the largest simple 

large object in a single I/O request. Although this scheme guarantees the fastest retrieval, it has the potential to waste disk 

space. Because simple large objects are stored in their own blobpage (or set of blobpages), the database server reserves 

the same amount of disk space for every blobpage even if the simple large object takes up a fraction of that page. Using 

a smaller blobpage allows you to make better use of your disk, especially when large differences exist in the sizes of your 

simple large objects.

To achieve the greatest theoretical utilization of space on your disk, you can make your blobpage the same size as a 

standard disk page. Then many, if not most, simple large objects would require several blobpages. Because the database 

server acquires a lock and issues a separate I/O request for each blobpage, this scheme performs poorly.

In practice, a balanced scheme for sizing uses the most frequently occurring simple-large-object size as the size of a 

blobpage. For example, suppose that you have 160 simple-large-object values in a table with the following size distribution:

• Of these values, 120 are 12 kilobytes each.

• The other 40 values are 16 kilobytes each.

You can choose one of the following blobpage sizes:

• The 12-kilobyte blobpage size provides greater storage efficiency than a 16-kilobyte blobpage size, as the following 

two calculations show:

◦ 12 kilobytes

This configuration allows the majority of simple-large-object values to require a single blobpage and the other 

40 values to require two blobpages. In this configuration, 8 kilobytes is wasted in the second blobpage for 

each of the larger values. The total wasted space is as follows:



Chapter 1. Performance Guide

wasted-space = 8 kilobtyes * 40
             = 329 kilobytes

◦ 16 kilobytes

In this configuration, 4 kilobytes is wasted in the extents of 120 simple large objects. The total wasted space 

is as follows:

wasted-space = 4 kilobtyes * 120
             = 640 kilobytes

• If your applications access the 16-kilobyte simple-large-object values more frequently, the database server must 

perform a separate I/O operation for each blobpage. In this case, the 16-kilobyte blobpage size provides better 

retrieval speed than a 12-kilobyte blobpage size.

The maximum number of pages that a blobspace can contain is 2147483647. Therefore, the size of the blobspace is limited 

to the blobpage size x 2147483647. This includes blobpages in all chunks that make up the blobspace.

Tip:  If a table has more than one simple-large-object column and the data values are not close in size, store the data in 

different blobspaces, each with an appropriately sized blobpage.

Optimize blobspace blobpage size
When you are evaluating blobspace storage strategy, you can measure efficiency by two criteria: blobpage fullness and the 

blobpages required per simple large object.

Blobpage fullness refers to the amount of data within each blobpage. TEXT and BYTE data stored in a blobspace cannot 

share blobpages. Therefore, if a single simple large object requires only 20 percent of a blobpage, the remaining 80 percent 

of the page is unavailable for use.

However, avoid making the blobpages too small. When several blobpages are needed to store each simple large object, you 

increase the overhead cost of storage. For example, more locks are required for updates, because a lock must be acquired 

for each blobpage.

Obtain blobspace storage statistics
To help you determine the optimal blobpage size for each blobspace, use the oncheck -pB  command.

The command lists the following statistics for each table (or database):

• The number of blobpages used by the table (or database) in each blobspace

• The average fullness of the blobpages used by each simple large object stored as part of the table (or database)

Determine blobpage fullness with oncheck -pB  output
The oncheck -pB  command displays statistics that describe the average fullness of blobpages. These statistics provide a 

measure of storage efficiency for individual simple large objects in a database or table.

125



HCL Informix 14.10 - Performance Guide

126

If you find that the statistics for a significant number of simple large objects show a low percentage of fullness, the database 

server might benefit from changing the size of the blobpage in the blobspace.

Both the oncheck -pB  and onstat -d update  commands display the same information about the number of free blobpages. 

The onstat -d update  command displays the same information as onstat -d  and an accurate number of free blobpages for 

each blobspace chunk.

Execute oncheck -pB  with either a database name or a table name as a parameter. The following example retrieves storage 

information for all simple large objects stored in the table sriram.catalog  in the stores_demo  database:

oncheck -pB stores_demo:sriram.catalog 

oncheck -pB Output

Figure 15: Output of oncheck -pB  on page 126 shows the output of this command.

Figure  15. Output of oncheck -pB

              BLOBSpace Report for stores_demo:sriram.catalog
 

Total pages used by table            7
 

BLOBSpace usage:
Space   Page             Percent Full
Name    Number    Pages  0-25%  26-50%  51-75  76-100%
-------------------------------------------------------------
blobPIC 0x300080  1      x
   blobPIC 0x300082  2      x
         ------
Page Size is 6144      3
 

bspc1   0x2000b2  2             x
bspc1   0x2000b6  2                     x
              ------
Page Size is 2048      4

Space Name  is the name of the blobspace that contains one or more simple large objects stored as part of the table (or 

database).

Page Number  is the starting address in the blobspace of a specific simple large object.

Pages  is the number of the database server pages required to store this simple large object.

Percent Full  is a measure of the average blobpage fullness, by blobspace, for each blobspace in this table or database.

Page Size  is the size in bytes of the blobpage for this blobspace. Blobpage size is always a multiple of the database server 

page size.

The example output indicates that four simple large objects are stored as part of the table sriram.catalog. Two objects are 

stored in the blobspace  blobPIC  in 6144-byte blobpages. Two more objects are stored in the blobspace bspc1  in 2048-byte 

blobpages.



Chapter 1. Performance Guide

The summary information that appears at the top of the display, Total pages used by table is a simple total of the blobpages 

needed to store simple large objects. The total says nothing about the size of the blobpages used, the number of simple 

large objects stored, or the total number of bytes stored.

The efficiency information displayed under the Percent Full  heading is imprecise, but it can alert an administrator to trends in 

the storage of TEXT and BYTE data.

Interpreting blobpage average fullness
You can analyze the output of the oncheck -pB  command to calculate average fullness.

The first simple large object listed in Determine blobpage fullness with oncheck -pB output  on page 125 is stored in the 

blobspace blobPIC  and requires one 6144-byte blobpage. The blobpage is 51 to 75 percent full, meaning that the size is 

between 0.51 * 6144 = 3133 bytes and 0.75 * 6144 = 4608. The maximum size of this simple large object must be less than 

or equal to 75 percent of 6144 bytes, or 4608 bytes.

The second object listed under blobspace blobPIC  requires two 6144-byte blobpages for storage, or a total of 12,288 bytes. 

The average fullness of all allocated blobpages is 51 to 75 percent. Therefore, the minimum size of the object must be 

greater than 50 percent of 12,288 bytes, or 6144 bytes. The maximum size of the simple large object must be less than or 

equal to 75 percent of 12,288 bytes, or 9216 bytes. The average fullness does not mean that each page is 51 to 75 percent 

full. A calculation would yield 51 to 75 percent average fullness for two blobpages where the first blobpage is 100 percent full 

and the second blobpage is 2 to 50 percent full.

Now consider the two simple large objects in blobspace bspc1. These two objects appear to be nearly the same size. Both 

objects require two 2048-byte blobpages, and the average fullness for each is 76 to 100 percent. The minimum size for these 

simple large objects must be greater than 75 percent of the allocated blobpages, or 3072 bytes. The maximum size for each 

object is slightly less than 4096 bytes (allowing for overhead).

Analyzing efficiency criteria with oncheck -pB  output
You can analyze the output of the oncheck -pB  command to determine if there is a more efficient storage strategy.

Looking at the efficiency information for that is shown for blobspace bspc1  in Figure 15: Output of oncheck -pB  on 

page 126, a database server administrator might decide that a better storage strategy for TEXT and BYTE data would be 

to double the blobpage size from 2048 bytes to 4096 bytes. (Blobpage size is always a multiple of the database server page 

size.) If the database server administrator made this change, the measure of page fullness would remain the same, but the 

number of locks needed during an update of a simple large object would be reduced by half.

The efficiency information for blobspace blobPIC  reveals no obvious suggestion for improvement. The two simple large 

objects in blobPIC  differ considerably in size, and there is no optimal storage strategy. In general, simple large objects of 

similar size can be stored more efficiently than simple large objects of different sizes.

127



HCL Informix 14.10 - Performance Guide

128

Factors that affect I/O for smart large objects
An sbspace is a logical storage unit, composed of one or more chunks, in which you can store smart large objects (such as 

BLOB, CLOB, or multi representational data). Disk layout for sbspaces, the settings of certain configuration parameters, and 

some onspaces  utility options affect I/O for smart large objects.

The DataBlade®  API  and the Informix®  ESQL/C  application programming interface also provide functions that affect I/O 

operations for smart large objects.

Important:  For most applications, you should use the values that the database server calculates for the disk-storage 

information.

Related information

Sbspaces  on page 

What is Informix ESQL/C?  on page 

DataBlade API overview  on page 

Disk layout for sbspaces
You create sbspaces on separate disks from the table with which the data is associated. You can store smart large objects 

associated with different tables within the same sbspace. When you store smart large objects in an sbspace on a separate 

disk from the table with which it is associated, the database server provides some performance advantages.

These performance advantages are:

• You have parallel access to the table and smart large objects.

• When you choose not to log the data in an sbspace, you reduce logging I/O activity for logged databases.

To create an sbspace, use the onspaces  utility. You assign smart large objects to an sbspace when you use the CREATE 

TABLE statement to create the tables with which the smart large objects are associated.

Related information

onspaces -c -S: Create an sbspace  on page 

CREATE TABLE statement  on page 

Configuration parameters that affect sbspace I/O
The SBSPACENAME, BUFFERPOOL, and LOGBUFF configuration parameters affect the I/O performance of sbspaces.

The SBSPACENAME configuration parameter indicates the default sbspace name if you do not specify the sbspace name 

when you define a column of data type CLOB or BLOB. To reduce disk contention and provide better load balancing, place the 

default sbspace on a separate disk from the table data.

../admin%20/ids_admin_0491.html#ids_admin_0491
../admin%20/ids_admin_0491.html#ids_admin_0491
../admin%20/ids_admin_0491.html#ids_admin_0491
../admin%20/ids_admin_0491.html#ids_admin_0491
../esqlc/ids_esqlc_0862.html#ids_esqlc_0862
../esqlc/ids_esqlc_0862.html#ids_esqlc_0862
../esqlc/ids_esqlc_0862.html#ids_esqlc_0862
../esqlc/ids_esqlc_0862.html#ids_esqlc_0862
../%20dapip/ids_dapip_0005.html#ids_dapip_0005
../%20dapip/ids_dapip_0005.html#ids_dapip_0005
../%20dapip/ids_dapip_0005.html#ids_dapip_0005
../%20dapip/ids_dapip_0005.html#ids_dapip_0005
../%20adr/ids_adr_0470.html#ids_adr_0470
../%20adr/ids_adr_0470.html#ids_adr_0470
../%20adr/ids_adr_0470.html#ids_adr_0470
../%20adr/ids_adr_0470.html#ids_adr_0470
../sqs/ids_sqs_0509.html#ids_sqs_0509
../sqs/ids_sqs_0509.html#ids_sqs_0509
../sqs/ids_sqs_0509.html#ids_sqs_0509
../sqs/ids_sqs_0509.html#ids_sqs_0509


Chapter 1. Performance Guide

The BUFFERPOOL configuration parameter specifies the default values for buffers and LRU queues in a buffer pool for 

both the default page size buffer pool and for any non-default pages size buffer pools. The size of your memory buffer 

pool affects I/O operations for smart large objects because the buffer pool is the default area of shared memory for these 

objects. If your applications frequently access smart large objects, it is advantageous to have these objects in the buffer 

pool. Smart large objects only use the default page size buffer pool. For information about estimating the amount to 

increase your buffer pool for smart large objects, see The BUFFERPOOL configuration parameter and memory utilization  on 

page 72.

By default, the database server reads smart large objects into the buffers in the resident portion of shared memory. For more 

information on using lightweight I/O buffers, see Lightweight I/O for smart large objects  on page 131.

The LOGBUFF configuration parameter affects logging I/O activity because it specifies the size of the logical-log buffers that 

are in shared memory. The size of these buffers determines how quickly they fill and therefore how often they need to be 

flushed to disk.

If you log smart-large-object user data, increase the size of your logical-log buffer to prevent frequent flushing to these log 

files on disk.

Related information

SBSPACENAME configuration parameter  on page 

BUFFERPOOL configuration parameter  on page 

LOGBUFF configuration parameter  on page 

onspaces options that affect sbspace I/O
When you create an sbspace with the onspaces  utility, you specify information that affects I/O performance. This 

information includes the size of extents, the buffering mode (and whether you want the server to use lightweight I/O), and 

logging.

Sbspace extents
As you add smart large objects to a table, the database server allocates disk space to the sbspace in units called extents. 

Each extent is a block of physically contiguous pages from the sbspace.

Even when the sbspace includes more than one chunk, each extent is allocated entirely within a single chunk so that it 

remains contiguous. Contiguity is important to I/O performance.

When the pages of data are contiguous, disk-arm motion is minimized when the database server reads the rows sequentially. 

The mechanism of extents is a compromise between the following competing requirements:

• The size of some smart large objects is not known in advance.

• The number of smart large objects in different tables can grow at different times and different rates.

• All the pages of a single smart large object should ideally be adjacent for best performance when you retrieve the 

entire object.

129

../%20adr/ids_adr_0147.html#ids_adr_0147
../%20adr/ids_adr_0147.html#ids_adr_0147
../%20adr/ids_adr_0147.html#ids_adr_0147
../%20adr/ids_adr_0147.html#ids_adr_0147
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095


HCL Informix 14.10 - Performance Guide

130

Because you might not be able to predict the number and size of smart large objects, you cannot specify the extent length of 

smart large objects. Therefore, the database server adds extents only as they are needed, but all the pages in any one extent 

are contiguous for better performance. In addition, when the database server creates a new extent that is adjacent to the 

previous extent, it treats both extents as a single extent.

The number of pages in an sbspace extent is determined by one of the following methods:

• The database server calculates the extent size for a smart large object from a set of heuristics, such as the number 

of bytes in a write operation. For example, if an operation asks to write 30 kilobytes, the database server tries to 

allocate an extent the size of 30 kilobytes.

• The final size of the smart large object as indicated by one of the following functions when you open the sbspace in 

an application program:

◦ For DB-Access: the DataBlade®  API  mi_lo_specset_estbytes  function. For more information about the 

DataBlade®  API  functions to open a smart large object and set the estimated number of bytes, see the HCL® 

Informix®  DataBlade®  API Programmer's Guide.

◦ For ESQL/C:  the Informix®  ESQL/C  ifx_lo_specset_estbytes  function. For more information about the 

Informix®  ESQL/C  functions to open a smart large object and set the estimated number of bytes, see the 

HCL®  Informix®  Enterprise Replication Guide.

These functions are the best way to set the extent size because they reduce the number of extents in a smart large object. 

The database server tries to allocate the entire smart large object as one extent (if an extent of that size is available in the 

chunk).

• The EXTENT_SIZE flag in the -Df  option of the onspaces  command when you create or alter the sbspace

Most administrators do not use the onspaces EXTENT_SIZE flag because the database server calculates the extent 

size from heuristics. However, you might consider using the onspaces EXTENT_SIZE flag in the following situations:

◦ Many one-page extents are scattered throughout the sbspace.

◦ Almost all smart large objects are the same length.

• The EXTENT SIZE keyword of the CREATE TABLE statement when you define the CLOB or BLOB column

Most administrators do not use the EXTENT SIZE keyword when they create or alter a table because the database 

server calculates the extent size from heuristics. However, you might consider using this EXTENT SIZE keyword if 

almost all smart large objects are the same length.

Important:  For most applications, you should use the values that the database server calculates for the extent 

size. Do not use the DataBlade®  API  mi_lo_specset_extsz  function or the Informix®  ESQL/C  ifx_lo_specset_extsz 

function to set the extent size of the smart large object.

Smart large objectsextent sizeIf you know the size of the smart large object, it is recommended that you specify the size in the DataBlade®  API 

mi_lo_specset_estbytes() function or Informix®  ESQL/C  ifx_lo_specset_estbytes()  function instead of in the onspaces  utility 

or the CREATE TABLE or the ALTER TABLE statement. These functions are the best way to set the extent size because the 

database server allocates the entire smart large object as one extent (if it has contiguous storage in the chunk).



Chapter 1. Performance Guide

Extent sizes over one megabyte do not provide much I/O benefit because the database server performs read and write 

operations in multiples of 60 kilobytes at the most. However, the database server registers each extent for a smart large 

object in the metadata area; therefore, especially large smart large objects might have many extent entries. Performance 

of the database server might degrade when it accesses these extent entries. In this case, you can reduce the number of 

extent entries in the metadata area if you specify the eventual size of the smart large object in the mi_lo_specset_estbytes() 

function or ifx_lo_specset_estbytes()  function.

For more information, see Improving metadata I/O for smart large objects  on page 170.

Lightweight I/O for smart large objects
Instead of using the buffer pool, the administrator and programmer have the option to use lightweight I/O. Lightweight I/O 

operations use private buffers in the session pool of the virtual portion of shared memory.

By default, smart large objects pass through the buffer pool in the resident portion of shared memory. Although smart large 

objects have lower priority than other data, the buffer pool can become full when an application accesses many smart 

large objects. A single application can fill the buffer pool with smart large objects and leave little room for data that other 

applications might need. In addition, when the database server performs scans of many pages into the buffer pool, the 

overhead and contention associated with checking individual pages in and out might become a bottleneck.

Important:  Use private buffers only when you read or write smart large objects in read or write operations greater 

than 8080 bytes and you seldom access them. That is, if you have infrequent read or write function calls that read 

large amounts of data in a single function invocation, lightweight I/O can improve I/O performance.

Related information

The BUFFERPOOL configuration parameter and memory utilization  on page 72

Advantages of lightweight I/O for smart large objects
Lightweight I/O provides some performance advantages, because the database server is not using the buffer pool.

Lightweight I/O provides the following advantages:

• Transfers larger blocks of data in one I/O operation

These I/O blocks can be as large as 60 kilobytes. But the bytes must be adjacent for the database server to transfer 

them in a single I/O operation.

• Bypasses the overhead of the buffer pool when many pages are read

• Prevents frequently accessed pages from being forced out of the buffer pool when many sequential pages are read 

for smart large objects

131



HCL Informix 14.10 - Performance Guide

132

When you use lightweight I/O buffers for smart large objects, the database server might read several pages with one I/O 

operation. A single I/O operation reads in several smart-large-object pages, up to the size of an extent. For information about 

when to specify extent size, see Sbspace extents  on page 129.

Logging
If you decide to log all write operations on data stored in sbspaces, logical-log I/O activity and memory utilization increases.

For more information, see Configuration parameters that affect sbspace I/O  on page 128.

How the Optical Subsystem affects performance
The Optical Subsystem  extends the storage capabilities of the database server for simple large objects (TEXT or BYTE data) 

to write-once-read-many (WORM) optical subsystems. The database server uses a cache in memory to buffer initial TEXT or 

BYTE data pages requested from the Optical Subsystem.

The memory cache is a common storage area. The database server adds simple large objects requested by any application 

to the memory cache if the cache has space. To free space in the memory cache, the application must release the TEXT or 

BYTE data that it is using.

A significant performance advantage occurs when you retrieve TEXT or BYTE data directly into memory instead of buffering 

that data on disk. Therefore, proper cache sizing is important when you use the Optical Subsystem. You specify the total 

amount of space available in the memory cache with the OPCACHEMAX configuration parameter. Applications indicate 

that they require access to a portion of the memory cache when they set the INFORMIXOPCACHE  environment variable. For 

details, see INFORMIXOPCACHE, an Optical Subsystem environment variable  on page 133.

Simple large objects that cannot fit entirely into the space that remains in the cache are stored in the blobspace that the 

STAGEBLOB configuration parameter names. This staging area acts as a secondary cache on disk for blobpages that are 

retrieved from the Optical Subsystem. Simple large objects that are retrieved from the Optical Subsystem  are held in the 

staging area until the transactions that requested them are complete.

The database server administrator creates the staging-area blobspace with the onspaces  utility or with ON-Monitor  (UNIX™ 

only.

You can use onstat -O  to monitor utilization of the memory cache and STAGEBLOB blobspace. If contention develops for 

the memory cache, increase the value listed in the configuration file for OPCACHEMAX. (The new value takes effect the 

next time that the database server starts shared memory.) For a complete description of the Optical Subsystem, see the 

Informix®  Optical Subsystem Guide.

Environment variables and configuration parameters for the Optical Subsystem
The STAGEBLOB and OPCACHEMAX configuration parameters and the INFORMIXOPCACHE  environment variable affect the 

performance of the Optical Subsystem.



Chapter 1. Performance Guide

STAGEBLOB, an Optical Subsystem configuration parameter
The STAGEBLOB configuration parameter identifies the blobspace that is to be used as a staging area for TEXT or BYTE data 

that is retrieved from the Optical Subsystem, and it activates the Optical Subsystem.

If the configuration file does not list the STAGEBLOB parameter, the Optical Subsystem  does not recognize the optical-

storage subsystem.

The structure of the staging-area blobspace is the same as all other database server blobspaces. When the database server 

administrator creates the staging area, it consists of only one chunk, but you can add more chunks as desired. You cannot 

mirror the staging-area blobspace. The optimal size for the staging-area blobspace depends on the following factors:

• The frequency of simple-large-object storage

• The frequency of simple-large-object retrieval

• The average size of the simple large object to be stored

To calculate the size of the staging-area blobspace, you must estimate the number of simple large objects that you expect to 

reside there simultaneously and multiply that number by the average simple-large-object size.

Related information

STAGEBLOB configuration parameter  on page 

OPCACHEMAX, an Optical Subsystem configuration parameter
The OPCACHEMAX configuration parameter specifies the total amount of space that is available for simple-large-object 

retrieval in the memory cache that the Optical Subsystem  uses.

Until the memory cache fills, it stores simple large objects that are requested by any application. Simple large objects that 

cannot fit in the cache are stored on disk in the blobspace that the STAGEBLOB configuration parameter indicates. You can 

increase the size of the cache to reduce contention among simple-large-object requests and to improve performance for 

requests that involve the Optical Subsystem.

Related information

OPCACHEMAX configuration parameter (UNIX)  on page 

INFORMIXOPCACHE, an Optical Subsystem environment variable
The INFORMIXOPCACHE  environment variable sets the size of the memory cache that a given application uses for simple-

large-object retrieval.

If the value of this variable exceeds the maximum that the OPCACHEMAX configuration parameter specifies, OPCACHEMAX 

is used instead. If INFORMIXOPCACHE  is not set in the environment, the cache size is set to OPCACHEMAX by default.

133

../%20adr/ids_adr_0166.html#ids_adr_0166
../%20adr/ids_adr_0166.html#ids_adr_0166
../%20adr/ids_adr_0166.html#ids_adr_0166
../%20adr/ids_adr_0166.html#ids_adr_0166
../%20adr/ids_adr_0128.html#ids_adr_0128
../%20adr/ids_adr_0128.html#ids_adr_0128
../%20adr/ids_adr_0128.html#ids_adr_0128
../%20adr/ids_adr_0128.html#ids_adr_0128


HCL Informix 14.10 - Performance Guide

134

Related information

INFORMIXOPCACHE environment variable  on page 

Table I/O
One of the most frequent functions that the database server performs is to bring data and index pages from disk into 

memory. Pages can be read individually for brief transactions and sequentially for some queries. You can configure 

the number of pages that the database server brings into memory, and you can configure the timing of I/O requests for 

sequential scans.

You can also indicate how the database server is to respond when a query requests data from a dbspace that is temporarily 

unavailable.

The following sections describe these methods of reading pages.

For information about I/O for smart large objects, see Factors that affect I/O for smart large objects  on page 128.

Sequential scans
When the database server performs a sequential scan of data or index pages, most of the I/O wait time is caused by seeking 

the appropriate starting page. To dramatically improve performance for sequential scans, you can bring in a number of 

contiguous pages with each I/O operation.

The action of bringing additional pages along with the first page in a sequential scan is called read ahead.

The timing of I/O operations that are needed for a sequential scan is also important. If the scan thread must wait for the next 

set of pages to be brought in after working its way through each batch, a delay occurs. Timing second and subsequent read 

requests to bring in pages before they are needed provides the greatest efficiency for sequential scans. The number of pages 

to bring in and the frequency of read-ahead I/O requests depends on the availability of space in the memory buffers. Read-

ahead operations can increase page cleaning to unacceptable levels if too many pages are brought in with each batch or if 

batches are brought in too often.

Related information

Read-ahead operations  on page 

Light scans
Some sequential scans of tables can use light scans  to read the data. A light scan bypasses the buffer pool by utilizing 

session memory to read directly from disk.

Light scans can provide performance advantages over use of the buffer pool for sequential scans and skip scans of large 

tables. These advantages include:

../sqr/ids_sqr_265.html#ids_sqr_265
../sqr/ids_sqr_265.html#ids_sqr_265
../sqr/ids_sqr_265.html#ids_sqr_265
../sqr/ids_sqr_265.html#ids_sqr_265
../admin%20/ids_admin_0405.html#ids_admin_0405
../admin%20/ids_admin_0405.html#ids_admin_0405
../admin%20/ids_admin_0405.html#ids_admin_0405
../admin%20/ids_admin_0405.html#ids_admin_0405


Chapter 1. Performance Guide

• Bypassing the overhead of the buffer pool when many data pages are read

• Preventing frequently accessed pages from being forced out of the buffer pool when many sequential pages are read 

for a single query.

Light scans occur under these conditions:

• The optimizer chooses a sequential scan or a skip-scan of the table.

• The amount of data in the table exceeds one MB.

• The query meets one of the following locking conditions:

◦ The isolation level is Dirty Read (or the database has no transaction logging).

◦ The table has at least a shared lock on the entire table and the isolation level is not  Cursor Stability.

Note:  A sequential scan in Repeatable Read isolation automatically acquires a share lock on the table.

Tables that cannot be accessed by light scans

Light scans are only performed on user tables whose data rows are stored in tblspaces. Light scans are not used to access 

indexes, or to access data stored in blobspaces, smart blob spaces, or partition blobs. Similarly, light scans are not used to 

access data in the system catalog tables, nor in the tables and pseudotables of system databases like sysadmin, sysmaster, 

sysuser, and sysutils.

Configuration settings that affect light scans

If the BATCHEDREAD_TABLE configuration parameter or the IFX_BATCHEDREAD_TABLE session environment option to 

the SET ENVIRONMENT statement is set to 0, light scans are not used to access tables that have variable length rows, or 

tables where the row length is greater than the pagesize of the dbspace in which the table is contained. A variable length  row 

includes tables that have a variable length column, such as VARCHAR, LVARCHAR or NVARCHAR, as well as tables that are 

compressed.

You can use the IFX_BATCHEDREAD_TABLE session environment option of the SET ENVIRONMENT statement, or the 

onmode -wm  command, to override the setting of the BATCHEDREAD_TABLE configuration parameter for the current 

session. You can use the onmode -wf  command to change the value of BATCHEDREAD_TABLE in the ONCONFIG file.

Example of onstat output during a light scan

If you have a long-running scan, you can view output from the onstat -g scn  command to check the progress of the scan, to 

determine how long the scan will take before it completes, and to see whether the scan is a light scan or a bufferpool scan.

The following example shows some of the output from onstat -g scn  for a light scan. The word Light  in the Scan Type  field 

identifies the scan as a light scan.

SesID  Thread Partnum  Rowid  Rows Scan'd  Scan Type  Lock Mode  Notes
17     48     300002   207    15           Light                 Forward row lookup

135



HCL Informix 14.10 - Performance Guide

136

Related information

BATCHEDREAD_TABLE configuration parameter  on page 

onstat -g scn command: Print scan information  on page 

Unavailable data
Another aspect of table I/O pertains to situations in which a query requests access to a table or fragment in a dbspace that 

is temporarily unavailable. When the database server determines that a dbspace is unavailable as the result of a disk failure, 

queries directed to that dbspace fail by default. The database server allows you to specify dbspaces that, when unavailable, 

can be skipped by queries,

For information about specifying dbspaces that, when unavailable, can be skipped by queries, see How DATASKIP affects 

table I/O  on page 136.

Warning:  If a dbspace containing data that a query requests is listed in the DATASKIP configuration parameter 

and is currently unavailable because of a disk failure, the data that the database server returns to the query can be 

inconsistent with the actual contents of the database.

Configuration parameters that affect table I/O
The AUTO_READAHEAD configuration parameter changes the automatic read-ahead mode or disables automatic read-ahead 

for a query.  In addition, the DATASKIP configuration parameter enables or disables data skipping.

Automatic read-ahead processing helps improve query performance by issuing asynchronous page requests when Informix® 

detects that the query is encountering I/O. Asynchronous page requests can improve query performance by overlapping 

query processing with the processing necessary to retrieve data from disk and put it in the buffer pool. You can also use the 

AUTO_READAHEAD environment option of the SET ENVIRONMENT statement of SQL to enable or disable the value of the 

AUTO_READAHEAD configuration parameter for a session.

Related information

AUTO_READAHEAD configuration parameter  on page 

How DATASKIP affects table I/O
The DATASKIP configuration parameter allows you to specify which dbspaces, if any, queries can skip when those dbspaces 

are unavailable as the result of a disk failure. You can list specific dbspaces and turn data skipping on or off for all dbspaces.

When data skipping is enabled, the database server sets the sixth character in the SQLWARN array to W..

Warning:  The database server cannot determine whether the results of a query are consistent when a dbspace is 

skipped. If the dbspace contains a table fragment, the user who executes the query must ensure that the rows within 

that fragment are not needed for an accurate query result. Turning DATASKIP on allows queries with incomplete data 

../%20adr/ids_adr_1036.html#ids_adr_1036
../%20adr/ids_adr_1036.html#ids_adr_1036
../%20adr/ids_adr_1036.html#ids_adr_1036
../%20adr/ids_adr_1036.html#ids_adr_1036
../%20adr/ids_adr_1037.html#ids_adr_1037
../%20adr/ids_adr_1037.html#ids_adr_1037
../%20adr/ids_adr_1037.html#ids_adr_1037
../%20adr/ids_adr_1037.html#ids_adr_1037
../%20adr/ids_adr_1125.html#ids_adr_1125
../%20adr/ids_adr_1125.html#ids_adr_1125
../%20adr/ids_adr_1125.html#ids_adr_1125
../%20adr/ids_adr_1125.html#ids_adr_1125


Chapter 1. Performance Guide

to return results that can be inconsistent with the actual state of the database. Without proper care, that data can 

yield incorrect or misleading query results.

Related information

DATASKIP Configuration Parameter  on page 

SQLWARN array  on page 

Background I/O activities
Background I/O activities do not service SQL  requests directly. Many of these activities are essential to maintain database 

consistency and other aspects of database server operation. However, they create overhead in the CPU and take up I/O 

bandwidth.

These overhead activities take time away from queries and transactions. If you do not configure background I/O activities 

properly, too much overhead for these activities can limit the transaction throughput of your application.

The following list shows some background I/O activities:

• Checkpoints

• Logging

• Page cleaning

• Backup and restore

• Rollback and recovery

• Data replication

• Auditing

Checkpoints occur regardless of whether much database activity occurs; however, they can occur with greater frequency 

as activity increases. Other background activities, such as logging and page cleaning, occur more frequently as database 

use increases. Activities such as backups, restores, or fast recoveries occur only as scheduled or under exceptional 

circumstances.

For the most part, tuning your background I/O activities involves striking a balance between appropriate checkpoint intervals, 

logging modes and log sizes, and page-cleaning thresholds. The thresholds and intervals that trigger background I/O activity 

often interact; adjustments to one threshold might shift the performance bottleneck to another.

The following sections describe the performance effects and considerations that are associated with the configuration 

parameters that affect these background I/O activities.

Configuration parameters that affect checkpoints
The RTO_SERVER_RESTART, CKPTINTVL, LOGSIZE, LOGFILES, PHYSFILE, and ONDBSPACEDOWN configuration parameters 

affect checkpoints.

137

../%20adr/ids_adr_0041.html#ids_adr_0041
../%20adr/ids_adr_0041.html#ids_adr_0041
../%20adr/ids_adr_0041.html#ids_adr_0041
../%20adr/ids_adr_0041.html#ids_adr_0041
../sqt/ids_sqt_307.html#ids_sqt_307
../sqt/ids_sqt_307.html#ids_sqt_307
../sqt/ids_sqt_307.html#ids_sqt_307
../sqt/ids_sqt_307.html#ids_sqt_307


HCL Informix 14.10 - Performance Guide

138

RTO_SERVER_RESTART and its effect on checkpoints
The RTO_SERVER_RESTART configuration parameter specifies the amount of time, in seconds, that Informix®  has to recover 

from an unplanned outage.

The performance advantage of enabling this configuration parameter is:

• Enabling fast recovery to meet the RTO_SERVER_RESTART policy by seeding the buffer pool with the data pages 

required by log replay.

The performance disadvantages of enabling this configuration parameter are:

• Increased physical log activity which might slightly impact transaction performance

• Increased checkpoint frequency, because the physical log space is depleted more quickly (You can increase the size 

of the physical log to avoid the increase in checkpoint frequency.)

When RTO_SERVER_RESTART is enabled, the database server:

• Attempts to make sure nonblocking checkpoints do not run out of critical resources during checkpoint processing by 

triggering more frequent checkpoints if transactions might run out of physical or logical log resources, which would 

cause transaction blocking.

• Ignores the CKPTINTVL configuration parameter.

• Automatically controls checkpoint frequency to meet the RTO policy and to prevent the server from running out of log 

resources.

• Automatically adjusts the number of AIO virtual processors and cleaner threads and automatically tunes LRU 

flushing.

The database server prints warning messages in the message log if the server cannot meet the RTO_SERVER_RESTART 

policy.

Related information

RTO_SERVER_RESTART configuration parameter  on page 

Automatic checkpoints, LRU tuning, and AIO virtual processor tuning
The database server automatically adjusts checkpoint frequency to avoid transaction blocking. The server monitors physical 

and logical log consumption along with information about past checkpoint performance. Then, if necessary, the server 

triggers checkpoints more frequently to avoid transaction blocking.

You can turn off automatic checkpoint tuning by setting onmode -wf AUTO_CKPTS  to 0, or setting the AUTO_CKPTS 

configuration parameter to 0.

Because the database server does not block transactions during checkpoint processing, LRU flushing is relaxed. If the server 

is not able to complete checkpoint processing before the physical log is full (which causes transaction blocking), and if you 

cannot increase the size of the physical log, you can configure the server for more aggressive LRU flushing. The increase in 

../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146


Chapter 1. Performance Guide

LRU flushing impacts transaction performance, but reduces transaction blocking. If you do not configure the server for more 

aggressive flushing, the server automatically adjusts LRU flushing to be more aggressive only when the server is unable to 

find a low priority buffer for page replacement.

When the AUTO_AIOVPS configuration parameter is enabled, the database server automatically increases the number of AIO 

virtual processors and page-cleaner threads when the server detects that AIO virtual processors are not keeping up with the 

I/O workload.

If the VPCLASS configuration parameter setting for AIO virtual processors is set to autotune=1, the database server 

automatically increases the number of AIO virtual processors and page-cleaner threads when the server detects that AIO 

virtual processors are not keeping up with the I/O workload.

Automatic LRU tuning affects all buffer pools and adjusts lru_min_dirty  and lru_max_dirty  values in the BUFFERPOOL 

configuration parameter.

Related information

AUTO_CKPTS configuration parameter  on page 

AUTO_AIOVPS configuration parameter  on page 

BUFFERPOOL configuration parameter  on page 

VPCLASS configuration parameter  on page 

LRU tuning  on page 156

CKPTINTVL and its effect on checkpoints
If the RTO_SERVER_RESTART configuration parameter is not on, the CKPTINTVL configuration parameter specifies the 

frequency, in seconds, at which the database server checks to determine whether a checkpoint is needed.

When the RTO_SERVER_RESTART configuration parameter is on, the database server ignores the CKPTINTVL configuration 

parameter. Instead, the server automatically triggers checkpoints in order to maintain the RTO_SERVER_RESTART policy.

The database server can skip a checkpoint if all data is physically consistent when the checkpoint interval expires.

Checkpoints also occur in either of these circumstances:

• Whenever the physical log becomes 75 percent full

• If a high number of dirty partitions exist, even if the physical log is not 75 percent full.

This occurs because when the database server checks if the physical log is 75 percent full, the server also checks if 

the following condition is true:

139

../%20adr/ids_adr_0024.html#ids_adr_0024
../%20adr/ids_adr_0024.html#ids_adr_0024
../%20adr/ids_adr_0024.html#ids_adr_0024
../%20adr/ids_adr_0024.html#ids_adr_0024
../%20adr/ids_adr_0023.html#ids_adr_0023
../%20adr/ids_adr_0023.html#ids_adr_0023
../%20adr/ids_adr_0023.html#ids_adr_0023
../%20adr/ids_adr_0023.html#ids_adr_0023
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189
../%20adr/ids_adr_0189.html#ids_adr_0189


HCL Informix 14.10 - Performance Guide

140

(Physical Log Pages Used + Number of Dirty Partitions) >=
(Physical Log Size * 9) /10)

A partition, which represents one page going into the physical log during checkpoint processing and has a page that 

maintains information (such as the number of rows and number of data pages) about the partition, becomes dirty 

when the partition is updated.

If you set CKPTINTVL to a long interval, you can use physical-log capacity to trigger checkpoints based on actual database 

activity instead of an arbitrary time unit. However, a long checkpoint interval can increase the time needed for recovery in 

the event of a failure. Depending on your throughput and data-availability requirements, you can choose an initial checkpoint 

interval of 5, 10, or 15 minutes, with the understanding that checkpoints might occur more often, depending on physical-

logging activity.

The database server writes a message to the message log to note the time that it completes a checkpoint. To read these 

messages, use onstat -m.

Related information

CKPTINTVL configuration parameter  on page 

LOGSIZE and LOGFILES and their effect on checkpoints
The LOGSIZE and LOGFILES configuration parameters indirectly affect checkpoints because they specify the size and 

number of logical-log files. A checkpoint can occur when the database server detects that the next logical-log file to become 

current contains the most-recent checkpoint record.

If you need to free the logical-log file that contains the last checkpoint, the database server must write a new checkpoint 

record to the current logical-log file. If the frequency with which logical-log files are backed up and freed increases, the 

frequency at which checkpoints occur increases. Although checkpoints block user processing, they no longer last as long. 

Because other factors (such as the physical-log size) also determine the checkpoint frequency, this effect might not be 

significant.

When the dynamic log allocation feature is enabled, the size of the logical log does not affect the thresholds for long 

transactions as much as it did in previous versions of the database server. For details, see LTXHWM and LTXEHWM and their 

effect on logging  on page 148.

The LOGSIZE, LOGFILES, and LOGBUFF configuration parameters also affect logging I/O activity and logical backups. For 

more information, see Configuration parameters that affect logging  on page 142.

Related information

LOGFILES configuration parameter  on page 

LOGSIZE configuration parameter  on page 

Estimate the number of logical-log files  on page 

../%20adr/ids_adr_0038.html#ids_adr_0038
../%20adr/ids_adr_0038.html#ids_adr_0038
../%20adr/ids_adr_0038.html#ids_adr_0038
../%20adr/ids_adr_0038.html#ids_adr_0038
../%20adr/ids_adr_0096.html#ids_adr_0096
../%20adr/ids_adr_0096.html#ids_adr_0096
../%20adr/ids_adr_0096.html#ids_adr_0096
../%20adr/ids_adr_0096.html#ids_adr_0096
../%20adr/ids_adr_0098.html#ids_adr_0098
../%20adr/ids_adr_0098.html#ids_adr_0098
../%20adr/ids_adr_0098.html#ids_adr_0098
../%20adr/ids_adr_0098.html#ids_adr_0098
../admin%20/ids_admin_0717.html#ids_admin_0717
../admin%20/ids_admin_0717.html#ids_admin_0717
../admin%20/ids_admin_0717.html#ids_admin_0717
../admin%20/ids_admin_0717.html#ids_admin_0717


Chapter 1. Performance Guide

Checkpoints and the physical log
The PHYSFILE configuration parameter specifies the size of the initial physical log. A checkpoint occurs when either the 

physical log becomes 75 percent full or a high number of dirty partitions exist.

The rate at which transactions generate physical log activity can affect checkpoint performance. To avoid transaction 

blocking during checkpoint processing, consider the size of the physical log and how quickly it fills.

You can enable the database server to expand the size of the physical log as needed to improve performance by creating an 

extendable plogspace for the physical log.

For example, operations that do not perform updates do not generate before-images. If the size of the database is growing, 

but applications rarely update the data, little physical logging occurs. In this situation, you might not need a large physical 

log.

Similarly, you can define a smaller physical log if your application updates the same pages. The database server writes the 

before-image of only the first update that is made to a page for the following operations:

• Inserts, updates, and deletes for rows that contain user-defined data types (UDTs), smart large objects, and simple 

large objects

• ALTER statements

• Operations that create or modify indexes (B-tree, R-tree, or user-defined indexes)

Because the physical log is recycled after each checkpoint, the physical log must be large enough to hold before-images 

from changes between checkpoints. If the database server frequently triggers checkpoints because it runs out of physical 

log space, consider increasing the size of the physical log.

If you increase the checkpoint interval or if you anticipate increased update activity, you might want to increase the size of 

the physical log.

The physical log is an important part of maintaining RTO_SERVER_RESTART policy. To ensure that you have an abundance of 

space, set the size of the physical log to at least 110 percent of the size of all buffer pools.

You can use the onparams  utility to change the physical log location and size. You can change the physical log while 

transactions are active and without restarting the database server.

Related reference

Configuration parameters that affect critical data  on page 114

Related information

PHYSFILE configuration parameter  on page 

Strategy for estimating the size of the physical log  on page 

Change the physical-log location and size  on page 

Plogspace  on page 

141

../%20adr/ids_adr_0134.html#ids_adr_0134
../%20adr/ids_adr_0134.html#ids_adr_0134
../%20adr/ids_adr_0134.html#ids_adr_0134
../%20adr/ids_adr_0134.html#ids_adr_0134
../admin%20/ids_admin_0765.html#ids_admin_0765
../admin%20/ids_admin_0765.html#ids_admin_0765
../admin%20/ids_admin_0765.html#ids_admin_0765
../admin%20/ids_admin_0765.html#ids_admin_0765
../admin%20/ids_admin_0783.html#ids_admin_0783
../admin%20/ids_admin_0783.html#ids_admin_0783
../admin%20/ids_admin_0783.html#ids_admin_0783
../admin%20/ids_admin_0783.html#ids_admin_0783
../admin%20/ids_admin_1428.html#ids_admin_1428
../admin%20/ids_admin_1428.html#ids_admin_1428
../admin%20/ids_admin_1428.html#ids_admin_1428
../admin%20/ids_admin_1428.html#ids_admin_1428


HCL Informix 14.10 - Performance Guide

142

ONDBSPACEDOWN and its effect on checkpoints
The ONDBSPACEDOWN configuration parameter specifies the response that the database server makes when an I/O error 

indicates that a dbspace is down. By default, the database server identifies any dbspace that contains no critical data as down 

and continues processing. Critical data includes the root dbspace, the logical log, or the physical log.

To restore access to that database, you must back up all logical logs and then perform a warm restore on the down dbspace.

The database server halts operation whenever a disabling I/O error occurs on a nonmirrored dbspace that contains critical 

data, regardless of the setting for ONDBSPACEDOWN. In such an event, you must perform a cold restore of the database 

server to resume normal database operations.

The value of ONDBSPACEDOWN has no affect on temporary dbspaces. For temporary dbspaces, the database server 

continues processing regardless of the ONDBSPACEDOWN setting. If a temporary dbspace requires fixing, you can drop and 

recreate it.

When ONDBSPACEDOWN is set to 2, the database server continues processing to the next checkpoint and then suspends 

processing of all update requests. The database server repeatedly retries the I/O request that produced the error until the 

dbspace is repaired and the request completes or the database server administrator intervenes. The administrator can use 

onmode -O  to mark the dbspace down  and continue processing while the dbspace remains unavailable or use onmode -k  to 

halt the database server.

Important:  This 2 setting for ONDBSPACEDOWN can affect the performance for update requests severely because 

they are suspended due to a down dbspace. When you use this setting for ONDBSPACEDOWN, be sure to monitor the 

status of the dbspaces.

When you set ONDBSPACEDOWN to 1, the database server treats all dbspaces as though they were critical. Any nonmirrored 

dbspace that becomes disabled halts normal processing and requires a cold restore. The performance impact of halting and 

performing a cold restore when any dbspace goes down can be severe.

Important:  If you decide to set ONDBSPACEDOWN to 1, consider mirroring all your dbspaces.

Related information

ONDBSPACEDOWN configuration parameter  on page 

Configuration parameters that affect logging
The LOGBUFF, PHYSBUFF, LOGFILES, LOGSIZE, DYNAMIC_LOGS, AUTO_LLOG, LTXHWM, LTXEHWM, 

SESSION_LIMIT_LOGSPACE, SESSION_LIMIT_TXN_TIME, and TEMPTAB_NOLOG configuration parameters affect logging. 

The LOGBUFF, PHYSBUFF, LOGFILES, LOGSIZE, DYNAMIC_LOGS, LTXHWM, LTXEHWM, and TEMPTAB_NOLOG configuration 

parameters affect logging.

../%20adr/ids_adr_0125.html#ids_adr_0125
../%20adr/ids_adr_0125.html#ids_adr_0125
../%20adr/ids_adr_0125.html#ids_adr_0125
../%20adr/ids_adr_0125.html#ids_adr_0125


Chapter 1. Performance Guide

Logging, checkpoints, and page cleaning are necessary to maintain database consistency. A direct trade-off exists between 

the frequency of checkpoints or the size of the logical logs and the time that it takes to recover the database in the event of 

a failure. Therefore, a major consideration when you attempt to reduce the overhead for these activities is the delay that you 

can accept during recovery.

LOGBUFF and PHYSBUFF and their effect on logging
The LOGBUFF and PHYSBUFF configuration parameters affect logging I/O activity because they specify the respective sizes 

of the logical-log and physical-log buffers that are in shared memory. The size of these buffers determines how quickly the 

buffers fill and therefore how often they need to be flushed to disk.

Related information

LOGBUFF configuration parameter  on page 

PHYSBUFF configuration parameter  on page 

LOGFILES and its effect on logging
The LOGFILES configuration parameter, which specifies the number of logical-log files, affects logging.

When you initialize or restart the database server, it creates the number of logical-log files that you specify in the LOGFILES 

configuration parameter.

You might add logical-log files for the following reasons:

• To increase the disk space allocated to the logical log

• To change the size of your logical-log files

• To enable an open transaction to roll back

• As part of moving logical-log files to a different dbspace

Related information

LOGFILES configuration parameter  on page 

Estimate the number of logical-log files  on page 

Calculating the space allocated to logical log files
If all of your logical log files are the same size, you can calculate the total space allocated to the logical log files.

To calculate the space allocated to these files, use the following formula:

total logical log space = LOGFILES * LOGSIZE

If you add logical-log files that are not the size specified by the LOGSIZE configuration parameter, you cannot use the 

LOGFILES * LOGSIZE  expression to calculate the size of the logical log. Instead, you need to add the sizes for each individual 

log file on disk.

143

../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0095.html#ids_adr_0095
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0133.html#ids_adr_0133
../%20adr/ids_adr_0096.html#ids_adr_0096
../%20adr/ids_adr_0096.html#ids_adr_0096
../%20adr/ids_adr_0096.html#ids_adr_0096
../%20adr/ids_adr_0096.html#ids_adr_0096
../admin%20/ids_admin_0717.html#ids_admin_0717
../admin%20/ids_admin_0717.html#ids_admin_0717
../admin%20/ids_admin_0717.html#ids_admin_0717
../admin%20/ids_admin_0717.html#ids_admin_0717


HCL Informix 14.10 - Performance Guide

144

Use the onstat -l  utility to monitor logical-log files.

LOGSIZE and its effect on logging
The LOGSIZE configuration parameter specifies the size of each logical log file. It is difficult to predict how much logical-log 

space your database server system requires until the system is fully in use.

The size of the logical log space (LOGFILES * LOGSIZE) is determined by these policies:

Recovery time objective (RTO)

This is the length of time you can afford to be without your systems. If your only objective is failure recovery, 

the total log space only needs to be large enough to contain all the transactions for two checkpoint cycles. 

When the RTO_SERVER_RESTART configuration parameter is enabled and the server has a combined buffer 

pool size of less that four gigabytes, you can configure the total log space to 110% of the combined buffer pool 

sizes. Too much log space does not impact performance; however, too little log space can cause more frequent 

checkpoints and transaction blocking.

Recovery point objective (RPO)

This describes the age of the data you want to restore in the event of a disaster. If the objective is to make sure 

transactional work is protected, the optimum LOGSIZE should be a multiple of how much work gets done per 

RPO unit. Because the database server supports partial log backup, an optimal log size is not critical and a non-

optimal log size simply means more frequent log file changes. RPO is measured in units of time. If the business 

rule is that the system cannot lose more than ten minutes of transactional data if a complete site disaster 

occurs, then a log backup should occur every ten minutes.

You can use the Scheduler, which manages and executes scheduled administrative tasks, to set up automatic 

log backup.

Long Transactions

If you have long transactions that require a large amount of log space, you should allocate that space for the 

logs. Inadequate log space impacts transaction performance.

Choose a log size based on how much logging activity occurs and the amount of risk in case of catastrophic failure. If 

you cannot afford to lose more than an hour's worth of data, create many small log files that each hold an hour's worth 

of transactions. Turn on continuous-log backup. Small logical-log files fill sooner, which means more frequent logical-log 

backups.

If your system is stable with high logging activity, choose larger logs to improve performance. Continuous-log backups occur 

less frequently with large log files. Also consider the maximum transaction rates and speed of the backup devices. Do not 

let the whole logical log fill. Turn on continuous-log backup and leave enough room in the logical logs to handle the longest 

transactions.

The backup process can hinder transaction processing that involves data located on the same disk as the logical-log files. 

If enough logical-log disk space is available, however, you can wait for periods of low user activity before you back up the 

logical-log files.



Chapter 1. Performance Guide

Related information

LOGSIZE configuration parameter  on page 

The Scheduler  on page 

Estimating logical-log size when logging dbspaces
To estimate the size of logical logs, use a formula or onstat -u  information.

Use the following formula to obtain an initial estimate for LOGSIZE in kilobytes:

LOGSIZE = (connections  * maxrows  * rowsize) / 1024) / LOGFILES 

In this formula:

• connections  is the maximum number of connections for all network types specified in the sqlhosts information 

by one or more NETTYPE parameters. If you configured more than one connection by setting multiple NETTYPE 

configuration parameters in your configuration file, sum the users  fields for each NETTYPE parameter, and substitute 

this total for connections in the preceding formula.

• maxrows  is the largest number of rows to be updated in a single transaction.

• rowsize  is the average size of a row in bytes. You can calculate rowsize by adding up the length (from the syscolumns 

system catalog table) of the columns in a row.

• 1024  is a necessary divisor because you specify LOGSIZE in kilobytes.

To obtain a better estimate during peak activity periods, execute the onstat -u  command. The last line of the onstat -u  output 

contains the maximum number of concurrent connections.

You need to adjust the size of the logical log when your transactions include simple large objects or smart large objects, as 

the following sections describe.

You also can increase the amount of space devoted to the logical log by adding another logical-log file.

Related information

Adding logical-log files manually  on page 

Estimating the logical-log size when logging simple large objects
To obtain better overall performance for applications that perform frequent updates of TEXT or BYTE data in blobspaces, 

reduce the size of the logical log.

Blobpages cannot be reused until the logical log to which they are allocated is backed up. When TEXT or BYTE data activity is 

high, the performance impact of more frequent checkpoints is balanced by the higher availability of free blobpages.

145

../%20adr/ids_adr_0098.html#ids_adr_0098
../%20adr/ids_adr_0098.html#ids_adr_0098
../%20adr/ids_adr_0098.html#ids_adr_0098
../%20adr/ids_adr_0098.html#ids_adr_0098
../admin%20/ids_admin_1121.html#ids_admin_1121
../admin%20/ids_admin_1121.html#ids_admin_1121
../admin%20/ids_admin_1121.html#ids_admin_1121
../admin%20/ids_admin_1121.html#ids_admin_1121
../admin%20/ids_admin_0740.html#ids_admin_0740
../admin%20/ids_admin_0740.html#ids_admin_0740
../admin%20/ids_admin_0740.html#ids_admin_0740
../admin%20/ids_admin_0740.html#ids_admin_0740


HCL Informix 14.10 - Performance Guide

146

When you use volatile blobpages in blobspaces, smaller logs can improve access to simple large objects that must be 

reused. Simple large objects cannot be reused until the log in which they are allocated is flushed to disk. In this case, you can 

justify the cost in performance because those smaller log files are backed up more frequently.

Estimating the logical-log size when logging smart large objects
If you plan to log smart-large-object user data, you must ensure that the log size is considerably larger than the amount of 

data being written. Smart-large-object metadata is always logged even if the smart large objects are not logged.

Use the following guidelines when you log smart large objects:

• If you are appending data to a smart large object, the increased logging activity is roughly equal to the amount of 

data written to the smart large object.

• If you are updating a smart large object (overwriting data), the increased logging activity is roughly twice the amount 

of data written to the smart large object. The database server logs both the before-image and after-image of a smart 

large object for update transactions. When updating the smart large objects, the database server logs only the 

updated parts of the before and after image.

• Metadata updates affect logging less. Even though metadata is always logged, the number of bytes logged is usually 

much smaller than the smart large objects.

DYNAMIC_LOGS and its effect on logging
The dynamic log file allocation feature prevents hanging problems that are caused by rollbacks of a long transaction 

because the database server does not run out of log space. The DYNAMIC_LOGS configuration parameter specifies whether 

the dynamic log file allocation feature is off, on, or causes the server to pause to allow the manual addition of a logical log 

file.

Dynamic log allocation allows you to do the following actions:

• Add a logical log file while the system is active, even during fast recover.

• Insert a logical log file immediately after the current log file, instead of appending it to the end.

• Immediately access the logical log file even if the root dbspace is not backed up.

The default value for the DYNAMIC_LOGS configuration parameter is 2, which means that the database server automatically 

allocates a new logical log file after the current log file when it detects that the next log file contains an open transaction. The 

database server automatically checks if the log after the current log still contains an open transaction at the following times:

• Immediately after it switches to a new log file while writing log records (not while reading and applying log records)

• At the beginning of the transaction cleanup phase which occurs as the last phase of logical recovery

Logical recovery happens at the end of fast recovery and at the end of a cold restore or roll forward.

• During transaction cleanup (rollback of open transactions), a switch to a new log file log might occur

The database server also checks after this switch because it is writing log records for the rollback.



Chapter 1. Performance Guide

When you use the default value of 2 for DYNAMIC_LOGS, the database server determines the location and size of the new 

logical log for you:

• The database server uses the following criteria to determine on which disk to allocate the new log file:

◦ Favor mirrored dbspaces

◦ Avoid root dbspace until no other critical dbspace is available

◦ Least favored space is unmirrored and noncritical dbspaces

• The database server uses the average size of the largest log file and the smallest log file for the size of the new 

logical log file. If not enough contiguous disk space is available for this average size, the database server searches 

for space for the next smallest average size. The database server allocates a minimum of 200 kilobytes for the new 

log file.

If you want to control the location and size of the additional log file, set DYNAMIC_LOGS to 1. When the database server 

switches log files, it still checks if the next active log contains an open transaction. If it does find an open transaction in the 

next log to be active, it does the following actions:

• Issues alarm event 27 (log required)

• Writes a warning message to the online log

• Pauses to wait for the administrator to manually add a log with the onparams -a -i  command-line option

You can write a script that will execute when alarm event 27 occurs to execute onparams -a -i  with the location you want 

to use for the new log. Your script can also execute the onstat -d  command to check for adequate space and execute the 

onparams -a -i command with the location that has enough space. You must use the -i  option to add the new log right after 

the current log file.

If you set DYNAMIC_LOGS to 0, the database server still checks whether the next active log contains an open transaction 

when it switches log files. If it does find an open transaction in the next log to be active, it issues the following warning:

WARNING: The oldest logical log file (%d) contains records
from an open transaction (0x%p), but the Dynamic Log
Files feature is turned off.

Related information

DYNAMIC_LOGS configuration parameter  on page 

Fast recovery  on page 

AUTO_LLOG and its effect on logging
Insufficient logical logs can affect performance by triggering frequent checkpoints, blocking checkpoints, or long 

checkpoints. The AUTO_LLOG configuration parameter controls whether the database server automatically adds logical logs 

to improve performance.

If you created a server during installation, the AUTO_LLOG configuration parameter is enabled automatically. Otherwise, you 

can edit the value of the AUTO_LLOG configuration parameter.

147

../%20adr/ids_adr_0073.html#ids_adr_0073
../%20adr/ids_adr_0073.html#ids_adr_0073
../%20adr/ids_adr_0073.html#ids_adr_0073
../%20adr/ids_adr_0073.html#ids_adr_0073
../admin%20/ids_admin_0770.html#ids_admin_0770
../admin%20/ids_admin_0770.html#ids_admin_0770
../admin%20/ids_admin_0770.html#ids_admin_0770
../admin%20/ids_admin_0770.html#ids_admin_0770


HCL Informix 14.10 - Performance Guide

148

If the AUTO_LLOG configuration parameter is enabled, the database server automatically adds logical log files under the 

following circumstances:

• When a substantial portion of the last 20 checkpoints were caused by logical logs filling up

• When inadequate logical log space causes a blocking checkpoint

• When inadequate logical log space causes a long checkpoint

The AUTO_LLOG configuration parameter also specifies the dbspace for new logical log files and the maximum size of all 

logical log files before the server stops adding logical logs for performance. The following guidelines show estimates of the 

maximum amount of space for logical logs that you might need, depending on the number of concurrent users who access 

your database server:

• 1 - 100 users: 200 MB

• 101 - 500 users: 5 MB

• 501 - 1000 users: 1 GB

• More than 1000 users: 2 GB

The settings of the AUTO_LLOG configuration parameter and the DYNAMIC_LOGS configuration parameters do not interact.

Related information

AUTO_LLOG configuration parameter  on page 

LTXHWM and LTXEHWM and their effect on logging
The LTXHWM and LTXEHWM configuration parameters define long transaction watermarks.

After the release of the dynamic log file feature, long transaction high watermarks are no longer as critical, because the 

server does not run out of log space unless you use up the physical disk space available on the system. The LTXHWM 

parameter still indicates how full the logical log is when the database server starts to check for a possible long transaction 

and to roll it back. LTXEHWM still indicates the point at which the database server suspends new transaction activity to 

locate and roll back a long transaction. These events are usually rare, but if they occur, they can indicate a serious problem 

within an application.

Under normal operations, use the default values for LTXHWM and LTXEHWM. However, you might want to change these 

default values for one of the following reasons:

• To allow other transactions to continue update activity (which requires access to the log) during the rollback of a long 

transaction

In this case, you increase the value of LTXEHWM to raise the point at which the long transaction rollback has 

exclusive access to the log.

../%20adr/ids_adr_1181.html#ids_adr_1181
../%20adr/ids_adr_1181.html#ids_adr_1181
../%20adr/ids_adr_1181.html#ids_adr_1181
../%20adr/ids_adr_1181.html#ids_adr_1181


Chapter 1. Performance Guide

• To run scheduled transactions of unknown length, such as large loads that are logged

In this case, you increase the value of LTXHWM so that the transaction has a chance to complete before it reaches 

the high watermark.

Related information

LTXEHWM configuration parameter  on page 

LTXHWM configuration parameter  on page 

TEMPTAB_NOLOG and its effect on logging
The TEMPTAB_NOLOG configuration parameter allows you to disable logging on temporary tables. You can do this to 

improve performance and to prevent Informix®  from transferring temporary tables when using High-Availability Data 

Replication (HDR).

To disable logging on temporary tables, set the TEMPTAB_NOLOG configuration parameter to 1.

To enable logging on temporary tables for primary server and to disable logging on temporary tables for secondary 

servers(HDR, RSS and SDS), set the TEMPTAB_NOLOG configuration parameter to 2.

Related information

TEMPTAB_NOLOG configuration parameter  on page 

SESSION_LIMIT_LOGSPACE and its effect on logging
The SESSION_LIMIT_LOGSPACE configuration parameter specifies the maximum amount of log space that a session can 

use for individual transactions, and can prevent individual sessions from monopolizing the logical log.

SESSION_LIMIT_LOGSPACE does not apply to a user who holds administrative privileges, such as user informix  or a DBSA 

user.

Related information

SESSION_LIMIT_LOGSPACE configuration parameter  on page 

SESSION_LIMIT_TXN_TIME configuration parameter  on page 

SESSION_LIMIT_TXN_TIME and its effect on logging
The SESSION_LIMIT_TXN_TIME configuration parameter limits how much time a transaction can run in a session, and can 

prevent individual session transactions from monopolizing the logical log.

The database server terminates a transaction that exceeds the SESSION_LIMIT_TXN_TIME limit, and produces an error in the 

database server message log.

149

../%20adr/ids_adr_0103.html#ids_adr_0103
../%20adr/ids_adr_0103.html#ids_adr_0103
../%20adr/ids_adr_0103.html#ids_adr_0103
../%20adr/ids_adr_0103.html#ids_adr_0103
../%20adr/ids_adr_0104.html#ids_adr_0104
../%20adr/ids_adr_0104.html#ids_adr_0104
../%20adr/ids_adr_0104.html#ids_adr_0104
../%20adr/ids_adr_0104.html#ids_adr_0104
../%20adr/ids_adr_0183.html#ids_adr_0183
../%20adr/ids_adr_0183.html#ids_adr_0183
../%20adr/ids_adr_0183.html#ids_adr_0183
../%20adr/ids_adr_0183.html#ids_adr_0183
../%20adr/ids_adr_1192.html#ids_adr_1192
../%20adr/ids_adr_1192.html#ids_adr_1192
../%20adr/ids_adr_1192.html#ids_adr_1192
../%20adr/ids_adr_1192.html#ids_adr_1192
../%20adr/ids_adr_1193.html#ids_adr_1193
../%20adr/ids_adr_1193.html#ids_adr_1193
../%20adr/ids_adr_1193.html#ids_adr_1193
../%20adr/ids_adr_1193.html#ids_adr_1193


HCL Informix 14.10 - Performance Guide

150

SESSION_LIMIT_TXN_TIME does not apply to a user who holds administrative privileges, such as user informix  or a DBSA 

user.

Configuration parameters that affect page cleaning
Several configuration parameters, including the CLEANERS and RTO_SERVER_RESTART configuration parameters, affect 

page cleaning. If pages are not cleaned often enough, an sqlexec  thread that performs a query might be unable to find the 

available pages that it needs.

If the sqlexec  thread cannot find the available pages that it needs, the thread initiates a foreground write  and waits for pages 

to be freed. Foreground writes impair performance, so you should avoid them. To reduce the frequency of foreground writes, 

increase the number of page cleaners or decrease the threshold for triggering a page cleaning.

Use onstat -F  to monitor the frequency of foreground writes.

The following configuration parameters affect page cleaning:

• BUFFERPOOL, which contains lrus, lru_max_dirty, and lru_min_dirty  values

Information that was specified with the BUFFERS, LRUS, LRU_MAX_DIRTY, and LRU_MIN_DIRTY configuration 

parameters before Version 10.0 is now specified using the BUFFERPOOL configuration parameter.

• CLEANERS

• RTO_SERVER_RESTART

CLEANERS and its effect on page cleaning
The CLEANERS configuration parameter indicates the number of page-cleaner threads to run. For installations that support 

fewer than 20 disks, one page-cleaner thread is recommended for each disk that contains database server data. For 

installations that support between 20 and 100 disks, one page-cleaner thread is recommended for every two disks. For larger 

installations, one page-cleaner thread is recommended for every four disks.

If you increase the number of LRU queues, you must increase the number of page-cleaner threads proportionally.

Related information

CLEANERS configuration parameter  on page 

BUFFERPOOL and its effect on page cleaning
The BUFFERPOOL configuration parameter specifies the number of least recently used (LRU) queues to set up within the 

shared-memory buffer pool. The buffer pool is distributed among LRU queues. Configuring more LRU queues allows more 

page cleaners to operate and reduces the size of each LRU queue.

For a single-processor system, set the lrus  field of the BUFFERPOOL configuration parameter to a minimum of 8. For 

multiprocessor systems, set the lrus  field to a minimum of 8 or to the number of CPU VPs, whichever is greater.

../%20adr/ids_adr_0039.html#ids_adr_0039
../%20adr/ids_adr_0039.html#ids_adr_0039
../%20adr/ids_adr_0039.html#ids_adr_0039
../%20adr/ids_adr_0039.html#ids_adr_0039


Chapter 1. Performance Guide

For a single-processor system, set the lrus  field of the BUFFERPOOL configuration parameter to a minimum of 4. For 

multiprocessor systems, set the lrus  field to a minimum of 4 or to the number of CPU VPs, whichever is greater.

The lrus, lru_max_dirty, and lru_min_dirty  values control how often pages are flushed to disk between checkpoints. Automatic 

LRU tuning, as set by the AUTO_LRU configuration parameter, affects all buffer pools and adjusts the lru_min_dirty  and 

lru_max_dirty  values in the BUFFERPOOL configuration parameter.

If you increase the lru_max_dirty  and lru_min_dirty  values to improve transaction throughput, do not change the gap between 

the lru_max_dirty  and lru_min_dirty.

When the buffer pool is very large and transaction blocking is occurring during checkpoint processing, look in the message 

log to determine which resource is triggering transaction blocking. If the physical or logical log is critically low and triggers 

transaction blocking, increase the size of the resource that is causing the transaction blocking. If you cannot increase the 

size of the resource, consider making LRU flushing more aggressive by decreasing the lru_min_dirty  and lru_max_dirty 

settings so that the server has fewer pages to flush to disk during checkpoint processing.

To monitor the percentage of dirty pages in LRU queues, use the onstat -R  command. When the number of dirty pages 

consistently exceeds the lru_max_dirty  limit, you have too few LRU queues or too few page cleaners. First, use the 

BUFFERPOOL configuration parameter to increase the number of LRU queues. If the percentage of dirty pages still exceeds 

the lru_max_dirty  limit, update the CLEANERS configuration parameter to increase the number of page cleaners.

Related information

The BUFFERPOOL configuration parameter and memory utilization  on page 72

BUFFERPOOL configuration parameter  on page 

Number of LRU queues to configure  on page 

RTO_SERVER_RESTART and its effect on page cleaning
The RTO_SERVER_RESTART configuration parameter allows you to use recovery time objective (RTO) standards to set the 

amount of time, in seconds, that Informix®  has to recover from a problem after you restart Informix®  and bring it into online 

or quiescent mode.

When this configuration parameter is enabled, the database server automatically adjusts the number of AIO virtual 

processors and cleaner threads and automatically tunes LRU flushing.

Use the AUTO_LRU_TUNING configuration parameter to specify whether automatic LRU tuning is enabled or disabled when 

the server starts.

Related information

RTO_SERVER_RESTART configuration parameter  on page 

AUTO_LRU_TUNING configuration parameter  on page 

151

../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../admin%20/ids_admin_0401.html#ids_admin_0401
../admin%20/ids_admin_0401.html#ids_admin_0401
../admin%20/ids_admin_0401.html#ids_admin_0401
../admin%20/ids_admin_0401.html#ids_admin_0401
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0025.html#ids_adr_0025
../%20adr/ids_adr_0025.html#ids_adr_0025
../%20adr/ids_adr_0025.html#ids_adr_0025
../%20adr/ids_adr_0025.html#ids_adr_0025


HCL Informix 14.10 - Performance Guide

152

Configuration parameters that affect backup and restore
Four configuration parameters that affect backup and restore on all operating systems also affect background I/O. Additional 

configuration parameters affect backup and restore on UNIX™.

The following configuration parameters affect backup and restore on all operating systems:

• BAR_MAX_BACKUP

• BAR_NB_XPORT_COUNT

• BAR_PROGRESS_FREQ

• BAR_XFER_BUF_SIZE

In addition, the following configuration parameters affect backup and restore on UNIX™:

• LTAPEBLK

• LTAPEDEV

• LTAPESIZE

• TAPEBLK

• TAPEDEV

• TAPESIZE

ON-Bar configuration parameters
BAR_MAX_BACKUP, BAR_NB_XPORT_COUNT, BAR_PROGRESS_FREQ, and BAR_XFER_BUF_SIZE are some ON-Bar 

configuration parameters that affect background I/O.

The BAR_MAX_BACKUP configuration parameter specifies the maximum number of backup processes per ON-Bar 

command. This configuration parameter also defines the degree of parallelism, determining how many processes start to run 

concurrently, including processes for backing up and restoring a whole system. When the number of running processes is 

reached, further processes start only when a running process completes its operation.

BAR_NB_XPORT_COUNT specifies the number of shared-memory data buffers for each backup or restore process.

BAR_PROGRESS_FREQ specifies, in minutes, how frequently the backup or restore progress messages display in the activity 

log.

BAR_XFER_BUF_SIZE specifies the size, in pages, of the buffers.

Related information

BAR_MAX_BACKUP configuration parameter  on page 

BAR_NB_XPORT_COUNT configuration parameter  on page 

BAR_PROGRESS_FREQ configuration parameter  on page 

BAR_XFER_BUF_SIZE configuration parameter  on page 

../%20bar/ids_bar_290.html#ids_bar_290
../%20bar/ids_bar_290.html#ids_bar_290
../%20bar/ids_bar_290.html#ids_bar_290
../%20bar/ids_bar_290.html#ids_bar_290
../%20bar/ids_bar_285.html#ids_bar_285
../%20bar/ids_bar_285.html#ids_bar_285
../%20bar/ids_bar_285.html#ids_bar_285
../%20bar/ids_bar_285.html#ids_bar_285
../%20bar/ids_bar_283.html#ids_bar_283
../%20bar/ids_bar_283.html#ids_bar_283
../%20bar/ids_bar_283.html#ids_bar_283
../%20bar/ids_bar_283.html#ids_bar_283
../%20bar/ids_bar_293.html#ids_bar_293
../%20bar/ids_bar_293.html#ids_bar_293
../%20bar/ids_bar_293.html#ids_bar_293
../%20bar/ids_bar_293.html#ids_bar_293


Chapter 1. Performance Guide

ontape configuration parameters (UNIX™)
On UNIX™, LTAPEBLK, LTAPEDEV, LTAPESIZE, TAPEBLK, TAPEDEV, and TAPESIZE are configuration parameters that affect 

the ontape  utility.

On UNIX™, the LTAPEBLK, LTAPEDEV, and TAPESIZE configuration parameters specify the block size, device, and tape size for 

logical-log backups made with ontape. The TAPEBLK configuration parameter specifies the block size for database backups 

made with ontape, onload, and onunload.

TAPEDEV specifies the tape device. TAPESIZE specifies the tape size for these backups.

Related information

ON-Bar and ontape configuration parameters and environment variable  on page 

Configuration parameters that affect rollback and recovery
The OFF_RECVRY_THREADS, ON_RECVRY_THREADS, PLOG_OVERFLOW_PATH, and RTO_SERVER_RESTART configuration 

parameters affect recovery. The LOW_MEMORY_RESERVE configuration parameter reserves a specific amount of memory, in 

kilobytes, for the database server to use when critical activities, such as rollback activities, are needed.

OFF_RECVRY_THREADS and ON_RECVRY_THREADS and their effect on fast recovery
The OFF_RECVRY_THREADS configuration parameter specifies the number of recovery threads that operate when the 

database server performs a cold restore or fast recovery. The setting of ON_RECVRY_THREADS specifies the number of 

recovery threads that operate when the database server performs a warm restore.

To improve the performance of fast recovery, increase the number of recovery threads with the OFF_RECVRY_THREADS 

configuration parameter. When fast recovery begins, the database server creates an LGR memory pool and allocates 

approximately 100 KB from this pool for each recovery thread. The LGR pool and its memory are freed when fast recovery 

completes. Because secondary servers in a high-availability cluster are almost always in fast recovery mode, the LGR 

memory pool is almost always present on secondary servers.

Follow these guidelines when you set the OFF_RECVRY_THREADS configuration parameter:

• If you have enough shared memory, set the number of threads to the number of tables or fragments that are 

frequently updated. Balance the number of threads with the amount of shared memory.

• On a single-CPU computer, set the number of threads to 10 - 30 or 40. The cost of too many threads can outweigh the 

advantages of parallel operations.

153

../%20bar/ids_bar_291.html#ids_bar_291
../%20bar/ids_bar_291.html#ids_bar_291
../%20bar/ids_bar_291.html#ids_bar_291
../%20bar/ids_bar_291.html#ids_bar_291


HCL Informix 14.10 - Performance Guide

154

Note:  SEC_APPLY_POLLTIME plays a significant role on large and very busy clusters, with high volumes of logical 

log throughput having to be recovered on secondary servers. To set a non zero value for SEC_APPLY_POLLTIME, 

OFF_RECVRY_THREADS configuration value must be less than CPU VPs configured for the database server.

A warm restore takes place concurrently with other database operations. To reduce the impact of the warm restore on 

other users, you can allocate fewer threads to it than you might allocate to a cold restore. However, to replay logical-

log transactions in parallel during a warm restore, specify more threads with the ON_RECVRY_THREADS configuration 

parameter.

Related information

OFF_RECVRY_THREADS configuration parameter  on page 

ON_RECVRY_THREADS configuration parameter  on page 

SEC_APPLY_POLLTIME configuration parameter  on page 

PLOG_OVERFLOW_PATH and its effect on fast recovery
The PLOG_OVERFLOW_PATH configuration parameter specifies the location of a disk file (named plog_extend.servernum) 

that the database server uses if the physical log file overflows during fast recovery.

The database server removes the plog_extend.servernum  file when the first checkpoint is performed during a fast recovery.

Related information

PLOG_OVERFLOW_PATH configuration parameter  on page 

RTO_SERVER_RESTART and its effect on fast recovery
The RTO_SERVER_RESTART configuration parameter enables you to use recovery time objective (RTO) standards to set the 

amount of time, in seconds, that Informix®  has to recover from a problem after you restart Informix®  and bring it into online 

or quiescent mode.

Related information

RTO_SERVER_RESTART configuration parameter  on page 

The LOW_MEMORY_RESERVE configuration parameter and memory utilization
The LOW_MEMORY_RESERVE configuration parameter reserves a specific amount of memory, in kilobytes, for the database 

server to use when critical activities are needed and the server has limited free memory.

If you enable the new LOW_MEMORY_RESERVE configuration parameter by setting it to a specified value in kilobytes, critical 

activities, such as rollback activities, can complete even when you receive out-of-memory errors.

../%20adr/ids_adr_0122.html#ids_adr_0122
../%20adr/ids_adr_0122.html#ids_adr_0122
../%20adr/ids_adr_0122.html#ids_adr_0122
../%20adr/ids_adr_0122.html#ids_adr_0122
../%20adr/ids_adr_0123.html#ids_adr_0123
../%20adr/ids_adr_0123.html#ids_adr_0123
../%20adr/ids_adr_0123.html#ids_adr_0123
../%20adr/ids_adr_0123.html#ids_adr_0123
../%20adr/ids_adr_sec_apply_polltime.html
../%20adr/ids_adr_sec_apply_polltime.html
../%20adr/ids_adr_sec_apply_polltime.html
../%20adr/ids_adr_sec_apply_polltime.html
../%20adr/ids_adr_0135.html#ids_adr_0135
../%20adr/ids_adr_0135.html#ids_adr_0135
../%20adr/ids_adr_0135.html#ids_adr_0135
../%20adr/ids_adr_0135.html#ids_adr_0135
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146


Chapter 1. Performance Guide

Related information

LOW_MEMORY_RESERVE configuration parameter  on page 

onstat -g seg command: Print shared memory segment statistics  on page 

Configuration parameters that affect data replication and auditing
Data replication and auditing are optional. If you use these features, you can set configuration parameters that affect data-

replication performance and auditing performance.

To obtain immediate performance improvements, you can disable these features, provided that the operating requirements 

for your system allow you to do so.

Configuration parameters that affect data replication
Synchronized data replication can increase the amount of time it take longer to free the log buffer after a log flush. The 

DRINTERVAL, DRTIMEOUT, and HDR_TXN_SCOPE configuration parameters can adjust synchronization and system 

performance.

The DRINTERVAL configuration parameter indicates whether the data-replication buffer is flushed synchronously or 

asynchronously to the secondary database server. If this parameter is set to flush asynchronously, it specifies the interval 

between flushes. Each flush impacts the CPU and sends data across the network to the secondary database server.

If the DRINTERVAL configuration parameter is set to 0, the synchronization mode that is specified by the HDR_TXN_SCOPE 

configuration parameter is used. The HDR_TXN_SCOPE configuration parameter specifies whether HDR replication is fully 

synchronous, nearly synchronous, or asynchronous.

• In fully synchronous mode, transactions require acknowledgement of completion on the HDR secondary server 

before they can complete.

• In asynchronous mode, transactions do not require acknowledgement of being received or completed on the HDR 

secondary server before they can complete.

• In nearly synchronous mode, transactions require acknowledgement of being received on the HDR secondary server 

before they can complete.

The DRTIMEOUT configuration parameter specifies the interval for which either database server waits for a transfer 

acknowledgment from the other. If the primary database server does not receive the expected acknowledgment, it adds the 

transaction information to the file named in the DRLOSTFOUND configuration parameter. If the secondary database server 

receives no acknowledgment, it changes the data-replication mode as the DRAUTO configuration parameter specifies.

Related information

DRINTERVAL configuration parameter  on page 

DRTIMEOUT configuration parameter  on page 

DRLOSTFOUND configuration parameter  on page 

155

../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_1122.html#ids_adr_1122
../%20adr/ids_adr_0573.html#ids_adr_0573
../%20adr/ids_adr_0573.html#ids_adr_0573
../%20adr/ids_adr_0573.html#ids_adr_0573
../%20adr/ids_adr_0573.html#ids_adr_0573
../%20adr/ids_adr_0058.html#ids_adr_0058
../%20adr/ids_adr_0058.html#ids_adr_0058
../%20adr/ids_adr_0058.html#ids_adr_0058
../%20adr/ids_adr_0058.html#ids_adr_0058
../%20adr/ids_adr_0060.html#ids_adr_0060
../%20adr/ids_adr_0060.html#ids_adr_0060
../%20adr/ids_adr_0060.html#ids_adr_0060
../%20adr/ids_adr_0060.html#ids_adr_0060
../%20adr/ids_adr_0059.html#ids_adr_0059
../%20adr/ids_adr_0059.html#ids_adr_0059
../%20adr/ids_adr_0059.html#ids_adr_0059
../%20adr/ids_adr_0059.html#ids_adr_0059


HCL Informix 14.10 - Performance Guide

156

DRAUTO configuration parameter  on page 

HDR_TXN_SCOPE configuration parameter  on page 

onstat -g dri command: Print high-availability data replication information  on page 

Replication of primary-server data to secondary servers  on page 

Fully synchronous mode for HDR replication  on page 

Nearly synchronous mode for HDR replication  on page 

Asynchronous mode for HDR replication  on page 

Configuration parameters that affect auditing
The ADTERR and ADTMODE configuration parameters affect auditing performance.

The ADTERR configuration parameter specifies whether the database server is to halt processing for a user session for 

which an audit record encounters an error. When ADTERR is set to halt such a session, the response time for that session 

appears to degrade until one of the successive attempts to write the audit record succeeds.

The ADTMODE configuration parameter enables or disables auditing according to the audit records that you specify with 

the onaudit  utility. Records are written to files in the directory that the AUDITPATH parameter specifies. The AUDITSIZE 

parameter specifies the size of each audit-record file.

The effect of auditing on performance is largely determined by the auditing events that you choose to record. Depending on 

which users and events are audited, the impact of these configuration parameters can vary widely.

Infrequent events, such as requests to connect to a database, have low performance impact. Frequent events, such as 

requests to read any row, can generate a large amount of auditing activity. The more users for whom such frequent events 

are audited, the greater the impact on performance.

Related information

ADTERR configuration parameter  on page 

ADTMODE configuration parameter  on page 

Auditing data security  on page 

LRU tuning
The LRU settings for flushing each buffer pool between checkpoints are not critical to checkpoint performance. The LRU 

settings are necessary only for maintaining enough clean pages for page replacement.

The default settings for LRU flushing are 50 percent for lru_min_dirty  and 60 percent for lru_max_dirty.

If your database server has been configured for more aggressive LRU flushing because of checkpoint performance, you can 

decrease the LRU flushing at least to the default values.

../%20adr/ids_adr_0056.html#ids_adr_0056
../%20adr/ids_adr_0056.html#ids_adr_0056
../%20adr/ids_adr_0056.html#ids_adr_0056
../%20adr/ids_adr_0056.html#ids_adr_0056
../%20adr/ids_adr_1175.html#ids_adr_1175
../%20adr/ids_adr_1175.html#ids_adr_1175
../%20adr/ids_adr_1175.html#ids_adr_1175
../%20adr/ids_adr_1175.html#ids_adr_1175
../%20adr/ids_adr_0527.html#ids_adr_0527
../%20adr/ids_adr_0527.html#ids_adr_0527
../%20adr/ids_adr_0527.html#ids_adr_0527
../%20adr/ids_adr_0527.html#ids_adr_0527
../admin%20/ids_admin_0863.html#ids_admin_0863
../admin%20/ids_admin_0863.html#ids_admin_0863
../admin%20/ids_admin_0863.html#ids_admin_0863
../admin%20/ids_admin_0863.html#ids_admin_0863
../admin%20/ids_admin_0868.html#ids_admin_0868
../admin%20/ids_admin_0868.html#ids_admin_0868
../admin%20/ids_admin_0868.html#ids_admin_0868
../admin%20/ids_admin_0868.html#ids_admin_0868
../admin%20/ids_admin_1417.html#ids_admin_1417
../admin%20/ids_admin_1417.html#ids_admin_1417
../admin%20/ids_admin_1417.html#ids_admin_1417
../admin%20/ids_admin_1417.html#ids_admin_1417
../admin%20/ids_admin_0869.html#ids_admin_0869
../admin%20/ids_admin_0869.html#ids_admin_0869
../admin%20/ids_admin_0869.html#ids_admin_0869
../admin%20/ids_admin_0869.html#ids_admin_0869
../sec/ids_au_109.html#ids_au_109
../sec/ids_au_109.html#ids_au_109
../sec/ids_au_109.html#ids_au_109
../sec/ids_au_109.html#ids_au_109
../sec/ids_au_110.html#ids_au_110
../sec/ids_au_110.html#ids_au_110
../sec/ids_au_110.html#ids_au_110
../sec/ids_au_110.html#ids_au_110
../sec/ids_sec_019.html#ids_sec_019
../sec/ids_sec_019.html#ids_sec_019
../sec/ids_sec_019.html#ids_sec_019
../sec/ids_sec_019.html#ids_sec_019


Chapter 1. Performance Guide

The database server automatically tunes LRU flushing when the AUTO_LRU_TUNING configuration parameter is on and in the 

following cases:

• A page replacement is forced to perform a foreground write in order to find an empty page. In this case, LRU flushing 

is adjusted to be 5 percent more aggressive for the specific bufferpool where the foreground write took place.

• A page replacement is forced to use a buffer that is marked as high priority, meaning it is frequently accessed. In 

this case, LRU flushing is adjusted to be one (1) percent more aggressive for the specific bufferpool where the page 

replacement using high priority buffer took place.

• If the RTO_SERVER_RESTART configuration parameter is on and the time it takes to flush the bufferpool is longer 

than the recovery time objective, LRU flushing is adjusted to be 10 percent more aggressive for all bufferpools.

After a checkpoint has occurred, if a page replacement performed a foreground write during the previous checkpoint 

interval, the database server increases the LRU settings by 5 percent and continues to increase the LRU flushing at each 

subsequent checkpoint until the foreground write stops or until the lru_max_dirty  for a given buffer pool falls below 10 

percent. For example, if a page replacement performs a foreground write and the LRU settings for a buffer pool are 80  and 90, 

the database server adjusts these to 76  and 85.5.

In addition to foreground writes, LRU flushing is tuned more aggressively whenever a page fault replaces high priority buffers 

and non-high priority buffers are on the modified LRU queue. Automatic LRU adjustments only make LRU flushing more 

aggressive; they do not decrease LRU flushing. Automatic LRU adjustments are not permanent and are not recorded in the 

ONCONFIG file.

LRU flushing is reset to the values contained in the ONCONFIG file on which the database server starts.

The AUTO_LRU_TUNING configuration parameter specifies whether automatic LRU tuning is enabled or disabled when the 

server starts.

Related information

Automatic checkpoints, LRU tuning, and AIO virtual processor tuning  on page 138

AUTO_LRU_TUNING configuration parameter  on page 

RTO_SERVER_RESTART configuration parameter  on page 

Table performance considerations
Some performance issues are associated with unfragmented tables and table fragments.

Issues include:

• Table placement on disk to increase throughput and reduce contention

• Space estimates for tables, blobpages, sbspaces, and extents

• Changes to tables that add or delete historical data

• Denormalization of the database to reduce overhead

157

../%20adr/ids_adr_0025.html#ids_adr_0025
../%20adr/ids_adr_0025.html#ids_adr_0025
../%20adr/ids_adr_0025.html#ids_adr_0025
../%20adr/ids_adr_0025.html#ids_adr_0025
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146
../%20adr/ids_adr_0146.html#ids_adr_0146


HCL Informix 14.10 - Performance Guide

158

Placing tables on disk
Tables that the database server supports reside on one or more portions of one or more disks. You control the placement of 

a table on disk when you create it by assigning it to a dbspace.

Tables that the database server supports reside on one or more portions of a disk or disks. You control the placement of 

a table on disk when you create it by assigning it to a dbspace. A dbspace consists of one or more chunks. Each chunk 

corresponds to all or part of a disk partition. When you assign chunks to dbspaces, you make the disk space in those chunks 

available for storing tables or table fragments.

When you configure chunks and allocate them to dbspaces, you must relate the size of the dbspaces to the tables or 

fragments that each dbspace is to contain. To estimate the size of a table, follow the instructions in Estimating table size  on 

page 162.

The database administrator (DBA) who is responsible for creating a table assigns that table to a dbspace in one of the 

following ways:

• By using the IN DBSPACE clause of the CREATE TABLE statement

• By using the dbspace of the current database

The most recent DATABASE or CONNECT statement that the DBA issues before issuing the CREATE TABLE 

statement sets the current database.

The DBA can fragment a table across multiple dbspaces, as described in Planning a fragmentation strategy  on page 265, 

or use the ALTER FRAGMENT statement to move a table to another dbspace. The ALTER FRAGMENT statement provides the 

simplest method for altering the placement of a table. However, the table is unavailable while the database server processes 

the alteration. Schedule the movement of a table or fragment at a time that affects the fewest users.

Other methods exist for moving tables between dbspaces:

• You can unload the data from a table and then move that data to another dbspace with the SQL statements LOAD 

and UNLOAD, the onload  and onunload  utilities or the High-Performance Loader (HPL).

• You can load data into and unload data from external tables.

Moving tables between databases with LOAD and UNLOAD, onload  and onunload, or HPL involves periods in which data from 

the table is copied to tape and then reloaded onto the system.  These periods present windows of vulnerability during which 

a table can become inconsistent with the rest of the database. To prevent the table from becoming inconsistent, you must 

restrict access to the version that remains on disk while the data transfers occur.

Depending on the size, fragmentation strategy, and indexes that are associated with a table, it can be faster to unload a table 

and reload it than to alter fragmentation. For other tables, it can be faster to alter fragmentation. You can experiment to 

determine which method is faster for a table that you want to move or re-partition.



Chapter 1. Performance Guide

Related information

ALTER FRAGMENT statement  on page 

LOAD statement  on page 

UNLOAD statement  on page 

The onunload and onload utilities  on page 

Moving data with external tables  on page 

CREATE EXTERNAL TABLE Statement  on page 

Isolating high-use tables
You can place a table with high I/O activity on a dedicated disk device. Doing this reduces contention for the data that is 

stored in that table.

When disk drives have different performance levels, you can put the tables with the highest use on the fastest drives. Placing 

two high-use tables on separate disk devices reduces competition for disk access when the two tables experience frequent, 

simultaneous I/O from multiple applications or when joins are formed between them.

To isolate a high-use table on its own disk device, assign the device to a chunk, assign that chunk to a dbspace, and then 

place the table in the dbspace that you created. Figure 16: Isolating high-use tables  on page 159 shows three high-use 

tables, each in a separate dbspace, placed on three disks.

Figure  16. Isolating high-use tables

Placing high-use tables on middle partitions of disks
To minimize disk-head movement, place the most frequently accessed data on partitions close to the middle band of the 

disk (not near the center and not near the edge). This approach minimizes disk-head movement to reach data in the high-

demand table.

The following figure shows the placement of the most frequently accessed data on partitions close to the middle band of the 

disk.

159

../sqs/ids_sqs_0236.html#ids_sqs_0236
../sqs/ids_sqs_0236.html#ids_sqs_0236
../sqs/ids_sqs_0236.html#ids_sqs_0236
../sqs/ids_sqs_0236.html#ids_sqs_0236
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../mig/ids_mig_191.html#ids_mig_191
../mig/ids_mig_191.html#ids_mig_191
../mig/ids_mig_191.html#ids_mig_191
../mig/ids_mig_191.html#ids_mig_191
../admin%20/ids_admin_1332.html#ids_admin_1332.dita
../admin%20/ids_admin_1332.html#ids_admin_1332.dita
../admin%20/ids_admin_1332.html#ids_admin_1332.dita
../admin%20/ids_admin_1332.html#ids_admin_1332.dita
../sqs/ids_sqs_2053.html#ids_sqs_2053
../sqs/ids_sqs_2053.html#ids_sqs_2053
../sqs/ids_sqs_2053.html#ids_sqs_2053
../sqs/ids_sqs_2053.html#ids_sqs_2053


HCL Informix 14.10 - Performance Guide

160

Figure  17. Disk platter with high-use table located on middle Partitions

To place high-use tables on the middle partition of the disk, create a raw device composed of cylinders that reside midway 

between the spindle and the outer edge of the disk. (For instructions on how to create a raw device, see the HCL®  Informix® 

Administrator's Guide  for your operating system.) Allocate a chunk, associating it with this raw device, as your HCL® 

Informix®  Administrator's Reference  describes. Then create a dbspace with this same chunk as the initial and only chunk. 

When you create a high-use table, place the table in this dbspace.

Using multiple disks
You can use multiple disks for dbspaces, logical logs, temporary tables, and sort files.

Using multiple disks for a dbspace
Using multiple disks for a dbspace helps to distribute I/O across dbspaces that contain several small tables.

A dbspace can include multiple chunks, and each chunk can represent a different disk. The maximum size for a chunk is 4 

terabytes. This arrangement allows you to distribute data in a dbspace over multiple disks. Figure 18: A dbspace distributed 

over three disks  on page 160 shows a dbspace distributed over three disks.

Figure  18. A dbspace distributed over three disks

Because you cannot use this type of distributed dbspace for parallel database queries (PDQ), you should use the table-

fragmentation techniques described in Distribution schemes  on page 270 to partition large, high-use tables across multiple 

dbspaces.

Using multiple disks for logical logs
You can distribute logical logs in different dbspaces on multiple disks in round-robin fashion to improve logical backup 

performance. This scheme allows the database server to back up logs on one disk, while performing logging operations on 

the other disks.



Chapter 1. Performance Guide

Keep your logical logs and the physical log on separate devices to improve performance by decreasing I/O contention on 

a single device. The logical and physical logs are created in the root dbspace when the database server is initialized. After 

initialization, you can move them to other dbspaces.

Spreading temporary tables and sort files across multiple disks
You can spread the I/O associated with temporary tables and sort files across multiple disks, after defining dbspaces for 

temporary tables and sort files. This can improve performance for applications that require a large amount of temporary 

space for temporary tables or large sort operations.

To define several dbspaces for temporary tables and sort files, use onspaces -t. When you place these dbspaces on different 

disks and list them in the DBSPACETEMP configuration parameter, you spread the I/O associated with temporary tables and 

sort files across multiple disks, as Figure 19: Dbspaces for temporary tables and sort files  on page 161 illustrates. You can 

list dbspaces that contain regular tables in DBSPACETEMP.

Figure  19. Dbspaces for temporary tables and sort files

Users can specify their own lists of dbspaces for temporary tables and sort files with the DBSPACETEMP  environment 

variable. For details, see Configure dbspaces for temporary tables and sort files  on page 115.

Backup and restore considerations when placing tables on disks
When you decide where to place your tables or fragments, remember that if a device that contains a dbspace fails, all tables 

or table fragments in that dbspace are rendered inaccessible, even though tables and fragments in other dbspaces are 

accessible. The need to limit data unavailability in the event of a disk failure might influence which tables you group together 

in a particular dbspace.

Although you must perform a cold restore if a dbspace that contains critical data fails, you need only perform a warm restore 

if a noncritical dbspace fails. The desire to minimize the impact of cold restores might influence the dbspace that you use to 

store critical data.

Factors affecting the performance of nonfragmented tables and table fragments
Numerous factors affect the performance of an individual table or table fragment. These include the placement of the table 

or fragment, the size of the table or fragment, the indexing strategy that was used, the size and placement of table extents 

with respect to one another, and the frequency of access to the table.

161



HCL Informix 14.10 - Performance Guide

162

Estimating table size
You can calculate the approximate sizes (in disk pages) of tables.

For a description of size calculations for indexes, see Estimating index pages  on page 213.

The disk pages allocated to a table are collectively referred to as a tblspace. The tblspace includes data pages. A separate 

tblspace includes index pages. If simple large objects (TEXT or BYTE data) are associated with a table that is not stored in 

an alternative dbspace, pages that hold simple large objects are also included in the tblspace.

The tblspace does not correspond to any fixed region within a dbspace. The data extents and indexes that make up a table 

can be scattered throughout the dbspace.

The size of a table includes all the pages within the tblspace: data pages and pages that store simple large objects. 

Blobpages that are stored in a separate blobspace are not included in the tblspace and are not counted as part of the table 

size.

The size of a table includes all the pages within the tblspace: data pages and pages that store simple large objects. 

Blobpages that are stored in a separate blobspace or on an optical subsystem are not included in the tblspace and are not 

counted as part of the table size.

The following sections describe how to estimate the page count for each type of page within the tblspace.

Tip:  If an appropriate sample table exists, or if you can build a sample table of realistic size with simulated data, you 

do not need to make estimates. You can run oncheck -pt  to obtain exact numbers.

Estimating data pages
How you estimate the data pages of a table depends on whether that table contains fixed-length or variable-length rows.

Estimating tables with fixed-length rows
You can estimate the size (in pages) of a table with fixed-length rows. A table with fixed-length rows has no columns of the 

VARCHAR or NVARCHAR data type.

About this task

Perform the following steps to estimate the size (in pages) of a table with fixed-length rows.

To estimate the page size, row size, number of rows, and number of data pages:

1. Use onstat -b to obtain the size of a page.

The buffer size  field in the last line of this output displays the page size.

2. Subtract 28 from this amount to account for the header that appears on each data page.

The resulting amount is referred to as pageuse.



Chapter 1. Performance Guide

3. To calculate the size of a row, add the widths of all the columns in the table definition. TEXT and BYTE columns each 

use 56 bytes.

If you have already created your table, you can use the following SQL  statement to obtain the size of a row:
SELECT statementsrow sizeStructured Query LanguageSELECT statementsrow sizeSELECT rowsize FROM systables WHERE tabname =
   'table-name';

4. Estimate the number of rows that the table is expected to contain. 

This number is referred to as rows. The procedure for calculating the number of data pages that a table requires 

differs depending on whether the row size is less than or greater than pageuse.

5. If the size of the row is less than or equal to pageuse, use the following formula to calculate the number of data 

pages.

The trunc()  function notation indicates that you are to round down to the nearest integer.

data_pages = rows / trunc(pageuse/(rowsize  + 4))

The maximum number of rows per page is 255, regardless of the size of the row.

Important:  Although the maximum size of a row that the database server accepts is approximately 32 

kilobytes, performance degrades when a row exceeds the size of a page. For information about breaking 

up wide tables for improved performance, see Denormalize the data model to improve performance  on 

page 204.

6. If the size of the row is greater than pageuse, the database server divides the row between pages.

The page that contains the initial portion of a row is called the home page. Pages that contains subsequent 

portions of a row are called remainder pages. If a row spans more than two pages, some of the remainder pages are 

completely filled with data from that row. When the trailing portion of a row uses less than a page, it can be combined 

with the trailing portions of other rows to fill out the partial remainder page. The number of data pages is the sum of 

the home pages, the full remainder pages, and the partial remainder pages.

a. Calculate the number of home pages.

The number of home pages is the same as the number of rows:

homepages = rows

b. Calculate the number of full remainder pages.

First calculate the size of the row remainder with the following formula:

remsize = rowsize  - (pageuse  + 8)

If remsize  is less than pageuse  - 4, you have no full remainder pages.

If remsize  is greater than pageuse  - 4, use remsize  in the following formula to obtain the number of full 

remainder pages:

fullrempages = rows  * trunc(remsize/(pageuse  - 8))

c. Calculate the number of partial remainder pages.

163



HCL Informix 14.10 - Performance Guide

164

First calculate the size of a partial row remainder left after you have accounted for the home and full 

remainder pages for an individual row. In the following formula, the remainder()  function notation indicates 

that you are to take the remainder after division:

partremsize = remainder(rowsize/(pageuse  - 8)) + 4

The database server uses certain size thresholds with respect to the page size to determine how many partial 

remainder pages to use. Use the following formula to calculate the ratio of the partial remainder to the page:

partratio = partremsize/pageuse 

Use the appropriate formula in the following table to calculate the number of partial remainder pages.

partratio  Value Formula to Calculate the Number of Partial Remainder Pages

Less than .1 partrempages = rows/(trunc((pageuse/10)/remsize) + 1)

Less than .33 partrempages = rows/(trunc((pageuse/3)/remsize) + 1)

.33 or larger partrempages = rows

d. Add up the total number of pages with the following formula:

tablesize = homepages  + fullrempages  + partrempages

Estimating tables with variable-length rows
You can estimate the size of a table with variable-length rows with columns of the VARCHAR or NVARCHAR data type.

About this task

When a table contains one or more VARCHAR or NVARCHAR columns, its rows can have varying lengths. These varying 

lengths introduce uncertainty into the calculations. You must form an estimate of the typical size of each VARCHAR column, 

based on your understanding of the data, and use that value when you make the estimates.

Important:  When the database server allocates space to rows of varying size, it considers a page to be full when no 

room exists for an additional row of the maximum size.

To estimate the size of a table with variable-length rows, you must make the following estimates and choose a value 

between them, based on your understanding of the data:

• The maximum size of the table, which you calculate based on the maximum width allowed for all VARCHAR or 

NVARCHAR columns

• The projected size of the table, which you calculate based on a typical width for each VARCHAR or NVARCHAR 

column

To estimate the maximum number of data pages:



Chapter 1. Performance Guide

1. To calculate rowsize, add together the maximum values for all column widths.

2. Use this value for rowsize  and perform the calculations described in Estimating tables with fixed-length rows  on 

page 162. The resulting value is called maxsize.

Results

To estimate the projected number of data pages:

1. To calculate rowsize, add together typical values for each of your variable-width columns. It is suggested that you use 

the most frequently occurring width within a column as the typical width for that column. If you do not have access to 

the data or do not want to tabulate widths, you might choose to use some fractional portion of the maximum width, 

such as 2/3 (.67).

2. Use this value for rowsize  and perform the calculations described in Estimating tables with fixed-length rows  on 

page 162. The resulting value is called projsize.

Selecting an intermediate value for the size of the table
The actual table size should fall somewhere between the projected number of data pages (projsize) and the maximum 

number of data pages (maxsize).

Based on your knowledge of the data, choose a value within that range that seems most reasonable to you. The less familiar 

you are with the data, the more conservative (higher) your estimate should be.

Estimating pages that simple large objects occupy
You can estimate the total number of pages for all simple large objects, or you can estimate the number of pages based on 

the median size of the simple large objects.

About this task

The blobpages can reside in either the dbspace where the table resides or in a blobspace. For more information about when 

to use a blobspace, see Storing simple large objects in the tblspace or a separate blobspace  on page 166.

The following methods for estimating blobpages yield a conservative (high) estimate because a single TEXT or BYTE column 

does not necessarily occupy the entire blobpage within a tblspace. In other words, a blobpage in a tblspace can contain 

multiple TEXT or BYTE columns.

To estimate the number of blobpages:

1. Obtain the page size with onstat -b.

2. Calculate the usable portion of the blobpage with the following formula:

bpuse = pagesize  - 32

3. For each byte of blobsize n, calculate the number of pages that the byte occupies (bpages_n) with the following 

formula:

bpages1 = ceiling(bytesize1/bpuse)
bpages2 = ceiling(bytesize2/bpuse)

165



HCL Informix 14.10 - Performance Guide

166

...
bpages_n  = ceiling(bytesize_n/bpuse)

The ceiling()  function indicates that you should round up to the nearest integer value.

4. Add up the total number of pages for all simple large objects, as follows:

blobpages = bpages1 + bpages2 + ... + bpagesn 

Results

Alternatively, you can base your estimate on the median size of simple large objects (TEXT or BYTE data); that is, the simple-

large-object data size that occurs most frequently. This method is less precise, but it is easier to calculate.

To estimate the number of blobpages based on the median size of simple large objects:

1. Calculate the number of pages required for simple large objects of median size, as follows:

mpages = ceiling(mblobsize/bpuse)

2. Multiply this amount by the total number of simple large objects, as follows:

blobpages = blobcount  * mpages 

Storing simple large objects in the tblspace or a separate blobspace
When you create a simple-large-object column on magnetic disk, you have the option of storing the column data in the 

tblspace or in a separate blobspace. You can often improve performance by storing simple-large-object data in a separate 

blobspace, and by storing smart large objects and user-defined data in sbspaces.

You can also store simple large objects on optical media, but this discussion does not apply to simple large objects stored in 

this way.

In the following example, a TEXT value is stored in the tblspace, and a BYTE value is stored in a blobspace named rasters:

CREATE TABLE examptab
   (
   pic_id SERIAL,
   pic_desc TEXT IN TABLE,
   pic_raster BYTE IN rasters
   )

For information about storing simple-large-object data in a separate blobspace, see Estimating pages that simple large 

objects occupy  on page 165.

A TEXT or BYTE value is always stored apart from the rows of the table; only a 56-byte descriptor is stored with the row. 

However, a simple large object occupies at least one disk page. The simple large object to which the descriptor points can 

reside in the same set of extents on disk as the table rows (in the same tblspace) or in a separate blobspace.

When simple large objects are stored in the tblspace, the pages of their data are interspersed among the pages that contain 

rows, which can greatly increase the size of the table. When the database server reads only the rows and not the simple large 

objects, the disk arm must move farther than when the blobpages are stored apart. The database server scans only the row 

pages in the following situations:



Chapter 1. Performance Guide

• When it performs any SELECT operation that does not retrieve a simple-large-object column

• When it uses a filter expression to test rows

Another consideration is that disk I/O to and from a dbspace is buffered in shared memory of the database server. Pages 

are stored in case they are needed again soon, and when pages are written, the requesting program can continue before 

the actual disk write takes place. However, because blobspace data is expected to be voluminous, disk I/O to and from 

blobspaces is not buffered, and the requesting program is not allowed to proceed until all output has been written to the 

blobspace.

For best performance, store a simple-large-object column in a blobspace in either of the following circumstances:

• When single data items are larger than one or two pages each

• When the number of pages of TEXT or BYTE data is more than half the number of pages of row data

Estimating tblspace pages for simple large objects
In your estimate of the space required for a table, include blobpages for any simple large objects that are to be stored in that 

tblspace. For a table that is both relatively small and nonvolatile, you can achieve the effect of a dedicated blobspace by 

separating row pages and blobpages.

About this task

To separate row pages from blobpages within a dbspace:

1. Load the entire table with rows in which the simple-large-object columns are null.

2. Create all indexes.

The row pages and the index pages are now contiguous.

3. Update all the rows to install the simple large objects.

The blobpages now appear after the pages of row and index data within the tblspace.

Managing the size of first and next extents for the tblspace tblspace
The tblspace tblspace  is a collection of pages that describe the location and structure of all tblspaces in a dbspace. 

Each dbspace has one tblspace tblspace. When you create a dbspace, you can use the TBLTBLFIRST and TBLTBLNEXT 

configuration parameters to specify the first and next extent sizes for the tblspace tblspace  in a root dbspace.

You can use the onspaces  utility to specify the initial and next extent sizes for the tblspace tblspace  in non-root dbspaces.

Specify the initial and next extent sizes if you want to reduce the number of tblspace tblspace  extents and reduce the 

frequency of situations when you need to place the tblspace tblspace  extents in non-primary chunks.

The ability to specify a first extent size that is larger than the default provides flexibility for managing space. When you create 

an extent, you can reserve space during creation of the dbspace, thereby decreasing the risk of needing additional extents 

created in chunks that are not initial chunks.

167



HCL Informix 14.10 - Performance Guide

168

You can only specify the first and next extent sizes when you create a dbspace. You cannot alter the specification of the first 

and next extents sizes after the creation of the dbspace. In addition, you cannot specify extent sizes for temporary dbspaces, 

sbspaces, blobspaces, or external spaces.

If you do not specify first and next extent sizes for the tblspace tblspace, Informix®  uses the existing default extent sizes.

Related information

TBLTBLFIRST configuration parameter  on page 

TBLTBLNEXT configuration parameter  on page 

Specifying the first and next extent sizes for the tblspace tblspace  on page 

Managing sbspaces
An sbspace  is a logical storage unit composed of one or more chunks that store smart large objects. You can estimate 

the amount of storage needed for smart large objects, improve metadata I/O, monitor sbspaces, and change storage 

characteristics.

Estimating pages that smart large objects occupy
In your estimate of the space required for a table, you should also consider the amount of sbspace storage for any smart 

large objects (such as CLOB, BLOB, or multi-representative data types) that are part of the table. An sbspace contains user-

data areas and metadata areas.

About this task

CLOB and BLOB data is stored in sbpages that reside in the user-data area. The metadata area contains the smart-large-

object attributes, such as average size and whether or not the smart large object is logged. For more information about 

sbspaces, see your HCL®  Informix®  Administrator's Guide.

Estimating the size of the sbspace and metadata area
The first chunk of an sbspace must have a metadata area. When you add smart large objects, the database server adds 

more control information to this metadata area.

If you add a chunk to the sbspace after the initial allocation, you can take one of the following actions for metadata space:

• Allocate another metadata area on the new chunk by default.

This action provides the following advantages:

◦ It is easier because the database server automatically calculates and allocates a new metadata area on the 

added chunk based on the average smart large object size

◦ Distributes I/O operations on the metadata area across multiple disks

../%20adr/ids_adr_0181.html#ids_adr_0181
../%20adr/ids_adr_0181.html#ids_adr_0181
../%20adr/ids_adr_0181.html#ids_adr_0181
../%20adr/ids_adr_0181.html#ids_adr_0181
../%20adr/ids_adr_0182.html#ids_adr_0182
../%20adr/ids_adr_0182.html#ids_adr_0182
../%20adr/ids_adr_0182.html#ids_adr_0182
../%20adr/ids_adr_0182.html#ids_adr_0182
../admin%20/ids_admin_0563.html#ids_admin_0563
../admin%20/ids_admin_0563.html#ids_admin_0563
../admin%20/ids_admin_0563.html#ids_admin_0563
../admin%20/ids_admin_0563.html#ids_admin_0563


Chapter 1. Performance Guide

• Use the existing metadata area

If you specify the onspaces -U  option, the database server does not allocate metadata space in the new chunk. 

Instead it must use a metadata area in one of the other chunks.

In addition, the database server reserves 40 percent of the user area to be used in case the metadata area runs out of space. 

Therefore, if the allocated metadata becomes full, the database server starts using this reserved space in the user area for 

additional control information.

You can let the database server calculate the size of the metadata area for you on the initial chunk and on each added 

chunks. However, you might want to specify the size of the metadata area explicitly, to ensure that the sbspace does not run 

out of metadata space and the 40 percent reserve area. You can use one of the following methods to explicitly specify the 

amount of metadata space to allocate:

• Specify the AVG_LO_SIZE tag on the onspaces -Df  option.

The database server uses this value to calculate the size of the metadata area to allocate when the -Ms  option is not 

specified. If you do not specify AVG_LO_SIZE, the database server uses the default value of 8 kilobytes to calculate 

the size of the metadata area.

• Specify the metadata area size in the -Ms  option of the onspaces  utility.

Use the procedure that Sizing the metadata area manually for a new chunk  on page 169 describes to estimate a 

value to specify in the onspaces -Ms  option.

Sizing the metadata area manually for a new chunk
Each chunk can contain metadata, but the sum total must accommodate enough room for all LO headers (average length 

570 bytes each) and the chunk free list (which lists all the free extents in the chunk).

The following procedure assumes that you know the sbspace size and need to allocate more metadata space.

To size the metadata area manually for a new chunk:

1. Use the onstat -d  option to obtain the size of the current metadata area from the Metadata size  field.

2. Estimate the number of smart large objects that you expect to reside in the sbspace and their average size.

3. Use the following formula to calculate the total size of the metadata area:

Total metadata kilobytes = (LOcount*570)/1024 +
                           (numchunks*800) + 100 

LOcount

is the number of smart large objects that you expect to have in all sbspace chunks, including the new 

one.

numchunks

is the total number of chunks in the sbspace.

169



HCL Informix 14.10 - Performance Guide

170

4. To obtain the additional required area for metadata, subtract the current metadata size that you obtained in step 1 

from the value that you obtained in step 3.

5. When you add another chunk, specify in the -Ms  option of the onspaces -a  command the value that you obtained in 

step 4.

Example of calculating the metadata area for a new chunk
This topic contains an example showing how to estimate the metadata size required for two sbspaces chunks.

About this task

Suppose the Metadata size  field in the onstat -d  option shows that the current metadata area is 1000 pages. If the system 

page size is 2048 bytes, the size of this metadata area is 2000 kilobytes, as the following calculation shows:

current metadata = (metadata_size * pagesize) / 1024
                 = (1000 * 2048) / 1024
               = 2000 kilobytes

Suppose you expect 31,000 smart large objects in the two sbspace chunks. The following formula calculates the total size of 

metadata area required for both chunks, rounding up fractions:

Total metadata = (LOcount*570)/1024 + (numchunks*800) + 100
               = (31,000 * 570)/1024 + (2*800) + 100
               = 17256 + 1600 + 100
             = 18956 kilobytes 

To obtain the additional area that is required for metadata:

1. Subtract the current metadata size from the total metadata value.

Additional metadata = Total metadata - current metadata
                     = 18956 - 2000
                   = 16956 kilobytes

2. When you add the chunk to the sbspace, use the -Ms  option of the onspaces -a command to specify a metadata area 

of 16,956 kilobytes.

% onspaces -a sbchk2 -p /dev/raw_dev1 -o 200 -Ms 16956

Improving metadata I/O for smart large objects
The metadata pages in an sbspace contain information about the location of the smart large objects in the sbspace. 

Typically, these pages are read intensive. You can improve metadata I/O by redistributing it.

You can distribute I/O to these pages in one of the following ways:

• Mirror the chunks that contain metadata.

For more information about the implications of mirroring, see Consider mirroring for critical data components  on 

page 112.

• Position the metadata pages on the fastest portion of the disk.



Chapter 1. Performance Guide

Because the metadata pages are the most read-intensive part of an sbspace, place the metadata pages toward the 

middle of the disk to minimize disk seek time. To position metadata pages, use the -Mo  option when you create the 

sbspace or add a chunk with the onspaces  utility.

• Spread metadata pages across disks.

To spread metadata pages across disks, create multiple chunks in an sbspace, with each chunk residing on a 

separate disk. When you add a chunk to the sbspace with the onspaces  utility, specify the  -Ms option to allocate 

pages for the metadata information.

Although the database server attempts to keep the metadata information with its corresponding data in the same 

chunk, it cannot guarantee that they will be together.

• Decrease the number of extents each smart large object occupies.

When a smart large object spans multiple extents, the metadata area contains a separate descriptor for each extent. 

To decrease the number of descriptor entries that must be read for each smart large object, specify the expected 

final size of the smart large object when you create the smart large object.

The database server allocates the smart large object as a single extent (if it has contiguous storage in the chunk) 

when you specify the final size in either of the following functions:

◦ The DataBlade®  API  mi_lo_specset_estbytes  function

◦ The Informix®  ESQL/C  ifx_lo_specset_estbytes  function

For more information about the functions to open a smart large object and to set the estimated number of bytes, see 

the HCL®  Informix®  Enterprise Replication Guide  and HCL®  Informix®  DataBlade®  API Programmer's Guide.

For more information about sizing extents, see Sbspace extents  on page 129.

Important:  For highest data availability, mirror all sbspace chunks that contain metadata.

Monitoring sbspaces
You can monitor the effectiveness of I/O operations on smart large objects. For better I/O performance, all smart large 

objects should be allocated in one extent to be contiguous.

For more information about sizing extents, see Sbspace extents  on page 129.

Contiguity provides the following I/O performance benefits:

• Minimizes the disk-arm motion

• Requires fewer I/O operations to read the smart large object

• When doing large sequential reads, can take advantage of lightweight I/O, which reads in larger blocks of data (60 

kilobytes or more, depending on your platform) in a single I/O operation

You can use the following command-line utilities to monitor the effectiveness of I/O operations on smart large objects:

171



HCL Informix 14.10 - Performance Guide

172

• oncheck -cS, -pe  and -pS

• onstat -g smb s  option

The following sections describe how to use these utility options to monitor sbspaces.

Monitoring sbspaces with oncheck -cS
The oncheck  -cS  option checks smart-large-object extents and the sbspace partitions in the user-data area.

Figure 20: oncheck -cS output  on page 172 shows an example of the output from the -cS  option for s9_sbspc.

The values in the Sbs#, Chk#, and Seq#  columns correspond to the Space Chunk Page  value in the -pS  output. The Bytes 

and Pages  columns display the size of each smart large object in bytes and pages.

To calculate the average size of smart large objects, you can total the numbers in the Size (Bytes) column and then divide by 

the number of smart large objects. In Figure 20: oncheck -cS output  on page 172, the average number of bytes allocated is 

2690, as the following calculation shows:

Average size in bytes = (15736 + 98 + 97 + 62 + 87 + 56) / 6
                    = 16136 / 6
                    = 2689.3

For information about how to specify smart large object sizes to influence extent sizes, see Sbspace extents  on page 129.

Figure  20. oncheck -cS output

Validating space 's9_sbspc' ...
 

Large Objects
  ID               Ref Size       Allocced       Creat   Last
  Sbs# Chk#  Seq#  Cnt    (Bytes)    Pages Extns Flags   Modified
  ---- ---- ----- ---- ---------- -------- ----- ----- ------------------------
     2    2     1    1      15736        8     1 N-N-H Thu Jun 21 16:59:12 2007
     2    2     2    1         98        1     1 N-K-H Thu Jun 21 16:59:12 2007
     2    2     3    1         97        1     1 N-K-H Thu Jun 21 16:59:12 2007
     2    2     4    1         62        1     1 N-K-H Thu Jun 21 16:59:12 2007
     2    2     5    1         87        1     1 N-K-H Thu Jun 21 16:59:12 2007
     2    2     6    1         56        1     1 N-K-H Thu Jun 21 16:59:12 2007

The Extns  field shows the minimum extent size, in number of pages, allocated to each smart large object.

Monitoring sbspaces with oncheck -pe
The oncheck -pe  option displays information that includes the size in pages of the chunk, the number of pages used, the 

number of pages that are free, and a list of all the tables in the chunk, with the initial page number and the length of the table 

in pages. This option also shows if smart large objects occupy contiguous space within an sbspace.

Execute oncheck -pe  to display the following information to determine if the smart large objects occupy contiguous space 

within an sbspace:



Chapter 1. Performance Guide

• Identifies each smart large object with the term SBLOBSpace LO

The three values in brackets following SBLOBSpace LO correspond to the Sbs#, Chk#, and Seq#  columns in the -cS 

output.

• Offset of each smart large object

• Number of disk pages (not  sbpages) used by each smart large object

Tip:  The oncheck -pe  option provides information about sbspace use in terms of database server pages, not 

sbpages.

Figure 21: oncheck -pe output that shows contiguous space use  on page 173 shows sample output. In this example, the 

size  field shows that the first smart large object occupies eight pages. Because the offset  field shows that the first smart 

large object starts at page 53 and the second smart large object starts at page 61, the first smart large object occupies 

contiguous pages.

Figure  21. oncheck -pe output that shows contiguous space use

Chunk Pathname                                      Size      Used      Free
                                                    1000       940        60
 

    Description                                          Offset     Size
    -------------------------------------------------- -------- --------
    RESERVED PAGES                                            0        2
    CHUNK FREELIST PAGE                                       2        1
    s9_sbspc:'informix'.TBLSpace                              3       50
    SBLOBSpace LO [2,2,1]                                    53        8
    SBLOBSpace LO [2,2,2]                                    61        1
    SBLOBSpace LO [2,2,3]                                    62        1
    SBLOBSpace LO [2,2,4]                                    63        1
    SBLOBSpace LO [2,2,5]                                    64        1
    SBLOBSpace LO [2,2,6]                                    65        1
...

Monitoring sbspaces with oncheck -pS
The oncheck  -pS  option displays information about smart-large-object extents and metadata areas in sbspace partitions. If 

you do not specify an sbspace name on the command line, oncheck  checks and displays the metadata for all sbspaces.

Figure 22: oncheck -pS output  on page 174 shows an example of the -pS  output for s9_sbspc.

To display information about smart large objects, execute the following command:

oncheck -pS spacename

The oncheck -pS  output displays the following information for each smart large object in the sbspace:

• Space chunk page

• Size in bytes of each smart large object

• Object ID that DataBlade®  API  and Informix®  ESQL/C  functions use

• Storage characteristics of each smart large object

173



HCL Informix 14.10 - Performance Guide

174

When you use onspaces -c -S to create an sbspace, you can use the -Df option to specify various storage characteristics for 

the smart large objects. You can use onspaces -ch to change attributes after the sbspace is created. The Create Flags  field 

in the oncheck -pS  output displays these storage characteristics and other attributes of each smart large object. In Figure 

22: oncheck -pS output  on page 174, the Create Flags  field shows LO_LOG because the LOGGING tag was set to ON in the 

-Df option.

Figure  22. oncheck -pS output

Space Chunk Page = [2,2,2] Object ID = 987122917
  LO SW Version             4
  LO Object Version         1
  Created by Txid           7
  Flags               0x31 LO_LOG LO_NOKEEP_LASTACCESS_TIME LO_HIGH_INTEG
  Data Type                 0
  Extent Size               -1
  IO Size                   0
  Created                   Thu Apr 12 17:48:35 2007
  Last Time Modified        Thu Apr 12 17:48:43 2007
  Last Time Accessed        Thu Apr 12 17:48:43 2007
  Last Time Attributes Modified Thu Apr 12 17:48:43 2007
  Ref Count                 1
  Create Flags        0x31 LO_LOG LO_NOKEEP_LASTACCESS_TIME LO_HIGH_INTEG
  Status Flags              0x0 LO_FROM_SERVER
  Size (Bytes)              2048
  Size Limit                -1
  Total Estimated Size      -1
  Deleting TxId             -1
  LO Map Size               200
  LO Map Last Row           -1
  LO Map Extents            2
  LO Map User Pages         2 

Monitoring sbspaces with onstat -g smb
The onstat -g smb s  option displays sbspace attributes.

Use the onstat -g smb s option to display the following characteristics that affect the I/O performance of each sbspace:

• Logging status

If applications are updating temporary smart large objects, logging is not required. You can turn off logging to reduce 

the amount of I/O activity to the logical log, CPU utilization, and memory resources.

• Average smart-large-object size

Average size and extent size should be similar to reduce the number of I/O operations required to read in an entire 

smart large object. The avg s/kb  output field shows the average smart-large-object size in kilobytes. In Figure 23: 

onstat -g smb s output  on page 175, the avg s/kb  output field shows the value 30  kilobytes.

Specify the final size of the smart large object in either of the following functions to allocate the object as a single 

extent:



Chapter 1. Performance Guide

◦ The DataBlade®  API  mi_lo_specset_estbytes  function

◦ The Informix®  ESQL/C  ifx_lo_specset_estbytes  function

For more information about the functions to open a smart large object and to set the estimated number of bytes, see 

the HCL®  Informix®  Enterprise Replication Guide  and HCL®  Informix®  DataBlade®  API Programmer's Guide.

• First extent size, next extent size, and minimum extent size

The 1st sz/p, nxt sz/p, and min sz/p output fields show these extent sizes if you set the extent tags in the -Df  option 

of onspaces. In Figure 23: onstat -g smb s output  on page 175, these output fields show values of 0  and -1 

because these tags are not set in onspaces.

Figure  23. onstat -g smb s output

sbnum 7    address 2afae48
  Space    : flags    nchk owner    sbname
             -------- 1    informix client
  Defaults : LO_LOG LO_KEEP_LASTACCESS_TIME
 

  LO     : ud b/pg flags   flags    avg s/kb max lcks
           2048    0       -------- 30       -1
  Ext/IO : 1st sz/p nxt sz/p min sz/p mx io sz
           4        0        0        -1
 

  HdrCache : max   free
             512   0 

Changing storage characteristics of smart large objects
When you create an sbspace, but do not specify values in the -Df  option of the onspaces -c -S command, you use the 

defaults for the storage characteristics and attributes (such as logging and buffering). After you monitor sbspaces, you 

might want to change the storage characteristics, logging status, lock mode, or other attributes for new smart large objects.

The database administrator or programmer can use the following methods to override these default values for storage 

characteristics and attributes:

• The database administrator can use one of the following onspaces  options:

◦ Specify values when the sbspace is first created with the onspaces -c -S command.

◦ Change values after the sbspace is created with the  onspaces -ch command.

Specify these values in the tag options of the -Df  option of onspaces. For more information about the onspaces 

utility, see the HCL®  Informix®  Administrator's Reference.

• The database administrator can specify values in the PUT clause of the CREATE TABLE or ALTER TABLE statements.

These values override the values in the onspaces  utility and are valid only for smart large objects that are stored in 

the associated column of the specific table. Other smart large objects (from columns in other tables) might also 

reside in this same sbspace. These other columns continue to use the storage characteristics and attributes of the 

175



HCL Informix 14.10 - Performance Guide

176

sbspace that onspaces  defined (or the default values, if onspaces  did not define them) unless these columns also 

used a PUT clause to override them for a particular column.

If you do not specify the storage characteristics for a smart-large-object column in the PUT clause, they are inherited 

from the sbspace.

If you do not specify the PUT clause when you create a table with smart-large-object columns, the database server 

stores the smart large objects in the system default sbspace, which is specified by the SBSPACENAME configuration 

parameter in the ONCONFIG file. In this case, the storage characteristics and attributes are inherited from the 

SBSPACENAME sbspace.

• Programmers can use functions in the DataBlade®  API  and Informix®  ESQL/C  to alter storage characteristics for a 

smart-large-object column.

For information about the DataBlade®  API  functions for smart large objects, see the HCL®  Informix®  DataBlade® 

API Programmer's Guide. For information about the Informix®  ESQL/C  functions for smart large objects, see the 

HCL®  Informix®  Enterprise Replication Guide.

Table 11: Altering storage characteristics and other attributes of an sbspace  on page 176 summarizes the ways to alter the 

storage characteristics for a smart large object.

Table  11. Altering storage characteristics and other attributes of an sbspace

Storage 

Character-is

tic or Attribute

System Default 

Value

System-Specified 

Storage 

Characteristics 

Specified 

by -Df Option in 

onspaces Utility

Column-Level Storage 

Characteristics 

Specified by PUT clause 

of CREATE TABLE or 

ALTER TABLE

Storage 

Characteris-tics 

Specified by a 

DataBlade®  API 

Function

Storage 

Characteris-tics 

Specified by an 

ESQL/C Function

Last-access 

time

OFF ACCESSTIME KEEP ACCESS TIME, NO 

KEEP ACCESS TIME

Yes Yes

Lock mode BLOB LOCK_MODE No Yes Yes

Logging status OFF LOGGING LOG, NO LOG Yes Yes

Data integrity HIGH INTEG No HIGH INTEG, MODERATE 

INTEG

Yes No

Size of extent None EXTENT_SIZE EXTENT SIZE Yes Yes

Size of next 

extent

None NEXT_SIZE No No No

Minimum 

extent size

2 kilobytes on 

Windows™  4 

kilobytes on 

UNIX™

MIN_EXT_SIZE No No No



Chapter 1. Performance Guide

Table  11. Altering storage characteristics and other attributes of an sbspace  (continued)

Storage 

Character-is

tic or Attribute

System Default 

Value

System-Specified 

Storage 

Characteristics 

Specified 

by -Df Option in 

onspaces Utility

Column-Level Storage 

Characteristics 

Specified by PUT clause 

of CREATE TABLE or 

ALTER TABLE

Storage 

Characteris-tics 

Specified by a 

DataBlade®  API 

Function

Storage 

Characteris-tics 

Specified by an 

ESQL/C Function

Size of smart 

large object

8 kilobytes Average size of 

all smart large 

objects in sbspace: 

AVG_LO_SIZE

No Estimated size 

of a particular 

smart large object 

Maximum size of 

a particular smart 

large object

Estimated size 

of a particular 

smart large 

object Maximum 

size of a 

particular smart 

large object

Buffer pool 

usage

ON BUFFERING No LO_BUFFER and 

LO_ NOBUFFER 

flags

LO_BUFFER and 

LO_ NOBUFFER 

flags

Name of 

sbspace

SBSPACE-NAME Not in -Df  option. 

Name specified in 

onspaces  -S  option.

Name of an existing 

sbspace in which a 

smart large object 

resides: PUT ... IN clause

Yes Yes

Fragmenta-t

ion across 

multiple 

sbspaces

None No Round-robin distribution 

scheme: PUT ... IN 

clause

Round-robin or 

expression-based 

distribution 

scheme

Round-robin or 

expression-ba

sed distribution 

scheme

Last-access 

time

OFF ACCESSTIME KEEP ACCESS TIME, NO 

KEEP ACCESS TIME

Yes Yes

Altering smart-large-object columns
When you create or modify a table, you have several options for choosing storage characteristics and other attributes (such 

as logging status, buffering, data integrity, and locking granularity) for specific smart-large-object columns.

When you create or modify a table that can store BLOB or CLOB objects, you have these options:

• Use the values that were set when the sbspace was created. These values are specified in one of the following ways:

◦ With the various flags of the -Df  option of the onspaces -c -S  command

◦ With the system default value for any flag that was not specified.

For guidelines to change the default storage characteristics of the -Df  flags, see onspaces options that affect 

sbspace I/O  on page 129.

177



HCL Informix 14.10 - Performance Guide

178

• Use the PUT clause of the CREATE TABLE statement to specify non-default values for particular characteristics or 

attributes, including the number of sbspaces, the extent size, the logging, buffering, and data integrity status, and the 

locking granularity.

Characteristics or attributes that you do not specify in the PUT clause default to the values set in the onspaces -c -S 

command, or to system default values (for example, no logging).

Later, you can use the PUT clause of the ALTER TABLE statement to change the optional storage characteristics of BLOB 

or CLOB columns. See Table 11: Altering storage characteristics and other attributes of an sbspace  on page 176 for 

characteristics and attributes of sbspaces that you can change.

You can use the PUT clause of the ALTER TABLE statement to perform the following actions:

• Specify the smart-large-object characteristics and storage location when you add a new BLOB or CLOB column to a 

table.

The smart large objects in the new columns can have characteristics different from those in the existing columns.

• Change the smart-large-object characteristics of an existing column.

The new column characteristics apply only to smart large objects in new rows inserted after the ALTER TABLE PUT 

statement was issued. The old characteristics persist for any smart large objects that already existed in the column 

before the ALTER TABLE PUT statement modified the column.

For example, the BLOB data in the catalog  table in the superstores_demo  database is stored in s9_sbspc  with logging turned 

off and has an extent size of 100 kilobytes. You can use the PUT clause of the ALTER TABLE statement to turn on logging 

and store new smart large objects in a different sbspace.

For information about changing sbspace extents with the CREATE TABLE statement, see Extent sizes for smart large objects 

in sbspaces  on page 181.

Related information

Sbspace logging  on page 

CREATE TABLE statement  on page 

Managing extents
As you add rows to a table, the database server allocates disk space in units called extents. Each extent is a block of 

physically contiguous pages from the dbspace. Even when the dbspace includes more than one chunk, each extent is 

allocated entirely within a single chunk, so that it remains contiguous.

Contiguity is important to performance. When the pages of data are contiguous, and when the database server reads the 

rows sequentially during read-ahead, light scans, or lightweight I/O operations, disk-arm motion is minimized. For more 

information about these operations, see Sequential scans  on page 134, Light scans  on page 134, and Configuration 

parameters that affect sbspace I/O  on page 128.

../admin%20/ids_admin_0704.html#ids_admin_0704
../admin%20/ids_admin_0704.html#ids_admin_0704
../admin%20/ids_admin_0704.html#ids_admin_0704
../admin%20/ids_admin_0704.html#ids_admin_0704
../sqs/ids_sqs_0509.html#ids_sqs_0509
../sqs/ids_sqs_0509.html#ids_sqs_0509
../sqs/ids_sqs_0509.html#ids_sqs_0509
../sqs/ids_sqs_0509.html#ids_sqs_0509


Chapter 1. Performance Guide

The mechanism of extents is a compromise between the following competing requirements:

• Most dbspaces are shared among several tables.

• The size of some tables is not known in advance.

• Tables can grow at different times and different rates.

• All the pages of a table should be adjacent for best performance.

If you have a table that needs more extents and the database server runs out of space on the partition header page, the 

database server automatically allocates extended secondary partition header pages to accommodate new extent entries. 

The database server can allocate up to 32767 extents for any partition, unless the size of a table dictates a limit to the 

number of extents.

Because table sizes are not known, the database server cannot preallocate table space. Therefore, the database server adds 

extents only as they are needed, but all the pages in any one extent are contiguous for better performance. In addition, when 

the database server creates an extent that is next to the previous one, it treats both as a single extent.

A frequently updated table can become fragmented over time which degrades the performance every time the table is 

accessed by the server. Defragmenting a table brings data rows closer together and avoids partition header page overflow 

problems.

Choosing table extent sizes
When you create a table, you can specify extent sizes for the data rows of a table in a dbspace and for each fragment of a 

fragmented table, and the smart large objects in an sbspace. The database server calculates extent sizes for smart large 

objects in sbspaces.

Extent sizes for tables in a dbspace
When you create a table, you can specify the size of the first extent, as well as the size of the extents to be added as the 

table grows. You can also modify the size of the first extent in a table in a dbspace, and you can modify the size of new 

subsequent extents.

The following sample SQL statement creates a table with a 512-kilobyte initial extent and 100-kilobyte added extents:

CREATE TABLE big_one (column specifications)
   IN big_space
   EXTENT SIZE 512
   NEXT SIZE 100

The default value for the extent size and the next-extent size is eight times the disk page size on your system. For example, if 

you have a 2-kilobyte page, the default length is 16 kilobytes.

You can use the ALTER TABLE statement with the MODIFY EXTENT SIZE clause to change the size of the first extent of a 

table in a dbspace. When you change the size of the first extent, Informix®  records the change in the system catalog and on 

the partition page, but only makes the actual change when the table is rebuilt or a new partition or fragment is created.

You might want to change the size of the first extent of a table in a dbspace in either of these situations:

179



HCL Informix 14.10 - Performance Guide

180

• If a table was created with small first extent size and you need to keep adding a lot of next extents, the table becomes 

fragmented across multiple extents and the data is scattered.

• If a table was created with a first extent that is much larger than the amount of data that is stored, space is wasted.

The following example changes the size of the first extent of a table in a dbspace to 50 kilobytes:

ALTER TABLE customer MODIFY EXTENT SIZE 50; 

Changes to the first extent size are recorded into the system catalog table and on the partition page on the disk. However, 

changes to the first extent size do not take effect immediately. Instead, whenever a change that rebuilds the table occurs, the 

server uses the new first extent size.

For example, if a table has a first extent size of 8 kilobytes and you use the ALTER TABLE statement to change this to 16 

kilobytes, the server does not drop the current first extent and recreate it with the new size. Instead, the new first extent size 

of 16 kilobytes takes effect only when the server rebuilds the table after actions such as creating a cluster index on the table 

or detaching a fragment from the table.

If a TRUNCATE TABLE statement without the REUSE option is executed before the ALTER TABLE statement with the MODIFY 

EXTENT SIZE clause, there is no change in the current first extent.

Use the MODIFY NEXT SIZE clause to change the size of the next extent to be added. This change does not affect next 

extents that already exist.

The following example changes the size of the next extent of a table to 50 kilobytes:

ALTER TABLE big_one MODIFY NEXT SIZE 50;

The next extent sizes of the following kinds of tables do not affect performance significantly:

• A small table is defined as a table that has only one extent. If such a table is heavily used, large parts of it remain 

buffered in memory.

• An infrequently used table is not important to performance no matter what size it is.

• A table that resides in a dedicated dbspace always receives new extents that are adjacent to its old extents. The size 

of these extents is not important because, being adjacent, they perform as one large extent.

Avoid creating large numbers of extents

When you assign an extent size to these kinds of tables, the only consideration is to avoid creating large numbers of extents. 

A large number of extents causes the database server to spend extra time finding the data. In addition, an upper limit exists 

on the number of extents allowed. (Considering the upper limit on extents  on page 183 covers this topic.)

Tips for allocating space for table extents

No upper limit exists on extent sizes except the size of the chunk. The maximum size for a chunk is 4 terabytes. When you 

know the final size of a table (or can confidently predict it within 25 percent), allocate all its space in the initial extent. When 

tables grow steadily to unknown size, assign them next-extent sizes that let them share the dbspace with a small number of 

extents each.



Chapter 1. Performance Guide

Allocating space for table extents

To allocate space for table extents:

1. Decide how to allocate space among the tables.

For example, you might divide the dbspace among three tables in the ratio 0.4: 0.2: 0.3 (reserving 10 percent for small 

tables and overhead).

2. Give each table one-fourth of its share of the dbspace as its initial extent.

3. Assign each table one-eighth of its share as its next-extent size.

4. Monitor the growth of the tables regularly with oncheck.

As the dbspace fills up, you might not have enough contiguous space to create an extent of the specified size. In this case, 

the database server allocates the largest contiguous extent that it can.

Related information

TBLTBLFIRST configuration parameter  on page 

TBLTBLNEXT configuration parameter  on page 

MODIFY EXTENT SIZE  on page 

Extent sizes for table fragments
When you fragment an existing table, you might want to adjust the next-extent size because each fragment requires less 

space than the original, unfragmented table.

If the unfragmented table was defined with a large next-extent size, the database server uses that same size for the next-

extent on each  fragment, which results in over-allocation of disk space. Each fragment requires only a proportion of the 

space for the entire table.

For example, if you fragment the preceding big_one  sample table across five disks, you can alter the next-extent size to one-

fifth the original size. The following example changes the next-extent size to one-fifth of the original size:

ALTER TABLE big_one MODIFY NEXT SIZE 2;

Related information

MODIFY NEXT SIZE clause  on page 

Extent sizes for smart large objects in sbspaces
When you create a table, you should use the extent size that the database server calculates for smart large objects in 

sbspaces. Alternatively, you can use the final size of the smart large object, as indicated by a particular function when you 

open the sbspace in an application program.

You can use the final size of the smart large object when you open one of the following application programs:

181

../%20adr/ids_adr_0181.html#ids_adr_0181
../%20adr/ids_adr_0181.html#ids_adr_0181
../%20adr/ids_adr_0181.html#ids_adr_0181
../%20adr/ids_adr_0181.html#ids_adr_0181
../%20adr/ids_adr_0182.html#ids_adr_0182
../%20adr/ids_adr_0182.html#ids_adr_0182
../%20adr/ids_adr_0182.html#ids_adr_0182
../%20adr/ids_adr_0182.html#ids_adr_0182
../sqs/ids_sqs_2007.html#ids_sqs_2007
../sqs/ids_sqs_2007.html#ids_sqs_2007
../sqs/ids_sqs_2007.html#ids_sqs_2007
../sqs/ids_sqs_2007.html#ids_sqs_2007
../sqs/ids_sqs_0070.html#ids_sqs_0070
../sqs/ids_sqs_0070.html#ids_sqs_0070
../sqs/ids_sqs_0070.html#ids_sqs_0070
../sqs/ids_sqs_0070.html#ids_sqs_0070


HCL Informix 14.10 - Performance Guide

182

• For DB-Access:  Use the DataBlade®  API  mi_lo_specset_estbytes  function. For more information about the 

DataBlade®  API  functions to open a smart large object and set the estimated number of bytes, see the HCL® 

Informix®  DataBlade®  API Programmer's Guide.

• For ESQL/C:  Use the Informix®  ESQL/C  ifx_lo_specset_estbytes  function. For more information about the Informix® 

ESQL/C  functions to open a smart large object and set the estimated number of bytes, see the HCL®  Informix® 

Enterprise Replication Guide.

For more information about sizing extents, see Sbspace extents  on page 129. For more information, see Monitoring 

sbspaces  on page 171.

Monitoring active tblspaces
Monitor tblspaces to determine which tables are active. Active tables are those that a thread has currently opened.

Output from the onstat -t  option includes the tblspace number and the following four fields.

Field

Description

npages

Pages allocated to the tblspace

nused

Pages used from this allocated pool

nextns

Number of extents used

npdata

Number of data pages used

If a specific operation needs more pages than are available (npages  minus nused), a new extent is required. If enough space 

is available in this chunk, the database server allocates the extent here; if not, the database server looks for space in other 

available chunks. If none of the chunks contains adequate contiguous space, the database server uses the largest block of 

contiguous space that it can find in the dbspace. Figure 24: onstat -t output  on page 182 shows an example of the output 

from this option.

Figure  24. onstat -t output

Tblspaces
 n address  flgs ucnt tblnum   physaddr npages nused  npdata nrows  nextns
 0 422528   1    1    100001   10000e   150    124    0      0      3
 1 422640   1    1    200001   200004   50     36     0      0      1
54 426038   1    6    100035   1008ac   3650   3631   3158   60000  3
62 4268f8   1    6    100034   1008ab   8      6      4      60     1
63 426a10   3    6    100036   1008ad   368    365    19     612    3
64 426b28   1    6    100033   1008aa   8      3      1      6      1
193 42f840  1    6    10001b   100028   8      5      2      30     1
 7 active, 200 total, 64 hash buckets



Chapter 1. Performance Guide

Monitoring the upper limit on extents and extent interleaving
You can monitor the upper limit on the number of extents. You can also check for and eliminate extent interleaving.

The maximum number of extents for a partition is 32767.

Considering the upper limit on extents
Do not allow a table to acquire a large number of extents because an upper limit exists on the number of extents allowed. 

Trying to add an extent after you reach the limit causes error -136 (No more extents) to follow an INSERT request.

About this task

Results

To help ensure that the limit is not exceeded, the database server performs the following actions:

• The database server checks the number of extents each time that it creates an extent. If the number of the extent 

being created is a multiple of 16, the database server automatically doubles the next-extent size for the table. 

Therefore, at every 16th creation, the database server doubles the next-extent size.

• When the database server creates an extent next to the previous extent, it treats both extents as a single extent.

Checking for extent interleaving
When two or more growing tables share a dbspace, extents from one tblspace can be placed between extents from another 

tblspace. When this situation occurs, the extents are said to be interleaved. Performance suffers when disk seeks for a table 

must span more than one extent, particularly for sequential scans.

Interleaving creates gaps between the extents of a table. Figure 25: Interleaved table extents  on page 183 shows gaps 

between table extents.

Figure  25. Interleaved table extents

Try to optimize the table-extent sizes to allocate contiguous disk space, which limits head movement. Also consider placing 

the tables in separate dbspaces.

Check periodically for extent interleaving by monitoring chunks. Execute oncheck -pe  to obtain the physical layout of 

information in the chunk. The following information appears:

• Dbspace name and owner

• Number of chunks in the dbspace

• Sequential layout of tables and free space in each chunk

• Number of pages dedicated to each table extent or free space

183



HCL Informix 14.10 - Performance Guide

184

This output is useful for determining the degree of extent interleaving. If the database server cannot allocate an extent in a 

chunk despite an adequate number of free pages, the chunk might be badly interleaved.

Eliminating interleaved extents
You can eliminate interleaved extents by reorganizing the tables with the UNLOAD and LOAD statements, creating or altering 

an index to cluster, or using the ALTER TABLE statement.

Reorganizing dbspaces and tables to eliminate extent interleaving
You can rebuild a dbspace to eliminate interleaved extents so that the extents for each table are contiguous.

About this task

The order of the reorganized tables within the dbspace is not important, but the pages of each reorganized table should 

be contiguous so that no lengthy seeks are required to read the table sequentially. When the disk arm reads a table 

nonsequentially, it ranges only over the space that table occupies.

Figure  26. A dbspace reorganized to eliminate interleaved extents

To reorganize tables in a dbspace:

1. For DB-Access users:  Copy the tables in the dbspace individually to tape with the UNLOAD statement in DB-Access.

2. Drop all the tables in the dbspace.

3. Re-create the tables with the LOAD statement or the dbload  utility.

Results

The LOAD statement re-creates the tables with the same properties they had before, including the same extent sizes.

You can also unload a table with the onunload  utility and reload the table with the companion onload  utility.

Related information

LOAD statement  on page 

UNLOAD statement  on page 

The onunload and onload utilities  on page 

../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../mig/ids_mig_191.html#ids_mig_191
../mig/ids_mig_191.html#ids_mig_191
../mig/ids_mig_191.html#ids_mig_191
../mig/ids_mig_191.html#ids_mig_191


Chapter 1. Performance Guide

Creating or altering an index to cluster
Depending on the circumstances, you can eliminate extent interleaving if you create a clustered index or alter a clustered 

index. When you use the TO CLUSTER clause of the CREATE INDEX or ALTER INDEX statement, the database server sorts 

and reconstructs the table.

About this task

The TO CLUSTER clause reorders rows in the physical table to match the order in the index. For more information, see 

Clustering  on page 221.

The TO CLUSTER clause eliminates interleaved extents under the following conditions:

• The chunk must contain contiguous space that is large enough to rebuild each table.

• The database server must use this contiguous space to rebuild the table.

If blocks of free space exist before this larger contiguous space, the database server might allocate the smaller 

blocks first. The database server allocates space for the ALTER INDEX process from the beginning of the chunk, 

looking for blocks of free space that are greater than or equal to the size that is specified for the next extent. When 

the database server rebuilds the table with the smaller blocks of free space that are scattered throughout the chunk, 

it does not eliminate extent interleaving.

To display the location and size of the blocks of free space, execute the oncheck -pe command.

To use the TO CLUSTER clause of the ALTER INDEX statement:

1. For each table in the chunk, drop all fragmented or detached indexes except the one that you want to cluster.

2. Cluster the remaining index with the TO CLUSTER clause of the ALTER INDEX statement.

This step eliminates interleaving the extents when you rebuild the table by rearranging the rows.

3. Re-create all the other indexes.

Results

You do not need to drop an index before you cluster it. However, the ALTER INDEX process is faster than CREATE INDEX 

because the database server reads the data rows in cluster order using the index. In addition, the resulting indexes are more 

compact.

To prevent the problem from recurring, consider increasing the size of the tblspace extents.

Using ALTER TABLE to eliminate extent interleaving
If you use the ALTER TABLE statement to add or drop a column or to change the data type of a column, the database server 

copies and reconstructs the table. When the database server reconstructs the entire table, it rewrites the table to other areas 

of the dbspace. However, if other tables are in the dbspace, no guarantee exists that the new extents will be adjacent to each 

other.

185



HCL Informix 14.10 - Performance Guide

186

Important:  For certain types of operations that you specify in the ADD, DROP, and MODIFY clauses, the database 

server does not copy and reconstruct the table during the ALTER TABLE operation. In these cases, the database 

server uses an in-place alter algorithm to modify each row when it is updated (rather than during the ALTER 

TABLE operation). For more information about the conditions for this in-place alter algorithm, see In-place alter  on 

page 196.

Reclaiming unused space within an extent
After the database server allocates disk space to a tblspace as part of an extent, that space remains dedicated to the 

tblspace. Even if all extent pages become empty after you delete data, the disk space remains unavailable for use by other 

tables unless you reclaim the space.

Important:  When you delete rows in a table, the database server reuses that space to insert new rows into the same 

table. This section describes the procedures for reclaiming unused space for use by other tables.

You might want to resize a table that does not require the entire amount of space that was originally allocated to it. You can 

reallocate a smaller dbspace and release the unneeded space for other tables to use.

As the database server administrator, you can reclaim the disk space in empty extents and make it available to other users by 

rebuilding the table. To rebuild the table, use any of the following SQL  statements:

• ALTER INDEX

• UNLOAD and LOAD

• ALTER FRAGMENT

Reclaiming space in an empty extent with ALTER INDEX
If the table with the empty extents includes an index, you can run the ALTER INDEX statement with the TO CLUSTER clause. 

Clustering an index rebuilds the table in a different location within the dbspace.

When you run the ALTER INDEX statement with the TO CLUSTER clause, all of the extents associated with the previous 

version of the table are released. Also, the newly built version of the table has no empty extents.

Related information

ALTER INDEX statement  on page 

Clustering  on page 221

Reclaiming space in an empty extent by unloading and re-creating or reloading a table
If the table does not include an index, you can unload the table, re-create the table (either in the same dbspace or in another 

one), and reload the data with the UNLOAD and LOAD statements or the onunload  and onload  utilities.

../sqs/ids_sqs_0268.html#ids_sqs_0268
../sqs/ids_sqs_0268.html#ids_sqs_0268
../sqs/ids_sqs_0268.html#ids_sqs_0268
../sqs/ids_sqs_0268.html#ids_sqs_0268


Chapter 1. Performance Guide

Related information

LOAD statement  on page 

UNLOAD statement  on page 

The onunload and onload utilities  on page 

Releasing space in an empty extent with ALTER FRAGMENT
You can use the ALTER FRAGMENT statement to rebuild a table. When you run this statement, it releases space within the 

extents that were allocated to that table.

For more information about the syntax of the ALTER FRAGMENT statement, see the HCL®  Informix®  Guide to SQL: Syntax.

Managing extent deallocation with the TRUNCATE keyword
TRUNCATE is an SQL keyword that quickly deletes active rows from a table and the b-tree structures of its indexes, without 

dropping the table or its schema, access privileges, triggers, constraints, and other attributes. With this SQL data-definition 

language statement, you can depopulate a local table and reuse the table without re-creating it, or you can release the 

storage space that formerly held its data rows and b-tree structures.

Two implementations of TRUNCATE exist:

• The first implementation, called "fast truncate," operates on most tables.

• The second implementation, called "slow truncate," operates on tables that include opaque or smart large object data 

types, or inherited indexes that are defined on ROW types within data type hierarchies.

The performance advantages of using the TRUNCATE TABLE statement instead of the DELETE statement are much better 

for the fast truncate implementation, because this implementation does not examine or run all of the rows in a table. Slow 

truncation implementation occurs on tables that include opaque or smart large object data types or inherited indexes that 

are defined on ROW types within data types, because the truncate operation examines each row containing these items.

For more information about using TRUNCATE, see the HCL®  Informix®  Guide to SQL: Syntax.

Defragment partitions to merge extents
You can improve performance by defragmenting partitions to merge non-contiguous extents.

A frequently updated table can become fragmented over time which degrades the performance every time the table is 

accessed by the server. Defragmenting a table brings data rows closer together and avoids partition header page overflow 

problems.

Defragmenting an index brings the entries closer together which improves the speed at which the table information is 

accessed.

187

../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_0883.html#ids_sqs_0883
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../sqs/ids_sqs_1248.html#ids_sqs_1248
../mig/ids_mig_191.html#ids_mig_191
../mig/ids_mig_191.html#ids_mig_191
../mig/ids_mig_191.html#ids_mig_191
../mig/ids_mig_191.html#ids_mig_191


HCL Informix 14.10 - Performance Guide

188

You cannot stop a defragment request after the request has been submitted. Additionally, there are specific objects that 

cannot be defragmented and you cannot defragment a partition if another operation is running that conflicts with the 

defragment request.

Tip:  Before you defragment a partition:

• Review the information about important limitations and considerations in Partition defragmentation  on 

page  .

• Run the oncheck -pt and pT  command to determine the number of extents for a specific table or fragment.

To defragment a table, index, or partition, run the EXECUTE FUNCTION command with the defragment argument. You can 

specify the table name, index name, or partition number that you want to defragment.

You can use the onstat -g defragment  command to display information about the active defragment requests.

Related information

Scheduling data optimization  on page 

onstat -g defragment command: Print defragment partition extents  on page 

oncheck -pt and -pT: Display tblspaces for a Table or Fragment  on page 

defragment argument: Dynamically defragment partition extents (SQL administration API)  on page 

Storing multiple table fragments in a single dbspace
You can store multiple fragments of the same table or index in a single dbspace, thus reducing the total number of dbspaces 

needed for a fragmented table. You must specify a name for each fragment that you want to store in the same dbspace. 

Storing multiple table or index fragments in a single dbspace simplifies the management of dbspaces.

You can also use this feature to improve query performance over storing each fragment in a different dbspace when a 

dbspace is located on a faster device.

For more information, see information about managing partitions in the HCL®  Informix®  Administrator's Guide.

Displaying a list of table and index partitions
Use the onstat -g opn  option to display a list of the table and index partitions, by thread ID, that are currently open in the 

system.

For an example of onstat -g opn  output and an explanation of output fields, see the HCL®  Informix®  Administrator's 

Reference.

../admin/ids_admin_1367.html#ids_admin_1367
../admin/ids_admin_1367.html#ids_admin_1367
../admin/ids_admin_1367.html#ids_admin_1367
../admin/ids_admin_1367.html#ids_admin_1367
../admin/ids_admin_1367.html#ids_admin_1367
../admin/ids_admin_1367.html#ids_admin_1367
../admin%20/ids_admin_1371.html#ids_admin_1371
../admin%20/ids_admin_1371.html#ids_admin_1371
../admin%20/ids_admin_1371.html#ids_admin_1371
../admin%20/ids_admin_1371.html#ids_admin_1371
../%20adr/ids_adr_1089.html#ids_adr_1089
../%20adr/ids_adr_1089.html#ids_adr_1089
../%20adr/ids_adr_1089.html#ids_adr_1089
../%20adr/ids_adr_1089.html#ids_adr_1089
../%20adr/ids_adr_0387.html#ids_adr_0387
../%20adr/ids_adr_0387.html#ids_adr_0387
../%20adr/ids_adr_0387.html#ids_adr_0387
../%20adr/ids_adr_0387.html#ids_adr_0387
../%20adr/ids_sapi_107.html#ids_sapi_107
../%20adr/ids_sapi_107.html#ids_sapi_107
../%20adr/ids_sapi_107.html#ids_sapi_107
../%20adr/ids_sapi_107.html#ids_sapi_107


Chapter 1. Performance Guide

Changing tables to improve performance
You can change tables to improve performance by dropping indexes, attaching or detaching fragments, and altering table 

definitions. You can also create databases for decision-support applications by unloading and loading tables in OLTP 

databases.

You might want to change an existing table for various reasons:

• To refresh large decision-support tables with data periodically

• To add or drop historical data from a certain time period

• To add, drop, or modify columns in large decision-support tables when the need arises for different data analysis

Loading and unloading tables
You can create databases for decision-support applications by periodically loading tables that have been unloaded from 

active OLTP databases.

You can use one or more of the following methods to load large tables quickly:

• External tables

• Nonlogging tables

The database server provides support to:

◦ Create nonlogging or logging tables in a logging database.

◦ Alter a table from nonlogging to logging and vice versa.

The two table types are STANDARD (logging tables) and RAW (nonlogging tables). You can use any loading utility 

such as dbimport  or HPL to load raw tables.

• High-Performance Loader (HPL)

You can use HPL in express mode to load tables quickly.

The following sections describe:

• Advantages of logging and nonlogging tables

• Step-by-step procedures to load data using nonlogging tables

Related information

Moving data with external tables  on page 

CREATE EXTERNAL TABLE Statement  on page 

189

../admin%20/ids_admin_1332.html#ids_admin_1332.dita
../admin%20/ids_admin_1332.html#ids_admin_1332.dita
../admin%20/ids_admin_1332.html#ids_admin_1332.dita
../admin%20/ids_admin_1332.html#ids_admin_1332.dita
../sqs/ids_sqs_2053.html#ids_sqs_2053
../sqs/ids_sqs_2053.html#ids_sqs_2053
../sqs/ids_sqs_2053.html#ids_sqs_2053
../sqs/ids_sqs_2053.html#ids_sqs_2053


HCL Informix 14.10 - Performance Guide

190

Advantages of logging tables
Logging type options specify the logging characteristics that can improve performance in various bulk operations on the 

table.

STANDARD, which corresponds to a table in a logged database of previous versions, is the default logging type that is used 

when you issue the CREATE TABLE statement without specifying the table type.

Standard tables have the following features:

• Logging to allow rollback, recovery, and restoration from archives.

• Recovery from backups

• All insert, delete, and update operations

• Constraints to maintain the integrity of your data

• Indexes to quickly retrieve a small number of rows

OLTP applications usually use standard tables. OLTP applications typically have the following characteristics:

• Real-time insert, update, and delete transactions

Logging and recovery of these transactions is critical to preserve the data. Locking is critical to allow concurrent 

access and to ensure the consistency of the data selected.

• Update, insert, or delete one row or a few rows at a time

Indexes speed access to these rows. An index requires only a few I/O operations to access the pertinent row, but 

scanning a table to find the pertinent row might require many I/O operations.

Advantages of nonlogging tables
Nonlogging tables, which are also called raw tables, have characteristics that enable you to load very large data warehousing 

tables quickly.

About this task

Raw tables have following characteristics:

• They do not use CPU and I/O resources for logging.

• They avoid problems such as running out of logical-log space.

• They are locked exclusively during an express load so that no other user can access the table during the load.

• They do not support referential constraints and unique constraints, so overhead for constraint-checking is eliminated.

Quickly loading a large standard table
You can change a large, existing standard table into a nonlogging table and then load the table.

About this task

To quickly load a large, existing standard table:



Chapter 1. Performance Guide

1. Drop indexes, referential constraints, and unique constraints.

2. Change the table to nonlogging.

The following sample SQL  statement changes a STANDARD table to nonlogging:

ALTER TABLE largetab TYPE(RAW);

3. Load the table using a load utility such as dbexport  or the High-Performance Loader (HPL).

For more information about dbexport  and dbload, see the IBM®  Informix®  Migration Guide. For more information 

about HPL, see the IBM®  Informix®  High-Performance Loader User's Guide.

4. Perform a level-0 backup of the nonlogging table.

You must make a level-0 backup of any nonlogging table that has been modified before you convert it to STANDARD 

type. The level-0 backup provides a starting point from which to restore the data.

5. Change the nonlogging table to a logging table before you use it in a transaction.

The following sample SQL  statement changes a raw table to a standard table:

ALTER TABLE largetab TYPE(STANDARD);

Warning:  Do not use nonlogging tables within a transaction where multiple users can modify the data. If you 

need to use a nonlogging table within a transaction, either set Repeatable Read isolation level or lock the 

table in exclusive mode to prevent concurrency problems.

For more information about standard tables, see the previous section, Advantages of logging tables  on page 190.

6. Re-create indexes, referential constraints, and unique constraints.

Quickly loading a new nonlogging table
You quickly create a new nonlogging table and load the table.

About this task

To quickly create and load a new, large table:

1. Create a nonlogging table in a logged database.

The following sample SQL statements create a nonlogging table:

CREATE DATABASE history WITH LOG;
CONNECT TO DATABASE history;
CREATE RAW TABLE history (...
);

2. Load the table using a load utility such as dbexport. For more information about dbexport  and dbload, see the IBM® 

Informix®  Migration Guide.

3. Perform a level-0 backup of the nonlogging table.

You must make a level-0 backup of any nonlogging table that has been modified before you convert it to STANDARD 

type. The level-0 backup provides a starting point from which to restore the data.

4. Change the nonlogging table to a logging table before you use it in a transaction.

191



HCL Informix 14.10 - Performance Guide

192

The following sample SQL  statement changes a raw table to a standard table:

ALTER TABLE largetab TYPE(STANDARD);

Warning:  Do not use nonlogging tables within a transaction where multiple users can modify the data. If you 

need to use a nonlogging table within a transaction, either set Repeatable Read isolation level or lock the 

table in exclusive mode to prevent concurrency problems.

For more information about standard tables, see the previous section, Advantages of logging tables  on page 190.

5. Create indexes on columns most often used in query filters.

6. Create any referential constraints and unique constraints, if needed.

Dropping indexes for table-update efficiency
In some applications, you can confine most table updates to a single time period. You can set up your system so that all 

updates are applied overnight or on specified dates. When updates are performed as a batch, you can drop all nonunique 

indexes while you make updates and then create new indexes afterward.

About this task

This strategy can have two positive effects:

• The updating program runs much faster if it does not need to update indexes at the same time that it updates tables.

• Re-created indexes are more efficient.

For more information about when to drop indexes, see Nonunique indexes  on page 222.

To load a table that has no indexes:

1. Drop the table (if it exists).

2. Create the table without specifying any unique constraints.

3. Load all rows into the table.

4. Alter the table to apply the unique constraints.

5. Create the nonunique indexes.

Results

If you cannot guarantee that the loaded data satisfies all unique constraints, you must create unique indexes before you 

load the rows. You save time if the rows are presented in the correct sequence for at least one of the indexes. If you have a 

choice, make it the row with the largest key. This strategy minimizes the number of leaf pages that must be read and written.

Creating and enabling referential constraints efficiently
When you create or enable foreign-key constraints on existing tables that contain data, you can sometimes achieve better 

performance by reducing the time that the database server spends searching for violating rows.



Chapter 1. Performance Guide

By maintaining the referential integrity of the database during DML operations, and by supporting efficient join-query 

execution paths on tables that are related by a star schema, foreign-key constraints can improve the performance of DML 

operations in databases where the primary key of each dimension table corresponds to a foreign key of the fact table.

When you use the ALTER TABLE ADD CONSTRAINT or ALTER TABLE MODIFY statement to define a foreign-key constraint on 

an existing table, you might be able to reduce the time required to validate of the new foreign-key constraint, if the referenced 

table already has a unique index or a primary-key constraint on the column corresponding to the key of the foreign-key 

constraint. When it creates a foreign-key constraint on a table that already contains data, the database server checks the 

table for any rows that violate the constraint. If an index exists, the database server makes a cost-based decision whether to 

scan every row in the table for violations, or to scan only the index valses.

For large tables, scanning only the index values can provide substantial performance improvement, unless one of the 

following requirements is not satisfied:

• The ALTER TABLE statement is creating only one foreign-key constraint.

• The ALTER TABLE statement is not also creating or enabling a CHECK constraint.

• The ALTER TABLE statement is not also changing the data type of any existing column in the table.

• The foreign-key columns do not include user-defined data types (UDTs) or built-in opaque data types.

• The new mode of the foreign-key constraint is not DISABLED.

• The table is not associated with an active violation table.

Except in the case of one or more violating rows, the ALTER TABLE ADD CONSTRAINT or ALTER TABLE MODIFY statement 

can create and validate a foreign-key constraint when some of these requirements are not satisfied, but the database server 

will not consider using the index-key algorithm to validate the foreign-key constraint. The additional validation costs to scan 

the entire table tend to be proportional to the size of the table.

Enabling a foreign-key constraint using index-scan validation

To validate the enabled foreign-key constraint, the database server performs a full-table scan to search for violating rows, 

unless a unique index or a primary-key constraint already exists on the foreign-key column values. In that case, the database 

server consider using an index scan for validation, unless one or more of the following requirements is not satisfied:

• The SET CONSTRAINTS statement is enabling only one foreign-key constraint.

• The same statement is not enabling a CHECK constraint.

• The foreign-key columns do not include user-defined data types (UDTs) or built-in opaque data types.

• The new mode of the foreign-key constraint is not DISABLED.

• The table is not associated with an active violation table.

Unless the table has one or more violating rows, the SET CONSTRAINTS statement can enable and validate a foreign-key 

constraint when some of these requirements are not satisfied, but the database server will not consider using the index-key 

algorithm to validate the foreign-key constraint. The additional validation costs for a full table scan can be substantial for 

very large tables.

193



HCL Informix 14.10 - Performance Guide

194

Skipping validation of foreign-key constraints

In both the ALTER TABLE and SET CONSTRAINTS operations described above, the goal was to use a more efficient algorithm 

for validating the referential constraint. Greater efficiencies can be achieved, at least temporarily, by postponing or avoiding 

the validation of ENABLED or FILTERING foreign-key constraints that are being created by ALTER TABLE ADD CONSTRAINT 

statements, or while a DISABLED foreign-key constraint is being reset to an ENABLED or FILTERING mode.

This feature can be useful when tables that enforced referential constraints need to be moved from an OLTP environment 

to another database or to a data warehouse. To export the tables and restore their constraints without validation might be 

necessary if the time available for relocation is insufficient for violations checking. The tables might seem unlikely to include 

violating rows, if the constraints were dropped or disabled immediately before the tables were exported.

Three alternative mechanisms are available for bypassing the validation of enabled or filtering foreign-key constraints while 

they are being created, or while they are being exported, or while their mode is being changed from DISABLED:

• You can include the NOVALIDATE  keyword in the constraint mode specification

◦ of the ALTER TABLE ADD CONSTRAINT statement,

◦ or of the SET CONSTRAINTS ENABLED statement,

◦ or of the SET CONSTRAINTS FILTERING WITH ERROR statement,

◦ or of the SET CONSTRAINTS FILTERING WITHOUT ERROR statements.

• If you plan to run multiple ALTER TABLE ADD CONSTRAINT or SET CONSTRAINTS statements, run the SET 

ENVIRONMENT NOVALIDATE ON statement to disable the validation of foreign-key constraints during the current 

session.

Setting this session environment option makes NOVIOLATE the default mode for enabled or filtering referential 

constraints while the DDL statement is running.

• If you are migrating data, include the -nv  option in the dbimport  command.

The effect of the -nv  command-line option is that the constraint modes of any ALTER TABLE ADD CONSTRAINT or 

SET CONSTRAINTS statements that create or enable foreign-key constraints are processed so that the ENABLED, or 

FILTERING WITH ERROR, or FILTERING WITHOUT ERROR constraint mode specifications are instead implemented 

(respectively) as the ENABLED NOVALIDATE, or FILTERING WITH ERROR NOVALIDATE, or FILTERING WITHOUT 

ERROR NOVALIDATE modes.

In each case, no constraint validation of existing rows occurs during the DDL statement.

The effect of the NOVALIDATE keyword or of the -nv  command-line flag of dbimport  does not persist outside the DDL 

operation that created or changed the mode of the foreign-key constraint. The same constraint enforces referential integrity 

during subsequent DELETE, INSERT, MERGE, and UPDATE operations. The NOVALIDATE mode of the referential constraint is 

not registered in the sysobjstate  system catalog table.

If a NOVALIDATE constraint mode is used on a table that might already contains rows that violate the foreign-key constraint, 

it is the responsibility of the user to verify that no violating rows exist in the data.



Chapter 1. Performance Guide

Attaching or detaching fragments
You can use ALTER FRAGMENT ATTACH and DETACH statements to perform data warehouse-type operations. ALTER 

FRAGMENT DETACH provides a way to delete a segment of the table data rapidly. Similarly, ALTER FRAGMENT ATTACH 

provides a way to load large amounts of data into an existing table incrementally by taking advantage of the fragmentation 

technology.

For more information about how to take advantage of the performance enhancements for the ATTACH and DETACH options 

of the ALTER FRAGMENT statement, see Improve the performance of operations that attach and detach fragments  on 

page 284.

Altering a table definition
The database server uses one of these algorithms to process an ALTER TABLE statement in SQL: slow alter, in-place alter, or 

fast alter.

Slow alter
When the database server uses the slow alter algorithm to process an ALTER TABLE statement, the table can be unavailable 

to other users for a long period of time.

The table might be unavailable because the database server:

• Locks the table in exclusive mode for the duration of the ALTER TABLE operation

• Makes a copy of the table in order to convert the table to the new definition

• Converts the data rows during the ALTER TABLE operation

• Can treat the ALTER TABLE statement as a long transaction and abort it if the LTXHWM threshold is exceeded

Because the database server makes a copy of the table to convert the table to the new definition, a slow alter operation 

requires space at least twice the size of the original table plus log space.

The database server uses the slow alter algorithm when the ALTER TABLE statement makes column changes that it cannot 

perform in place:

• Adding or dropping a column created with the ROWIDS keyword

• Adding or dropping a column created with the REPLCHECK keyword

• Dropping a column of the TEXT or BYTE data type

• Modifying a SMALLINT column to SERIAL, SERIAL8, or BIGSERIAL

• Converting an INT column to SERIAL, SERIAL8, or BIGSERIAL

• Modifying the data type of a column so that some possible values of the old data type cannot be converted to the 

new data type (For example, if you modify a column of data type INTEGER to CHAR(n), the database server uses the 

slow alter algorithm if the value of n  is less than 11. An INTEGER requires 10 characters plus one for the minus sign 

for the lowest possible negative values.)

• Modifying the data type of a fragmentation column in a way that value conversion might cause rows to move to 

another fragment

195



HCL Informix 14.10 - Performance Guide

196

• Adding, dropping or modifying any column when the table contains user-defined data types, smart large objects, or 

LVARCHAR, SET, MULTISET, ROW, or COLLECTION data types

• Modifying the original size or reserve specifications of VARCHAR or NVARCHAR columns

• Adding ERKEY shadow columns

In-place alter
The in-place alter algorithm provides numerous performance advantages over the slow alter algorithm

The in-place alter algorithm:

• Increases table availability

Other users can access the table sooner when the ALTER TABLE operation uses the in-place alter algorithm, because 

the database server locks the table for only the time that it takes to update the table definition and rebuild indexes 

that contain altered columns.

This increase in table availability can increase system throughput for application systems that require 24 by seven 

operations.

When the database server uses the in-place alter algorithm, it locks the table for a shorter time than the slow alter 

algorithm because the database server:

◦ Does not make a copy of the table to convert the table to the new definition

◦ Does not convert the data rows during the ALTER TABLE operation

◦ Alters the physical columns in place with the latest definition after the alter operation when you later update 

or insert rows. The database server converts the rows that reside on each page that you updated.

• Requires less space than the slow alter algorithm

When the ALTER TABLE operation uses the slow alter algorithm, the database server makes a copy of the table to 

convert the table to the new definition. The ALTER TABLE operation requires space at least twice the size of the 

original table plus log space.

When the ALTER TABLE operation uses the in-place alter algorithm, the space savings can be substantial for very 

large tables.

• Improves system throughput during the ALTER TABLE operation

The database server does not log any changes to the table data during the in-place alter operation. Not logging 

changes has the following advantages:

◦ Log space savings can be substantial for very large tables.

◦ The alter operation is not a long transaction.

If the check_for_ipa  Scheduler task is enabled, each table that has one or more outstanding in-place alter operations is listed 

in the ph_alert  table in the sysadmin  database. The alert text is: Table database:owner.table_name  has outstanding in place 

alters.  The alert type is informative.



Chapter 1. Performance Guide

Related information

The ph_alert Table  on page 

Conditions for in-place alter operations
The database server can use the in-place alter algorithm to process only certain ADD, DROP, or MODIFY operations of the 

ALTER TABLE statement, and only if the table schema or the ALTER TABLE statement does not require a slow alter algorithm.

ALTER TABLE operations that can be done in place

The database server can use the in-place alter algorithm in the following ALTER TABLE operations:

• Add columns of built-in data types, except the data types that are listed in Conditions that prevent in-place alter 

operations  on page 200.

• Drop a column of built-in data types, except a column that contains TEXT or BYTE data types, or a column that was 

created with the ROWIDS keyword.

• In Enterprise Replication, add or drop a column that is created with the CRCOLS keyword.

• Modify a column for which the database server can convert all possible values of the old data type to the new data 

type.

• Modify a column that is part of the fragmentation expression for its table, only if value changes do not require any 

data row to move from one fragment to another fragment after data type conversion.

The following table shows the conditions under which the ALTER TABLE MODIFY statement uses the in-place alter algorithm 

to convert columns of supported data types.

Key:

All = The database server uses the in-place alter algorithm for all cases of the specific column operation.

nf = The database server uses the in-place alter algorithm when the modified column is not part of the table 

fragmentation expression.

Table  12. MODIFY operations and conditions that use the in-place alter algorithm

Operation on Column Condition

Convert a SMALLINT column to an INTEGER column All

Convert a SMALLINT column to a BIGINT column All

Convert a SMALLINT column to an INT8 column All

Convert a SMALLINT column to a DEC(p2,s2) column p2-s2 >= 5

Convert a SMALLINT column to a DEC(p2) column p2-s2 >= 5 OR nf

197

../%20adr/ids_adr_0275.html#ids_adr_0275
../%20adr/ids_adr_0275.html#ids_adr_0275
../%20adr/ids_adr_0275.html#ids_adr_0275
../%20adr/ids_adr_0275.html#ids_adr_0275


HCL Informix 14.10 - Performance Guide

198

Table  12. MODIFY operations and conditions that use the in-place alter algorithm  (continued)

Operation on Column Condition

Convert a SMALLINT column to a SMALLFLOAT column All

Convert a SMALLINT column to a FLOAT column All

Convert a SMALLINT column to a CHAR(n) column n >= 6 AND nf

Convert an INT column to an INT8 column All

Convert an INT column to a DEC(p2,s2) column p2-s2 >= 10

Convert an INT column to a DEC(p2) column p2 >= 10 OR nf

Convert an INT column to a SMALLFLOAT column nf

Convert an INT column to a FLOAT column All

Convert an INT column to a CHAR(n) column n >= 11 AND nf

Convert a SERIAL column to an INT8 column All

Convert a SERIAL column to a DEC(p2,s2) column p2-s2 >= 10

Convert a SERIAL column to a DEC(p2) column p2 >= 10 OR nf

Convert a SERIAL column to a SMALLFLOAT column nf

Convert a SERIAL column to a FLOAT column All

Convert a SERIAL column to a CHAR(n) column n >= 11 AND nf

Convert a SERIAL column to a BIGSERIAL column All

Convert a SERIAL column to a SERIAL8 column All

Convert a SERIAL8 column to a BIGSERIAL column All

Convert a BIGSERIAL column to a SERIAL8 column All

Convert a DEC(p1,s1) column to a SMALLINT column p1-s1 < 5 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to an INTEGER column p1-s1 < 10 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to an INT8 column p1-s1 < 20 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to a SERIAL column p1-s1 < 10 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to a BIGSERIAL column p1-s1 < 20 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to a SERIAL8 column p1-s1 < 20 AND (s1 == 0 OR nf)

Convert a DEC(p1,s1) column to a DEC(p2,s2) column p2-s2 >= p1-s1 AND (s2 >= s1 OR 

nf)

Convert a DEC(p1,s1) column to a DEC(p2) column p2 >= p1 OR nf



Chapter 1. Performance Guide

Table  12. MODIFY operations and conditions that use the in-place alter algorithm  (continued)

Operation on Column Condition

Convert a DEC(p1,s1) column to a SMALLFLOAT column nf

Convert a DEC(p1,s1) column to a FLOAT column nf

Convert a DEC(p1,s1) column to a CHAR(n) column n >= 8 AND nf

Convert a DEC(p1) column to a DEC(p2) column p2 >= p1 OR nf

Convert a DEC(p1) column to a SMALLFLOAT column nf

Convert a DEC(p1) column to a FLOAT column nf

Convert a DEC(p1) column to a CHAR(n) column n >= 8 AND nf

Convert a SMALLFLOAT column to a DEC(p2) column nf

Convert a SMALLFLOAT column to a FLOAT column nf

Convert a SMALLFLOAT column to a CHAR(n) column n >= 8 AND nf

Convert a FLOAT column to a DEC(p2) column nf

Convert a FLOAT column to a SMALLFLOAT column nf

Convert a FLOAT column to a CHAR(n) column n >= 8 AND nf

Convert a CHAR(m) column to a CHAR(n) column n >= m OR (nf AND not ANSI 

mode)

Increase the length of a character-type column Not in ANSI mode databases

Increase the length of a DECIMAL or MONEY column All

Convert an INT column to a SERIAL column All

Convert an INT column to a BIGSERIAL column All

Convert an INT column to a SERIAL8 column All

Convert a BIGINT column to a BIGSERIAL column All

Convert a BIGINT column to a SERIAL8 column All

Convert a INT8 column to a BIGSERIAL column All

Convert a INT8 column to a SERIAL8 column All

Note:  If first column of an index is altered, the operation to find the next serial value is very fast as it can make use of 

the index. If altered column is not first column of an index, the operation will do a sequential scan of the table to find 

the next serial value.

199



HCL Informix 14.10 - Performance Guide

200

If you supply the serial value of the altered column, the operation is fast as the serial value is provided and does not 

require any calculation.

Conditions that prevent in-place alter operations

When the table contains an opaque data type, a user-defined data type, an LVARCHAR data type, a BOOLEAN data type, or a 

smart large object (BLOB or CLOB), the database server does not use the in-place alter algorithm, even when the column that 

is being altered is of a data type that can support in-place alter operations.

The in-place alter algorithm is not used if the ALTER TABLE DROP statement specifies BYTE or TEXT columns, or the 

ROWIDS keyword, or if the ALTER TABLE ADD statement includes the ROWID keyword.

If any column data types in an ALTER TABLE MODIFY statement cannot be converted by in-place alter operations, or if data 

movement is required for a fragmented table, the database server uses the slow alter algorithm for data type conversion 

instead of using the in-place alter algorithm.

For example, the database server does not use the in-place alter algorithm in the following situations:

• When more than one algorithm is needed

For example, assume that an ALTER TABLE MODIFY statement converts a SMALLINT column to a DEC(8,2) column 

and converts an INTEGER column to a CHAR(8) column. The conversion of the first column is an in-place alter 

operation, but the conversion of the second column is a slow alter operation. The database server uses the slow alter 

algorithm to execute this statement.

• When the ALTER TABLE operation moves data records to another fragment

For example, suppose you have a table with two integer columns and the following fragment expression:

col1 < col2 IN dbspace1, REMAINDER IN dbspace2 

If you issue an ALTER TABLE MODIFY statement to convert the integer values to character values, the database 

server stores the row (4, 30)  in dbspace1  before the alter operation, but stores it in dbspace2  after the alter 

operation, not as integers,  4 < 30, but as characters,  '30' < '4'.

• When the database server cannot convert all possible values of the old data type to the new data type.

For example, you cannot convert a BIGSERIAL column to a SERIAL column, because the modified column cannot 

store BIGSERIAL values that are beyond the range of SERIAL values. (However, you can change a column from 

SERIAL to BIGSERIAL with an in-place alter operation, if other columns in the table do not conflict with any of the 

other restrictions on in-place alter operations.)

Related information

IBMInformix data types  on page 

DECIMAL  on page 

../ddi/ids_ddi_296.html#ids_ddi_296
../ddi/ids_ddi_296.html#ids_ddi_296
../ddi/ids_ddi_296.html#ids_ddi_296
../ddi/ids_ddi_296.html#ids_ddi_296
../sqr/ids_sqr_112.html#ids_sqr_112
../sqr/ids_sqr_112.html#ids_sqr_112
../sqr/ids_sqr_112.html#ids_sqr_112
../sqr/ids_sqr_112.html#ids_sqr_112


Chapter 1. Performance Guide

Performance considerations for DML statements
The database server performs additional actions if it detects any down-level version page during the execution of data 

manipulation language (DML) statements (INSERT, UPDATE, DELETE, SELECT). These actions can impact performance.

Each time you execute an ALTER TABLE statement that uses the in-place alter algorithm, the database server creates a new 

version of the table structure. The database server keeps track of all versions of table definitions. The database server resets 

the version status and all of the version structures and alter structures until the entire table is converted to the final format, 

or until a slow alter is performed.

If the database server detects any down-level version page during the execution of DML statements (INSERT, UPDATE, 

DELETE, and SELECT statements, and MERGE statements that specify Insert, Update, or Delete clauses), it performs the 

following actions:

• For UPDATE statements, the database server converts the entire data page or pages to the final format.

• For INSERT statements, the database server converts the inserted row to the final format and inserts it in the best-fit 

page. The database server converts the existing rows on the best-fit page to the final format.

• For DELETE statements, the database server does not convert the data pages to the final format.

• For SELECT statements, the database server does not convert the data pages to the final format.

If your query accesses rows that are not yet converted to the new table definition, you might notice a slight 

degradation in the performance of your individual query, because the database server reformats each row before it is 

returned.

Performance of in-place alters for DDL operations
In-place alter operations on data definition language (DDL) statements can slow performance. Therefore, monitor 

outstanding in-place alter operation because many outstanding alter operations affect subsequent ALTER TABLE 

statements.

The oncheck -pT  command displays data-page versions for outstanding in-place alter operations. An in-place alter is 

outstanding  when data pages still exist with the old definition.

Figure 27: Sample oncheck -pT output for the customer table  on page 202 shows a portion of the output that the following 

oncheck  command produces after four in-place alter operations are run on the customer  demonstration table:

201



HCL Informix 14.10 - Performance Guide

202

Figure  27. Sample oncheck -pT output for the customer table

oncheck -pT stores_demo:customer
 

...
Home Data Page Version Summary
 

            Version           Count
 

            0 (oldest)           2
            1           0
            2           0
            3           0
            4 (current)           0
...

The Count  field in Figure 27: Sample oncheck -pT output for the customer table  on page 202 displays the number of pages 

that currently use that version of the table definition. This oncheck  output shows that four versions are outstanding:

• A value of 2  in the Count  field for the oldest version indicates that two pages use the oldest version.

• A value of 0  in the Count  fields for the next four versions indicates that no pages were to the latest table definition.

Important:  As you perform more in-place alter operation on a table, each subsequent ALTER statement or the SQL 

statements that run against the tables with outstanding alters take more time to run than the previous statement. To 

maintain efficient performance, regularly remove outstanding in-place alter operations.

You can remove in-place alter operations by running the admin( )  or task( )  SQL administration command with the table 

update_ipa  or fragment update_ipa  argument. You can include the parallel  option to run the operation in parallel. For 

example, the following statement removes in-place alter operations in parallel from a table that is named auto:

EXECUTE FUNCTION task('table update_ipa parallel','auto');

You can remove in-place alter operations by converting data pages to the latest definition with a dummy UPDATE statement. 

For example, the following statement, which sets a column value to the existing value, causes the database server to convert 

the format of the data pages to the latest definition:

UPDATE tab1 SET col1 = col1;

If your goal is saving runtime CPU, then plan to keep as few outstanding alters operations on a table as possible (generally 

no more than 3 or 4). If your goal is to save on disk space and your alter operations add or grow columns, then leaving in-

place alters outstanding helps reduce disk space. If you need to revert to an earlier version of the database server, however, 

one requirement is that no data pages can include incomplete ALTER TABLE or ALTER FRAGMENT operations.

After all outstanding in-place alter operations have been completed on a table or fragment, the oncheck -pT  command 

displays the total number of data pages in the Count  field for the current version of the table.



Chapter 1. Performance Guide

Related information

Resolve outstanding in-place alter operations  on page 

Altering a column that is part of an index
If the altered column is part of an index, the table is still altered in place, but in this case the database server rebuilds the 

index or indexes implicitly. If you do not need to rebuild the index, you should drop or disable it before you perform the alter 

operation. Taking these steps improves performance.

However, if the column that you modify is a primary key or foreign key and you want to keep this constraint, you must specify 

those keywords again in the ALTER TABLE statement, and the database server rebuilds the index.

For example, suppose you create tables and alter the parent table with the following SQL  statements:

CREATE TABLE parent
   (si SMALLINT PRIMARY KEY CONSTRAINT pkey);
CREATE TABLE child
   (si SMALLINT REFERENCES parent ON DELETE CASCADE
   CONSTRAINT ckey);
INSERT INTO parent (si) VALUES (1);
INSERT INTO parent (si) VALUES (2);
INSERT INTO child (si) VALUES (1);
INSERT INTO child (si) VALUES (2);
ALTER TABLE parent
   MODIFY (si INT PRIMARY KEY CONSTRAINT pkey);

This ALTER TABLE example converts a SMALLINT column to an INT column. The database server retains the primary key 

because the ALTER TABLE statement specifies the PRIMARY KEY keywords and the pkey  constraint. When you specify a 

PRIMARY KEY constraint in the MODIFY clause, the database server also silently creates a NOT NULL constraint on the same 

primary key column. However, the database server drops any referential constraints to that primary key. Therefore, you must 

also specify the following ALTER TABLE statement for the child table:

ALTER TABLE child
   MODIFY (si int references parent on delete cascade
         constraint ckey);

Even though the ALTER TABLE operation on a primary key or foreign key column rebuilds the index, the database server still 

takes advantage of the in-place alter algorithm. The in-place alter algorithm can provide performance benefits, including the 

following:

• It does not make a copy of the table in order to convert the table to the new definition.

• It does not convert the data rows during the alter operation.

• It does not rebuild all indexes on the table.

203

../mig/ids_mig_274.html#ids_mig_274
../mig/ids_mig_274.html#ids_mig_274
../mig/ids_mig_274.html#ids_mig_274
../mig/ids_mig_274.html#ids_mig_274


HCL Informix 14.10 - Performance Guide

204

Warning:  If you alter a table that is part of a view, you must re-create the view to obtain the latest definition of the 

table.

Fast alter
The database server uses the fast alter algorithm when the ALTER TABLE statement changes attributes of the table but does 

not affect the data.

The database server uses the fast alter algorithm when you use the ALTER TABLE statement to:

• Change the next-extent size.

• Add or drop a constraint.

• Change the lock mode of the table.

• Change the unique index attribute without modifying the column type.

• Add shadow columns for row versioning with the ADD VERCOLS keywords.

With the fast alter algorithm, the database server holds the lock on the table for just a short time. In some cases, the 

database server locks the system catalog tables only to change the attribute. In either case, the table is unavailable for 

queries for only a short time.

Denormalize the data model to improve performance
You might need to denormalize the data model to reduce overhead and optimize performance.

The entity-relationship data model, which the HCL®  Informix®  Guide to SQL: Tutorial  describes, produces tables that contain 

no redundant or derived data. According to the tenets of relational database theory, these tables are well structured.

Sometimes, to meet extraordinary demands for high performance, you might need to denormalize the data model by 

modifying it in ways that are undesirable from a theoretical standpoint. This section describes some modifications and their 

associated costs.

Shortening rows
Usually, tables with shorter rows yield better performance than those with longer rows because disk I/O is performed in 

pages, not in rows. The shorter the rows of a table, the more rows occur on a page. The more rows per page, the fewer I/O 

operations it takes to read the table sequentially, and the more likely it is that a nonsequential access can be performed from 

a buffer.

The entity-relationship data model puts all the attributes of one entity into a single table for that entity. For some entities, this 

strategy can produce rows of awkward lengths.

To shorten the rows, you can break columns into separate tables that are associated by duplicate key values in each table. 

As the rows get shorter, query performance should improve.



Chapter 1. Performance Guide

Expelling long strings
The most bulky attributes are often character strings. To make the rows shorter, you can remove long strings from the entity 

table.

You can use the following methods to expel long strings:

• Use VARCHAR columns.

• Use TEXT data.

• Move strings to a companion table.

• Build a symbol table.

Convert CHAR columns into VARCHAR columns to shorten rows (GLS)
A database might contain CHAR columns that you can convert to VARCHAR columns. You can use a VARCHAR column to 

shorten the average row length when the average length of the text string in the CHAR column is at least 2 bytes shorter than 

the width of the column.

VARCHAR data is immediately compatible with most existing programs, forms, and reports. You might need to recompile 

any forms produced by application development tools to recognize VARCHAR columns. Always test forms and reports on a 

sample database after you modify the table schema.

For information about other character data types, see the HCL®  Informix®  GLS User's Guide.

Convert a long string to a TEXT data type column
When a string fills half a disk page or more, consider converting it to a TEXT data type column in a separate blobspace.

The column within the row page is only 56 bytes long, which allows more rows on a page than when you include a long 

string. However, the TEXT data type is not automatically compatible with existing programs. The application needed to fetch 

a TEXT value is a bit more complicated than the code for fetching a CHAR value into a program.

Move strings to a companion table
Strings that are less than half a page waste disk space if you treat them as TEXT data, but you can move them from the main 

table to a companion table.

If you split a table into two tables, the primary table and a companion table, repeat the primary key in each table.

Build a symbol table
If a column contains strings that are not unique in each row, you can move those strings to a table in which only unique 

copies are stored.

For example, the customer.city  column contains city names. Some city names are repeated in the column, and most rows 

have some trailing blanks in the field. Using the VARCHAR data type eliminates the blanks but not the duplication.

You can create a table named cities, as the following example shows:

205



HCL Informix 14.10 - Performance Guide

206

CREATE TABLE cities (
   city_num SERIAL PRIMARY KEY,
   city_name VARCHAR(40) UNIQUE
)

You can change the definition of the customer  table so that its city  column becomes a foreign key that references the 

city_num column in the cities  table.

To insert the city of the new customer into cities, you must change any program that inserts a new row into customer.  The 

database server return code in the SQLCODE  field of the SQL  Communications Area (SQLCA) can indicate that the insert 

failed because of a duplicate key. It is not a logical error; it simply means that an existing customer is located in that city. For 

more information about the SQLCA, see the HCL®  Informix®  Guide to SQL: Tutorial.

Besides changing programs that insert data, you must also change all programs and stored queries that retrieve the city 

name. The programs and stored queries must use a join to the new cities  table in order to obtain their data. The extra 

complexity in programs that insert rows and the extra complexity in some queries is the result of giving up theoretical 

correctness in the data model. Before you make the change, be sure that it returns a reasonable savings in disk space or 

execution time.

Splitting wide tables
Consider all the attributes of an entity that has rows that are too wide for good performance. Look for some theme or 

principle to divide them into two groups. Then split the table into two tables, a primary table and a companion table, 

repeating the primary key in each one.

The shorter rows allow you to query or update each table quickly.

Division by Bulk

One principle on which you can divide an entity table is bulk. Move the bulky attributes, which are usually character strings, 

to the companion table. Keep the numeric and other small attributes in the primary table. In the demonstration database, you 

can split the ship_instruct  column from the orders  table. You can call the companion table orders_ship. It has two columns, 

a primary key that is a copy of orders.order_num  and the original ship_instruct  column.

Division by Frequency of Use

Another principle for division of an entity is frequency of use. If a few attributes are rarely queried, move them to a 

companion table. In the demonstration database, for example, perhaps only one program queries the ship_instruct, 

ship_weight, and ship_charge  columns. In that case, you can move them to a companion table.

Division by Frequency of Update

Updates take longer than queries, and updating programs lock index pages and rows of data during the update process, 

preventing querying programs from accessing the tables. If you can separate one table into two companion tables, one with 

the most-updated entities and the other with the most-queried entities, you can often improve overall response time.



Chapter 1. Performance Guide

Performance Costs of Splitting Tables

Splitting a table uses extra disk space and adds complexity. Two copies of the primary key occur for each row, one copy 

in each table. Two primary-key indexes also exist. You can use the methods described in earlier sections to estimate the 

number of added pages.

You must modify existing programs, reports, and forms that use SELECT * because fewer columns are returned. Programs, 

reports, and forms that use attributes from both tables must perform a join to bring the tables together.

In this case, when you insert or delete a row, two tables are altered instead of one. If you do not coordinate the alteration of 

the two tables (by making them within a single transaction, for example), you lose semantic integrity.

Redundant data
Normalized tables contain no redundant data. Every attribute appears in only one table.

Normalized tables also contain no derived data. Instead, data that can be computed from existing attributes is selected as 

an expression based on those attributes.

Normalizing tables minimizes the amount of disk space used and makes updating the tables as easy as possible. However, 

normalized tables can force you to use joins and aggregate functions often, and those processes can be time consuming.

As an alternative, you can introduce new columns that contain redundant data, provided you understand the trade-offs 

involved.

Adding redundant data
A correct data model avoids redundancy by keeping any attribute only in the table for the entity that it describes. If the 

attribute data is needed in a different context, you join tables to make the connection. But joining takes time. If a frequently 

used join affects performance, you can eliminate it by duplicating the joined data in another table.

In the stores_demo database, the manufact  table contains the names of manufacturers and their delivery times. An actual 

working database might contain many other attributes of a supplier, such as address and sales representative name.

The contents of manufact  are primarily a supplement to the stock  table. Suppose that a time-critical application frequently 

refers to the delivery lead time of a particular product but to no other column of manufact. For each such reference, the 

database server must read two or three pages of data to perform the lookup.

You can add a new column, lead_time, to the stock  table and fill it with copies of the lead_time  column from the 

corresponding rows of manufact. That arrangement eliminates the lookup and therefore speeds up the application.

Like derived data, redundant data takes space and poses an integrity risk. In the example described in the previous 

paragraph, many extra copies of the lead time for each manufacturer can exist. (Each manufacturer can appear in stock 

many times.) The programs that insert or update a row of manufact  must also update multiple rows of stock.

The integrity risk is simply that the redundant copies of the data might not be accurate. If a lead time is changed in manufact, 

the stock  column is outdated until it is also updated. As you do with derived data, define the conditions under which 

redundant data might be wrong.

207



HCL Informix 14.10 - Performance Guide

208

For more information about database design, see the IBM®  Informix®  Database Design and Implementation Guide.

Reduce disk space in tables with variable length rows
You can enable the database server to insert more rows per page into tables with variable-length rows, if you set the 

MAX_FILL_DATA_PAGES configuration parameter to 1. Allowing more variable length rows per page has advantages and 

disadvantages.

Potential advantages of allowing more variable length rows per page are:

• Reducing the disk space required to store data

• Enabling the server to use the buffer pool more efficiently

• Reducing table scan times

Possible disadvantages of using the MAX_FILL_DATA_PAGES allowing more variable length rows per page are:

• The server might store rows in a different physical order.

• As the page fills, updates made to the variable-length columns in a row could cause the row to expand so it no longer 

completely fits on the page. This causes the server to split the row onto two pages, increasing the access time for the 

row.

If the MAX_FILL_DATA_PAGES configuration parameter is enabled, the server will add a new row to a recently modified 

page with existing rows if adding the row leaves at least 10 percent of the page free for future expansion of all the rows in 

the page. If the MAX_FILL_DATA_PAGES configuration parameter is not enabled, the server will add the row only if there is 

sufficient room on the page to allow the new row to grow to its maximum length.

If you enable the MAX_FILL_DATA_PAGES configuration parameter and you want this to affect existing variable length rows, 

the existing tables must be reloaded.

Reduce disk space by compressing tables and fragments
You can reduce disk space by compressing data in tables and table fragments. After compressing data, you can repack the 

data to consolidate the free space in a table or fragment, and shrink the space for the data to return the free space to the 

dbspace.

Compression is advantageous for applications with a lot of I/O activity and for applications in which the reduction of 

disk space usage is critical. However, if your applications run with high buffer cache hit ratios and high performance is 

more important than space usage, you might not want to compress data, because compression might slightly decrease 

performance.

Compressing data, consolidating data, and returning free space have the following benefits:

• Significant savings in disk storage space

• Reduced disk usage for compressed fragments

• Significant saving of logical log usage, which saves additional space and can prevent bottlenecks for high-throughput 

OLTP after the compression operation is completed.



Chapter 1. Performance Guide

• Fewer page reads, because more rows can fit on a page

• Smaller buffer pools, because more data fits in the same size pool

• Reduced I/O activity, because:

◦ More compressed rows than uncompressed rows fit on a page

◦ Log records for insert, update, and delete operations of compressed rows are smaller

• Ability to compress older fragments of time-fragmented data that are not often accessed, while leaving more recent 

data that is frequently accessed in uncompressed form

• Ability to free space no longer needed for a table

• Faster backup and restore

Because compressed data covers fewer pages and has more rows per page than uncompressed data, the query optimizer 

might choose different plans after compression.

You can speed up compression and repacking by running the operations in parallel.

Related information

Compression  on page 

table or fragment arguments: Compress data and optimize storage (SQL administration API)  on page 

Boosted Partition Free Space Caches (PFSC)

When MAX_FILL_DATA_PAGES is set, a small cache is automatically created in memory for each table with variable-length 

rows. The purpose of this "lite" PFSC is to track exactly how much free space exists on up to 32 pages from which rows have 

recently been deleted. This information can be searched very quickly when inserting a row. If a spot for the new row is found 

on a page being tracked by the cache, the row is inserted on that page. If not, the table's bitmaps will have to be consulted, 

which may be less efficient in some cases.

A boosted  PFSC is a cache that tracks all free space  in the table or fragment. All inserts to this table use this larger cache in 

lieu of the bitmaps. This feature can significantly improve insert performance, though additional memory is required.

Consider creating a boosted PFSC for a table under the following conditions:

• MAX_FILL_DATA_PAGES = 1

• The table is either compressed or its schema contains variable-length columns

• The table is relatively large

• The table is relatively volatile, with deletes affecting rows of all ages

209

../admin%20/ids_admin_1230.html#ids_admin_1230
../admin%20/ids_admin_1230.html#ids_admin_1230
../admin%20/ids_admin_1230.html#ids_admin_1230
../admin%20/ids_admin_1230.html#ids_admin_1230
../%20adr/ids_sapi_081.html#ids_sapi_081
../%20adr/ids_sapi_081.html#ids_sapi_081
../%20adr/ids_sapi_081.html#ids_sapi_081
../%20adr/ids_sapi_081.html#ids_sapi_081


HCL Informix 14.10 - Performance Guide

210

Related information

PFSC_BOOST configuration parameter  on page 

Table and fragment pfsc_boost argument: Enable or disable a boosted PFSC  on page 

onstat -g pfsc command: Print partition free space cache information  on page 

Indexes and index performance considerations
Informix®  provides several types of indexes. Some performance issues are associated with indexes.

Types of indexes
Informix®  uses B-tree indexes, R-tree indexes, functional indexes, and indexes that DataBlade®  modules provide for user-

defined data. The server also uses forest of trees (FOT) indexes, which are alternatives to B-tree indexes.

Related information

What is a functional index?  on page 238

B-tree indexes
Informix®  uses a B-tree index for columns that contain built-in data types (referred to as a traditional B-tree index), columns 

that contain one-dimensional user-defined data types (referred to as a generic  B-tree index), and values that a user-defined 

data type returns.

Built-in data types include character, datetime, integer, float, and so forth. For more information about built-in data types, see 

HCL®  Informix®  Guide to SQL: Reference.

User-defined data types include opaque and distinct data types. For more information about user-defined data types, see 

HCL®  Informix®  User-Defined Routines and Data Types Developer's Guide.

The return value of a user-defined function can be a built-in or user-defined data type, but not a simple large object (TEXT 

or BYTE data type) or a smart large object (BLOB or CLOB data type). For more information about how to use functional 

indexes, see Using a functional index  on page 237.

For information about how to estimate B-tree index size, see Estimating index pages  on page 213.

Structure of conventional index pages
A conventional index is arranged as a hierarchy of pages (technically, a B-tree).

The following figure shows the B-tree structure of an index. The topmost level of the hierarchy contains a single root page. 

Intermediate levels, when needed, contain branch pages. Each branch page contains entries that see a subset of pages in 

the next level of the index. The bottom level of the index contains a set of leaf pages. Each leaf page contains a list of index 

entries that see rows in the table.

../%20adr/ids_adr_pfsc_boost.html
../%20adr/ids_adr_pfsc_boost.html
../%20adr/ids_adr_pfsc_boost.html
../%20adr/ids_adr_pfsc_boost.html
../%20adr/ids_sapi_boost_pfsc.html
../%20adr/ids_sapi_boost_pfsc.html
../%20adr/ids_sapi_boost_pfsc.html
../%20adr/ids_sapi_boost_pfsc.html
../%20adr/ids_adr_onstatgpfsc.html
../%20adr/ids_adr_onstatgpfsc.html
../%20adr/ids_adr_onstatgpfsc.html
../%20adr/ids_adr_onstatgpfsc.html


Chapter 1. Performance Guide

Figure  28. B-tree structure of an index

The number of levels needed to hold an index depends on the number of unique keys in the index and the number of index 

entries that each page can hold. The number of entries per page depends, in turn, on the size of the columns being indexed.

If the index page for a given table can hold 100 keys, a table of up to 100 rows requires a single index level: the root page. 

When this table grows beyond 100 rows, to a size between 101 and 10,000 rows, it requires a two-level index: a root page and 

between 2 and 100 leaf pages. When the table grows beyond 10,000 rows, to a size between 10,001 and 1,000,000 rows, it 

requires a three-level index: the root page, a set of 100 branch pages, and a set of up to 10,000 leaf pages.

Index entries contained within leaf pages are sorted in key-value order. An index entry consists of a key and one or more row 

pointers. The key is a copy of the indexed columns from one row of data. A row pointer provides an address used to locate a 

row that contains the key. A unique index contains one index entry for every row in the table.

For information about special indexes for Informix®, see Indexes on user-defined data types  on page 233.

Related information

Forest of trees indexes  on page 211

Forest of trees indexes
A forest of trees index is like a B-tree index, but it has multiple root nodes and potentially fewer levels. Multiple root nodes 

can alleviate root node contention, because more concurrent users can access the index. A forest of trees index can also 

improve the performance of a query by reducing the number of levels involved in buffer read operations.

You can create a forest of trees index as an alternative to a B-Tree index, but not as an alternative to an R-Tree index or other 

types of indexes.

Unlike a traditional B-tree index, which contains one root node, a forest of trees index is a large B-Tree index that is divided 

into smaller subtrees (which you can think of as buckets). These subtrees contain multiple root nodes and leaves. The 

following figure shows the structure of a forest of trees index.

211



HCL Informix 14.10 - Performance Guide

212

Figure  29. Structure of a forest of trees index

Informix®  stores and retrieves an item from a subtree by:

1. Computing a hash value from the columns that you selected when creating the index.

2. Mapping the hash value to a subtree for storage or retrieval of the row.

Forest of trees indexes are detached indexes. The server does not support forest of trees attached indexes.

You create a forest of trees index with the CREATE INDEX statement of SQL and the HASH ON clause.

You enable or disable forest of trees indexes with the SET INDEXES statement of SQL.

You can identify a forest of trees index by the FOT  indicator in the Index Name  field in SET EXPLAIN output.

You can look up the number of hashed columns and subtrees in a forest of trees index by viewing information in the 

sysindices  table for the database containing tables that have forest of trees indexes.

The server treats a forest of trees index the same way it treats a B-tree index. Therefore, in a logged database, you can 

control how the B-tree scanner threads remove deletions from both forest of trees and B-tree indexes.

Restrictions: You cannot:

• Create forest of trees indexes on columns with complex data types, UDTs, or functional columns.

• Use the FILLFACTOR option of the CREATE INDEX statement when you create forest of trees indexes, because the 

indexes are built from top to bottom.

• Create clustered forest of trees indexes.

• Run the ALTER INDEX statement on forest of trees indexes.

• Run the SET INDEXES statement on forest of trees indexes in a database of secondary servers within a cluster 

environment.

• Use forest of trees indexes in queries that use aggregates, including minimum and maximum range values.

• Perform range scans directly on the HASH ON columns of a forest of trees index.

However, you can perform range scans on columns that are not listed in the HASH ON column list. For range scans 

on columns listed in HASH ON column list, you must create an additional B-tree index that contains the appropriate 



Chapter 1. Performance Guide

column list for the range scan. This additional B-tree index might have the same column list as the forest of trees 

index, plus or minus a column.

• Use a forest of trees index for an OR  index path. The database server does not use forest of trees indexes for queries 

that have an OR  predicate on the indexed columns.

Related information

Improve query performance with a forest of trees index  on page 223

Detecting root node contention  on page 224

Creating a forest of trees index  on page 225

Disabling and enabling a forest of trees index  on page 225

Determining if you are using a forest of trees index  on page 227

Structure of conventional index pages  on page 210

CREATE INDEX statement  on page 

HASH ON clause  on page 

R-tree indexes
Informix®  uses an R-tree index for spatial data (such as two-dimensional or three-dimensional data).

For information about sizing an R-tree index, see the HCL®  Informix®  R-Tree Index User's Guide.

Indexes that DataBlade®  modules provide
DataBlade®  modules can contain user-defined data types. A DataBlade®  module can also provide a user-defined index for 

the new data type.

For example, the Excalibur Text Search DataBlade®  provides an index to search text data. For more information, see the 

Informix®  Excalibur Text Search DataBlade®.

For more information about the types of data and functions that each DataBlade®  module provides, see the user guide of 

each DataBlade®  module. For information about how to determine the types of indexes available in your database, see 

Identifying the available access methods  on page 235.

Estimating index pages
The index pages associated with a table can add significantly to the size of a dbspace.

By default, the database server creates the index in the same dbspace as the table, but in a separate tblspace from the table. 

To place the index in a separate dbspace, specify the IN keyword in the CREATE INDEX statement.

Although you cannot explicitly specify the extent size of an index, you can estimate the number of pages that an index might 

occupy to determine if your dbspace or dbspaces have enough space allocated.

213

../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_2293.html#ids_sqs_2293
../sqs/ids_sqs_2293.html#ids_sqs_2293
../sqs/ids_sqs_2293.html#ids_sqs_2293
../sqs/ids_sqs_2293.html#ids_sqs_2293


HCL Informix 14.10 - Performance Guide

214

Index extent sizes
The database server determines the extent size of an index based on the extent size for the corresponding table, regardless 

of whether the index is fragmented or not fragmented.

Formula for estimating the extent size of an attached index
For an attached index, the database server uses the ratio of the index key size to the row size to assign an appropriate extent 

size for the index.

The following formula shows how the database server uses the ratio of the index key size to the row size:

Index extent size = (index_key_size /
table_row_size) *
   table_extent_size

In this formula:

• index_key_size  is the total widths of the indexed column or columns plus 5 for a key descriptor.

• table_row_size  is the sum of all the columns in the row.

• table_extent_size  is the value that you specify in the EXTENT SIZE keyword of the CREATE TABLE statement.

If the index is not unique, then the extent size is reduced by 20 percent.

The database server also uses this same ratio for the next-extent size for the index:

Index next extent size =
(index_key_size/table_row_size)*
   table_next_extent_size

Formula for estimating the extent size of a detached index
For a detached index, the database server uses the ratio of the index key size plus some overhead bytes to the row size to 

assign an appropriate extent size for the index.

The following formula shows how the database server uses the ratio of the index key size plus some overhead bytes to the 

row size:

Detached Index extent size = ( (index_key_size  +
9) /                              table_row_size) *
 table_extent_size

For example, suppose you have the following values:

index_key_size = 8 bytes

table_row_size = 33 bytes

table_extent_size = 150 * 2-kilobyte page

The above formula calculates the extent size as follows:

Detached Index extent size = ( (8  + 9) /
33) * 150 * 2-kilobyte page

                           = (17/33) * 300 kilobytes
                           = 154 kilobytes



Chapter 1. Performance Guide

Important:  For a non-unique index, the formula calculates an extent size that is reduced by 20 percent.

Estimating conventional index pages
You can estimate the size of index pages, using a series of formulas.

About this task

To estimate the number of index pages:

1. Add up the total widths of the indexed column or columns.

This value is referred to as colsize. Add 4 to colsize  to obtain keysize, the actual size of a key in the index. For 

example, if colsize  is 6, the value of keysize  is 10.

2. Calculate the expected proportion of unique entries to the total number of rows.

The formulas in subsequent steps see this value as propunique.

If the index is unique or has few duplicate values, use 1 for propunique.

If a significant proportion of entries are duplicates, divide the number of unique index entries by the number of rows 

in the table to obtain a fractional value for propunique. For example, if the number of rows in the table is 4,000,000 

and the number of unique index entries is 1,000,000, the value of propunique  is .25.

If the resulting value for propunique  is less than .01, use .01 in the calculations that follow.

3. Estimate the size of a typical index entry with one of the following formulas, depending on whether the table is 

fragmented or not:

a. For nonfragmented tables, use the following formula:

entrysize = (keysize  * propunique) + 5 + 4

The value 5 represents the number of bytes for the row pointer in a nonfragmented table.

For nonunique indexes, the database server stores the row pointer for each row in the index node but stores 

the key value only once. The entrysize  value represents the average length of each index entry, even though 

some entries consist of only the row pointer.

For example, if propunique  is .25, the average number of rows for each unique key value is 4. If keysize  is 

10, the value of entrysize  is 11.5, calculated as (10 * 0.25) + 5 + 4 = 2.5 + 9 = 11.5. The following calculation 

shows the space required for all four rows:

space for four rows = 4 * 11.5 = 46

This space requirement is the same when you calculate it for the key value and add the four row pointers, as 

the following formula shows:

space for four rows = 10 + (4 * 9) = 46

215



HCL Informix 14.10 - Performance Guide

216

b. For fragmented tables, use the following formula:

entrysize = (keysize  * propunique) + 9 + 4

The value 9 represents the number of bytes for the row pointer in a fragmented table.

4. Estimate the number of entries per index page with the following formula:

pagents = trunc(pagefree/entrysize)

In this formula:

◦ pagefree  is the page size minus the page header (2020 for a 2-kilobyte page size).

◦ entrysize  is the size of a typical index entry, which you estimated in the previous step.

The trunc()  function notation indicates that you should round down to the nearest integer value.

5. Estimate the number of leaf pages with the following formula:

leaves = ceiling(rows/pagents) 

In this formula:

◦ rows  is the number of rows that you expect to be in the table.

◦ pagents  is the number of entries per index page, which you estimated in the previous step.

The ceiling()  function notation indicates that you should round up to the nearest integer value.

6. Estimate the number of branch pages at the second level of the index with the following formula:

branches0  = ceiling(leaves/node_ents)

Calculate the value for node_ents  with the following formula:

node_ents = trunc( pagefree / ( keysize  + 4) + 4)

In this formula:

◦ pagefree   is the page size minus the page header (2020 for a 2-kilobyte page size).

◦ keysize  is the colsize  plus 4. You obtained this value in step 1.

In the formula, 4 represents the number of bytes for the leaf node pointer.

7. If the value of branches0  is greater than 1, more levels remain in the index.

To calculate the number of pages contained in the next level of the index, use the following formula:

branchesn+1  = ceiling(branchesn/node_ents)

In this formula:

◦ branchesn  is the number of branches for the last index level that you calculated.

◦ branchesn+1  is the number of branches in the next level.

◦ node_ents  is the value that you calculated in step 6.

8. Repeat the calculation in step 7 for each level of the index until the value of branchesn+1 equals 1.



Chapter 1. Performance Guide

9. Add up the total number of pages for all branch levels calculated in steps 6 through 8. This sum is called branchtotal.

10. Use the following formula to calculate the number of pages in the compact index:

compactpages = (leaves  + branchtotal)

11. If your database server instance uses a fill factor for indexes, the size of the index increases.

The default fill factor value is 90 percent. You can change the fill factor value for all indexes with the FILLFACTOR 

configuration parameter. You can also change the fill factor for an individual index with the FILLFACTOR clause of the 

CREATE INDEX statement in SQL.

To incorporate the fill factor into your estimate for index pages, use the following formula:

indexpages = 100 * compactpages / FILLFACTOR

Results

The preceding estimate is a guideline only. As rows are deleted and new ones are inserted, the number of index entries can 

vary within a page. This method for estimating index pages yields a conservative (high) estimate for most indexes. For a 

more precise value, build a large test index with real data and check its size with the oncheck  utility.

Tip:  A forest of trees index can be larger than a B-Tree index. When you estimate the size of a forest of trees index, 

the estimates apply to each subtree in the index. Then, you must aggregate the buckets to calculate the total 

estimation.

Managing indexes
An index on the appropriate column can save thousands, tens of thousands, or in extreme cases, even millions of disk 

operations during a query. However, indexes entail costs.

An index is necessary on any column or combination of columns that must be unique. However, as discussed in Queries and 

the query optimizer  on page 295, the presence of an index can also allow the query optimizer to speed up a query.

The optimizer can use an index in the following ways:

• To replace repeated sequential scans of a table with nonsequential access

• To avoid reading row data when processing expressions that name only indexed columns

• To avoid a sort (including building a temporary table) when executing the GROUP BY and ORDER BY clauses

Related information

Using a functional index  on page 237

217



HCL Informix 14.10 - Performance Guide

218

Space costs of indexes
The first cost of an index is disk space. The presence of an index can add many pages to a dbspace; it is easy to have as 

many index pages as row pages in an indexed table. Additionally, in an environment where multiple languages are used, 

indexes created for each language require additional disk space.

When you consider space costs, also consider whether increasing the page size of a standard or temporary dbspace is 

beneficial in your environment. If you want a longer key length than is available for the default page size, you can increase the 

page size. If you increase the page size, the size must be an integral multiple of the default page size, not greater than 16K 

bytes.

You might not want to increase the page size if your application contains small sized rows. Increasing the page size for an 

application that randomly accesses small rows might decrease performance. In addition, a page lock on a larger page will 

lock more rows, reducing concurrency in some situations.

You can save disk space by compressing detached B-tree indexes, consolidating free space in the index, and returning the 

free space to the dbspace.

Related information

B-tree index compression  on page 

Time costs of indexes
The second cost of an index is time whenever the table is modified.

The following descriptions assume that approximately two pages must be read to locate an index entry. That is the case 

when the index consists of a root page, one level of branch pages, and a set of leaf pages. The root page is assumed to be in 

a buffer already. The index for a very large table has at least two intermediate levels, so about three pages are read when the 

database server references such an index.

Presumably, one index is used to locate a row being altered. The pages for that index might be found in page buffers in 

shared memory for the database server. However, the pages for any other indexes that need altering must be read from disk.

Under these assumptions, index maintenance adds time to different kinds of modifications, as the following list shows:

• When you delete a row from a table, the database server must delete its entries from all indexes.

The database server must look up the entry for the deleted row (two or three pages in) and rewrite the leaf page. The 

write operation to update the index is performed in memory, and the leaf page is flushed when the least recently used 

(LRU) buffer that contains the modified page is cleaned. This operation requires two or three page accesses to read 

the index pages if needed and one deferred page access to write the modified page.

• When you insert a row, the database server must insert its entries in all indexes.

The database server must find a place in which to enter the inserted row within each index (two or three pages in) 

and rewrite (one deferred page out), for a total of three or four immediate page accesses per index.

../admin%20/ids_admin_1401.html#ids_admin_1401
../admin%20/ids_admin_1401.html#ids_admin_1401
../admin%20/ids_admin_1401.html#ids_admin_1401
../admin%20/ids_admin_1401.html#ids_admin_1401


Chapter 1. Performance Guide

• When you update a row, the database server must look up its entries in each index that applies to an altered column 

(two or three pages in).

The database server must rewrite the leaf page to eliminate the old entry (one deferred page out) and then locate the 

new column value in the same index (two or three more pages in) and the row entered (one more deferred page out).

Insertions and deletions change the number of entries on a leaf page. Although virtually every pagents  operation requires 

some additional work to deal with a leaf page that has either filled or been emptied, if pagents  is greater than 100, this 

additional work occurs less than 1 percent of the time. You can often disregard it when you estimate the I/O impact.

In short, when a row is inserted or deleted at random, allow three to four added page I/O operations per index. When a row 

is updated, allow six to eight page I/O operations for each index that applies to an altered column. If a transaction is rolled 

back, all this work must be undone. For this reason, rolling back a transaction can take a long time.

Because the alteration of the row itself requires only two page I/O operations, index maintenance is clearly the most time-

consuming part of data modification. For information about one way to reduce this cost, see Clustering  on page 221.

Unclaimed index space
A background thread, the B-tree scanner, identifies an index with the most unclaimed index space. Unclaimed index space 

degrades performance and causes extra work for the server. When an index is chosen for scanning, the entire leaf of the 

index is scanned for deleted (dirty) items that were committed, but not yet removed from the index. The B-tree scanner 

removes these items when necessary.

The B-tree scanner allows multiple threads.

Use the BTSCANNER configuration parameter to specify the number of B-tree scanner threads to start and the priority of the 

B-tree scanner threads when the database server starts. For details, see the HCL®  Informix®  Administrator's Reference.

You can invoke the B-tree scanner from the command line.

Indexes on columns
You can create an index for one or more columns in a table. Indexes are required on columns that must be unique and are 

not specified as primary keys.

In addition, you must add an index on columns that:

• Are used in joins that are not specified as foreign keys

• Are frequently used in filter expressions

• Are frequently used for ordering or grouping

• Do not involve duplicate keys

• Are amenable to clustered indexing

219



HCL Informix 14.10 - Performance Guide

220

Filtered columns in large tables
If a column is often used to filter the rows of a large table, consider placing an index on it. The optimizer can use the index to 

select the wanted columns and avoid a sequential scan of the entire table.

Suppose you have a table that contains a large mailing list. If you find that a postal-code column is often used to filter a 

subset of rows, consider putting an index on that column.

This strategy yields a net savings of time only when the selectivity of the column is high; that is, when only a small fraction 

of rows holds any one indexed value. Nonsequential access through an index takes several more disk I/O operations than 

sequential access does, so if a filter expression on the column passes more than a fourth of the rows, the database server 

might as well read the table sequentially.

As a rule, indexing a filter column saves time in the following cases:

• The column is used in filter expressions in many queries or in slow queries.

• The column contains at least 100 unique values.

• Most column values appear in fewer than 10 percent of the rows.

Order-by and group-by columns
You can place an index on the ordering column or columns of a table. The database server then uses the index that to sort 

the query results in the most efficient manner.

When a large quantity of rows must be ordered or grouped, the database server must put the rows in order. One way that 

the database server performs this task is to select all the rows into a temporary table and sort the table. But, as explained in 

Queries and the query optimizer  on page 295, if the ordering columns are indexed, the optimizer sometimes reads the rows 

in sorted order through the index, thus avoiding a final sort.

Because the keys in an index are in sorted sequence, the index really represents the result of sorting the table. By placing 

an index on the ordering column or columns, you can replace many sorts during queries with a single sort when the index is 

created.

Avoiding columns with duplicate keys
Duplicate keys in indexes can cause performance problems. You can take steps to avoid these problems.

When duplicate keys are permitted in an index, entries that match a given key value are grouped in lists. The database server 

uses these lists to locate rows that match a requested key value. When the selectivity of the index column is high, these lists 

are generally short. But when only a few unique values occur, the lists become long and can cross multiple leaf pages.

Placing an index on a column that has low selectivity (that is, a small number of distinct values relative to the number of 

rows) can reduce performance. In such cases, the database server must not only search the entire set of rows that match 

the key value, but it must also lock all the affected data and index pages. This process can impede the performance of other 

update requests as well.



Chapter 1. Performance Guide

To correct this problem, replace the index on the low-selectivity column with a composite index that has a higher selectivity. 

Use the low-selectivity column as the leading column and a high-selectivity column as your second column in the index. The 

composite index limits the number of rows that the database server must search to locate and apply an update.

You can use any second column to disperse the key values as long as its value does not change, or changes at the same 

time as the real key. The shorter the second column the better, because its values are copied into the index and expand its 

size.

Clustering
Clustering is a method for arranging the rows of a table so that their physical order on disk closely corresponds to the 

sequence of entries in the index.

(Do not confuse the clustered index with an optical cluster, which is a method for storing logically related TEXT or BYTE data 

together on an optical volume.)

When you know that a table is ordered by a certain index, you can avoid sorting. You can also be sure that when the table 

is searched on that column, it is read effectively in sequential order, instead of nonsequentially. These points are covered in 

Queries and the query optimizer  on page 295.

Tip:  For information about eliminating interleaved extents by altering an index to cluster, see Creating or altering an 

index to cluster  on page 185.

In the stores_demo  database, the orders  table has an index, zip_ix, on the postal-code column. The following statement 

causes the database server to put the rows of the customer  table in descending order by postal code:

ALTER INDEX zip_ix TO CLUSTER

To cluster a table on a nonindexed column, you must create an index. The following statement reorders the orders  table by 

order date:

CREATE CLUSTER INDEX o_date_ix ON orders (order_date ASC)

To reorder a table, the database server must copy the table. In the preceding example, the database server reads all the rows 

in the table and constructs an index. Then it reads the index entries in sequence. For each entry, it reads the matching row of 

the table and copies it to a new table. The rows of the new table are in the desired sequence. This new table replaces the old 

table.

Clustering is not preserved when you alter a table. When you insert new rows, they are stored physically at the end of the 

table, regardless of their contents. When you update rows and change the value of the clustering column, the rows are 

written back into their original location in the table.

Clustering can be restored after the order of rows is disturbed by ongoing updates. The following statement reorders the 

table to restore data rows to the index sequence:

ALTER INDEX o_date_ix TO CLUSTER

221



HCL Informix 14.10 - Performance Guide

222

Reclustering is usually quicker than the original clustering because reading out the rows of a nearly clustered table is similar 

in I/O impact to a sequential scan.

Clustering and reclustering take a lot of space and time. To avoid some clustering, build the table in the desired order initially.

Related information

Reclaiming space in an empty extent with ALTER INDEX  on page 186

Configuration parameters that affect the degree of clustering
The clust  field in the sysindexes  or the sysindices  table represents the degree of clustering of the index. The values of 

several configuration parameters affect the clust  field.

The value of this field is affected by:

• The size of the buffer pool as specified by the BUFFERPOOL configuration parameter

• The value in the buffers  field of the BUFFERPOOL configuration parameter

• The DS_MAX_QUERIES configuration parameter, which specifies the maximum number of PDQ queries that can run 

concurrently

Each of these configuration parameters affects the amount of buffer space available for a single user session. Additional 

buffers can result in better clustering (a smaller clust  value in the sysindexes  or sysindices  tables).

You can create more buffers by performing one or both of the following tasks:

• Increasing the size of the buffer pool by updating the value of the BUFFERPOOL configuration parameter

• Decreasing the value of the DS_MAX_QUERIES configuration parameter

Related information

BUFFERPOOL configuration parameter  on page 

DS_MAX_QUERIES configuration parameter  on page 

Nonunique indexes
In some applications, most table updates can be confined to a single time period. You might be able to set up your system 

so that all updates are applied overnight or on specified dates. Additionally, when updates are performed as a batch, you 

can drop all nonunique indexes while you make updates and then create new indexes afterward. This strategy can improve 

performance.

About this task

Dropping nonunique indexes can have the following positive effects:

../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0029.html#ids_adr_0029
../%20adr/ids_adr_0062.html#ids_adr_0062
../%20adr/ids_adr_0062.html#ids_adr_0062
../%20adr/ids_adr_0062.html#ids_adr_0062
../%20adr/ids_adr_0062.html#ids_adr_0062


Chapter 1. Performance Guide

• The updating program can run faster with fewer indexes to update. Often, the total time to drop the indexes, update 

without them, and re-create them is less than the time to update with the indexes in place. (For a discussion of the 

time cost of updating indexes, see Time costs of indexes  on page 218.)

• Newly made indexes are more efficient. Frequent updates tend to dilute the index structure so that it contains many 

partly full leaf pages. This dilution reduces the effectiveness of an index and wastes disk space.

As a time-saving measure, make sure that a batch-updating program calls for rows in the sequence that the primary-key 

index defines. That sequence causes the pages of the primary-key index to be read in order and only one time each.

The presence of indexes also slows down the population of tables when you use the LOAD statement or the dbload  utility. 

Loading a table that has no indexes is a quick process (little more than a disk-to-disk sequential copy), but updating indexes 

adds a great deal of overhead.

To avoid this overhead, you can:

1. Drop the table (if it exists).

2. Create the table without specifying any unique constraints.

3. Load all rows into the table.

4. Alter the table to apply the unique constraints.

5. Create the nonunique indexes.

If you cannot guarantee that the loaded data satisfies all unique constraints, you must create unique indexes before you load 

the rows. It saves time if the rows are presented in the correct sequence for at least one of the indexes. If you have a choice, 

make it the row with the largest key. This strategy minimizes the number of leaf pages that must be read and written.

Improve query performance with a forest of trees index
A forest of trees index is an alternate indexing method that alleviates the performance bottlenecks and root node contention 

that can occur when many concurrent users access a traditional B-tree index.

About this task

A forest of trees index differs from a B-tree index in that it has multiple root nodes and fewer levels. Multiple root nodes can 

alleviate root node contention, because more concurrent users can access the index.

If you know that a particular table has a deep tree, you can improve performance by creating a forest of trees index with 

fewer levels in the tree. For example, suppose you create an index where one of the columns is a 100 byte column containing 

character data. If you have a large number of rows in that table, the tree might contain six or seven levels. If you create a 

forest of trees index instead of a B-tree index, you can create more than one tree with four levels, so that every index traversal 

goes only four levels deep rather than seven levels deep.

Related information

Forest of trees indexes  on page 211

223



HCL Informix 14.10 - Performance Guide

224

Detecting root node contention
You can analyze the output of the onstat -g spi  command to identify the performance bottlenecks that a forest of trees index 

can alleviate.

About this task

To detect root node contention and determine whether you need a forest of trees index:

1. Run the onstat -g spi | sort -nr  command to display information about spin locks with long spins.

The output of the onstat -g spi  command shows spin locks with waits, which occur when threads are reading from or 

writing to an index concurrently and a particular thread did not succeed in acquiring the lock on the first try.

2. Analyze the onstat -g spioutput. Look for loop and wait information in these columns:

Num Waits: The Total number of times a thread waited for the spin lock.

Num Loops: The total number of attempts before a thread successfully acquired the spin lock.

Avg Loop/Wait: The average number of attempts to acquire the spin lock, computed as Num Loops / Num Waits.

For example, the following output snippet shows spin locks with large numbers of waits and loops:

Spin locks with waits:
Num Waits Num Loops Avg Loop/Wait Name
332480    1568908   4.72  fast mutex, 3:bf[1234] 0x2d00008   0x1028a0d8000
39722     498769    12.56 mutex lock, name = log
20761     101831    4.90  fast mutex, 7:bf[62] 0x1300003   0x109da128000
14818     77680     5.24  mutex lock, name = MGM mutex
6523      34350     5.27  fast mutex, 3:bf[362] 0x20008e    0x10289a08000

3. Query sysmaster:systabnames  with the hexadecimal representation of the part number shown in the onstat -g spi 

output. If the tabname  represents an index name, the index is a forest of trees candidate.

For example, run this query:

echo "select tabname, hex(partnum) from systabnames
 where hex(partnum) =  '0x02d00008'" | dbaccess sysmaster -
 

tabname       daily_market_idx
(expression)  0x02d00008
 

$ echo 'select tabname, hex(partnum) from systabnames'
 where hex(partnum) = 0x01300003  | dbaccess sysmaster -
 

tabname       trade_history_idx
(expression)  0x01300003
 

$ echo 'select tabname, hex(partnum) from systabnames'
 where hex(partnum) = 0x0020008E | dbaccess sysmaster -
 

tabname       trade_request_idx2
(expression)  0x0020008E

Result



Chapter 1. Performance Guide

Related information

Forest of trees indexes  on page 211

onstat -g spi command: Print spin locks with long spins  on page 

Creating a forest of trees index
You use the CREATE INDEX statement with the HASH ON clause to create a forest of trees index.

Before you begin

Prerequisite: Determine whether you need a forest of trees index to reduce performance bottlenecks and contention or to 

reduce the number of levels in a traditional B-Tree index.

About this task

To create a forest of trees index:

1. Choose the columns for the index and determine the number of subtrees to create.

2. Create the index by using the CREATE INDEX statement with the HASH ON clause:

For example, the following command creates a forest of trees index with 100 subtrees (buckets) on the C1 column:

CREATE INDEX fotidx  ON tab(c1) hash on (c1) with 100 buckets

After you create a forest of trees index, it is enabled.

What to do next

You can monitor onstat -g spi  command output to verify that root node contention no longer occurs. If you identify 

performance bottlenecks that are caused by highly contended spin locks, you can rebuild the forest of trees index with more 

buckets.

Related information

Forest of trees indexes  on page 211

CREATE INDEX statement  on page 

HASH ON clause  on page 

Disabling and enabling a forest of trees index
You can use the INDEXES DISABLED option of the SET Database Object Mode statement of SQL to disable a forest of trees 

index, if you want the server to stop updating the index and to stop using it during queries. After you are ready to put the 

index into production, you can use the INDEXES ENABLED option to re-enable it.

Before you begin

225

../%20adr/ids_adr_0578.html#ids_adr_0578
../%20adr/ids_adr_0578.html#ids_adr_0578
../%20adr/ids_adr_0578.html#ids_adr_0578
../%20adr/ids_adr_0578.html#ids_adr_0578
../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_2293.html#ids_sqs_2293
../sqs/ids_sqs_2293.html#ids_sqs_2293
../sqs/ids_sqs_2293.html#ids_sqs_2293
../sqs/ids_sqs_2293.html#ids_sqs_2293


HCL Informix 14.10 - Performance Guide

226

About this task

To disable a forest of trees index:

Run the SET INDEXES DISABLED statement of SQL.

Example

For example, for an index named fotidx, specify:

SET INDEXES fotidx DISABLED;

What to do next

You can re-enable a disabled forest of trees index, for example, by specifying:

SET INDEXES fotidx ENABLED;

Related information

Forest of trees indexes  on page 211

Performing a range scan on a forest of trees index
While you cannot perform range scans directly on the HASH ON columns of a forest of trees index, you can perform range 

scans on the columns that are not listed in the HASH ON column list. To perform range scans on columns that are listed 

in HASH ON column list, you must create an additional B-tree index that contains the appropriate column list for the range 

scan.

About this task

To create indexes for range scans:

1. Create a forest of trees index with at least one column that is not hashed.

For example, specify:

CREATE INDEX idx1 on tab(c1,c2) HASH ON (c1) with 100 buckets;

You can perform a range scan directly on column c2, but not on column c1, which is listed in HASH ON column list.

2. For range scans on the columns listed in HASH ON column list, create an additional B-tree index that contains the 

appropriate column list for the range scan. This additional B-tree index might have the same column list as the forest 

of trees index, plus or minus a column.

For example, specify:

CREATE INDEX idx2 on tab(c1, c2, c3);



Chapter 1. Performance Guide

Related information

CREATE INDEX statement  on page 

HASH ON clause  on page 

Determining if you are using a forest of trees index
You can determine whether an index is a forest of trees index by viewing SET EXPLAIN output. A forest of trees index has FOT 

in the Index Name  field of the output.

Example

In the following example of partial SET EXPLAIN output, informix.fot_idx  is the name of a forest of trees index.

Estimated Cost: 1
Estimated # of Rows Returned: 1
 

  1) informix.t: INDEX PATH
 

    (1) Index Name: informix.fot_idx (FOT)
        Index Keys: c1 c2   (Serial, fragments: ALL)
        Lower Index Filter: informix.t.c1 = 1

Related information

Forest of trees indexes  on page 211

Finding the number of hashed columns and subtrees in a forest of trees index
You can look up the number of hashed columns and subtrees in a forest of trees index by viewing information in the 

sysindices  table for the database containing tables that have forest of trees indexes.

About this task

To view information about a forest of trees index:

1. Query the sysindices  table for the index.

2. Go to the row containing the forest of trees index and view information in the nhashcols  and nbuckets  columns.

Creating and dropping an index in an online environment
You can use the CREATE INDEX ONLINE and DROP INDEX ONLINE statements to create and drop an index in an online 

environment, when the database and its associated tables are continuously available.

The CREATE INDEX ONLINE statement enables you to create an index without having an exclusive lock placed over the table 

during the duration of the index build. You can use the CREATE INDEX ONLINE statement even when reads or updates are 

occurring on the table. This means index creation can begin immediately.

227

../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_0401.html#ids_sqs_0401
../sqs/ids_sqs_2293.html#ids_sqs_2293
../sqs/ids_sqs_2293.html#ids_sqs_2293
../sqs/ids_sqs_2293.html#ids_sqs_2293
../sqs/ids_sqs_2293.html#ids_sqs_2293


HCL Informix 14.10 - Performance Guide

228

When you create an index online, the database server logs the operation with a flag, so data recovery and restore operations 

can recreate the index.

When you create an index online, you can use the ONLIDX_MAXMEM configuration parameter to limit the amount of memory 

that is allocated to the preimage  log pool and to the updator  log pool in shared memory. You might want to do this if you plan 

to complete other operations on a table column while executing the CREATE INDEX ONLINE statement on the column. For 

more information about this parameter, see Limiting memory allocation while creating indexes online  on page 229.

The DROP INDEX ONLINE statement enables you to drop indexes even when Dirty Read is the transaction isolation level.

The advantages of creating indexes using the CREATE INDEX ONLINE statement are:

• If a new index is needed to improve the performance of queries on a table, you can immediately create the index 

without a lock placed over the table.

• The database server can create an index while a table is being updated.

• The table is available for the duration of the index build.

• The query optimizer can establish better query plans, since the optimizer can update statistics in unlocked tables.

The advantages of dropping indexes using the DROP INDEX ONLINE statement are:

• You can drop an inefficient index without disturbing ongoing queries that are using that index.

• After the index is flagged, the query optimizer will not use the index for new SELECT operations on tables.

If you initiate a DROP INDEX ONLINE statement for a table that is being updated, the operation does not occur until after 

the table update is completed. After you issue the DROP INDEX ONLINE statement, no one can reference the index, but 

concurrent operations can use the index until the operations terminate. The database server waits to drop the index until all 

users have finished accessing the index.

An example of creating an index in an online environment is:

CREATE INDEX idx_1 ON table1(col1) ONLINE

An example of dropping an index in an online environment is:

DROP INDEX idx_1 ONLINE

For more information about the CREATE INDEX ONLINE and DROP INDEX ONLINE statements, see the HCL®  Informix® 

Guide to SQL: Syntax.

When you cannot create or drop indexes online
You cannot use the CREATE INDEX ONLINE and the DROP INDEX ONLINE statements under certain circumstances.

You cannot use the CREATE INDEX ONLINE statement:

• To create an index at the same time that a table is being altered

• To create a clustered index



Chapter 1. Performance Guide

• To create a Virtual-Index Interface (VII) /R-tree index

• To create a functional index

• To create an index that is partitioned by an interval fragmentation strategy

• To create an index on a table that is partitioned by an interval fragmentation strategy

You cannot use the DROP INDEX ONLINE statement:

• To drop a Virtual-Index Interface (VII) /R-tree index

• To drop a clustered index

Creating attached indexes in an online environment
You can create attached indexes using the CREATE INDEX ONLINE statement, but the statement only operates when Dirty 

Read is the transaction isolation level.

The index creation takes an exclusive lock on the table and waits for all other concurrent processes scanning the table to 

quit using the index partitions before creating the attached index. If the table is being read or updated, the CREATE INDEX 

ONLINE statement waits for the exclusive lock for the duration of the lock mode setting.

Limiting memory allocation while creating indexes online
The ONLIDX_MAXMEM configuration parameter limits the amount of memory that is allocated to a single preimage  pool and 

a single updator  log pool.

The preimage and updator log pools, pimage_<partnum>  and ulog_<partnum>,  are shared memory pools that are created 

when a CREATE INDEX ONLINE statement is executed. The pools are freed when the execution of the statement is 

completed.

The default value of the ONLIDX_MAXMEM configuration parameter is 5120  kilobytes. The minimum value that you can 

specify is 16  kilobytes; the maximum value is 4294967295  kilobytes.

You can set the ONLIDX_MAXMEM configuration parameter before starting the database server, or you can change it 

dynamically through the onmode -wf  and onmode -wm  commands.

Improving performance for index builds
You can improve performance for index builds by adjusting the PDQ priority and by allocating enough memory and temporary 

space for the entire index.

About this task

Whenever possible, the database server uses parallel processing to improve the response time of index builds. The number 

of parallel processes is based on the number of fragments in the index and the value of the PSORT_NPROCS  environment 

variable. The database server builds the index with parallel processing even when the value of PDQ priority is 0.

You can often improve the performance of an index build by taking the following steps:

229



HCL Informix 14.10 - Performance Guide

230

1. Set PDQ priority to a value greater than 0  to obtain more memory than the default 128 kilobytes.

When you set PDQ priority to greater than 0, the index build can take advantage of the additional memory for parallel 

processing.

To set PDQ priority, use either the PDQPRIORITY  environment variable or the SET PDQPRIORITY statement in SQL.

2. Do not set the PSORT_NPROCS  environment variable.

If you have a computer with multiple CPUs, the database server uses two threads per sort when it sorts index keys 

and PSORT_NPROCS  is not set. The number of sorts depends on the number of fragments in the index, the number 

of keys, the key size, and the values of the PDQ memory configuration parameters.

3. Allocate enough memory and temporary space to build the entire index.

a. Estimate the amount of virtual shared memory that the database server might need for sorting.

For more information, see Estimating memory needed for sorting  on page 230.

b. Specify more memory with the DS_TOTAL_MEMORY and DS_MAX_QUERIES configuration parameters.

c. If not enough memory is available, estimate the amount of temporary space needed for an entire index build.

For more information, see Estimating temporary space for index builds  on page 231.

d. Use the onspaces -t utility to create large temporary dbspaces and specify them in the DBSPACETEMP 

configuration parameter or the DBSPACETEMP  environment variable.

For information about how to optimize temporary dbspaces, see Configure dbspaces for temporary tables 

and sort files  on page 115.

Estimating memory needed for sorting
To calculate the amount of virtual shared memory that the database server might need for sorting, estimate the maximum 

number of sorts that might occur concurrently and multiply that number by the average number of rows and the average row 

size.

For example, if you estimate that 30 sorts could occur concurrently, the average row size is 200 bytes, and the average 

number of rows in a table is 400, you can estimate the amount of shared memory that the database server needs for sorting 

as follows:

30 sorts * 200 bytes * 400 rows = 2,400,000 bytes

You can use the DS_NONPDQ_QUERY_MEM configuration parameter to configure the amount sort memory available for non-

PDQ queries.



Chapter 1. Performance Guide

Important:  You can only use this parameter if the PDQ priority is set to zero. Its setting has no effect if the PDQ 

priority is greater than zero.

The minimum and default value of DS_NONPDQ_QUERY_MEM is 128 kilobytes. The maximum supported value is 25 percent 

of DS_TOTAL_MEMORY. For more information, see Configuring memory for queries with hash joins, aggregates, and other 

memory-intensive elements  on page 421.

If the PDQ priority is greater than 0, the maximum amount of shared memory that the database server allocates for a sort is 

controlled by the memory grant manager (MGM). The MGM uses the settings of PDQ priority and the following configuration 

parameters to determine how much memory to grant for the sort:

• DS_TOTAL_MEMORY

• DS_MAX_QUERIES

• MAX_PDQPRIORITY

For more information about allocating memory for parallel processing, see The allocation of resources for parallel database 

queries  on page 357.

Estimating temporary space for index builds
You can estimate the number of bytes of temporary space needed for an entire index build.

About this task

To estimate the amount of temporary space needed for an index build, perform the following steps:

1. Add the total widths of the indexed columns or returned values from user-defined functions. This value is referred to 

as colsize.

2. Estimate the size of a typical item to sort with one of the following formulas, depending on whether the index is 

attached or not:

a. For a nonfragmented table and a fragmented table with an index created without an explicit fragmentation 

strategy, use the following formula:

sizeof_sort_item = keysize  + 4

b. For fragmented tables with the index explicitly fragmented, use the following formula:

sizeof_sort_item = 

keysize  + 8

3. Estimate the number of bytes needed to sort with the following formula:

temp_bytes = 2 * (rows  *
sizeof_sort_item)

231



HCL Informix 14.10 - Performance Guide

232

This formula uses the factor 2  because everything is stored twice when intermediate sort runs use temporary space. 

Intermediate sort runs occur when not enough memory exists to perform the entire sort in memory.

The value for rows  is the total number of rows that you expect to be in the table.

Storing multiple index fragments in a single dbspace
You can store multiple fragments of the same index in a single dbspace, reducing the total number of dbspaces needed for a 

fragmented table. You must specify a name for each fragment that you want to store in the same dbspace.  Storing multiple 

index fragments in a single dbspace simplifies the management of dbspaces.

You can also use this feature to improve query performance over storing each fragment in a different dbspace when a 

dbspace is located on a faster device.

For more information, see information about managing partitions in the HCL®  Informix®  Administrator's Guide.

Improving performance for index checks
The oncheck  utility provides better concurrency for tables that use row locking. When a table uses page locking, oncheck 

places a shared lock on the table when it performs index checks. Shared locks do not allow other users to perform updates, 

inserts, or deletes on the table while oncheck  checks or prints the index information.

If the table uses page locking, the database server returns the following message if you run oncheck  without the -x  option:

WARNING: index check requires a s-lock on stable whose
lock level is page.

For detailed information about oncheck  locking, see the HCL®  Informix®  Administrator's Reference.

The following summary describes locking performed during index checks:

• By default, the database server does not place a shared lock on the table when you check an index with the oncheck 

-ci, -cI, -pk, -pK, -pl,  or -pL  options unless the table uses page locking. When oncheck  checks indexes for a table with 

page locking, it places a shared lock on the table, so no other users can perform updates, inserts, or deletes until the 

check has completed.

• By not placing a shared lock on tables using row locks during index checks, the oncheck  utility cannot be as accurate 

in the index check. For absolute assurance of a complete index check, execute oncheck  with the -x  option. With the 

-x  option, oncheck  places a shared lock on the table, and no other users can perform updates, inserts, or deletes until 

the check completes.

You can query the systables  system catalog table to see the current lock level of the table, as the following sample SQL 

statement shows:

SELECT locklevel FROM systables
   WHERE tabname = "customer"

If you do not see a value of R  (for row) in the locklevel  column, you can modify the lock level, as the following sample SQL 

statement shows:



Chapter 1. Performance Guide

ALTER TABLE tab1 LOCK MODE (ROW);

Row locking might add other side effects, such as an overall increase in lock usage. For more information about locking 

levels, see Locking  on page 244.

Indexes on user-defined data types
You can define your own data types and the functions that operate on these data types. You can define indexes on some 

kinds of user-defined data types.

DataBlade®  modules also provide extended data types and functions to the database server.

You can define indexes on the following kinds of user-defined data types:

• Opaque data types

An opaque data type  is a fundamental data type that you can use to define columns in the same way you use built-

in types. An opaque data type stores a single value and cannot be divided into components by the database server. 

For information about creating opaque data types, see the CREATE OPAQUE TYPE statement in the HCL®  Informix® 

Guide to SQL: Syntax  and HCL®  Informix®  User-Defined Routines and Data Types Developer's Guide. For more 

information about the data types and functions that each DataBlade®  module provides, see the user guide of each 

DataBlade®  module.

• Distinct data types

A distinct data type  has the same representation as an existing opaque or built-in data type but is different from these 

types. For information about distinct data types, see the HCL®  Informix®  Guide to SQL: Reference  and the CREATE 

DISTINCT TYPE statement in the HCL®  Informix®  Guide to SQL: Syntax.

For more information about data types, see the HCL®  Informix®  Guide to SQL: Reference.

Defining indexes for user-defined data types
As with built-in data types, you might improve the response time for a query when you define indexes for new data types.

The response time for a query might improve when Informix®  uses an index for:

• Columns used to join two tables

• Columns that are filters for a query

• Columns in an ORDER BY or GROUP BY clause

• Results of functions that are filters for a query

For more information about when the query performance can improve with an index on a built-in data type, see Improve 

performance by adding or removing indexes  on page 393.

Informix®  and DataBlade®  modules provide a variety of different types of indexes (also referred to as secondary-access 

methods). A secondary-access method is a set of database server functions that build, access, and manipulate an index 

structure. These functions encapsulate index operations, such as how to scan, insert, delete, or update nodes in an index.

233



HCL Informix 14.10 - Performance Guide

234

To create an index on a user-defined data type, you can use any of the following secondary-access methods:

• Generic B-tree index

A B-tree index is good for a query that retrieves a range of data values. For more information, see B-tree secondary-

access method  on page 234.

• R-tree index

An R-tree index is good for searches on multidimensional data. For more information, see the HCL®  Informix®  R-Tree 

Index User's Guide.

• Secondary-access methods that a DataBlade®  module provides for a new data type

A DataBlade®  module that supports a certain type of data can also provide a new index for that new data type. For 

more information, see Using an index that a DataBlade module provides  on page 239.

You can create a functional index on the resulting values of a user-defined function on one or more columns. For more 

information, see Using a functional index  on page 237.

After you choose the desired index type, you might also need to extend an operator class for the secondary-access method. 

For more information about how to extend operator classes, see the HCL®  Informix®  User-Defined Routines and Data Types 

Developer's Guide.

B-tree secondary-access method
Informix®  provides the generic B-tree index  for columns in database tables. In traditional relational database systems, the 

B-tree access method handles only built-in data types and therefore it can only compare two keys of built-in data types. The 

generic B-tree index is an extended version of a B-tree that Informix®  provides to support user-defined data types.

Tip:  For more information about the structure of a B-tree index and how to estimate the size of a B-tree index, see 

Estimating index pages  on page 213.

Informix®  uses the generic B-tree as the built-in secondary-access method. This built-in secondary-access method is 

registered in the sysams  system catalog table with the name btree. When you use the CREATE INDEX statement (without the 

USING clause) to create an index, the database server creates a generic B-tree index. For more information, see the CREATE 

INDEX statement in the HCL®  Informix®  Guide to SQL: Syntax.

Tip:  Informix®  also defines another secondary-access method, the R-tree index. For more information about how to 

use an R-tree index, see the HCL®  Informix®  R-Tree Index User's Guide.

Uses for a B-tree index
A B-tree index is good for a query that retrieves a range of data values. If the data to be indexed has a logical sequence to 

which the concepts of less than, greater than, and  equal  apply, the generic B-tree index is a useful way to index your data.



Chapter 1. Performance Guide

Initially, the generic B-tree index supports the relational operators (<,<=,=,>=,>) on all built-in data types and orders the data in 

lexicographical sequence.

The optimizer considers whether to use the B-tree index to execute a query if you define a generic B-tree index on:

• Columns used to join two tables

• Columns that are filters for a query

• Columns in an ORDER BY or GROUP BY clause

• Results of functions that are filters for a query

Extending a generic B-tree index
Initially, the generic B-tree can index data that is one of the built-in data types, and it orders the data in lexicographical 

sequence. However, you can extend a generic B-tree for some other data types.

You can extend a generic B-tree to support columns and functions on the following data types:

• User-defined data types  (opaque and distinct data types) that you want the B-tree index to support

In this case, you must extend the default operator class of the generic B-tree index.

• Built-in data types  that you want to order in a different sequence from the lexicographical sequence that the generic 

B-tree index uses

In this case, you must define a different operator class from the default generic B-tree index.

An operator class  is the set of functions (operators) that are associated with a nontraditional B-tree index. For more details 

on operator classes, see Choosing operator classes for indexes  on page 239.

Identifying the available access methods
To supplement the built-in B-tree secondary-access method that Informix®  provides, your enterprise might have installed 

DataBlade®  modules that implement additional secondary-access methods. If additional access methods exist, they are 

defined in the sysams  system catalog table. You can query the sysams  system catalog to determine if additional access 

methods are available.

To identify the secondary-access methods that are available for your database, query the sysams  system catalog table with 

the following SELECT statement:

SELECT am_id, am_owner, am_name, am_type FROM sysams
   WHERE am_type = 'S';

An 'S' value in the am_type  column identifies the access method as a secondary-access method. This query returns the 

following information:

• The am_id  and am_name  columns identify the secondary-access method.

• The am_owner column identifies the owner of the access method.

235



HCL Informix 14.10 - Performance Guide

236

In an ANSI-compliant database, the access-method name must be unique within the name space of the user. The access-

method name always begins with the owner in the format am_owner.am_name.

By default, Informix®  provides the following definitions in the sysams  system catalog table for two secondary-access 

methods, btree  and rtree.

Access Method am_id Column am_name Column am_owner Column

Generic B-tree 1 btree 'informix'

R-tree 2 rtree 'informix'

Important:  The sysams  system catalog table does not contain a row for the built-in primary access method. This 

primary access method is internal to Informix®  and does not require a definition in sysams. However, the built-in 

primary access method is always available for use.

If you find additional rows in the sysams  system catalog table (rows with am_id  values greater than 2), the database 

supports additional user-defined access methods. Check the value in the am_type  column to determine whether a user-

defined access method is a primary- or secondary-access method.

For more information about the columns of the sysams  system catalog table, see the HCL®  Informix®  Guide to SQL: 

Reference. For information about how to determine the operator classes that are available in your database, see Identifying 

the available operator classes  on page 242.

User-defined secondary-access methods
If the concepts of less  than, greater than, and equal  do not apply to the data to be indexed, you might consider using a user-

defined secondary-access method  instead of the built-in secondary-access method, which is a B-tree index. You can use a 

user-defined secondary-access method to access other indexing structures, such as an R-tree index.

If your database supports a user-defined secondary-access method, you can specify that the database server uses this 

access method when it accesses a particular index. For information about how to determine the secondary-access methods 

that your database defines, see Identifying the available access methods  on page 235.

To choose a user-defined secondary-access method, use the USING clause of the CREATE INDEX statement. The USING 

clause specifies the name of the secondary-access method to use for the index you create. This name must be listed in the 

am_name  column of the sysams  system catalog table and must be a secondary-access method (the am_type  column of 

sysams  is 'S').

The secondary-access method that you specify in the USING clause of CREATE INDEX must already be defined in the sysams 

system catalog. If the secondary-access method has not yet been defined, the CREATE INDEX statement fails.

When you omit the USING clause from the CREATE INDEX statement, the database server uses B-tree indexes as the 

secondary-access method. For more information, see the CREATE INDEX statement in the HCL®  Informix®  Guide to SQL: 

Syntax.



Chapter 1. Performance Guide

R-tree indexes
Informix®  supports the R-tree index  for columns that contain spatial data such as maps and diagrams. An R-tree index uses 

a tree structure whose nodes store pointers to lower-level nodes.

At the leaves of the R-tree are a collection of data pages that store n-dimensional shapes. For more information about the 

structure of an R-tree index and how to estimate the size of an R-tree index, see the HCL®  Informix®  R-Tree Index User's 

Guide.

Using a functional index
You can create a column index on the actual values in one or more columns. You can also create a functional index on the 

values of one or more columns that a user-defined function returns from arguments.

Important:  The database server imposes the following restrictions on the user-defined routines (UDRs) on which a 

functional index is defined:

• The arguments cannot be column values of a collection data type.

• The function cannot return a large object (including built-in types BLOB, BYTE, CLOB, and TEXT).

• The function cannot be a VARIANT function.

• The function cannot include any DML statement of SQL.

• The function must be a UDR, rather than a built-in function. However, you can create an SPL wrapper that calls 

and returns the value from a built-in function of SQL.

In addition, do not create functional indexes using any routine that calls the built-in DECRYPT_BINARY( ) or 

DECRYPT_CHAR( ) functions, which can display encrypted data values in plain text. (Do not attempt to use data values in any 

encrypted column as an index key.)

To decide whether to use a column index or functional index, determine whether a column index is the right choice for the 

data that you want to index. An index on a column of some data types might not be useful for typical queries. For example, 

the following query asks how many images are dark:

SELECT COUNT(*) FROM photos WHERE
darkness(picture) > 0.5

An index on the picture  data itself does not improve the query performance. The concepts of less than, greater than, 

and  equal  are not particularly meaningful when applied to an image data type. Instead, a functional index that uses the 

darkness()  function can improve performance. You might also have a user-defined function that runs frequently enough that 

performance improves when you create an index on its values.

Related information

Managing indexes  on page 217

237



HCL Informix 14.10 - Performance Guide

238

What is a functional index?
A functional index can be a B-tree index, an R-tree index, or a user-defined index type that a DataBlade®  module provides.

When you create a functional index, the database server computes the values of the user-defined function and stores 

them as key values in the index. When a change in the table data causes a change in one of the values of an index key, the 

database server automatically updates the functional index.

You can use a functional index for functions that return values of both user-defined data types (opaque and distinct) and 

built-in data types. However, you cannot define a functional index if the function returns a simple-large-object data type 

(TEXT or BYTE).

For more information about the types of indexes, see Defining indexes for user-defined data types  on page 233. For 

information about space requirements for functional indexes, see Estimating index pages  on page 213.

Related information

Types of indexes  on page 210

When is a functional index used?
The optimizer considers whether to use a functional index to access the results of functions that are in a SELECT clause or 

are in the filters in the WHERE clause.

Creating a functional index
You can build a functional index on a user-defined function. The user-defined function can be either an external function or 

an SPL function.

About this task

To build a functional index on a user-defined function:

1. Write the code for the user-defined function if it is an external function.

2. Register the user-defined function in the database with the CREATE FUNCTION statement.

3. Build the functional index with the CREATE INDEX statement.

Results

For example, to create a functional index on the darkness() function:

1. Write the code for the user-defined darkness()  function that operates on the data type and returns a decimal value.

2. Register the user-defined function in the database with the CREATE FUNCTION statement:

CREATE FUNCTION darkness(im image)
RETURNS decimal
EXTERNAL NAME '/lib/image.so'
LANGUAGE C NOT VARIANT



Chapter 1. Performance Guide

In this example, you can use the default operator class for the functional index because the return value of the 

darkness()  function is a built-in data type, DECIMAL.

3. Build the functional index with the CREATE INDEX statement.

CREATE TABLE photos
(
    name char(20),
    picture image
...
);
CREATE INDEX dark_ix ON photos (darkness(picture));

In this example, assume that the user-defined data type of image  has already been defined in the database.

The optimizer can now consider the functional index when you specify the darkness()  function as a filter in the query:

SELECT count(*) FROM photos WHERE
darkness(picture) > 0.5

You can also create a composite index with user-defined functions. For more information, see Use composite indexes  on 

page 393.

Warning:  Do not create a functional index using either the DECRYPT_BINARY() or the DECRYPT_CHAR() function. 

These functions store plain text data in the database, defeating the purpose of encryption. For more information 

about encryption, see the HCL®  Informix®  Administrator's Guide.

Using an index that a DataBlade®  module provides
DataBlade®  modules can provide new data types that users can access. A DataBlade®  module can also provide a new index 

for the new data type.

For example, the Excalibur Text Search DataBlade®  module provides an index to search text data. For more information, see 

the Excalibur Text Search DataBlade®  Module User's Guide.

For more information about the types of data and functions that each DataBlade®  module provides, see the user guide 

for the DataBlade®  module. For information about how to determine the types of indexes available in your database, see 

Identifying the available access methods  on page 235.

Choosing operator classes for indexes
For most situations, use the default operators that are defined for a secondary-access method. However, when you want to 

order the data in a different sequence or provide index support for a user-defined data type, you must extend an operator 

class.

For more information about how to extend an operator class, see HCL®  Informix®  User-Defined Routines and Data Types 

Developer's Guide.

239



HCL Informix 14.10 - Performance Guide

240

Operator classes
An operator class  is a set of function names that is associated with a secondary-access method. These functions allow the 

secondary-access method to store and search for values of a particular data type.

The query optimizer for the database server uses an operator class to determine if an index can process the query with the 

least cost. An operator class indicates two things to the query optimizer:

• Which functions that appear in an SQL  statement can be evaluated with a given index

These functions are called the strategy functions  for the operator class.

• Which functions the index uses to evaluate the strategy functions

These functions are called the support functions  for the operator class.

With the information that the operator class provides, the query optimizer can determine whether a given index is applicable 

to the query. The query optimizer can consider whether to use the index for the given query when the following conditions are 

true:

• An index exists on the particular column or columns in the query.

• For the index that exists, the operation on the column or columns in the query matches one of the strategy functions 

in the operator class associated with the index.

The query optimizer reviews the available indexes for the table or tables and matches the index keys with the column 

specified in the query filter. If the column in the filter matches an index key, and the function in the filter is one of the strategy 

functions of the operator class, the optimizer includes the index when it determines which query plan has the lowest 

execution cost. In this manner, the optimizer can determine which index can process the query with the least cost.

Informix®  stores information about operator classes in the sysopclasses  system catalog table.

Strategy and support functions of a secondary access method
Informix®  uses the strategy functions  of a secondary-access method to help the query optimizer determine whether a 

specific index is applicable to a specific operation on a data type.

If an index exists and the operator in the filter matches one of the strategy functions in the operator class, the optimizer 

considers whether to use the index for the query.

Informix®  uses the support functions  of a secondary-access method to build and access the index. These functions are not 

called directly by end users. When an operator in the query filter matches one of the strategy functions, the secondary-access 

method uses the support functions to traverse the index and obtain the results. Identification of the actual support functions 

is left to the secondary-access method.

Default operator classes
Each secondary-access method has a default operator class  associated with it. By default, the CREATE INDEX statement 

associates the default operator class with an index.



Chapter 1. Performance Guide

For example, the following CREATE INDEX statement creates a B-tree index on the postalcode  column and automatically 

associates the default B-tree operator class with this column:

CREATE INDEX postal_ix ON customer(postalcode)

For more information about how to specify a new default operator class for an index, see User-defined operator classes  on 

page 243.

Built-in B-tree operator class
The built-in secondary-access method (the generic B-tree) has a default operator class called btree_ops, which is defined in 

the sysopclasses  system catalog table.

By default, the CREATE INDEX statement associates the btree_ops  operator class with it when you create a B-tree index. For 

example, the following CREATE INDEX statement creates a generic B-tree index on the order_date  column of the orders  table 

and associates with this index the default operator class for the B-tree secondary-access method:

CREATE INDEX orddate_ix ON orders (order_date)

Informix®  uses the btree_ops  operator class to specify:

• The strategy functions to tell the query optimizer which filters in a query can use a B-tree index

• The support function to build and search the B-tree index

B-tree strategy functions
The btree_ops operator class defines the names of strategy functions for the btree  access method.

The strategy functions that the btree_ops operator class defines are:

• lessthan (<)

• lessthanorequal (<=)

• equal (=)

• greaterthanorequal (>=)

• greaterthan (>)

These strategy functions are all operator functions. That is, each function is associated with an operator symbol; in this case, 

with a relational-operator symbol. For more information about relational-operator functions, see the HCL®  Informix®  User-

Defined Routines and Data Types Developer's Guide.

When the query optimizer examines a query that contains a column, it checks to see if this column has a B-tree index defined 

on it. If such an index exists and  if the query contains one of the relational operators that the btree_ops  operator class 

supports, the optimizer can choose a B-tree index to execute the query.

B-tree support function
The btree_ops  operator class has one support function, a comparison function called compare(). The btree_ops  operator 

class has one support function, a comparison function called compare().

241



HCL Informix 14.10 - Performance Guide

242

The compare()  function is a user-defined function that returns an integer value to indicate whether its first argument is equal 

to, less than, or greater than its second argument, as follows:

• A value of 0  when the first argument is equal  to  the second argument

• A value less than 0  when the first argument is less than  the second argument

• A value greater than 0  when the first argument is greater than  the second argument

The B-tree secondary-access method uses the compare()  function to traverse the nodes of the generic B-tree index. To 

search for data values in a generic B-tree index, the secondary-access method uses the compare()  function to compare the 

key value in the query to the key value in an index node. The result of the comparison determines if the secondary-access 

method needs to search the next-lower level of the index or if the key resides in the current node.

The generic B-tree access method also uses the compare()  function to perform the following tasks for generic B-tree 

indexes:

• Sort the keys before the index is built

• Determine the linear order of keys in a generic B-tree index

• Evaluate the relational operators

• Search for data values in an index

The database server uses the compare()  function to evaluate comparisons in the SELECT statement. To provide support 

for these comparisons for opaque data types, you must write the compare()  function. For more information, see the HCL® 

Informix®  User-Defined Routines and Data Types Developer's Guide.

The database server also uses the compare()  function when it uses a B-tree index to process an ORDER BY clause in a 

SELECT statement. However, the optimizer does not use the index to perform an ORDER BY operation if the index does not 

use the btree-ops operator class.

Identifying the available operator classes
You can identify the operator classes that are available for your database by querying the sysopclasses  system catalog 

table.

The database server provides the default operator class for the built-in secondary-access method, the generic B-tree index. 

In addition, your environment might have installed DataBlade®  modules that implement other operator classes. All operator 

classes are defined in the sysopclasses  system catalog table.

To identify the operator classes that are available for your database, query the sysopclasses  system catalog table with the 

following SELECT statement:

SELECT opclassid, opclassname, amid, am_name
FROM sysopclasses, sysams
WHERE sysopclasses.amid = sysams.am_id

This query returns the following information:



Chapter 1. Performance Guide

• The opclassid  and opclassname  columns identify the operator class.

• The am_id  and am_name  columns identify the associated secondary-access methods.

By default, the database server provides the following definitions in the sysopclasses  system catalog table for two operator 

classes, btree_ops and rtree_ops.

Access Method opclassid Column opclassname Column amid Column am_name Column

Generic B-tree 1 btree_ops 1 btree

R-tree 2 rtree_ops 2 rtree

If you find additional rows in the sysopclasses  system catalog table (rows with opclassid  values greater than 2), your 

database supports user-defined operator classes. Check the value in the amid column to determine the secondary-access 

methods to which the operator class belongs.

The am_defopclass  column in the sysams  system catalog table stores the operator-class identifier for the default operator 

class of a secondary-access method. To determine the default operator class for a given secondary-access method, you can 

run the following query:

SELECT am_id, am_name, am_defopclass, opclass_name
FROM sysams, sysopclasses
WHERE sysams.am_defopclass = sysopclasses.opclassid

By default, the database server provides the following default operator classes.

Access Method
am_id 

Column
am_name Column am_defopclass Column opclass_name Column

Generic B-tree 1 btree 1 btree_ops

R-tree 2 rtree 2 rtree_ops

For more information about the columns of the sysopclasses  and sysams  system catalog tables, see the HCL®  Informix® 

Guide to SQL: Reference. For information about how to determine the access methods that are available in your database, 

see Identifying the available access methods  on page 235.

User-defined operator classes
The CREATE INDEX statement specifies the operator class to use for each component of an index. If you do not specify an 

operator class, the CREATE INDEX statement uses the default operator class for the secondary-access method that you 

create. You can use a user-defined operator class for components of an index.

To specify a user-defined operator class for a particular component of an index, you can:

• Use a user-defined operator class that your database already defines.

• Use an R-tree operator class, if your database defined the R-tree secondary-access method. For more information 

about R-trees, see the HCL®  Informix®  R-Tree Index User's Guide.

243



HCL Informix 14.10 - Performance Guide

244

If your database supports multiple-operator classes for the secondary-access method that you want to use, you can specify 

which operator classes the database server is to use for a particular index. For information on how to determine the operator 

classes that your database defines, see Identifying the available operator classes  on page 242.

Each part of a composite index can specify a different operator class. You choose the operator classes when you create 

the index. In the CREATE INDEX statement, you specify the name of the operator class to use after each column or function 

name in the index-key specification. Each name must be listed in the opclassname column of the sysopclasses  system 

catalog table and must be associated with the secondary-access method that the index uses.

For example, if your database defines the abs_btree_ops secondary-access method to define a new sort order, the following 

CREATE INDEX statement specifies that the table1  table associates the abs_btree_ops operator class with the col1_ix  B-tree 

index:

CREATE INDEX col1_ix ON table1(col1 abs_btree_ops)

The operator class that you specify in the CREATE INDEX statement must already be defined in the sysopclasses  system 

catalog with the CREATE OPCLASS statement. If the operator class has not yet been defined, the CREATE INDEX statement 

fails. For information about how to create an operator class, see HCL®  Informix®  User-Defined Routines and Data Types 

Developer's Guide.

Locking
The database server uses locks, which can affect concurrency and performance. You can monitor and administer locks.

Locks
A lock  is a software mechanism that you can set to prevent others from using a resource. You can place a lock on a single 

row or key, a page of data or index keys, a whole table, or an entire database.

Additional types of locks are available for smart large objects. For more information, see Locks for smart large objects  on 

page 260.

The maximum number of rows or pages locked in a single transaction is controlled by the total number of locks configured. 

The number of tables in which those rows or pages are locked is not explicitly controlled.

Locking granularity
The level and type of information that the lock protects is called  locking granularity. Locking granularity affects performance.

When a user cannot access a row or key, the user can wait for another user to unlock the row or key. If a user locks an entire 

page, a higher probability exists that more users will wait for a row in the page.

The ability of more than one user to access a set of rows is called concurrency. The goal of the database administrator is to 

increase concurrency to increase total performance without sacrificing performance for an individual user.



Chapter 1. Performance Guide

Row and key locks
Row and key locks generally provide the best overall performance when you are updating a relatively small number of rows, 

because they increase concurrency. However, the database server incurs some overhead in obtaining a lock. For an operation 

that changes a large number of rows, obtaining one lock per row might not be cost effective.

For an operation that changes a large number of rows, consider Page locks  on page 245.

The default locking mode is page-locking. If you want row or key locks, you must create the table with row locking on or alter 

the table.

The following example shows how to create a table with row locking on:

CREATE TABLE customer(customer_num serial, lname char(20)...)
   LOCK MODE ROW;

The ALTER TABLE statement can also change the lock mode.

When the lock mode is ROW and you insert or update a row, the database server creates a row lock. In some cases, you 

place a row lock by simply reading the row with a SELECT statement.

When the lock mode is ROW and you insert, update, or delete a key (performed automatically when you insert, update, or 

delete a row), the database server creates a lock on the key in the index.

Key-value locks
When a user deletes a row within a transaction, the row cannot be locked because it does not exist. However, the database 

server must somehow record that a row existed until the end of the transaction. The database server uses  key-value locking 

to lock the deleted row.

When the database server deletes a row, key values in the indexes for the table are not removed immediately. Instead, each 

key value is marked as deleted, and a lock is placed on the key value.

Other users might encounter key values that are marked as deleted. The database server must determine whether a lock 

exists. If a lock exists, the delete has not been committed, and the database server sends a lock error back to the application 

(or it waits for the lock to be released if the user executed SET LOCK MODE TO WAIT).

One of the most important uses for key-value locking is to assure that a unique key remains unique through the end of 

the transaction that deleted it. Without this protection mechanism, user A might delete a unique key within a transaction, 

and user B might insert a row with the same key before the transaction commits. This scenario makes rollback by user A 

impossible. Key-value locking prevents user B from inserting the row until the end of user A's transaction.

Page locks
Page locking is the default mode when you create a table without the LOCK MODE clause. With page locking, instead of 

locking only the row, the database server locks the entire page that contains the row. If you update several rows on the same 

page, the database server uses only one lock for the page.

245



HCL Informix 14.10 - Performance Guide

246

When you insert or update a row, the database server creates a page lock on the data page. In some cases, the database 

server creates a page lock when you simply read the row with a SELECT statement.

When you insert, update, or delete a key (performed automatically when you insert, update, or delete a row), the database 

server creates a lock on the page that contains the key in the index.

Important:  A page lock on an index page can decrease concurrency more substantially than a page lock on a data 

page. Index pages are dense and hold a large number of keys. By locking an index page, you make a potentially large 

number of keys unavailable to other users until you release the lock. Tables that use page locks cannot support 

the USELASTCOMMITTED concurrency feature, which is described in the Committed Read isolation  on page 249

section.

Page locks are useful for tables in which the normal user changes a large number of rows at one time. For example, 

an orders table that holds orders that are commonly inserted and queried individually is not a good candidate for page 

locking. But a table that holds old orders and is updated nightly with all of the orders placed during the day might be a good 

candidate. In this case, the type of isolation level that you use to access the table is important. For more information, see 

Isolation level  on page 249.

Table locks
In a data warehouse environment, it might be more appropriate for queries to acquire locks of larger granularity. For example, 

if a query accesses most of the rows in a table, its efficiency increases if it acquires a smaller number of table locks instead 

of many page or row locks.

The database server can place two types of table locks:

• Shared lock

No other users can write to the table.

• Exclusive lock

No other users can read from or write to the table.

Another important distinction between these two types of table locks is the actual number of locks placed:

• In shared mode, the database server places one shared lock on the table, which informs other users that no updates 

can be performed. In addition, the database server adds locks for every row updated, deleted, or inserted.

• In exclusive mode, the database server places only one exclusive lock on the table, no matter how many rows it 

updates. If you update most of the rows in the table, place an exclusive lock on the table.

Important:  A table lock on a table can decrease update concurrency radically. Only one update transaction can 

access that table at any given time, and that update transaction locks out all other transactions. However, multiple 



Chapter 1. Performance Guide

read-only transactions can simultaneously access the table. This behavior is useful in a data warehouse environment 

where the data is loaded and then queried by multiple users.

You can switch a table back and forth between table-level locking and the other levels of locking. This ability to switch 

locking levels is useful when you use a table in a data warehouse mode during certain time periods but not in others.

A transaction tells the database server to use table-level locking for a table with the LOCK TABLE statement. The following 

example places an exclusive lock on the table:

LOCK TABLE tab1 IN EXCLUSIVE MODE;

The following example places a shared lock on the table:

LOCK TABLE tab1 IN SHARE MODE:

In some cases, the database server places its own table locks. For example, if the isolation level is Repeatable Read, and 

the database server must read a large portion of the table, it places a table lock automatically instead of setting row or page 

locks. The database server places a table lock on a table when it creates or drops an index.

Database locks
You can place a lock on the entire database when you open the database with the DATABASE statement. A database lock 

prevents read or update access by anyone but the current user.

The following statement opens and locks the sales database:

DATABASE sales EXCLUSIVE

Configuring the lock mode
When you create a table, the default lock mode is page. You can change the lock mode (and thus increase or decrease 

concurrency) when you create or alter tables or by setting the IFX_DEF_TABLE_LOCKMODE  environment variable or the 

DEF_TABLE_LOCKMODE configuration parameter.

If you know that most of your applications might benefit from a lock mode of row, you can take one of the following actions:

• Use the LOCK MODE ROW clause in each CREATE TABLE statement or ALTER TABLE statement.

• Set the IFX_DEF_TABLE_LOCKMODE  environment variable to ROW so that all tables you subsequently create within 

a session use ROW without the need to specify the lock mode in the CREATE TABLE statement or ALTER TABLE 

statement.

• Set the DEF_TABLE_LOCKMODE configuration parameter to ROW so that all tables subsequently created within 

the database server use ROW without the need to specify the lock mode in the CREATE TABLE statement or ALTER 

TABLE statement.

If you change the lock mode with the IFX_DEF_TABLE_LOCKMODE  environment variable or DEF_TABLE_LOCKMODE 

configuration parameter, the lock mode of existing tables are not affected. Existing tables continue to use the lock mode with 

which they were defined at the time they were created.

247



HCL Informix 14.10 - Performance Guide

248

In addition, if you previously changed the lock mode of a table to ROW, and subsequently execute an ALTER TABLE statement 

to alter some other characteristic of the table (such as add a column or change the extent size), you do not need to specify 

the lock mode. The lock mode remains at ROW and is not set to the default PAGE mode.

You can still override the lock mode of individual tables by specifying the LOCK MODE clause in the CREATE TABLE 

statement or ALTER TABLE statement.

The following list shows the order of precedence for the lock mode on a table:

• The system default is page locks. The database server uses this system default if you do not set the configuration 

parameter, do not set the environment variable, or do not specify the LOCK MODE clause in the SQL  statements.

• If you set the DEF_TABLE_LOCKMODE configuration parameter, the database server uses this value when you do not 

set the environment variable, or do not specify the LOCK MODE clause in the SQL  statements.

• If you set the IFX_DEF_TABLE_LOCKMODE  environment variable, this value overrides the DEF_TABLE_LOCKMODE 

configuration parameter and system default. The database server uses this value when you do not specify the LOCK 

MODE clause in the SQL  statements.

• If you specify the LOCK MODE clause in the CREATE TABLE statement or ALTER TABLE statement, this value 

overrides the IFX_DEF_TABLE_LOCKMODE, the DEF_TABLE_LOCKMODE configuration parameter and system default.

Setting the lock mode to wait
When an application process encounters a lock, the default behavior of the database server is to return an error. Instead, you 

can run an SQL statement to set the lock mode to wait. This specifies that an application process does not proceed until the 

lock is removed.

About this task

To suspend the current process until the lock releases, run the following SQL  statement :

SET LOCK MODE TO WAIT; 

You can also specify the maximum number of seconds that a process waits for a lock to be released before issuing an error. 

In the following example, the database server waits for 20 seconds before issuing an error:

SET LOCK MODE TO WAIT 20;

To return to the default behavior (no waiting for locks), execute the following statement:

SET LOCK MODE TO NOT WAIT; 

Locks with the SELECT statement
The type and duration of locks that the database server places depend on the isolation level set in the application, the 

database mode (logging, nonlogging, or ANSI,) and on whether the SELECT statement is within an update cursor. These 

locks can affect overall performance because they affect concurrency.



Chapter 1. Performance Guide

Isolation level
The number and duration of locks placed on data during a SELECT statement depend on the level of isolation that the user 

sets. The type of isolation can affect overall performance because it affects concurrency.

Before you execute a SELECT statement, you can set the isolation level with the SET ISOLATION statement, which is part 

of the Informix®  extension to the ANSI SQL-92 standard, or with the ANSI/ISO-compliant SET TRANSACTION. The main 

differences between the two statements are that SET ISOLATION has an additional isolation level, Cursor Stability, and SET 

TRANSACTION cannot be executed more than once in a transaction as SET ISOLATION can. The SET ISOLATION statement 

is part of the Informix®  extension to the ANSI SQL-92 standard. The SET ISOLATION statement can change the enduring 

isolation level for the session

Dirty Read isolation
The Dirty Read isolation (or ANSI Read Uncommitted) level does not place any locks on any rows fetched during a SELECT 

statement. Dirty Read isolation is appropriate for static tables that are used for queries.

Use Dirty Read isolation with care if update activity occurs at the same time. With Dirty Read, the reader can read a row that 

has not been committed to the database and might be eliminated or changed during a rollback. For example, consider the 

following scenario:

User 1 starts a transaction.
User 1 inserts row A.
User 2 reads row A.
User 1 rolls back row A.

User 2 reads row A, which user 1 rolls back seconds later. In effect, user 2 read a row that was never committed to the 

database. Uncommitted data that is rolled back can be a problem in applications.

Because the database server does not check or place any locks for queries, Dirty Read isolation offers the best performance 

of all isolation levels. However, because of potential problems with uncommitted data that is rolled back, use Dirty Read 

isolation with care.

Because problems with uncommitted data that is rolled back are an issue only with transactions, databases that do not have 

transaction (and hence do not allow transactions) use Dirty Read as a default isolation level. In fact, Dirty Read is the only 

isolation level allowed for databases that do not have transaction logging.

Committed Read isolation
A reader with the Committed Read isolation (or ANSI Read Committed) isolation level checks for locks before returning a 

row. By checking for locks, the reader cannot return any uncommitted rows.

The database server does not actually place any locks for rows read during Committed Read. It simply checks for any 

existing rows in the internal lock table.

Committed Read is the default isolation level for databases with logging if the log mode is not ANSI-compliant. For 

databases created with a logging mode that is not ANSI-compliant, Committed Read is an appropriate isolation level for 

most activities. For ANSI-compliant databases, Repeatable Read is the default isolation level.

249



HCL Informix 14.10 - Performance Guide

250

Ways to reduce the risk of Committed Read isolation level conflicts
In the Committed Read isolation level, locks held by other sessions can cause SQL operations to fail if the current session 

cannot acquire a lock or if the database server detects a deadlock. (A deadlock occurs when two users hold locks, and 

each user wants to acquire a lock that the other user owns.) The LAST COMMITTED keyword option to the SET ISOLATION 

COMMITTED READ statement of SQL reduces the risk of locking conflicts.

The LAST COMMITTED keyword option to the SET ISOLATION COMMITTED READ statement of SQL instructs the server 

to return the most recently committed version of the rows, even if another concurrent session holds an exclusive lock. You 

can use the LAST COMMITTED keyword option for B-tree and functional indexes, tables that support transaction logging, 

and tables that do not have page-level locking or exclusive locks. For more information, see information about the SET 

ISOLATION statement in the HCL®  Informix®  Guide to SQL: Syntax.

For databases created with transaction logging, you can set the USELASTCOMMITTED configuration parameter to specify 

whether the database server uses the last committed version of the data, rather than wait for the lock to be released, when 

sessions using the Dirty Read or Committed Read isolation level (or the ANSI/ISO level of Read Uncommitted or Read 

Committed) attempt to read a row on which a concurrent session holds a shared lock. The last committed version of the 

data is the version of the data that existed before any updates occurred.

If no value or a value of NONE  is set for the USELASTCOMMITTED configuration parameter or for the USELASTCOMMITTED 

session environment variable, sessions in a COMMITTED READ or READ COMMITTED isolation level wait for any exclusive 

locks to be released, unless the SET ISOLATION COMMITTED READ LAST COMMITTED statement of SQL instructs the 

database server to read the most recently committed version of the data.

Setting the USELASTCOMMITTED configuration parameter to operate with the Committed Read isolation level can affect 

performance only if concurrent conflicting updates occur. When concurrent conflicting updates occur, the performance of 

queries depends on the dynamics of the transactions. For example, a reader using the last committed version of the data, 

might need to undo the updates made to a row by another concurrent transaction. This situation involves reading one or 

more log records, thereby increasing the I/O traffic, which can affect performance.

Related information

USELASTCOMMITTED configuration parameter  on page 

Cursor Stability isolation
A reader with Cursor Stability isolation acquires a shared lock on the row that is currently fetched. This action assures that 

no other user can update the row until the user fetches a new row.

In the example for a cursor in Figure 30: Locks placed for cursor stability  on page 251, at fetch a row  the database server 

releases the lock on the previous row and places a lock on the row being fetched. At close the cursor, the server releases the 

lock on the last row.

../%20adr/ids_adr_0186.html#ids_adr_0186
../%20adr/ids_adr_0186.html#ids_adr_0186
../%20adr/ids_adr_0186.html#ids_adr_0186
../%20adr/ids_adr_0186.html#ids_adr_0186


Chapter 1. Performance Guide

Figure  30. Locks placed for cursor stability

set isolation to cursor stability
declare cursor for SELECT * FROM customer
open the cursor
while there are more rows
   fetch a row
   do work
end while
close the cursor

If you do not use a cursor to fetch data, Cursor Stability isolation behaves in the same way as Committed Read. No locks are 

actually placed.

Repeatable Read isolation
Repeatable Read isolation (ANSI Serializable and ANSI Repeatable Read) is the strictest isolation level. With Repeatable 

Read, the database server locks all rows examined (not just fetched) for the duration of the transaction.

The example in Figure 31: Locks placed for repeatable read  on page 251 shows when the database server places and 

releases locks for a repeatable read. At fetch a row, the server places a lock on the row being fetched and on every row it 

examines in order to retrieve this row. At close the cursor, the server releases the lock on the last row.

Figure  31. Locks placed for repeatable read

set isolation to repeatable read
begin work
declare cursor for SELECT * FROM customer
open the cursor
while there are more rows
    fetch a row
    do work
end while
close the cursor
commit work

Repeatable Read is useful during any processing in which multiple rows are examined, but none must change during the 

transaction. For example, suppose an application must check the account balance of three accounts that belong to one 

person. The application gets the balance of the first account and then the second. But, at the same time, another application 

begins a transaction that debits the third account and credits the first account. By the time that the original application 

obtains the account balance of the third account, it has been debited. However, the original application did not record the 

debit of the first account.

When you use Committed Read or Cursor Stability, the previous scenario can occur. However, it cannot occur with 

Repeatable Read. The original application holds a read lock on each account that it examines until the end of the transaction, 

so the attempt by the second application to change the first account fails (or waits, depending upon SET LOCK MODE).

Because even examined rows are locked, if the database server reads the table sequentially, a large number of rows 

unrelated to the query result can be locked. For this reason, use Repeatable Read isolation for tables when the database 

server can use an index to access a table. If an index exists and the optimizer chooses a sequential scan instead, you 

251



HCL Informix 14.10 - Performance Guide

252

can use directives to force use of the index. However, forcing a change in the query path might negatively affect query 

performance.

Locking nonlogging tables
The database server does not place page or row locks on a nonlogging table when you use the table within a transaction. 

However, you can lock nonlogging tables to prevent concurrency problems when other users are modifying a nonlogging 

table

Use one of the following methods to prevent concurrency problems when other users are modifying a nonlogging table:

• Lock the table in exclusive mode for the whole transaction.

• Use Repeatable Read isolation level for the whole transaction.

Important:  Nonlogging raw tables are intended for fast loading of data. You should change the table to STANDARD 

before you use it in a transaction or modify the data within it.

Update cursors
An update cursor is a special kind of cursor that applications can use when the row might potentially be updated. Update 

cursors use promotable locks  in which the database server places an update lock on the row when the application fetches 

the row. The lock is changed to an exclusive lock when the application uses an update cursor and UPDATE...WHERE 

CURRENT OF to update the row.

When the update lock is on the row as the application fetches it, other users can still view the row.

In some cases, the database server might place locks on rows that the database server has examined but not actually 

fetched. Whether this behavior occurs depends on how the database server executes the SQL statement.

The advantage of an update cursor is that you can view the row with the confidence that other users cannot change it or view 

it with an update cursor while you are viewing it and before you update it.

If you do not update the row, the default behavior of the database server is to release the update lock when you execute the 

next FETCH statement or close the cursor. However, if you execute the SET ISOLATION statement with the RETAIN®  UPDATE 

LOCKS clause, the database server does not release any currently existing or subsequently placed update locks until the end 

of the transaction.

The code in Figure 32: When update locks are released  on page 253 shows when the database server places and releases 

update locks with a cursor. At fetch row 1, the database server places an update lock on row 1. At fetch row 2, the server 

releases the update lock on row 1 and places an update lock on row 2. However, after the database server executes the SET 

ISOLATION statement with the RETAIN®  UPDATE LOCKS clause, it does not release any update locks until the end of the 

transaction. At fetch row 3, it places an update lock on row 3. At fetch row 4, it places an update lock on row 4. At commit 

work, the server releases the update locks for rows 2, 3, and 4.



Chapter 1. Performance Guide

Figure  32. When update locks are released

declare update cursor
begin work
open the cursor
fetch row 1
fetch row 2
SET ISOLATION TO COMMITTED READ
    RETAIN UPDATE LOCKS
fetch row 3
fetch row 4
commit work

In an ANSI-compliant database, update cursors are usually not needed because any select cursor behaves the same as an 

update cursor without the RETAIN®  UPDATE LOCKS clause.

The code in Figure 33: When update locks are promoted  on page 253 shows the database server promoting an update lock 

to an exclusive lock. At fetch the row, the server places an update lock on the row being fetched. At update the row, the server 

promotes the lock to exclusive. At commit work, it releases the lock.

Figure  33. When update locks are promoted

declare update cursor
begin work
open the cursor
fetch the row
do work
update the row (use WHERE CURRENT OF)
commit work

To use an update cursor, run SELECT FOR UPDATE in your application.

Locks placed with INSERT, UPDATE, and DELETE statements
When you execute an INSERT, UPDATE, or DELETE statement, the database server uses exclusive locks. An exclusive lock 

means that no other users can update or delete the item until the database server removes the lock.

In addition, no other users can view the row unless they are using the Dirty Read isolation level.

When the database server removes the exclusive lock depends on whether the database supports transaction logging:

• If the database supports logging, the database server removes all exclusive locks when the transaction completes 

(commits or rolls back).

• If the database does not support logging, the database server removes all exclusive locks immediately after the 

INSERT, MERGE, UPDATE, or DELETE statement completes, except when the lock is on the row that is currently being 

fetched into an update cursor.

In this situation, the lock is retained during the fetch operation on the row, but only until the server fetches the next 

row, or until the server updates the current row by promoting the lock to an exclusive lock.

In a nonlogging database, the promotable update lock on a row fetched for update can be released by a DDL operation on the 

database while the INSERT, MERGE, UPDATE, or DELETE statement that originally created the lock is still running. To reduce 

253



HCL Informix 14.10 - Performance Guide

254

the risk of data corruption if a concurrent session modifies the unlocked row, restrict operations that use promotable update 

locks to databases that support transaction logging.

The internal lock table
The database server stores locks in an internal lock table. When the database server reads a row, it checks if the row or its 

associated page, table, or database is listed in the lock table. If it is in the lock table, the database server must also check the 

lock type.

The following table shows the types of locks that the lock table can contain.

Lock Type Description Statement That Usually Places the Lock

S Shared lock SELECT

X Exclusive lock INSERT, UPDATE, DELETE

U Update lock SELECT in an update cursor

B Byte lock Any statement that updates VARCHAR columns

A byte lock is generated only if you shrink the size of a data value in a VARCHAR column. The byte lock exists solely for roll 

forward and rollback execution, so a byte lock is created only if you are working in a database that uses logging. Byte locks 

appear in onstat -k  output only if you are using row-level locking; otherwise, they are merged with the page lock.

In addition, the lock table might store  intent locks, with the same lock type as previously shown. In some cases, a user might 

need to register their possible intent to lock an item, so that other users cannot place a lock on the item.

Depending on the type of operation and the isolation level, the database server might continue to read the row and place 

its own lock on the row, or it might wait for the lock to be released (if the user executed SET LOCK MODE TO WAIT). The 

following table shows the locks that a user can place if another user holds a certain type of lock. For example, if one user 

holds an exclusive lock on an item, another user requesting any kind of lock (exclusive, update, or shared) receives an error.

Hold X lock Hold U lock Hold S lock

Request X lock No No Yes

Request U lock No No Yes

Request S lock No Yes Yes

Monitoring locks
You can analyze information about locks and monitor locks by viewing information in the internal lock table that contains 

stored locks.

View the lock table with onstat -k. Figure 34: onstat -k output  on page 255 shows sample output for onstat -k.



Chapter 1. Performance Guide

Figure  34. onstat -k output

Locks
address  wtlist   owner    lklist   type     tblsnum  rowid    key#/bsiz
300b77d0 0        40074140 0        HDR+S    10002    106        0
300b7828 0        40074140 300b77d0 HDR+S    10197    123        0
300b7854 0        40074140 300b7828 HDR+IX   101e4    0          0
300b78d8 0        40074140 300b7854 HDR+X    101e4    102        0
 4 active, 5000 total, 8192 hash buckets 

In this example, a user is inserting one row in a table. The user holds the following locks (described in the order shown):

• A shared lock on the database

• A shared lock on a row in the systables  system catalog table

• An intent-exclusive lock on the table

• An exclusive lock on the row

To determine the table to which the lock applies, execute the following SQL  statement. For tblsnum, substitute the value 

shown in the tblsnum  field in the onstat -k  output.

SELECT *
   FROM SYSTABLES
   WHERE HEX(PARTNUM) = "tblsnum";

Where tblsnum  is the modified value that onstat -k  returns. For example, if onstat -k returns 10027f, tbslnum  is 0x0010027F.

You can also query the syslocks  table in the sysmaster  database to obtain information about each active lock. The syslocks 

table contains the following columns.

Column Description

dbsname Database on which the lock is held

tabname Name of the table on which the lock is held

rowidlk ID of the row on which the lock is held (0 indicates a table lock.)

keynum The key number for the row

type Type of lock

owner Session ID of the lock owner

waiter Session ID of the first waiter on the lock

Configuring and managing lock usage
The LOCKS configuration parameter specifies the initial size of the internal lock table. If the database server increases the 

size of the lock table, you should increase the size of the LOCKS configuration parameter.

For information about how to determine an initial value for the LOCKS configuration parameter, see The LOCKS configuration 

parameter and memory utilization  on page 78.

255



HCL Informix 14.10 - Performance Guide

256

If the number of locks needed by sessions exceeds the value set in the LOCKS configuration parameter, the database server 

attempts to increase the lock table by doubling its size. Each time that the lock table overflows (when the number of locks 

needed is greater than the current size of the lock table), the database server increases the size of the lock table, up to 

99 times. Each time that the database server increases the size of the lock table, the server attempts to double its size. 

However, the server will limit each actual increase to no more than the maximum number of added locks shown in Table 

13: Maximum number of locks on 32-bit and 64-bit platforms  on page 256. After the 99th time that the database server 

increases the lock table, the server no longer increases the size of the lock table, and an application needing a lock receives 

an error.

Maximum number of locks allowed on 32-bit and 64-bit platforms

The following table shows the maximum number of allowed locks.

Table  13. Maximum number of locks on 32-bit and 64-bit platforms

Platf

orm

Maximum Number 

of Initial Locks

Maximum Number of Dynamic 

Lock Table Extensions

Maximum Number of Locks 

Added Per Lock Table Extension

Maximum Number 

of Locks Allowed

32-

bit

8,000,000 99 100,000 8,000,000 + (99 x 

100,000)

64-

bit

500,000,000 99 1,000,000 500,000,000 + (99 x 

1,000,000)

View messages concerning increases to the size of the lock table

Every time the database server increases the size of the lock table, the server places a message in the message log file. You 

should monitor the message log file periodically and increase the size of the LOCKS configuration parameter if you see that 

the database server has increased the size of the lock table.

Monitor out-of-locks errors

To monitor the number of times that applications receive the out-of-locks error, view the ovlock  field in the output of onstat 

-p. You can also see similar information from the sysprofile  table in the sysmaster  database. The following rows contain the 

relevant statistics.

Row Description

ovlock Number of times that sessions attempted to exceed the maximum number of 

locks

lockr

eqs

Number of times that sessions requested a lock

lockwts Number of times that sessions waited for a lock

Examine how applications use locks



Chapter 1. Performance Guide

If the database server is using an unusually large number of locks, you can examine how individual applications are using 

locks, as follows:

1. Monitor sessions with onstat -u  to see if a particular user is using an especially high number of locks (a high value in 

the locks  column).

2. If a particular user uses a large number of locks, examine the SQL  statements in the application to determine whether 

you should lock the table or use individual row or page locks.

A table lock is more efficient than individual row locks, but it reduces concurrency.

One way to reduce the number of locks placed on a table is to alter a table to use page locks instead of row locks. However, 

page locks reduce overall concurrency for the table, which can affect performance.

You can also reduce the number of locks placed on a table by locking the table in exclusive mode.

Related information

The LOCKS configuration parameter and memory utilization  on page 78

Monitoring lock waits and lock errors
You can view information about sessions, lock usage, and lock waits.

About this task

If the application executes SET LOCK MODE TO WAIT, the database server waits for a lock to be released instead of returning 

an error. An unusually long wait for a lock can give users the impression that the application is hanging.

In Figure 35: onstat -u output that shows lock usage  on page 258, the onstat -u  output shows that session ID 84 is waiting 

for a lock (L  in the first column of the Flags  field). To find out the owner of the lock, use the onstat -k  command.

257



HCL Informix 14.10 - Performance Guide

258

Figure  35. onstat -u output that shows lock usage

onstat -u
 

Userthreads
address  flags   sessid user     tty    wait    tout locks nreads nwrites
40072010 ---P--D 7      informix -         0       0     0     35      75
400723c0 ---P--- 0      informix -         0       0     0      0       0
40072770 ---P--- 1      informix -         0       0     0      0       0
40072b20 ---P--- 2      informix -         0       0     0      0       0
40072ed0 ---P--F 0      informix -         0       0     0      0       0
40073280 ---P--B 8      informix -         0       0     0      0       0
40073630 ---P--- 9      informix -         0       0     0      0       0
400739e0 ---P--D 0      informix -         0       0     0      0       0
40073d90 ---P--- 0      informix -         0       0     0      0       0
40074140Y-BP---81   lsuto    4  50205788       0     4    106     221
400744f0 --BP--- 83     jsmit    -         0       0     4      0       0
400753b0 ---P--- 86     worth    -         0       0     2      0       0
40075760 L--PR--84     jones    3  300b78d8   -1     2      0       0
 13 active, 128 total, 16 maximum concurrent
 

onstat -k
 

Locks
address  wtlist   owner    lklist   type    tblsum rowid  key#/bsiz
300b77d0 0        40074140 0        HDR+S   10002  106     0
300b7828 0        40074140 300b77d0 HDR+S   10197  122     0
300b7854 0        40074140 300b7828 HDR+IX  101e4  0       0
300b78d84007576040074140300b7854 HDR+X  101e4  100     0
300b7904 0        40075760 0            S   10002  106     0
300b7930 0        40075760 300b7904     S   10197  122     0
 6 active, 5000 total, 8192 hash buckets

To find out the owner of the lock for which session ID 84 is waiting:

1. Obtain the address of the lock in the wait  field (300b78d8) of the onstat -u  output.

2. Find this address (300b78d8) in the Locks address  field of the onstat -k  output.

The owner  field of this row in the onstat -k  output contains the address of the user thread (40074140).

3. Find this address (40074140) in the Userthreads  field of the onstat -u  output.

The sessid  field of this row in the onstat -u  output contains the session ID (81) that owns the lock.

Results

To eliminate the contention problem, you can have the user exit the application gracefully. If this solution is not possible, you 

can stop the application process or remove the session with onmode -z.

Monitoring the number of free locks
You can find the current number of free locks on a lock-free list by viewing the output of the onstat -L  command .

About this task



Chapter 1. Performance Guide

Related information

onstat -L command: Print the number of free locks  on page 

Monitoring deadlocks
You can monitor deadlocks. A deadlock  occurs when two users hold locks, and each user wants to acquire a lock that the 

other user owns.

For example, user pradeep  holds a lock on row 10. User jane  holds a lock on row 20. Suppose that jane  wants to place a lock 

on row 10, and pradeep  wants to place a lock on row 20. If both users execute SET LOCK MODE TO WAIT, they potentially 

might wait for each other forever.

Informix®  uses the lock table to detect deadlocks automatically and stop them before they occur. Before a lock is granted, 

the database server examines the lock list for each user. If a user holds a lock on the resource that the requestor wants to 

lock, the database server traverses the lock wait list for the user to see if the user is waiting for any locks that the requestor 

holds. If so, the requestor receives a deadlock error.

Deadlock errors can be unavoidable when applications update the same rows frequently. However, certain applications might 

always be in contention with each other. Examine applications that are producing a large number of deadlocks and try to run 

them at different times.

To monitor the number of deadlocks, use the deadlks  field in the output of onstat -p.

In a distributed transaction, the database server does not examine lock tables from other database server systems, so 

deadlocks cannot be detected before they occur. Instead, you can set the DEADLOCK_TIMEOUT configuration parameter. 

DEADLOCK_TIMEOUT specifies the number of seconds that the database server waits for a remote database server 

response before it returns an error. Although reasons other than a distributed deadlock might cause the delay, this 

mechanism keeps a transaction from hanging indefinitely.

To monitor the number of distributed deadlock timeouts, use the dltouts  field in the onstat -p  output.

Monitoring isolation levels that sessions use
The onstat -g ses  and onstat -g sql  output shows the isolation level that a session is currently using.

The following table summarizes the values in the IsoLvl  column in onstat -g ses  and onstat -g sql  output.

Value

Description

DR

Dirty Read

CR

Committed Read

259

../%20adr/ids_adr_1117.html#ids_adr_1117
../%20adr/ids_adr_1117.html#ids_adr_1117
../%20adr/ids_adr_1117.html#ids_adr_1117
../%20adr/ids_adr_1117.html#ids_adr_1117


HCL Informix 14.10 - Performance Guide

260

CS

Cursor Stability

CRU

Committed Read with RETAIN®  UPDATE LOCKS

CSU

Cursor Stability with RETAIN®  UPDATE LOCKS

DRU

Dirty Read with RETAIN®  UPDATE LOCKS

LC

Committed Read, Last Committed

RR

Repeatable Read

If a great deal of lock contention occurs, check the isolation level of sessions to make sure it is appropriate for the 

application.

Locks for smart large objects
Smart large objects have several unique locking behaviors because their columns are typically much larger than other 

columns in a table.

This section discusses the following unique behaviors:

• Types of locks on smart large objects

• Byte-range locking

• Lock promotion

• Dirty Read isolation level with smart large objects

Types of locks on smart large objects

The database server uses one of the following granularity levels for locking smart large objects:

• The sbspace chunk header partition

• The smart large object

• A byte range of the smart large object

The default locking granularity is at the level of the smart large object. In other words, when you update a smart large object, 

by default the database server locks the smart large object that is being updated.

Locks on the sbspace chunk header partition only occur when the database server promotes locks on smart large objects. 

For more information, see Lock promotion  on page 263.



Chapter 1. Performance Guide

Byte-range locking
Rather than locking the entire smart large object, you can lock only a specific byte range of a smart large object.

Byte-range locking is advantageous because it allows multiple users to update the same smart large object simultaneously, 

as long as they are updating different parts of it. Also, users can read a part of a smart large object while another user is 

updating or reading a different part of the same smart large object.

Figure 36: Example of byte-range locking  on page 261 shows two locks placed on a single smart large object. The first lock 

is on bytes 2, 3, and 4. The second lock is on byte 6 alone.

Figure  36. Example of byte-range locking

How the database server manages byte-range locks
The database server manages byte-range locks in the lock table in a similar fashion to other locks placed on rows, pages, 

and tables. However, the lock table must also store the byte range.

If you place a second lock on a byte range adjacent to a byte range that is currently locked, the database server consolidates 

the two locks into one lock on the entire range.

If a user holds locks that the Figure 36: Example of byte-range locking  on page 261 shows, and the user requests a lock on 

byte five, the database server consolidates the locks placed on bytes two through six into one lock.

Likewise, if a user unlocks only a portion of the bytes included within a byte-range lock, the database server might be split 

into multiple byte-range locks. In the Figure 36: Example of byte-range locking  on page 261 the user could unlock byte 

three, which causes the database server to change the one lock on bytes two through four to one lock on byte two and one 

lock on byte four.

Using byte-range locks
By default, the database server places a lock on the smart large object. Instead, you can enable byte-range locking.

To use byte-range locks, you must perform one of the following actions:

• To set byte-range locking for the sbspace that stores the smart large object, use the onspaces  utility. The following 

example sets byte-range locking for the new sbspace:

onspaces -c -S slo -g 2 -p /ix/9.2/liz/slo -o 0 -s 1000
   -Df LOCK_MODE=RANGE

261



HCL Informix 14.10 - Performance Guide

262

When you set the default locking mode for the sbspace to byte-range locking, the database server locks only the 

necessary bytes when it updates any smart large objects stored in the sbspace.

• To set byte-range locking for the smart large object when you open it, use one of the following methods:

◦ In DB-Access:  Set the MI_LO_LOCKRANGE flag in the mi_lo_open()  DataBlade®  API  function.

◦ In ESQL/C:  Set the LO_LOCKRANGE flag in the ifx_lo_open()  Informix®  ESQL/C  function. When you set byte-

range locking for the individual smart large object, the database server implicitly locks only the necessary 

bytes when it selects or updates the smart large object.

• To lock a byte range explicitly, use one of the following functions:

◦ For DB-Access:mi_lo_lock()

◦ For ESQL/C:ifx_lo_lock()

These functions lock the range of bytes that you specify for the smart large object. If you specify an exclusive 

lock with either function, UPDATE statements do not place locks on the smart large object if they update the 

locked bytes.

The database server releases exclusive byte-range locks placed with mi_lo_lock()  or ifx_lo_lock()  at the 

end of the transaction. The database server releases shared byte-range locks placed with mi_lo_lock()  or 

ifx_lo_lock()  based on the same rules as locks placed with SELECT statements, depending upon the isolation 

level. You can also release shared byte-range locks with one of the following functions:

◦ For DB-Access:mi_lo_unlock(). For more information about the DataBlade®  API  functions, see the HCL® 

Informix®  DataBlade®  API Programmer's Guide.

◦ For ESQL/C:ifx_lo_unlock(). For more information about Informix®  ESQL/C  functions, see the HCL® 

Informix®  Enterprise Replication Guide.

Monitoring byte-range locks
You can use onstat -k  to list all byte-range locks. Use the onstat -K  command to list byte-range locks and all waiters for byte-

range locks.

Figure 37: Byte-range locks in onstat -k output  on page 262 shows an excerpt from the output of onstat -k.

Figure  37. Byte-range locks in onstat -k output

Byte-Range Locks
rowid/LOid   tblsnum  address  status   owner    offset   size     type
104          200004   a020e90  HDR
[2, 2, 3]             a020ee4  HOLD     a1b46d0  50       10           S
202          200004   a021034  HDR
[2, 2, 5]             a021088  HOLD     a1b51e0  40       5            S
102          200004   a035608  HDR
[2, 2, 1]             a0358fc  HOLD     a1b4148  0        500          S
                      a035758  HOLD     a1b3638  300      100          S
 21 active, 2000 total, 2048 hash buckets 

Byte-range locks produce the following information in the onstat -k  output.



Chapter 1. Performance Guide

Col

umn Description

ro

wid

The rowid of the row that contains the locked smart large object

L

Oid

The three values: sbspace number, chunk number, and sequence number (a value that represents the position in the 

chunk)

tbls

num

The number of the tblspace that holds the smart large object

add

ress

The address of the lock

sta

tus

The status of the lock

HDR is a placeholder. HOLD indicates the user specified in the owner  column owns the lock. WAIT (shown only with 

onstat -K) indicates that the user specified in the owner column is waiting for the lock.

ow

ner

The address of the owner (or waiter)

Cross reference this value with the address in onstat -u.

off

set

The offset into the smart large object where the bytes are locked

size The number of bytes locked, starting at the value in the offset column

type S (shared lock) or X (exclusive)

Setting number of locks for byte-range locking
When you use byte-range locking, the database server can use more locks because of the possibility of multiple locks on 

one smart large object. Even though the lock table grows when it runs out of space, you might want to increase value of 

the LOCKS configuration parameter to match lock usage so that the database server does not need to allocate more space 

dynamically.

Be sure to monitor the number of locks used with  onstat -k, so you can determine if you need to increase the value of the 

LOCKS configuration parameter.

Lock promotion
The database server uses lock promotion to decrease the total number of locks held on smart large objects. Too many locks 

can result in poorer performance because the database server frequently searches the lock table to determine if a lock exists 

on an object.

If the number of locks held by a transaction exceeds 33 percent of the current number of allocated locks for the database 

server, the database server attempts to promote any existing byte-range locks to a single lock on the smart large object.

263



HCL Informix 14.10 - Performance Guide

264

If the number of locks that a user holds on a smart large object (not on byte ranges of a smart large object) equals or 

exceeds 10 percent of the current capacity of the lock table, the database server attempts to promote all of the smart-large-

object locks to one lock on the smart-large-object header partition. This kind of lock promotion improves performance 

for applications that are updating, loading, or deleting a large number of smart large objects. For example, a transaction 

that deletes millions of smart large objects would consume the entire lock table if the database server did not use lock 

promotion. The lock promotion algorithm has deadlock avoidance built in.

You can identify a smart-large-object header partition in onstat -k  by 0  in the rowid  column and a tablespace number with a 

high-order first byte-and-a-half that corresponds to the dbspace number where the smart large object is stored. For example, 

if the tblspace number is listed as 0x200004  (the high-order zeros are truncated), the dbspace number 2  corresponds to the 

dbspace number listed in onstat -d.

Even if the database server attempts to promote a lock, it might not be able to do so. For example, the database server 

might not be able to promote byte-range locks to one smart-large-object lock because other users have byte-range locks 

on the same smart large object. If the database server cannot promote a byte-range lock, it does not change the lock, and 

processing continues as normal.

Dirty Read isolation level and smart large objects
You can use the Dirty Read isolation level for smart large objects.

For information about how Dirty Reads affects consistency, see Dirty Read isolation  on page 249.

Set the Dirty Read isolation level for smart large objects in one of the following ways:

• Use the SET TRANSACTION MODE or SET ISOLATION statement.

• Use the LO_DIRTY_READ flag in one of the following functions:

◦ For DB-Access:mi_lo_open()

◦ For ESQL/C:ifx_lo_open()

If consistency for smart large objects is not important, but consistency for other columns in the row is important, you can 

set the isolation level to Committed Read, Cursor Stability, or Repeatable Read and open the smart large object with the 

LO_DIRTY_READ flag.

Fragmentation guidelines
One of the most frequent causes of poor performance in relational database systems is contention for data that resides on a 

single I/O device. Proper fragmentation of high-use tables can significantly reduce I/O contention. These topics discuss the 

performance considerations that are involved when you use table fragmentation.

The database server supports table fragmentation (also partitioning), which allows you to store data from a single table on 

multiple disk devices. Fragmentation enables you to define groups of rows or index keys within a table according to some 

algorithm or scheme. You can store each group or fragment (also referred to as a partition) in a separate dbspace associated 

with a specific physical disk.

For information about fragmentation and parallel execution, see Parallel database query (PDQ)  on page 350.



Chapter 1. Performance Guide

For an introduction to fragmentation concepts and methods, see the IBM®  Informix®  Database Design and Implementation 

Guide. For information about the SQL  statements that manage fragments, see the HCL®  Informix®  Guide to SQL: Syntax.

Planning a fragmentation strategy
You can decide on a fragmentation goal for your database and devise a strategy to meet that goal.

About this task

A fragmentation strategy consists of two parts:

• A distribution scheme that specifies how to group rows into fragments

You specify the distribution scheme in the FRAGMENT BY clause of the CREATE TABLE, CREATE INDEX, or ALTER 

FRAGMENT statements.

• The set of dbspaces in which you locate the fragments

You specify the set of dbspaces or in the IN clause (storage option) of these SQL  statements.

To formulate a fragmentation strategy:

1. Decide on your primary fragmentation goal, which should depend, to a large extent, on the types of applications that 

access the table.

2. Make the following decisions based on your primary fragmentation goal:

◦ Whether to fragment the table data, the table index, or both

◦ What the ideal distribution of rows or index keys is for the table

3. Choose either an expression-based or round-robin distribution scheme:

◦ If you choose an expression-based distribution scheme, you must then design suitable fragment expressions.

◦ If you choose a round-robin distribution scheme, the database server determines which rows to put into a 

specific fragment.

For more information, see Distribution schemes  on page 270.

4. To complete the fragmentation strategy, you must decide on the number and location of the fragments:

◦ The number of fragments depends on your primary fragmentation goal.

◦ Where you locate fragments depends on the number of disks available in your configuration.

Results

When you plan a fragmentation strategy, be aware of these space and page issues:

• Although a 4-terabyte chunk can be on a 2-kilobyte page, only 32 gigabytes can be utilized in a dbspace because of a 

rowid format limitation.

• For a fragmented table, all fragments must use the same page size.

265



HCL Informix 14.10 - Performance Guide

266

• For a fragmented index, all fragments must use the same page size.

• A table can be in one dbspace and the index for that table can be in another dbspace. These dbspaces do not need to 

have the same page size.

Fragmentation goals
You can analyze your application and workload to identify fragmentation goals and to determine the balance to strike among 

fragmentation goals.

Fragmentation goals can include:

• Improved performance for individual queries

To improve the performance of individual queries, fragment tables appropriately and set resource-related parameters 

to specify system resource use (memory, CPU virtual processors, and so forth).

• Reduced contention between queries and between transactions

If your database server is used primarily for online transaction processing (OLTP) and only incidentally for decision-

support queries, you can often use fragmentation to reduce contention when simultaneous queries against the same 

table perform index scans to return a few rows.

• Increased data availability

Careful fragmentation of dbspaces can improve data availability if devices fail. Table fragments on the failed device 

can be restored quickly, and other fragments are still accessible.

• Improved data-load performance

When you use the High-Performance Loader (HPL)  to load a table that is fragmented across multiple disks, it 

allocates threads to insert the data into the fragments in parallel, using light appends. For more information about 

this load method, see the IBM®  Informix®  High-Performance Loader User's Guide.

You can use the ALTER FRAGMENT ON TABLE statement with the ATTACH clause to add data quickly to a very 

large table. For more information, see Improve the performance of operations that attach and detach fragments  on 

page 284.

The performance of a fragmented table is primarily governed by the following factors:

• The storage option that you use for allocating disk space to fragments (discussed in Considering physical 

fragmentation factors  on page 269)

• The distribution scheme used to assign rows to individual fragments (discussed in Distribution schemes  on 

page 270)



Chapter 1. Performance Guide

Improved query performance through fragmentation strategy
If the primary goal of fragmentation is improved performance for individual queries, try to distribute all of the rows of the 

table evenly over the different disks. Overall query-completion time is reduced when the database server does not need to 

wait for data retrieval from a table fragment that has more rows than other fragments.

If queries access data by performing sequential scans against significant portions of tables, fragment the table rows only. 

Do not fragment the index. If an index is fragmented and a query has to cross a fragment boundary to access the data, the 

performance of the query can be worse than if you do not fragment.

If queries access data by performing an index read, you can improve performance by using the same distribution scheme for 

the index and the table.

If you use round-robin fragmentation, do not fragment your index. Consider placing that index in a separate dbspace from 

other table fragments.

For more information about improving performance for queries, see Query expressions for fragment elimination  on 

page 279 and Improving individual query performance  on page 370.

Reduced contention between queries and transactions
Fragmentation can reduce contention for data in tables that multiple queries and OLTP applications use. Fragmentation often 

reduces contention when many simultaneous queries against a table perform index scans to return a few rows.

For tables subjected to this type of load, fragment both the index keys and data rows with a distribution scheme that 

allows each query to eliminate unneeded fragments from its scan. Use an expression-based distribution scheme. For more 

information, see Distribution schemes that eliminate fragments  on page 278.

To fragment a table for reduced contention, start by investigating which queries access which parts of the table. Next, 

fragment your data so that some of the queries are routed to one fragment while others access a different fragment. The 

database server performs this routing when it evaluates the fragmentation rule for the table. Finally, store the fragments on 

separate disks.

Your success in reducing contention depends on how much you know about the distribution of data in the table and the 

scheduling of queries against the table. For example, if the distribution of queries against the table is set up so that all rows 

are accessed at roughly the same rate, try to distribute rows evenly across the fragments. However, if certain values are 

accessed at a higher rate than others, you can compensate for this difference by distributing the rows over the fragments to 

balance the access rate. For more information, see Designing an expression-based distribution scheme  on page 273.

Increased data availability
When you distribute table and index fragments across different disks or devices, you improve the availability of data during 

disk or device failures. The database server continues to allow access to fragments stored on disks or devices that remain 

operational.

This availability has important implications for the following types of applications:

267



HCL Informix 14.10 - Performance Guide

268

• Applications that do not require access to unavailable fragments

A query that does not require the database server to access data in an unavailable fragment can still successfully 

retrieve data from fragments that are available. For example, if the distribution expression uses a single column, 

the database server can determine if a row is contained in a fragment without accessing the fragment. If the 

query accesses only rows that are contained in available fragments, a query can succeed even when some of the 

data in the table is unavailable. For more information, see Designing an expression-based distribution scheme  on 

page 273.

• Applications that accept the unavailability of data

Some applications might be designed in such a way that they can accept the unavailability of data in a fragment 

and require the ability to retrieve the data that is available. To specify which fragments can be skipped, these 

applications can execute the SET DATASKIP statement before they execute a query. Alternatively, the database server 

administrator can use the onspaces -f option to specify which fragments are unavailable.

If your fragmentation goal is increased availability of data, fragment both table rows and index keys so that if a disk drive 

fails, some of the data is still available. If applications must always be able to access a subset of your data, keep those rows 

together in the same mirrored dbspace.

Increased granularity for backup and restore
You must consider backup and restore factors when you are deciding how to distribute dbspaces across disk.

Backup and restore factors to consider are:

• Data availability.  When you decide where to place your tables or fragments, remember that if a device that contains 

a dbspace fails, all tables or table fragments in that dbspace are inaccessible, even though tables and fragments 

in other dbspaces are accessible. The need to limit data unavailability in the event of a disk failure might influence 

which tables you group together in a particular dbspace.

• Cold versus warm restores. Although you must perform a cold restore if a dbspace that contains critical data fails, 

you need to perform only a warm restore if a noncritical dbspace fails. The desire to minimize the impact of cold 

restores might influence the dbspace that you use to store critical data.

For more information about backup and restore, see your HCL®  Informix®  Backup and Restore Guide.

Examining your data and queries
To determine a fragmentation strategy, you must gather information about the table that you might fragment. You must also 

know how the data in the table is used.

To gather information about your table:

1. Identify the queries that are critical to performance to determine if the queries are online transaction processing 

(OLTP) or decision-support system (DSS) queries.

2. Use the SET EXPLAIN statement to determine how the data is being accessed.



Chapter 1. Performance Guide

For information about the output of the SET EXPLAIN statement, see Report that shows the query plan chosen by 

the optimizer  on page 304. To determine how the data is accessed, you can sometimes simply review the SELECT 

statements along with the table schema.

3. Determine what portion of the data each query examines.

For example, if certain rows in the table are read most of the time, you can isolate them in a small fragment to reduce 

I/O contention for other fragments.

4. Determine which statements create temporary files.

Decision-support queries typically create and access large temporary files, and placement of temporary dbspaces 

can be critical to performance.

5. If particular tables are always joined together in a decision-support query, spread fragments for these tables across 

different disks.

6. Examine the columns in the table to determine which fragmentation scheme would keep each scan thread equally 

busy for the decision-support queries.

To see how the column values are distributed, create a distribution on the column with the UPDATE STATISTICS 

statement and examine the distribution with dbschema.

dbschema -d database  -hd table

Considering physical fragmentation factors
When you fragment a table, the physical placement issues that pertain to tables apply to individual table fragments. Because 

each fragment resides in its own dbspace on a disk, you must address these issues separately for the fragments on each 

disk.

For details about placement issues that apply to tables, see Table performance considerations  on page 157.

Fragmented and nonfragmented tables differ in the following ways:

• For fragmented tables, each fragment is placed in a separate, designated dbspace or multiple named fragments of 

the table are created within a single dbspace.

For nonfragmented tables, the table can be placed in the default dbspace of the current database.

Regardless of whether the table is fragmented or not, you should create a single chunk on each disk for each 

dbspace.

• Extent sizes for a fragmented table are usually smaller than the extent sizes for an equivalent nonfragmented table 

because fragments do not grow in increments as large as the entire table. For more information on how to estimate 

the space to allocate, see Estimating table size  on page 162.

• In a fragmented table, the row pointer is not a unique unchanging pointer to the row on a disk. The database server 

uses the combination of fragment ID and row pointer internally, inside an index, to point to the row. These two 

fields are unique but can change over the life of the row. An application cannot access the fragment ID; therefore, 

269



HCL Informix 14.10 - Performance Guide

270

you should use primary keys to access a specific row in a fragmented table. For more information, see the IBM® 

Informix®  Database Design and Implementation Guide.

• An attached index or an index on a nonfragmented table uses 4 bytes for the row pointer. A detached index uses 8 

bytes of disk space per key value for the fragment ID and row pointer combination. For more information about how 

to estimate space for an index, see Estimating index pages  on page 213. For more information on attached indexes 

and detached indexes, see Strategy for fragmenting indexes  on page 275.

Decision-support queries usually create and access large temporary files; placement of temporary dbspaces is a critical 

factor for performance. For more information about placement of temporary files, see Spreading temporary tables and sort 

files across multiple disks  on page 161.

Distribution schemes
After you decide whether to fragment table rows, index keys, or both, and you decide how the rows and keys should be 

distributed over fragments, you can decide on a scheme to implement this distribution. Informix®  supports random 

distribution among fragments and value-based distribution among fragments.

Random distribution among fragments

Round-robin fragmentation

This type of fragmentation places rows one after another in fragments, rotating through the series of fragments 

to distribute the rows evenly.

For smart large objects, you can specify multiple sbspaces in the PUT clause of the CREATE TABLE or ALTER 

TABLE statement to distribute smart large objects in a round-robin distribution scheme so that the number of 

smart large objects in each space is approximately equal.

Value-based distribution among fragments

Expression-based fragmentation

This type of fragmentation puts rows that contain specified values in the same fragment. You specify a 

fragmentation expression  that defines criteria for assigning a set of rows to each fragment, either as a range 

rule or some arbitrary rule.

You can specify a remainder fragment  that holds all rows that do not match the criteria for any other fragment, 

although a remainder fragment reduces the efficiency of the expression-based distribution scheme.

List-based fragmentation

This type of fragmentation puts rows that contain specified values that match one of the specified values in 

a list of discrete values in the same fragment. For each fragment, you specify a list of one or more constant 

expressions as fragment expressions  that correspond to one or more columns in the table. The column or set 

of columns from which the fragment expressions  are calculated is called the fragment key.

You can optionally specify a remainder fragment  that holds all rows that do not match the criteria for any other 

fragment. You can also optionally specify a NULL fragment that stores rows with missing data in the fragment 

key columns (because its fragment expression is NULL or IS NULL).



Chapter 1. Performance Guide

The most important difference between fragmentation by list and fragmentation by expression is that every 

value in the list for each fragment must be unique among all the lists for fragments of the same table or index.

Interval-based fragmentation

This type of fragmentation partitions data into fragments that are based on quantified values within a specific 

interval within the range of fragment key of a single numeric, DATE, or DATETIME column in the same fragment. 

You specify at least one range expression as the fragment expression  that defines the upper limit of fragment 

key values for each fragment, and an interval expression  that specifies the size of the range of system-defined 

fragments that the database server creates automatically.

You can optionally define a NULL fragment to store rows with missing data in the fragment key column, but 

no remainder fragment  is supported or needed. The database server automatically creates a new fragment 

to store rows with non-NULL fragment key values outside the range of any existing fragment. The fragments 

that you define with range expressions are called range fragments, and the system-defined fragments that the 

database server creates at runtime are called interval fragments. This type of distribution scheme is sometimes 

called a range interval  distribution strategy.

Related information

Specify temporary tables in the DBSPACETEMP configuration parameter  on page 118

List fragmentation clause  on page 

Interval fragment clause  on page 

Fragmentation: Storage distribution strategies  on page 

Choosing a distribution scheme
When choosing a distribution scheme, you must consider the ease of data balancing, whether you want fragments to be 

eliminated, and the effect of the data skip feature.

Table 14: Distribution-Scheme Comparisons  on page 271 compares round-robin and expression-based distribution 

schemes.

Table  14. Distribution-Scheme Comparisons

Distribution 

Scheme
Ease of Data Balancing Fragment Elimination Data Skip

Round-robin Automatic. Data is balanced 

over time.

The database server cannot 

eliminate fragments.

You cannot determine if the integrity of 

the transaction is compromised when 

you use the data-skip feature. However, 

you can insert into a table fragmented 

by round-robin.

Expression-based Requires knowledge of the 

data distribution.

If expressions on one or two 

columns are used, the database 

You can determine whether the 

integrity of a transaction has been 

271

../sqs/ids_sqs_2069.html#ids_sqs_2069
../sqs/ids_sqs_2069.html#ids_sqs_2069
../sqs/ids_sqs_2069.html#ids_sqs_2069
../sqs/ids_sqs_2069.html#ids_sqs_2069
../sqs/ids_sqs_2095.html#ids_sqs_2095
../sqs/ids_sqs_2095.html#ids_sqs_2095
../sqs/ids_sqs_2095.html#ids_sqs_2095
../sqs/ids_sqs_2095.html#ids_sqs_2095
../whse/ids_whse_211.html#ids_whse_211
../whse/ids_whse_211.html#ids_whse_211
../whse/ids_whse_211.html#ids_whse_211
../whse/ids_whse_211.html#ids_whse_211


HCL Informix 14.10 - Performance Guide

272

Table  14. Distribution-Scheme Comparisons  (continued)

Distribution 

Scheme
Ease of Data Balancing Fragment Elimination Data Skip

server can eliminate fragments 

for queries that have either range 

or equality expressions.

compromised when you use the 

data-skip feature. You cannot insert 

rows if the appropriate fragment for 

those rows is down.

The distribution scheme that you choose depends on the following factors:

• The features in Table 14: Distribution-Scheme Comparisons  on page 271 of which you want to take advantage

• Whether or not your queries tend to scan the entire table

• Whether or not you know the distribution of data to be added

• Whether or not your applications tend to delete many rows

• Whether or not you cycle your data through the table

Basically, the round-robin scheme provides the easiest and surest way of balancing data. However, with round-robin 

distribution, you have no information about the fragment in which a row is located, and the database server cannot eliminate 

fragments.

In general, round-robin is the correct choice only when all the following conditions apply:

• Your queries tend to scan the entire table.

• You do not know the distribution of data to be added.

• Your applications tend not to delete many rows. (If they do, load balancing can be degraded.)

An expression-based scheme might be the best choice to fragment the data if any of the following conditions apply:

• Your application calls for numerous decision-support queries that scan specific portions of the table.

• You know what the data distribution is.

• You plan to cycle data through a database.

If you plan to add and delete large amounts of data periodically, based on the value of a column such as date, you can use 

that column in the distribution scheme. You can then use the alter fragment attach and alter fragment detach statements to 

cycle the data through the table.

The ALTER FRAGMENT ATTACH and DETACH statements provide the following advantages over bulk loads and deletes:

• The rest of the table fragments are available for other users to access. Only the fragment that you attach or detach is 

not available to other users.

• With the performance enhancements, the execution of an ALTER FRAGMENT ATTACH or DETACH statement is much 

faster than a bulk load or mass delete.

For more information, see Improve the performance of operations that attach and detach fragments  on page 284.



Chapter 1. Performance Guide

In some cases, an appropriate index scheme can circumvent the performance problems of a particular distribution scheme. 

For more information, see Strategy for fragmenting indexes  on page 275.

Designing an expression-based distribution scheme
The first step in designing an expression-based distribution scheme is to determine the distribution of data in the table, 

particularly the distribution of values for the column on which you base the fragmentation expression.

To obtain this information, run the UPDATE STATISTICS statement for the table and then use the dbschema  utility to examine 

the distribution.

After you know the data distribution, you can design a fragmentation rule that distributes data across fragments as required 

to meet your fragmentation goal. If your primary goal is to improve performance, your fragment expression should generate 

an even distribution of rows across fragments.

If your primary fragmentation goal is improved concurrency, analyze the queries that access the table. If certain rows are 

accessed at a higher rate than others, you can compensate by opting for an uneven distribution of data over the fragments 

that you create.

Try not to use columns that are subject to frequent updates in the distribution expression. Such updates can cause rows to 

move from one fragment to another (that is, be deleted from one and added to another), and this activity increases CPU and 

I/O overhead.

Try to create nonoverlapping regions based on a single column with no REMAINDER fragment for the best fragment-

elimination characteristics. The database server eliminates fragments from query plans whenever the query optimizer can 

determine that the values selected by the WHERE clause do not reside on those fragments, based on the expression-based 

fragmentation rule by which you assign rows to fragments. For more information, see Distribution schemes that eliminate 

fragments  on page 278.

Suggestions for improving fragmentation
You can improve fragmentation for optimal performance in decision-support and OLTP queries.

The following suggestions are guidelines for fragmenting tables and indexes:

• For optimal performance in decision-support queries, fragment the table to increase parallelism, but do not fragment 

the indexes. Detach the indexes, and place them in a separate dbspace.

• For best performance in OLTP queries, use fragmented indexes to reduce contention between sessions. You can 

often fragment an index by its key value, which means the OLTP query only has to look at one fragment to find the 

location of the row.

If the key value does not reduce contention, as when every user looks at the same set of key values (for instance, a 

date range), consider fragmenting the index on another value used in the WHERE clause. To cut down on fragment 

administration, consider not fragmenting some indexes, especially if you cannot find a good fragmentation 

expression to reduce contention.

273



HCL Informix 14.10 - Performance Guide

274

• Use round-robin fragmentation on data when the table is read sequentially by decision-support queries. Round-robin 

fragmentation is a good method for spreading data evenly across disks when no column in the table can be used for 

an expression-based fragmentation scheme. However, in most DSS queries, all fragments are read.

• To reduce the total number of required dbspaces and decrease the time needed for searches, you can store multiple 

named fragments within the same dbspace.

• If you are using expressions, create them so that I/O requests, rather than quantities of data, are balanced across 

disks. For example, if the majority of your queries access only a portion of data in the table, set up your fragmentation 

expression to spread active portions of the table across disks, even if this arrangement results in an uneven 

distribution of rows.

• Keep fragmentation expressions simple. Fragmentation expressions can be as complex as you want. However, 

complex expressions take more time to evaluate and might prevent fragments from being eliminated from queries.

• Arrange fragmentation expressions so that the most restrictive condition for each dbspace is tested within the 

expression first. When the database server tests a value against the criteria for a given fragment, evaluation stops 

when a condition for that fragment tests false. Thus, if the condition that is most likely to be false is placed first, 

fewer conditions need to be evaluated before the database server moves to the next fragment. For example, in the 

following expression, the database server tests all six of the inequality conditions when it attempts to insert a row 

with a value of 25:

x >= 1 and x <= 10 in dbspace1,
x > 10 and x <= 20 in dbspace2,
x > 20 and x <= 30 in dbspace3

By comparison, only four conditions in the following expression need to be tested: the first inequality for dbspace1  (x 

<= 10), the first for dbspace2  (x <= 20), and both conditions for dbspace3:

x <= 10 and x >= 1 in dbspace1,
x <= 20 and x > 10 in dbspace2,
x <= 30 and x > 20 in dbspace3

• Avoid any expression that requires a data-type conversion. Type conversions increase the time to evaluate the 

expression. For instance, a DATE data type is implicitly converted to INTEGER for comparison purposes.

• Do not fragment on columns that change frequently unless you are willing to incur the administration costs. For 

example, if you fragment on a date column and older rows are deleted, the fragment with the oldest dates tends to 

empty, and the fragment with the recent dates tends to fill up. Eventually you must drop the old fragment and add a 

new fragment for newer orders.

• Do not fragment every table. Identify the critical tables that are accessed most frequently. Put only one fragment for a 

table on a disk.

• Do not fragment small tables. Fragmenting a small table across many disks might not be worth the overhead of 

starting all the scan threads to access the fragments. Also, balance the number of fragments with the number of 

processors on your system.

• When you define a fragmentation strategy on an unfragmented table, check the next-extent size to ensure that you 

are not allocating large amounts of disk space for each fragment.



Chapter 1. Performance Guide

Strategy for fragmenting indexes
When you fragment a table, the indexes that are associated with that table are fragmented implicitly, according to the 

distribution scheme that you use, except for the round-robin fragmentation scheme when automatic location is enabled. 

Indexes on tables that use the round-robin distribution scheme are not fragmented when the AUTOLOCATE configuration 

parameter or environment option is set to a positive integer. You can use the FRAGMENT BY clause of the CREATE INDEX 

statement to fragment the index on any table.When you fragment a table, the indexes that are associated with that table 

are fragmented implicitly, according to the distribution scheme that you use. You can use the FRAGMENT BY clause of the 

CREATE INDEX statement to fragment the index on any table.

Each index of a fragmented table occupies its own tblspace with its own extents.

You can fragment the index with either of the following strategies:

• Same fragmentation strategy as the table

• Different fragmentation strategy from the table

Attached indexes
An attached index  is an index that implicitly follows the table fragmentation strategy (distribution scheme and set of 

dbspaces in which the fragments are located). When you create an index on a fragmented table, the index is an attached 

index, unless you use the round-robin distribution scheme and automatic location is enabled. Indexes on tables that use the 

round-robin distribution scheme are not fragmented when the AUTOLOCATE configuration parameter or environment option 

is set to a positive integer. When you create an index on a fragmented table, the index is an attached index.

To create an attached index, do not specify a fragmentation strategy or storage option in the CREATE INDEX statement, as in 

the following sample SQL  statements:

CREATE TABLE tb1(a int)
   FRAGMENT BY EXPRESSION
      (a >=0 AND a < 5) IN dbsbspace1,
      (a >=5 AND a < 10) IN dbspace2
      ...
   ;
 

CREATE INDEX idx1 ON tb1(a);

For fragmented tables that use expression-based or round-robin distribution schemes, you can also create multiple partitions 

of a table or index within a single dbspace. This enables you to reduce the number of required dbspaces, thereby simplifying 

the management of dbspaces.

To create an attached index with partitions, include the partition name in your SQL statements, as shown in this example:

CREATE TABLE tb1(a int)
   FRAGMENT BY EXPRESSION
     PARTITION part1 (a >=0 AND a < 5) IN dbs1,
     PARTITION part2 (a >=5 AND a < 10) IN dbs1
          ...
 ;
 

    CREATE INDEX idx1 ON tb1(a);

275



HCL Informix 14.10 - Performance Guide

276

You can use "PARTITION BY EXPRESSION" instead of "FRAGMENT BY EXPRESSION" in CREATE TABLE, CREATE INDEX, and 

ALTER FRAGMENT ON INDEX statements as shown in this example:

ALTER FRAGMENT ON INDEX idx1 INIT PARTITION BY EXPRESSION
           PARTITION part1   (a <= 10) IN dbs1,
           PARTITION part2   (a <= 20) IN dbs1,
            PARTITION part3  (a <= 30) IN dbs1;

Use ALTER FRAGMENT syntax to change fragmented indexes that do not have partitions into indexes that have partitions. 

The syntax below shows how you might convert a fragmented index into an index that contains partitions:

CREATE TABLE t1 (c1 int) FRAGMENT BY EXPRESSION
     (c1=10) IN dbs1, (c1=20) IN dbs2, (c1=30) IN dbs3
CREATE INDEX ind1 ON t1 (c1) FRAGMENT BY EXPRESSION
     (c1=10) IN dbs1, (c1=20) IN dbs2, (c1=30) IN dbs3

ALTER FRAGMENT ON INDEX ind1 INIT FRAGMENT BY EXPRESSION
     PARTITION part_1 (c1=10) IN dbs1, PARTITION part_2 (c1=20) IN dbs1,
     PARTITION part_3 (c1=30) IN dbs1,

Creating a table or index containing partitions improves performance by enabling the database server to search more quickly 

and by reducing the required number of dbspaces.

The database server fragments the attached index according to the same distribution scheme as the table by using the same 

rule for index keys as for table data. As a result, attached indexes have the following physical characteristics:

• The number of index fragments is the same as the number of data fragments.

• Each attached index fragment resides in the same dbspace as the corresponding table data, but in a separate 

tblspace.

• An attached index or an index on a nonfragmented table uses 4 bytes for the row pointer for each index entry. For 

more information about how to estimate space for an index, see Estimating index pages  on page 213.

Informix®  does not support forest of trees attached indexes.

Detached indexes
A detached index  is an index with a separate fragmentation strategy that you set up explicitly with the CREATE INDEX 

statement.

The following sample SQL  statements create a detached index:

CREATE TABLE tb1 (a int)
      FRAGMENT BY EXPRESSION
         (a <= 10) IN tabdbspc1,
         (a <= 20) IN tabdbspc2,
         (a <= 30) IN tabdbspc3;
 

CREATE INDEX idx1 ON tb1 (a)
      FRAGMENT BY EXPRESSION
         (a <= 10) IN idxdbspc1,
         (a <= 20) IN idxdbspc2,
         (a <= 30) IN idxdbspc3;



Chapter 1. Performance Guide

This example illustrates a common fragmentation strategy, to fragment indexes in the same way as the tables, but specify 

different dbspaces for the index fragments. This fragmentation strategy of putting the index fragments in different dbspaces 

from the table can improve the performance of operations such as backup, recovery, and so forth.

By default, all new indexes that the CREATE INDEX statement creates are detached and stored in separate tablespaces from 

the data unless the deprecated IN TABLE syntax is specified.

To create a detached index with partitions, include the partition name in your SQL statements, as shown in this example:

CREATE TABLE tb1 (a int)
      FRAGMENT BY EXPRESSION
            PARTITION part1 (a <= 10) IN dbs1,
            PARTITION part2 (a <= 20) IN dbs2,
            PARTITION part3 (a <= 30) IN dbs3;
 

    CREATE INDEX idx1 ON tb1 (a)
          FRAGMENT BY EXPRESSION
            PARTITION part1   (a <= 10) IN dbs1,
            PARTITION part2   (a <= 20) IN dbs2,
            PARTITION part3   (a <= 30) IN dbs3;

You can use the PARTITION BY EXPRESSION  keywords instead of the FRAGMENT BY EXPRESSION  keywords in the CREATE TABLE, 

CREATE INDEX, and ALTER FRAGMENT ON INDEX statements.

If you do not want to fragment the index, you can put the entire index in a separate dbspace.

You can fragment the index for any table by expression. However, you cannot explicitly create a round-robin fragmentation 

scheme for an index. Whenever you fragment a table using a round-robin fragmentation scheme, convert all indexes that 

accompany the table to detached indexes for the best performance.

Detached indexes have the following physical characteristics:

• Each detached index fragment resides in a different tblspace from the corresponding table data. Therefore, the data 

and index pages cannot be interleaved within the tblspace.

• Detached index fragments have their own extents and tblspace IDs. The tblspace ID is also known as the fragment 

ID and partition number. A detached index uses 8 bytes of disk space per index entry for the fragment ID and row 

pointer combination. For more information on how to estimate space for an index, see Estimating index pages  on 

page 213.

Forest of trees indexes are detached indexes. They cannot be attached indexes.

The database server stores the location of each table and index fragment, along with other related information, in the 

sysfragments  system catalog table. You can view the sysfragments  system catalog table to access information about 

fragmented tables and indexes, including the following :

• The value in the partn  column is the partition number or fragment id of the table or index fragment. The partition 

number for a detached index is different from the partition number of the corresponding table fragment.

• The value in the strategy column is the distribution scheme used in the fragmentation strategy.

277



HCL Informix 14.10 - Performance Guide

278

For a complete description of column values that the sysfragments  system catalog table contains, see the HCL®  Informix® 

Guide to SQL: Reference. For information about how to use sysfragments  to monitor your fragments, see Monitoring 

fragment use  on page 294.

Restrictions on indexes for fragmented tables
If the database server scans a fragmented index, multiple index fragments must be scanned and the results merged 

together. (The exception is if the index is fragmented according to some index-key range rule, and the scan does not cross a 

fragment boundary.) Because of this requirement, performance on index scans might suffer if the index is fragmented.

Because of these performance considerations, the database server places the following restrictions on indexes:

• You cannot fragment indexes by round-robin.

• You cannot fragment unique indexes by an expression that contains columns that are not in the index key.

For example, the following statement is not valid:

CREATE UNIQUE INDEX ia on tab1(col1)
   FRAGMENT BY EXPRESSION
      col2<10 in dbsp1,
      col2>=10 AND col2<100 in dbsp2,
      col2>100 in dbsp3;

Strategy for fragmenting temporary tables
You can fragment an explicit temporary table across dbspaces that reside on different disks.

You can create a temporary, fragmented table with the TEMP TABLE clause of the CREATE TABLE statement. However, you 

cannot alter the fragmentation strategy of fragmented temporary tables (as you can with permanent tables). The database 

server deletes the fragments that are created for a temporary table at the same time that it deletes the temporary table.

You can define your own fragmentation strategy for an explicit temporary table, or you can let the database server 

dynamically determine the fragmentation strategy.

For more information about explicit and implicit temporary tables, see your HCL®  Informix®  Administrator's Guide.

Distribution schemes that eliminate fragments
Fragment elimination  is a database server feature that reduces the number of fragments involved in a database operation. 

This capability can improve performance significantly and reduce contention for the disks on which fragments reside.

Fragment elimination improves both response time for a given query and concurrency between queries. Because the 

database server does not need to read in unnecessary fragments, I/O for a query is reduced. Activity in the LRU queues is 

also reduced.

If you use an appropriate distribution scheme, the database server can eliminate fragments from the following database 

operations:



Chapter 1. Performance Guide

• The fetch portion of the SELECT, INSERT, delete or update statements in SQL

The database server can eliminate fragments when these SQL  statements are optimized, before the actual search.

• Nested-loop joins

When the database server obtains the key value from the outer table, it can eliminate fragments to search on the 

inner table.

Whether the database server can eliminate fragments from a search depends on two factors:

• The distribution scheme in the fragmentation strategy of the table that is being searched

• The form of the query expression (the expression in the WHERE clause of a SELECT, INSERT, delete or update 

statement)

Fragmentation expressions for fragment elimination
Some operators in expressions result in automatic fragment elimination.

When the fragmentation strategy is defined with any of the following operators, fragment elimination can occur for a query 

on the table.

IN
=
<
>
<=
>=
AND
OR
NOT
IS NULL (only when not combined with other expressions using AND or OR operators)

If the fragmentation expression uses any of the following operators, fragment elimination does not occur for queries on the 

table.

!=
IS NOT NULL

For examples of fragmentation expressions that allow fragment elimination, see Effectiveness of fragment elimination  on 

page 281.

Query expressions for fragment elimination
A query expression (the expression in the WHERE clause) can consist of simple expressions, not simple expressions, and 

multiple expressions.

The database server considers only simple expressions or multiple simple expressions combined with certain operators for 

fragment elimination.

A simple expression consists of the following parts:

279



HCL Informix 14.10 - Performance Guide

280

column operator value 

Simple Expression Part

Description

column

Is a single column name

The database server supports fragment elimination on all column types except columns that are defined with 

the NCHAR, NVARCHAR, BYTE, and TEXT data types.

operator

Must be an equality or range operator

value

Must be a literal or a host variable

The following examples show simple expressions:

name = "Fred"
date < "08/25/2008"
value >= :my_val

The following examples are not simple expressions:

unitcost * count > 4500
price <= avg(price)
result + 3 > :limit

The database server considers two types of simple expressions for fragment elimination, based on the operator:

• Range expressions

• Equality expressions

Range expressions in query
The database server can handle one or two column fragment elimination on queries with any combination of five relational 

operators in the WHERE clause.

Range expressions use the following relational operators:

<
>
<=
>=
!=

The database server can also eliminate fragments when these range expressions are combined with the following operators:

AND, OR, NOT
IS NULL, IS NOT NULL
MATCH, LIKE 



Chapter 1. Performance Guide

If the range expression contains MATCH or LIKE, the database server can also eliminate fragments if the string does not 

begin with a wildcard character. The following examples show query expressions that can take advantage of fragment 

elimination:

columna MATCH "ab*"
columna LIKE "ab%" OR columnb LIKE "ab*" 

Equality expressions in query
The database server can handle one or multiple column fragment elimination on queries with a combination of equality 

operators in the WHERE clause.

Equality expressions use the following equality operators:

=, IN 

The database server can also eliminate fragments when these equality expressions are combined with the following 

operators:

AND, OR

Effectiveness of fragment elimination
The database server cannot eliminate fragments when you fragment a table with a round-robin distribution scheme. 

Furthermore, not all expression-based distribution schemes give you the same fragment-elimination behavior.

The following table summarizes the fragment-elimination behavior for different combinations of expression-based 

distribution schemes and query expressions. Partitions in fragmented tables do not affect the fragment-elimination behavior 

shown in the following table.

Table  15. Fragment elimination for different types of expression-based distribution schemes and query expressions

Type of Query (WHERE 

clause) Expression

Nonoverlapping Fragments 

on a Single Column

Overlapping or Non-contiguous 

Fragments on a Single Column

Nonoverlapping Fragments 

on Multiple Columns

Range expression Fragments can be 

eliminated.

Fragments cannot be eliminated. Fragments cannot be 

eliminated.

Equality expression Fragments can be 

eliminated.

Fragments can be eliminated. Fragments can be 

eliminated.

This table shows that the distribution schemes enable fragment elimination, but the effectiveness of fragment elimination is 

determined by the WHERE clause of the specified query.

For example, consider a table fragmented with the following expression:

FRAGMENT BY EXPRESSION
100 < column_a AND column_b < 0 IN dbsp1,
100 >= column_a AND column_b < 0 IN dbsp2,
column_b >= 0 IN dbsp3

281



HCL Informix 14.10 - Performance Guide

282

The database server cannot eliminate any fragments from the search if the WHERE clause has the following expression:

column_a = 5 OR column_b = -50

However, the database server can eliminate the fragment in dbspace dbsp3 if the WHERE clause has the following 

expression:

column_b = -50

Furthermore, the database server can eliminate the two fragments in dbspaces dbsp2 and  dbsp3 if the WHERE clause has 

the following expression:

column_a = 5 AND column_b = -50

Partitions in fragmented tables do not affect fragment-elimination behavior.

Nonoverlapping fragments on a single column
A fragmentation rule that creates nonoverlapping fragments on a single column is the preferred fragmentation rule from a 

fragment-elimination standpoint.

The advantage of this type of distribution scheme is that the database server can eliminate fragments for queries with 

range expressions as well as queries with equality expressions. You should meet these conditions when you design your 

fragmentation rule. Figure 38: Example of nonoverlapping fragments on a single column  on page 282 gives an example of 

this type of fragmentation rule.

Figure  38. Example of nonoverlapping fragments on a single column

...
FRAGMENT BY EXPRESSION
a<=8 OR a IN (9,10) IN dbsp1,
10<a AND a<=20 IN dbsp2,
a IN (21,22,23) IN dbsp3,
a>23 IN dbsp4;

You can create nonoverlapping fragments using a range rule or an arbitrary rule based on a single column. You can use 

relational operators, as well as AND, IN, OR, or BETWEEN. Be careful when you use the BETWEEN operator. When the 

database server parses the BETWEEN keyword, it includes the end points that you specify in the range of values. Avoid using 

a REMAINDER clause in your expression. If you use a REMAINDER clause, the database server cannot always eliminate the 

remainder fragment.

Overlapping fragments on a single column
The fragments on a single column can be overlapping and noncontiguous. You can use any range, MOD function, or arbitrary 

rule that is based on a single column.

The only restriction for this category of fragmentation rule is that you base the fragmentation rule on a single column.

Figure 39: Example of overlapping fragments on a single column  on page 283 shows an example of this type of 

fragmentation rule.



Chapter 1. Performance Guide

Figure  39. Example of overlapping fragments on a single column

...
FRAGMENT BY EXPRESSION
a<=8 OR a IN (9,10,21,22,23) IN dbsp1,
a>10 IN dbsp2;

If you use this type of distribution scheme, the database server can eliminate fragments on an equality search but not a 

range search. This distribution scheme can still be useful because all INSERT and many UPDATE operations perform equality 

searches.

This alternative is acceptable if you cannot use an expression that creates nonoverlapping fragments with contiguous 

values. For example, in cases where a table is growing over time, you might want to use a MOD function rule to keep the 

fragments of similar size. Expression-based distribution schemes that use MOD function rules fall into this category because 

the values in each fragment are not contiguous.

Nonoverlapping fragments, multiple columns
The database server uses an arbitrary rule to define nonoverlapping fragments based on multiple columns.

The following figures show an example of nonoverlapping fragments on two columns.

Figure  40. Example of nonoverlapping fragments on two columns

...
FRAGMENT BY EXPRESSION
0<a AND a<=10 AND b IN (‘E', ‘F', ‘G') IN dbsp1,
0<a AND a<=10 AND b IN (‘H', ‘I', ‘J') IN dbsp2,
10<a AND a<=20 AND b IN (‘E', ‘F', ‘G') IN dbsp3,
10<a AND a<=20 AND b IN (‘H', ‘I', ‘J') IN dbsp4,
20<a AND a<=30 AND b IN (‘E', ‘F', ‘G') IN dbsp5,
20<a AND a<=30 AND b IN (‘H', ‘I', ‘J') IN dbsp6;

Figure  41. Schematic example of nonoverlapping fragments on two columns

283



HCL Informix 14.10 - Performance Guide

284

If you use this type of distribution scheme, the database server can eliminate fragments on an equality search but not 

a range search. This capability can still be useful because all INSERT operations and many UPDATE operations perform 

equality searches. Avoid using a REMAINDER clause in the expression. If you use a REMAINDER clause, the database server 

cannot always eliminate the remainder fragment.

This alternative is acceptable if you cannot obtain sufficient granularity using an expression based on a single column.

Improve the performance of operations that attach and detach fragments
When you use ALTER FRAGMENT ATTACH and DETACH statements to add or remove a large amount of data in a very large 

table, you can take steps to improve the performance of the ATTACH and DETACH operations.

The ALTER FRAGMENT DETACH statement provides a way to delete a segment of the table data rapidly. Similarly, the ALTER 

FRAGMENT ATTACH statement provides a way to load large amounts of data incrementally into an existing table by taking 

advantage of the fragmentation technology. However, the ALTER FRAGMENT ATTACH and ALTER FRAGMENT DETACH 

statements can take a long time to execute when the database server rebuilds indexes on the surviving table.

The database server provides performance optimizations for the ATTACH and DETACH operations of the ALTER FRAGMENT 

statement that reuse the indexes on the surviving tables. By eliminating the index build during the ATTACH or DETACH 

operation,

• this reduces the time required for the ALTER FRAGMENT ATTACH and ALTER FRAGMENT DETACH statements to 

execute,

• and improves the availability of the table.

The ALTER FRAGMENT operation requires exclusive access and exclusive locks on all of the tables involved in the operation. 

When you use the FORCE_DDL_EXEC environment option to specify a time limit for the database server to force out any 

transactions in other sessions that have opened (or that hold locks on) the tables involved in an ALTER FRAGMENT ON 

TABLE operation, also use the SET LOCK MODE TO WAIT statement to specify that number of seconds as the limit for 

waiting.

If the database server is unable to get exclusive access and exclusive locks on the table because of DDL transactions in 

concurrent sessions, the server will start rolling back the transactions that are open or that have locks on the table, until 

the specified time limit is reached. You might want to enable the FORCE_DDL_EXEC option and issue the SET LOCK MODE 

TO WAIT statement on a busy system, perhaps one that runs 24 hours a day, if you do not want to wait for transactions in 

concurrent sessions to close before you can alter a fragment.

Improving ALTER FRAGMENT ATTACH performance
You can take advantage of the performance optimizations for the ALTER FRAGMENT ATTACH statement if your database 

meets certain requirements.

To take advantage of the performance optimization, you must meet all of the following requirements:

• Formulate appropriate distribution schemes for your table and index fragments.

• Ensure that no data movement occurs between the resultant partitions due to fragment expressions.



Chapter 1. Performance Guide

• Update statistics for all the participating tables.

• Make the indexes on the attached tables unique if the index on the surviving table is unique.

Important:  Only logging databases can benefit from the performance improvements for the ALTER FRAGMENT 

ATTACH statement. Without logging, the database server works with multiple copies of the same table to ensure 

recoverability of the data when a failure occurs. This requirement prevents reuse of the existing index fragments.

Distribution schemes for reusing indexes
You can use one of three distribution schemes that allow the attach operation of the ALTER FRAGMENT statement to reuse 

existing indexes.

These distributions schemes are:

• Fragmenting the index in the same way as the table

• Fragmenting the index with the same set of fragment expressions as the table

• Attaching unfragmented tables to form a fragmented table

Fragmenting the index in the same way as the table
You fragment an index in the same way as the table when you create an index without specifying a fragmentation strategy.

A fragmentation strategy is the distribution scheme and set of dbspaces in which the fragments are located. For details, see 

Planning a fragmentation strategy  on page 265.

Example of Fragmenting the Index in the Same Way as the Table

Suppose you create a fragmented table and index with the following SQL  statements:

CREATE TABLE tb1(a int)
   FRAGMENT BY EXPRESSION
      (a >=0 AND a < 5) IN db1,
      (a >=5 AND a <10) IN db2;
 

CREATE INDEX idx1 ON tb1(a);

Suppose you then create another table that is not fragmented, and you subsequently decide to attach it to the fragmented 

table.

CREATE TABLE tb2 (a int, CHECK (a >=10 AND a<15))
   IN db3;
 

CREATE INDEX idx2 ON tb2(a)
   IN db3;
 

ALTER FRAGMENT ON TABLE tb1
      ATTACH
         tb2 AS (a >= 10 and a<15) AFTER db2;

285



HCL Informix 14.10 - Performance Guide

286

This attach operation can take advantage of the existing index idx2 if no data movement occurs between the existing and 

the new table fragments. If no data movement occurs:

• The database server reuses index idx2  and converts it to a fragment of index idx1.

• The index idx1  remains as an index with the same fragmentation strategy as the table tb1.

If the database server discovers that one or more rows in the table tb2 belong to preexisting fragments of the table tb1, the 

database server:

• Drops and rebuilds the index idx1  to include the rows that were originally in tables tb1  and tb2

• Drops the index idx2

For more information about how to ensure no data movement between the existing and the new table fragments, see 

Ensuring no data movement when you attach a fragment  on page 287.

Fragmenting the index with the same distribution scheme as the table
You fragment an index with the same distribution scheme as the table when you create an index that uses the same 

fragment expressions as the table.

The database server determines if the fragment expressions are identical, based on the equivalency of the expression tree 

instead of the algebraic equivalence. For example, consider the following two expressions:

(col1 >= 5)
(col1 = 5 OR col1 > 5)

Although these two expressions are algebraically equivalent, they are not identical expressions.

Example of Fragmenting the Index with the Same Distribution Scheme as the Table

Suppose you create two fragmented tables and indexes with the following SQL  statements:

CREATE TABLE tb1 (a INT)
   FRAGMENT BY EXPRESSION
      (a <= 10) IN tabdbspc1,
      (a <= 20) IN tabdbspc2,
      (a <= 30) IN tabdbspc3;
CREATE INDEX idx1 ON tb1 (a)
   FRAGMENT BY EXPRESSION
      (a <= 10) IN idxdbspc1,
      (a <= 20) IN idxdbspc2,
      (a <= 30) IN idxdbspc3;
 

CREATE TABLE tb2 (a INT CHECK a> 30 AND a<= 40)
   IN tabdbspc4;
CREATE INDEX idx2 ON tb2(a)
   IN idxdbspc4;

Suppose you then attach table tb2  to table tb1  with the following sample SQL  statement:

ALTER FRAGMENT ON TABLE tb1
   ATTACH tb2 AS (a <= 40);



Chapter 1. Performance Guide

The database server can eliminate the rebuild of index idx1  for this attach operation for the following reasons:

• The fragmentation expression for index idx1 is  identical to the fragmentation expression for table tb1. The database 

server:

◦ Expands the fragmentation of the index idx1  to the dbspace idxdbspc4

◦ Converts index idx2  to a fragment of index idx1

• No rows move from one fragment to another because the CHECK constraint is identical to the resulting 

fragmentation expression of the attached table.

For more information about how to ensure no data movement between the existing and the new table fragments, see 

Ensuring no data movement when you attach a fragment  on page 287.

Attaching unfragmented tables together
You can take advantage of the performance benefits of the ALTER FRAGMENT ATTACH operation when you combine two 

unfragmented tables into one fragmented table.

For example, suppose you create two unfragmented tables and indexes with the following SQL  statements:

CREATE TABLE tb1(a int) IN db1;
   CREATE INDEX idx1 ON tb1(a) in db1;
CREATE TABLE tb2(a int) IN db2;
   CREATE INDEX idx2 ON tb2(a) in db2;

You might want to combine these two unfragmented tables with the following sample distribution scheme:

ALTER FRAGMENT ON TABLE tb1
   ATTACH
      tb1 AS (a <= 100),
      tb2 AS (a > 100);

If no data migrates between the fragments of tb1  and tb2, the database server redefines index idx1  with the following 

fragmentation strategy:

CREATE INDEX idx1 ON tb1(a) F
   FRAGMENT BY EXPRESSION
      a <= 100 IN db1,
      a > 100 IN db2;

Important:  This behavior results in a different fragmentation strategy for the index prior to version 7.3 and version 

9.2 of the database server. In earlier versions, the ALTER FRAGMENT ATTACH statement creates an unfragmented 

detached index in the dbspace db1.

Ensuring no data movement when you attach a fragment
You can ensure there is no data movement when you attach a fragment by establishing identical check constraint 

expressions and verifying that fragment expressions are not overlapping.

About this task

287



HCL Informix 14.10 - Performance Guide

288

To ensure that no data movement occurs when you attach a fragment:

1. Establish a check constraint on the attached table that is identical to the fragment expression that it will assume 

after the ALTER FRAGMENT ATTACH operation.

2. Define the fragments with nonoverlapping expressions.

Example

For example, you might create a fragmented table and index with the following SQL  statements:

CREATE TABLE tb1(a int)
   FRAGMENT BY EXPRESSION
      (a >=0 AND a < 5) IN db1,
      (a >=5 AND a <10) IN db2;
 

CREATE INDEX idx1 ON tb1(a);

Suppose you create another table that is not fragmented, and you subsequently decide to attach it to the fragmented table.

CREATE TABLE tb2 (a int, check (a >=10 and a<15))
   IN db3;
 

CREATE INDEX idx2 ON tb2(a)
   IN db3;
 

ALTER FRAGMENT ON TABLE tb1
   ATTACH
      tb2 AS (a >= 10 AND a<15) AFTER db2;

This ALTER FRAGMENT ATTACH operation takes advantage of the existing index idx2 because the following steps were 

performed in the example to prevent data movement between the existing and the new table fragment:

• The check constraint expression in the CREATE TABLE tb2  statement is identical to the fragment expression for table 

tb2  in the ALTER FRAGMENT ATTACH statement.

• The fragment expressions specified in the CREATE TABLE tb1 and the ALTER FRAGMENT ATTACH statements are 

not overlapping.

Therefore, the database server preserves index idx2  in dbspace db3  and converts it into a fragment of index idx1. The index 

idx1  remains as an index with the same fragmentation strategy as the table tb1.

Indexes on attached tables
The database server tries to reuse the indexes on the attached tables as fragments of the resultant index. However, the 

corresponding index on the attached table might not exist or might not be usable due to disk-format mismatches. In these 

cases, it might be faster to build an index on the attached tables rather than to build the entire index on the resultant table.

Informix®  estimates the cost to create the whole index on the resultant table. The server then compares this cost to the cost 

of building the individual index fragments for the attached tables and chooses the index build with the least cost.



Chapter 1. Performance Guide

Automatically Gathered Statistics for New Indexes

When the CREATE INDEX statement runs successfully, with or without the ONLINE keyword, Informix®  automatically gathers 

the following statistics for the newly created index:

• Index-level statistics, equivalent to the statistics gathered in the UPDATE STATISTICS operation in LOW mode, for all 

types of indexes, including B-tree, Virtual Index Interface, and functional indexes.

• Column-distribution statistics, equivalent to the distribution generated in the UPDATE STATISTICS operation in HIGH 

mode, for a non-opaque leading indexed column of an ordinary B-tree index. The resolution of the HIGH mode is 1.0 

for a table size that is less than 1 million rows and 0.5 for higher table sizes. Tables with more than 1 million rows 

have a better resolution because they have more bins for statistics.

The automatically gathered distribution statistics are available to the query optimizer when it designs query plans for the 

table on which the new index was created.

Run UPDATE STATISTICS Before Attaching Tables

To ensure that cost estimates are correct, you should execute the UPDATE STATISTICS statement on all of the participating 

tables before you attach the tables. The LOW mode of the UPDATE STATISTICS statement is sufficient to derive the 

appropriate statistics for the optimizer to determine cost estimates for rebuilding indexes.

For more information about using the UPDATE STATISTICS statement, see the HCL®  Informix®  Guide to SQL: Syntax.

Example for situation when corresponding index does not exist
When a table does not have an index on a column that can serve as the fragment of the resultant index, the database server 

estimates the cost of building the index fragment for the column, compares this cost to rebuilding the entire index for all 

fragments on the resultant table, and chooses the index build with the least cost.

Suppose you create a fragmented table and index with the following SQL  statements:

CREATE TABLE tb1(a int, b int)
   FRAGMENT BY EXPRESSION
      (a >=0 AND a < 5) IN db1,
      (a >=5 AND a <10) IN db2;
CREATE INDEX idx1 ON tb1(a);

Suppose you then create two more tables that are not fragmented, and you subsequently decide to attach them to the 

fragmented table.

CREATE TABLE tb2 (a int, b int,
   CHECK (a >=10 and a<15)) IN db3;
CREATE INDEX idx2 ON tb2(a) IN db3;
CREATE TABLE tb3 (a int, b int,
   CHECK (a >= 15 and a<20)) IN db4;
CREATE INDEX idx3 ON tb3(b) IN db4;
 

ALTER FRAGMENT ON TABLE tb1
   ATTACH tb2 AS (a >= 10 and a<15) tb3 AS (a >= 15 and a<20);

289



HCL Informix 14.10 - Performance Guide

290

The three CREATE INDEX statements automatically calculate distribution statistics for the leading column of each index in 

HIGH mode, as well as index statistics and table statistics in LOW mode.

The only time the UPDATE STATISTICS LOW FOR TABLE  statement is required is after a CREATE INDEX statement in a situation 

in which the table has other preexisting indexes, as shown in this example:

CREATE TABLE tb1(col1 int, col2 int);
CREATE INDEX index idx1 on tb1(col1);
  (equivalent to update stats low on table tb1)
LOAD from tb1.unl insert into tb1; (load some data)
CREATE INDEX idx2 on tb1(col2); 

The statement CREATE INDEX idx2 on tb1(col2)  is NOT completely equivalent to UPDATE STATISTICS LOW FOR TABLE tb1, 

because the CREATE INDEX statement does not update index- level statistics for the preexisting index called idx1.

In the preceding example, table tb3  does not have an index on column a  that can serve as the fragment of the resultant index 

idx1. The database server estimates the cost of building the index fragment for column a  on the consumed table tb3  and 

compares this cost to rebuilding the entire index for all fragments on the resultant table. The database server chooses the 

index build with the least cost.

Example for situation when index on table is not usable
When the index on a table is not usable, the database server estimates the cost of building the index fragment, compares 

this cost to rebuilding the entire index for all fragments on the resultant table, and chooses the index build with the least 

cost.

Suppose you create tables and indexes as in the previous section, but the index on the third table specifies a dbspace that 

the first table also uses. The following SQL  statements show this scenario:

CREATE TABLE tb1(a int, b int)
   FRAGMENT BY EXPRESSION
      (a >=0 AND a < 5) IN db1,
      (a >=5 AND a <10) IN db2;
CREATE INDEX idx1 ON tb1(a);
CREATE TABLE tb2 (a int, b int, check (a >=10 and a<15))
   IN db3;
CREATE INDEX idx2 ON tb2(a)
   IN db3;
 

CREATE TABLE tb3 (a int, b int, check (a >= 15 and a<20))
   IN db4;
CREATE INDEX idx3 ON tb3(a)
   IN db2 ;

This example creates the index idx3  on table tb3  in the dbspace db2. As a result, index idx3  is not usable because index idx1 

already has a fragment in the dbspace db2, and the fragmentation strategy does not allow more than one fragment to be 

specified in a given dbspace.

Again, the database server estimates the cost of building the index fragment for column a  on the consumed table tb3  and 

compares this cost to rebuilding the entire index idx1  for all fragments on the resultant table. Then the database server 

chooses the index build with the least cost.



Chapter 1. Performance Guide

Improving ALTER FRAGMENT DETACH performance
You can improve the performance of ALTER FRAGMENT DETACH statements by formulating appropriate distribution 

schemes for your table and index fragments and by eliminating the index build during the execution of ALTER FRAGMENT 

DETACH statements.

To eliminate the index build during execution of the ALTER FRAGMENT DETACH statement, use one of the following 

fragmentation strategies:

• Fragment the index in the same way as the table.

• Fragment the index with the same distribution scheme as the table.

Important:  Only logging databases can benefit from the performance improvements for the ALTER FRAGMENT 

DETACH statement. Without logging, the database server works with multiple copies of the same table to ensure 

recoverability of the data when a failure occurs. This requirement prevents reuse of the existing index fragments.

Fragmenting the index in the same way as the table
You fragment an index in the same way that you fragment the table when you create a fragmented table and subsequently 

create an index without specifying a fragmentation strategy, unless the distribution scheme is round-robin and automatic 

location is enabled. Indexes on tables that use the round-robin distribution scheme are not fragmented when the 

AUTOLOCATE configuration parameter or environment option is set to a positive integer. You fragment an index in the same 

way that you fragment the table when you create a fragmented table and subsequently create an index without specifying a 

fragmentation strategy. The database server automatically creates an attached index when you first fragment a table.

For example, suppose you create a fragmented table and index with the following SQL  statements:

CREATE TABLE tb1(a int)
   FRAGMENT BY EXPRESSION
      (a >=0 AND a < 5) IN db1,
      (a >=5 AND a <10) IN db2,
      (a >=10 AND a <15) IN db3;
CREATE INDEX idx1 ON tb1(a);

The database server fragments the index keys into dbspaces db1, db2, and db3  with the same column a  value ranges as the 

table because the CREATE INDEX statement does not specify a fragmentation strategy.

Suppose you then decide to detach the data in the third fragment with the following SQL  statement:

ALTER FRAGMENT ON TABLE tb1
   DETACH db3 tb3;

Because the fragmentation strategy of the index is the same as the table, the ALTER FRAGMENT DETACH statement does 

not rebuild the index after the detach operation. The database server drops the fragment of the index in dbspace db3, 

updates the system catalog tables, and eliminates the index build.

291



HCL Informix 14.10 - Performance Guide

292

Fragmenting the index using same distribution scheme as the table
You fragment an index with the same distribution scheme as the table when you create the index that uses the same 

fragment expressions as the table.

A common fragmentation strategy is to fragment indexes in the same way as the tables but to specify different dbspaces for 

the index fragments. This fragmentation strategy of putting the index fragments into different dbspaces from the table can 

improve the performance of operations such as backup and recovery.

For example, suppose you create a fragmented table and index with the following SQL  statements:

CREATE TABLE tb1(a int, b int)
   FRAGMENT BY EXPRESSION
      (a >=0 AND a < 5) IN db1,
      (a >=5 AND a <10) IN db2,
      (a >=10 AND a <15) IN db3;
 

CREATE INDEX idx1 on tb1(a)
   FRAGMENT BY EXPRESSION
      (a >=0 AND a< 5) IN db4,
      (a >=5 AND a< 10) IN db5,
      (a >=10 AND a<15) IN db6;                

Suppose that you then decide to detach the data in the third fragment with the following SQL  statement:

ALTER FRAGMENT ON TABLE tb1
   DETACH db3 tb3;

Because the distribution scheme of the index is the same as the table, the ALTER FRAGMENT DETACH statement does not 

rebuild the index after the detach operation. The database server drops the fragment of the index in dbspace db3, updates 

the system catalog tables, and eliminates the index build.

Forcing out transactions when altering table fragments
You can enable the server to force out transactions that have opened or hold locks on the target table of an ALTER 

FRAGMENT ON TABLE operation in a logging database. Users holding the DBA access privilege can do this by enabling the 

FORCE_DDL_EXEC session environment option of the SET ENVIRONMENT statement.

About this task

You might want to do this on a busy system, perhaps one that runs 24 hours a day, if you do not want to wait for sessions to 

close before you alter a fragment.

Be aware, however, that by forcing out concurrent transactions to avoid waiting for locks to be released, the database server 

closes the Update cursors and rolls back the transactions of other users.

Prerequisites:

• You must be user informix  or hold DBA access privileges on the database.

• The table must be in a database that supports transaction logging.



Chapter 1. Performance Guide

To force out concurrent transactions of other sessions when altering a table fragment:

1. Set the FORCE_DDL_EXEC environment option of the SET ENVIRONMENT statement to one of the following values:

◦ ON, on , '1', or "1"  to enable the server to force out transactions that are open or have a lock on the table when 

an ALTER FRAGMENT ON TABLE statement is issued, until the server obtains a lock and exclusive access to 

the table.

◦ A positive integer that represents an amount of time in seconds. The numeric value enables the server to 

force out transactions until the server gets exclusive access and exclusive locks on the table, or until the 

specified time limit. If the server cannot force out transactions by the specified number of seconds, the server 

stops attempting to force out the transactions, and the ALTER FRAGMENT statement waits for the locks to be 

released when the concurrent transactions are committed or rolled back.

For example, to enable the FORCE_DDL_EXEC environment option to operate for 100 seconds when an ALTER 

FRAGMENT ON TABLE statement is issued, specify:

SET ENVIRONMENT FORCE_DDL_EXEC '100';

2. Set the lock mode to wait to ensure that the server will wait a specified amount of time before forcing out any 

transactions.

For example, to set the lock mode to wait for 20 seconds, specify:

SET LOCK MODE TO WAIT "20";

For more information, see Setting the lock mode to wait  on page 248.

3. Run an ALTER FRAGMENT ON TABLE statement, for example, to attach, detach, modify, add, or drop the fragment.

Example

The following SQL statements perform these actions:

• enable the FORCE_DDL_EXEC session environment option for 100 seconds,

• set the database server to wait up to 25 seconds for locks to be released,

• and change the interval size and storage location of range fragment p2  of table tabF:

SET ENVIRONMENT FORCE_DDL_EXEC '100';
SET LOCK MODE TO WAIT 25;
ALTER FRAGMENT ON TABLE tabF MODIFY
   PARTITION p2 TO PARTITION p2 VALUES < 500 IN dbs0;

Attention:

While the ALTER FRAGMENT statement above is running, other transactions that attempt to access rows in table 

tabF  are at risk of being forced out, if their Update cursor holds locks on rows in fragment p2.

After a transaction is rolled back because the FORCE_DDL_EXEC session environment option is enabled by another 

session, the database server returns this error to the session whose transaction failed:

-458  Long transaction aborted.

293



HCL Informix 14.10 - Performance Guide

294

The concurrent transaction failing with error -458  was not necessarily "long," but it had not yet been committed after 

opening or holding locks on the same table that the ALTER FRAGMENT statement in this example was modifying.

What to do next

After you complete an ALTER FRAGMENT ON TABLE operation with the FORCE_DDL_EXEC session environment option 

enabled, you can turn the FORCE_DDL_EXEC session environment option off. For example, specify:

SET ENVIRONMENT FORCE_DDL_EXEC OFF;

Related information

FORCE_DDL_EXEC session environment option  on page 

Monitoring fragment use
Once you determine a fragmentation strategy, you can monitor fragmentation.

You can monitor fragmentation in the following ways:

• Run individual onstat  utility commands to capture information about specific aspects of a running query.

• Run a SET EXPLAIN statement before you run a query to write the query plan to an output file.

Monitoring fragmentation with the onstat -g ppf command
With the onstat -g ppf  command, you can view partition information and monitor the I/O activity to verify your strategy and 

determine whether the I/O is balanced across fragments.

About this task

The onstat -g ppf  output includes the number of read-and-write requests sent to each fragment that is currently open. 

Because a request can trigger multiple I/O operations, these requests do not indicate how many individual disk I/O 

operations occur, but you can get a good idea of the I/O activity from the displayed columns.

The brfd  column in the output displays the number of buffer reads in pages. (Each buffer can contain one page.) This 

information is useful if you need to monitor the time a query takes to execute. Typically query execution time has a strong 

dependency on the number of required buffer reads. If the size of client-server buffering is small and your database contains 

TEXT data, query execution time can involve significantly more buffer reads, because the server reads the prior TEXT data.

The onstat -g ppf  output by itself does not identify the table in which a fragment is located. To determine the table for the 

fragment, join the partnum  column in the output to the  partnum column in the  sysfragments  system catalog table. The 

sysfragments  table displays the associated table id. You can also find the table name for the fragment by joining the table id 

column in  sysfragments  to the table id column in  systables.

To determine the table name in onstat -g ppf  output:

../sqs/ids_sqs_2072.html#ids_sqs_2072
../sqs/ids_sqs_2072.html#ids_sqs_2072
../sqs/ids_sqs_2072.html#ids_sqs_2072
../sqs/ids_sqs_2072.html#ids_sqs_2072


Chapter 1. Performance Guide

1. Obtain the value in the partnum  field of the onstat -g ppf  output.

2. Join the tabid column in the sysfragments  system catalog table with the tabid  column in the systables  system 

catalog table to obtain the table name from systables.

Use the partnum  field value that you obtain in step 1 in the SELECT statement.

SELECT a.tabname FROM systables a, sysfragments b
   WHERE a.tabid = b.tabid
      AND partn = partnum_value;

Monitoring fragmentation with SET EXPLAIN output
When the table is fragmented, the output of the SET EXPLAIN ON statement shows which table or index the database server 

scans to execute the query.

The SET EXPLAIN output identifies the fragments with a fragment number. The fragment numbers are the same as those 

contained in the partn  column in the sysfragments  system catalog table.

The following example of partial SET EXPLAIN output shows a query that takes advantage of fragment elimination and 

scans two fragments in table t1:

QUERY:
------
SELECT * FROM t1 WHERE c1 > 12
 

Estimated Cost: 3
Estimated # of Rows Returned: 2
 

1) informix.t1: SEQUENTIAL SCAN (Serial, fragments: 1, 2)
 

   Filters: informix.t1.c1 > 12

If the optimizer must scan all fragments (that is, if it is unable to eliminate any fragment from consideration), the SET 

EXPLAIN output displays fragments: ALL. In addition, if the optimizer eliminates all the fragments from consideration (that is, 

none of the fragments contain the queried information), the SET EXPLAIN output displays fragments:  NONE.

For information about how the database server eliminates a fragment from consideration, see Distribution schemes that 

eliminate fragments  on page 278.

For more information about the SET EXPLAIN ON statement, see Report that shows the query plan chosen by the optimizer 

on page 304.

Queries and the query optimizer
These topics describe query plans, explain how the database server manages query optimization, and discuss factors that 

you can use to influence the query plan. These topics also describe performance considerations for SPL routines, the UDR 

cache, and triggers.

295



HCL Informix 14.10 - Performance Guide

296

The parallel database query (PDQ) features in the database server provide the largest potential performance improvements 

for a query. Parallel database query (PDQ)  on page 350 describes PDQ and the Memory Grant Manager (MGM) and 

explains how to control resource use by queries.

PDQ provides the most substantial performance gains if you fragment your tables as described in Fragmentation guidelines 

on page 264.

Improving individual query performance  on page 370 explains how to improve the performance of specific queries.

Data warehouse queries and performance issues related to dimensional databases are described in the IBM®  Informix® 

Data Warehouse Guide.

Related information

Performance tuning dimensional databases  on page 

The query plan
The query optimizer evaluates the different ways in which a query might be performed and determines the best way to select 

the requested data. During this evaluation, the optimizer formulates a query plan  to fetch the data rows that are required to 

process a query.

For example, when evaluating the different ways in which a query might be performed, the optimizer must determine whether 

indexes should be used. If the query includes a join, the optimizer must determine the join plan (hash or nested loop) and the 

order in which tables are evaluated or joined.

The following topics describe the components of a query plan and show examples of query plans.

The access plan
The way that the optimizer chooses to read a table is called an access plan. The simplest method to access a table is to read 

it sequentially, which is called a table scan. The optimizer chooses a table scan when most of the table must be read or the 

table does not have an index that is useful for the query.

The optimizer can also choose to access the table by an index. If the column in the index is the same as a column in a filter 

of the query, the optimizer can use the index to retrieve only the rows that the query requires. The optimizer can use a key-

only index scan  if the columns requested are within one index on the table. The database server retrieves the needed data 

from the index and does not access the associated table.

Important:  The optimizer does not choose a key-only scan for a VARCHAR column. If you want to take advantage of 

key-only scans, use the ALTER TABLE with the MODIFY clause to change the column to a CHAR data type.

The optimizer compares the cost of each plan to determine the best one. The database server derives cost from estimates 

of the number of I/O operations required, calculations to produce the results, rows accessed, sorting, and so forth.

../whse/ids_whse_221.html#ids_whse_221
../whse/ids_whse_221.html#ids_whse_221
../whse/ids_whse_221.html#ids_whse_221
../whse/ids_whse_221.html#ids_whse_221


Chapter 1. Performance Guide

The join plan
When a query contains more than one table, Informix®  joins the tables using filters in the query. The way that the optimizer 

chooses to join the tables is the  join plan.

In the following query, the customer and orders table are joined by the customer.customer_num = orders.customer_num  filter:

SELECT * from customer, orders
WHERE customer.customer_num = orders.customer_num
AND customer.lname = "Higgins";

The join method can be a nested-loop join or a hash join.

Because of the nature of hash joins, an application with isolation level set to Repeatable Read might temporarily lock all the 

records in tables that are involved in the join, including records that fail to qualify the join. This situation leads to decreased 

concurrency among connections. Conversely, nested-loop joins lock fewer records but provide reduced performance when a 

large number of rows are accessed. Thus, each join method has advantages and disadvantages.

Nested-loop join
In a nested-loop join, the database server scans the first, or outer table, and then joins each of the rows that pass table filters 

to the rows found in the second, or inner table.

Figure 42: Nested-loop join  on page 297 shows tables and rows, and the order they are read, for query:

SELECT * FROM customer, orders
WHERE customer.customer_num=orders.customer_num
AND order_date>"01/01/2007";

The database server accesses an outer table by an index or by a table scan. The database server applies any table filters 

first. For each row that satisfies the filters on the outer table, the database server reads the inner table to find a match.

The database server reads the inner table once for every row in the outer table that fulfills the table filters. Because of the 

potentially large number of times that the inner table can be read, the database server usually accesses the inner table by an 

index.

Figure  42. Nested-loop join

If the inner table does not have an index, the database server might construct an autoindex  at the time of query execution. 

The optimizer might determine that the cost to construct an autoindex  at the time of query execution is less than the cost to 

scan the inner table for each qualifying row in the outer table.

297



HCL Informix 14.10 - Performance Guide

298

If the optimizer changes a subquery to a nested-loop join, it might use a variation of the nested-loop join, called a semi join. 

In a semi join, the database server reads the inner table only until it finds a match. In other words, for each row in the outer 

table, the inner table contributes at most one row. For more information on how the optimizer handles subqueries, see Query 

plans for subqueries  on page 311.

Hash join
The optimizer usually uses a hash join when at least one of the two join tables does not have an index on the join column or 

when the database server must read a large number of rows from both tables. No index and no sorting is required when the 

database server performs a hash join.

A hash join consists of two activities: first building the hash table (build  phase) and then probing the hash table (probe 

phase). Figure 43: How a hash join is executed  on page 298 shows the hash join in detail.

In the build phase, the database server reads one table and, after it applies any filters, creates a hash table. Think of a 

hash table conceptually as a series of buckets, each with an address that is derived from the key value by applying a hash 

function. The database server does not sort keys in a particular hash bucket.

Smaller hash tables can fit in the virtual portion of database server shared memory. The database server stores larger hash 

files on disk in the dbspace specified by the DBSPACETEMP configuration parameter or the DBSPACETEMP environment 

variable.

In the probe phase, the database server reads the other table in the join and applies any filters. For each row that satisfies the 

filters on the table, the database server applies the hash function on the key and probes the hash table to find a match.

Figure  43. How a hash join is executed

Join order
The order that tables are joined in a query is extremely important. A poor join order can cause query performance to decline 

noticeably.

The following SELECT statement calls for a three-way join:

SELECT C.customer_num, O.order_num
   FROM customer C, orders O, items I
   WHERE C.customer_num = O.customer_num
      AND O.order_num = I.order_num

The optimizer can choose one of the following join orders:



Chapter 1. Performance Guide

• Join customer  to orders. Join the result to items.

• Join orders  to customer. Join the result to items.

• Join customer  to items. Join the result to orders.

• Join items  to customer. Join the result to orders.

• Join orders  to items. Join the result to customer.

• Join items  to orders. Join the result to customer.

For an example of how the database server executes a plan according to a specific join order, see Example of query-plan 

execution  on page 299.

Example of query-plan execution
This topic contains an example of a query with a SELECT statement that calls for a three-way join and describes one 

possible query plan.

The following SELECT statement calls for a three-way join:

SELECT C.customer_num, O.order_num
   FROM customer C, orders O, items I
   WHERE C.customer_num = O.customer_num
      AND O.order_num = I.order_num

Assume also that no indexes are on any of the three tables. Suppose that the optimizer chooses the customer-orders-

items  path and the nested-loop join for both joins (in reality, the optimizer usually chooses a hash join for two tables without 

indexes on the join columns). Figure 44: A query plan in pseudocode  on page 299 shows the query plan, expressed in 

pseudocode. For information about interpreting query plan information, see Report that shows the query plan chosen by the 

optimizer  on page 304.

Figure  44. A query plan in pseudocode

for each row in the customer table do:
   read the row into C
   for each row in the orders table do:
      read the row into O
      if O.customer_num = C.customer_num then
         for each row in the items table do:
            read the row into I
            if I.order_num = O.order_num then
               accept the row and send to user
            end if
         end for
      end if
   end for
end for

This procedure reads the following rows:

• All rows of the customer  table once

• All rows of the orders  table once for each row of the customer  table

• All rows of the items  table once for each row of the customer-orders  pair

299



HCL Informix 14.10 - Performance Guide

300

This example does not describe the only possible query plan. Another plan merely reverses the roles of customer  and orders: 

for each row of orders, it reads all rows of customer, looking for a matching customer_num. It reads the same number of 

rows in a different order and produces the same set of rows in a different order. In this example, no difference exists in the 

amount of work that the two possible query plans need to do.

Example of a join with column filters
The presence of a column filter  can change the query plan. A column filter is a WHERE expression that reduces the number of 

rows that a table contributes to a join.

The following example shows the query described in Example of query-plan execution  on page 299 with a filter added:

SELECT C.customer_num, O.order_num
   FROM customer C, orders O, items I
   WHERE C.customer_num = O.customer_num
      AND O.order_num = I.order_num
      AND O.paid_date IS NULL

The expression O.paid_date  IS NULL filters out some rows, reducing the number of rows that are used from the orders  table. 

Consider a plan that starts by reading from orders. Figure 45: Query plan that uses a column filter  on page 300 displays 

this sample plan in pseudocode.

Figure  45. Query plan that uses a column filter

for each row in the orders table do:
   read the row into O
   if O.paid_date is null then
      for each row in the customer table do:
         read the row into C
         if O.customer_num = C.customer_num then
            for each row in the items table do:
               read the row into I
               if I.order_num = O.order_num then
                  accept row and return to user
               end if
            end for
         end if
      end for
   end if
end for

Let pdnull represent the number of rows in orders  that pass the filter. It is the value of COUNT(*)  that results from the 

following query:

SELECT COUNT(*) FROM orders WHERE paid_date IS NULL

If one customer exists for every order, the plan in Figure 45: Query plan that uses a column filter  on page 300 reads the 

following rows:

• All rows of the orders  table once

• All rows of the customer  table, pdnull  times

• All rows of the items  table, pdnull  times



Chapter 1. Performance Guide

Query planspseudocodeFigure 46: The alternative query plan in pseudocode  on page 301 shows an alternative execution plan that reads from the 

customer  table first.

Figure  46. The alternative query plan in pseudocode

for each row in the customer table do:
   read the row into C
   for each row in the orders table do:
      read the row into O
      if O.paid_date is null and
           O.customer_num = C.customer_num then
         for each row in the items table do:
            read the row into I
            if I.order_num = O.order_num then
               accept row and return to user
            end if
         end for
      end if
   end for 

Because the filter is not applied in the first step that Figure 46: The alternative query plan in pseudocode  on page 301

shows, this plan reads the following rows:

• All rows of the customer  table once

• All rows of the orders  table once for every row of customer

• All rows of the items  table, pdnull  times

The query plans in Figure 45: Query plan that uses a column filter  on page 300 and Figure 46: The alternative query plan 

in pseudocode  on page 301 produce the same output in a different sequence. They differ in that one reads a table pdnull 

times, and the other reads a table SELECT COUNT(*) FROM  customer  times. By choosing the appropriate plan, the optimizer 

can save thousands of disk accesses in a real application.

Example of a join with indexes
The presence of indexes and constraints in query plans provides the optimizer with options that can greatly improve query-

execution time.

This topic shows the outline of a query plan that differs from query shown in Example of a join with column filters  on 

page 300, because it is constructed using indexes.

301



HCL Informix 14.10 - Performance Guide

302

Figure  47. Query plan with indexes

for each row in the customer table do:
   read the row into C
   look up C.customer_num in index on orders.customer_num
   for each matching row in the orders index do:
      read the table row for O
      if O.paid_date is null then
         look up O.order_num in index on items.order_num
         for each matching row in the items index do:
            read the row for I
            construct output row and return to user
         end for
      end if
   end for
end for

The keys in an index are sorted so that when the database server finds the first matching entry, it can read any other rows 

with identical keys without further searching, because they are located in physically adjacent positions. This query plan reads 

only the following rows:

• All rows of the customer  table once

• All rows of the orders  table once (because each order is associated with only one customer)

• Only rows in the items  table that match pdnull  rows from the customer-orders  pairs

This query plan achieves a great reduction in cost compared with plans that do not use indexes. An inverse plan, reading 

orders  first and looking up rows in the customer  table by its index, is also feasible by the same reasoning.

The physical order of rows in a table also affects the cost of index use. To the degree that a table is ordered relative to an 

index, the overhead of accessing multiple table rows in index order is reduced. For example, if the orders  table rows are 

physically ordered according to the customer number, multiple retrievals of orders for a given customer would proceed more 

rapidly than if the table were ordered randomly.

In some cases, using an index might incur additional costs. For more information, see Index lookup costs  on page 323.

Query plans that include an index self-join path
An index self-join  is a type of index scan that you can think of as a union of many small index scans, each one with a single 

unique combination of lead-key columns and filters on non-lead-key columns.

The union of small index scans results in an access path that uses only subsets of the full range of a composite index. The 

table is logically joined to itself, and the more selective non-leading index keys are applied as index-bound filters to each 

unique combination of the leading key values.

An index self-join is beneficial for situations in which:

• The lead key of an index has many duplicates, and

• Predicates on the lead key are not selective, but predicates on the non-leading index keys are selective.



Chapter 1. Performance Guide

The query in Figure 48: SET EXPLAIN output for a query with an index self-join path  on page 303 shows the SET EXPLAIN 

output for a query plan that includes an index self-join path.

Figure  48. SET EXPLAIN output for a query with an index self-join path

QUERY:
------
SELECT a.c1,a.c2,a.c3 FROM tab1 a WHERE (a.c3 >= 100103) AND
     (a.c3 <= 100104) AND (a.c1 >= 'PICKED      ') AND
     (a.c1 <= 'RGA2        ') AND (a.c2 >= 1) AND (a.c2 <= 7)
     ORDER BY 1, 2, 3
 

Estimated Cost: 155
Estimated # of Rows Returned: 1
  1) informix.a: INDEX PATH
    (1) Index Keys: c1 c2 c3 c4 c5   (Key-Only)  (Serial, fragments: ALL)
        Index Self Join Keys (c1 c2 )
          Lower bound: informix.a.c1 >= 'PICKED      ' AND (informix.a.c2 >= 1 )
          Upper bound: informix.a.c1 <= 'RGA2        ' AND (informix.a.c2 <= 7 )
        Lower Index Filter: (informix.a.c1 = informix.a.c1 AND
          informix.a.c2 = informix.a.c2 ) AND informix.a.c3 >= 100103
        Upper Index Filter: informix.a.c3 <= 100104
        Index Key Filters:  (informix.a.c2 <= 7 ) AND
                            (informix.a.c2 >= 1 )

In Figure 48: SET EXPLAIN output for a query with an index self-join path  on page 303, an index exists on columns c1, c2, 

c3, c4, and c5. The optimizer chooses c1 and c2 as lead keys, which implies that columns c1 and c2 have many duplicates. 

Column c3 has few duplicates and thus the predicates on column c3 (c3 >= 100103  and c3 <= 100104) have good selectivity.

As Figure 48: SET EXPLAIN output for a query with an index self-join path  on page 303 shows, an index self-join path is 

a self-join of two index scans using the same index. The first index scan retrieves each unique value for lead key columns, 

which are c1 and c2. The unique value of c1 and c2 is then used to probe the second index scan, which also uses predicates 

on column c3. Because predicates on column c3 have good selectivity:

• The index scan on the inner side of the nested-loop join is very efficient, retrieving only the few rows that satisfy the 

c3 predicates.

• The index scan does not retrieve extra rows.

Thus, for each unique value of c1 and c2, an efficient index scan on c1, c2 and c3 occurs.

The following lines in the example indicate that the optimizer has chosen an index self join path for this table, with columns 

c1 and c2 as the lead keys for the index self-join path:

Index Self Join Keys (c1 c2 )
          Lower bound: informix.a.c1 >= 'PICKED      ' AND (informix.a.c2 >= 1 )
          Upper bound: informix.a.c1 <= 'RGA2        ' AND (informix.a.c2 <= 7 )

The example shows the bounds for columns c1 and c2, which you can conceive of as the bounds for the index scan to 

retrieve the qualified leading keys of the index.

The following information in the example shows the self-join:

303



HCL Informix 14.10 - Performance Guide

304

(informix.a.c1 = informix.a.c1 AND informix.a.c2 = informix.a.c2 )

This information represents the inner index scan. For lead key columns c1 and c2 the self- join predicate is used, indicating 

the value of c1 and c2 comes from the outer index scan. The predicates on column c3 serve as an index filter that makes the 

inner index scan efficient.

Regular index scans do not use filters on column c3 to position the index scan, because the lead key columns c1 and c2 do 

not have equality predicates.

Optimizer directivesAVOID_INDEX_SJOptimizer directivesINDEX_SJThe INDEX_SJ directive forces an index self-join path using the specified index, or choosing the least costly index in a list 

of indexes, even if data distribution statistics are not available for the leading index key columns. The AVOID_INDEX_SJ 

directive prevents a self-join path for the specified index or indexes. Also see Access-method directives  on page 337 and 

the HCL®  Informix®  Guide to SQL: Syntax.

Query plan evaluation
The optimizer considers all query plans by analyzing factors such as disk I/O and CPU costs.

The optimizer constructs all feasible plans simultaneously using a bottom-up, breadth-first search strategy. That is, the 

optimizer first constructs all possible join pairs. It eliminates the more expensive pair of any redundant  pair. (Redundant pairs 

are join pairs that contain the same tables and produce the same set of rows as another join pair.)

For example, if neither join specifies an ordered set of rows by using the ORDER BY or GROUP BY clauses of the SELECT 

statement, the join pair (A x B) is redundant with respect to (B x A).

If the query uses additional tables, the optimizer joins each remaining pair to a new table to form all possible join triplets, 

eliminating the more expensive of redundant triplets and so on for each additional table to be joined. When a non-redundant 

set of possible join combinations has been generated, the optimizer selects the plan that appears to have the lowest 

execution cost.

Report that shows the query plan chosen by the optimizer
Any user who runs a query can use the SET EXPLAIN statement or the EXPLAIN directive to display the query plan that the 

optimizer chooses.

For information about how to specify the directives, see EXPLAIN directives  on page 341. The user enters the SET 

EXPLAIN ON statement or the SET EXPLAIN ON AVOID_EXECUTE statement before the SQL  statement for the query, as the 

following example shows.

SET EXPLAIN ON AVOID_EXECUTE;
SELECT * FROM customer, orders
WHERE customer.customer_num = orders.customer_num
   AND customer.lname = "Higgins";

If a user does not have any access to SQL code source, the Database Administrator can set dynamically the SET EXPLAIN 

using the onmode -Y  command.

After the database server executes the SET EXPLAIN ON statement or sets dynamically the SET EXPLAIN with onmode -Y 

command, the server writes an explanation of each query plan to a file for subsequent queries that the user enters.



Chapter 1. Performance Guide

Related information

The explain output file  on page 305

Query statistics section provides performance debugging information  on page 306

SET EXPLAIN statement  on page 

Using the FILE TO option  on page 

Default name and location of the explain output file on UNIX  on page 

Default name and location of the output file on Windows  on page 

Report that shows the query plan chosen by the optimizer  on page 304

Enabling external directives  on page 349

onmode -Y: Dynamically change SET EXPLAIN  on page 

onmode and Y arguments: Change query plan measurements for a session (SQL administration API)  on 

page 

The explain output file
The SET EXPLAIN statement enables or disables recording measurements of queries in the current session, including 

the plan of the query optimizer, an estimate of the number of rows returned, and the relative cost of the query. The 

measurements appear in an output file.

When you run the onmode -Y  command to turn on dynamic SET EXPLAIN, the output is displayed in a new explain output 

file. If a file from the SET EXPLAIN statement exists, the database server stops using it, and instead uses the file created by 

onmode -Y  until the administrator turns off dynamic SET EXPLAIN for the session.

The output file specifies if external directives are in effect.

The following codes in the Query Statistics section of the explain output file provide information about external tables:

• xlcnv  identifies an operation that is loading data from an external table and inserting the data into a base table. Here 

x  = external table, l  = loading, and cnv  = converter

• xucnv  identifies an operation that is unloading data from an external table and inserting the data into a base table. 

Here x  = external table, u  = unloading, and cnv  = converter

The Query Statistics section of the explain output file is a useful resource for debugging performance problems. See Query 

statistics section provides performance debugging information  on page 306.

Related information

SET EXPLAIN statement  on page 

Using the FILE TO option  on page 

Default name and location of the explain output file on UNIX  on page 

305

../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156


HCL Informix 14.10 - Performance Guide

306

Default name and location of the output file on Windows  on page 

Report that shows the query plan chosen by the optimizer  on page 304

Query statistics section provides performance debugging information  on page 306

Enabling external directives  on page 349

onmode -Y: Dynamically change SET EXPLAIN  on page 

onmode and Y arguments: Change query plan measurements for a session (SQL administration API)  on 

page 

Query statistics section provides performance debugging information
If the EXPLAIN_STAT configuration parameter is enabled, a Query Statistics section appears in the explain output file that the 

SET EXPLAIN statement of SQL and the onmode -Y session_id  command displays.

The Query Statistics section of the explain output file shows the estimated number of rows that the query plan expects 

to return, the actual number of returned rows, and other information about the query. You can use this information, which 

provides an indication of the overall flow of the query plan and how many rows flow through each stage of the query, to 

debug performance problems.

The following example shows query statistics in SET EXPLAIN output. If the estimated and actual number of rows scanned 

or joined are quite different, the statistics on those tables might be old and should be updated.

../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064


Chapter 1. Performance Guide

Figure  49. Query statistics in SET EXPLAIN output

select * from tab1, tab2 where tab1.c1 = tab2.c1 and tab1.c3 between 0 and 15
 

Estimated Cost: 104
Estimated # of Rows Returned: 69
 

  1) zelaine.tab2: SEQUENTIAL SCAN
 

  2) zelaine.tab1: INDEX PATH
 

    (1) Index Keys: c1 c3   (Serial, fragments: ALL)
        Lower Index Filter: (zelaine.tab1.c1 = zelaine.tab2.c1
                             AND zelaine.tab1.c3 >= 0 )
        Upper Index Filter: zelaine.tab1.c3 <= 15
NESTED LOOP JOIN
 

Query statistics:
-----------------
 

  Table map :
  ----------------------------
  Internal name     Table name
  ----------------------------
  t1                tab2
  t2                tab1
 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost
  -------------------------------------------------------------------
  scan     t1     50         50        50         00:00:00   4
 

  type     table  rows_prod  est_rows  rows_scan  time       est_cost
  -------------------------------------------------------------------
  scan     t2     67         69        4          00:00:00   2
 

  type     rows_prod  est_rows  time       est_cost
  -------------------------------------------------
  nljoin   67         70        00:00:00   104

Related information

The explain output file  on page 305

SET EXPLAIN statement  on page 

Using the FILE TO option  on page 

Default name and location of the explain output file on UNIX  on page 

Default name and location of the output file on Windows  on page 

Report that shows the query plan chosen by the optimizer  on page 304

Sample query plan reports  on page 308

Enabling external directives  on page 349

307

../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157


HCL Informix 14.10 - Performance Guide

308

onmode -Y: Dynamically change SET EXPLAIN  on page 

onmode and Y arguments: Change query plan measurements for a session (SQL administration API)  on 

page 

Sample query plan reports
The topics in this section describe sample query plans that you might want to display when analyzing the performance of 

different kinds of queries.

Related information

Query statistics section provides performance debugging information  on page 306

Single-table query
This topic shows sample SET EXPLAIN output for a simple query and a complex query on a single table.

Figure 50: Partial SET EXPLAIN output for a simple query  on page 308 shows SET EXPLAIN output for a simple query.

Figure  50. Partial SET EXPLAIN output for a simple query

QUERY:
------
SELECT fname, lname, company FROM customer
 

Estimated Cost: 2
Estimated # of Rows Returned: 28
 

  1) virginia.customer: SEQUENTIAL SCAN

Figure 51: Partial SET EXPLAIN output for a complex query  on page 309 shows SET EXPLAIN output for a complex query 

on the customer  table.

../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064


Chapter 1. Performance Guide

Figure  51. Partial SET EXPLAIN output for a complex query

QUERY:
------
SELECT fname, lname, company FROM customer
WHERE company MATCHES 'Sport*' AND
    customer_num BETWEEN 110 AND 115
ORDER BY lname
 

Estimated Cost: 1
Estimated # of Rows Returned: 1
Temporary Files Required For: Order By
 

  1) virginia.customer: INDEX PATH
 

        Filters: virginia.customer.company MATCHES 'Sport*'
 

    (1) Index Keys: customer_num   (Serial, fragments: ALL)
        Lower Index Filter: virginia.customer.customer_num >= 110
        Upper Index Filter: virginia.customer.customer_num <= 115

The following output lines in Figure 51: Partial SET EXPLAIN output for a complex query  on page 309 show the scope of 

the index scan for the second query:

• Lower Index Filter: virginia.customer.customer_num >= 110

Start the index scan with the index key value of 110.

• Upper Index Filter: virginia.customer.customer_num <= 115

Stop the index scan with the index key value of 115.

Multitable query
This topic shows sample SET EXPLAIN output for a multiple-table query.

309



HCL Informix 14.10 - Performance Guide

310

Figure  52. Partial SET EXPLAIN output for a multi-table query

QUERY:
------
SELECT C.customer_num, O.order_num, SUM (I.total_price)
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num
AND O.order_num = I.order_num
GROUP BY C.customer_num, O.order_num
 

Estimated Cost: 78
Estimated # of Rows Returned: 1
Temporary Files Required For: Group By
 

  1) virginia.o: SEQUENTIAL SCAN
 

  2) virginia.c: INDEX PATH
 

    (1) Index Keys: customer_num   (Key-Only)  (Serial, fragments: ALL)
        Lower Index Filter:
          virginia.c.customer_num = virginia.o.customer_num
NESTED LOOP JOIN
 

  3) virginia.i: INDEX PATH
 

    (1) Index Keys: order_num   (Serial, fragments: ALL)
        Lower Index Filter: virginia.o.order_num = virginia.i.order_num
NESTED LOOP JOIN

The SET EXPLAIN output lists the order in which the database server accesses the tables and the access plan to read each 

table. The plan in Figure 52: Partial SET EXPLAIN output for a multi-table query  on page 310 indicates that the database 

server is to perform the following actions:

1. The database server is to read the orders  table first.

Because no filter exists on the orders  table, the database server must read all rows. Reading the table in physical 

order is the least expensive approach.

2. For each row of orders, the database server is to search for matching rows in the customer  table.

Key-only index scan The search uses the index on customer_num. The notation Key-Only  means that only the index need be read for the 

customer  table because only the c.customer_num  column is used in the join and the output, and the column is an 

index key.

3. For each row of orders  that has a matching customer_num, the database server is to search for a match in the items 

table using the index on order_num.

Key-first scan
This topic shows a sample query that uses a key-first scan, which is an index scan that uses keys other than those listed as 

lower and upper index filters.



Chapter 1. Performance Guide

Figure  53. Partial SET EXPLAIN output for a key-first scan

create index idx1 on tab1(c1, c2);
 

select * from tab1 where (c1 > 0) and ( (c2 = 1) or (c2 = 2))
Estimated Cost: 4
Estimated # of Rows Returned: 1
 

1) pubs.tab1: INDEX PATH
 

    (1) Index Keys: c1 c2 (Key-First) (Serial, fragments: ALL)
   Lower Index Filter: pubs.tab1.c1 > 0
   Index Key Filters:  (pubs.tab1.c2 = 1 OR pubs.tab1.c2 = 2)

SET EXPLAINusingEven though in this example the database server must eventually read the row data to return the query results, it attempts to 

reduce the number of possible rows by applying additional key filters first. The database server uses the index to apply the 

additional filter, c2 = 1 OR c2 = 2, before it reads the row data.

Query plans for subqueries
The optimizer can change a subquery to a join automatically if the join provides a lower cost.

For example, Figure 54: Partial SET EXPLAIN output for a flattened subquery  on page 311 sample output of the SET 

EXPLAIN ON statement shows that the optimizer changes the table in the subquery to be the inner table in a join.

Figure  54. Partial SET EXPLAIN output for a flattened subquery

QUERY:
------
SELECT company, fname, lname, phone
FROM customer c
WHERE EXISTS(
   SELECT customer_num FROM cust_calls u
      WHERE c.customer_num = u.customer_num)
 

Estimated Cost: 6
Estimated # of Rows Returned: 7
 

  1) virginia.c: SEQUENTIAL SCAN
 

  2) virginia.u: INDEX PATH  (First Row)
 

    (1) Index Keys: customer_num call_dtime   (Key-Only)
                                              (Serial, fragments: ALL)
        Lower Index Filter: virginia.c.customer_num = virginia.u.customer_num
NESTED LOOP JOIN  (Semi Join)

For more information about the SET EXPLAIN ON statement, see Report that shows the query plan chosen by the optimizer 

on page 304.

When the optimizer changes a subquery to a join, it can use several variations of the access plan and the join plan:

311



HCL Informix 14.10 - Performance Guide

312

• First-row scan

A first-row scan is a variation of a table scan. When the database server finds one match, the table scan halts.

• Skip-duplicate-index scan

The skip-duplicate-index scan is a variation of an index scan. The database server does not scan duplicates.

• Semi join

The semi join is a variation of a nested-loop join. The database server halts the inner-table scan when the first match 

is found. For more information about a semi join, see Nested-loop join  on page 297.

Query plans for collection-derived tables
A collection-derived table is a special method that the database server uses to process a query on a collection. To use a 

collection-derived table, a query must contain the TABLE keyword in the FROM clause of an SQL statement.

For more information about how to use collection-derived tables in an SQL statement, see the HCL®  Informix®  Guide to SQL: 

Syntax.

Although the database does not actually create a table for the collection, it processes the data as if it were a table. 

Collection-derived tables allow developers to use fewer cursors and host variables to access a collection, in some cases.

These SQL  statements create a collection column called children:

CREATE ROW TYPE person(name CHAR(255), id INT);
CREATE TABLE parents(name CHAR(255),
id INT,
children LIST(person NOT NULL));

The following query creates a collection-derived table for the children  column and treats the elements of this collection as 

rows in a table:

SELECT name, id
FROM TABLE(MUTLISET(SELECT children
FROM parents
WHERE parents.id
= 1001)) c_table(name, id);

Alternatively, you can specify a collection-derived table in the FROM clause, as shown in this example:

SELECT name, id
FROM (SELECT children
FROM parents
WHERE parents.id
= 1001) c_table(name, id);

Example showing how the database server completes the query
Informix®  performs several steps when completing a query for collection-derived tables.

When completing a query, the database server performs the steps shown in this example:



Chapter 1. Performance Guide

1. Scans the parent  table to find the row where parents.id = 1001

This operation is listed as a SEQUENTIAL SCAN in the SET EXPLAIN output that Figure 55: Query plan that uses a 

collection-derived table  on page 313 shows.

2. Reads the value of the collection column called children.

3. Scans the single collection and returns the value of name  and id  to the application.

This operation is listed as a COLLECTION SCAN in the SET EXPLAIN output that Figure 55: Query plan that uses a 

collection-derived table  on page 313 shows.

Figure  55. Query plan that uses a collection-derived table

QUERY:
------
SELECT name, id
FROM (SELECT children
FROM parents
WHERE parents.id
= 1001) c_table(name, id);
 

Estimated Cost: 2
Estimated # of Rows Returned: 1
 

  1) lsuto.c_table: COLLECTION SCAN
    Subquery:
    ---------
    Estimated Cost: 1
    Estimated # of Rows Returned: 1
 

      1) lsuto.parents: SEQUENTIAL SCAN
 

            Filters: lsuto.parents.id = 1001

Derived tables folded into parent queries
You can improve the performance of collection-derived tables by using SQL to fold derived tables in simple queries into a 

parent query instead of into query results that are put into a temporary table.

Use SQL like that in this example:

select * from ((select col1, col2 from tab1)) as vtab(c1,c2)

However, if the query is complex because it involves aggregates, ORDER BY operations, or the UNION operation, the server 

creates a temporary table.

The database server folds derived tables in a manner that is similar to the way the server folds views through the 

IFX_FOLDVIEW configuration parameter (described in Enable view folding to improve query performance  on page 419). 

When the IFX_FOLDVIEW configuration parameter is enabled, views are folded into a parent query. The views are not folded 

into query results that are put into a temporary table.

The following examples show derived tables folded into the main query.

313



HCL Informix 14.10 - Performance Guide

314

Figure  56. Query plan that uses a derived table folded into the parent query

select * from ((select vcol0, tab1.col1 from
        table(multiset(select col2 from tab2 where col2 > 50 ))
 vtab2(vcol0),tab1 )) vtab1(vcol1,vcol2)
 where vcol1 = vcol2
 

Estimated Cost: 2
Estimated # of Rows Returned: 1
 

  1) informix.tab2: SEQUENTIAL SCAN
 

        Filters: informix.tab2.col2 > 50
 

  2) informix.tab1: SEQUENTIAL SCAN
 

        Filters:
        Table Scan Filters: informix.tab1.col1 > 50
 

DYNAMIC HASH JOIN
    Dynamic Hash Filters: informix.tab2.col2 = informix.tab1.col1 

Figure  57. Second query plan that uses a derived table folded into the parent query

select * from (select col1 from tab1 where col1 = 100) as vtab1(c1)
left join (select col1 from tab2 where col1 = 10) as vtab2(vc1)
on  vtab1.c1 =  vtab2.vc1
 

Estimated Cost: 5
Estimated # of Rows Returned: 1
 

      1) informix.tab1: SEQUENTIAL SCAN
 

            Filters: informix.tab1.col1 = 100
 

      2) informix.tab2: AUTOINDEX PATH
 

        (1) Index Keys: col1   (Key-Only)
            Lower Index Filter: informix.tab1.col1 = informix.tab2.col1
            Index Key Filters:  (informix.tab2.col1 = 10 )
 

    ON-Filters:(informix.tab1.col1 = informix.tab2.col1
            AND informix.tab2.col1 = 10 )
    NESTED LOOP JOIN(LEFT OUTER JOIN)

The following example shows a complex query involving the UNION operation. Here, a temporary table has been created.

Figure  58. Complex derived-table query that creates a temporary table

select * from (select col1 from tab1 union select col2 from tab2 )
as vtab(vcol1)  where vcol1 < 50
 

Estimated Cost: 4
Estimated # of Rows Returned: 1
 

  1) (Temp Table For Collection Subquery): SEQUENTIAL SCAN



Chapter 1. Performance Guide

XML query plans in IBM®  Data Studio
IBM®  Data Studio  consists of a set of tools to use for administration, data modeling, and building queries from data that 

comes from data servers. The EXPLAIN_SQL routine prepares a query and returns a query plan in XML. The IBM®  Data 

Studio  Administration Edition can use the EXPLAIN_SQL routine to obtain a query plan in XML format, interpret the XML, and 

render the plan visually.

If you plan to use IBM®  Data Studio  to obtain Visual Explain output, you must create and specify a default sbspace name 

for the SBSPACENAME configuration parameter in your onconfig  file. The EXPLAIN_SQL routine creates BLOBs in this 

sbspace.

For information about using IBM®  Data Studio, see IBM®  Data Studio  documentation.

Factors that affect the query plan
When the optimizer determines the query plan, it assigns a cost to each possible plan and then chooses the plan with the 

lowest cost. The optimizer analyzes several factors to determine the cost of each query plan.

Some of the factors that the optimizer uses to determine the cost of each query plan are:

• The number of I/O requests that are associated with each file system access

• The CPU work that is required to determine which rows meet the query predicate

• The resources that are required to sort or group the data

• The amount of memory available for the query (specified by the DS_TOTAL_MEMORY and DS_MAX_QUERIES 

parameters)

To calculate the cost of each possible query plan, the optimizer:

• Uses a set of statistics that describes the nature and physical characteristics of the table data and indexes

• Examines the query filters

• Examines the indexes that can be used in the plan

• Uses the cost of moving data to perform joins locally or remotely for distributed queries

For queries that access remote tables in cross-server operations, certain characteristics can significantly degrade 

performance relative to the corresponding DML operations on tables and views in the local database. Query specifications 

that can potentially limit performance with remote tables include the following specifications:

• ANSI LEFT OUTER JOIN syntax

• Derived tables based on remote tables

• TEMP tables as materialized views that reference remote tables.

Limitations on remote views

Reoptimization can occur with multiple executions of queries involving remote views. The optimizer does not 

pick up the query plans from statement cache even if the statement cache is enabled.

315



HCL Informix 14.10 - Performance Guide

316

Statistics held for the table and index
The accuracy with which the query optimizer can assess the execution cost of a query plan depends on the information 

available to the optimizer. Use the UPDATE STATISTICS statement to maintain simple statistics about a table and its 

associated indexes. Updated statistics provide the query optimizer with information that can minimize the amount of time 

required to perform queries on that table.

The database server starts a statistical profile of a table when the table is created, and the profile is refreshed when you 

issue the UPDATE STATISTICS statement. The query optimizer does not recalculate the profile for tables automatically. In 

some cases, gathering the statistics might take longer than executing the query.

To ensure that the optimizer selects a query plan that best reflects the current state of your tables, run UPDATE STATISTICS 

at regular intervals. For guidelines, see Update statistics when they are not generated automatically  on page 383.

The optimizer uses the following system catalog information as it creates a query plan:

• The number of rows in a table, as of the most recent UPDATE STATISTICS statement

• Whether a column is constrained to be unique

• The distribution of column values, when requested with the MEDIUM or HIGH keyword in the UPDATE STATISTICS 

statement

For more information about data distributions, see Creating data distributions  on page 385.

• The number of disk pages that contain row data

The optimizer also uses the following system catalog information about indexes:

• The indexes that exist on a table, including the columns that they index, whether they are ascending or descending, 

and whether they are clustered

• The depth of the index structure (a measure of the amount of work that is needed to perform an index lookup)

• The number of disk pages that index entries occupy

• The number of unique entries in an index, which can be used to estimate the number of rows that an equality filter 

returns

• Second-largest and second-smallest key values in an indexed column

Only the second-largest and second-smallest key values are noted, because the extreme values might have a special 

meaning that is not related to the rest of the data in the column. The database server assumes that key values are distributed 

evenly between the second largest and second smallest. Only the initial 4 bytes of these keys are stored. If you create a 

distribution for a column associated with an index, the optimizer uses that distribution when it estimates the number of rows 

that match a query.

For more information about system catalog tables, see the HCL®  Informix®  Guide to SQL: Reference.



Chapter 1. Performance Guide

Filters in the query
The query optimizer bases query-cost estimates on the number of rows to be retrieved from each table. In turn, the 

estimated number of rows is based on the selectivity  of each conditional expression that is used within the WHERE clause. A 

conditional expression that is used to select rows is termed a filter.

The selectivity is a value between 0 and 1 that indicates the proportion of rows within the table that the filter can pass. A 

selective filter, one that passes few rows, has a selectivity near 0, and a filter that passes almost all rows has a selectivity 

near 1. For guidelines on filters, see Improve filter selectivity  on page 371.

The optimizer can use data distributions to calculate selectivity for the filters in a query. However, in the absence of data 

distributions, the database server calculates selectivity for filters of different types based on table indexes. The following 

table lists some of the selectivity values that the optimizer assigns to filters of different types. Selectivity that is calculated 

using data distributions is even more accurate than the selectivity that this table shows.

In the table:

• indexed-col  is the first or only column in an index.

• 2nd-max, 2nd-min  are the second-largest and second-smallest key values in indexed column.

• The plus sign ( + ) means logical union ( = the Boolean OR operator) and the multiplication symbol ( x ) means logical 

intersection ( = the Boolean AND operator).

Table  16. Selectivity values that the optimizer assigns to filters of different types

Filter Expression Selectivity (F)

indexed-col  = literal-valueindexed-col  = 

host-variableindexed-col  IS NULL

F = 1/(number of distinct keys in index)

tab1.indexed-col  = tab2.indexed-col F = 1/(number of distinct keys in the larger index)

indexed-col  > literal-value F = (2nd-max - literal-value)/(2nd-max - 2nd-min)

indexed-col  < literal-value F = (literal-value  - 2nd-min)/(2nd-max - 2nd-min)

any-col  IS NULLany-col  = any-expression F = 1/10

any-col  > any-expressionany-col  < any-expression F = 1/3

any-col  MATCHES any-expressionany-col  LIKE 

any-expression

F = 1/5

EXISTS subquery F = 1 if subquery  estimated to return >0 rows, else 0

NOT expression F = 1 - F(expression)

expr1  AND expr2 F = F(expr1) x F(expr2)

expr1  OR expr2 F = F(expr1) + F(expr2) - (F(expr1) x F(expr2))

any-col  IN list Treated as any-col  = item1  OR . . . OR any-col  = itemn.

317



HCL Informix 14.10 - Performance Guide

318

Table  16. Selectivity values that the optimizer assigns to filters of different types  (continued)

Filter Expression Selectivity (F)

any-col  relop  ANY subquery Treated as any-col relop value1  OR . . . OR any-col relop valuen 

for estimated size of subquery n.

Here relop is any relational operator, such as <, >, >=, <=.

Indexes for evaluating a filter
The query optimizer notes whether an index can be used to evaluate a filter. For this purpose, an indexed column is any 

single column with an index or the first column named in a composite index.

If the values contained in the index are all that is required, the database server does not read the rows. It is faster to omit the 

page lookups for data pages whenever the database server can read values directly from the index.

The optimizer can choose an index for any one of the following cases:

• When the column is indexed and a value to be compared is a literal, a host variable, or an uncorrelated subquery

The database server can locate relevant rows in the table by first finding the row in an appropriate index. If an 

appropriate index is not available, the database server must scan each table in its entirety.

• When the column is indexed and the value to be compared is a column in another table (a join expression)

The database server can use the index to find matching values. The following join expression shows such an 

example:

WHERE customer.customer_num = orders.customer_num

If rows of customer  are read first, values of customer_num  can be applied to an index on orders.customer_num.

• When processing an ORDER BY clause

If all the columns in the clause appear in the required sequence within a single index, the database server can use the 

index to read the rows in their ordered sequence, thus avoiding a sort.

• When processing a GROUP BY clause

If all the columns in the clause appear in one index, the database server can read groups with equal keys from the 

index without requiring additional processing after the rows are retrieved from their tables.

Effect of PDQ on the query plan
When the parallel database query (PDQ) feature is turned on, the optimizer can choose to execute a query in parallel. This 

can improve performance dramatically when the database server processes queries that decision-support applications 

initiate.

For more information, see Parallel database query (PDQ)  on page 350.



Chapter 1. Performance Guide

Effect of OPTCOMPIND on the query plan
The OPTCOMPIND setting influences the access plan that the optimizer chooses for single and multiple-table queries. You 

can change the value of OPTCOMPIND within a session for different kinds of queries.

To change the value of OPTCOMPIND within a session, use the SET ENVIRONMENT OPTCOMPIND command, not 

the OPTCOMPIND configuration parameter. For more information about using this command, see Setting the value of 

OPTCOMPIND within a session  on page 44.

Single-table query
For single-table scans, when OPTCOMPIND is set to 0 or 1  and the current transaction isolation level is Repeatable Read, the 

optimizer considers two types of access plans.

If:

• An index is available, the optimizer uses it to access the table.

• No index is available, the optimizer considers scanning the table in physical order.

When OPTCOMPIND is not set in the database server configuration, its value defaults to 2. When OPTCOMPIND is set to 2  or 

1  and the current isolation level is not Repeatable Read, the optimizer chooses the least expensive plan to access the table.

Multitable query
For join plans, the OPTCOMPIND setting influences the access plan for a specific ordered pair of tables.

Set OPTCOMPIND to 0  if you want the database server to select a join method exactly as it did in previous versions of the 

database server. This option ensures compatibility with previous versions.

If OPTCOMPIND is set to 0  or set to 1  and the current transaction isolation level is Repeatable Read, the optimizer gives 

preference to the nested-loop join.

Important:  When OPTCOMPIND is set to 0, the optimizer does not choose a hash join.

If OPTCOMPIND is set to 2  or set to 1  and the transaction isolation level is not Repeatable Read, the optimizer chooses the 

least expensive query plan from among those previously listed and gives no preference to the nested-loop join.

Effect of available memory on the query plan
Informix®  constrains the amount of memory that a parallel query can use based on the values of the DS_TOTAL_MEMORY 

and DS_MAX_QUERIES configuration parameters. If the amount of memory available for the query is too low to execute a 

hash join, the database server uses a nested-loop join instead.

For more information about parallel queries and the DS_TOTAL_MEMORY and DS_MAX_QUERIES parameters, see Parallel 

database query (PDQ)  on page 350.

319



HCL Informix 14.10 - Performance Guide

320

Time costs of a query
You can adjust a few, but not all, of the response-time effects of actions that the database server performs when processing 

a query.

The following costs can be reduced by optimal query construction and appropriate indexes:

• Sort time

• Data mismatches

• In-place ALTER TABLE

• Index lookups

For information about how to optimize specific queries, see Improving individual query performance  on page 370.

Memory-activity costs
The database server can process only data in memory. It must read rows into memory to evaluate those rows against the 

filters of a query. After the server finds rows that satisfy those filters, it prepares an output row in memory by assembling the 

selected columns.

Most of these activities are performed quickly. Depending on the computer and its workload, the database server can 

perform hundreds or even thousands of comparisons each second. As a result, the time spent on in-memory work is usually 

a small part of the execution time.

Although some in-memory activities, such as sorting, take a significant amount of time, it takes much longer to read a row 

from disk than to examine a row that is already in memory.

Sort-time costs
A sort requires in-memory work as well as disk work. The in-memory work depends on the number of columns that are 

sorted, the width of the combined sort key, and the number of row combinations that pass the query filter. You can reduce 

the cost of sorting.

You can use the following formula to calculate the in-memory work that a sort operation requires:

Wm  = (c * Nfr) + (w  * Nfrlog2(Nfr)) 

Wm

is the in-memory work.

c

is the number of columns to order and represents the costs to extract column values from the row and 

concatenate them into a sort key.

w

is proportional to the width of the combined sort key in bytes and stands for the work to copy or compare one 

sort key. A numeric value for w  depends strongly on the computer hardware in use.



Chapter 1. Performance Guide

Nfr

is the number of rows that pass the query filter.

Sorting can involve writing information temporarily to disk if the amount of data to sort is large. You can direct the disk writes 

to occur in the operating-system file space or in a dbspace that the database server manages. For details, see Configure 

dbspaces for temporary tables and sort files  on page 115.

The disk work depends on the number of disk pages where rows appear, the number of rows that meet the conditions of the 

query predicate, the number of rows that can be placed on a sorted page, and the number of merge operations that must be 

performed. Use the following formula to calculate the disk work that a sort operation requires:

Wd  = p  + (Nfr/Nrp) * 2 * (m - 1)) 

Wd

is the disk work.

p

is the number of disk pages.

Nfr

is the number of rows that pass the filters.

Nrp

is the number of rows that can be placed on a page.

m

represents the number of levels of merge  that the sort must use.

The factor m  depends on the number of sort keys that can be held in memory. If there are no filters, Nfr/Nrp  is equivalent to p.

When all the keys can be held in memory, m=1 and the disk work is equivalent to p. In other words, the rows are read and 

sorted in memory.

For moderate to large tables, rows are sorted in batches that fit in memory, and then the batches are merged. When m=2, 

the rows are read, sorted, and written in batches. Then the batches are read again and merged, resulting in disk work 

proportional to the following value:

Wd  = p  + (2 * (Nfr/Nrp)) 

The more specific the filters, the fewer the rows that are sorted. As the number of rows increases, and the amount of 

memory decreases, the amount of disk work increases.

To reduce the cost of sorting, use the following methods:

• Make your filters as specific (selective) as possible.

• Limit the projection list to the columns that are relevant to your problem.

321



HCL Informix 14.10 - Performance Guide

322

Row-reading costs
When the database server needs to examine a row that is not already in memory, it must read that row from disk. The 

database server does not read only one row; it reads the entire page that contains the row. If the row spans more than one 

page, it reads all of the pages.

The actual cost of reading a page is variable and hard to predict. The actual cost is a combination of the factors shown in the 

following table.

Fac

tor Effect of Factor

Buff

er

ing

If the needed page is in a page buffer already, the cost to read is nearly zero.

Con

tent

ion

If two or more applications require access to the disk hardware, I/O requests can be delayed.

S

eek 

t

ime

The slowest thing that a disk does is to seek; that is, to move the access arm to the track that holds the data. Seek 

time depends on the speed of the disk and the location of the disk arm when the operation starts. Seek time varies 

from zero to nearly a second.

Lat

e

ncy

The transfer cannot start until the beginning of the page rotates under the access arm. This latency, or rotational 

delay, depends on the speed of the disk and on the position of the disk when the operation starts. Latency can vary 

from zero to a few milliseconds.

The time cost of reading a page can vary from microseconds for a page that is already in a buffer, to a few milliseconds 

when contention is zero and the disk arm is already in position, to hundreds of milliseconds when the page is in contention 

and the disk arm is over a distant cylinder of the disk.

Sequential access costs
Disk costs are lowest when the database server reads the rows of a table in physical order.

When the first row on a page is requested, the disk page is read into a buffer page. After the page is read in, it does not need 

not to be read again; requests for subsequent rows on that page are filled from the buffer until all the rows on that page are 

processed. When one page is exhausted, the page for the next set of rows must be read in.

When you use unbuffered devices for dbspaces, and the table is organized properly, the disk pages of consecutive rows 

are placed in consecutive locations on the disk. This arrangement allows the access arm to move very little when it reads 

sequentially. In addition, latency costs are usually lower when pages are read sequentially.



Chapter 1. Performance Guide

Related information

Read-ahead operations  on page 

Nonsequential access costs
The disk-access time is much higher when a disk device reads table pages nonsequentially than when it reads that same 

table sequentially.

Whenever a table is read in random order, additional disk accesses are required to read the rows in the required order. Disk 

costs are higher when the rows of a table are read in a sequence unrelated to physical order on disk. Because the pages are 

not read sequentially from the disk, both seek and rotational delays occur before each page can be read.

Nonsequential access often occurs when you use an index to locate rows. Although index entries are sequential, there is 

no guarantee that rows with adjacent index entries must reside on the same (or adjacent) data pages. In many cases, a 

separate disk access must be made to fetch the page for each row located through an index. If a table is larger than the page 

buffers, a page that contained a row previously read might be cleaned (removed from the buffer and written back to the disk) 

before a subsequent request for another row on that page can be processed. That page might have to be read in again.

Depending on the relative ordering of the table with respect to the index, you can sometimes retrieve pages that contain 

several needed rows. The degree to which the physical ordering of rows on disk corresponds to the order of entries in the 

index is called clustering. A highly clustered table is one in which the physical ordering on disk corresponds closely to the 

index.

Index lookup costs
The database server incurs additional costs when it finds a row through an index. The index is stored on disk, and its pages 

must be read into memory with the data pages that contain the desired rows.

An index lookup works down from the root page to a leaf page. The root page, because it is used so often, is almost always 

found in a page buffer. The odds of finding a leaf page in a buffer depend on the size of the index, the form of the query, and 

the frequency of column-value duplication. If each value occurs only once in the index and the query is a join, each row to be 

joined requires a nonsequential lookup into the index, followed by a nonsequential access to the associated row in the table.

Reading duplicate values from an index
Reading an index with duplicate entries incurs an additional cost over reading the table sequentially.

Each entry or set of entries with the same value must be located in the index. Then, for each entry in the index, a random 

access must be made to the table to read the associated row. However, if there are many duplicate rows per distinct index 

value, and the associated table is highly clustered, the added cost of joining through the index can be slight.

Searching for NCHAR or NVARCHAR columns in an index
A query using an index on an NCHAR or NVARCHAR scans the entire index, resulting in additional time costs.

323

../admin%20/ids_admin_0405.html#ids_admin_0405
../admin%20/ids_admin_0405.html#ids_admin_0405
../admin%20/ids_admin_0405.html#ids_admin_0405
../admin%20/ids_admin_0405.html#ids_admin_0405


HCL Informix 14.10 - Performance Guide

324

Global Language Support (GLS) Only

Indexes that are built on NCHAR or NVARCHAR columns are sorted using a locale-specific comparison value. 

For example, the Spanish double-l character (ll) might be treated as a single unique character instead of a pair 

of ls.

In some locales, the comparison value is not based on the code-set order. The index build uses the locale-

specific comparison value to store the key values in the index. As a result, a query using an index on an NCHAR 

or NVARCHAR scans the entire index because the database server searches the index in code-set order.

In-place ALTER TABLE costs
For certain conditions, the database server uses an in-place alter algorithm to modify each row when you execute an 

ALTER TABLE statement. After the alter table operation, the database server inserts rows using the latest definition. If your 

query accesses rows that are not yet converted to the new table definition, you might notice a slight degradation in the 

performance of your individual query, because the database server reformats each row in memory before it is returned.

For more information about the conditions and performance advantages when an in-place alter occurs, see Altering a table 

definition  on page 195.

View costs
A complex view could run more slowly than expected.

You can create views of tables for a number of reasons:

• To limit the data that a user can access

• To reduce the time that it takes to write a complex query

• To hide the complexity of the query that a user needs to write

However, a query against a view might execute more slowly than expected when the complexity of the view definition causes 

a temporary table to be created to process the query. This temporary table is referred to as a materialized view. For example, 

you can create a view with a union to combine results from several SELECT statements.

The following sample SQL  statement creates a view that includes unions:

CREATE VIEW view1 (col1, col2, col3, col4)
   AS
      SELECT a, b, c, d
         FROM tab1 WHERE
      UNION
      SELECT a2, b2, c2, d2
         FROM tab2 WHERE
...
      UNION
      SELECT an, bn, cn, dn
         FROM tabn WHERE
;



Chapter 1. Performance Guide

When you create a view that contains complex SELECT statements, the end user does not need to handle the complexity. 

The end user can just write a simple query, as the following example shows:

SELECT a, b, c, d
   FROM view1
      WHERE a < 10;

However, this query against view1  might execute more slowly than expected because the database server creates a 

fragmented temporary table for the view before it executes the query.

Another situation when the query might execute more slowly than expected is if you use a view in an ANSI join. The 

complexity of the view definition might cause a temporary table to be created.

To determine if you have a query that must build a temporary table to process the view, execute the SET EXPLAIN statement. 

If you see Temp Table For View  in the SET EXPLAIN output file, your query requires a temporary table to process the view.

Small-table costs
A table is small if it occupies so few pages that it can be retained entirely in the page buffers. Operations on small tables are 

generally faster than operations on large tables.

As an example, in the stores_demo database, the state  table that relates abbreviations to names of states has a total size of 

fewer than 1000 bytes; it fits in no more than two pages. This table can be included in any query at little cost. No matter how 

this table is used, it costs no more than two disk accesses to retrieve this table from disk the first time that it is required.

Data-mismatch costs
An SQL  statement can encounter additional costs when the data type of a column that is used in a condition differs from the 

definition of the column in the CREATE TABLE statement.

For example, the following query contains a condition that compares a column to a data type value that differs from the table 

definition:

CREATE TABLE table1 (a integer, );
SELECT * FROM table1
   WHERE a = '123';

Data conversionSET EXPLAINconverted dataThe database server rewrites this query before execution to convert 123  to an integer. The SET EXPLAIN output shows the 

query in its adjusted format. This data conversion has no noticeable overhead.

Performanceeffect ofdata mismatchPerformanceslowed by data mismatchThe additional costs of a data mismatch are most severe when the query compares a character column with a noncharacter 

value and the length of the number is not equal to the length of the character column. For example, the following query 

contains a condition in the WHERE clause that equates a character column to an integer value because of missing quotation 

marks:

CREATE TABLE table2 (char_col char(3), );
SELECT * FROM table2
   WHERE char_col = 1;

This query finds all of the following values that are valid for char_col:

325



HCL Informix 14.10 - Performance Guide

326

' 1'
'001'
'1'

SET EXPLAINdata mismatchThese values are not necessarily clustered together in the index keys. Therefore, the index does not provide a fast and 

correct way to obtain the data. The SET EXPLAIN output shows a sequential scan for this situation.

Warning:  Indexwhen not used by optimizerThe database server does not use an index when the SQL  statement compares a character column with a 

noncharacter value that is not equal in length to the character column.

Encrypted-value costs
An encrypted value uses more storage space than the corresponding plain-text value because all of the information needed 

to decrypt the value except the encryption key is stored with the value.

Most encrypted data requires approximately 33 percent more storage space than unencrypted data. Omitting the hint used 

with the password can reduce encryption overhead by up to 50 bytes. If you are using encrypted values, you must make sure 

that you have sufficient space available for the values.

GLS functionality costs
Sorting or indexing certain data sets can degrade performance.

For information about the performance degradation that occurs from indexing some data sets, see Searching for NCHAR or 

NVARCHAR columns in an index  on page 323.

If you do not need a non-ASCII collation sequence, use the CHAR and VARCHAR data types for character columns whenever 

possible. Because CHAR and VARCHAR data require simple value-based comparison, sorting and indexing these columns is 

less expensive than for non-ASCII data types (NCHAR or NVARCHAR, for example).

For more information about other character data types, see the HCL®  Informix®  GLS User's Guide.

Network-access costs
Moving data over a network imposes delays in addition to those you encounter with direct disk access.

Network delays can occur when the application sends a query or update request across the network to a database server 

on another computer. Although the database server performs the query on the remote host computer, that database server 

returns the output to the application over the network.

Data sent over a network consists of command messages and buffer-sized blocks of row data. Although the details can 

differ depending on the network and the computers, the database server network activity follows a simple model in which 

one computer, the client, sends a request to another computer, the server. The server replies with a block of data from a 

table.

Whenever data is exchanged over a network, delays are inevitable in the following situations:



Chapter 1. Performance Guide

• When the network is busy, the client must wait its turn to transmit. Such delays are usually less than a millisecond. 

However, on a heavily loaded network, these delays can increase exponentially to tenths of seconds and more.

• When the server is handling requests from more than one client, requests might be queued for a time that can range 

from milliseconds to seconds.

• When the server acts on the request, it incurs the time costs of disk access and in-memory operations that the 

preceding sections describe.

Transmission of the response is also subject to network delays.

Network access time is extremely variable. In the best case, when neither the network nor the server is busy, transmission 

and queuing delays are insignificant, and the server sends a row almost as quickly as a local database server might. 

Furthermore, when the client asks for a second row, the page is likely to be in the page buffers of the server.

Unfortunately, as network load increases, all these factors tend to worsen at the same time. Transmission delays rise in 

both directions, which increases the queue at the server. The delay between requests decreases the likelihood of a page 

remaining in the page buffer of the responder. Thus, network-access costs can change suddenly and quite dramatically.

If you use the SELECT FIRST n  clause in a distributed query, you will still see only the requested amount of data. However, the 

local database server does not send the SELECT FIRST n  clause to the remote site. Therefore, the remote site might return 

more data.

The optimizer that the database server uses assumes that access to a row over the network takes longer than access to 

a row in a local database. This estimate includes the cost of retrieving the row from disk and transmitting it across the 

network.

For information about actions that might improve performance across the network, see the following sections:

• Optimizer estimates of distributed queries  on page 417

• MaxConnect for multiple connections UNIX  on page 60

• Multiplexed connections and CPU utilization  on page 59

• Network buffer pools  on page 50

Optimization when SQL is within an SPL routine
If an SPL routine contains SQL statements, the database server optimizes and executes the SQL  within the SPL  routine.

The topics in this section contain information about how and when the database server optimizes and executes these 

routines.

SQL optimization
If an SPL  routine contains SQL  statements, at some point the query optimizer evaluates the possible query plans for SQL  in 

the SPL  routine and selects the query plan with the lowest cost. The database server puts the selected query plan for each 

SQL  statement in an execution plan for the SPL  routine.

327



HCL Informix 14.10 - Performance Guide

328

When you create an SPL  routine with the CREATE PROCEDURE statement, the database server attempts to optimize the SQL 

statements within the SPL  routine at that time. If the tables cannot be examined at compile time (because they do not exist 

or are not available), the creation does not fail. In this case, the database server optimizes the SQL statements the first time 

that the SPL  routine executes.

The database server stores the optimized execution plan in the sysprocplan  system catalog table for use by other processes. 

In addition, the database server stores information about the SPL  routine (such as procedure name and owner) in the 

sysprocedures  system catalog table and an ASCII version of the SPL  routine in the sysprocbody  system catalog table.

Figure 59: SPL information stored in system catalog tables  on page 328 summarizes the information that the database 

server stores in system catalog tables during the compilation process.

Figure  59. SPL information stored in system catalog tables

Displaying the execution plan
When you execute an SPL  routine, it is already optimized. You can display the query plan for each SQL  statement contained 

in the SPL  routine

To display the query plan, execute the SET EXPLAIN ON statement prior to one of the following SQL  statements that always 

tries to optimize the SPL  routine:

• CREATE PROCEDURE

• UPDATE STATISTICS FOR PROCEDURE

For example, use the following statements to display the query plan for an SPL  routine:

SET EXPLAIN ON;
UPDATE STATISTICS FOR PROCEDURE procname;

Automatic reoptimization
In some situations, the database server reoptimizes an SQL  statement the next time an SPL  routine.

If the AUTO_REPREPARE configuration parameter or the IFX_AUTO_REPREPARE session environment variable is disabled, 

the following error can result when prepared objects or SPL routines are executed after the schema of a table referenced by 

the prepared object or indirectly referenced by the SPL routine has been modified:

-710  Table <table-name> has been dropped, altered, or renamed.



Chapter 1. Performance Guide

The database server uses a dependency list to keep track of changes that would cause reoptimization the next time that an 

SPL  routine executes.

The database server reoptimizes an SQL  statement the next time an SPL  routine executes after one of the following 

situations:

• Execution of any data definition language (DDL) statement (such as ALTER TABLE, DROP INDEX, and CREATE INDEX) 

that might alter the query plan

• Alteration of a table that is linked to another table with a referential constraint (in either direction)

• Execution of UPDATE STATISTICS FOR TABLE for any table involved in the query

The UPDATE STATISTICS FOR TABLE statement changes the version number of the specified table in systables.

• Renaming a column, database, or index with the RENAME statement

Whenever the SPL  routine is reoptimized, the database server updates the sysprocplan  system catalog table with the 

reoptimized execution plan.

Reoptimizing SPL routines
You can run an SQL statement that reoptimizes an SPL  routine to prevent automatic reoptimization.

If you do not want to incur the cost of automatic reoptimization when you first execute an SPL  routine after one of the 

situations that Automatic reoptimization  on page 328 lists, execute the UPDATE STATISTICS statement with the FOR 

PROCEDURE clause immediately after the situation occurs. In this way, the SPL  routine is reoptimized before any users 

execute it.

To prevent unnecessary reoptimization of all SPL  routines, ensure that you specify a specific procedure name in the FOR 

PROCEDURE clause.

UPDATE STATISTICS FOR PROCEDURE myroutine;

For guidelines to run UPDATE STATISTICS, see Update statistics when they are not generated automatically  on page 383.

Optimization levels for SQL in SPL routines
The current optimization level set in an SPL  routine affects how the SPL  routine is optimized.

The algorithm that a SET OPTIMIZATION HIGH statement invokes is a sophisticated, cost-based strategy that examines all 

reasonable query plans and selects the best overall alternative. For large joins, this algorithm can incur more overhead than 

desired. In extreme cases, you can run out of memory.

The alternative algorithm that a SET OPTIMIZATION LOW statement invokes eliminates unlikely join strategies during the 

early stages, which reduces the time and resources spent during optimization. However, when you specify a low level of 

optimization, the optimal strategy might not be selected because it was eliminated from consideration during early stages of 

the algorithm.

329



HCL Informix 14.10 - Performance Guide

330

For SPL  routines that remain unchanged or change only slightly and that contain complex SELECT statements, you might 

want to set the SET OPTIMIZATION statement to HIGH  when you create the SPL  routine. This optimization level stores the 

best query plans for the SPL  routine. Then set optimization to LOW  before you execute the SPL  routine. The SPL  routine then 

uses the optimal query plans and runs at the more cost-effective rate if reoptimization occurs.

Execution of an SPL routine
When the database server executes an SPL  routine with the EXECUTE PROCEDURE statement, with the CALL statement, or 

within an SQL statement, the server performs several activities.

The database server performs these activities:

• It reads the interpreter code from the system catalog tables and converts it from a compressed format to an 

executable format. If the SPL  routine is in the UDR cache, the database server retrieves it from the cache and 

bypasses the conversion step.

• It executes any SPL statements that it encounters.

• When the database server encounters an SQL  statement, it retrieves the query plan from the database and executes 

the statement. If the query plan has not been created, the database server optimizes the SQL  statement before it 

executes.

• When the database server reaches the end of the SPL  routine or when it encounters a RETURN statement, it returns 

any results to the client application. Unless the RETURN statement has a WITH RESUME clause, the SPL  routine 

execution is complete.

SPL routine executable format stored in UDR cache
The first time that a user executes an SPL  routine, the database server stores the executable format and any query plans in 

the UDR cache in the virtual portion of shared memory.

When another user executes an SPL  routine, the database server first checks the UDR cache. SPL  execution performance 

improves when the database server can execute the SPL  routine from the UDR cache. The UDR cache also stores UDRs, user-

defined aggregates, and extended data types definitions.

Related reference

Configure and monitor memory caches  on page 83

Adjust the UDR cache
The default number of SPL routines, UDRs, and other user-defined definitions in the UDR cache is 127. You can change the 

number of entries with the PC_POOLSIZE configuration parameter.

The database server uses a hashing algorithm to store and locate SPL routines in the UDR cache. You can modify the 

number of buckets  in the UDR cache with the PC_HASHSIZE configuration parameter. For example, if the value of the 

PC_POOLSIZE configuration parameter is 100  and the value of the PC_HASHSIZE configuration parameter is 10, each bucket 

can have up to 10 SPL routines and UDRs.



Chapter 1. Performance Guide

Too many buckets cause the database server to move out cached SPL routines when the bucket fills. Too few buckets 

increase the number of SPL routines in a bucket, and the database server must search though the SPL routines in a bucket to 

determine if the SPL routine that it needs is there.

When the number of entries in a bucket reaches 75 percent, the database server removes the least recently used SPL 

routines from the bucket (and hence from the UDR cache) until the number of SPL routines in the bucket is 50 percent of the 

maximum SPL routines in the bucket.

Monitor the UDR cache by running the onstat -g prc  command. If the numbers in the hits  fields are not evenly distributed 

among buckets, increase the value of the PC_HASHSIZE configuration parameter. Adjust the number of buckets to have the 

least number of high hit entries per bucket.

Important:  PC_POOLSIZE and PC_HASHSIZE also control other memory caches for the database server (excluding 

the buffer pool, the SQL statement cache, the data distribution cache, and the data-dictionary cache). When you 

modify the size and number of hash buckets for SQL routines, you also modify the size and number of hash buckets 

for the other caches (such as the aggregate cache, oplcass, and typename cache).

Related information

onstat -g prc command: Print sessions using UDR or SPL routines  on page 

PC_POOLSIZE configuration parameter  on page 

PC_HASHSIZE configuration parameter  on page 

Trigger execution
A trigger  is a database object that automatically executes one or more SQL statements (the triggered action) when a 

specified data manipulation language operation (the triggering event) occurs. You can define one or more triggers on a table 

to execute after a SELECT, INSERT, UPDATE or DELETE triggering event.

You can also define INSTEAD OF triggers on a view. These triggers specify the SQL statements to be executed as triggered 

actions on the underlying table when a triggering INSERT, UPDATE or DELETE statement attempts to modify the view. 

These triggers are called INSTEAD OF triggers because only the triggered SQL action is executed; the triggering event is not 

executed. For more information about using triggers, see the HCL®  Informix®  Guide to SQL: Tutorial  and information about 

the CREATE TRIGGER statement in the HCL®  Informix®  Guide to SQL: Syntax.

Figure  60. Trigger information stored in system catalog tables

331

../%20adr/ids_adr_0560.html#ids_adr_0560
../%20adr/ids_adr_0560.html#ids_adr_0560
../%20adr/ids_adr_0560.html#ids_adr_0560
../%20adr/ids_adr_0560.html#ids_adr_0560
../%20adr/ids_adr_0132.html#ids_adr_0132
../%20adr/ids_adr_0132.html#ids_adr_0132
../%20adr/ids_adr_0132.html#ids_adr_0132
../%20adr/ids_adr_0132.html#ids_adr_0132
../%20adr/ids_adr_0131.html#ids_adr_0131
../%20adr/ids_adr_0131.html#ids_adr_0131
../%20adr/ids_adr_0131.html#ids_adr_0131
../%20adr/ids_adr_0131.html#ids_adr_0131


HCL Informix 14.10 - Performance Guide

332

When you use the CREATE TRIGGER statement to register a new trigger, the database server:

• Stores information about the trigger in the systriggers  system catalog table.

• Stores the text of the statements that the trigger executes in the systrigbody  system catalog table.

The sysprocedures  system catalog table identifies trigger routines that can be invoked only as triggered actions.

Memory-resident tables of the sysmaster  database indicate whether the table or view has triggers on it.

Whenever a SELECT, INSERT, UPDATE, or DELETE statement is issued, the database server checks to see if the statement is 

a triggering event  that activates a trigger for the table and columns (or for the view) on which the DML statement operates. 

If the statement requires activating triggers, the database server retrieves the statement text of the triggered actions from 

the systrigbody  table and runs the triggered DML statements or SPL routine before, during, or after the triggering events. For 

INSTEAD OF triggers on a view, the database server performs the triggered actions instead of the triggering events.

Performance implications for triggers
In many situations, triggers can improve performance slightly because of the reduction in the number of messages passed 

from the client to the database server.

For example, if the trigger fires five SQL statements, the client saves at least 10 messages passed between the client 

and database server (one to send the SQL statement and one for the reply after the database server executes the SQL 

statement). Triggers improve performance the most when they execute more SQL statements and the network speed is 

comparatively slow.

When the database server executes an SQL statement, it must perform the following actions:

• Determine if triggers must be fired

• Retrieve the triggers from systriggers  and systrigbody

These operations cause only a slight performance impact that can be offset by the decreased number of messages passed 

between the client and the server.

However, triggers executed on SELECT statements have additional performance implications. The following sections explain 

these implications.

SELECT triggers on tables in a table hierarchy
When the database server executes a SELECT statement that includes a table that is involved in a table hierarchy, and the 

SELECT statement fires a SELECT trigger, performance might be slower if the SELECT statement that invokes the trigger 

involves a join, sort, or materialized view.

In this case, the database server does not know which columns are affected in the table hierarchy, so it can execute the 

query differently. The following behaviors might occur:



Chapter 1. Performance Guide

• Key-only index scans are disabled on the table that is involved in a table hierarchy.

• If the database server needs to sort data selected from a table involved in a table hierarchy, it copies all of the 

columns in the SELECT list to the temporary table, not just the sort columns.

• If the database server uses the table included in the table hierarchy to build a hash table for a hash join with another 

table, it bypasses the early projection, meaning it uses all of the columns from the table to build the hash table, not 

just the columns in the join.

• If the SELECT statement contains a materialized view (meaning a temporary table must be built for the columns in a 

view) that contains columns from a table involved in a table hierarchy, all columns from the table are included in the 

temporary table, not just the columns actually contained in the view.

SELECT triggers and row buffering
The lack of buffering for SELECT statements that fire SELECT triggers might reduce performance slightly compared to an 

identical SELECT statement that does not fire a SELECT trigger.

In SELECT statements whose tables do not fire SELECT triggers, the database server sends more than one row back to the 

client and stores the rows in a buffer even though the client application requested only one row with a FETCH statement. 

However, for SELECT statements that contain one or more tables that fire a SELECT trigger, the database server sends only 

the requested row back to the client instead of a buffer full. The database server cannot return other rows to the client until 

the trigger action occurs.

Optimizer directives
Optimizer directives  are comments that tell the query optimizer how to execute a query. You can use optimizer directives to 

improve query performance.

What optimizer directives are
Optimizer directives are specifications formatted as comments that provide information to the query optimizer about how to 

execute a query.

You can use two kinds of optimizer directives:

• Optimizer directives in the form of instructions that are embedded in queries (For more information, see Optimizer 

directives that are embedded in queries  on page 333.

• External optimizer directives that you create and save for use as temporary workaround solutions to problems when 

you do not want to change SQL statements in queries. (For more information, see External optimizer directives  on 

page 334.)

Optimizer directives that are embedded in queries
Optimizer directives embedded in queries are comments in a SELECT statement that provide information to the query 

optimizer on how to execute a query. You can also place directives in UPDATE and DELETE statements, instructing the 

optimizer how to access the data.

333



HCL Informix 14.10 - Performance Guide

334

Optimizer directives can either be explicit directions (for example, "use this index" or "access this table first"), or they can 

eliminate possible query plans (for example, "do not read this table sequentially" or "do not perform a nested-loop join").

External optimizer directives
External optimizer directives are optimizer directives that an administrator can create and store in the sysdirectives  catalog 

table. The administrator can then use an ONCONFIG variable to make the directives available.

Client users also specify an environment variable and can choose to use these optimizer directives in queries in situations 

when they do not want to insert comments in SQL statements.

External directives are useful when it is not feasible to rewrite a query for a short-term solution to a problem, for example, 

when a query starts to perform poorly. Rewriting the query by changing the SQL statement is preferable for long-term 

solutions to problems.

External directives are for occasional use only. The number of directives stored in the sysdirectives  catalog should not 

exceed 50. A typical enterprise only needs 0 to 9 directives.

Reasons to use optimizer directives
In most cases, the optimizer chooses the fastest query plan. You can use optimizer directives when the optimizer does not 

choose the best query plan to perform a query, because of the complexity of the query, or because the query does not have 

enough information about the nature of the data. A poor query plan produces poor performance.

Before you decide when to use optimizer directives, you should understand what makes a good query plan.

The optimizer creates a query plan based on costs of using different table-access paths, join orders, and join plans.

Some query plan guidelines are:

• Do not use an index when the database server must read a large portion of the table. For example, the following 

query might read most of the customer  table:

SELECT * FROM customer WHERE STATE <> "ALASKA";

Assuming the customers are evenly spread among all 50 states, you might estimate that the database server 

must read 98 percent of the table. It is more efficient to read the table sequentially than to traverse an index (and 

subsequently the data pages) when the database server must read most of the rows.

• When you choose between indexes to access a table, use an index that can rule out the most rows. For example, 

consider the following query:

SELECT * FROM customer
WHERE state = "NEW YORK" AND order_date = "01/20/97"

Assuming that 200,000 customers live in New York and only 1000 customers ordered on any one day, the optimizer 

most likely chooses an index on order_date  rather than an index on state  to perform the query.

• Filterquery planQuery plansrestrictive filtersPlace small tables or tables with restrictive filters early in the query plan. For example, consider the following query:



Chapter 1. Performance Guide

SELECT * FROM customer, orders
   WHERE customer.customer_num = orders.customer_num
      AND
   customer.state = "NEVADA";

In this example, if you read the customer  table first, you can rule out most of the rows by applying the filter that 

chooses all rows in which state = "NEVADA".

By ruling out rows in the customer  table, the database server does not read as many rows in the orders  table (which 

might be significantly larger than the customer  table).

• Hash joinin directivesJoinplanhash, in directivesChoose a hash join when neither column in the join filter has an index.

In the previous example, if customer.customer_num  and orders.customer_num  are not indexed, a hash join is 

probably the best join plan.

• Choose nested-loop joins if:

◦ The number of rows retrieved from the outer table after the database server applies any table filters is small, 

and the inner table has an index that can be used to perform the join.

◦ The index on the outermost table can be used to return rows in the order of the ORDER BY clause, eliminating 

the need for a sort.

For information about query plans, see The query plan  on page 296. For more information about directives, see

• Preparation for using directives  on page 335

• Guidelines for using directives  on page 336

• Types of optimizer directives that are supported in SQL statements  on page 336

Preparation for using directives
In most cases, the optimizer chooses the fastest query plan. However, you can take steps to assist the optimizer and to 

prepare for using directives.

To prepare for using directives, make sure that you perform the following tasks:

• Run UPDATE STATISTICS.

Without accurate statistics, the optimizer cannot choose the appropriate query plan. Run UPDATE STATISTICS any 

time that the data in the tables changes significantly (many new rows are added, updated, or deleted). For more 

information, see Update the statistics for the number of rows  on page 384.

• Create distributions.

One of the first things that you should try when you attempt to improve a slow query is to create distributions on 

columns involved in a query. Distributions provide the most accurate information to the optimizer about the nature of 

the data in the table. Run UPDATE STATISTICS HIGH on columns involved in the query filters to see if performance 

improves. For more information, see Creating data distributions  on page 385.

335



HCL Informix 14.10 - Performance Guide

336

In some cases, the query optimizer does not choose the best query plan because of the complexity of the query or because 

(even with distributions) it does not have enough information about the nature of the data. In these cases, you can attempt to 

improve performance for a particular query by using directives.

Guidelines for using directives
Guidelines for directives include frequently analyzing the effectiveness of the query and using negative directives.

Consider the following guidelines:

• Examine the effectiveness of a particular directive frequently to make sure it continues to operate effectively. Imagine 

a query in a production program with several directives that force an optimal query plan. Some days later, users add, 

update, or delete a large number of rows, which changes the nature of the data so much that the once optimal query 

plan is no longer effective. This example illustrates how you must use directives with care.

• Use negative directives (such as AVOID_NL, AVOID_FULL, and so on) whenever possible. When you exclude a 

behavior that degrades performance, you rely on the optimizer to use the next-best choice rather than attempt to 

force a path that might not be optimal.

Types of optimizer directives that are supported in SQL statements
Directives that are in SQL statements are embedded in queries. These directives include access-method directives, join-order 

directives, join-plan directives, and optimization-goal directives.

Include the directives in the SQL  statement as a comment that occurs immediately after the SELECT, UPDATE, or DELETE 

keyword. The first character in a directive is always a plus (+) sign. In the following query, the ORDERED directive specifies 

that the tables should be joined in the same order as they are listed in the FROM clause. The AVOID_FULL directive specifies 

that the optimizer should discard any plans that include a full table scan on the listed table (employee).

SELECT --+ORDERED, AVOID_FULL(e) * FROM employee e, department d
> 50000;

For a complete syntax description for directives, see the HCL®  Informix®  Guide to SQL: Syntax.

To influence the choice of a query plan that the optimizer makes, you can alter the following aspects of a query:

• Access method

• Join order

• Join method

• Optimization goal

• Star-join directives

You can also use EXPLAIN directives instead of the SET EXPLAIN statement to show the query plan. The following sections 

describe these aspects in detail.



Chapter 1. Performance Guide

Access-method directives
The database server uses an access method to access a table. The server can either read the table sequentially via a full 

table scan or use any one of the indexes on the table. Access-method directives influence the access method.

The following table lists the directives that influence the access method:

Access-Met

hod Directive Description

INDEX Tells the optimizer to use the index specified to access the table. If the directive lists more than one index, 

the optimizer chooses the index that yields the least cost.

AVOID_INDEX Tells the optimizer not use any of the indexes listed. You can use this directive with the AVOID_FULL 

directive.

INDEX_SJ Forces an index self-join path using the specified index, or choosing the least costly index in a list of 

indexes, even if data distribution statistics are not available for the leading index key columns of the index.

For information about index self-join paths, see Query plans that include an index self-join path  on 

page 302.

AVOID_INDEX

_SJ

Tells the optimizer not to use an index self-join path for the specified index or indexes.

FULL Tells the optimizer to perform a full table scan.

AVOID_FULL Tells the optimizer not to perform a full table scan on the listed table. You can use this directive with the 

AVOID_INDEX directive.

INDEX_ALL or 

MULTI_INDEX

Access the table by using the specified indexes for a multi-index scan.

The INDEX_ALL and MULTI_INDEX keywords are synonyms.

AVOID_MULTI

_INDEX

Tells the optimizer not to consider a multi-index scan path for the specified table.

In some cases, forcing an access method can change the join method that the optimizer chooses. For example, if you 

exclude the use of an index with the AVOID_INDEX directive, the optimizer might choose a hash join instead of a nested-loop 

join.

The optimizer considers an index self-join path only if all of the following conditions are met:

• The index does not have functional keys, user-defined types, built-in opaque types, or non-B-tree indexes

• Data distribution statistics are available for the index key column under consideration

• The number of rows in the table is at least 10 times the number of unique combinations of all possible lead-key 

column values.

337



HCL Informix 14.10 - Performance Guide

338

If all of these conditions are met, the optimizer estimates the cost of an index self-join path and compares it with the costs of 

alternative access methods. The optimizer then picks the best access method for the table. For more information about the 

access-method directives and some examples of their usage, see the HCL®  Informix®  Guide to SQL: Syntax.

Join-order directives
The join-order directive ORDERED tells the optimizer to join tables in the order that the SELECT statement lists them.

Effect of join order on join plan
By specifying the join order, you might affect more than just how tables are joined.

For example, consider the following query:

SELECT --+ORDERED, AVOID_FULL(e)
* FROM employee e, department d
WHERE e.dept_no = d.dept_no AND e.salary > 5000

In this example, the optimizer chooses to join the tables with a hash join. However, if you arrange the order so that the 

second table is employee  (and must be accessed by an index), the hash join is not feasible.

SELECT --+ORDERED, AVOID_FULL(e)
* FROM department d, employee e
WHERE e.dept_no = d.dept_no AND e.salary > 5000;

The optimizer chooses a nested-loop join in this case.

Join order when you use views
The ORDERED directive that is inside a view or is in a query that contains a view affect the join order.

Two cases can affect join order when you use views:

• The ORDERED directive is inside the view.

The ORDERED directive inside a view affects the join order of only the tables inside the view. The tables in the view 

must be joined contiguously. Consider the following view and query:

CREATE VIEW emp_job_view as
   SELECT {+ORDERED}
   emp.job_num, job.job_name
   FROM emp, job
   WHERE emp.job_num = job.job_num;
 

SELECT * from dept, emp_job_view,  project
   WHERE dept.dept_no = project.dept_num
   AND emp_job_view.job_num = project.job_num;

The ORDERED directive specifies that the emp  table come before the job table. The directive does not affect the order 

of the dept  and project  table. Therefore, all possible join orders are as follows:

◦ emp, job, dept, project

◦ emp, job, project, dept



Chapter 1. Performance Guide

◦ project, emp, job, dept

◦ dept, emp, job, project

◦ dept, project, emp, job

◦ project, dept, emp, job

• The ORDERED directive is in a query that contains a view.

If an ORDERED directive appears in a query that contains a view, the join order of the tables in the query are the same 

as they are listed in the SELECT statement. The tables within the view are joined as they are listed within the view.

In the following query, the join order is dept, project, emp, job:

CREATE VIEW emp_job_view AS
   SELECT
   emp.job_num, job.job_name
   FROM emp, job
   WHERE emp.job_num = job.job_num;
SELECT {+ORDERED}
   * FROM dept, project, emp_job_view
   WHERE dept.dept_no = project.dept_num
   AND emp_job_view.job_num = project.job_num;

An exception to this rule is when the view cannot be folded into the query, as in the following example:

CREATE VIEW emp_job_view2 AS
   SELECT DISTINCT
   emp.job_num, job.job_name
   FROM emp,job
   WHERE emp.job_num = job.job_num;

In this example, the database server executes the query and puts the result in a temporary table. The order of tables 

in this query is dept, project, temp_table.

Join-method directives
The join-method directives influence how the database server joins two tables in a query.

The following directives influence the join method between two tables:

• USE_NL

Use the listed tables as the inner table in a nested-loop join.

• USE_HASH

Access the listed tables with a hash join. You can also choose whether the table is used to create the hash table or to 

probe the hash table.

• AVOID_NL

Do not use the listed tables as the inner table in a nested-loop join. A table listed with this directive can still 

participate in a nested-loop join as an outer table.

339



HCL Informix 14.10 - Performance Guide

340

• AVOID_HASH

Do not access the listed tables with a hash join. Optionally, you can allow a hash join but restrict the table from being 

the one that is probed or the table from which the hash table is built.

You can specify the keyword /BUILD after the name of a table in a USE_HASH or AVOID_HASH optimizer directives:

• With USE_HASH directives, the /BUILD keyword tells the optimizer to use the specified table to build the hash table.

• With AVOID_HASH, the /BUILD keyword tells the optimizer to avoid using the specified table to build the hash table.

You can specify the keyword /PROBE after the name of a table in a USE_HASH or AVOID_HASH optimizer directives:

• With USE_HASH directives, the /PROBE keyword tells the optimizer to use the specified table to probe the hash table.

• With AVOID_HASH directives, the /PROBE keyword tells the optimizer to avoid using the specified table to probe the 

hash table.

Optimization-goal directives
In some queries, you might want to find only the first few rows in the result of a query. Or, you might know that all rows must 

be accessed and returned from the query. You can use the optimization-goal directives to find the first row that satisfies the 

query or all rows that satisfy the query.

For example, you might want to find only the first few rows in the result of a query, because the Informix®  ESQL/C  program 

opens a cursor for the query and performs a FETCH to find only the first row.

Use the optimization-goal directives to optimize the query for either one of these cases:

• FIRST_ROWS

Choose a plan that optimizes the process of finding only the first row that satisfies the query.

• ALL_ROWS

Choose a plan that optimizes the process of finding all rows (the default behavior) that satisfy the query.

If you use the FIRST_ROWS directive, the optimizer might abandon a query plan that contains activities that are time-

consuming up front. For example, a hash join might take too much time to create the hash table. If only a few rows must be 

returned, the optimizer might choose a nested-loop join instead.

In the following example, assume that the database has an index on employee.dept_no  but not on department.dept_no. 

Without directives, the optimizer chooses a hash join.

SELECT *
FROM employee, department
WHERE employee.dept_no = department.dept_no

However, with the FIRST_ROWS directive, the optimizer chooses a nested-loop join because of the high initial overhead 

required to create the hash table.



Chapter 1. Performance Guide

SELECT {+first_rows} *
FROM employee, department
WHERE employee.dept_no = department.dept_no 

Star-join directives
Star-join directives can specify how the query optimizer joins two or more tables, among which one or more dimension tables 

have foreign-key dependencies on one or more fact tables.

The following directives can influence the join plan for tables that logically participate in a star schema or in a snowflake 

schema:

• FACT

The optimizer considers a query plan in which the specified table is a fact table in a star-join execution plan.

• AVOID_FACT

The optimizer does not consider a star-join execution plan that treats the specified table (or any of the tables in the 

list of tables) as a fact table.

• STAR_JOIN

The optimizer favors a star-join execution plan, if available.

• AVOID_STAR_JOIN

The optimizer chooses a query execution plan that is not a star-join plan.

These star-join directives have no effect unless the parallel database query feature (PDQ) is enabled.

Related information

Star-Join Directives  on page 

Concepts of dimensional data modeling  on page 

Keys to join the fact table with the dimension tables  on page 

Use the snowflake schema for hierarchical dimension tables  on page 

EXPLAIN directives
You can use the EXPLAIN directives to display the query plan that the optimizer chooses, and you can specify to display the 

query plan without running the query.

You can use these directives:

• EXPLAIN

Displays the query plan that the optimizer chooses.

341

../sqs/ids_sqs_2284.html#ids_sqs_2284
../sqs/ids_sqs_2284.html#ids_sqs_2284
../sqs/ids_sqs_2284.html#ids_sqs_2284
../sqs/ids_sqs_2284.html#ids_sqs_2284
../whse/ids_ddi_350.html#ids_ddi_350
../whse/ids_ddi_350.html#ids_ddi_350
../whse/ids_ddi_350.html#ids_ddi_350
../whse/ids_ddi_350.html#ids_ddi_350
../whse/ids_ddi_356.html#ids_ddi_356
../whse/ids_ddi_356.html#ids_ddi_356
../whse/ids_ddi_356.html#ids_ddi_356
../whse/ids_ddi_356.html#ids_ddi_356
../whse/ids_ddi_362.html#ids_ddi_362
../whse/ids_ddi_362.html#ids_ddi_362
../whse/ids_ddi_362.html#ids_ddi_362
../whse/ids_ddi_362.html#ids_ddi_362


HCL Informix 14.10 - Performance Guide

342

• EXPLAIN AVOID_EXECUTE

Displays the query plan that the optimizer chooses, but does not run the query.

When you want to display the query plan for one SQL  statement only, use these EXPLAIN directives instead of the SET 

EXPLAIN ON or SET EXPLAIN ON AVOID_EXECUTE statements.

When you use AVOID_EXECUTE (either the directive or in the SET EXPLAIN statement), the query does not execute but 

displays the following message:

No rows returned.

Figure 61: Result of EXPLAIN AVOID_EXECUTE directives  on page 342 shows sample output for a query that uses the 

EXPLAIN AVOID_EXECUTE directive.

Figure  61. Result of EXPLAIN AVOID_EXECUTE directives

QUERY:
------
select --+ explain avoid_execute
  l.customer_num, l.lname, l.company,
  l.phone, r.call_dtime, r.call_descr
from customer l, cust_calls r
where l.customer_num = r.customer_num
 

DIRECTIVES FOLLOWED:
EXPLAIN
AVOID_EXECUTE
DIRECTIVES NOT FOLLOWED:
 

Estimated Cost: 7
Estimated # of Rows Returned: 7
 

  1) informix.r: SEQUENTIAL SCAN
 

  2) informix.l: INDEX PATH
 

    (1) Index Keys: customer_num   (Serial, fragments: ALL)
        Lower Index Filter: informix.l.customer_num = informix.r.customer_num
NESTED LOOP JOIN

The following table describes the pertinent output lines in Figure 61: Result of EXPLAIN AVOID_EXECUTE directives  on 

page 342 that describe the chosen query plan.

Output Line in Figure 61: Result of EXPLAIN AVOID_EXECUTE 

directives  on page 342
Chosen Query Plan Description

DIRECTIVES FOLLOWED: EXPLAIN AVOID_EXECUTE Use the directives EXPLAIN and AVOID_EXECUTE to 

display the query plan and do not execute the query.

Estimated # of Rows Returned: 7 Estimate that this query returns seven rows.



Chapter 1. Performance Guide

Output Line in Figure 61: Result of EXPLAIN AVOID_EXECUTE 

directives  on page 342
Chosen Query Plan Description

Estimated Cost: 7 This estimated cost of 7  is a value that the optimizer uses 

to compare different query plans and select the one with 

the lowest cost.

1) informix.r: SEQUENTIAL SCAN Use the cust_calls r table as the outer table and scan it to 

obtain each row.

2) informix.l: INDEX PATH For each row in the outer table, use an index to obtain the 

matching row(s) in the inner table customer l.

(1) Index Keys: customer_num (Serial, fragments: ALL) Use the index on the customer_num  column, scan it 

serially, and scan all fragments (the customer l  table 

consists of only one fragment).

Lower Index Filter: informix.l.customer_num = 

informix.r.customer_num

Start the index scan at the customer_num  value from the 

outer table.

Example of directives that can alter a query plan
Directives can alter the query plan. You can use particular directives to force the optimizer to choose a particular type of 

query plan, for example one that uses hash joins and the order of tables as they appear in the query.

The following example shows how directives can alter the query plan.

Suppose you have the following query:

SELECT * FROM emp,job,dept
WHERE emp.location = 10
   AND emp.jobno = job.jobno
   AND emp.deptno = dept.deptno
   AND dept.location = "DENVER";

Assume that the following indexes exist:

ix1: emp(empno,jobno,deptno,location)
ix2: job(jobno)
ix3: dept(location)

You run the query with SET EXPLAIN ON to display the query path that the optimizer uses.

QUERY:
------
SELECT * FROM emp,job,dept
WHERE emp.location = "DENVER"
   AND emp.jobno = job.jobno
   AND emp.deptno = dept.deptno
   AND dept.location = "DENVER"
 

Estimated Cost: 5
Estimated # of Rows Returned: 1
 

343



HCL Informix 14.10 - Performance Guide

344

1) informix.emp: INDEX PATH
 

    Filters: informix.emp.location = 'DENVER'
 

    (1) Index Keys: empno jobno deptno location   (Key-Only)
 

2) informix.dept: INDEX PATH
 

    Filters: informix.dept.deptno = informix.emp.deptno
 

    (1) Index Keys: location
        Lower Index Filter: informix.dept.location = 'DENVER'
NESTED LOOP JOIN
 

3) informix.job: INDEX PATH
 

    (1) Index Keys: jobno   (Key-Only)
        Lower Index Filter: informix.job.jobno = informix.emp.jobno
NESTED LOOP JOIN

The diagram in Figure 62: Possible query plan without directives  on page 344 shows a possible query plan for this query. 

The query plan has three levels of information: (1) a nested-loop join, (2) an index scan on one table and a nested-loop join, 

and (3) index scans on two other tables.

Figure  62. Possible query plan without directives

Perhaps you are concerned that using a nested-loop join might not be the fastest method to execute this query. You also 

think that the join order is not optimal. You can force the optimizer to choose a hash join and order the tables in the query 

plan according to their order in the query, so the optimizer uses the query plan that Figure 63: Possible query plan with 

directives  on page 345 shows. This query plan that has three levels of information: (1) a hash join, (2) an index scan and a 

hash join, and (3) an index scan on two other tables.



Chapter 1. Performance Guide

Figure  63. Possible query plan with directives

To force the optimizer to choose the query plan that uses hash joins and the order of tables shown in the query, use the 

directives that the following partial SET EXPLAIN output shows:

QUERY:
------
SELECT {+ORDERED,
   INDEX(emp ix1),
   FULL(job),
   USE_HASH(job /BUILD),
   USE_HASH(dept /BUILD),
   INDEX(dept ix3)}
   * FROM emp,job,dept
   WHERE emp.location = 1
   AND emp.jobno = job.jobno
   AND emp.deptno = dept.deptno
   AND dept.location = "DENVER"
 

DIRECTIVES FOLLOWED:
ORDERED
INDEX ( emp ix1 )
FULL ( job )
USE_HASH ( job/BUILD )
USE_HASH ( dept/BUILD )
INDEX ( dept ix3 )
DIRECTIVES NOT FOLLOWED:
 

Estimated Cost: 7
Estimated # of Rows Returned: 1
 

1) informix.emp: INDEX PATH
 

    Filters: informix.emp.location = 'DENVER'
 

    (1) Index Keys: empno jobno deptno location   (Key-Only)
 

2) informix.job: SEQUENTIAL SCAN
 

 

DYNAMIC HASH JOIN
    Dynamic Hash Filters: informix.emp.jobno = informix.job.jobno
 

345



HCL Informix 14.10 - Performance Guide

346

3) informix.dept: INDEX PATH
 

    (1) Index Keys: location
        Lower Index Filter: informix.dept.location = 'DENVER'
 

DYNAMIC HASH JOIN
    Dynamic Hash Filters: informix.emp.deptno = informix.dept.deptno 

Configuration parameters and environment variables for optimizer directives
You can use the DIRECTIVES configuration parameter to turn on or off all directives that the database server encounters, and 

you can use the IFX_DIRECTIVES  environment variable to override the setting of the DIRECTIVES configuration parameter.

If the DIRECTIVES configuration parameter is set to 1  (the default), the optimizer follows all directives. If the DIRECTIVES 

configuration parameter is set to 0, the optimizer ignores all directives.

You can override the setting of DIRECTIVES. If the IFX_DIRECTIVES  environment variable is set to 1  or ON, the optimizer 

follows directives for any SQL the client session executes. If IFX_DIRECTIVES  is 0  or OFF, the optimizer ignores directives for 

any SQL  in the client session.

Any directives in an SQL  statement take precedence over the join plan that the OPTCOMPIND configuration parameter 

forces. For example, if a query includes the USE_HASH directive and OPTCOMPIND is set to 0  (nested-loop joins preferred 

over hash joins), the optimizer uses a hash join.

Optimizer directives and SPL routines
Directives operate differently for a query in an SPL  routine because a SELECT statement in an SPL  routine is not necessarily 

optimized immediately before the database server executes it.

The optimizer creates a query plan for a SELECT statement in an SPL  routine when the database server creates the SPL 

routine or during the execution of the UPDATE STATISTICS statement that include the FOR FUNCTION, FOR PROCEDURE, or FOR 

ROUTINE  keywords.

The optimizer reads and applies directives at the time that it creates the query plan. Because it stores the query plan in a 

system catalog table, the SELECT statement is not reoptimized when it is executed. Therefore, settings of IFX_DIRECTIVES 

and DIRECTIVES affect SELECT statements inside an SPL  routine when they are set at any of the following times:

• Before the CREATE PROCEDURE statement

• Before the UPDATE STATISTICS FOR ROUTINE statements that cause SQL  data-manipulation statements in SPL 

routines to be optimized

• During certain circumstances when SELECT statements have variables supplied at runtime

Avoiding index or prepared object exceptions by forced reoptimization
If the AUTO_REPREPARE configuration parameter and the IFX_AUTO_REPREPARE session environment variable are enabled, 

Informix®  automatically recompiles prepared statements and SPL routines after the schema of a referenced table is 

modified by a DDL statement. If the AUTO_REPREPARE configuration parameter or the IFX_AUTO_REPREPARE session 

environment variable is disabled, you can take steps to prevent errors.



Chapter 1. Performance Guide

If the AUTO_REPREPARE configuration parameter or the IFX_AUTO_REPREPARE session environment variable is disabled, 

the following error can result when prepared objects or SPL routines are executed after the schema of a table referenced by 

the prepared object or indirectly referenced by the SPL routine has been modified.

-710  Table <table-name> has been dropped, altered, or renamed.

This error can occur with explicitly prepared statements. These statements have the following form:

PREPARE statement_id FROM quoted_string;

After a statement has been prepared in the database server and before execution of the statement, a table to which the 

statement refers might have been renamed or altered, possibly changing the structure of the table. Problems can occur as a 

result.

Adding an index to the table after preparing the statement can also invalidate the statement. A subsequent OPEN command 

for a cursor fails if the cursor refers to the invalid prepared statement; the failure occurs even if the OPEN command has the 

WITH REOPTIMIZATION clause.

If an index was added after the statement was prepared, you must prepare the statement again and declare the cursor again. 

You cannot simply reopen the cursor if it was based on a prepared statement that is no longer valid.

This error can also occur with SPL routines. Before the database server executes a new SPL routine the first time, it 

optimizes the code (statements) in the SPL routine. Optimization makes the code depend on the structure of the tables that 

the procedure references. If the table structure changes after the procedure is optimized, but before it is executed, this error 

can occur.

Each SPL routine is optimized the first time that it is run (not when it is created). This behavior means that an SPL routine 

might succeed the first time it is run but fail later under virtually identical circumstances. The failure of an SPL routine can 

also be intermittent, because failure during one execution forces an internal warning to reoptimize the procedure before the 

next execution.

The database server keeps a list of tables that the SPL routine references explicitly. Whenever any one of these explicitly 

referenced tables is modified, the database server reoptimizes the procedure the next time the procedure is executed.

However, if the SPL routine depends on a table that is referenced only indirectly, the database server cannot detect the need 

to reoptimize the procedure after that table is changed. For example, a table can be referenced indirectly if the SPL routine 

invokes a trigger. If a table that is referenced by the trigger (but not directly by the SPL routine) is changed, the database 

server does not know that it should reoptimize the SPL routine before running it. When the procedure is run after the table 

has been changed, this error can occur.

Use one of two methods to recover from this error:

• Issue the UPDATE STATISTICS FOR PROCEDURE statement to force reoptimization of the procedure.

• Rerun the procedure.

To prevent this error, you can force reoptimization of the SPL routine. For example, to force reoptimization of an SPL routine 

called procedure_name, execute the following statement:

347



HCL Informix 14.10 - Performance Guide

348

UPDATE STATISTICS FOR PROCEDURE procedure_name;

Note that the following UPDATE STATISTICS statement has the same effect:

UPDATE STATISTICS FOR ROUTINE procedure_name;

Important:

Keep in mind that in databases that use transaction logging, you must run the UPDATE STATISTICS statement in a 

transaction that does not contain any other SQL statements.

You can add this statement to your program in either of the following ways:

• Place the UPDATE STATISTICS statement after each DDL statement that changes the mode of an object.

• Place the UPDATE STATISTICS statement before each execution of the SPL routine.

For efficiency, you can put the UPDATE STATISTICS statement with the action that occurs less frequently in the program 

(change of object mode or execution of the procedure). In most cases, the action that occurs less frequently in the program 

is the change of object mode.

When you follow this method of recovering from this error, you must execute the UPDATE STATISTICS FOR PROCEDURE 

statement for each procedure that references the changed tables indirectly, unless the procedure also references the tables 

explicitly.

You can also recover from this error by simply rerunning the SPL routine. The first time that the stored procedure fails, the 

database server marks the procedure as needing reoptimization. The next time that you run the procedure, the database 

server reoptimizes the procedure before running it. However, running the SPL routine twice might not be practical or safe. A 

safer choice is to use the UPDATE STATISTICS FOR PROCEDURE statement to force reoptimization of the procedure.

External optimizer directives
If you are user informix, you can create, save, and delete external directives.

About this task

Creating and saving external directives
You can define external directives by creating association records  that include query optimizer directives, and saving those 

records in the sysdirectives  system catalog table. Association records associate a list of one or more optimizer directives 

with a specific query text. The database server can apply those optimizer directives to subsequent instances of the same 

query text.

Use the SAVE EXTERNAL DIRECTIVES statement to create the association record to use for the list of one or more query 

directives These directives are applied automatically to subsequent instances of the same query.

The following example shows a SAVE EXTERNAL DIRECTIVES statement that registers an association-record in the system 

catalog as a new row in the sysdirectives  table that can be used as a query optimizer directive.



Chapter 1. Performance Guide

SAVE EXTERNAL DIRECTIVES {+INDEX(t1,i11)} ACTIVE FOR
   SELECT {+INDEX(t1, i2) } c1 FROM t1 WHERE c1=1;

The following data is stored in the association record that the SQL statement above defined:

id             16
query          select {+INDEX(t1, i2) } c1 from t1 where c1=1
directive      INDEX(t1,i11)
directivecode  BYTE value

active         1
hashcode       -589336273

Here {+INDEX(t1,i11)}, the external directive that followed the DIRECTIVES keyword, will be applied to future instances of the 

specified query, but the inline {+INDEX(t1,i2)}  directive will be ignored.

The information in the external directives that immediately follow the DIRECTIVES keyword must be within comment 

indicators, just as the same directives would appear in SELECT, UPDATE, MERGE, and DELETE statements, except that blank 

characters, rather than comma ( , ) symbols, are the required separators if the list of external directives includes more than 

one directive.

Enabling external directives
After you create and save external directives, you must set the configuration parameter and environmental variable that 

enable the directives. The database server searches for a directive for a query only if the external directives are set on both 

the database server and the client.

Enable the directive by using a combination of the EXT_DIRECTIVES configuration parameter, which is in the ONCONFIG file, 

and the IFX_EXTDIRECTIVES  client-side environment variable.

The EXT_DIRECTIVE values that you can use are:

Value Explanation

0  (default) Off. The directive cannot be enabled, even if IFX_EXTDIRECTIVES is enabled.

1 On. The directive can be enabled for a session if IFX_EXTDIRECTIVES is enabled.

2 On. The directive can be used even if IFX_EXTDIRECTIVES is not enabled.

You can also use the EXTDIRECTIVES option of the SET ENVIRONMENT statement to enable or disable external directives 

during a session. What you specify with the EXTDIRECTIVES option overwrites the external directive setting that is specified 

in the EXT_DIRECTIVES configuration parameter in the ONCONFIG file.

To overwrite the value for enabling or disabling the external directive in the ONCONFIG file:

• To enable the external directives during a session, specify 1, on, or ON  as the value for SET ENVIRONMENT 

EXTDIRECTIVES.

• To disable the external directives during a session, specify 0, off, or OFF  as the value for SET ENVIRONMENT 

EXTDIRECTIVES.

349



HCL Informix 14.10 - Performance Guide

350

To enable the default values specified in the EXT_DIRECTIVES configuration parameter and in the client-side 

IFX_EXTDIRECTIVES environment variable during a session, specify DEFAULT as the value for the EXTDIRECTIVES option of 

the SET ENVIRONMENT statement.

The explain output file specifies whether external directives are in effect.

Related information

The explain output file  on page 305

Query statistics section provides performance debugging information  on page 306

Report that shows the query plan chosen by the optimizer  on page 304

SET EXPLAIN statement  on page 

Using the FILE TO option  on page 

Default name and location of the explain output file on UNIX  on page 

Default name and location of the output file on Windows  on page 

onmode -Y: Dynamically change SET EXPLAIN  on page 

onmode and Y arguments: Change query plan measurements for a session (SQL administration API)  on 

page 

Deleting external directives
When you no longer need an external directive, the DBA or user informix  can use the DELETE statement of SQL to remove it 

from the sysdirectives  system catalog table.

When external directives are enabled and the sysdirectives  system catalog table is not empty,

• the database server compares every query with the query text of every ACTIVE external directive,

• and for queries executed by the DBA (or by user informix) with every TEST ONLY external directive.

The purpose of external directives is to improve the performance of queries that match the query string, but the use of 

such directives can potentially slow other queries, if the query execution optimizer must compare the query strings of a 

large number of active external directives with the text of every SELECT statement. For this reason, IBM®  recommends 

that the DBA not allow the sysdirectives  table to accumulate more than a few ACTIVE rows. (An alternative way to avoid 

unintended performance impact on other queries is to disable support for external directives by setting the EXT_DIRECTIVES 

configuration parameter to 0. Setting the IFX_EXTDIRECTIVES  client environment variable to 0  has the same effect.)

Parallel database query (PDQ)
You can manage how the database server performs PDQ and you can monitor the resources that the database server uses 

for PDQ.

../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1152.html#ids_sqs_1152
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1154.html#ids_sqs_1154
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1156.html#ids_sqs_1156
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../sqs/ids_sqs_1157.html#ids_sqs_1157
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_adr_0441.html#ids_adr_0441
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064
../%20adr/ids_sapi_064.html#ids_sapi_064


Chapter 1. Performance Guide

What PDQ is
Parallel database query  (PDQ) is a database server feature that can improve performance dramatically when the server 

processes queries that decision-support applications initiate. PDQ enables Informix®  to distribute the work for one aspect of 

a query among several processors. For example, if a query requires an aggregation, Informix®  can distribute the work for the 

aggregation among several processors.

PDQ also includes tools for resource management.

Another database server feature, table fragmentation, allows you to store the parts of a table on different disks. PDQ delivers 

maximum performance benefits when the data that you query is in fragmented tables. For information about how to use 

fragmentation for maximum performance, see Planning a fragmentation strategy  on page 265.

Related information

Database server operations that use PDQ  on page 352

The allocation of resources for parallel database queries  on page 357

Managing PDQ queries  on page 363

Monitoring resources used for PDQ and DSS queries  on page 366

Structure of a PDQ query
Each decision-support query has a primary thread. The database server can start additional threads to perform tasks for the 

query (for example, scans and sorts). Depending on the number of tables or fragments that a query must search and the 

resources that are available for a decision-support query, the database server assigns different components of a query to 

different threads.

The database server initiates these PDQ threads, which are listed as secondary threads  in the SET EXPLAIN output.

Secondary threads are further classified as either producers or consumers, depending on their function. A producer thread 

supplies data to another thread. For example, a scan thread might read data from shared memory that corresponds to a 

given table and pass it along to a join thread. In this case, the scan thread is considered a producer, and the join thread is 

considered a consumer. The join thread, in turn, might pass data along to a sort thread. When doing so, the join thread is 

considered a producer, and the sort thread is considered a consumer.

Several producers can supply data to a single consumer. When this situation occurs, the database server sets up an internal 

mechanism, called an exchange, that synchronizes the transfer of data from those producers to the consumer. For instance, 

if a fragmented table is to be sorted, the optimizer typically calls for a separate scan thread for each fragment. Because of 

different I/O characteristics, the scan threads can be expected to complete at different times. An exchange is used to funnel 

the data produced by the various scan threads into one or more sort threads with a minimum of buffering. Depending on 

the complexity of the query, the optimizer might call for a multilayered hierarchy of producers, exchanges, and consumers. 

Generally speaking, consumer threads work in parallel with producer threads so that the amount of intermediate buffering 

that the exchanges perform remains negligible.

351



HCL Informix 14.10 - Performance Guide

352

The database server creates these threads and exchanges automatically and transparently. They terminate automatically 

as they complete processing for a given query. The database server creates new threads and exchanges as needed for 

subsequent queries.

Database server operations that use PDQ
Informix®  processes some types of SQL  operations that the database server processes in parallel. However some situations 

limit the degree of parallelism that Informix®  can use.

In the topics on database server operations that use PDQ in this section, a query  is any SELECT statement.

Related information

What PDQ is  on page 351

Parallel update and delete operations
Informix®  performs some types of update and delete operations in parallel.

The database server takes the following two steps to process UPDATE and DELETE statements:

1. Fetches the qualifying rows.

2. Applies the action of updating or deleting.

The database server performs the first step of an UPDATE or DELETE statement in parallel, with the following exceptions:

• The targeted table in a DELETE statement has a referential constraint that can cascade to a child table.

• The UPDATE or DELETE statement contains an OR clause and the optimizer chooses an OR index to process the OR 

filter.

• The UPDATE statement contains a subquery that the optimizer converts into a join.

Parallel insert operations
Informix®  performs some types of insert operations in parallel.

The types of insert operations that the server performs in parallel are:

• SELECT...INTO TEMP inserts using explicit temporary tables.

• INSERT INTO...SELECT inserts using implicit temporary tables.

Explicit inserts with SELECT...INTO TEMP statements
The database server can insert rows in parallel into explicit temporary tables that you specify in SQL  statements of the form 

SELECT....INTO TEMP.

About this task



Chapter 1. Performance Guide

For example, the database server can perform the inserts in parallel into the temporary table, temp_table, as the following 

example shows:

SELECT * FROM table1 INTO TEMP temp_table

To perform parallel inserts into a temporary table:

1. Set PDQ priority > 0.

You must meet this requirement for any query that you want the database server to perform in parallel.

2. Set DBSPACETEMP to a list of two or more dbspaces.

This step is required because of the way that the database server performs the insert. To perform the insert in 

parallel, the database server first creates a fragmented temporary table. So that the database server knows where to 

store the fragments of the temporary table, you must specify a list of two or more dbspaces in the DBSPACETEMP 

configuration parameter or the DBSPACETEMP  environment variable. In addition, you must set DBSPACETEMP to 

indicate storage space for the fragments before you execute the SELECT...INTO statement.

Results

The database server performs the parallel insert by writing in parallel to each of the fragments in a round-robin fashion. 

Performance improves as you increase the number of fragments.

Implicit inserts with INSERT INTO...SELECT statements
The database server can also insert rows in parallel into implicit tables that it creates when it processes SQL  statements of 

the form INSERT INTO...SELECT.

For example, the database server processes the following INSERT statement in parallel:

INSERT INTO target_table SELECT * FROM source_table

The target table can be either a permanent table or a temporary table.

The database server processes this type of INSERT statement in parallel only when the target tables meet the following 

criteria:

• The value of PDQ priority is greater than 0.

• The target table is fragmented into two or more dbspaces.

• The target table has no enabled referential constraints or triggers.

• The target table is not a remote table.

• In a database with logging, the target table does not contain filtering constraints.

• The target table does not contain columns of TEXT or BYTE data type.

The database server does not process parallel inserts that reference an SPL routine. For example, the database server never 

processes the following statement in parallel:

INSERT INTO table1 EXECUTE PROCEDURE ins_proc

353



HCL Informix 14.10 - Performance Guide

354

Parallel index builds
Index builds can take advantage of PDQ and can be parallelized. The database server performs both scans and sorts in 

parallel for index builds.

The following operations initiate index builds:

• Create an index.

• Add a unique, primary key.

• Add a referential constraint.

• Enable a referential constraint.

When PDQ is in effect, the scans for index builds are controlled by the PDQ configuration parameters described in The 

allocation of resources for parallel database queries  on page 357.

If you have a computer with multiple CPUs, the database server uses two sort threads to sort the index keys. The database 

server uses two sort threads during index builds without the user setting the PSORT_NPROCS environment variable.

Parallel user-defined routines
If a query contains a user-defined routine (UDR) in an expression, the database server can execute a query in parallel when 

you turn on PDQ.

The database server can perform the following parallel operations if the UDR is written and registered appropriately:

• Parallel scans

• Parallel comparisons with the UDR

For more information about how to enable parallel execution of UDRs, see Parallel UDRs  on page 426.

Hold cursors that use PDQ
When hold cursors that are created by declaring the WITH HOLD qualifier have no locks, PDQ is enabled.

PDQ will be set for hold cursors in the following cases:

• Queries with Dirty Read or Committed Read isolation level, ANSI, and read-only cursor

• Queries with Dirty Read or Committed Read isolation level, NON-ANSI, non-updateable cursor

SQL operations that do not use PDQ
The database server does not process some types of queries in parallel.

For example, the server does not process the following types of queries in parallel:



Chapter 1. Performance Guide

• Queries started with an isolation level of Cursor Stability

Subsequent changes to the isolation level do not affect the parallelism of queries already prepared. This situation 

results from the inherent nature of parallel scans, which scan several rows simultaneously.

• Queries that use a cursor declared as FOR UPDATE

• Queries in the FOR EACH ROW  section of the Action clause of a Select  trigger

• A DELETE or MERGE statement in the FOR EACH ROW  section of the Action clause of a Delete  trigger

• An INSERT or MERGE statement in the FOR EACH ROW  section of the Action clause of an Insert  trigger

• An UPDATE or MERGE statement in the FOR EACH ROW  section of the Action clause of an Update  trigger

• Data definition language (DDL) statements.

For a complete list of the DDL statements of SQL  that Informix®  supports, see the HCL®  Informix®  Guide to SQL: 

Syntax.

In addition, the database server does not process sequence objects in PDQ operations. If your SQL  statement includes 

sequencing operations, such as expressions that include the NEXTVAL  or CURRVAL  operators, PDQ processing is 

unavailable for that statement.

Update statistics operations affected by PDQ
An SQL  UPDATE STATISTICS statement that is not processed in parallel, is affected by PDQ because it must allocate the 

memory used for sorting. Thus the behavior of the UPDATE STATISTICS statement is affected by the memory management 

associated with PDQ.

The database server must allocate the memory that the UPDATE STATISTICS statement uses for sorting.

If you have an extremely large database and indexes are fragmented, UPDATE STATISTICS LOW can automatically run 

statements in parallel. For more information, see Update statistics in parallel on very large databases  on page 389.

SPL routines and triggers and PDQ
Statements that involve SPL routines are not executed in parallel. However, statements within procedures are executed in 

parallel.

When the database server executes an SPL routine, it does not use PDQ to process non-related SQL  statements contained 

in the procedure. Each SQL  statement can be executed independently in parallel, however, using intraquery parallelism when 

possible. As a consequence, you should limit the use of procedure calls from within data manipulation language (DML) 

statements if you want to use the parallel-processing abilities of the database server. For a complete list of DML statements, 

see the HCL®  Informix®  Guide to SQL: Syntax.

The database server uses intraquery parallelism to process the statements in the body of an SQL  trigger in the same way 

that it processes statements in SPL routines. For restrictions on using PDQ for queries in some triggered actions of Select, 

Insert, and Update triggers, see SQL operations that do not use PDQ  on page 354.

355



HCL Informix 14.10 - Performance Guide

356

Correlated and uncorrelated subqueries
The database server does not use PDQ to process correlated subqueries. Only one thread at a time can execute a correlated 

subquery. While one thread executes a correlated subquery, other threads that request to execute the subquery are blocked 

until the first one completes.

For uncorrelated subqueries, only the first thread that makes the request actually executes the subquery. Other threads 

simply use the results of the subquery and can do so in parallel.

As a consequence, it is strongly recommended that, whenever possible, you use joins rather than subqueries to build queries 

so that the queries can take advantage of PDQ.

OUTER index joins and PDQ
The database server reduces the PDQ priority of queries that contain OUTER index joins to LOW (if the priority is set to a 

higher value) for the duration of the query. If a subquery or a view contains OUTER index joins, the database server lowers the 

PDQ priority of only that subquery or view, not of the parent query or any other subquery.

Remote tables used with PDQ
Although the database server can process the data stored in a remote table in parallel, the data is communicated serially 

because the database server allocates a single thread to submit and receive the data from the remote table. The database 

server lowers the PDQ priority of queries that require access to a remote database to LOW.

In this case, all local scans are parallel, but all local joins and remote access are nonparallel.

The Memory Grant Manager
The Memory Grant Manager (MGM) is a database server component that coordinates the use of memory, CPU virtual 

processors (VPs), disk I/O, and scan threads among decision-support queries. The MGM uses the DS_MAX_QUERIES, 

DS_TOTAL_MEMORY, DS_MAX_SCANS, and MAX_PDQPRIORITY configuration parameters to determine the quantity of these 

PDQ resources that can be granted to a decision-support query.

The MGM dynamically allocates the following resources for decision-support queries:

• The number of scan threads that are started for each decision-support query

• The number of threads that can be started for each query

• The amount of memory in the virtual portion of database server shared memory that the query can reserve

When your database server system has heavy OLTP use, and you find performance is degrading, you can use the MGM 

facilities to limit the resources that are committed to decision-support queries. During off-peak hours, you can designate a 

larger proportion of the resources to parallel processing, which achieves higher throughput for decision-support queries.

The MGM grants memory to a query for such activities as sorts, hash joins, and processing of GROUP BY clauses. The 

amount of memory that decision-support queries use cannot exceed DS_TOTAL_MEMORY.



Chapter 1. Performance Guide

The MGM grants memory to queries in quantum  increments. To calculate the approximate size of the quantum, use the 

following formula:

memory quantum = DS_TOTAL_MEMORY / DS_MAX_QUERIES

For example, if DS_TOTAL_MEMORY is 12 MB and DS_MAX_QUERIES is 4, the quantum is 3 MB (12/4). Thus, with these 

values in effect, a quantum of memory equals 3 MB. The database server can adjust the size of the quantum dynamically 

when it grants memory. In general, memory is allocated more efficiently when quanta are smaller. You can often improve 

performance of concurrent queries by increasing DS_MAX_QUERIES to reduce the size of a quantum of memory.

To monitor resources that the MGM allocates, run the onstat -g mgm  command. This command shows only the amount of 

memory that is used; it does not show the amount of memory that is granted.

The MGM also grants a maximum number of scan threads per query that is based on the values of the DS_MAX_SCANS and 

the DS_MAX_QUERIES parameters.

The following formula yields the maximum number of scan threads per query:

scan_threads = min (nfrags, DS_MAX_SCANS * (pdqpriority / 100)
   * (MAX_PDQPRIORITY / 100))

nfrags

Is the number of fragments in the table with the largest number of fragments.

pdqpriority

Is the value for PDQ priority that is set by either the PDQPRIORITY environment variable or the SQL  statement 

SET PDQPRIORITY.

The PDQPRIORITY  environment variable and the SQL  statement SET PDQPRIORITY request a percentage of PDQ resources 

for a query. You can use the MAX_PDQPRIORITY configuration parameter to limit the percentage of the requested resources 

that a query can obtain and to limit the impact of decision-support queries on OLTP processing.

Related information

Effect of configuration on memory utilization  on page 61

Limiting the priority of decision-support queries  on page 358

The DS_TOTAL_MEMORY configuration parameter and memory utilization  on page 74

onstat -g mgm command: Print MGM resource information  on page 

The allocation of resources for parallel database queries
When you configure the database server, consider how the use of PDQ affects users of OLTP, decision-support (DSS) 

applications, and other applications. Then you can plan how to allocate resources for PDQ.

When the database server uses PDQ to perform a query in parallel, it puts a heavy load on the operating system. In particular, 

PDQ exploits the following resources:

357

../%20adr/ids_adr_0547.html#ids_adr_0547
../%20adr/ids_adr_0547.html#ids_adr_0547
../%20adr/ids_adr_0547.html#ids_adr_0547
../%20adr/ids_adr_0547.html#ids_adr_0547


HCL Informix 14.10 - Performance Guide

358

• Memory

• CPU VPs

• Disk I/O (to fragmented tables and temporary table space)

• Scan threads

You can control how the database server uses resources in the following ways:

• Limit the priority of parallel database queries.

• Adjust the amount of memory.

• Limit the number of scan threads.

• Limit the number of concurrent queries.

Related information

What PDQ is  on page 351

Limiting the priority of decision-support queries
You can limit the parallel processing resources that decision-support (DSS) queries consume by adjusting the values of 

PDQPRIORITY  environment variable, the MAX_PDQPRIORITY configuration parameter, and other configuration parameters.

The default value for the PDQ priority of individual applications is 0, which means that PDQ processing is not used. The 

database server uses this value unless one of the following actions overrides it:

• You set the PDQPRIORITY  environment variable.

• The application uses the SET PDQPRIORITY statement.

The PDQPRIORITY  environment variable and the MAX_PDQPRIORITY configuration parameter work together to control the 

amount of resources to allocate for parallel processing. Setting these correctly is critical for the effective operation of PDQ.

The MAX_PDQPRIORITY configuration parameter allows you to limit the parallel processing resources that DSS 

queries consume. Thus, the PDQPRIORITY  environment variable sets a reasonable  or recommended  priority value, and 

MAX_PDQPRIORITY limits the resources that an application can claim.

The MAX_PDQPRIORITY configuration parameter specifies the maximum percentage of the requested resources that 

a query can obtain. For instance, if PDQPRIORITY  is 80  and MAX_PDQPRIORITY is 50, each active query receives an 

amount of memory equal to 40 percent of DS_TOTAL_MEMORY, rounded down to the nearest quantum. In this example, 

MAX_PDQPRIORITY effectively limits the number of concurrent decision-support queries to two. Subsequent queries must 

wait for earlier queries to finish before they acquire the resources that they need to run.

An application or user can use the DEFAULT tag of the SET PDQPRIORITY statement to use the value for PDQ priority if the 

value has been set by the PDQPRIORITY  environment variable. DEFAULT is the symbolic equivalent of a -1  value for PDQ 

priority.

You can use the onmode  command-line utility to change the values of the following configuration parameters temporarily:



Chapter 1. Performance Guide

• Use onmode -M  to change the value of DS_TOTAL_MEMORY.

• Use onmode -Q  to change the value of DS_MAX_QUERIES.

• Use onmode -D  to change the value of MAX_PDQPRIORITY.

• Use onmode -S  to change the value of DS_MAX_SCANS.

These changes remain in effect only as long as the database server remains up and running. When the database server 

starts, it uses the values listed in the ONCONFIG file.

For more information about the preceding parameters, see Effect of configuration on memory utilization  on page 61. For 

more information about onmode, see your HCL®  Informix®  Administrator's Reference.

If you must change the values of the decision-support parameters on a regular basis (for example, to set MAX_PDQPRIORITY 

to 100  each night for processing reports), you can use a scheduled operating-system job to set the values. For information 

about creating scheduled jobs, see your operating-system manuals.

To obtain the best performance from the database server, choose values for the PDQPRIORITY  environment variable and 

MAX_PDQPRIORITY parameter, observe the resulting behavior, and then adjust the values for these parameters. No well-

defined rules exist for choosing these environment variable and parameter values. The following sections discuss strategies 

for setting PDQPRIORITY  and MAX_PDQPRIORITY for specific needs.

Related information

The Memory Grant Manager  on page 356

Limiting the value of the PDQ priority
You can adjust the value of the MAX_PDQPRIORITY configuration parameter to adjust the PDQ priority and allocate more 

resources to either OLTP or decision-support processing.

The MAX_PDQPRIORITY configuration parameter limits the PDQ priority that the database server grants when users either 

set the PDQPRIORITY  environment variable or issue the SET PDQPRIORITY statement before they issue a query. When 

an application or an end user attempts to set a PDQ priority, the priority that is granted is multiplied by the value that 

MAX_PDQPRIORITY specifies.

Set the value of MAX_PDQPRIORITY lower when you want to allocate more resources to OLTP processing.

Set the value of MAX_PDQPRIORITY higher when you want to allocate more resources to decision-support processing.

The possible range of values is 0 to 100. This range represents the percent of resources that you can allocate to decision-

support processing.

Maximizing OLTP throughput for queries
At times, you might want to allocate resources to maximize the throughput for individual OLTP queries rather than for 

decision-support queries.

359



HCL Informix 14.10 - Performance Guide

360

In this case, set MAX_ PDQPRIORITY to 0, which limits the value of PDQ priority to OFF. A PDQ priority value of OFF  does 

not prevent decision-support queries from running. Instead, it causes the queries to run without parallelization. In this 

configuration, response times for decision-support queries might be slow.

Conserving resources when using PDQ
If applications make little use of queries that require parallel sorts and parallel joins, consider using the LOW  setting for PDQ 

priority.

If the database server is operating in a multiuser environment, you might set MAX_PDQPRIORITY to 1  to increase interquery 

performance at the cost of some intraquery parallelism. A trade-off exists between these two different types of parallelism 

because they compete for the same resources. As a compromise, you might set MAX_PDQPRIORITY to some intermediate 

value (perhaps 20  or 30) and set PDQPRIORITY  to LOW. The environment variable sets the default behavior to LOW, but 

the MAX_PDQPRIORITY configuration parameter allows individual applications to request more resources with the SET 

PDQPRIORITY statement.

Allowing maximum use of parallel processing
Set PDQPRIORITY  and MAX_PDQPRIORITY to 100  if you want the database server to assign as many resources as possible 

to parallel processing.

This setting is appropriate for times when parallel processing does not interfere with OLTP processing.

Determining the level of parallel processing
You can use different numeric settings for PDQPRIORITY  to experiment with the effects of parallelism on a single 

application.

For information about how to monitor parallel execution, see Monitoring resources used for PDQ and DSS queries  on 

page 366.

Limits on parallel operations associated with PDQ priority
The database server reduces the PDQ priority of queries that contain outer joins to LOW (if set to a higher value) for the 

duration of the query. If a subquery or a view contains outer joins, the database server lowers the PDQ priority only of that 

subquery or view, not of the parent query or of any other subquery.

The database server lowers the PDQ priority of queries that require access to a remote database (same or different database 

server instance) to LOW if you set it to a higher value. In that case, all local scans are parallel, but all local joins and remote 

accesses are nonparallel.

Using SPL routines with PDQ queries
The database server freezes the PDQ priority that is used to optimize SQL  statements within SPL routines at the time of 

procedure creation or the last manual recompilation with the UPDATE STATISTICS statement. You can change the client 

value of PDQPRIORITY.



Chapter 1. Performance Guide

To change the client value of PDQPRIORITY, embed the SET PDQPRIORITY statement within the body of your SPL routine.

The PDQ priority value that the database server uses to optimize or reoptimize an SQL  statement is the value that was set by 

a SET PDQPRIORITY statement, which must have been executed within the same procedure. If no such statement has been 

executed, the value that was in effect when the procedure was last compiled or created is used.

The PDQ priority value currently in effect outside a procedure is ignored within a procedure when it is executing.

It is suggested that you turn PDQ priority off when you enter a procedure and then turn it on again for specific statements. 

You can avoid tying up large amounts of memory for the procedure, and you can make sure that the crucial parts of the 

procedure use the appropriate PDQ priority, as the following example illustrates:

CREATE PROCEDURE my_proc (a INT, b INT, c INT)
   Returning INT, INT, INT;
SET PDQPRIORITY 0;
...
SET PDQPRIORITY 85;
SELECT ... (big complicated SELECT statement)
SET PDQPRIORITY 0;
...
;

Adjusting the amount of memory for DSS and PDQ queries
You can estimate the amount of shared memory to allocate to decision-support (DSS) queries. Then, if necessary, you can 

adjust the value of the DS_TOTAL_MEMORY configuration parameter, which specifies the amount of memory available for 

PDQ queries.

Use the following formula as a starting point for estimating the amount of shared memory to allocate to DSS queries:

DS_TOTAL_MEMORY = p_mem  - os_mem  - rsdnt_mem  -
                  (128 kilobytes * users) - other_mem 

p_mem

represents the total physical memory that is available on the host computer.

os_mem

represents the size of the operating system, including the buffer cache.

resdnt_mem

represents the size of Informix®  resident shared memory.

users

is the number of expected users (connections) specified in the NETTYPE configuration parameter.

other_mem

is the size of memory used for other (non-HCL®  Informix®) applications.

The value for DS_TOTAL_MEMORY that is derived from this formula serves only as a starting point. To arrive at a value that 

makes sense for your configuration, you must monitor paging and swapping. (Use the tools provided with your operating 

361



HCL Informix 14.10 - Performance Guide

362

system to monitor paging and swapping.) When paging increases, decrease the value of DS_TOTAL_MEMORY so that 

processing the OLTP workload can proceed.

The amount of memory that is granted to a single parallel database query depends on many system factors, but in general, 

the amount of memory granted to a single parallel database query is proportional to the following formula:

memory_grant_basis = (DS_TOTAL_MEMORY/DS_MAX_QUERIES) *
               (PDQPRIORITY / 100) *
               (MAX_PDQPRIORITY / 100)

However, if the currently executing queries on all databases of the server instance require more memory than this estimate 

of the average allocation, another query might overflow to disk or might wait until concurrent queries completed execution 

and released sufficient memory resources for running the query. The following alternative formula estimates the PDQ 

memory available for a single query directly:

memory_for_single_query = DS_TOTAL_MEMORY  *
               (PDQPRIOIRTY / 100) *
               (MAX_PDQPRIORITY / 100)

Limiting the number of concurrent scans
The database server apportions some number of scans to a query according to its PDQ priority (among other factors). You 

can adjust the value of the DS_MAX_SCANS configuration parameter to limit the number of concurrent scans.

The DS_MAX_SCANS and MAX_PDQPRIORITY configuration parameters allow you to limit the resources that users can 

assign to a query, according to the following formula:

scan_threads = min (nfrags, (DS_MAX_SCANS * (pdqpriority / 100)
   * (MAX_PDQPRIORITY / 100) )

nfrags

is the number of fragments in the table with the largest number of fragments.

pdqpriority

is the PDQ priority value set by either the PDQPRIORITY environment variable or the SET PDQPRIORITY 

statement.

For example, suppose a large table contains 100 fragments. With no limit on the number of concurrent scans allowed, the 

database server would concurrently execute 100 scan threads to read this table. In addition, many users could initiate this 

query.

As the database server administrator, you set the DS_MAX_SCANS configuration parameter to a value lower than the 

number of fragments in this table to prevent the database server from being flooded with scan threads by multiple 

decision-support queries. You can set DS_MAX_SCANS to 20  to ensure that the database server concurrently executes a 

maximum of 20 scan threads for parallel scans. Furthermore, if multiple users initiate parallel database queries, each query 

receives only a percentage of the 20 scan threads, according to the PDQ priority assigned to the query and the value for the 

MAX_PDQPRIORITY configuration parameter that the database server administrator sets.



Chapter 1. Performance Guide

Limiting the maximum number of PDQ queries
You can adjust the maximum number of PDQ queries that can run concurrently by changing the value of the 

DS_MAX_QUERIES configuration parameter.

The DS_MAX_QUERIES configuration parameter limits the number of concurrent decision-support queries that can run.

To estimate the number of decision-support (DSS) queries that the database server can run concurrently, count each query 

that runs with PDQ priority set to 1 or greater as one full query.

The database server allocates less memory to queries that run with a lower priority, so you can assign lower-priority queries 

a PDQ priority value that is between 1 and 30, depending on the resource impact of the query. The total number of queries 

with PDQ priority values greater than 0 cannot exceed the value of DS_MAX_QUERIES.

Managing PDQ queries
The database server administrator, the writer of an application, and the users all have a certain amount of control over the 

amount of resources that Informix®  allocates to processing a query. The database server administrator exerts control 

through the use of configuration parameters. The application developer or the user can exert control through an environment 

variable or SQL  statement.

Related information

What PDQ is  on page 351

Analyzing query plans with SET EXPLAIN output
You can use SET EXPLAIN output to study the query plans of an application. The output of the SET EXPLAIN statement 

shows decisions that the query optimizer makes. It shows whether parallel scans are used, the maximum number of threads 

required to answer the query, and the type of join used for the query.

You can restructure a query or use OPTCOMPIND to change how the optimizer treats the query.

Influencing the choice of a query plan
The OPTCOMPIND  environment variable and the OPTCOMPIND configuration parameter indicate the preferred join plan, thus 

assisting the optimizer in selecting the appropriate join method for parallel database queries. To influence the optimizer in its 

choice of a join plan, you can set the OPTCOMPIND configuration parameter.

The value that you assign to the OPTCOMPIND configuration parameter is referenced only when applications do not set the 

OPTCOMPIND  environment variable.

Set OPTCOMPIND to 0  if you want the database server to select a join plan exactly as it did in versions of the database server 

prior to version 6.0. This option ensures compatibility with previous versions of the database server.

An application with an isolation mode of Repeatable Read can lock all records in a table when it performs a hash join. For 

this reason, you should set OPTCOMPIND to 1.

363



HCL Informix 14.10 - Performance Guide

364

If you want the optimizer to make the determination for you based on cost, regardless of the isolation level of applications, 

set OPTCOMPIND to 2.

You can use the SET ENVIRONMENT OPTCOMPIND  command to change the value of OPTCOMPIND  within a session. For 

more information about using this command, see Setting the value of OPTCOMPIND within a session  on page 44.

For more information about OPTCOMPIND and the different join plans, see The query plan  on page 296.

Setting the PDQ priority dynamically
You can use the SET PDQPRIORITY statement to set PDQ priority dynamically within an application. The PDQ priority value 

can be any integer from -1 through 100.

The PDQ priority set with the SET PDQPRIORITY statement supersedes the PDQPRIORITY  environment variable.

The DEFAULT tag for the SET PDQPRIORITY statement allows an application to revert to the value for PDQ priority as set 

by the environment variable, if any. For more information about the SET PDQPRIORITY statement, see the HCL®  Informix® 

Guide to SQL: Syntax.

Enabling the database server to allocate PDQ memory
You can set the IMPLICIT_PDQ session environment option of the SET ENVIRONMENT statement to enable the database 

server to calculate the amount of PDQ memory to allocate to queries during the current session. This potentially overrides 

the current PDQPRIORITY  setting.

The maximum amount of memory that the database server can allocate, however, is limited by the physical memory 

available to your system, and by the settings of these parameters:

• The PDQPRIORITY  environment variable

• The most recent SET PDQPRIORITY statement of SQL

• The MAX_PDQPRIORITY configuration parameter

• The DS_TOTAL_MEMORY configuration parameter

• The BOUND_IMPL_PDQ session environment variable.

The IMPLICIT_PDQ session environment option is available only on systems that support PDQPRIORITY.

By default, the IMPLICIT_PDQ session environment variable is set to OFF. When IMPLICIT_PDQ is set to OFF, the server does 

not override the current PDQPRIORITY  setting.

To enable the database server to calculate memory allocations for queries and to distribute memory among query operators 

according to their needs, enter the following statement before you issue the query:

SET ENVIRONMENT IMPLICIT_PDQ ON; 

If you instead set the IMPLICIT_PDQ value to an integer in the range from 1 to 100, the database server scales its estimate by 

the specified value. For example, the following example restricts memory allocation in aubsequent queries of the session to 

half of the current PDQPRIORITY  setting:



Chapter 1. Performance Guide

SET ENVIRONMENT IMPLICIT_PDQ '50'; 

If you set a low IMPLICIT_PDQ value, the amount of memory assigned to the query is proportionally reduced, which might 

increase the amount of query-operator overflow.

The IMPLICIT_PDQ functionality for a query requires at least LOW distribution statistics on all tables that the query accesses. 

If distribution statistics are missing for one or more tables that the query references, the IMPLICIT_PDQ setting has no effect 

on the resources available for query execution. This restriction also applies to star-join queries, which are not supported in 

the case of missing statistics.

Limiting PDQ resource allocation by setting BOUND_IMPL_PDQ

If IMPLICIT_PDQ is set to ON or to a numeric value, you can also use the BOUND_IMPL_PDQ session environment option of 

the SET ENVIRONMENT statement of SQL to specify that the allocated PDQ memory should be no greater than the current 

explicit PDQPRIORITY value or range. If the IMPLICIT_PDQ session environment setting is OFF, whether explicitly off by 

default, then the BOUND_IMPL_PDQ setting has no effect.

For example, the following statement forces the database server to use explicit PDQPRIORITY values as guidelines in 

allocating memory, if the IMPLICIT_PDQ session environment option has already been set:

SET ENVIRONMENT BOUND_IMPL_PDQ ON;

If the IMPLICIT_PDQ setting is an integer in the range from 1 to 100, the explicit PDQPRIORITY value is scaled by that setting 

as a percentage during the current session.

When the BOUND_IMPL_PDQ session environment option is set to ON (or to one), you require the database server to use the 

explicit PDQPRIORITY setting as the upper bound for memory that can be allocated to a query. If you set both IMPLICIT_PDQ 

and BOUND_IMPL_PDQ, then the explicit PDQPRIORITY value determines the upper limit of memory that can be allocated to 

a query.

If you include an integer value in the SET ENVIRONMENT statement, you must put quote marks around the value. However, 

do not put quote marks around the ON and OFF keywords.

Example

The following examples are statements with integer values:

SET ENVIRONMENT IMPLICIT_PDQ "50";
SET ENVIRONMENT BOUND_IMPL_PDQ "1";

User control of PDQ resources
To indicate the PDQ priority of a query, you can set the PDQPRIORITY  environment variable or execute the SET PDQPRIORITY 

statement prior to issuing a query. These PDQ priority options allow you to request a certain amount of parallel-processing 

resources for the query.

The resources that you request and the amount of resources that the database server allocates for the query can differ. This 

difference occurs when the database server administrator uses the MAX_PDQPRIORITY configuration parameter to put a 

ceiling on user-requested resources, as the following topic explains.

365



HCL Informix 14.10 - Performance Guide

366

DBA control of resources for PDQ and DSS queries
To manage the total amount of resources that the database server allocates to parallel database and decision-support (DSS) 

queries, the database server administrator can set the environment variable and configuration parameters.

Controlling resources allocated to PDQ
To control resources allocated to PDQ, you can set the PDQPRIORITY  environment variable. The queries that do not set 

the PDQPRIORITY  environment variable before they issue a query do not use PDQ. In addition, to place a ceiling on user-

specified PDQ priority levels, you can set the MAX_PDQPRIORITY configuration parameter.

When you set the PDQPRIORITY  environment variable and MAX_PDQPRIORITY parameter, you exert control over the 

resources that the database server allocates between OLTP and DSS applications. For example, if OLTP processing is 

particularly heavy during a certain period of the day, you might want to set MAX_PDQPRIORITY to 0. This configuration 

parameter puts a ceiling on the resources requested by users who use the PDQPRIORITY  environment variable, so PDQ is 

turned off until you reset MAX_PDQPRIORITY to a nonzero value.

DBA control of resources allocated to decision-support queries
A DBA can control the resources that the database server allocates to decision-support queries by setting the 

DS_TOTAL_MEMORY, DS_MAX_SCANS, and DS_MAX_QUERIES configuration parameters.

In addition to setting limits for decision-support memory and the number of decision-support queries that can run 

concurrently, the database server uses these parameters to determine the amount of memory to allocate to individual 

decision-support queries as users submit them. To do so, the database server first calculates a unit of memory called a 

quantum by dividing DS_TOTAL_MEMORY by DS_MAX_QUERIES. When a user issues a query, the database server allocates a 

percent of the available quanta equal to the PDQ priority of the query.

You can also limit the number of concurrent decision-support scans that the database server allows by setting the 

DS_MAX_SCANS configuration parameter.

Previous versions of the database server allowed you to set a PDQ priority configuration parameter in the ONCONFIG file. If 

your applications depend on a global setting for PDQ priority, you can use one of the following methods:

• For UNIX™: Define PDQPRIORITY  as a shared environment variable in the informix.rc  file. For more information about 

the informix.rc  file, see the HCL®  Informix®  Guide to SQL: Reference.

• For Windows™: Set the PDQPRIORITY environment variable for a particular group through a logon profile. For more 

information about the logon profile, see your operating-system manual.

Monitoring resources used for PDQ and DSS queries
You can monitor the resources (shared memory and threads) that the Memory Grant Manager (MGM) has allocated for PDQ 

queries and the resources that PDQ and decision-support (DSS) queries currently use.

You monitor PDQ resource use in the following ways:



Chapter 1. Performance Guide

• Run individual onstat  utility commands to capture information about specific aspects of a running query.

• Execute a SET EXPLAIN statement before you run a query to write the query plan to an output file.

Related information

What PDQ is  on page 351

Monitoring PDQ resources by using the onstat Utility
You can use various onstat  utility commands to determine how many threads are active and the shared-memory resources 

that those threads use.

You can use the onstat -g mgm  command to monitor how the Memory Grant Manager (MGM) coordinates memory use and 

to scan threads.

Related information

onstat -g mgm command: Print MGM resource information  on page 

Monitoring PDQ threads with onstat utility commands
You can obtain information about all of the threads that are running for a decision-support query by running the onstat -u  and 

onstat -g ath  commands.

The onstat -u  option lists all the threads for a session. If a session is running a decision-support query, the output lists the 

primary thread and any additional threads. For example, session 10  in Figure 64: onstat -u output  on page 367 has a total of 

five threads running.

Figure  64. onstat -u output

Userthreads
address  flags   sessid   user     tty      wait     tout locks nreads   nwrites
80eb8c   ---P--D 0        informix -        0        0    0     33       19
80ef18   ---P--F 0        informix -        0        0    0     0        0
80f2a4   ---P--B 3        informix -        0        0    0     0        0
80f630   ---P--D 0        informix -        0        0    0     0        0
80fd48   ---P--- 45       chrisw   ttyp3    0        0    1     573      237
810460   ------- 10       chrisw   ttyp2    0        0    1     1        0
810b78   ---PR-- 42       chrisw   ttyp3    0        0    1     595      243
810f04   Y------ 10       chrisw   ttyp2    beacf8   0    1     1        0
811290   ---P--- 47       chrisw   ttyp3    0        0    2     585      235
81161c   ---PR-- 46       chrisw   ttyp3    0        0    1     571      239
8119a8   Y------ 10       chrisw   ttyp2    a8a944   0    1     1        0
81244c   ---P--- 43       chrisw   ttyp3    0        0    2     588      230
8127d8   ----R-- 10       chrisw   ttyp2    0        0    1     1        0
812b64   ---P--- 10       chrisw   ttyp2    0        0    1     20       0
812ef0   ---PR-- 44       chrisw   ttyp3    0        0    1     587      227
 15 active, 20 total, 17 maximum concurrent

367

../%20adr/ids_adr_0547.html#ids_adr_0547
../%20adr/ids_adr_0547.html#ids_adr_0547
../%20adr/ids_adr_0547.html#ids_adr_0547
../%20adr/ids_adr_0547.html#ids_adr_0547


HCL Informix 14.10 - Performance Guide

368

The onstat -g ath  output also lists these threads and includes a name  column that indicates the role of the thread. Threads 

that a primary decision-support thread started have a name that indicates their role in the decision-support query. For 

example, Figure 65: onstat -g ath Output  on page 368 lists four scan  threads, started by a primary thread (sqlexec).

Figure  65. onstat -g ath Output

Threads:
tid     tcb     rstcb   prty    status                  vp-class   name
...
11      994060   0        4     sleeping(Forever)         1cpu    kaio
12      994394   80f2a4   2     sleeping(secs: 51)        1cpu    btclean
26      99b11c   80f630   4     ready                     1cpu    onmode_mon
32      a9a294   812b64   2     ready                     1cpu    sqlexec
113     b72a7c   810b78   2     ready                     1cpu    sqlexec
114     b86c8c   81244c   2     cond wait(netnorm)        1cpu    sqlexec
115     b98a7c   812ef0   2     cond wait(netnorm)        1cpu    sqlexec
116     bb4a24   80fd48   2     cond wait(netnorm)        1cpu    sqlexec
117     bc6a24   81161c   2     cond wait(netnorm)        1cpu    sqlexec
118     bd8a24   811290   2     ready                     1cpu    sqlexec
119     beae88   810f04   2     cond wait(await_MC1)      1cpu    scan_1.0
120     a8ab48   8127d8   2     ready                     1cpu    scan_2.0
121     a96850   810460   2     ready                     1cpu    scan_2.1
122     ab6f30   8119a8   2     running                   1cpu    scan_2.2

Monitoring resources allocated for a session running a DSS query
You can monitor the resources allocated for, and used by, a session that is running a decision-support (DSS) query by running 

the onstat -g ses  command.

The onstat -g ses  option displays the following information:

• The shared memory allocated for a session that is running a decision-support query

• The shared memory used by a session that is running a decision-support query

• The number of threads that the database server started for a session

For example, in Figure 66: onstat -g ses output  on page 368, session number 49  is running five threads for a decision-

support query.

Figure  66. onstat -g ses output

session                                   #RSAM    total      used
id       user     tty      pid   hostname threads  memory     memory
57       informix -        0     -        0        8192       5908
56       user_3   ttyp3    2318  host_10  1        65536      62404
55       user_3   ttyp3    2316  host_10  1        65536      62416
54       user_3   ttyp3    2320  host_10  1        65536      62416
53       user_3   ttyp3    2317  host_10  1        65536      62416
52       user_3   ttyp3    2319  host_10  1        65536      62416
51       user_3   ttyp3    2321  host_10  1        65536      62416
49       user_1   ttyp2    2308  host_10  5        188416     178936
2        informix -        0     -        0        8192       6780
1        informix -        0     -        0        8192       4796



Chapter 1. Performance Guide

Identifying parallel scans in SET EXPLAIN output
When PDQ is turned on, the SET EXPLAIN output shows whether the optimizer chose parallel scans. If the optimizer chose 

parallel scans, the output lists Parallel. (If PDQ is turned off, the output lists Serial.)

If PDQ is turned on, the optimizer also indicates the maximum number of threads that are required to answer the query. The 

# of Secondary Threads  field in the SET EXPLAIN output indicates the number of threads that are required in addition to your 

user session thread. The total number of threads necessary is the number of secondary threads plus 1.

The following example shows SET EXPLAIN output for a table with fragmentation and PDQ priority set to LOW:

SELECT * FROM t1 WHERE c1 > 20
 

Estimated Cost: 2
Estimated # of Rows Returned: 2
 

1) informix.t1: SEQUENTIAL SCAN (Parallel, fragments: 2)
 

 Filters: informix.t1.c1 > 20
 

# of Secondary Threads = 1

The following example of partial SET EXPLAIN output shows a query with a hash join between two fragmented tables and 

PDQ priority set to ON. The query is marked with DYNAMIC HASH JOIN, and the table on which the hash is built is marked with 

Build Outer.

QUERY:
------
SELECT h1.c1, h2.c1 FROM h1, h2 WHERE h1.c1 = h2.c1
 

Estimated Cost: 2
Estimated # of Rows Returned: 5
 

1) informix.h1: SEQUENTIAL SCAN (Parallel, fragments: ALL)
 

2) informix.h2: SEQUENTIAL SCAN (Parallel, fragments: ALL)
 

 

DYNAMIC HASH JOIN (Build Outer)
 Dynamic Hash Filters: informix.h1.c1 = informix.h2.c1
 

# of Secondary Threads = 6

The following example of partial SET EXPLAIN output shows a table with fragmentation, PDQ priority set to LOW, and an index 

that was selected as the access plan:

SELECT * FROM t1 WHERE c1 < 13
 

Estimated Cost: 2
Estimated # of Rows Returned: 1
 

1) informix.t1: INDEX PATH
 

 (1) Index Keys: c1 (Parallel, fragments: ALL)

369



HCL Informix 14.10 - Performance Guide

370

 Upper Index Filter: informix.t1.c1 < 13
 

 

# of Secondary Threads = 3

Improving individual query performance
You can test, monitor, and improve queries.

Related information

Tune the new version for performance and adjust queries  on page 

Test queries using a dedicated test system
You can test a query on a system that does not interfere with production database servers. However, you must be careful, 

because testing queries on a separate system might distort your tuning decisions.

Even if you use your database server as a data warehouse, you might sometimes test queries on a separate system until you 

understand the tuning issues that are relevant to the query.

If you are trying to improve performance of a large query, one that might take several minutes or hours to complete, you 

can prepare a scaled-down database in which your tests can complete more quickly. However, be aware of these potential 

problems:

• The optimizer can make different choices in a small database than in a large one, even when the relative sizes of 

tables are the same. Verify that the query plan is the same in the real and the model databases.

• Execution time is rarely a linear function of table size. For example, sorting time increases faster than table size, as 

does the cost of indexed access when an index goes from two to three levels. What appears to be a big improvement 

in the scaled-down environment can be insignificant when applied to the full database.

Therefore, any conclusion that you reach as a result of tests in the model database must be tentative until you verify them in 

the production database.

You can often improve performance by adjusting your query or data model with the following goals in mind:

• If you are using a multiuser system or a network, where system load varies widely from hour to hour, try to perform 

your experiments at the same time each day to obtain repeatable results. Start tests when the system load is 

consistently light so that you are truly measuring the impact of your query only.

• If the query is embedded in a complicated program, you can extract the SELECT statement and embed it in a DB-

Access  script.

Related information

Tune the new version for performance and adjust queries  on page 

../mig/ids_mig_077.html#ids_mig_077
../mig/ids_mig_077.html#ids_mig_077
../mig/ids_mig_077.html#ids_mig_077
../mig/ids_mig_077.html#ids_mig_077
../mig/ids_mig_077.html#ids_mig_077
../mig/ids_mig_077.html#ids_mig_077
../mig/ids_mig_077.html#ids_mig_077
../mig/ids_mig_077.html#ids_mig_077


Chapter 1. Performance Guide

Display the query plan
Before you change a query, display its query plan to determine the kind and amount of resources that the query requires. The 

query plan shows what parallel scans are used, the maximum number of threads required, and the indexes used.

After you study the query plan, examine your data model to see if the changes this chapter suggests will improve the query.

You can display the query plan with one of the following methods:

• Execute one of the following SET EXPLAIN statements just before the query:

◦ SET EXPLAIN ON

This SQL  statement displays the chosen query plan. For a description of the SET EXPLAIN ON output, see 

Report that shows the query plan chosen by the optimizer  on page 304.

◦ SET EXPLAIN ON AVOID_EXECUTE

This SQL  statement displays the chosen query plan and does not execute the query.

• Use one of the following EXPLAIN directives in the query:

◦ EXPLAIN

◦ EXPLAIN AVOID_EXECUTE

For more information about these EXPLAIN directives, see EXPLAIN directives  on page 341.

Improve filter selectivity
You can control the amount of information that a query evaluates. The greater the precision with which you specify the 

desired rows, the greater the likelihood that your queries will complete quickly.

To control the amount of information that the query evaluates, use the WHERE clause of the SELECT statement. The 

conditional expression in the WHERE clause is commonly called a filter.

For information about how filter selectivity affects the query plan that the optimizer chooses, see Filters in the query  on 

page 317. The following sections provide some guidelines to improve filter selectivity.

Filters with user-defined routines
You can improve the selectivity of query filters that include user-defined routines (UDRs).

You can improve the selectivity if the UDRs have the following features:

• Functional indexes

You can create a functional index  on the resulting values of a user-defined routine or a built-in function that operates 

on one or more columns. When you create a functional index, the database server computes the return values of 

the function and stores them in the index. The database server can locate the return value of the function in an 

appropriate index without executing the function for each qualifying column.

371



HCL Informix 14.10 - Performance Guide

372

For more information about indexing user-defined functions, see Using a functional index  on page 237.

• User-defined selectivity functions

You can write a function that calculates the expected fraction of rows that qualify for the function. For a brief 

description of user-defined selectivity functions, see Selectivity and cost functions  on page 427. For more 

information about how to write and register user-defined selectivity functions, see HCL®  Informix®  User-Defined 

Routines and Data Types Developer's Guide.

Avoid some filters
For best performance, avoid filters for certain difficult regular expressions and filters for noninitial strings.

Avoid difficult regular expressions
The MATCHES and LIKE keywords support wildcard  matches, which are technically known as regular expressions. Some 

regular expressions are more difficult than others for the database server to process.

A wildcard in the initial position, as in the following example (find customers whose first names do not end in y), forces the 

database server to examine every value in the column:

SELECT * FROM customer WHERE fname NOT LIKE '%y'

You cannot use an index with such a filter, so the table in this example must be accessed sequentially.

If a difficult test for a regular expression is essential, avoid combining it with a join. If necessary, process the single table and 

apply the test for a regular expression to select the desired rows. Save the result in a temporary table and join that table to 

the others.

Regular-expression tests with wildcards in the middle or at the end of the operand do not prevent the use of an index when 

one exists.

Avoid noninitial substrings
For best performance, avoid filters for noninitial strings. A filter based on a noninitial substring of a column requires the 

database server to test every value in the column.

For example, in the following code, a noninitial substring requires the database server to test every value in the column:

SELECT * FROM customer
   WHERE zipcode[4,5] > '50'

The database server cannot use an index to evaluate such a filter.

The optimizer uses an index to process a filter that tests an initial substring of an indexed column. However, the presence of 

the substring test can interfere with the use of a composite index to test both the substring column and another column.

Use join filters and post-join filters
The database server provides support for using a subset of the ANSI join syntax.



Chapter 1. Performance Guide

This syntax that includes the following keywords:

• ON keyword to specify the join condition and any optional join filters

• LEFT OUTER JOIN keywords to specify which table is the dominant table (also referred to as outer table)

For more information about this ANSI join syntax, see the HCL®  Informix®  Guide to SQL: Syntax.

In an ANSI outer join, the database server takes the following actions to process the filters:

• Applies the join condition in the ON clause to determine which rows of the subordinate table (also referred to as inner 

table) to join to the outer table

• Applies optional join filters in the ON clause before and during the join

If you specify a join filter on a base inner table in the ON clause, the database server can apply it prior to the join, 

during the scan of the data from the inner table. Filters on a base subordinate table in the ON clause can provide the 

following additional performance benefits:

◦ Fewer rows to scan from the inner table prior to the join

◦ Use of index to retrieve rows from the inner table prior to the join

◦ Fewer rows to join

◦ Fewer rows to evaluate for filters in the WHERE clause

For information about what occurs when you specify a join filter on an outer table in the ON clause, see the HCL® 

Informix®  Guide to SQL: Syntax.

• Applies filters in the WHERE clause after the join

Filters in the WHERE clause can reduce the number of rows that the database server needs to scan and reduce the 

number of rows returned to the user.

The term post-join filters  refers to these WHERE clause filters.

When distributed queries that use ANSI-compliant LEFT OUTER syntax for specifying joined tables and nested loop joins are 

executed, the query is sent to each participating database server for operations on local tables of those servers.

For example, the demonstration database has the customer  table and the cust_calls  table, which tracks customer calls to 

the service department. Suppose a certain call code had many occurrences in the past, and you want to see if calls of this 

kind have decreased. To see if customers no longer have this call code, use an outer join to list all customers.

Figure 67: SET EXPLAIN ON output for an ANSI join  on page 374 shows a sample SQL  statement to accomplish this ANSI 

join query and the SET EXPLAIN ON output for it.

373



HCL Informix 14.10 - Performance Guide

374

Figure  67. SET EXPLAIN ON output for an ANSI join

QUERY:
------
SELECT c.customer_num, c.lname, c.company,
c.phone, u.call_dtime, u.call_code, u.call_descr
FROM customer c
LEFT JOIN cust_calls u ON c.customer_num = u.customer_num
ORDER BY u.call_dtime
 

Estimated Cost: 14
Estimated # of Rows Returned: 29
Temporary Files Required For: Order By
 

1) virginia.c: SEQUENTIAL SCAN
 

2) virginia.u: INDEX PATH
 

   (1) Index Keys: customer_num call_dtime (Serial, fragments: ALL)
     Lower Index Filter: virginia.c.customer_num = virginia.u.customer_num
 

  ON-Filters:virginia.c.customer_num = virginia.u.customer_num
  NESTED LOOP JOIN(LEFT OUTER JOIN)

Look at the following lines in the SET EXPLAIN ON output in Figure 67: SET EXPLAIN ON output for an ANSI join  on 

page 374:

• The ON-Filters:  line lists the join condition that was specified in the ON clause.

• The last line of the SET EXPLAIN ON output shows all three keywords (LEFT OUTER JOIN)  for the ANSI join even 

though this query specifies only the LEFT JOIN keywords in the FROM clause. The OUTER keyword is optional.

Figure 68: SET EXPLAIN ON output for a join filter in an ANSI join  on page 375 shows the SET EXPLAIN ON output for an 

ANSI join with a join filter that checks for calls with the I  call_code.



Chapter 1. Performance Guide

Figure  68. SET EXPLAIN ON output for a join filter in an ANSI join

QUERY:
------
SELECT c.customer_num, c.lname, c.company,
c.phone, u.call_dtime, u.call_code, u.call_descr
FROM customer c LEFT JOIN cust_calls u
ON c.customer_num = u.customer_num
AND u.call_code = 'I'
ORDER BY u.call_dtime
 

Estimated Cost: 13
Estimated # of Rows Returned: 25
Temporary Files Required For: Order By
 

  1) virginia.c: SEQUENTIAL SCAN
 

  2) virginia.u: INDEX PATH
 

     Filters: virginia.u.call_code = 'I'
 

      (1) Index Keys: customer_num call_dtime   (Serial, fragments: ALL)
          Lower Index Filter: virginia.c.customer_num = virginia.u.customer_num
 

ON-Filters:(virginia.c.customer_num = virginia.u.customer_num
               AND virginia.u.call_code = 'I' )
NESTED LOOP JOIN(LEFT OUTER JOIN)

The main differences between the output in Figure 67: SET EXPLAIN ON output for an ANSI join  on page 374 and Figure 

68: SET EXPLAIN ON output for a join filter in an ANSI join  on page 375 are as follows:

• The optimizer chooses a different index to scan the inner table.

This new index exploits more filters and retrieves a smaller number of rows. Consequently, the join operates on fewer 

rows.

• The ON clause join filter contains an additional filter.

The value in the Estimated # of Rows Returned line is only an estimate and does not always reflect the actual number of 

rows returned. The sample query in Figure 68: SET EXPLAIN ON output for a join filter in an ANSI join  on page 375 returns 

fewer rows than the query in Figure 67: SET EXPLAIN ON output for an ANSI join  on page 374 because of the additional 

filter.

Figure 69: SET EXPLAIN ON output for the WHERE clause filter in an ANSI join  on page 376 shows the SET EXPLAIN ON 

output for an ANSI join query that has a filter in the WHERE clause.

375



HCL Informix 14.10 - Performance Guide

376

Figure  69. SET EXPLAIN ON output for the WHERE clause filter in an ANSI join

QUERY:
------
SELECT c.customer_num, c.lname, c.company,
   c.phone, u.call_dtime, u.call_code, u.call_descr
FROM customer c LEFT JOIN cust_calls u
ON c.customer_num = u.customer_num
   AND u.call_code = 'I'
WHERE c.zipcode = "94040"
ORDER BY u.call_dtime
 

Estimated Cost: 3
Estimated # of Rows Returned: 1
Temporary Files Required For: Order By
 

  1) virginia.c: INDEX PATH
 

    (1) Index Keys: zipcode   (Serial, fragments: ALL)
        Lower Index Filter: virginia.c.zipcode = '94040'
 

  2) virginia.u: INDEX PATH
 

     Filters: virginia.u.call_code = 'I'
 

    (1) Index Keys: customer_num call_dtime   (Serial, fragments: ALL)
        Lower Index Filter: virginia.c.customer_num = virginia.u.customer_num
 

ON-Filters:(virginia.c.customer_num = virginia.u.customer_num
      AND virginia.u.call_code = 'I' )
NESTED LOOP JOIN(LEFT OUTER JOIN)
 

PostJoin-Filters:virginia.c.zipcode = '94040'

The main differences between the output in Figure 68: SET EXPLAIN ON output for a join filter in an ANSI join  on page 375

and Figure 69: SET EXPLAIN ON output for the WHERE clause filter in an ANSI join  on page 376 are as follows:

• The index on the zipcode column in the post-join filter is chosen for the dominant table.

• The PostJoin-Filters  line shows the filter in the WHERE clause.

Automatic statistics updating
The database server updates statistics automatically according to a predefined schedule and a set of expiration policies. 

The Auto Update Statistics (AUS) maintenance system identifies tables and indexes that require new optimizer statistics and 

runs the appropriate UPDATE STATISTICS statements to optimize query performance.

The AUS maintenance system updates the statistics for tables that are in logged databases, regardless of the database 

locale. By making current table statistics available to the query optimizer, the AUS maintenance system can reduce the risk 

of performance degradation from inefficient query plans.

Depending on your system, you might need to adjust the AUS expiration policies or schedule. The AUS maintenance system 

resides in the sysadmin  database.



Chapter 1. Performance Guide

Related information

Update statistics when they are not generated automatically  on page 383

How AUS works
The Auto Update Statistics (AUS) maintenance system uses a combination of Scheduler sensors, tasks, thresholds, and 

tables to evaluate and update statistics.

The Scheduler tasks, sensors, thresholds, and tables reside in the sysadmin  database. By default, only user informix  is 

granted access to the sysadmin  database.

The following sequence of events describes how statistics are automatically updated:

1. The mon_table_profile  sensor of the Scheduler runs every day to read data from the systables  table in the sysmaster 

database. The sensor updates the mon_table_profile  table in the sysadmin  database with information about how 

much each table has changed.

2. The Auto Update Statistics Evaluation task gathers information every day from the mon_table_profile  table and the 

systable, sysdistrib, syscolumns, and sysindices  tables in the sysmaster  database.

3. The Auto Update Statistics Evaluation task determines which tables need updates based on the expiration policies.

4. The Auto Update Statistics Evaluation task generates UPDATE STATISTICS statements and inserts them into the 

aus_command  table in the sysadmin  database.

5. The Auto Update Statistics Refresh task runs the UPDATE STATISTICS statements from the aus_command  table on 

Saturday and Sunday mornings between 1:00 AM and 5:00 AM and inserts the results back into the aus_command 

table. Any UPDATE STATISTICS statements that did not complete before 5:00 AM remain in the aus_command  table.

The following table describes the tasks, sensors, thresholds, tables, and views in the sysadmin  database that comprise the 

AUS maintenance system.

Table  17.  AUS components

Component Type Description

mon_table_profile sensor Compiles table profile information, including the total number of 

updates, inserts, and deletes that occurred on each table.

Defined in the ph_task  table.

mon_table_profile table Stores table profile information gathered by its sensor. Many other 

Scheduler tasks use information from this table.

Auto Update Statistics Evaluation task Identifies tables with stale statistics, based on expiration policies, 

and generates UPDATE STATISTICS statements for those tables.

Defined in the ph_task  table.

377



HCL Informix 14.10 - Performance Guide

378

Table  17.  AUS components  (continued)

Component Type Description

aus_command table Stores a list of prioritized UPDATE STATISTICS statements that 

are scheduled to be run, and the results of those statements after 

they are run.

The aus_cmd_state  column indicates the status of each UPDATE 

STATISTICS statement:

• P = Pending

• I = In progress

• E = Error

• C = Complete without errors

If the command status is E, the associated SQL error code is listed 

in the aus_cmd_err_sql  column and the associated ISAM error 

code is listed in the aus_cmd_err_isam  column.

The aus_cmd_runtime  shows the time that is elapsed for the 

update statistics command to complete. The aus_cmd_time 

shows the start time for the update statistics command.

Auto Update Statistics Refresh task Runs the prepared UPDATE STATISTICS statements on Saturdays 

and Sundays between 1:00 AM and 5:00 AM.

Defined in the ph_task  table.

expiration policies thresholds Define the criteria for when to update statistics.

Defined in the ph_threshold  table.

aus_cmd_comp view Shows information from the aus_command  table about UPDATE 

STATISTICS statements that were run successfully.

aus_cmd_list view Shows information from the aus_command  table about UPDATE 

STATISTICS statements that are scheduled to be run.

For information about other features of the Scheduler, see its description in the HCL®  Informix®  Administrator's Guide. For 

information about the sysadmin  database, see the HCL®  Informix®  Administrator's Reference.

AUS expiration policies
The Auto Update Statistics (AUS) maintenance system uses expiration policies as criteria for identifying user tables that 

have changed to the extent that their statistics need to be recalculated.



Chapter 1. Performance Guide

Internally, the AUS maintenance system automatically skips any tables or fragments that have current statistics and 

prioritizes tables or fragments that have more changes. Therefore, all tables are scheduled for updating statistics. For more 

information, see Automatic management of data distribution statistics  on page  .

The ph_threshold  table of the sysadmin  database stores the following configurable thresholds for defining AUS expiration 

policies.

Table  18. AUS expiration policy thresholds

Threshold Name Default Value Description

AUS_AGE 30 (days) A time-based expiration policy. Statistics or distributions 

are updated for a table after this amount of time 

regardless of how much data has changed.

AUS_AUTO_RULES 1 (enabled) If enabled, statistics are updated using the higher of the 

following default minimum guidelines or user-created 

distribution options:

• All tables are updated in LOW mode.

• All the leading index keys are updated in HIGH 

mode.

• All non-leading index keys are updated in 

MEDIUM mode.

• The minimum resolution for MEDIUM mode is 

2.0.

• The minimum confidence for MEDIUM mode is 

0.95.

• The minimum resolution for HIGH mode is 0.5.

If the UPDATE STATISTICS statement was run manually 

for a table, the UPDATE STATISTICS statements 

generated by the AUS maintenance system do not 

reduce the level, resolution, confidence, or sampling size 

options.

If disabled by being set to 0, the AUS maintenance 

system checks which columns have existing 

distributions and generates update statistics statements 

to refresh them.

AUS_CHANGE 10 (percent) A modification-based expiration policy. Statistics 

or distributions are updated for a table after this 

percentage of data is changed.

379

../whse/ids_whse_219.html#ids_whse_219
../whse/ids_whse_219.html#ids_whse_219
../whse/ids_whse_219.html#ids_whse_219
../whse/ids_whse_219.html#ids_whse_219


HCL Informix 14.10 - Performance Guide

380

Table  18. AUS expiration policy thresholds  (continued)

Threshold Name Default Value Description

AUS_PDQ 10 (priority) The PDQ priority for UPDATE STATISTICS statements 

run by the AUS maintenance system. By default, all 

fragments for each table are analyzed in parallel. 

For more information about PDQ priority, see Update 

statistics in parallel on very large databases  on 

page 389.

AUS_SMALL_TABLES 100 (rows) Statistics or distributions are updated every time for a 

table that has fewer than this number of rows.

Changing AUS expiration policies
You can change AUS expiration policies to customize how often statistics are updated based on how old the statistics are, 

how much data has changed, or how large the table is.

Before you begin

You must be connected to the sysadmin  database as user informix  or another authorized user.

About this task

To change the value of an expiration policy, update the value  column in the ph_threshold  table in the sysadmin  database.

Example

For example, if you find that queries against small tables with 1000 rows or fewer run faster if their statistics are updated 

more frequently, you can change the expiration policy to ensure that their statistics are updated every week. The following 

example changes the value of the AUS_SMALL_TABLES threshold to 1000:

UPDATE ph_threshold
SET value = 1000
WHERE name = "AUS_SMALL_TABLES";

The new threshold takes effect the next time the Auto Update Statistics Evaluator task runs.

Viewing AUS statements
You can view the UPDATE STATISTICS statements generated by the AUS maintenance system in the aus_cmd_list  view 

before they are run and in the aus_cmd_comp  view after they are run successfully. Both tables are in the sysadmin  database.

Before you begin

You must be connected to the sysadmin  database as user informix  or another authorized user.

About this task

To view all scheduled UPDATE STATISTICS statements, run this statement:

SELECT * FROM aus_cmd_list;



Chapter 1. Performance Guide

To see all UPDATE STATISTICS statements that were run successfully in the previous 30 days, run this statement:

SELECT * FROM aus_cmd_comp;

To view all UPDATE STATISTICS statements that failed, run this statement:

SELECT aus_cmd_exe, aus_cmd_err_sql, aus_cmd_err_isam
FROM aus_command
WHERE aus_cmd_state = "E";

Prioritizing databases in AUS
You can assign a priority to each of your databases in the AUS maintenance system.

About this task

By default all databases have a medium priority. You can assign specific databases a high or a low priority to ensure that 

statistics for your most important databases are updated first. Statistics for low priority databases are updated after high 

and medium priority databases, if time and resources permit. For example, if you have a system with a production and a test 

database, you can assign the production database a high priority and the test database a low priority. You can also disable 

AUS for a database.

You must be connected to the sysadmin  database as user informix  or another authorized user.

To assign a priority to a database in AUS, add a row to the ph_threshold  table in the sysadmin  database:

Choose from:

• High priority: Add a row with the name  column set to AUS_DATABASE_HIGH and the value  column set to the name of 

the database.

• Low priority: Add a row with the name  column set to AUS_DATABASE_LOW and the value  column set to the name of 

the database.

• Disable: Add a row with the name  column set to AUS_DATABASE_DISABLED and the value  column set to the name of 

the database.

If you assign more than one priority to a database, the higher priority takes precedence.

Example

Example

The following statement sets the priority for the database that is named my_database  to high:

INSERT INTO ph_threshold(id, name, task_name, value, value_type, description)
     VALUES(0,
            "AUS_DATABASE_HIGH",
            "Auto Update Statistics Evaluation",
            "my_database",
            "STRING",
            "Rank this database as high priority to get its tables done first");

381



HCL Informix 14.10 - Performance Guide

382

Rescheduling AUS
You can change when and for how long the Auto Update Statistics Refresh task runs.

Before you begin

Updating statistics is resource-intensive. Therefore, by default, statistics are automatically updated on Saturdays and 

Sundays between 1:00 AM and 5:00 AM. If you find that not all pending UPDATE STATISTICS statements can be run in this 

time period, or you want statistics to be refreshed more often, you can change the start time, the end time, and the days of 

the week to perform this task.

You must be connected to the sysadmin  database as user informix  or another authorized user.

About this task

To change the schedule of the Auto Update Statistics Refresh task, update the ph_task  table where the value of the tk_name 

column is Auto Update Statistics Refresh.

Example

The following example changes the ending time of the task to 6:00 AM:

UPDATE ph_task
SET tk_stop_time = "06:00:00"
WHERE tk_name = "Auto Update Statistics Refresh";

The following example changes the days that the task is run to every day of the week (Saturday and Sunday are enabled by 

default):

UPDATE ph_task
SET tk_monday = "T",
tk_tuesday = "T",
tk_wednesday = "T",
tk_thursday = "T",
tk_friday = "T"
WHERE tk_name = "Auto Update Statistics Refresh";

Disabling AUS
You can prevent statistics from being updated automatically by disabling the AUS maintenance system.

Before you begin

You must be connected to the sysadmin  database as user informix  or another authorized user.

About this task

To disable AUS, you must disable both the Auto Update Statistics Evaluation task and the Auto Update Statistics Refresh 

task:

1. Update the value of the tk_enable  column of the ph_task  table to F  where the value of the tk_name  column is Auto 

Update Statistics Evaluation.

2. Update the value of the tk_enable  column of the ph_task  table to F  where the value of the tk_name  column is Auto 

Update Statistics Refresh.



Chapter 1. Performance Guide

Example

The following example disables both tasks:

UPDATE ph_task
SET tk_enable = "F"
WHERE tk_name = "Auto Update Statistics Evaluation";
 

UPDATE ph_task
SET tk_enable = "F"
WHERE tk_name = "Auto Update Statistics Refresh";

Update statistics when they are not generated automatically
The UPDATE STATISTICS statement updates the statistics in the system catalog tables that the optimizer uses to determine 

the lowest-cost query plan.

Important:  You do not need to run UPDATE STATISTICS operations when the statistics are generated automatically.

The following statistics are generated automatically by the CREATE INDEX statement, with or without the ONLINE keyword:

• Index-level statistics, equivalent to the statistics gathered in the UPDATE STATISTICS operation in LOW mode, for B-

tree indexes.

• Column-distribution statistics, equivalent to the distribution generated in the UPDATE STATISTICS operation in HIGH 

mode, for a non-opaque leading indexed column of an ordinary B-tree index.

To ensure that the optimizer selects a query plan that best reflects the current state of your tables, run UPDATE STATISTICS 

at regular intervals when the statistics are not generated automatically.

Tip:  If you run UPDATE STATISTICS LOW on the sysutils  database before you use ON-Bar, the time ON-BAR needs for 

processing is reduced.

The following table summarizes when to run different UPDATE STATISTICS statements if the statistics are not generated 

automatically. If you need to run UPDATE STATISTICS statements and you have many tables, you can write a script to 

generate these UPDATE STATISTICS statements.

When to Execute UPDATE STATISTICS Statement
Reference for Details and 

Examples

Number of rows has changed 

significantly

UPDATE STATISTICS LOW

DROP DISTRIBUTIONS

Update the statistics for the 

number of rows  on page 384

or Drop data distributions if 

necessary when upgrading  on 

page 385

For all columns that are not the 

leading column of any index

UPDATE STATISTICS LOW Creating data distributions  on 

page 385

383



HCL Informix 14.10 - Performance Guide

384

When to Execute UPDATE STATISTICS Statement
Reference for Details and 

Examples

Queries have non-indexed join 

columns or filter columns

UPDATE STATISTICS MEDIUM

DISTRIBUTIONS ONLY

Creating data distributions  on 

page 385

Queries have an indexed join 

columns or filter columns

UPDATE STATISTICS HIGH table (leading column 

in index)

Creating data distributions  on 

page 385

Queries have a multicolumn indexed 

defined on join columns or filter 

columns

UPDATE STATISTICS HIGH table (first differing 

column in multicolumn index)

Creating data distributions  on 

page 385

Queries have a multicolumn indexed 

defined on join columns or filter 

columns

UPDATE STATISTICS LOW table (all columns in 

multicolumn index)

Creating data distributions  on 

page 385

Queries have many small tables (fit 

into one extent)

UPDATE STATISTICS HIGH on small tables Creating data distributions  on 

page 385

Queries use SPL routines UPDATE STATISTICS FOR PROCEDURE Reoptimizing SPL routines  on 

page 329

For information about the specific statistics that the database server keeps in the system catalog tables, see Statistics held 

for the table and index  on page 316.

Related information

Automatic statistics updating  on page 376

UPDATE STATISTICS statement  on page 

Update the statistics for the number of rows
When you run UPDATE STATISTICS LOW, the database server updates the statistics in the table, row, and page counts in the 

system catalog tables. You should run UPDATE STATISTICS LOW as often as necessary to ensure that the statistic for the 

number of rows is as current as possible.

If the cardinality of a table changes often, run the statement more often for that table.

LOW is the default mode for UPDATE STATISTICS.

The following sample SQL  statement updates the statistics in the systables, syscolumns, and sysindexes  system catalog 

tables but does not update the data distributions:

UPDATE STATISTICS FOR TABLE tab1;

../sqs/ids_sqs_1278.html#ids_sqs_1278
../sqs/ids_sqs_1278.html#ids_sqs_1278
../sqs/ids_sqs_1278.html#ids_sqs_1278
../sqs/ids_sqs_1278.html#ids_sqs_1278


Chapter 1. Performance Guide

Drop data distributions if necessary when upgrading
When you upgrade to a new version of the database server, you might need to drop distributions to remove the old 

distribution structure in the sysdistrib  system catalog table.

To drop the old distribution structure in the sysdistrib  system catalog table, run this statement:

UPDATE STATISTICS DROP DISTRIBUTIONS;

Drop distributions in LOW mode without gathering statistics
You can remove distribution information from the sysdistrib  table and update the systables.version  column in the system 

catalog for those tables whose distributions were dropped, without gathering any LOW mode table and index statistics.

You do this using the DROP DISTRIBUTIONS ONLY option in the UPDATE STATISTICS statement. Using the DROP 

DISTRIBUTIONS ONLY option can result in faster performance because the database server does not gather the table and 

index statistics that the LOW mode option generates when the ONLY keyword does not follow the DROP DISTRIBUTIONS 

keywords.

For detailed information about how to use the DROP DISTRIBUTIONS ONLY option, see the HCL®  Informix®  Guide to SQL: 

Syntax.

Creating data distributions
You can generate statistics for a table and you can build data distributions for each table that your query accesses.

About this task

(You do not need to run UPDATE STATISTICS operations when the statistics are generated automatically.)

The database server creates data distributions, which provide information to the optimizer, any time the UPDATE STATISTICS 

MEDIUM or UPDATE STATISTICS HIGH command is executed.

Important:

The database server creates data distributions by sampling a column's data, sorting the data, building distributions bins, and 

inserting the results into the sysdistrib  system catalog table.

You can control the sample size for the scan through the keyword HIGH or MEDIUM. The difference between UPDATE 

STATISTICS HIGH and UPDATE STATISTICS MEDIUM is the number of rows sampled. UPDATE STATISTICS HIGH scans the 

entire table, while UPDATE STATISTICS MEDIUM samples only a subset of rows, based on the confidence and resolution 

used by the UPDATE STATISTICS statement.

You can use the LOW keyword with the UPDATE STATISTICS statement only for fully qualified index keys.

If a distribution has been generated for a column, the optimizer uses that information to estimate the number of rows that 

match a query against a column. Data distributions in sysdistrib  supersede values in the colmin  and colmax  column of the 

syscolumns  system catalog table when the optimizer estimates the number of rows returned.

385



HCL Informix 14.10 - Performance Guide

386

When you use data-distribution statistics for the first time, try to update statistics in MEDIUM mode for all your tables and 

then update statistics in HIGH mode for all columns that head indexes. This strategy produces statistical query estimates 

for the columns that you specify. These estimates, on average, have a margin of error less than percent of the total number 

of rows in the table, where percent  is the value that you specify in the RESOLUTION clause in the MEDIUM mode. The default 

percent value for MEDIUM mode is 2.5 percent. (For columns with HIGH mode distributions, the default resolution is 0.5 

percent.)

With the DISTRIBUTIONS ONLY option, you can execute UPDATE STATISTICS MEDIUM at the table level or for the entire 

system because the overhead of the extra columns is not large.

The database server uses the storage locations that the DBSPACETEMP environment variable specifies only when you use 

the HIGH option of UPDATE STATISTICS.

You can prevent UPDATE STATISTICS operations from using indexes when sorting rows by setting the third parameter of the 

DBUPSPACE environment variable to a value of 1.

For each table that your query accesses, build data distributions according to the following guidelines. Also see the 

examples below the guidelines.

To generate statistics on a table:

1. Identify the set of all columns that appear in any single-column or multi-column index on the table.

2. Identify the subset that includes all columns that are not the leading column of any index.

3. Run UPDATE STATISTICS LOW on each column in that subset.

Results

To build data distributions for each table that your query accesses:

1. Run a single UPDATE STATISTICS MEDIUM for all columns in a table that do not head an index.

Use the default parameters unless the table is very large, in which case you should use a resolution of 1.0  and 

confidence of 0.99.

2. Run the following UPDATE STATISTICS statement to create distributions for non-index join columns and non-index 

filter columns:

UPDATE STATISTICS MEDIUM DISTRIBUTIONS ONLY;

3. Run UPDATE STATISTICS HIGH for all columns that head an index. For the fastest execution time of the UPDATE 

STATISTICS statement, you must execute one UPDATE STATISTICS HIGH statement for each column, as shown in 

the example below this procedure.

4. If you have indexes that begin with the same subset of columns, run UPDATE STATISTICS HIGH for the first column in 

each index that differs, as shown in the second example below this procedure.

5. For each single-column or multi-column index on the table:



Chapter 1. Performance Guide

a. Identify the set of all columns that appear in the index.

b. Identify the subset that includes all columns that are not the leading column of any index.

c. Run UPDATE STATISTICS LOW on each column in that subset. (LOW is the default.)

6. For the tables on which indexes were created in Step 3, run an UPDATE STATISTICS statement to update the 

sysindexes  and syscolumns  system catalog tables, as shown in the following example:

UPDATE STATISTICS FOR TABLE t1(a,b,e,f);

7. For small tables, run UPDATE STATISTICS HIGH, for example:

UPDATE STATISTICS HIGH FOR TABLE t2;

Because the statement constructs the statistics only once for each index, these steps ensure that UPDATE STATISTICS 

executes rapidly.

Example

Examples

Example of UPDATE STATISTICS HIGH statements for all columns that head an index

Suppose you have a table t1  with columns a, b, c, d, e, and f  with the following indexes:

CREATE INDEX ix_1 ON t1 (a, b, c, d) ...
CREATE INDEX ix_3 ON t1 (f) ...

Run the following UPDATE STATISTICS statements for the columns that head an index:

UPDATE STATISTICS HIGH FOR TABLE t1(a);
UPDATE STATISTICS HIGH FOR TABLE t1(f);

These UPDATE STATISTICS HIGH statements replace the distributions created with the UPDATE STATISTICS 

MEDIUM statements with high distributions for index columns.

Example of UPDATE STATISTICS HIGH statements for the first column in each index that differs:

For example, suppose you have the following indexes on table t1:

CREATE INDEX ix_1 ON t1 (a, b, c, d) ...
CREATE INDEX ix_2 ON t1 (a, b, e, f) ...
CREATE INDEX ix_3 ON t1 (f) ...

Step 3  on page 386 executes UPDATE STATISTICS HIGH on column a and column f. Then run UPDATE 

STATISTICS HIGH on columns c  and e.

UPDATE STATISTICS HIGH FOR TABLE t1(c);
UPDATE STATISTICS HIGH FOR TABLE t1(e);

In addition, you can run UPDATE STATISTICS HIGH on column b, although this is usually not necessary.

387



HCL Informix 14.10 - Performance Guide

388

Related information

Virtual portion of shared memory  on page 63

UPDATE STATISTICS statement  on page 

Updating statistics for join columns
In some situations, you might want to run the UPDATE STATISTICS statement with the HIGH keyword for specific join 

columns.

About this task

Because of improvements and adjusted cost estimates to establish better query plans, the optimizer depends greatly on an 

accurate understanding of the underlying data distributions in certain cases. You might still think that a complex query does 

not execute quickly enough, even though you followed the guidelines in Creating data distributions  on page 385. If your 

query involves equality predicates, take one of the following actions:

• Run the UPDATE STATISTICS statement with the HIGH keyword for specific join columns that appear in the WHERE 

clause of the query. If you followed the guidelines in Creating data distributions  on page 385, columns that head 

indexes already have HIGH mode distributions.

• Determine whether HIGH mode distribution information about columns that do not head indexes can provide a better 

execution path, take the following steps:

To determine if UPDATE STATISTICS HIGH on join columns might make a difference:

1. Issue the SET EXPLAIN ON statement and rerun the query.

2. Note the estimated number of rows in the SET EXPLAIN output and the actual number of rows that the query returns.

3. If these two numbers are significantly different, run UPDATE STATISTICS HIGH on the columns that participate in 

joins, unless you have already done so.

Results

Important:  If your table is very large, UPDATE STATISTICS with the HIGH mode can take a long time to execute.

The following example shows a query that involves join columns:

SELECT employee.name, address.city
   FROM employee, address
   WHERE employee.ssn = address.ssn
   AND employee.name = 'James'

In this example, the join columns are the ssn  fields in the employee  and address  tables. The data distributions for both of 

these columns must accurately reflect the actual data so that the optimizer can correctly determine the best join plan and 

execution order.

../sqs/ids_sqs_1278.html#ids_sqs_1278
../sqs/ids_sqs_1278.html#ids_sqs_1278
../sqs/ids_sqs_1278.html#ids_sqs_1278
../sqs/ids_sqs_1278.html#ids_sqs_1278


Chapter 1. Performance Guide

You cannot use the UPDATE STATISTICS statement to create data distributions for a table that is external to the current 

database. For additional information about data distributions and the UPDATE STATISTICS statement, see the HCL® 

Informix®  Guide to SQL: Syntax.

Updating statistics for columns with user-defined data types
Programmers can write functions that gather statistics for columns with user-defined data types. You can store the data 

distributions for user-defined data types in an sbspace.

About this task

Because information about the nature and use of a user-defined data type (UDT) is not available to the database server, it 

cannot collect the colmin  and colmax column of the syscolumns  system catalog table for user-defined data types. To gather 

statistics for columns with user-defined data types, programmers must write functions that extend the UPDATE STATISTICS 

statement. For more information, see the performance chapter in HCL®  Informix®  User-Defined Routines and Data Types 

Developer's Guide.

Because the data distributions for user-defined data types can be large, you can optionally store them in an sbspace instead 

of the sysdistrib  system catalog table.

To store data distributions for user-defined data types in an sbspace:

1. Use the onspaces -c -S command to create an sbspace.

To ensure recoverability of the data distributions, specify LOGGING=ON  in the -Df  option, as the following sample shows:

% onspaces -c -S distrib_sbsp -p /dev/raw_dev1 -o 500 -s
      20000
   -m /dev/raw_dev2 500 -Ms 150 -Mo 200 -Df
      "AVG_LO_SIZE=32,LOGGING=ON"

For information about sizing an sbspace, see Estimating pages that smart large objects occupy  on page 168.

For more information about specifying storage characteristics for sbspaces, see Configuration parameters that affect 

sbspace I/O  on page 128.

2. Specify the sbspace that you created in step 1 in the configuration parameter SYSSBSPACENAME.

3. Specify the column with the user-defined data type when you run the UPDATE STATISTICS statement with the 

MEDIUM or HIGH keywords to generate data distributions.

Results

To print the data distributions for a column with a user-defined data type, use the dbschema  -hd  option.

Update statistics in parallel on very large databases
If you have an extremely large database and indexes are fragmented, UPDATE STATISTICS LOW can automatically run 

statements in parallel.

389



HCL Informix 14.10 - Performance Guide

390

To enable statements to automatically run in parallel, you must run UPDATE STATISTICS LOW with the PDQ priority set to a 

value that is between 1  and 10. If the PDQ priority is set to 1, 10 percent of the index fragments are analyzed at one time for 

the current table. If the PDQ priority is set to 5, 50 percent of the index fragments are analyzed at one time for the current 

table. If the PDQ priority is set to 10, all fragments are analyzed at one time for the current table. (If the PDQ priority is set to 

a value that is higher than 10, Informix®  operates as if the PDQ priority is set to 10, analyzing all fragments at one time for the 

current table.)

If you run UPDATE STATISTICS MEDIUM or HIGH, you can set the PDQ priority to a value that is higher than 10. Because 

the UPDATE STATISTICS MEDIUM and HIGH statements perform a large amount of sorting operations, increasing the PDQ 

priority to a value that is higher than 10  provides additional memory than can improve the speed of the sorting operations.

Adjust the amount of memory and disk space for UPDATE STATISTICS
When you execute the UPDATE STATISTICS statement, the database server uses memory and disk to sort and construct data 

distributions. You can affect the amount of memory and disk space available for UPDATE STATISTICS operations.

You can affect the amount of memory and disk space available for UPDATE STATISTICS with the following methods:

• PDQ priority

You can obtain more memory for sorting when you set PDQ priority greater than 0. The default value for PDQ priority 

is 0. To set PDQ priority, use either the PDQPRIORITY  environment variable or the SQL  statement SET PDQPRIORITY.

For more information about PDQ priority, see The allocation of resources for parallel database queries  on page 357.

• DBUPSPACE  environment variable

You can use the DBUPSPACE  environment variable to specify the amount of system disk space (and the amount of 

memory for sorting values) that UPDATE STATISTICS MEDIUM or UPDATE STATISTICS HIGH statements can use 

in each pass to construct column distributions. If you specify too small a value, the database server instead uses 

enough space to write the largest column to disk.

For more information about this environment variable, see the HCL®  Informix®  Guide to SQL: Reference.

Data sampling during update statistics operations
If you have a large b-tree index with more than 100 K leaf pages, you can generate index statistics based on sampling when 

you run UPDATE STATISTICS statements in LOW mode. The gathering of statistics through sampling can increase the speed 

of the update statistics operation.

By default, when UPDATE STATISTICS statements run, the database server reads all index leaf pages in sequence to gather 

statistics such as the number of leaf pages, the number of unique lead key values, and cluster information. For a large index 

this can take a long time. With sampling, the database server reads a fraction of the index leaf pages (the sample) and then 

deduces index statistics based on statistics gathered from the sample.



Chapter 1. Performance Guide

A possible trade-off for less time in gathering statistics is the accuracy of the statistics gathered. If there are significant 

skews in the data distribution for the lead index key, the sampling approach can result in a large error margin for the 

statistics gathered, which in turn might affect optimizer decisions in query plan generation.

You cannot control how much data is in the sample.

To enable or disable sampling, use the USTLOW_SAMPLE configuration parameter or the USTLOW_SAMPLE environment 

option of the SET ENVIRONMENT statement.

Related information

USTLOW_SAMPLE configuration parameter  on page 

USTLOW_SAMPLE environment option  on page 

Display data distributions
You can use the dbschema  utility to display data distributions.

Unless column values change considerably, you do not need to regenerate the data distributions. To verify the accuracy of 

the distribution, compare dbschema  -hd  output with the results of appropriately constructed SELECT statements.

For example, the following dbschema  command produces a list of distributions for each column of table customer in 

database  vjp_stores  with the number of values in each bin, and the number of distinct values:

dbschema -hd customer -d vjp_stores

Figure 70: Displaying Data Distributions with dbschema -hd  on page 392 shows the data distributions for the column 

zipcode  that this dbschema -hd  command produces. Because this column heads the zip_ix  index, UPDATE STATISTICS 

HIGH was run on it, as the following output line indicates:

High Mode, 0.500000 Resolution

Figure 70: Displaying Data Distributions with dbschema -hd  on page 392 shows 17 bins with one distinct zipcode value in 

each bin.

391

../%20adr/ids_adr_1143.html#ids_adr_1143
../%20adr/ids_adr_1143.html#ids_adr_1143
../%20adr/ids_adr_1143.html#ids_adr_1143
../%20adr/ids_adr_1143.html#ids_adr_1143
../sqs/ids_sqs_2306.html#ids_sqs_2306
../sqs/ids_sqs_2306.html#ids_sqs_2306
../sqs/ids_sqs_2306.html#ids_sqs_2306
../sqs/ids_sqs_2306.html#ids_sqs_2306


HCL Informix 14.10 - Performance Guide

392

Figure  70. Displaying Data Distributions with dbschema -hd

dbschema -hd customer -d vjp_stores
 

...
Distribution for virginia.customer.zipcode
 

Constructed on 09/18/2000
 

High Mode, 0.500000 Resolution
 

--- DISTRIBUTION ---
 

     (          02135 )
  1: (  1,   1, 02135 )
  2: (  1,   1, 08002 )
  3: (  1,   1, 08540 )
  4: (  1,   1, 19898 )
  5: (  1,   1, 32256 )
  6: (  1,   1, 60406 )
  7: (  1,   1, 74006 )
  8: (  1,   1, 80219 )
  9: (  1,   1, 85008 )
 10: (  1,   1, 85016 )
 11: (  1,   1, 94026 )
 12: (  1,   1, 94040 )
 13: (  1,   1, 94085 )
 14: (  1,   1, 94117 )
 15: (  1,   1, 94303 )
 16: (  1,   1, 94304 )
 17: (  1,   1, 94609 )
 

 

--- OVERFLOW ---
 

  1: (  2,      94022 )
  2: (  2,      94025 )
  3: (  2,      94062 )
  4: (  3,      94063 )
  5: (  2,      94086 )

The OVERFLOW portion of the output shows the duplicate values that might skew the distribution data, so dbschema moves 

them from the distribution to a separate list. The number of duplicates in this overflow list must be greater than a critical 

amount that the following formula determines. Figure 70: Displaying Data Distributions with dbschema -hd  on page 392

shows a resolution value of .0050.  Therefore, this formula determines that any value that is duplicated more than one time is 

listed in the overflow section.

Overflow = .25 * resolution * number_rows
      = .25 * .0050 * 28
      = .035

For more information about the dbschema  utility, see the IBM®  Informix®  Migration Guide.



Chapter 1. Performance Guide

Improve performance by adding or removing indexes
You can often improve the performance of a query by adding or, in some cases, removing indexes. You can also enable the 

optimizer to automatically fetch a set of keys from an index buffer.

To improve the performance of a query, consider using some of the methods that the following topics describe.

In addition:

• Consider using the CREATE INDEX ONLINE and DROP INDEX ONLINE statements to create and drop an index in an 

online environment, when the database and its associated tables are continuously available. These SQL statements 

enable you to create and drop indexes without having an access lock placed over the table during the duration of 

the index builds or drops. For more information, see Creating and dropping an index in an online environment  on 

page 227.

• Set the BATCHEDREAD_INDEX configuration parameter to enable the optimizer to automatically fetch a set of keys 

from an index buffer. This reduces the number of times a buffer is read.

Related information

BATCHEDREAD_INDEX configuration parameter  on page 

Replace autoindexes with permanent indexes
If the query plan includes an autoindex  path to a large table, you can generally improve performance by adding an index on 

that column. If you perform a query regularly, you can save time by creating a permanent index.

If you perform the query occasionally, you can reasonably let the database server build and discard an index.

Use composite indexes
The optimizer can use a composite index (one that covers more than one column) in several ways.

The database server can use an index on columns a, b, and c  (in that order) in the following ways:

• To locate a particular row

The database server can use a composite index when the first filter is an equality filter and subsequent columns have 

range (<, <=, >, >=) expressions. The following examples of filters use the columns in a composite index:

WHERE a=1
WHERE a>=12 AND a<15
WHERE a=1 AND b < 5
WHERE a=1 AND b = 17 AND c >= 40

The following examples of filters cannot use that composite index:

WHERE b=10
WHERE c=221
WHERE a>=12 AND b=15

393

../%20adr/ids_adr_1096.html#ids_adr_1096
../%20adr/ids_adr_1096.html#ids_adr_1096
../%20adr/ids_adr_1096.html#ids_adr_1096
../%20adr/ids_adr_1096.html#ids_adr_1096


HCL Informix 14.10 - Performance Guide

394

• To replace a table scan when all of the desired columns are contained within the index

A scan that uses the index but does not reference the table is called a key-only search.

• To join column a, columns ab, or columns abc  to another table

• To implement ORDER BY or GROUP BY on columns a, ab, or abc  but not on  b, c, ac, or bc

Execution is most efficient when you create a composite index with the columns in order from most to least distinct. In other 

words, the column that returns the highest count of distinct rows when queried with the DISTINCT keyword in the SELECT 

statement should come first in the composite index.

If your application performs several long queries, each of which contains ORDER BY or GROUP BY clauses, you can 

sometimes improve performance by adding indexes that produce these orderings without requiring a sort. For example, the 

following query sorts each column in the ORDER BY clause in a different direction:

SELECT * FROM t1 ORDER BY a, b DESC;

To avoid using temporary tables to sort column a  in ascending order and column b  in descending order, you must create a 

composite index on (a, b  DESC) or on (a  DESC, b). You need to create only one of these indexes because of the bidirectional-

traverse capability of the database server. For more information about bidirectional traverse, see the HCL®  Informix®  Guide 

to SQL: Syntax.

On the other hand, it can be less expensive to perform a table scan and sort the results instead of using the composite index 

when the following criteria are met:

• Your table is well ordered relative to your index.

• The number of rows that the query retrieves represents a large percentage of the available data.

Indexes for data warehouse applications
Many data warehouse databases use a star schema, which consists of a fact  table and a number of dimensional  tables. 

Queries that use tables in a star schema or snowflake schema can benefit from the proper index on the fact table.

The fact table is generally large and contains the quantitative or factual information about the subject. A dimensional table 

describes an attribute in the fact table.

When a dimension needs lower-level information, the dimension is modeled by a hierarchy of tables, called a snowflake 

schema.

Consider the example of a star schema with one fact table named orders  and four dimensional tables named customers, 

suppliers, products, and clerks. The orders  table describes the details of each sale order, which includes the customer ID, 

supplier ID, product ID, and sales clerk ID. Each dimensional table describes an ID in detail. The orders  table is large, and the 

four dimensional tables are small.

The following query finds the total direct sales revenue in the Menlo Park region (postal code 94025) for hard drives supplied 

by the Johnson supplier:

SELECT sum(orders.price)
FROM orders, customers, suppliers,product,clerks



Chapter 1. Performance Guide

WHERE orders.custid = customers.custid
   AND customers.zipcode = 94025
   AND orders.suppid = suppliers.suppid
   AND suppliers.name = 'Johnson'
   AND orders.prodid = product.prodid
   AND product.type = 'hard drive'
   AND orders.clerkid = clerks.clerkid
   AND clerks.dept = 'Direct Sales'

This query uses a typical star join, in which the fact table joins with all dimensional tables on a foreign key. Each dimensional 

table has a selective table filter.

An optimal plan for the star join is to perform a cartesian product on the four dimensional tables and then join the result with 

the fact table. The following index on the fact table allows the optimizer to choose the optimal query plan:

CREATE INDEX ON orders(custid,suppid,prodid,clerkid) 

Without this index, the optimizer might choose to first join the fact table with a single dimensional table and then join the 

result with the remaining dimensional tables. The optimal plan provides better performance.

For more information about star schemas and snowflake schemas, see the IBM®  Informix®  Database Design and 

Implementation Guide.

Configure B-tree scanner information to improve transaction processing
You can improve the performance of transaction processing in logged databases by controlling how the B-tree scanner 

threads remove deletions from indexes.

The B-tree scanner improves transaction processing for logged databases when rows are deleted from a table with indexes. 

The B-tree scanner automatically determines which index partitions will be cleaned, based on a priority list. B-tree scanner 

threads remove deleted index entries and rebalance the index nodes. The B-tree scanner automatically determines which 

index items are to be deleted.

In a logged database, when a delete or an update operation is performed on a row, any corresponding index entry is not 

immediately deleted. Instead, the corresponding index entry is flagged as deleted until a B-tree scanner thread scans the 

index and removes the deleted items. An index containing many deleted items can cause a significant performance problem, 

because index searches need to scan a larger number of items before finding the first valid item.

The default setting for B-tree scanning provides the following type of scanning, depending on your indexes:

• If the table has more than one attached index, the B-tree scanner uses the leaf scan mode. Leaf scan mode is the 

only type of scanning possible with multiple attached indexes.

• If the table contains a single attached index or if the indexes are detached, the B-tree scanner uses alice (adaptive 

linear index cleaning) mode. The initial alice scan mode is optimized for small- to medium-sized systems with few or 

no indexes above 1 GB. However, if the database server detects that the alice mode is inefficient, the alice scan mode 

setting is adjusted automatically to accommodate larger indexes.

Depending on your application and the order in which the system adds and deletes keys from the index, the structure of an 

index can become inefficient.

395



HCL Informix 14.10 - Performance Guide

396

You use the BTSCANNER configuration parameter to specify the following information, which defines the scan mode:

• The number of B-tree scanner threads to start when the database server starts

The number of B-tree scanner threads is configurable to any positive number. One B-tree scanner thread will always 

clean an individual index partition, so if you occasionally or consistently have a higher number of index partitions 

requiring cleaning, you might want to use more than one B-tree scanner thread. At runtime, you can turn off any B-tree 

scanner activity by issuing an onmode -C  command. This command stops all B-tree scanner threads.

• The threshold, which is the minimum number of deleted items an index must encounter before an index is placed on 

the priority list for eligibility for scanning and cleaning by a B-tree scanner thread

For example, if you increase the threshold beyond 5000, you might be able to avoid frequent B-tree scanner activity on 

the indexes that receive the most updates and deletes.

• The range size, in kilobytes, that an index or index fragment must exceed before the index is cleaned with range 

scanning

• An alice mode value

• The level at which B-tree scanner threads compress indexes by merging two partially used index pages

The server treats a forest of trees index the same way it treats a B-tree index. Therefore, in a logged database, you can 

control how the B-tree scanner threads remove deletions from both forest of trees and B-tree indexes.

The following table summarizes the differences between the scan modes.

Table  19. Scan modes for B-tree scanner threads

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

L

eaf 

s

can 

In 

t

his 

m

o

de, 

T

his 

m

ode 

is 

o

Leaf and range scan mode settings  on page 414



Chapter 1. Performance Guide

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

m

ode

the 

l

eaf 

le

vel 

of 

an 

att

ac

hed 

in

dex 

is 

co

mp

let

ely 

sc

an

ned 

for 

del

e

ted 

ite

ms.

nly 

po

ssi

ble 

on 

att

ac

hed 

ind

e

xes 

and 

is 

the 

o

nly 

m

ode 

the 

ser

ver 

can 

use 

if 

m

ore 

t

han 

397



HCL Informix 14.10 - Performance Guide

398

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

one 

att

ac

hed 

in

dex 

exi

sts 

in 

a 

pa

rtit

i

on.

Al

ice 

(ad

apt

ive 

lin

ear 

in

dex 

cle

ani

ng) 

s

If 

the 

BT

SC

AN

NER 

al

ice 

op

t

ion 

is 

en

You 

can 

gre

a

tly 

im

pr

ove 

per

for

ma

nce 

and 

Alice scan mode values  on page 412



Chapter 1. Performance Guide

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

can 

m

ode

abl

ed, 

ev

ery 

in

dex 

pa

rtit

ion 

rec

ei

ves 

a 

bit

map 

t

hat 

tra

cks 

wh

ere 

a 

del

e

ted 

i

tem 

was 

red

uce 

I/O 

w

hen 

us

ing 

the 

al

ice 

m

o

de. 

Ge

ner

al

ly, 

al

ice 

m

ode 

is 

64 

ti

mes 

m

ore 

eff

399



HCL Informix 14.10 - Performance Guide

400

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

fo

und 

in 

the 

ind

ex. 

The 

s

can 

t

hat 

oc

c

urs 

ex

clu

des 

all 

pa

rts 

of 

the 

in

dex 

wh

ere 

no 

del

ici

ent 

t

han 

ra

nge 

sc

an

n

ing 

and 

can 

aut

o

ma

tic

a

lly 

t

une 

its

elf 

for 

un

sat

isf

act

ory 



Chapter 1. Performance Guide

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

ete 

op

era

ti

ons 

are 

fo

u

nd.

The 

init

ial 

s

ize 

and 

gr

an

ula

rity 

of 

th

ese 

bit

m

aps 

de

p

ind

ex

es, 

wh

ich 

ra

nge 

sc

an

n

ing 

ca

n

not 

do.

401



HCL Informix 14.10 - Performance Guide

402

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

end 

on 

the 

s

ize 

of 

the 

pa

rtit

i

ons 

t

hey 

rep

res

ent 

and 

the 

cur

r

ent 

sy

st

em-w

ide 

al

ice 

lev



Chapter 1. Performance Guide

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

el. 

The 

ser

ver 

per

iod

ica

lly 

ch

e

cks 

e

ach 

bit

map 

for 

its 

eff

ici

e

ncy 

by 

ch

ec

k

ing 

the 

ra

403



HCL Informix 14.10 - Performance Guide

404

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

tio 

of 

pa

ges 

to 

be 

cle

a

ned 

to 

pa

ges 

re

ad, 

adj

ust

ing 

sc

an

n

ing 

if 

ne

ce

ss

ary 

to 

get 



Chapter 1. Performance Guide

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

bet

ter 

inf

or

ma

ti

on. 

T

his 

m

ode 

all

oc

a

tes 

ad

diti

o

nal 

res

ou

r

ces 

(m

em

o

ry) 

to 

405



HCL Informix 14.10 - Performance Guide

406

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

the 

in

dex 

t

hat 

is 

co

ns

um

ing 

ex

c

ess 

I

/O.

Ra

nge 

s

can 

m

ode

Ra

nge 

sc

an

ni

ng, 

wh

ich 

is 

en

ab

led 

Not 

rec

o

m

me

n

ded 

for 

Inf

or

m

ix® 

Leaf and range scan mode settings  on page 414



Chapter 1. Performance Guide

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

w

ith 

the 

ran

ges

ize 

op

ti

on, 

is 

per

for

med 

in 

the 

ra

nge 

bet

w

een 

the 

low 

and 

h

igh 

p

age 

Ve

rs

ion 

11

.10 

or 

hig

h

er. 

Al

ice 

sc

an

n

ing 

is 

ex

ac

tly 

the 

s

ame 

as 

ra

nge 

sc

an

ni

407



HCL Informix 14.10 - Performance Guide

408

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

ad

dre

ss. 

The 

l

eaf 

le

vel 

of 

the 

in

dex 

pa

rtit

ion 

is 

o

nly 

sc

an

ned 

wit

hin 

t

his 

ran

ge. 

The 

ng, 

but 

is 

64 

ti

mes 

m

ore 

eff

ici

e

nt, 

u

ses 

the 

s

ame 

res

ou

rc

es, 

and 

has 

128 

eq

ual 

ran



Chapter 1. Performance Guide

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

ser

ver 

per

fo

rms 

li

ght 

sc

a

ns, 

wh

ich 

do 

not 

im

me

dia

t

ely 

use 

and 

str

ain 

the 

bu

f

fer 

g

es.

W

hen 

you 

set 

al

ice 

m

ode 

sc

an

ni

ng, 

ra

nge 

sc

an

n

ing 

d

oes 

not 

h

ave 

an 

eff

409



HCL Informix 14.10 - Performance Guide

410

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

po

ol, 

e

ven 

th

o

ugh 

cle

an

ing 

oc

c

urs 

thr

o

ugh 

the 

bu

f

fer 

po

ol.

e

ct.

If 

you 

de

c

ide 

to 

use 

ra

nge 

sc

an

n

ing 

for 

sy

st

ems 

w

ith 

o

nly 

a 

lot 

of 

la



Chapter 1. Performance Guide

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

rge 

ind

ex

es, 

set 

the 

ran

ges

ize 

op

t

ion 

to 

the 

mi

ni

mum 

pa

rtit

ion 

s

ize 

for 

ra

nge 

sc

an

411



HCL Informix 14.10 - Performance Guide

412

Table  19. Scan modes for B-tree scanner threads  (continued)

S

can 

M

ode

De

scr

ipt

ion

Pe

rf

or

ma

nce 

Ad

va

nta

ges 

or 

Iss

ues More Information

ni

ng.

For more information about the BTSCANNER configuration parameter and for more information about how the database 

server maintains an index tree, see the chapter on configuration parameters and the chapter on disk structure and storage in 

the HCL®  Informix®  Administrator's Reference.

Use the onstat -C  option to monitor the B-tree scanner activities.

Use the onmode -C  option to change the configuration of B-tree scanners during runtime.

For more information about onstat -C  and onmode -C, see the HCL®  Informix®  Administrator's Reference.

Alice scan mode values
You enable alice (adaptive linear index cleaning) mode by setting the alice  option to any value between 1  and 12  (finest initial 

granularity). For small- to medium-sized systems with few or no indexes above 1 gigabyte, set the alice  option to 6  or 7. For 

systems with large indexes, set alice to a higher mode.

When you set alice mode, the higher the mode, the more memory is used per index partition. However, the memory used is 

not a huge amount. The advantage is less I/O, as shown in the following table.

Table  20. Alice mode settings

Alice Mode Setting Memory or Block I/O

0 Turns off alice scanning.

1 Uses exactly 8 bytes of memory (no adjusting).

2 Uses exactly 16 bytes of memory (no adjusting).

3 Each block of pages will need 512 I/O operations for cleaning.



Chapter 1. Performance Guide

Table  20. Alice mode settings  (continued)

Alice Mode Setting Memory or Block I/O

4 Each block of pages will need 256 I/O operations for cleaning.

5 Each block of pages will need 128 I/O operations for cleaning.

6 (default) Each block of pages will need 64 I/O operations for cleaning.

7 Each block of pages will need 32 I/O operations for cleaning.

8 Each block of pages will need 16 I/O operations for cleaning.

9 Each block of pages will need 8 I/O operations for cleaning.

10 Each block of pages will need 4 I/O operations for cleaning.

11 Each block of pages will need 2 I/O operations for cleaning.

12 Each block of pages will need 1 I/O operations for cleaning.

When you set the alice mode, you need to consider memory usage versus I/O. The lower the alice mode setting, the less 

memory the index will use. The higher the alice mode setting, the more memory the index will use. 12  is the highest mode 

value, because it is a direct mapping of a single bit of memory to each instance of I/O.

Suppose you have an online page size of 2 KB and the default B-Tree Scanner I/O size of 256 pages. If you set the alice mode 

to 6, each byte of memory can represent 131,072 index pages (256 MB). If you set the mode to 10, each byte of memory 

can represent 8,192 index pages (16 MB). Thus, changing the mode setting from 6  to 10  requests 16 times the memory, but 

requires 16 times less I/O.

If you have an index partition that uses 1 GB, then an alice mode setting of 6  would take 4 bytes of memory, while an alice 

mode setting of 10  would consume 64 bytes of memory, as shown in this formula:

( {mode block size} io per bit  *   8 bits per byte  * 256 page per io ) 

Setting the alice mode to a value between 3 and 12 sets the initial amount of memory that is used for index cleaning. 

Subsequently, the B-tree scanners automatically adjust the mode based on the efficiency of past cleaning operations.

For example, if after five scans (by default), the I/O efficiency is below 75 percent, the server automatically adjusts to the next 

alice mode if you set the mode to a value above 2. For example, if an index is currently operating in alice mode 6, a B-tree 

scanner has cleaned the index at least 5 times, and the I/O efficiency is below 75 percent, the server automatically adjusts to 

mode 7, the next higher mode. This doubles the memory required, but reduces the I/O by a factor of 2.

The server will re-evaluate the index after five more scans to determine the I/O efficiency again, and will continue to do this 

until mode 12. The server stops making adjustments at mode 12.

The following example sets the alice mode to 6:

BTSCANNER num=2,threshold=10000,alice=6,compression=default

413



HCL Informix 14.10 - Performance Guide

414

Leaf and range scan mode settings
If a table has more than one attached index, the B-tree scanner uses the leaf scan mode. If you want small indexes to be 

scanned by the leaf scan method, set the rangesize  option of the BTSCANNER configuration parameter to 100.

If you decide to enable range scan mode when a single index exists in the partition, set rangesize  option of the BTSCANNER 

configuration parameter to the minimum size that a partition must have to be scanned using this mode. Specify the size in 

kilobytes.

The following example specifies that:

• The server will start two B-tree scanner threads.

• The server will consider cleaning indexes in the hot list (a list of indexes that caused the server to do extra work) 

when 50000 deleted items are found in the index.

• Indexes with a partition size that is equal to or larger than 100 KB will be cleaned using the range scan mode.

• Indexes with a partition size of less than 100 KB will be cleaned using the leaf scan mode.

• Index compression is set at the medium (default) level

BTSCANNER num=2,threshold=50000,rangesize=100,compression=default

B-tree scanner index compression levels and transaction processing performance
B-tree scanner threads compress indexes by merging two partially used index pages if the amount of data on those pages is 

below the level that is specified by the compression option. You can set the compression level to control the amount of I/O 

required to find and load data.

B-tree scanner threads look for index pages that can be compressed because they are below the specified level. The B-tree 

scanner can compress index pages with deleted items and pages that do not have deleted items.

By default, a B-tree scanner compresses at the medium level. The following table provides information about the 

performance benefits and trade-offs if you change the compression level to high or low.

Table  21. B-Tree Scanner Compression Level Benefits and Trade-offs

Compres

sion Level Performance Benefits and Trade-offs When to Use

Low The low compression level is beneficial for an 

index that is expected to grow quickly, with 

frequent B-tree node splits. When the compression 

level is set to low, the B-tree index will not require 

as many splits as indexes with medium or high 

compression levels, because more free space 

remains in the B-tree nodes.

You might want to change the compression level 

to low if you expect an index to grow quickly with 

frequent splits.

High In general, if an index is read-only or 90 percent 

of it is read-only, the high compression level is 

You might want to change the compression level to 

high under these circumstances:



Chapter 1. Performance Guide

Table  21. B-Tree Scanner Compression Level Benefits and Trade-offs  (continued)

Compres

sion Level Performance Benefits and Trade-offs When to Use

beneficial because searching for data will require 

fewer pages (and less I/O) to traverse. Examples 

might be indexes that do not have frequent 

changes or indexes undergoing batch (block) 

delete operations.

Using high level of compression also means a 

performance trade-off, because it takes more 

I/O to compress the index more aggressively. 

Select operations will have less I/O when the 

compression level is high.

• If an index is read most of the time, and 

delete and insert operations occur a small 

percentage of the time.

• If tables are loaded and updated in a 

batch and are kept for a period of time as 

read-only tables.

If you do not need to change the compression level to high or low, set the compression option of the BTSCANNER 

configuration parameter to med  or default.

Index Compression and the Index Fill Factor

In addition to the compression option that specifies when to attempt to join two partially used pages, you can use the FILL 

FACTOR configuration parameter to control when to add new index pages. The index fill factor, which you define with the 

FILLFACTOR configuration parameter or the FILLFACTOR option of the CREATE INDEX statement, is a percentage of each 

index page that will be filled during the index build.

Setting the level for B-tree scanner compression of indexes
Informix®  provides several ways to specify the level at which B-tree scanner threads will compress indexes pages. To 

optimize space and transaction processing, you can lower the compression level if your indexes grow quickly. You can 

increase the level if your indexes have few delete and insert operations or if batch updates are performed.

Before you begin

Prerequisites:

• Determine if adjusting the level for index compression will improve performance.

• Get statistics on the number of rows read, deleted, and inserted by running the onstat -g ppf  command. You can also 

view information in the sysptprof  table.

• Analyze the statistics to determine if you want to change the threshold.

For information about compression levels and the circumstances under which you might want to change the level, see B-tree 

scanner index compression levels and transaction processing performance  on page 414.

Specify the compression level for an instance with any of the following options:

415



HCL Informix 14.10 - Performance Guide

416

• Set the compression  field of the BTSCANNER configuration parameter to low, med  (medium), high, or default. (The 

system default value is med.)

• Run the onmode -C compression value  command, where value  is low, med  (medium), high, and default. The system 

default value is med.

• Run an SQL administration API function with this command:

SET INDEX COMPRESSION,  partition number,  compression level

Example

Examples

Set the compression option of the BTSCANNER configuration parameter to default  as follows:

BTSCANNER num=4,threshold=10000,rangesize=-1,alice=6,compression=default

Set the compression option of the BTSCANNER configuration parameter to high  as follows:

BTSCANNER num=4,threshold=5000,compression=high

Specify the compression level using onmode -C, as follows:

onmode –C  compression high

Run either of the following SQL administration API functions to set the compression level for a single fragment of the index 

that has the partition number 1048960:

EXECUTE FUNCTION TASK("SET INDEX COMPRESSION", 1048960, "DEFAULT");

EXECUTE FUNCTION ADMIN("SET INDEX COMPRESSION", 1048960, "LOW");

Run the following SELECT statement to execute the task function over all index fragments. This command sets the 

compression level for all fragments of an index named idx1  in a database named db1.

SELECT sysadmin:TASK("SET INDEX COMPRESSION", partnum, "MED")
FROM sysmaster:systabnames
WHERE dbsname = 'dbs1' AND tabname = 'idx1';

You can also run the following SELECT TASK statement to execute the task function over all index fragments and set the 

compression level for all fragments.

SELECT TASK("SET INDEX COMPRESSION", partn, "MED")
FROM dbs1:systables t, dbs1:sysfragments f
WHERE f.tabid = t.tabid AND f.fragtype = 'I' AND indexname ='idx1';

Determine the amount of free space in an index page
You can use the oncheck  -pT command to determine the amount of free space in each index page.

If your table has relatively low update activity and a large amount of free space exists, you might want to drop and re-create 

the index with a larger value for FILLFACTOR to make the unused disk space available.



Chapter 1. Performance Guide

Optimizer estimates of distributed queries
The optimizer assumes that access to a row from a remote database takes longer than access to a row in a local database. 

The optimizer estimates include the cost of retrieving the row from disk and transmitting it across the network.

For an example of this higher estimated cost, see The query plan of a distributed query  on page 417.

Buffer data transfers for a distributed query
Informix®  uses several factors to determine the size of the buffer that sends and receives data to and from a remote server.

The server uses the following factors to determine the buffer size:

• The row size

The database server calculates the row size by summing the average move size (if available) or the length (from the 

syscolumns  system catalog table) of the columns.

• The setting of the FET_BUF_SIZE  environment variable on the client

You might be able to reduce the size and number of data transfers by using the FET_BUF_SIZE  environment variable 

to increase the size of the buffer that the database server uses to send and receive rows to and from the remote 

database server.

The minimum buffer size is 1024 or 2048 bytes, depending on the row size. If the row size is larger than either 1024 

or 2048 bytes, the database server uses the FET_BUF_SIZE  value.

For more information about the FET_BUF_SIZE  environment variable, see the HCL®  Informix®  Guide to SQL: 

Reference.

The query plan of a distributed query
You can display the chosen query plan of a distributed query. The information displayed for a distributed join differs from 

information displayed for a local join.

The following figure shows the chosen query plan for the distributed query.

417



HCL Informix 14.10 - Performance Guide

418

Figure  71. Selected Output of SET EXPLAIN ALL for Distributed Query, Part 3

QUERY:
------
select l.customer_num, l.lname, l.company,
         l.phone, r.call_dtime, r.call_descr
       from customer l, vjp_stores@gilroy:cust_calls r
        where l.customer_num = r.customer_num
 

Estimated Cost: 9
Estimated # of Rows Returned: 7
 

  1) informix.r: REMOTE PATH
 

  2) informix.l: INDEX PATH
 

    (1) Index Keys: customer_num   (Serial, fragments: ALL)
        Lower Index Filter: informix.l.customer_num = informix.r.customer_num
NESTED LOOP JOIN

The following table shows the main differences between the chosen query plans for the distributed join and the local join.

Output Line in Figure 71: Selected Output 

of SET EXPLAIN ALL for Distributed 

Query, Part 3  on page 418 for 

Distributed Query

Output Line in Figure 61: Result of 

EXPLAIN AVOID_EXECUTE directives  on 

page 342 for Local-Only Query

Description of Difference

vjp_stores@gilroy: virginia.cust_calls informix.cust_calls The remote table name is prefaced 

with the database and server 

names.

Estimated Cost: 9 Estimated Cost: 7 The optimizer estimates a higher 

cost for the distributed query.

informix.r: REMOTE PATH informix.r: SEQUENTIAL SCAN The optimizer chose to keep the 

outer, remote cust_calls  table at the 

remote site.

select x0.call_dtime,x0.call_descr,x0. 

customer_num from vjp_stores:" 

virginia" .cust_ calls x0

The SQL  statement that the local 

database server sends to the 

remote site. The remote site 

reoptimizes this statement to 

choose the actual plan.

Improve sequential scans
You can improve the performance of sequential read operations on large tables by eliminating repeated sequential scans.

Sequential access to a table other than the first table in the plan is ominous because it threatens to read every row of the 

table once for every row selected from the preceding tables.



Chapter 1. Performance Guide

If the table is small, it is harmless to read it repeatedly because the table resides completely in memory. Sequential search 

of an in-memory table can be faster than searching the same table through an index, especially if maintaining those index 

pages in memory pushes other useful pages out of the buffers.

When the table is larger than a few pages, however, repeated sequential access produces poor performance. One way to 

prevent this problem is to provide an index to the column that is used to join the table.

Any user with the Resource privilege can build additional indexes. Use the CREATE INDEX statement to make an index.

An index consumes disk space proportional to the width of the key values and the number of rows. (See Estimating index 

pages  on page 213.) Also, the database server must update the index whenever rows are inserted, deleted, or updated; the 

index update slows these operations. If necessary, you can use the DROP INDEX statement to release the index after a series 

of queries, which frees space and makes table updates easier.

Enable view folding to improve query performance
You can significantly improve the performance of a query that involves a view by enabling view folding.

You do this by setting the IFX_FOLDVIEW configuration parameter to 1.

When view folding is enabled, views are folded into a parent query. Because the views are folded into the parent query, the 

query results are not placed in a temporary table.

You can use view folding in the following types of queries:

• Views that contain a UNION ALL clause and the parent query incldues a regular join, Informix®  join, ANSI join, or an 

ORDER BY clause

View folding does not occur for the following types of queries that perform a UNION ALL operation involving a view:

• The view has one of the following clauses: AGGREGATE, GROUP BY, ORDER BY, UNION, DISTINCT, or OUTER JOIN 

(either Informix®  or ANSI type).

• The parent query has a UNION or UNION ALL clause.

In these situations, a temporary table is created to hold query results.

Reduce the join and sort operations
After you understand what the query is doing, you can look for ways to obtain the same output with less effort.

The following suggestions can help you rewrite your query more efficiently:

• Avoid or simplify sort operations.

• Use parallel sorts.

• Use temporary tables to reduce sorting scope.

419



HCL Informix 14.10 - Performance Guide

420

Avoid or simplify sort operations
In many situations you can determine how to avoid or reduce frequent or complex sort operations.

The sort algorithm is highly tuned and extremely efficient. It is as fast as any external sort program that you might apply to 

the same data. You do not need to avoid infrequent sorts or sorts of relatively small numbers of output rows.

However, you should try to avoid or reduce the scope of repeated sorts of large tables. The optimizer avoids a sort step 

whenever it can use an index to produce the output in its proper order automatically. The following factors prevent the 

optimizer from using an index:

• One or more of the ordered columns is not included in the index.

• The columns are named in a different sequence in the index and the ORDER BY or GROUP BY clause.

• The ordered columns are taken from different tables.

For another way to avoid sorts, see Use temporary tables to reduce sorting scope  on page 420.

If a sort is necessary, look for ways to simplify it. As discussed in Sort-time costs  on page 320, the sort is quicker if you 

can sort on fewer or narrower columns.

Related information

Ordering with fragmented indexes  on page 425

Use parallel sorts
When you cannot avoid sorting, the database server takes advantage of multiple CPU resources to perform the required sort-

and-merge operations in parallel. The database server can use parallel sorts for any query, not just PDQ queries. You can 

control the number of threads that the database server uses to sort rows.

To control the number of threads that the database server uses to sort rows, use the PSORT_NPROCS  environment variable.

When PDQ priority is greater than 0 and PSORT_NPROCS  is greater than 1, the query benefits both from parallel sorts and 

from PDQ features such as parallel scans and additional memory. Users can use the PDQPRIORITY environment variable to 

request a specific proportion of PDQ resources for a query. You can use the MAX_PDQPRIORITY configuration parameter to 

limit the number of such user requests. For more information, see Limiting PDQ resources in queries  on page 44.

In some cases, the amount of data being sorted can overflow the memory resources allocated to the query, resulting in I/O to 

a dbspace or sort file. For more information, see Configure dbspaces for temporary tables and sort files  on page 115.

Use temporary tables to reduce sorting scope
You can use a temporary, ordered subset of a table to increase the speed of a query. The temporary table can also simplify 

the work of the query optimizer, cause the optimizer to avoid multiple-sort operations, and simplify the work of the optimizer 

in other ways.



Chapter 1. Performance Guide

For example, suppose your application produces a series of reports on customers who have outstanding balances, one 

report for each major postal area, ordered by customer name. In other words, a series of queries occurs, each of the 

following form (using hypothetical table and column names):

SELECT cust.name, rcvbles.balance, ...other columns...

   FROM cust, rcvbles
   WHERE cust.customer_id = rcvbles.customer_id
      AND rcvbls.balance > 0
      AND cust.postcode LIKE '98_ _ _'
   ORDER BY cust.name

This query reads the entire cust  table. For every row with the specified postal code, the database server searches the index 

on rcvbles.customer_id  and performs a nonsequential disk access for every match. The rows are written to a temporary 

file and sorted. For more information about temporary files, see Configure dbspaces for temporary tables and sort files  on 

page 115.

This procedure is acceptable if the query is performed only once, but this example includes a series of queries, each 

incurring the same amount of work.

An alternative is to select all customers with outstanding balances into a temporary table, ordered by customer name, as the 

following example shows:

SELECT cust.name, rcvbles.balance, ...other columns...

   FROM cust, rcvbles
   WHERE cust.customer_id = rcvbles.customer_id
      AND cvbls.balance > 0
   INTO TEMP cust_with_balance

You can then execute queries against the temporary table, as the following example shows:

SELECT *
   FROM cust_with_balance
   WHERE postcode LIKE '98_ _ _'
   ORDER BY cust.name

Each query reads the temporary table sequentially, but the table has fewer rows than the primary table.

Configuring memory for queries with hash joins, aggregates, and other memory-intensive 
elements
Certain configuration parameters can be set to provide more memory for queries that require sorting, hash joins, aggregates, 

and other memory-intensive elements.

How you configure the amount of memory that is available for a query depends on whether or not the query is a Parallel 

Database Query (PDQ).

Configuring memory for non-PDQ queries

If the PDQ priority is set to 0  (zero), you can change the amount of memory that is available for a query that is not a PDQ 

query by changing the setting of the DS_NONPDQ_QUERY_MEM configuration parameter. You can only use this parameter if 

the PDQ priority is set to zero. Its setting has no effect if the PDQ priority is greater than zero.

421



HCL Informix 14.10 - Performance Guide

422

You can also change the value of DS_NONPDQ_QUERY_MEM with an onmode -wm  or onmode -wf  command.

For example, if you use the onmode  utility, specify a value as shown in the following example:

onmode -wf DS_NONPDQ_QUERY_MEM=500

The minimum value for DS_NONPDQ_QUERY_MEM is 128 kilobytes. The maximum supported value is 25 percent of 

DS_TOTAL_MEMORY. 128 kilobytes is the default value of DS_NONPDQ_QUERY_MEM. If you specify a value for the 

DS_NONPDQ_QUERY_MEM parameter, determine and adjust the value based on the number and size of table rows involved 

in the query.

Informix®  might recalculate the value of DS_NONPDQ_QUERY_MEM initialization if the value is more than 25 percent of the 

DS_TOTAL_MEMORY value.

If Informix®  changes the value that you set, the server sends a message in this format:

DS_NONPDQ_QUERY_MEM recalculated and changed from old_value Kb to new_value Kb.

In the message, old_value  represents the value that you assigned to DS_NONPDQ_QUERY_MEM in the user configuration file, 

and new_value  represents the value determined by Informix®.

For formulas for estimating the amount of additional space to allocate for hash joins, see Estimating temporary space for 

dbspaces and hash joins  on page 119.

Configuring memory for PDQ queries

The Memory Grant Manager (MGM) component of Informix®  coordinates the use of memory, CPU virtual processors (VPs), 

disk I/O, and scan threads among decision-support queries. The MGM uses the DS_MAX_QUERIES, DS_TOTAL_MEMORY, 

DS_MAX_SCANS, and MAX_PDQPRIORITY configuration parameter settings to determine the quantity of these PDQ 

resources that can be granted to a decision-support query. The MGM also grants memory to a query for such activities as 

hash joins. For more information about the MGM, see The Memory Grant Manager  on page 356.

Optimize user-response time for queries
You can influence the amount of time that Informix®  takes to optimize a query and to return rows to a user.

Optimization level
You normally obtain optimum overall performance with the default optimization level, HIGH. The time that it takes to 

optimize the statement is usually unimportant. However, if experimentation with your application reveals that your query is 

still taking too long, you can set the optimization level to LOW.

If you change the optimization level to LOW, check the SET EXPLAIN output to see if the optimizer chose the same query 

plan as before.

To specify a HIGH or LOW level of database server optimization, use the SET OPTIMIZATION statement.



Chapter 1. Performance Guide

Related information

SET OPTIMIZATION statement  on page 

Optimization goals
Optimizing total query time and optimizing user-response time are two optimization goals for improving query performance.

Total query time is the time it takes to return all rows to the application. Total query time is most important for batch 

processing or for queries that require all rows be processed before returning a result to the user, as in the following query:

SELECT count(*) FROM orders
WHERE order_amount > 2000;

User-response time is the time that it takes for the database server to return a screen full of rows back to an interactive 

application. In interactive applications, only a screen full of data can be requested at one time. For example, the user 

application can display only 10 rows at one time for the following query:

SELECT * FROM orders
WHERE order_amount > 2000;

Which optimization goal is more important can have an effect on the query path that the optimizer chooses. For example, the 

optimizer might choose a nested-loop join instead of a hash join to execute a query if user-response time is most important, 

even though a hash join might result in a reduction in total query time.

Specifying the query performance goal
You can optimize user response time for your entire database server system, within a session, or for individual queries.

The default behavior is for the optimizer to choose query plans that optimize the total query time. You can specify 

optimization of user-response time at several different levels:

• For the database server system

To optimize user-response time, set the OPT_GOAL configuration parameter to 0, as in the following example:

OPT_GOAL 0

Set OPT_GOAL to  -1  to optimize total query time.

• For the user environment

The OPT_GOAL  environment variable can be set before the user application starts.

UNIX™  Only

To optimize user-response time, set the OPT_GOAL  environment variable to 0, as in the following 

sample commands:

Bourne shell                OPT_GOAL = 0
               export OPT_GOAL

423

../sqs/ids_sqs_1174.html#ids_sqs_1174
../sqs/ids_sqs_1174.html#ids_sqs_1174
../sqs/ids_sqs_1174.html#ids_sqs_1174
../sqs/ids_sqs_1174.html#ids_sqs_1174


HCL Informix 14.10 - Performance Guide

424

 

C shell               setenv OPT_GOAL 0 

For total-query-time optimization, set the OPT_GOAL  environment variable to -1.

• Within the session

You can control the optimization goal with the SET OPTIMIZATION statement in SQL. The optimization goal set with 

this statement stays in effect until the session ends or until another SET OPTIMIZATION statement changes the goal.

The following statement causes the optimizer to choose query plans that favor total-query-time optimization:

SET OPTIMIZATION ALL_ROWS

The following statement causes the optimizer to choose query plans that favor user-response-time optimization:

SET OPTIMIZATION FIRST_ROWS

• For individual queries

Optimization goalsetting with directivesYou can use FIRST_ROWS and ALL_ROWS optimizer directives to instruct the optimizer which query goal to use. For 

more information about these directives, see Optimization-goal directives  on page 340.

Optimization goalprecedence of settingsThe precedence for these levels is as follows:

• Optimizer directives

• SET OPTIMIZATION statement

• OPT_GOAL  environment variable

• OPT_GOAL configuration parameter

For example, optimizer directives take precedence over the goal that the SET OPTIMIZATION statement specifies.

Preferred query plans for user-response-time optimization
When the optimizer chooses query plans to optimize user-response time, it computes the cost for retrieving the first row in 

the query for each plan and chooses the plan with the lowest cost. In some cases, the query plan with the lowest cost for 

retrieving the first row might not be the optimal path to retrieve all rows in the query.

The following sections explain some of the possible differences in query plans.

Nested-loop joins versus hash joins
Hash joins generally have a higher cost to retrieve the first row than nested-loop joins do. The database server must build the 

hash table before it retrieves any rows. However, in some cases, total query time is faster if the database server uses a hash 

join.

In the following example, tab2  has an index on col1, but tab1  does not have an index on col1. When you execute SET 

OPTIMIZATION ALL_ROWS before you run the query, the database server uses a hash join and ignores the existing index, as 

the following portion of SET EXPLAIN output shows:



Chapter 1. Performance Guide

QUERY:
------
SELECT * FROM tab1,tab2
WHERE tab1.col1 = tab2.col1
Estimated Cost: 125
Estimated # of Rows Returned: 510
1) lsuto.tab2: SEQUENTIAL SCAN
2) lsuto.tab1: SEQUENTIAL SCAN
DYNAMIC HASH JOIN
    Dynamic Hash Filters: lsuto.tab2.col1 = lsuto.tab1.col1 

However, when you execute SET OPTIMIZATION FIRST_ROWS before you run the query, the database server uses a nested-

loop join. The clause (FIRST_ROWS OPTIMIZATION) in the following partial SET EXPLAIN output shows that the optimizer 

used user-response-time optimization for the query:

QUERY:        (FIRST_ROWS OPTIMIZATION)
------
SELECT * FROM tab1,tab2
WHERE tab1.col1 = tab2.col1
Estimated Cost: 145
Estimated # of Rows Returned: 510
1) lsuto.tab1: SEQUENTIAL SCAN
2) lsuto.tab2: INDEX PATH
    (1) Index Keys: col1
        Lower Index Filter: lsuto.tab2.col1 = lsuto.tab1.col1
NESTED LOOP JOIN 

Table scans versus index scans
In cases where the database server returns a large number of rows from a table, the lower-cost option for the total-query-

time goal might be to scan the table instead of using an index. However, to retrieve the first row, the lower-cost option for the 

user-response-time goal might be to use the index to access the table.

Ordering with fragmented indexes
When an index is not fragmented, the database server can use the index to avoid a sort. However, when an index is 

fragmented, the ordering can be guaranteed only within the fragment, not between fragments.

Usually, the least expensive option for the total-query-time goal is to scan the fragments in parallel and then use the parallel 

sort to produce the proper ordering. However, this option does not favor the user-response-time goal.

Instead, if the user-response time is more important, the database server reads the index fragments in parallel and merges 

the data from all of the fragments. No additional sort is generally needed.

Related information

Avoid or simplify sort operations  on page 420

Optimize queries for user-defined data types
Queries that access user-defined data types (UDTs) can take advantage of the same performance features that built-in data 

types use.

425



HCL Informix 14.10 - Performance Guide

426

These features are:

• Indexes

If a query accesses a small number of rows, an index speeds retrieval because the database server does not need 

to read every page in a table to find the rows. For more information, see Indexes on user-defined data types  on 

page 233.

• Parallel database query (PDQ)

Queries that access user-defined data can take advantage of parallel scans and parallel execution.

To turn on parallel execution for a query, set the PDQPRIORITY  environment variable or use the SQL statement SET 

PDQPRIORITY. For more information about how to set PDQ priority and configuration parameters that affect PDQ, see 

The allocation of resources for parallel database queries  on page 357.

• Optimizer directives

In addition, programmers can write the following functions or UDRs to help the optimizer create an efficient query plan for 

your queries:

• Parallel UDRs that can take advantage of parallel database queries

• User-defined selectivity functions that calculate the expected fraction of rows that qualify for the function

• User-defined cost functions that calculate the expected relative cost to execute a user-defined routine

• User-defined statistical functions that the UPDATE STATISTICS statement can use to generate statistics and data 

distributions

• User-defined negator functions to allow more choices for the optimizer

The following sections summarize these techniques. For a more complete description of how to write and register user-

defined selectivity functions and user-defined cost functions, see HCL®  Informix®  User-Defined Routines and Data Types 

Developer's Guide.

Parallel UDRs
One way to execute UDRs is in an expression in a query. You can take advantage of parallel execution if the UDR is in an 

expression in the query.

For parallel execution, the UDR must be in one of the following parts of a query:

• WHERE clause

• SELECT list

• GROUP by list

• Overloaded comparison operator

• User-defined aggregate

• HAVING clause



Chapter 1. Performance Guide

• Select list for a parallel insertion statement

• Generic B-tree index scan on multiple index fragments if the compare function used in the B-tree index scan is 

parallelizable

For example, suppose that you create an opaque data type circle, a table cir_t  that defines a column of type circle, a user-

defined routine area, and then run the following sample query:

SELECT circle, area(circle)
   FROM cir_t
   WHERE circle > "(6,2,4)";

In this sample query, the following operations can run in parallel:

• The UDR area(circle)  in the SELECT list

If the table cir_t  is fragmented, multiple area  UDRs can run in parallel, one UDR on each fragment.

• The expression circle > "(6,2,4)"  in the WHERE clause

If the table cir_t  is fragmented, multiple scans of the table can run in parallel, one scan on each fragment. Then 

multiple " >"  comparison operators can run in parallel, one operator per fragment.

By default, a UDR does not run in parallel. To enable parallel execution of UDRs, you must take the following actions:

• Specify the PARALLELIZABLE modifier in the CREATE FUNCTION or ALTER FUNCTION statement.

• Ensure that the UDR does not call functions that are not PDQ thread-safe.

• Turn on PDQ priority.

• Use the UDR in a parallel database query.

Selectivity and cost functions
You can use the CREATE FUNCTION statement to create a UDR. Then, you can use routine modifiers to change the cost or 

selectivity that is specified in the statement.

After you create a UDR, you can place it in an SQL statement.

The following example shows how you can place a UDR in an SQL statement:

SELECT * FROM image
WHERE get_x1(image.im2) and get_x2(image.im1)

The optimizer cannot accurately evaluate the cost of executing a UDR without additional information. You can provide the 

cost and selectivity of the function to the optimizer. The database server uses cost and selectivity together to determine the 

best path. For more information about selectivity, see Filters with user-defined routines  on page 371.

In the previous example, the optimizer cannot determine which function to execute first, the get_x1  function or the get_x2 

function. If a function is expensive to execute, the DBA can assign the function a larger cost or selectivity, which can 

influence the optimizer to change the query plan for better performance. In the previous example, if get_x1  costs more to 

execute, the DBA can assign a higher cost to the function, which can cause the optimizer to execute the get_x2  function first.

427



HCL Informix 14.10 - Performance Guide

428

You can add the following routine modifiers to the CREATE FUNCTION statement to change the cost or selectivity that the 

optimizer assigns to the function:

• selfunc=function_name

• selconst=integer

• costfunc=function_name

• percall_cost=integer

For more information about cost or selectivity modifiers, see the HCL®  Informix®  User-Defined Routines and Data Types 

Developer's Guide.

User-defined statistics for UDTs
Because information about the nature and use of a user-defined data type (UDT) is not available to the database server, it 

cannot collect distributions or the colmin  and colmax  information (found in the syscolumns  system catalog table) for a UDT. 

Instead, you can create a special function that populates these statistics.

The database server runs the statistics collection function when you execute UPDATE STATISTICS.

For more information about the importance of updating statistics, see Statistics held for the table and index  on page 316. 

For information about improving performance, see Updating statistics for columns with user-defined data types  on 

page 389.

Optimize queries with the SQL statement cache
Before the database server runs an SQL  statement, it must first parse and optimize the statement. Optimizing statements 

can be time consuming, depending on the size of the SQL  statement.

The database server can store the optimized SQL  statement in the virtual portion of shared memory, in an area that is called 

the SQL  statement cache. The SQL  statement cache (SSC) can be accessed by all users, and it allows users to bypass the 

optimize step before they run the query. This capability can result in the following significant performance improvements:

• Reduced response times when users are running the same SQL  statements.

SQL  statements that take longer to optimize (usually because they include many tables and many filters in the 

WHERE clause) run faster from the SQL  statement cache because the database server does not optimize the 

statement.

• Reduced memory usage because the database server shares query data structures among users.

Memory reduction with the SQL  statement cache is greater when a statement has many column names in the select 

list.

For more information about the effect of the SQL  statement cache on the performance of the overall system, see Monitor 

and tune the SQL statement cache  on page 90.



Chapter 1. Performance Guide

When to use the SQL statement cache
Applications might benefit from use of the SQL  statement cache if multiple users execute the same SQL  statements. The 

database server considers statements to be the same if all characters match exactly.

For example, if 50 sales representatives execute the add_order  application throughout the day, they all execute the same SQL 

statements if the application contains SQL  statements that use host variables, such as the following example:

SELECT * FROM ORDERS WHERE order_num = :hostvar

This kind of application benefits from use of the SQL  statement cache because users are likely to find the SQL  statements in 

the SQL  statement cache.

The database server does not consider the following SQL  statements exact matches because they contain different literal 

values in the WHERE clause:

SELECT * FROM customer, orders
   WHERE customer.customer_num = orders.customer_num
   AND order_date > "01/01/07"
SELECT * FROM customer, orders
   WHERE customer.customer_num = orders.customer_num
   AND order_date > "01/01/2007"

Performance does not improve with the SQL  statement cache in the following situations:

• If a report application is run once nightly, and it executes SQL  statements that no other application uses, it does not 

benefit from use of the statement cache.

• If an application prepares a statement and then executes it many times, performance does not improve with the SQL 

statement cache because the statement is optimized just once during the PREPARE statement.

When a statement contains host variables, the database server replaces the host variables with placeholders when it stores 

the statement in the SQL  statement cache. Therefore, the statement is optimized without the database server having access 

to the values of the host variables. In some cases, if the database server had access to the values of the host variables, the 

statement might be optimized differently, usually because the distributions stored for a column inform the optimizer exactly 

how many rows pass the filter.

If an SQL  statement that contains host variables performs poorly with the SQL  statement cache turned on, try flushing the 

SQL  statement cache with the onmode -e flush  command and running the query with values that are more frequently used 

across multiple executions of the query. When you flush the cache, the database server reoptimizes the query and generates 

a query plan that is optimized for these frequently used values.

429



HCL Informix 14.10 - Performance Guide

430

Important:  The database server flushes an entry from the SQL  statement cache only if it is not in use. If an 

application prepares the statement and keeps it, the entry is still in use. In this case, the application needs to close 

the statement before the flush is beneficial.

Using the SQL statement cache
The DBA usually makes the decision to enable the SQL  statement cache. If the SQL  statement cache is enabled, individual 

users can decide whether or not to use the SQL  statement cache for their specific environment or application.

The database server incurs some processing overhead in managing the SQL  statement cache, so you should use the SQL 

statement cache only when multiple users want to share the SQL  statements.

To enable the SQL  statement cache, set the STMT_CACHE configuration parameter to a value that defines either of the 

following modes:

• Always use the SQL  statement cache unless a user explicitly specifies do not use the cache.

• Use the SQL  statement cache only when a user explicitly specifies use it.

For more information, see Enabling the SQL statement cache  on page 430. For more information about the STMT_CACHE 

configuration parameter, see the HCL®  Informix®  Administrator's Reference.

Enabling the SQL statement cache
The database server does not use the SQL  statement cache when the STMT_CACHE configuration parameter is 0  (the 

default value). You can change this value to enable the SQL  statement cache in one of two modes.

Use one of the following methods to change this STMT_CACHE default value:

• Update the ONCONFIG file to specify the STMT_CACHE configuration parameter and restart the database server.

If you set the STMT_CACHE configuration parameter to 1, the database server uses the SQL  statement cache for an 

individual user when the user sets the STMT_CACHE  environment variable to 1  or executes the SET STATEMENT 

CACHE ON statement within an application.

STMT_CACHE 1

If the STMT_CACHE configuration parameter is 2, the database server stores SQL  statements for all users in the SQL 

statement cache except when individual users turn off the feature with the STMT_CACHE  environment variable or the 

SET STATEMENT CACHE OFF statement.

STMT_CACHE 2

• Use the onmode -e  command to override the STMT_CACHE configuration parameter dynamically.

If you use the enable  keyword, the database server uses the SQL  statement cache for an individual user when the 

user sets the STMT_CACHE  environment variable to 1  or executes the SET STATEMENT CACHE ON statement within 

an application.



Chapter 1. Performance Guide

onmode -e enable

If you use the on  keyword, the database server stores SQL  statements for all users in the SQL  statement cache 

except when individual users turn off the feature with the STMT_CACHE  environment variable or the SET 

STATEMENT CACHE OFF statement.

onmode -e on

Note:  statement cache save and statement cache restore are set to save and restore the SQL statement cache.

The following table summarizes the use of the SQL  statement cache, which depends on the setting of the STMT_CACHE 

configuration parameter (or the execution of onmode -e) and the use in an application of the STMT_CACHE  environment 

variable and the SET STATEMENT CACHE statement.

STMT_ CACHE 

Configuration 

Parameter or onmode 

-e

STMT_CACHE 

Environment Variable

SET STATEMENT 

CACHE Statement
Resulting Behavior

0 (default) Not applicable Not applicable Statement cache not used

1 0 (or not set) OFF Statement cache not used

1 1 OFF Statement cache not used

1 0 (or not set) ON Statement cache used

1 1 ON Statement cache used

1 1 Not executed Statement cache used

1 0 Not executed Statement cache not used

2 1 (or not set) ON Statement cache used

2 1 (or not set) OFF Statement cache not used

2 0 ON Statement cache used

2 0 OFF Statement cache not used by user

2 0 Not executed Statement cache not used by user

2 1 (or not set) Not executed Statement cache used by user

Placing statements in the cache
SELECT, UPDATE, INSERT and DELETE statements can be placed in the SQL  statement cache, with some exceptions. When 

the database server checks if an SQL  statement is in the cache, it must find an exact match.

431



HCL Informix 14.10 - Performance Guide

432

For a complete list of the exceptions and a list of requirements for an exact match, see SET STATEMENT CACHE in the HCL® 

Informix®  Guide to SQL: Syntax.

Monitoring memory usage for each session
You can use several onstat -g  command options to obtain memory information for each session.

About this task

You obtain memory information by identifying the SQL statements that use a large amount of memory.

To identify SQL statements using large amount of memory:

1. Run the onstat -g ses  command to display memory of all sessions and see which session has the highest memory 

usage.

2. Run the onstat -g ses  session-id  command to display more details on the session with the highest memory usage.

3. Run the onstat -g stm  session-id  command to display the memory used by the SQL  statements.

Display all user threads and session memory usage
Use the onstat -g ses  command to display all user sessions and memory usage by session ID.

When the session shares the memory structures in the SSC, the value in the used memory column should be lower than 

when the cache is turned off. For example, Figure 72: onstat -g ses output when the SQL statement cache is not enabled 

on page 432 shows sample onstat -g ses  output when the SQL  statement cache is not enabled. Figure 73: onstat -g ses 

output when the SQL statement cache is enabled  on page 432 shows output after the SQL statement cache is enabled 

and the queries in Session 4 are run again. Figure 72: onstat -g ses output when the SQL statement cache is not enabled  on 

page 432 shows that Session 4 has 45656 bytes of used memory. Figure 73: onstat -g ses output when the SQL statement 

cache is enabled  on page 432 shows that Session 4 has less used bytes (36920) when the SQL statement cache is 

enabled.

Figure  72. onstat -g ses  output when the SQL statement cache is not enabled

session                                      #RSAM    total    used     dynamic
id       user     tty      pid      hostname threads  memory   memory   explain
12       informix -        0        -        0        12288    7632     off
4        informix 11       5158     smoke    1        53248    45656    off
3        informix -        0        -        0        12288    8872     off
2        informix -        0        -        0        12288    7632     off

Figure  73. onstat -g ses  output when the SQL statement cache is enabled

session                                      #RSAM    total    used     dynamic
id       user     tty      pid      hostname threads  memory   memory   explain
17       informix -        0        -        0        12288    7632     off
16       informix 12       5258     smoke    1        40960   38784     off
4        informix 11       5158     smoke    1        53248   36920     off
3        informix -        0        -        0        12288    8872     off
2        informix -        0        -        0        12288    7632     off



Chapter 1. Performance Guide

Figure 73: onstat -g ses output when the SQL statement cache is enabled  on page 432 also shows the memory allocated 

and used for Session 16, which runs the same SQL  statements as Session 4. Session 16 allocates less total memory (40960) 

and uses less memory (38784) than Session 4 (Figure 72: onstat -g ses output when the SQL statement cache is not enabled 

on page 432 shows 53248 and 45656) because Session 16 uses the existing memory structures in the SQL  statement 

cache.

Display detailed session information and memory usage
Use the onstat -g ses  session-id  command to display detailed information for a session, including memory usage.

The following onstat -g ses  session-id  output columns display memory usage:

• The Memory pools  portion of the output

◦ The totalsize  column shows the number of bytes currently allocated

◦ The freesize  column shows the number of unallocated bytes

• The last line of the output shows the number of bytes allocated from the sscpool.

Figure 74: onstat -g ses session-id output  on page 433 shows that Session 16 has currently allocated 69632 bytes, of 

which 11600 bytes are allocated from the sscpool.

Figure  74. onstat -g ses  session-id output

onstat -g ses 14
 

 

session                                      #RSAM    total      used
id       user     tty      pid      hostname threads  memory     memory
14       virginia 7        28734    lyceum   1        69632      67384
 

tid      name     rstcb    flags    curstk   status
38       sqlexec  a3974d8  Y--P---  1656     cond wait(netnorm)
 

Memory pools    count 1
name         class addr     totalsize freesize #allocfrag #freefrag
14           V     a974020  69632     2248    156        2
 

...
Sess  SQL            Current            Iso Lock       SQL  ISAM F.E.
Id    Stmt type      Database           Lvl Mode       ERR  ERR  Vers
14    SELECT         vjp_stores         CR  Not Wait   0    0    9.03
 

Current statement name : slctcur
 

Current SQL statement :
  SELECT C.customer_num, O.order_num FROM customer C, orders O, items I
    WHERE C.customer_num = O.customer_num AND O.order_num = I.order_num
 

Last parsed SQL statement :
  SELECT C.customer_num, O.order_num FROM customer C, orders O, items I
    WHERE C.customer_num = O.customer_num AND O.order_num = I.order_num
 

11600 byte(s) of memory is allocated from the sscpool

433



HCL Informix 14.10 - Performance Guide

434

Display information about session SQL statements
Use the onstat -g sql  session-id  or onstat -g spf  commands to display information about the SQL  statements executed by a 

session.

The following figure shows that onstat -g sql  session-id  displays the same information as the bottom portion of the onstat 

-g ses session-id  command in Figure 74: onstat -g ses session-id output  on page 433, which includes the number of bytes 

allocated from the sscpool.

Figure  75. onstat -g sql  session-id output

onstat -g sql 14
 

 

Sess  SQL            Current            Iso Lock       SQL  ISAM F.E.
Id    Stmt type      Database           Lvl Mode       ERR  ERR  Vers
14    SELECT         vjp_stores         CR  Not Wait   0    0    9.03
 

Current statement name : slctcur
 

Current SQL statement :
  SELECT C.customer_num, O.order_num FROM customer C, orders O, items I
    WHERE C.customer_num = O.customer_num AND O.order_num = I.order_num
 

Last parsed SQL statement :
  SELECT C.customer_num, O.order_num FROM customer C, orders O, items I
    WHERE C.customer_num = O.customer_num AND O.order_num = I.order_num
 

11600 byte(s) of memory is allocated from the sscpool

Display information about the memory that SQL statements use in a session
Use the onstat -g stm  session-id  to display information about the memory each SQL  statement uses in a session.

The following figure displays the output of onstat -g stm  session-id  for the same session (14) as in onstat -g ses  session-id 

in Figure 74: onstat -g ses session-id output  on page 433 and onstat -g sql session-id  in Figure 75: onstat -g sql session-id 

output  on page 434.

When the SQL  statement cache (SSC) is on, the database server creates the heaps in the SSC pool. Therefore, the heapsz 

output field in Figure 76: onstat -g stm session-id output  on page 434 shows that this SQL  statement uses 10056 bytes, 

which is contained within the 11600 bytes in the SSC pool that the onstat -g sql 14  shows.

Figure  76. onstat -g stm  session-id output

onstat -g stm 14
 

 

session   14 ---------------------------------------------------------------
 sdblock  heapsz  statement ('*' = Open cursor)
 aa11018   10056 *SELECT C.customer_num, O.order_num
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num
AND O.order_num = I.order_num



Chapter 1. Performance Guide

Monitoring usage of the SQL statement cache
If you notice a sudden increase in response time for a query that had been using the SQL  statement cache, the entry might 

have been dropped or deleted. You can monitor the usage of the SQL statement cache and check for a dropped or deleted 

entry by displaying onstat -g ssc  command output.

The database server drops an entry from the cache when one of the objects that the query depends on is altered so that it 

invalidates the data dictionary cache entry for the query. The following operations cause a dependency check failure:

• Execution of any data definition language (DDL) statement (such as ALTER TABLE, DROP INDEX, or CREATE INDEX) 

that might alter the query plan

• Alteration of a table that is linked to another table with a referential constraint (in either direction)

• Execution of UPDATE STATISTICS FOR TABLE for any table or column involved in the query

• Renaming a column, database, or index with the RENAME statement

When an entry is marked as dropped or deleted, the database server must reparse and reoptimize the SQL  statement the 

next time it executes. For example, Figure 77: Sample onstat -g ssc command output for a dropped entry  on page 436

shows the entries that the onstat -g ssc  command displays after UPDATE STATISTICS was executed on the items  and orders 

table between the execution of the first and second SQL  statements.

The Statement Cache Entries  portion of the onstat -g ssc  output in Figure 77: Sample onstat -g ssc command output for a 

dropped entry  on page 436 displays a flag  field that indicates whether or not an entry has been dropped or deleted from 

the SQL  statement cache.

• The first entry has a flag  column with the value DF, which indicates that the entry is fully cached, but is now dropped 

because its entry was invalidated.

• The second entry has the same statement text as the third entry, which indicates that it was reparsed and 

reoptimized when it was executed after the UPDATE STATISTICS statement.

435



HCL Informix 14.10 - Performance Guide

436

Figure  77. Sample onstat -g ssc  command output for a dropped entry

onstat -g ssc
 

...
Statement Cache Entries:
 

lru hash ref_cnt hits flag heap_ptr  database     user
-----------------------------------------------------------------------------
...
  2  232       1    1   DF  aa3d020  vjp_stores   virginia
  SELECT C.customer_num, O.order_num
    FROM customer C, orders O, items I
    WHERE C.customer_num = O.customer_num
    AND O.order_num = I.order_num
 

  3  232       1    0   -F  aa8b020  vjp_stores   virginia
  SELECT C.customer_num, O.order_num
    FROM customer C, orders O, items I
    WHERE C.customer_num = O.customer_num
    AND O.order_num = I.order_num
...

Invalidating a statement

You can selectively invalidate entries of your choice by setting the sysmaster:syssscelem:valid column to 0 as user Informix

For example, Figure 2  on page 437 shows the entries that the onstat -g ssc  command displays before and after 

invalidating a query from the items table

The Statement Cache Entries  portion of the onstat -g ssc  output in Figure 2  on page 437 displays a flag  field that indicates 

whether or not an entry has been invalidated in the SQL statement cache.



Chapter 1. Performance Guide

Figure  78. Sample onstat -g ssc  command output for an invalidate entry

onstat -g ssc snipit
 

...
Statement Cache Entries:
 

uniqid lru hash ref_cnt hits flag heap_ptr       database           user
------------------------------------------------------------------------------------
...
    7   1 2404       0    0     F 463d0438       stores_demo        informix
 

select count(*) from items
 

...

 

Invalidate it:
 

update syssscelem set valid = 0 where uniqid = 7;
 

Confirm it is invalid with onstat -g ssc:
 

Statement Cache Entries:
 

uniqid lru hash ref_cnt hits flag heap_ptr       database           user
------------------------------------------------------------------------------------
...
    7   1 2404       0    0    DF 463d0438       stores_demo        informix
 

select count(*) from items
 

The user can confirm a flag of ‘D’ in ‘onstat -g ssc’ output and can query sysmaster:syssscelem to confirm ‘valid’ column is 0.

Note:  Invalid entry cannot be changed to valid.

Locking a statement

You can lock an entry of your choice in the Statement Cache even when UPDATE STATISTICS is executed on tables in the sql 

statement.

For example, Figure 3  on page 438 shows the entries that the onstat -g ssc  command displays after UPDATE STATISTICS 

was executed on the items  table between the execution of the first and second SQL  statements.

The Statement Cache Entries  portion of the onstat -g ssc  output in Figure 3  on page 438 displays a flag  field that indicates 

whether or not an entry has been locked in the SQL  statement cache.

437



HCL Informix 14.10 - Performance Guide

438

Figure  79. Sample onstat -g ssc  command output for locking an entry

onstat -g ssc snipit
 

...
Statement Cache Entries:
 

uniqid lru hash ref_cnt hits flag heap_ptr       database           user
------------------------------------------------------------------------------------
...
    7   1 2404       0    0     F 463d0438       stores_demo        informix
  select count(*) from items
 

  3  232       1    0   -F  aa8b020  vjp_stores   virginia
 

...

 

Lock it:
 

update syssscelem set locked = 1 where uniqid = 7;
 

Confirm it is locked with onstat -g ssc:
 

Statement Cache Entries:
 

uniqid lru hash ref_cnt hits flag heap_ptr       database           user
------------------------------------------------------------------------------------
...
    7   1 2404       0    0    FL 463d0438       stores_demo        informix
 

select count(*) from items
 

The user can confirm a flag of ‘L’ in ‘onstat -g ssc’ output and can query sysmaster:syssscelem to confirm ‘locked’ column is 

1.

Note:  Statements can be locked and unlocked as many times as desired.

Monitor sessions and threads
You can monitor the number of active sessions and threads and the amount of resources that they are using. Monitoring 

sessions and threads is important for sessions that perform queries as well as sessions that perform inserts, updates, and 

deletes.

Some of the information that you can monitor for sessions and threads allows you to determine if an application is using a 

disproportionate amount of the resources.



Chapter 1. Performance Guide

Note:  Session threads for a stored procedure with a PDQ priority setting and a GROUP BY clause are not released 

until a session is completed.

Monitor sessions and threads with onstat commands
You can use several onstat  utility commands to monitor active sessions and threads.

Use the following onstat  utility commands to monitor sessions and threads:

• onstat -u

• onstat -g ath

• onstat -a act

• onstat -a cpu

• onstat -a ses

• onstat -g mem

• onstat -g stm

Monitor blocking threads with the onstat -g bth and onstat -g BTH commands
Running threads take ownership of various objects and resources; for example, buffers, locks, mutexes, decision support 

memory, and others. Contention for these resources among hundreds or thousands of threads can result in chains of 

dependencies. Use the onstat -g bth  command to display the dependencies between blocking and waiting threads. Use the 

onstat -g BTH  command to display session and stack information for the blocking threads.

For example, a thread that is blocked waiting to enter a critical section might own a row lock for which another thread is 

waiting. The second thread might be blocking a third thread that is waiting in the MGM query queue. Usually, the duration of 

such contention is short. However, if a thread is blocked long enough to be noticed, you might need to identify the source of 

the contention. The onstat -g bth  command discovers the chains of dependency and displays blocker threads followed by 

waiting threads, in order. You can use the resulting picture of contentions to diagnose and correct the issues.

The following example of the onstat -g bth  command output has multiple threads that are waiting on resources.

439



HCL Informix 14.10 - Performance Guide

440

Figure  80. The ouptut of the onstat -g bth command

This command attempts to identify any blocking threads.
 

Highest level blocker(s)
 tid      name                 session
 48       sqlexec              26
 

Threads waiting on resources
 tid      name                 blocking resource              blocker
 49       sqlexec              MGM                            48
 13       readahead_0          Condition (ReadAhead)           -
 50       sqlexec              Lock (0x4411e578)              49
 51       sqlexec              Lock (0x4411e578)              49
 52       sqlexec              Lock (0x4411e578)              49
 53       sqlexec              Lock (0x4411e578)              49
 57       bf_priosweep()       Condition (bp_cond)             -
 58       scan_1.0             Condition (await_MC1)           -
 59       scan_1.0             Condition (await_MC1)           -
 

Run 'onstat -g BTH' for more info on blockers.

In this example, four threads are waiting for a lock that is owned by thread 49. Thread 49 is waiting for MGM resources that 

are owned by thread 48. If you run the onstat -g BTH  command, the output shows the session and stack information for the 

blocking thread, which in this case is thread 48.

Related information

onstat -g bth and -g BTH: Print blocked and waiting threads  on page 

Monitor threads with onstat –u  output
Use the onstat –u  command to display information about active threads that require a database server task-control block.

Active threads include threads that belong to user sessions, as well as some that correspond to database server daemons 

(for example, page cleaners). Figure 81: onstat -u output  on page 441 shows an example of onstat -u  output.

Also use the onstat -u  command to determine if a user is waiting for a resource or holding too many locks, or to get an idea 

of how much I/O the user has performed.

The utility output displays the following information:

• The address of each thread

• Flags that indicate the present state of the thread (for example, waiting for a buffer or waiting for a checkpoint), 

whether the thread is the primary thread for a session, and what type of thread it is (for example, user thread, daemon 

thread, and so on)

For information on these flags, see the HCL®  Informix®  Administrator's Reference.

• The session ID and user login ID for the session to which the thread belongs

../%20adr/ids_adr_1179.html#ids_adr_1179
../%20adr/ids_adr_1179.html#ids_adr_1179
../%20adr/ids_adr_1179.html#ids_adr_1179
../%20adr/ids_adr_1179.html#ids_adr_1179


Chapter 1. Performance Guide

A session ID of 0  indicates a daemon thread.

• Whether the thread is waiting for a specific resource and the address of that resource

• The number of locks that the thread is holding

• The number of read calls and the number of write calls that the thread has executed

• The maximum number of current, active user threads

If you execute onstat -u  while the database server is performing fast recovery, several database server threads might appear 

in the display.

Figure  81. onstat -u  output

Userthreads
address  flags   sessid   user     tty      wait     tout locks nreads   nwrites
80eb8c   ---P--D 0        informix -        0        0    0     33       19
80ef18   ---P--F 0        informix -        0        0    0     0        0
80f2a4   ---P--B 3        informix -        0        0    0     0        0
80f630   ---P--D 0        informix -        0        0    0     0        0
80fd48   ---P--- 45       chrisw   ttyp3    0        0    1     573      237
810460   ------- 10       chrisw   ttyp2    0        0    1     1        0
810b78   ---PR-- 42       chrisw   ttyp3    0        0    1     595      243
810f04   Y------ 10       chrisw   ttyp2    beacf8   0    1     1        0
811290   ---P--- 47       chrisw   ttyp3    0        0    2     585      235
81161c   ---PR-- 46       chrisw   ttyp3    0        0    1     571      239
8119a8   Y------ 10       chrisw   ttyp2    a8a944   0    1     1        0
81244c   ---P--- 43       chrisw   ttyp3    0        0    2     588      230
8127d8   ----R-- 10       chrisw   ttyp2    0        0    1     1        0
812b64   ---P--- 10       chrisw   ttyp2    0        0    1     20       0
812ef0   ---PR-- 44       chrisw   ttyp3    0        0    1     587      227
 15 active, 20 total, 17 maximum concurrent

Related information

onstat -u command: Print user activity profile  on page 

Monitor threads with onstat -g ath  output
Use the onstat -g ath  command to view a list of all threads. Unlike the onstat –u  command, this list includes internal daemon 

threads that do not have a database server task-control block.

The onstat -g ath  command display does not include the session ID (because not all threads belong to sessions).

The status  field contains information on the status of thread, such as running, cond wait, IO Idle, IO Idle, sleeping secs: 

number_of_seconds, or sleeping forever. The following output example identifies many threads as sleeping forever. To 

improve performance, you can remove or reduce the number of threads that are identified as sleeping forever.

441

../%20adr/ids_adr_0608.html#ids_adr_0608
../%20adr/ids_adr_0608.html#ids_adr_0608
../%20adr/ids_adr_0608.html#ids_adr_0608
../%20adr/ids_adr_0608.html#ids_adr_0608


HCL Informix 14.10 - Performance Guide

442

Figure  82. onstat -g ath  output

Threads:
tid  tcb           rstcb        prty  status              vp-class   name
2    10bbf36a8      0            2    sleeping forever       3lio    lio vp 0
3    10bc12218      0            2    sleeping forever       4pio    pio vp 0
4    10bc31218      0            2    sleeping forever       5aio    aio vp 0
5    10bc50218      0            2    sleeping forever       6msc    msc vp 0
6    10bc7f218      0            2    sleeping forever       7aio    aio vp 1
7    10bc9e540      10b231028    4    sleeping secs: 1       1cpu    main_loop()
8    10bc12548      0            2    running                1cpu    tlitcppoll
9    10bc317f0      0            3    sleeping forever       1cpu    tlitcplst
10   10bc50438      10b231780    2    sleeping forever       1cpu    flush_sub(0)
11   10bc7f740      0            2    sleeping forever       8aio    aio vp 2
12   10bc7fa00      0            2    sleeping forever       9aio    aio vp 3
13   10bd56218      0            2    sleeping forever      10aio    aio vp 4
14   10bd75218      0            2    sleeping forever      11aio    aio vp 5
15   10bd94548      10b231ed8    3    sleeping forever       1cpu    aslogflush
16   10bc7fd00      10b232630    1    sleeping secs: 26       1cpu    btscanner 0
32   10c738ad8      10b233c38    4    sleeping secs: 1        1cpu    onmode_mon
50   10c0db710      10b232d88    2    cond wait  netnorm      1cpu    sqlexec

Threads that a primary decision-support thread started have a name that indicates their role in the decision-support query. 

The following figure shows four scan threads that belong to a decision-support thread.

Figure  83. onstat -g ath  output showing scan threads belonging to a decision-support thread

Threads:
tid  tcb            rstcb      prty  status                vp-class   name
11   994060         0           4     sleeping(Forever)       1cpu    kaio
12   994394         80f2a4      2     sleeping(secs: 51)      1cpu    btclean
26   99b11c         80f630      4     ready                   1cpu    onmode_mon
32   a9a294         812b64      2     ready                   1cpu    sqlexec
113  b72a7c         810b78      2     ready                   1cpu    sqlexec
114  b86c8c         81244c      2     cond wait(netnorm)      1cpu    sqlexec
115  b98a7c         812ef0      2     cond wait(netnorm)      1cpu    sqlexec
116  bb4a24         80fd48      2     cond wait(netnorm)      1cpu    sqlexec
117  bc6a24         81161c      2     cond wait(netnorm)      1cpu    sqlexec
118  bd8a24         811290      2     ready                   1cpu    sqlexec
119  beae88         810f04      2     cond wait(await_MC1)    1cpu    scan_1.0
120  a8ab48         8127d8      2     ready                   1cpu    scan_2.0
121  a96850         810460      2     ready                   1cpu    scan_2.1
122  ab6f30         8119a8      2     running                 1cpu    scan_2.2 

Related information

onstat -g ath command: Print information about all threads  on page 

Improve connection performance and scalability  on page 49

Monitor threads with onstat -g act  output
Use the onstat -g act  command to obtain a list of active threads. The onstat -g act  output shows a subset of the threads that 

are also listed in onstat -g ath  output.

../%20adr/ids_adr_0514.html#ids_adr_0514
../%20adr/ids_adr_0514.html#ids_adr_0514
../%20adr/ids_adr_0514.html#ids_adr_0514
../%20adr/ids_adr_0514.html#ids_adr_0514


Chapter 1. Performance Guide

For sample output, see the HCL®  Informix®  Administrator's Reference.

Related information

onstat -g act command: Print active threads  on page 

Monitor threads with onstat -g cpu  output
Use the onstat –g cpu  command to display the last time the thread ran, how much CPU time the thread used, the number of 

times the thread ran, and other statistics about all the threads running in the server

The following output example shows the ID and name of each thread that is running, the ID of the virtual processor in which 

each thread is running, the day and time when each thread last ran, how much CPU time each thread used, the number of 

times each thread was scheduled to run, and the status of each thread.

Figure  84. onstat -g cpu  command output

Thread CPU Info:
tid    name              vp       Last Run           CPU Time     #scheds    status
2      lio vp 0          3lio*   07/18 08:35:35        0.0000          1    IO Idle
3      pio vp 0          4pio*   07/18 08:35:36        0.0102          2    IO Idle
4      aio vp 0          5aio*   07/18 08:35:47        0.6876         68    IO Idle
5      msc vp 0          6msc*   07/18 11:47:24        0.0935         14    IO Idle
6      main_loop()       1cpu*   07/18 15:02:43        2.9365      23350    sleeping secs: 1
7      soctcppoll        7soc*   07/18 08:35:40        0.1150          1    running
8      soctcpio          8soc*   07/18 08:35:40        0.0037          1    running
9      soctcplst         1cpu*   07/18 11:47:24        0.1106         10    sleeping forever
10     soctcplst         1cpu*   07/18 08:35:40        0.0103          6    sleeping forever
11     flush_sub(0)      1cpu*   07/18 15:02:43        0.0403      23252    sleeping secs: 1
12     flush_sub(1)      1cpu*   07/18 15:02:43        0.0423      23169    sleeping secs: 1
13     flush_sub(2)      1cpu*   07/18 15:02:43        0.0470      23169    sleeping secs: 1
14     flush_sub(3)      1cpu*   07/18 15:02:43        0.0407      23169    sleeping secs: 1
15     flush_sub(4)      1cpu*   07/18 15:02:43        0.0307      23169    sleeping secs: 1
16     flush_sub(5)      1cpu*   07/18 15:02:43        0.0323      23169    sleeping secs: 1
17     flush_sub(6)      1cpu*   07/18 15:02:43        0.0299      23169    sleeping secs: 1
18     flush_sub(7)      1cpu*   07/18 15:02:43        0.0314      23169    sleeping secs: 1
19     kaio              1cpu*   07/18 14:56:42        1.4560    2375587    IO Idle
20     aslogflush        1cpu*   07/18 15:02:43        0.0657      23166    sleeping secs: 1
21     btscanner_0       1cpu*   07/18 15:00:53        0.0484        784    sleeping secs: 61
37     onmode_mon        1cpu*   07/18 15:02:43        0.3467      23165    sleeping secs: 1
43     dbScheduler       1cpu*   07/18 14:58:14        1.6613        320    sleeping secs: 31
44     dbWorker1         1cpu*   07/18 13:48:10        0.4264        399    sleeping forever
45     dbWorker2         1cpu*   07/18 14:48:11        1.9346       2936    sleeping forever
94     bf_priosweep()    1cpu*   07/18 15:01:42        0.0431         77    cond wait  bp_cond

Related information

onstat -g cpu: Print runtime statistics  on page 

443

../%20adr/ids_adr_0511.html#ids_adr_0511
../%20adr/ids_adr_0511.html#ids_adr_0511
../%20adr/ids_adr_0511.html#ids_adr_0511
../%20adr/ids_adr_0511.html#ids_adr_0511
../%20adr/ids_adr_1058.html#ids_adr_1058
../%20adr/ids_adr_1058.html#ids_adr_1058
../%20adr/ids_adr_1058.html#ids_adr_1058
../%20adr/ids_adr_1058.html#ids_adr_1058


HCL Informix 14.10 - Performance Guide

444

Monitor session resources with onstat -g ses  output
Use the onstat -g ses  command to monitor the resources allocated for and used by a session, in particular, a session that is 

running a decision-support query. The onstat -g ses  command also shows information on recently terminated sessions.

For example, in Figure 85: onstat -g ses output  on page 444, session number 49  is running five threads for a decision-

support query.

Figure  85. onstat -g ses  output

session                                   #RSAM    total      used
id       user     tty      pid   hostname threads  memory     memory
57       informix -        0     -        0        8192       5908
56       user_3   ttyp3    2318  host_10  1        65536      62404
55       user_3   ttyp3    2316  host_10  1        65536      62416
54       user_3   ttyp3    2320  host_10  1        65536      62416
53       user_3   ttyp3    2317  host_10  1        65536      62416
52       user_3   ttyp3    2319  host_10  1        65536      62416
51       user_3   ttyp3    2321  host_10  1        65536      62416
49       user_1   ttyp2    2308  host_10  5        188416     178936
2        informix -        0     -        0        8192       6780
1        informix -        0     -        0        8192       4796

session                                   #RSAM    total      used
id       user     tty      pid   hostname threads  memory     memory
57       informix -        0     -        0        8192       5908
56       user_3   ttyp3    2318  host_1   1        65536      62404
55       user_3   ttyp3    2316  host_1   1        65536      62416
54       user_3   ttyp3    2320  host_1   1        65536      62416
53       user_3   ttyp3    2317  host_1   1        65536      62416
52       user_3   ttyp3    2319  host_1   1        65536      62416
51       user_3   ttyp3    2321  host_1   1        65536      62416
49       user_1   ttyp2    2308  host_1   5        188416     178936
2        informix -        0     -        0        8192       6780
1        informix -        0     -        0        8192       4796
 

Last 20 Sessions Terminated
 

Ses ID  Username  Hostname  PID    Time              Reason
36      user_1    host_1    2122   01/19/2015.15:20  session limit txn time (60s)
40      user_1    host_1    2134   01/19/2015.15:14  session limit memory (5124 KB)
47      user_1    host_1    2140   01/19/2015.15:04  session limit logspace (10242 KB)
50      user_1    host_1    2145   01/19/2015.15:02  session limit txn time (39548 KB)

Related information

onstat -g ses command: Print session-related information  on page 

Monitor session memory with onstat -g mem  and onstat -g stm  output
Use the onstat -g mem  and onstat -g stm  commands to obtain information about the memory used for each session.

You can determine which session to focus on by the used memory  column of the onstat -g ses  output.

../%20adr/ids_adr_0574.html#ids_adr_0574
../%20adr/ids_adr_0574.html#ids_adr_0574
../%20adr/ids_adr_0574.html#ids_adr_0574
../%20adr/ids_adr_0574.html#ids_adr_0574


Chapter 1. Performance Guide

Figure 86: onstat -g mem and onstat -g stm to determine session memory  on page 445 shows sample onstat -g ses  output 

and some of the onstat -g mem and onstat -g stm  output for Session 16.

• The output of the onstat -g mem  command shows the total amount of memory used by each session.

The totalsize  column of the onstat  -g mem 16 output shows the total amount of memory allocated to the session.

• The output of the onstat -g stm  command shows the portion of the total memory allocated to the current prepared 

SQL  statement.

The heapsz  column of the onstat  -g stm 16 output in the following figure shows the amount of memory allocated for 

the current prepared SQL  statement.

Figure  86. onstat -g mem  and onstat -g stm  to determine session memory

onstat -g ses
 

session                                      #RSAM    total      used
id       user     tty      pid      hostname threads  memory     memory
18       informix -        0        -        0        12288      8928
17       informix 12       28826    lyceum   1        45056      33752
16       virginia 6        28743    lyceum   1        90112      79504
14       virginia 7        28734    lyceum   1        45056      33096
3        informix -        0        -        0        12288      10168
2        informix -        0        -        0        12288      8928
 

 

 

onstat -g mem 16
 

Pool Summary:
name         class addr     totalsize freesize #allocfrag #freefrag
16           V     a9ea020  90112     10608    159        5
...
 

 

onstat -g stm 16
 

session   16 ---------------------------------------------------------------
 sdblock  heapsz  statement ('*' = Open cursor)
 aa0d018   10056 *SELECT C.customer_num, O.order_num
FROM customer C, orders O, items I
WHERE C.customer_num = O.customer_num
AND O.order_num = I.order_num

Related information

onstat -g lap command: Print light appends status information  on page 

onstat -g mem command: Print pool memory statistics  on page 

445

../%20adr/ids_adr_0543.html#ids_adr_0543
../%20adr/ids_adr_0543.html#ids_adr_0543
../%20adr/ids_adr_0543.html#ids_adr_0543
../%20adr/ids_adr_0543.html#ids_adr_0543
../%20adr/ids_adr_0546.html#ids_adr_0546
../%20adr/ids_adr_0546.html#ids_adr_0546
../%20adr/ids_adr_0546.html#ids_adr_0546
../%20adr/ids_adr_0546.html#ids_adr_0546


HCL Informix 14.10 - Performance Guide

446

Monitor sessions and threads with ON-Monitor (UNIX™)
On (UNIX™), you can use ON-Monitor to view information about sessions and user threads. This information is a subset of 

the information that the onstat -u  command displays.

Choose User  from the Status menu. The following information appears:

• The session ID

• The user ID

• The number of locks that the thread is holding

• The number of read calls and write calls that the thread has executed

• Flags that indicate the present state of the thread (for example, waiting for a buffer or waiting for a checkpoint), 

whether the thread is the primary thread for a session, and what type of thread it is (for example, user thread, daemon 

thread, and so on)

The following figure shows sample output.

Figure  87. Output from the User option of the ON-Monitor Status menu

                             USER THREAD INFORMATION
 

                          Locks        Disk       Disk        User thread
 Session   User           Held         Reads      Writes      Status
 

      0    informix           0           96           2       ------D
      0    informix           0            0           0       ------F
      0    informix           0            0           0       -------
     15    informix           0            0           0       Y-----M
      0    informix           0            0           0       ------D
     17    chrisw             1            3          34       Y------

Monitor sessions and threads with SMI tables
You can use the syssessions  and the syssesprof  system-monitoring interface (SMI) tables to obtain information about 

sessions and threads.

Query the syssessions  table to obtain the following information.

Column

Description

sid

Session ID

username

Name (login ID) of the user

uid

User ID



Chapter 1. Performance Guide

pid

Process ID

connected

Time that the session started

feprogram

Absolute path of the executable program or application

In addition, some columns contain flags that show the following information;

• Whether the primary  thread of the session is waiting for a latch, lock, log buffer, or transaction

• If the thread is in a critical section.

Important:  The information in the syssessions  table is organized by session, and the information in the onstat -u 

output is organized by thread. Also, unlike the onstat -u  output, the syssessions  table does not include information 

about daemon threads, only user threads.

Query the syssesprof  table to obtain a profile of the activity of a session. This table contains a row for each session with 

columns that store statistics on session activity (for example, number of locks held, number of row writes, number of 

commits, number of deletes, and so on).

For a complete list of the syssessions  columns and descriptions of syssesprof  columns, see the chapter on the sysmaster 

database in the HCL®  Informix®  Administrator's Reference.

Monitor transactions
You can monitor transactions to track open transactions and the locks that those transactions hold. You can use several 

onstat  utility options to view transaction, lock, and session statistics.

ISA uses information that the following onstat  command-line options generate to display session information, as the 

following table shows. Click the Refresh  button to rerun the onstat  command and display fresh information.

The following onstat  command-line options display session information.

To monitor Displays the output of See

Transaction statistics onstat -x Display information about transactions  on 

page 448

User session statistics onstat -u Display statistics on user sessions  on 

page 450

Lock statistics onstat -k Display information about transaction locks  on 

page 449

447



HCL Informix 14.10 - Performance Guide

448

To monitor Displays the output of See

Sessions running SQL statements onstat -g sql  session-id Display statistics on sessions executing SQL 

statements  on page 451

Display information about transactions
The output of the onstat -x  command contains information that you can use to monitor transactions.

The onstat -x  output contains the following information for each open transaction:

• The address of the transaction structure in shared memory

• Flags that indicate the following information:

◦ The present state of the transaction (user thread attached, suspended, waiting for a rollback)

◦ The mode in which the transaction is running (loosely coupled or tight coupled)

◦ The stage that the transaction is in (BEGIN WORK, prepared to commit, committing or committed, rolling 

back)

◦ The nature of the transaction (global transaction, coordinator, subordinate, both coordinator and subordinate)

• The thread that owns the transaction

• The number of locks that the transaction holds

• The logical-log file in which the BEGIN WORK record was logged

• The current logical-log id and position

• The isolation level

• The number of attempts to start a recovery thread

• The coordinator for the transaction (if the subordinate is executing the transaction)

• The maximum number of concurrent transactions since you last started the database server

The onstat  utility is especially useful for monitoring global transactions. For example, you can determine whether 

a transaction is executing in loosely coupled or tightly coupled mode. These transaction modes have the following 

characteristics:

• Loosely coupled mode

Each branch in a global transaction has a separate transaction ID (XID). This mode is the default.

◦ The different database servers coordinate transactions, but do not share resources. No two transaction 

branches, even if they access the same database, can share locks.

◦ The records from all branches of a global transaction display as separate transactions in the logical log.

• Tightly coupled mode

In a single global transaction, all branches that access the same database share the same transaction ID (XID). This 

mode only occurs with the Microsoft™  Transaction Server (MTS) transaction manager.



Chapter 1. Performance Guide

◦ The different database servers coordinate transactions and share resources such as locks and log records. 

The branches with the same XID share locks and can never wait on another branch with the same XID 

because only one branch is active at one time.

◦ Log records for branches with the same XID appear under the same transaction in the logical log.

Figure 88: onstat -x output  on page 449 shows sample output from onstat -x. The last transaction listed is a global 

transaction, as the G  value in the fifth position of the flags  column indicates. The T  value in the second position of the flags 

column indicates that the transaction is running in tightly coupled mode.

Figure  88. onstat -x  output

Transactions
address flags userthread locks beginlg curlog logposit isol    retrys coord
ca0a018 A---- c9da018    0     0       5      0x18484c COMMIT  0
ca0a1e4 A---- c9da614    0     0       0      0x0      COMMIT  0
ca0a3b0 A---- c9dac10    0     0       0      0x0      COMMIT  0
ca0a57c A---- c9db20c    0     0       0      0x0      COMMIT  0
ca0a748 A---- c9db808    0     0       0      0x0      COMMIT  0
ca0a914 A---- c9dbe04    0     0       0      0x0      COMMIT  0
ca0aae0 A---- c9dcff8    1     0       0      0x0      COMMIT  0
ca0acac A---- c9dc9fc    1     0       0      0x0      COMMIT  0
ca0ae78 A---- c9dc400    1     0       0      0x0      COMMIT  0
ca0b044 AT--G c9dc9fc    0     0       0      0x0      COMMIT  0
10 active, 128 total, 10 maximum concurrent 

The output in Figure 88: onstat -x output  on page 449 shows that this transaction branch is holding 13 locks. When a 

transaction runs in tightly coupled mode, the branches of this transaction share locks.

Display information about transaction locks
The output of the onstat -k  command contains details on the locks that a transaction holds.

To find the relevant locks, match the address in the userthread  column in onstat -x  output to the address in the owner 

column of onstat -k  output.

Figure 89: onstat -k and onstat -x output  on page 450 shows sample output from onstat -x  and the corresponding onstat -k 

command. The a335898  value in the userthread  column in the onstat -x  output matches  the value in the owner  column of the 

two lines of onstat -k  output.

449



HCL Informix 14.10 - Performance Guide

450

Figure  89. onstat -k  and onstat -x  output

onstat -x
 

Transactions
address  flags userthread locks   beginlg curlog  logposit   isol    retrys coord
a366018  A---- a334018    0      0       1       0x22b048  COMMIT  0
a3661f8  A---- a334638    0      0       0       0x0       COMMIT  0
a3663d8  A---- a334c58    0      0       0       0x0       COMMIT  0
a3665b8  A---- a335278    0      0       0       0x0       COMMIT  0
a366798  A---- a335898    2      0       0       0x0       COMMIT  0
a366d38  A---- a336af8    0      0       0       0x0       COMMIT  0
 6 active, 128 total, 9 maximum concurrent
 

onstat -k
 

Locks
address  wtlist   owner    lklist   type     tblsnum  rowid    key#/bsiz
a09185c  0        a335898  0        HDR+S    100002   20a         0
a0918b0  0        a335898  a09185c  HDR+S    100002   204         0
 2 active, 2000 total, 2048 hash buckets, 0 lock table overflows

In the example in Figure 89: onstat -k and onstat -x output  on page 450, a user is selecting a row from two tables. The user 

holds the following locks:

• A shared lock on one database

• A shared lock on another database

Display statistics on user sessions
The output of the onstat -u  command contains statistics on user sessions.

You can find the session-id of the transaction by matching the address in the userthread  column of the onstat -x  output with 

the address  column in the onstat -u  output. The sessid  column of the same line in the onstat -u  output provides the session 

id.

For example, Figure 90: Obtaining session-id for userthread in onstat -x  on page 451 shows the address a335898  in the 

userthread  column of the onstat -x  output. The output line in onstat -u  with the same address shows the session id 15  in the 

sessid  column.



Chapter 1. Performance Guide

Figure  90. Obtaining session-id for userthread in onstat -x

onstat -x
 

Transactions
address  flags userthread locks   beginlg curlog  logposit   isol    retrys coord
a366018  A---- a334018    0      0       1       0x22b048  COMMIT  0
a3661f8  A---- a334638    0      0       0       0x0       COMMIT  0
a3663d8  A---- a334c58    0      0       0       0x0       COMMIT  0
a3665b8  A---- a335278    0      0       0       0x0       COMMIT  0
a366798  A---- a335898    2      0       0       0x0       COMMIT  0
a366d38  A---- a336af8    0      0       0       0x0       COMMIT  0
 6 active, 128 total, 9 maximum concurrent
 

 

onstat -u
 

address  flags    sessid  user     tty     wait     tout locks nreads   nwrites
a334018  ---P--D 1        informix -        0        0    0     20       6
a334638  ---P--F 0        informix -        0        0    0     0        1
a334c58  ---P--- 5        informix -        0        0    0     0        0
a335278  ---P--B 6        informix -        0        0    0     0        0
a335898  Y--P--- 15       informix 1        a843d70  0    2     64       0
a336af8  ---P--D 11       informix -        0        0    0     0        0
 6 active, 128 total, 17 maximum concurrent

For a transaction executing in loosely coupled mode, the first position of the flags  column in theonstat -u  output might 

display a value of T. This T  value   indicates that one branch within a global transaction is waiting for another branch to 

complete. This situation could occur if two different branches in a global transaction, both using the same database, tried to 

work on the same global transaction simultaneously.

For a transaction executing in tightly coupled mode, this T  value does not occur because the database server shares one 

transaction structure for all branches that access the same database in the global transaction. Only one branch is attached 

and active at one time and does not wait for locks because the transaction owns all the locks held by the different branches.

Display statistics on sessions executing SQL statements
The output of the onstat -g sql  command contains statistics on the SQL statements executed by the session

To obtain information about the last SQL  statement that each session executed, issue the onstat -g sql  command with the 

appropriate session ID.

Figure 91: onstat -g sql output  on page 452 shows sample output for this option using the same session ID obtained from 

the onstat -u  sample in Figure 90: Obtaining session-id for userthread in onstat -x  on page 451.

451



HCL Informix 14.10 - Performance Guide

452

Figure  91. onstat -g sql output

onstat -g sql 15
 

Sess  SQL            Current            Iso Lock       SQL  ISAM F.E.
Id    Stmt type      Database           Lvl Mode       ERR  ERR  Vers
15    SELECT         vjp_stores         CR  Not Wait   0    0    9.03
 

Current statement name : slctcur
 

Current SQL statement :
  select l.customer_num, l.lname, l.company,   l.phone, r.call_dtime,
    r.call_descr from customer l, vjp_stores@gilroy:cust_calls r where
    l.customer_num = r.customer_num
 

Last parsed SQL statement :
  select l.customer_num, l.lname, l.company,   l.phone, r.call_dtime,
    r.call_descr from customer l, vjp_stores@gilroy:cust_calls r where
    l.customer_num = r.customer_num

The onperf utility on UNIX™
The onperf  utility is a windowing environment that you can use to monitor the database server performance. The onperf 

utility monitors the database server running on the UNIX™  operating system.

Related reference

Database server tools  on page 22

Overview of the onperf utility
The onperf  utility is a graphical tool that you can use for displaying most of the same database server metrics that you can 

view on onstat  utility reports.

The onperf  utility provides the following advantages over the onstat  utility:

• Displays metric values graphically in real time

• Allows you to choose which metrics to monitor

• Allows you to scroll back to previous metric values to analyze a trend

• Allows you to save performance data to a file for review at a later time

You cannot use the onperf  utility on High-Availability Data Replication (HDR) secondary servers, remote standalone (RS) 

secondary servers, or shared disk (SD) secondary servers.

Basic onperf utility functions
The onperf  utility displays the values of the database server metrics in a tool window and saves the database server metric 

values to a file. You can review the contents of this file.



Chapter 1. Performance Guide

Display metric values
The onperf  utility displays database server metrics obtained from shared memory.

When onperf starts, it activates the following processes:

• The onperf process.  This process controls the display of onperf  tools.

• The data-collector process.  This process attaches to shared memory and passes performance information to the 

onperf  process for display in an onperf  tool.

An onperf  tool is a Motif window that an onperf  process manages, as Figure 92: Data flow from shared memory to an onperf 

tool window  on page 453 shows.

Figure  92. Data flow from shared memory to an onperf tool window

Save metric values to a file
The onperf  utility saves collected metrics in a history file.

The onperf  utility allows designated metrics to be continually buffered. The data collector writes these metrics to a circular 

buffer called the data-collector buffer. When the buffer becomes full, the oldest values are overwritten as the data collector 

continues to add data. The current contents of the data-collector buffer are saved to a history file, as Figure 93: How onperf 

saves performance data  on page 453 illustrates.

Figure  93. How onperf saves performance data

The onperf  utility uses either a binary format or an ASCII representation for data in the history file. The binary format is host-

dependent and allows data to be written quickly. The ASCII format is portable across platforms.

You have control over the set of metrics stored in the data-collector buffer and the number of samples. You could buffer all 

metrics; however, this action might consume more memory than is feasible. A single metric measurement requires 8 bytes 

of memory. For example, if the sampling frequency is one sample per second, then to buffer 200 metrics for 3,600 samples 

453



HCL Informix 14.10 - Performance Guide

454

requires approximately 5.5 megabytes of memory. If this process represents too much memory, you must reduce the depth 

of the data-collector buffer, the sampling frequency, or the number of buffered metrics.

To configure the buffer depth or the sampling frequency, you can use the Configuration dialog box. For more information 

about the Configuration dialog box, see The graph-tool Configure menu and the Configuration dialog box  on page 460.

Review metric measurements
You can review the contents of a history file in a tool window. When you request a tool to display a history file, the onperf 

utility starts a playback process that reads the data from disk and sends the data to the tool for display.

The playback process is similar to the data-collector process mentioned under Save metric values to a file  on page 453. 

However, instead of reading data from shared memory, the playback process reads measurements from a history file. Figure 

94: Flow of data from a history file to an onperf tool window  on page 454 shows the playback process.

Figure  94. Flow of data from a history file to an onperf tool window

onperf utility tools
The onperf  utility provides Motif windows, called tools, which display metric values.

Table  22. onperf  utility tools

Tool Description

Graph tool This tool allows you to monitor general performance activity. You can use this tool to 

display any combination of metrics that onperf supports and to display the contents 

of a history file. For more information, see Graph tool  on page 456.

Query-tree tool This tool displays the progress of individual queries. For more information, see 

Query-tree tool  on page 463.

Status tool This tool displays status information about the database server and allows you to 

save the data that is currently held in the data-collector buffer to a file. For more 

information, see Status tool  on page 463.

Activity tools These tools display specific database server activities. Activity tools include 

disk, session, disk-capacity, physical-processor, and virtual-processor tools. The 

physical-processor and virtual-processor tools, respectively, display information 

about all CPUs and VPs. The other activity tools each display the top 10 instances 

of a resource ranked by a suitable activity measurement. For more information, see 

Activity tools  on page 464.



Chapter 1. Performance Guide

Requirements for running the onperf utility
The computer that is running the onperf  utility must support the X terminal and the mwm  window manager.

When you install the database server, the following executable files are written to the  $INFORMIXDIR/bin  directory:

• onperf

• onedcu

• onedpu

• xtree

In addition, the onperf.hlp  online help file is placed in the directory $INFORMIXDIR/hhelp.

When the database server is installed and running in online mode, you can bring up onperf  tools either on the computer 

that is running the database server or on a remote computer or terminal that can communicate with your database server 

instance. Figure 95: Two options for running onperf  on page 455 illustrates both possibilities. In either case, the computer 

that is running the onperf  tools must support the X terminal and the mwm  window manager.

Figure  95. Two options for running onperf

Starting the onperf utility and exiting from it
Before you start the onperf  utility, set the DISPLAY  and LD_LIBRARY_PATH  environment variables.

Prerequisite: Set the DISPLAY  environment variable as follows:

C shell         setenv DISPLAY displayname0:0 #
 

Bourne shell    DISPLAY=displayname0:0 # 

In these commands, displayname is the name of the computer or X terminal where the onperf  window should appear.

455



HCL Informix 14.10 - Performance Guide

456

Set the LD_LIBRARY_PATH  environment variable to the appropriate value for the Motif libraries on the computer that is 

running onperf.

With the environment properly set up, you can enter onperf  to bring up a graph-tool window, as described in The onperf user 

interface  on page 456.

You can monitor multiple database server instances from the same Motif client by invoking onperf  for each database server, 

as the following example shows:

INFORMIXSERVER=instance1 ; export INFORMIXSERVER; onperf
INFORMIXSERVER=instance2 ; export INFORMIXSERVER; onperf
...

Exiting from the onperf Utility

To exit from the onperf  utility, use the Close  option to close each tool window, use the Exit  option of a tool, or choose 

Window Manager >  Close.

The onperf user interface
When you invoke the onperf  utility, it displays an initial graph-tool window. From this graph-tool window, you can display 

additional graph-tool windows as well as the query-tree, data-collector, and activity tools.

The graph-tool windows have no hierarchy; you can create and close these windows in any order.

Graph tool
The graph tool is the principal onperf  interface. Use the graph tool to display any set of database server metrics that the 

onperf  data collector obtains from shared memory.

The Figure 96: Graph-Tool window  on page 456 shows a diagram of a graph tool that displays a graph of metrics for ISAM 

calls.

Figure  96. Graph-Tool window

You cannot bring up a graph-tool window from a query-tree tool, a status tool, or one of the activity tools.



Chapter 1. Performance Guide

Graph-tool title bar
When you invoke onperf, the initial graph-tool window displays serverName, the database server that the INFORMIXSERVER 

environment variable specifies, in the title bar. The data comes from the shared memory of the indicated database server 

instance.

If the configuration of an initial graph-tool has not yet been saved or loaded from disk, onperf  does not display the name of a 

configuration file in the title bar.

If you open a historical data file, for example named caselog.23April.2PM, in this graph-tool window, the title bar displays 

caselog.23.April.23.April.2PM.

Graph-tool graph menu
The Graph  menu contains options for creating, opening, saving the contents of, printing the contents of, annotating, and 

closing a graph tool.

The Graph  menu provides the following options.

Option

Use

New

Creates a new graph tool. All graph tools that you create using this option share the same data-collector and 

onperf  processes. To create new graph tools, use this option rather than invoke onperf  multiple times.

Open History File

Loads a previously saved file of historical data into the graph tool for viewing. If the file does not exist, onperf 

prompts you for one. When you select a file, onperf  starts a playback process to view the file.

Save History File

Saves the contents of the data-collector buffer to either an ASCII or a binary file, as specified in the 

Configuration dialog box.

Save History File As

Specifies the filename in which to save the contents of the data-collector buffer.

Annotate

Brings up a dialog box in which you can enter a header label and a footer label. Each label is optional. The 

labels are displayed on the graph. When you save the graph configuration, onperf  includes these labels in the 

saved configuration file.

Print

Brings up a dialog box that allows you to select a destination file. You cannot send the contents of the graph 

tool directly to a printer; you must use this option to specify a file and subsequently send the file to a printer.

457



HCL Informix 14.10 - Performance Guide

458

Close

Closes the tool. When a tool is the last remaining tool of the onperf  session, this menu item behaves in the 

same way as the Exit  option.

Exit

Exits onperf.

Important:  To save your current configuration before you load a new configuration from a file, you must 

choose Configure >  Save Configuration  or Configure >  Save Configuration As.

Graph-tool metrics menu
The Metrics  menu contains options for choosing the class of metrics to display in the graph tool.

Metrics are organized by class  and scope. When you select a metric for the graph tool to display, you must specify the metric 

class, the metric scope, and the name of the metric.

The metric class  is the generic database server component or activity that the metric monitors. The metric scope  depends 

on the metric class. In some cases, the metric scope indicates a particular component or activity. In other cases, the scope 

indicates all activities of a given type across an instance of the database server.

The Metrics  menu has a separate option for each class of metrics. For more information about metrics, see Why you might 

want to use onperf  on page 464.

When you choose a class, such as Server, you see a dialog box like the one in Figure 97: The Select Metrics dialog box  on 

page 458.

Figure  97. The Select Metrics dialog box

The Select Metrics dialog box contains three list boxes. The list box on the left displays the valid scope levels for the 

selected metrics class. For example, when the scope is set to Server, the list box displays the dbservername of the database 

server instance that is being monitored. When you select a scope from this list, onperf  displays the individual metrics that 



Chapter 1. Performance Guide

are available within that scope in the middle list box. You can select one or more individual metrics from this list and add 

them to the display by clicking Add. To remove them from the display, click Remove.

Tip:  You can display metrics from more than one class in a single graph-tool window. For example, you might first 

select ISAM  Calls, Opens, and Starts  from the Server  class. When you choose the Option  menu in the same dialog 

box, you can select another metric class without exiting the dialog box. For example, you might select the Chunks 

metric class and add the Operations, Reads, and Writes  metrics to the display.

The Filter  button in the dialog box brings up an additional dialog box in which you can filter long text strings shown in 

the Metrics dialog box. The Filter dialog box also lets you select tables or fragments for which metrics are not currently 

displayed.

After you make your selections, you can click OK to proceed, or Cancel if you choose not to proceed.

Graph-tool view menu
The View  menu contains options for changing how the graph tool appears.

The View  menu provides the following options.

Line

Changes the graph tool to the line format. Line format includes horizontal and vertical scroll bars. The vertical 

scroll bar adjusts the scale of the horizontal time axis. When you raise this bar, onperf  reduces the scale and 

vice versa. The horizontal scroll bar allows you to adjust your view along the horizontal time axis.

To change the color and width of the lines in the line format, click the legend in the graph tool. When you do, 

onperf  generates a Customize Metric dialog box that provides a choice of line color and width.

Horizontal Bar Graph

Changes the graph tool to the horizontal bar format.

Vertical Bar Graph

Changes the graph tool to the vertical bar format.

Pie

Changes the graph tool to the pie-chart format. To display a pie chart, you must select at least two metrics.

Quick Rescale Axis

Rescales the axis to the largest point that is currently visible on the graph. This button turns off automatic 

rescaling.

Configure Axis

Displays the Axis Configuration dialog box. Use this dialog box to select a fixed value for the y-axis on the graph 

or select automatic axis scaling.

459



HCL Informix 14.10 - Performance Guide

460

The graph-tool Configure menu and the Configuration dialog box
The Configure  menu contains options of opening, editing, and saving onperf  configuration information.

The Configure  menu provides the following options.

Edit Configuration

Brings up the Configuration dialog box, which allows you to change the settings for the current data-collector 

buffer, graph-tool display options, and data-collector options. The Configuration dialog box appears in Figure 

98: The Configuration dialog box  on page 460.

Open Configuration

Restarts onperf  with the settings that are stored in the configuration file. Unsaved data in the data-collector 

buffer is lost. If no configuration file is specified and the default does not exist, the following error message 

appears:

Open file filename  failed.

If the specified configuration file does not exist, onperf  prompts for one.

Save Configuration

Saves the current configuration to a file. If no configuration file is currently specified, onperf  prompts for one.

Save Configuration As

Saves a configuration file. This option always prompts for a filename.

To configure data-collector options, graph-display options, and metrics about which to collect data, choose the Edit 

Configuration option to bring up the Configuration dialog box.

Figure  98. The Configuration dialog box



Chapter 1. Performance Guide

The Configuration dialog box provides the following options for configuring display.

Option

Use

History Buffer Configuration

Allows you to select a metric class and metric scope to include in the data-collector buffer. The data collector 

gathers information about all metrics that belong to the indicated class and scope.

Graph Display Options

Allows you to adjust the size of the graph portion that scrolls off to the left when the display reaches the right 

edge, the initial time interval that the graph is to span, and the frequency with which the display is updated.

Data Collector Options

Controls the collection of data. The sample interval indicates the amount of time to wait between recorded 

samples. The history depth indicates the number of samples to retain in the data-collector buffer. The save 

mode indicates the data-collector data should be saved in binary or ASCII format.

Graph-tool Tools menu
The Tools  menu contains options that start additional onperf  tools.

This menu provides the following options.

Query Tree

Starts a query-tree tool. For more information, see Query-tree tool  on page 463.

Status

Starts a status tool. For more information, see Status tool  on page 463.

Disk Activity

Starts a disk-activity tool. For more information, see Activity tools  on page 464.

Session Activity

Starts a session-activity tool. For more information, see Activity tools  on page 464.

Disk Capacity

Starts a disk-capacity tool. For more information, see Activity tools  on page 464.

Physical Processor Activity

Starts a physical-processor tool. For more information, see Activity tools  on page 464.

Virtual Processor Activity

Starts a virtual-processor tool. For more information, see Activity tools  on page 464.

461



HCL Informix 14.10 - Performance Guide

462

Changing the scale of metrics
When onperf  displays metrics, it automatically adjusts the scale of the y-axis to accommodate the largest value. You can use 

the Customize Metric dialog box to establish one for the current display.

For more information, see Graph-tool view menu  on page 459.

Displaying recent-history values
When you use the onperf  utility, you can scroll back over previous metric values that are displayed in a line graph. This is 

useful for analyzing recent trends.

The time interval to which you can scroll back is the lesser  of the following intervals:

• The time interval over which the metric has been displayed

• The history interval that the graph-tool Configuration dialog box specifies

The length of time you can scroll back through cannot exceed the depth of the data-collector buffer.

For more information, see The graph-tool Configure menu and the Configuration dialog box  on page 460.

Figure 99: Maximum scrollable intervals for metrics that span different time periods  on page 462 illustrates the maximum 

scrollable intervals for metrics that span different time periods.

Figure  99. Maximum scrollable intervals for metrics that span different time periods



Chapter 1. Performance Guide

Query-tree tool
The query-tree tool contains options for monitoring the performance of individual queries.

The query-tree tool is a separate executable tool that does not use the data-collector process. You cannot save query-tree 

tool data to a file.

This tool includes a Select Session  button and a Quit  button. When you select a session that is running a query, the large 

detail window displays the SQL  operators that constitute the execution plan for the query. The query-tree tool represents 

each SQL  operator with a box. Each box includes a dial that indicates rows per second and a number that indicates input 

rows. In some cases, not all the SQL  operators can be represented in the detail window. The smaller window shows the SQL 

operators as small icons.

The Quit  button allows you to exit from the query-tree tool.

Status tool
The status tool enables you to select metrics to store in the data-collector buffer. In addition, you can use this tool to save 

the data currently held in the data-collector buffer to a file.

Figure 100: Status Tool window  on page 463 shows a status tool.

The status tool displays:

• The length of time that the data collector has been running

• The size of the data-collector process area, called the collector virtual memory size

When you select different metrics to store in the data-collector buffer, you see different values for the collector virtual 

memory size.

Figure  100. Status Tool window

The status tool File  menu provides the following options.

Option

Use

463



HCL Informix 14.10 - Performance Guide

464

Close

This option closes the tool. When it is the last remaining tool of the onperf  session, Close behaves in the same 

way as Exit.

Exit

This option exits onperf.

Activity tools
Activity tools are specialized forms of the graph tool that display instances of the specific activity, based on a ranking of the 

activity by some suitable metric.

You can choose from among the following activity tools:

• The disk-activity tool, which displays the top 10 activities ranked by total operations

• The session-activity tool, which displays the top 10 activities ranked by ISAM  calls plus PDQ calls per second

• The disk-capacity tool, which displays the top 10 activities ranked by free space in megabytes

• The physical-processor-activity tool, which displays all processors ranked by nonidle CPU time

• The virtual-processor-activity tool, which displays all VPs ranked by VP user time plus VP system time

The activity tools use the bar-graph format. You cannot change the scale of an activity tool manually; onperf  always sets this 

value automatically.

The Graph  menu provides you with options for closing, printing, and exiting the activity tool.

Why you might want to use onperf
You can use the onperf  utility for routine monitoring, diagnosing sudden performance loss, and diagnosing performance 

degradation.

The following sections provide suggestions for different ways to use the onperf  utility.

Routine monitoring with onperf
You can use the onperf  utility to facilitate routine monitoring. For example, you can display several metrics in a graph-tool 

window and run this tool throughout the day.

Displaying these metrics allows you to monitor database server performance visually at any time.

Diagnosing sudden performance loss
When you detect a sudden performance dip, you can use the onperf  utility to examine the recent history of the database 

server metrics values to identify any trend.

The onperf  utility allows you to scroll back over a time interval, as explained in Displaying recent-history values  on 

page 462.



Chapter 1. Performance Guide

Diagnosing performance degradation
You can save the metrics that the onperf  utility displays, so you can analyze it and compare it to other saved information. 

This can be useful when analyzing performance problems that gradually develop and might be difficult to diagnose.

For example, if you detect a degradation in database server response time, it might not be obvious from looking at the 

current metrics which value is responsible for the slowdown. The performance degradation might also be sufficiently gradual 

that you cannot detect a change by observing the recent history of metric values. To allow for comparisons over longer 

intervals, onperf  allows you to save metric values to a file, as explained in Status tool  on page 463.

onperf utility metrics
When you use the onperf  utility, you can view various metric classes.

The following sections describe these metric classes. Each section indicates the scope levels available and describes the 

metrics within each class.

Database server performance depends on many factors, including the operating-system configuration, the database server 

configuration, and the workload. It is difficult to describe relationships between onperf  metrics and specific performance 

characteristics.

The approach taken here is to describe each metric without speculating on what specific performance problems it might 

indicate. Through experimentation, you can determine which metrics best monitor performance for a specific database 

server instance.

Database server metrics
The onperf  utility displays metrics for the named database server, rather than a component of the database server or disk 

space.

The onperf  utility displays the following database server metrics.

Metric Name Description

CPU System Time System time, as defined by the platform vendor

CPU User Time User time, as defined by the platform vendor

Percent Cached (Read) Percentage of all read operations that are read from the buffer cache without requiring 

a disk read, calculated as follows:

100 * ((buffer_reads — disk_reads) /
    (buffer_reads)) 

Percent Cached (Write) Percentage of all write operations that are buffer writes, calculated as follows:

100 * ((buffer_writes — disk_writes) /
    (buffer_writes)) 

Disk Reads Total number of read operations from disk

465



HCL Informix 14.10 - Performance Guide

466

Metric Name Description

Disk Writes Total number of write operations to disk

Page Reads Number of pages read from disk

Page Writes Number of pages transferred to disk

Buffer Reads Number of reads from the buffer cache

Buffer Writes Number of writes to the buffer cache

Calls Number of calls received at the database server

Reads Number of read calls received at the database server

Writes Number of write calls received at the database server

Rewrites Number of rewrite calls received at the database server

Deletes Number of delete calls received at the database server

Commits Number of commit calls received at the database server

Rollbacks Number of rollback calls received at the database server

Table Overflows Number of times that the tblspace table was unavailable (overflowed)

Lock Overflows Number of times that the lock table was unavailable (overflowed)

User Overflows Number of times that the user table was unavailable (overflowed)

Checkpoints Number of checkpoints written since database server shared memory began

Buffer Waits Number of times that a thread waited to access a buffer

Lock Waits Number of times that a thread waited for a lock

Lock Requests Number of times that a lock was requested

Deadlocks Number of deadlocks detected

Deadlock Timeouts Number of deadlock timeouts that occurred (Deadlock timeouts involve distributed 

transactions.)

Checkpoint Waits Number of checkpoint waits; in other words, the number of times that threads have 

waited for a checkpoint to complete

Index to Data Pages Read-aheads Number of read-ahead operations for index keys

Index Leaves Read-aheads Number of read-ahead operations for index leaf nodes

Data-path-only Read-aheads Number of read-ahead operations for data pages

Latch Requests Number of latch requests

Network Reads Number of ASF messages read



Chapter 1. Performance Guide

Metric Name Description

Network Writes Number of ASF messages written

Memory Allocated Amount of database server virtual-address space in kilobytes

Memory Used Amount of database server shared memory in kilobytes

Temp Space Used Amount of shared memory allocated for temporary tables in kilobytes

PDQ Calls The total number of parallel-processing actions that the database server performed

DSS Memory Amount of memory currently in use for decision-support queries

Disk-chunk metrics
The onperf  utility can display metrics for a specific disk chunk.

The disk-chunk metrics take the path name of a chunk as the metric scope.

Metric Name Description

Disk Operations Total number of I/O operations to or from the indicated chunk

Disk Reads Total number of reads from the chunk

Disk Writes Total number of writes to the chunk

Free Space (MB) The amount of free space available in megabytes

Disk-spindle metrics
The onperf  utility can display metrics for a disk spindle.

The disk-spindle metrics take the path name of a disk device or operation-system file as the metric scope.

Metric Name Description

Disk Operations Total number of I/O operations to or from the indicated disk or buffered 

operating-system file

Disk Reads Total number of reads from the disk or operating-system file

Disk Writes Total number of writes to the disk or operating-system file

Free Space The amount of free space available in megabytes

Physical-processor metrics
The onperf  utility can display CPU metrics.

The physical-processor metrics take either a physical-processor identifier (for example, 0  or 1) or Total  as the metric scope.

467



HCL Informix 14.10 - Performance Guide

468

Metric Name Description

Percent CPU System Time CPU system time for the physical processors

Percent CPU User Time CPU user time for the physical processors

Percent CPU Idle Time CPU idle time for the physical processors

Percent CPU Time The sum of CPU system time and CPU user time for the physical processors

Virtual-processor metrics
The onperf  utility can display metrics for a virtual-processor class.

These metrics take a virtual-processor class as a metric scope (cpu, aio, kaio, and so on). Each metric value represents a 

sum across all instances of this virtual-processor class.

Metric Name Description

User Time Accumulated user time for a class

System Time Accumulated system time for a class

Semaphore Operations Total count of semaphore operations

Busy Waits Number of times that virtual processors in class avoided a context switch by spinning 

in a loop before going to sleep

Spins Number of times through the loop

I/O Operations Number of I/O operations per second

I/O Reads Number of read operations per second

I/O Writes Number of write operations per second

Session metrics
The onperf  utility can display metrics for an active session.

These metrics take the active session as the metric scope.

Metric Name Description

Page Reads Number of pages read from disk on behalf of a session

Page Writes Number of pages written to disk on behalf of a session

Number of Threads Number of threads currently running for the session

Lock Requests Number of lock requests issued by the session

Lock Waits Number of lock waits for session threads



Chapter 1. Performance Guide

Metric Name Description

Deadlocks Number of deadlocks involving threads that belong to the session

Deadlock timeouts Number of deadlock timeouts involving threads that belong to the session

Log Records Number of log records written by the session

ISAM Calls Number of ISAM calls by session

ISAM Reads Number of ISAM read calls by session

ISAM Writes Number of ISAM write calls by session

ISAM Rewrites Number of ISAM rewrite calls by session

ISAM Deletes Number of ISAM delete calls by session

ISAM Commits Number of ISAM commit calls by session

ISAM Rollbacks Number of ISAM rollback calls by session

Long Transactions Number of long transactions owned by session

Buffer Reads Number of buffer reads performed by session

Buffer Writes Number of buffer writes performed by session

Log Space Used Amount of logical-log space used

Maximum Log Space Used High-watermark of logical-log space used for this session

Sequential Scans Number of sequential scans initiated by session

PDQ Calls Number of parallel-processing actions performed for queries initiated by the session

Memory Allocated Memory allocated for the session in kilobytes

Memory Used Memory used by the session in kilobytes

Tblspace metrics
The onperf  utility can display metrics for a particular tblspace.

A tblspace name is composed of the database name, a colon, and the table name (database:table).

For fragmented tables, the tblspace represents the sum of all fragments in a table. To obtain measurements for an individual 

fragment in a fragmented table, use the Fragment Metric class.

Metric Name Description

Lock Requests Total requests to lock tblspace

Lock Waits Number of times that threads waited to obtain a lock for the tblspace

Deadlocks Number of times that a deadlock involved the tblspace

469



HCL Informix 14.10 - Performance Guide

470

Metric Name Description

Deadlock Timeouts Number of times that a deadlock timeout involved the tblspace

Reads Number of read calls that involve the tblspace

Writes Number of write calls that involve the tblspace

Rewrites Number of rewrite calls that involve the tblspace

Deletes Number of delete calls that involve the tblspace

Calls Total calls that involve the tblspace

Buffer Reads Number of buffer reads that involve tblspace data

Buffer Writes Number of buffer writes that involve tblspace data

Sequential Scans Number of sequential scans of the tblspace

Percent Free Space Percent of the tblspace that is free

Pages Allocated Number of pages allocated to the tblspace

Pages Used Number of pages allocated to the tblspace that have been written

Data Pages Number of pages allocated to the tblspace that are used as data pages

Fragment metrics
The onperf  utility can display metrics for an individual table fragment.

These metrics take the dbspace of an individual table fragment as the metric scope.

Metric Name Description

Lock Requests Total requests to lock fragment

Lock Waits Number of times that threads have waited to obtain a lock for the fragment

Deadlocks Number of times that a deadlock involved the fragment

Deadlock Timeouts Number of times that a deadlock timeout involved the fragment

Reads Number of read calls that involve the fragment

Writes Number of write calls that involve the fragment

Rewrites Number of rewrite calls that involve the fragment

Deletes Number of delete calls that involve the fragment

Calls Total calls that involve the fragment

Buffer Reads Number of buffer reads that involve fragment data

Buffer Writes Number of buffer writes that involve fragment data



Chapter 1. Performance Guide

Metric Name Description

Sequential Scans Number of sequential scans of the fragment

Percent Free Space Percent of the fragment that is free

Pages Allocated Number of pages allocated to the fragment

Pages Used Number of pages allocated to the fragment that have been written to

Data Pages Number of pages allocated to the fragment that are used as data pages

Appendix

Case studies and examples
This appendix contains a case study with examples of performance-tuning methods that this publication describes.

Case study of a situation in which disks are overloaded
You can identify overloaded disks and the dbspaces that reside on those disks. After you identify the overloaded disks, you 

can correct the problem.

About this task

The following case study illustrates a situation in which the disks are overloaded. This study shows the steps taken to isolate 

the symptoms and identify the problem based on an initial report from a user, and it describes the needed correction.

A database application that does not have the wanted throughput is being examined to see how performance can be 

improved. The operating-system monitoring tools reveal that a high proportion of process time was spent idle, waiting for 

I/O. The database server administrator increases the number of CPU VPs to make more processors available to handle 

concurrent I/O. However, throughput does not increase, which indicates that one or more disks are overloaded.

To verify the I/O bottleneck, the database server administrator must identify the overloaded disks and the dbspaces that 

reside on those disks.

To identify overloaded disks and the dbspaces that reside on those disks:

471



HCL Informix 14.10 - Performance Guide

472

1. AIOqueuesTo check the asynchronous I/O (AIO) queues, use onstat -g ioq. Figure 101: Output from the onstat -g ioq option  on 

page 472 shows the output.

Figure  101. Output from the onstat -g ioq option

AIO I/O queues:
q name/id    len maxlen totalops  dskread dskwrite  dskcopy
opt   0      0      0        0        0        0        0
msc   0      0      0        0        0        0        0
aio   0      0      0        0        0        0        0
pio   0      0      1        1        0        1        0
lio   0      0      1      341        0      341        0
gfd   3      0      1      225        2      223        0
gfd   4      0      1      225        2      223        0
gfd   5      0      1      225        2      223        0
gfd   6      0      1      225        2      223        0
gfd   7      0      0        0        0        0        0
gfd   8      0      0        0        0        0        0
gfd   9      0      0        0        0        0        0
gfd  10      0      0        0        0        0        0
gfd  11      0     28    32693    29603     3090        0
gfd  12      0     18    32557    29373     3184        0
gfd  13      0     22    20446    18496     1950        0

In Figure 101: Output from the onstat -g ioq option  on page 472, the maxlen  and totalops  columns show significant 

results:

◦ The maxlen  column shows the largest backlog of I/O requests to accumulate within the queue. The last three 

queues are much longer than any other queue in this column listing.

◦ The totalops  column shows 100 times more I/O operations completed through the last three queues than for 

any other queue in the column listing.

The maxlen  and totalops  columns indicate that the I/O load is severely unbalanced.

Another way to check I/O activity is to use onstat -g iov. This option provides a slightly less detailed display for all 

VPs.

2. To check the AIO activity for each disk device associated with each queue, use onstat -g iof, as Figure 102: Partial 

output from the onstat -g iof option  on page 472 shows.

Figure  102. Partial output from the onstat -g iof option

gfd pathname         bytes read     page reads  bytes write    page writes io/s
3  /dev/infx5      85456896       41727       207394816      101267      572.9
 op type     count          avg. time
 seeks       0              N/A
 reads       13975          0.0015
 writes      51815          0.0018
 kaio_reads  0              N/A
 kaio_writes 0              N/A

Depending on how your chunks are arranged, several queues can be associated with the same device.

3. To determine the dbspaces that account for the I/O load, use onstat -d, as Figure 103: Output from the onstat -d 

option  on page 473 shows.



Chapter 1. Performance Guide

Results

Figure  103. Output from the onstat -d option

   Dbspaces
   address  number   flags    fchunk   nchunks  flags    owner    name
   c009ad00 1        1        1        1        N        informix rootdbs
   c009ad44 2        2001     2        1        N T      informix tmp1dbs
   c009ad88 3        1        3        1        N        informix oltpdbs
   c009adcc 4        1        4        1        N        informix histdbs
   c009ae10 5        2001     5        1        N T      informix tmp2dbs
   c009ae54 6        1        6        1        N        informix physdbs
   c009ae98 7        1        7        1        N        informix logidbs
   c009aedc 8        1        8        1        N        informix runsdbs
   c009af20 9        1        9        3        N        informix acctdbs
    9 active, 32 total
 

   Chunks
   address  chk/dbs offset   size     free     bpages   flags pathname
   c0099574 1   1   500000   10000    9100              PO-   /dev/infx2
   c009960c 2   2   510000   10000    9947              PO-   /dev/infx2
   c00996a4 3   3   520000   10000    9472              PO-   /dev/infx2
   c009973c 4   4   530000   250000   242492            PO-   /dev/infx2
   c00997d4 5   5   500000   10000    9947              PO-   /dev/infx4
   c009986c 6   6   510000   10000    2792              PO-   /dev/infx4
   c0099904 7   7   520000   25000    11992             PO-   /dev/infx4
   c009999c 8   8   545000   10000    9536              PO-   /dev/infx4
   c0099a34 9   9   250000  450000    4947              PO-   /dev/infx5
   c0099acc 10  9   250000  450000    4997              PO-   /dev/infx6
   c0099b64 11  9   250000  450000    169997            PO-   /dev/infx7
    11 active, 32 total

In the Chunks  output, the pathname  column indicates the disk device. The chk/dbs column indicates the numbers of the 

chunk and dbspace that reside on each disk. In this case, only one chunk is defined on each of the overloaded disks. Each 

chunk is associated with dbspace number 9.

The Dbspaces  output shows the name of the dbspace that is associated with each dbspace number. In this case, all three of 

the overloaded disks are part of the acctdbs  dbspace.

Although the original disk configuration allocated three entire disks to the acctdbs  dbspace, the activity within this dbspace 

suggests that three disks are not enough. Because the load is about equal across the three disks, it does not appear that 

the tables are necessarily laid out badly or improperly fragmented. However, you might get better performance by adding 

fragments on other disks to one or more large tables in this dbspace or by moving some tables to other disks with lighter 

loads.

Related information

onstat -g iof command: Print asynchronous I/O statistics  on page 

onstat -g ioa command: Print combined onstat -g information  on page 

onstat -g ioq command: Print I/O queue information  on page 

473

../%20adr/ids_adr_0538.html#ids_adr_0538
../%20adr/ids_adr_0538.html#ids_adr_0538
../%20adr/ids_adr_0538.html#ids_adr_0538
../%20adr/ids_adr_0538.html#ids_adr_0538
../%20adr/ids_adr_0536.html#ids_adr_0536
../%20adr/ids_adr_0536.html#ids_adr_0536
../%20adr/ids_adr_0536.html#ids_adr_0536
../%20adr/ids_adr_0536.html#ids_adr_0536
../%20adr/ids_adr_0540.html#ids_adr_0540
../%20adr/ids_adr_0540.html#ids_adr_0540
../%20adr/ids_adr_0540.html#ids_adr_0540
../%20adr/ids_adr_0540.html#ids_adr_0540


HCL Informix 14.10 - Performance Guide

474

onstat -g iov command: Print AIO VP statistics  on page 

onstat -d command: Print chunk information  on page 

../%20adr/ids_adr_0542.html#ids_adr_0542
../%20adr/ids_adr_0542.html#ids_adr_0542
../%20adr/ids_adr_0542.html#ids_adr_0542
../%20adr/ids_adr_0542.html#ids_adr_0542
../%20adr/ids_adr_0504.html#ids_adr_0504
../%20adr/ids_adr_0504.html#ids_adr_0504
../%20adr/ids_adr_0504.html#ids_adr_0504
../%20adr/ids_adr_0504.html#ids_adr_0504


Index
Special Characters

$INFORMIXDIR/bin directory 455
$INFORMIXDIR/help directory 455

Numerics
64-bit addressing

buffers 72
tuning RESIDENT configuration 
parameter 79

A
Access method

ANSI-compliant name 235
directives 337
list 233
secondary 233, 237

Access plan
defined 296
directives 337
effects of OPTCOMPIND 319
SET EXPLAIN output 309, 369
subquery 311

Activity tools (onperf)
defined 454
onperf, using 464

ADTERR configuration parameter 156
ADTMODE configuration parameter 156
Affinity

setting for processor 40
VPCLASS configuration parameter 39

AIO
queues 472
virtual processors

monitoring 56
VPs 41, 41, 41, 41

Algorithm, in-place alter 185, 324
Alice scan mode 395, 412
ALTER FRAGMENT statement

eliminating index build during 
DETACH 291, 292
least-cost index build during ATTACH 285, 
286, 287, 288, 288, 289
moving table 158
releasing space 187
when FORCE_DDL_EXEC is enabled 292

ALTER INDEX statement 185, 186, 186, 221
TO CLUSTER clause 185

ALTER TABLE statement
adding or dropping a column 185
changing data type 185
changing extent sizes 179, 181
changing lock mode 247, 247
changing sbspace characteristics 177, 177
columns part of an index 203
fast alter algorithm 204
in-place 185, 196, 324
in-place alter 197
sbspace fragmentation 270
slow alter 197
slow alter algorithm 195
smart large objects 270

Alters
in-place 204
slow 195

ANSI
Repeatable Read isolation level 251
Serializable isolation level 251

ANSI-compliant database

access-method name 235
Application developer

general responsibility 18
setting PDQ priority 360
SQLWARN array 136

Assigning table to a dbspace 158
Association records 348
Attached indexes

creating 275
defined 275
extent size 214
fragmentation 275
physical characteristics 275

Auditing
facility 7
performance, and 156

AUDITPATH configuration parameter 156
AUDITSIZE configuration parameter 156
AUS

expiration policies 378
expiration policies, changing 380
viewing UPDATE STATISTICS 
statements 380

aus_cmd_comp 377
aus_cmd_info 377
aus_cmd_list 377
Auto Update Statistics Evaluation 377
Auto Update Statistics Refresh 377
AUTO_AIOVPS configuration parameter 41, 
55, 138
AUTO_CKPTS configuration parameter 138
AUTO_LLOG

configuration parameter 147
AUTO_REPREPARE configuration 
parameter 346
auto_tune_cpu_vps task 54
Automated UPDATE STATISTICS 376

disabling 382
expiration policies 378
expiration policies, changing 380
ph_task table 382, 382
ph_threshold table 381
prioritizing databases 381
rescheduling 382
sequence of events 377
viewing generated statements 380

B
B-tree

defined 210
estimating index pages 213, 215
generic 234, 426
index usage 233

B-tree scanner
alice mode 395, 412
compression level 414
configuring to improve transaction 
processing 395
index compression level 415
leaf mode 414
leaf scan mode 395
range mode 414
scan modes 395, 412, 414

Background I/O
dynamic log files 147

Background I/O activities 137
Backup and restore

fragmentation strategy for 268

Backups
and restore

table placement 161, 270
BAR_MAX_BACKUP configuration 
parameter 152
BAR_NB_XPORT_COUNT configuration 
parameter 152
BAR_PROGRESS_FREQ configuration 
parameter 152
BAR_XFER_BUF_SIZE configuration 
parameter 152
BATCHEDREAD_TABLE configuration 
parameter 134
Benchmarks, for throughput 8
BLOB data type

defined 113
Blobpage

estimating number in tblspace 165
fullness explained 127
fullness, determining 125
fullness, interpreting average 127
logical log size 145
oncheck -pB display 125
oncheck utility

blobpage information 125
size 124
size and storage efficiency 125
sizing in blobspace 124
storage statistics 125
when to store in blobspace 166

Blobspaces
advantages over dbspace 123
configuration effects 123
determining fullness 125
Parallel

access to table and simple large 
objects 123

simple large objects 166
Simple large objects

parallel access 123
specifying in CREATE TABLE 123
storage statistics 125
when to use 166

BOUND_IMPL_PDQ session environment 
variable 364
Branch index pages 210
btree_ops operator class 241, 241, 241
BTSCANNER configuration parameter 415
Buffer pool portion of shared memory 64
Buffer pools

64-bit addressing 72, 79
BUFFERPOOL configuration parameter 72
bypass with light scans 134
bypass with lightweight I/O 131
for non-default page sizes 72
LRU queues 150
network 50, 51
read cache rate 72
size, smart large objects 128
smart large objects 72, 128, 131

Buffered
logging 113

BUFFERPOOL configuration parameter 62, 64, 
72, 128, 138, 150, 156
Buffers

data replication 105
free network 52
lightweight I/O 131

475



logical log 77, 128
network 51
network, monitoring 52
physical log 77
TCP/IP connections 50

Built-in data types
B-tree index 210
B-tree index, generic 235
functional index 210

BYTE data type
blobspace 123
estimating table size 162
locating 166
memory cache 132
on disk 166
parallel access 128
staging area 132
storing 166

Byte-range locking
byte lock 254
defined 261
monitoring 262
setting 261

C
Cache

aggregate 330
data dictionary 83, 86, 87, 88
data distribution 83, 87, 88
defined 83
opclass 330
SQL statements 90
typename 330
UDRs 330

Caches
private memory 58

Cardinality
changes, and UPDATE STATISTICS 384

Case studies, extended 471
Central processing unit

configuration parameters that affect 36
connections and 59, 60
environment variables that affect 36
utilization and 13
VPs and 53

CHAR data type
converting to VARCHAR 205
GLS recommendations 326
key-only scans 296

Checking indexes 232
Checkpoints

automatic 138
Checkpoints

when occur 139
configuration parameters affecting 137
defined 139
flushing of regular buffers 156
logging and performance 142
monitoring 139
physical log, effect on 141
specifying interval 139
when occur 137

Chunks
critical data 111, 183
dbspace configuration, and 107
disk partitions, and 108

CKPTINTVL configuration parameter 139
Class name, virtual processors 37
CLEANERS configuration parameter 150, 150
CLOB data type 113
Clustered index 185, 228

Clustering
configuration parameters that affect it 222
defined 221
index for sequential access 323

Collection-derived table
defined 312
folded into parent query 313
improving performance 313
query plan for 312

Collections
scan 312, 312

Columns
filter expression, with join 300
filtered 220
with duplicate keys 220

Commands
UNIX

cron 69
iostat 21
ps 21
sar 21, 72
time 10
vmstat 21, 72

COMMIT WORK statement 7
Committed Read isolation level 134, 249, 250
Committed Read Last Committed isolation 
level 134
Complex query, example of 308
Composite index 393, 393

order of columns 393
use of 393

Compressing
fragments 208
tables 208

Compression
benefits 208

Concurrency
defined 244
effects of isolation level 249
fragmentation 266
isolation level, effects of 248, 297
locks, page 255
locks, row and key 245
locks, table 246, 255
page lock on index 245

Concurrent I/O
confirming use of 110
enabling 110
overview 108, 110

Configuration
evaluating 19

Configuration parameters
ADTERR 156
ADTMODE 156
affecting

auditing 156
backup and restore 152
checkpoints 137
connections 51
CPU 36
critical data 114
data dictionary 87, 88
data distributions 88, 88
ipcshm connection 48, 67
logging I/O 142
logical log 114
memory 69
network free buffer 51
ON-Bar utility 152
page cleaning 150
physical log 114

poll threads 33, 33, 46, 54
recovery 153
rollback 153
root dbspace 114
SQL statement cache 97, 430
SQL statement cache cleaning 97
SQL statement cache hits 83, 92, 93, 93, 
94, 98, 99, 100, 101
SQL statement cache memory 83, 92
SQL statement cache pools 101
SQL statement cache size 83, 99
SQL statement memory limit 99
UDR cache buckets 330
UDR cache entries 330

AUDITPATH 156
AUDITSIZE 156
AUTO_AIOVPS 41, 55, 138
AUTO_CKPTS 138
AUTO_REPREPARE 346
BAR_MAX_BACKUP 152
BAR_NB_XPORT_COUNT 152
BAR_PROGRESS_FREQ 152
BAR_XFER_BUF_SIZE 152
BTSCANNER 415
BUFFERPOOL 62, 64, 72, 128, 138, 156
CKPTINTVL 139
CLEANERS 150
controlling PDQ resources 356
CPU, and 33
DATASKIP 136
DBSPACETEMP 115, 118, 120, 161, 229
DD_HASHMAX 83, 87
DD_HASHSIZE 83, 87
DEADLOCK_TIMEOUT 259
DEF_TABLE_LOCKMODE 247, 247
DIRECT_IO 109, 110, 110
DIRECTIVES 346, 346
DRAUTO 155
DRINTERVAL 155
DRLOSTFOUND 155
DRTIMEOUT 155
DS_HASHSIZE 83, 88
DS_MAX_QUERIES 45
DS_MAX_SCANS 46, 356, 356, 362
DS_POOLSIZE 83, 88
DS_TOTAL_MEMORY 74, 229, 356
FASTPOLL 50
FILLFACTOR 215
HDR_TXN_SCOPE 155
INFORMIXOPCACHE 133
LOCKBUFF 62
LOCKS 62, 78, 255
LOGBUFF 77, 114, 128, 143
LOGFILES 140
LOGSIZE 140, 144, 145
LOW_MEMORY_RESERVE 77, 154
LTAPEBLK 153
LTAPEDEV 153
LTAPESIZE 153
LTXEHWM 148
LTXHWM 148
MAX_FILL_DATA_PAGES 208
MAX_PDQPRIORITY 36, 44, 359, 362, 365, 
366, 420
MIRROROFFSET 114
MIRRORPATH 114
MULTIPROCESSOR 43
NETTYPE 33, 48, 49, 51, 51, 54, 67
NS_CACHE 49
NUMFDSERVERS 49
OFF_RECVRY_THREADS 153

476



ON_RECVRY_THREADS 153
ONDBSPACEDOWN 142
ONLIDX_MAXMEM 229
OPCACHEMAX 133, 133
OPT_GOAL 423
OPTCOMPIND 36, 43, 346, 363
PC_HASHSIZE 83, 330
PC_POOLSIZE 83, 330
PHYSBUFF 62, 77, 143
PHYSFILE 141
PLCY_HASHSIZE 83
PLCY_POOLSIZE 83
PLOG_OVERFLOW_PATH 154
RESIDENT 79
ROOTNAME 114
ROOTOFFSET 114
ROOTPATH 114
ROOTSIZE 114
RTO_SERVER_RESTART 138, 139, 151, 154
SBSPACENAME 121, 128
SBSPACETEMP 121, 121, 122, 122, 122, 
122
SESSION_LIMIT_LOGSPACE 149
SESSION_LIMIT_TXN_TIME 149
SHMADD 63
SHMBASE 69
SHMMAX 80, 81
SHMTOTAL 63, 81
SHMVIRT_ALLOCSEG 82
SHMVIRTSIZE 63, 65, 81
SINGLE_CPU_VP 43
STACKSIZE 83
STAGEBLOB 133, 133
STMT_CACHE 430
STMT_CACHE_HITS 83, 92, 93, 94, 96, 98, 
100, 101
STMT_CACHE_NOLIMIT 83, 92
STMT_CACHE_NUMPOOL 101
STMT_CACHE_SIZE 83, 97, 99
TAPEBLK 153
TAPEDEV 153
TAPESIZE 153
TBLTBLFIRST 167
TBLTBLNEXT 167
USELASTCOMMITTED 250
USRC_HASHSIZE 83
USRC_POOLSIZE 83
VP_MEMORY_CACHE_KB 58
VPCLASS 37, 37, 37, 39, 39, 39, 39, 40, 41

CONNECT statement 108
Connections

CPU 59, 60
improving performance 49
improving performance with 
MaxConnect 60
multiplexed 59, 59
specifying number of 48
type, ipcshm 33, 48, 48
type, specifying 46, 47, 48

Constraints
foreign-key 192
referential 192

Contention
cost of reading a page 322
reducing with fragmentation 267

Contiguous
disk space, allocation 182
extents

advantage of performance 129, 171, 
178, 183, 184

space, eliminating interleaved extents 185

Cooked file space 108, 109
performance using concurrent I/O 108, 110
performance using direct I/O 108, 109

Correlated subquery
effect of PDQ 356

Cost of user-defined routine 425, 427, 427
Cost per transaction 11
CPU

utilization, improving with MaxConnect 60
VP class and NETTYPE 47
VPs

configuration parameters affecting 37
effect on CPU utilization 54
limited by MAX_PDQPRIORITY 44
limited by PDQ priority 36
optimal number 43
used by PDQ 357

VPs and fragmentation goals 266
CPU VPs

adding automatically 54
CREATE CLUSTER INDEX statement 221
CREATE CLUSTERED INDEX statement 36
CREATE FUNCTION statement

selectivity and cost 427
virtual-processor class 37

CREATE INDEX ONLINE statement 227, 228
CREATE INDEX statement

attached index 275
detached index 276
FILLFACTOR clause 215
generic B-tree index 234
parallel build 354
TO CLUSTER clause 185
USING clause 236

CREATE PROCEDURE statement
SPL routines, optimizing 327
SQL, optimizing 327

CREATE TABLE statement
blobspace assignment 123
creating system catalog table 108
extent sizes 179
fragmenting 275, 276

with partitions 275, 276
PUT clause 177
sbspace characteristics 177, 177
sbspace fragmentation 270
simple large objects 166
smart large objects 270
TEMP TABLE clause 115, 121
USING clause 243

CREATE TEMP TABLE statement 278
Critical data

configuration parameters that affect 114
defined 142
introduced 111
mirroring 112

Critical media
mirroring 112
separating 111

Critical resource 11
cron

UNIX scheduling facility 21, 22, 69
Cursor Stability isolation level 250

D
Data

migration between fragments 287
transfers per second 15

Data conversion 325
Data dictionary

DD_HASHMAX 87

DD_HASHSIZE 87
parameters affecting cache for 88

Data distributions
creating 316
creating on filtered columns 335
dropping 385, 385
effect on memory 63
filter selectivity 317
guidelines to create 385
how optimizer uses 316
join columns 388
multiple columns 390
parameters affect cache for 88, 88
sbspaces 389
syscolumns 385, 389
sysdistrib 385
user-defined data type 389
user-defined statistics 389, 428

Data replication
buffers 105
performance 155

Data types
BLOB 113
built-in, distinct, and opaque 233
BYTE 123, 162, 166, 166
CHAR 205, 296, 326
CLOB 113
effect of mismatch 325
NCHAR 205, 323
NVARCHAR 164, 323, 323
simple large object, for 166
TEXT 123, 162, 166, 166, 205
VARCHAR 164, 205, 205, 296, 326

Data-collector
buffer 453
process 453

Data-dictionary
cache 83, 86

advantages 86
configuring 87

Data-dictionary cache
configuring 88

Data-distribution cache
defined 87
monitoring 88

Database server administrator
allocating DSS memory 361
controlling DSS resources 44, 366
creating staging-area blobspace 132
halting database server 142
limiting number of DSS queries 363
limiting PDQ priority 365, 366
marking dbspace down 142
placing system catalog tables 108
responsibility of 18, 107, 107
specifying unavailable fragments 267
using MAX_PDQPRIORITY 365, 366

DATABASE statement 108
DataBlade API functions, smart large 
objects 128, 129, 175, 181, 264
DataBlade modules

functional index 238
new index 239
secondary access method 233
user-defined index 213, 233

DATASKIP configuration parameter 136
DB-Access utility 22, 184
dbaccess -nv command 192
dbload utility 184, 222
dbschema utility

data distributions 273

477



distribution output 389, 391, 391
examining value distribution 268

dbspaces
chunk configuration 107
configuration parameters affecting root 114
mirroring root 112
page size, specifying 218
reorganizing to prevent extent 
interleaving 184
specifying page size when creating 72
temporary tables and sort files 115, 161

DBSPACETEMP
parallel inserts 352

DBSPACETEMP configuration parameter 115, 
118, 161, 229

overriding 119
DBSPACETEMP environment variable 115, 
161, 229

advantages over PSORT_DBTEMP 119
DBUPSPACE environment variable 390
DD_HASHMAX configuration parameter 83, 87
DD_HASHSIZE configuration parameter 83, 87
Deadlock 259
DEADLOCK_TIMEOUT configuration 
parameter 259
Decision-support queries 6

balanced with transaction throughput 9
controlling resources 366
effects of DS_TOTAL_MEMORY 74
monitoring resources allocated 366, 368, 
444
monitoring threads 367, 367, 441
performance impact 11
use of temporary files 269

DEF_TABLE_LOCKMODE configuration 
parameter 247, 247
defragment

partitions 187
DELETE

run in parallel 352
Denormalizing

data model 204
tables 204

Detached index
defined 276, 276
extent size 214

Dimension table 192
Dimensional tables, defined 394
Direct I/O

confirming use of 110
enabling 110
overview 108, 109

DIRECT_IO configuration parameter 109, 110, 
110
DIRECTIVES configuration parameter 346, 346
Dirty Read isolation level 134, 253
Disk

and saturation 107
compression 208
critical data 111
layout

and table isolation 159
layout, and backup 161, 268
partitions and chunks 108
space, storing TEXT and BYTE data 125
utilization 15

Disk access
cost of reading row 322
performance 418
performance effect of 322
sequential 418

sequential forced by query 372, 372
Disk extent

for dbspaces 178
for sbspaces 129

Disk I/O
allocating AIO VPs 41
background database server activities 5
balancing 117, 122
binding AIO VPs 41
blobspace data and 123
BUFFERPOOL configuration parameter 72
contention 322
effect of UNIX configuration 35
effect of Windows configuration 35
effect on performance 107
for temporary tables and sort files 115
hot spots, definition of 107
in query plan cost 296, 304, 315
isolating critical data 111
KAIO 41, 41
light scans 134
lightweight I/O 131
log buffer size, effect of 113
logical log 132
mirroring, effect of 112
monitoring

AIO VPs 41
nonsequential access, effect of 220
query response time 9
reducing 72, 204
sbspace data and 128
sequential scans 134
simple large objects 124
smart large objects 129, 131
to physical log 114
TPC-A benchmark 8
unbuffered devices 119

Disks
identifying overloaded ones 471

Distinct data types 233
DISTINCT keyword 393
Distributed queries

improving performance 417
used with PDQ 356

Distribution scheme
defined 265
designing 271, 271, 273
methods described 270, 271

DRAUTO configuration parameter 155
DRINTERVAL configuration parameter 155
DRLOSTFOUND configuration parameter 155
DROP DISTRIBUTIONS keywords, in UPDATE 
STATISTICS statement 385, 385
DROP INDEX ONLINE statement 227, 228
Dropping indexes 222
DRTIMEOUT configuration parameter 155
DS_HASHSIZE configuration parameter 83, 88
DS_MAX_QUERIES configuration 
parameter 45, 230, 421

changing value 358
index build performance 229
limit query number 363
MGM 356

DS_MAX_SCANS configuration parameter 46, 
356, 362, 421

changing value 358
MGM 356
scan threads 356

DS_NONPDQ_QUERY_MEM configuration 
parameter 69, 119, 230, 421
DS_POOLSIZE configuration parameter 83, 88

DS_TOTAL_MEMORY configuration 
parameter 74, 229, 230, 421

changing value 358
DS_MAX QUERIES 45
estimating value 74, 361
MAX_PDQPRIORITY 358
MGM 356
setting for DSS applications 366
setting for OLTP 361

DSS applications
configuration parameter settings 70

DSS resources
limiting 358

dtcurrent() function, ESQL/C, to get current 
date and time 11
Duplicate index keys, performance effects 
of 220
Dynamic lock allocation 62, 78, 441
Dynamic log

file allocation
benefits 146
preventing hangs from rollback of long 
transaction 146
size of new log 146

E
Environment variables

affecting
CPU 36
I/O 119
multiplexed connections 59
network buffer pool 50, 52
network buffer size 50, 53
parallel sorts 120, 120
sort files 119
sorting 111, 115
SQL statement cache 430
temporary tables 111, 115, 119

DBSPACETEMP 111, 115, 119, 161, 229
DBUPSPACE 390
FET_BUF_SIZE 417
IFX_AUTO_REPREPARE 346
IFX_DEF_TABLE_LOCKMODE 247, 247
IFX_DIRECTIVES 346
IFX_LARGE_PAGES 62, 63
IFX_SESSION_MUX 59
INFORMIXOPCACHE 132, 133
OPT_GOAL 423
OPTCOMPIND 36, 43, 363
PDQPRIORITY

adjusting the value 358
for UPDATE STATISTICS 390
limiting resources 36
parallel sorts 420
requesting PDQ resources 356
setting PDQ priority 229

PSORT_DBTEMP 119
PSORT_NPROCS 36, 120, 120, 120, 229, 
420
STMT_CACHE 430

equal() function 241
Equality expression, definition of 281
ESQL/C

functions, for smart large objects 128, 129, 
175, 181, 264

Estimating space
index extent size 214
sbspaces 168
smart large objects 168

EXECUTE PROCEDURE statement 330
Expiration policies, AUS 378

478



changing 380
ph_threshold table 380

explain output file 305
EXPLAIN_SQL routine 315
EXPLAIN_STAT configuration parameter 306
Explicit temporary table 278
Expression-based distribution scheme

defined 270
designing 273
fragment elimination 281
type to use 278

EXTENT SIZE clause 179
extents

merging 187
Extents

allocating 179
attached index 276
eliminating interleaved 184
index of fragmented table 275
interleaved 183
managing 178
managing deallocation with 
TRUNCATE 187
next-extent size 179
performance 129, 178, 183
reclaiming empty space 183, 186
reorganizing dbspace to prevent 
interleaving 184
size 179
size for attached index 214
size for detached index 183, 214
size for tblspace tblspace 167
size limit 183
size, initial 167
size, next-extent 167
sizes for fragmented table 269
upper limit on number 183

External optimizer directives 334, 348

F
Fact table 192

star schema 394
Fast polling 50
Fast recovery

configuration effects 153
physical log overflow 154

FASTPOLL configuration parameter 50
FET_BUF_SIZE environment variable 417
File descriptors 35
Files

$INFORMIXDIR/bin 455
dbspaces for sort 161
executables for onperf 455
saving performance metrics 453
TEMP or TMP user environment 
variable 115

FILLFACTOR
CREATE INDEX 416

FILLFACTOR clause
CREATE INDEX statement 215

FILLFACTOR configuration parameter 215
Filter

columns 300
columns in large tables 220
defined 317, 371
effect on performance 372
effect on sorting 320
evaluated from index 393
index used to evaluate 318
memory used to evaluate 320
query plan 334

selectivity defined 317
selectivity estimates 317
user-defined routines 371

Flattened subquery 311
FORCE_DDL_EXEC environment option 292
FORCE_DDL_EXEC session environment 
option 284
Forced residency 79
Foreground write 150
Foreign-key constraints 192
Forest of trees indexes

creating 225
determining if needed 224
disabling 225
enabling 225
identifying in SET EXPLAIN output 227
implementing 225
in sysindices table 227
overview 211, 223
performing range scans 226
viewing information 227
why use 223

Formula
blobpage size 165
buffer pool size 72
connections per poll thread 48
CPU utilization 13
data buffer size, estimate of 64
decision-support queries 361
disk utilization 15
DS total memory 76, 76
extends, upper limit 183
file descriptors 35
index extent size 214, 214
index pages 162, 215
initial stack size 83
LOGSIZE 145
memory grant basis 361
minimum DS memory 75, 75
number of remainder pages 162
operating-system shared memory 68
paging delay 14
partial remainder pages 162
PDQ resources allocated 44
quantum of memory 74, 356
rows per page 162
scan threads 356

per query 46, 362
semaphores 33
service time 12
shared memory

message portion size 67
resident portion size 64, 65
virtual portion size 65

shared-memory estimate 361
shared-memory increment size 80
sort operation, costs 320
threshold for free network buffers 51

Fragment
elimination

defined 278
equality expressions 281
fragmentation expressions 279
range expressions 280

ID
and index entry 215
defined 276
fragmented table 269
space estimates 269

nonoverlapping
multiple columns 283

single column 282
overlapping

single column 282
FRAGMENT BY clause 275
Fragmentation

altering fragments 292
FRAGMENT BY EXPRESSION clause 275, 
276
goals 265
improving ATTACH operation 284, 289
improving DETACH operation 291, 292
index restrictions 278
indexes, attached 275
indexes, detached 276
monitoring I/O requests 294
monitoring with onstat 294
next-extent size 273
no data migration during ATTACH 287
reducing contention 267
smart large objects 270
strategy

ALTER FRAGMENT ATTACH clause 285, 
290
ALTER FRAGMENT DETACH clause 291, 
292
distribution schemes for fragment 
elimination 278
finer granularity of backup and 
restore 268
how data used 268
improved performance 267
improving 273
increased availability of data 267
indexes 275
planning 265
reduced contention 267
space issues 265
temporary tables 278

sysfragments system catalog 294
TEMP TABLE clause 278
temporary tables 278

Freeing shared memory 69
Functional index

creating 237, 238
DataBlade modules 238
user-defined function 210
using 237, 371

Functions, ESQL/C, dtcurrent() 11

G
Generic B-tree

index
extending 235, 235
parallel UDRs 426
user-defined data 210
when to use 234

Global file descriptor queues 56, 56
Graph tool (onperf)

bar graph 459
Configure menu 460
defined 454, 456
Graph menu 457
Graph tool (onperf)

View menu 459
metric

changing line color and width 459
changing scale 462

Metrics menu 458
pie chart 459
Tools menu 461

greaterthan() function 241

479



greaterthanorequal() function 241
GROUP BY

clause, composite index used 393
clause, indexes 318, 420
clause, MGM memory 356

H
Hash join

in directives 335, 338
more memory for 119, 421
plan example 297
temporary space 119
when used 298

HCL
Informix
MaxConnect

defined 60
HCL
Informix
Server Administrator

capabilities 23
defined 23

HDR_TXN_SCOPE configuration 
parameter 155
Home pages in indexes 162
Host variable

SQL statement cache 429
Hot spots, defined 107

I
I/O utilization

options for monitoring 29
IBM
Data Studio
 315
Identifying overloaded disks 471
IFX_AUTO_REPREPARE session environment 
variable 346
IFX_BATCHEDREAD_TABLE session 
environment variable 134
IFX_DEF_TABLE_LOCKMODE environment 
variable 247, 247
IFX_DIRECTIVES environment variable 346
IFX_EXTDIRECTIVES environment variable 349
IFX_LARGE_PAGES environment variable 62, 
63
IFX_NETBUF_PVTPOOL_SIZE environment 
variable 50, 52
IFX_NETBUF_SIZE environment variable 50, 53
IFX_SESSION_MUX environment variable 59
IMPLICIT_PDQ session environment 
variable 364
In-place alter algorithm

Alters
in-place 196

performance advantages 196
restrictions 197

Index
adding for performance 219
and previously prepared statement 
problem 346
attached index extent size 214
autoindex

for inner table 297
replacing with permanent 393

checking 232
choosing columns 219
composite 393, 393, 393, 393
cost of on NCHAR 323
cost of on NVARCHAR 323, 323
cost of on VARCHAR 296
creating in online environment 227, 228

DataBlade modules 239, 239
detached index extent size 214
disk space used by 218, 418
distinct types 233
dropping 192, 222
dropping in online environment 227, 228
duplicate entries 220
duplicate keys, avoiding 220
effect of physical order of table rows 301
estimating pages 215
estimating space 213, 215
extent size 214
filtered columns 220
functional 237, 371
impact on delete, insert, and update 
operations 218
key-only scan 296
managing 217
on CHAR column 296
on fact table in star schema 394
opaque data types 233
order-by and group-by columns 220
ordering columns in composite 393
placement on disk 213
size estimate 215
snowflake or star schemas 394
structure of entries 210
time cost 218
User-defined data types 233, 243
when not used by optimizer 326, 372, 372
when replaced by join plans 301
when to rebuild 416

Index self-join 302
Index self-join path 302
Indexes

clustered 185, 228
improving performance 393

INFORMIXOPCACHE environment 
variable 132, 133
Inner table

directives 339, 339
index 297

Input-output (I/O)
background activities 137
contention and high-use tables 159
disk saturation 107
tables, configuring 134

INSERT cursor 270
INTO TEMP clause of the SELECT 
statement 115, 117, 122, 183, 183
iostat command 21
ipcshm

connection 48
ipcshm connection 67
Isolating tables 159
Isolation level

ANSI Repeatable Read 251
ANSI Serializable 251
Committed Read 134, 249, 250
Committed Read Last Committed 134
Cursor Stability 250
Dirty Read 134, 249, 253
effect on concurrency 297
effect on joins 297
Last Committed 250
light scans 134
monitoring 23, 259
Repeatable Read 134, 251
Repeatable Read and OPTCOMPIND 319, 
319, 363
SET ISOLATION statement 249

J
Join

avoiding 372
column for composite index 393
directives 338
effect of large join on optimization 424
hash join 297
hash join, when used 298
method

directives 339
methods 297, 319
nested-loop join 297, 297
order 298, 334, 336, 343
outer 360
parallel execution 360
plan 336

defined 297
directive precedence 346
effects of OPTCOMPIND 319
hash 343, 343, 363, 369
hash, in directives 335, 338
isolation level effect 297
nested-loop 338, 340, 343
OPTCOMPIND 363
optimizer choosing 334
replacing index use 298
selected by optimizer 296
star 394
subquery 311

running UPDATE STATISTICS on 
columns 388
semi join 311
SET EXPLAIN output 363
star

directives 341
subquery 360
subquery flattening 311
thread 351
three-way 298
view 360
with column filters 300

Join and sort, reducing impact 419

K
Kernel asynchronous I/O (KAIO) 41, 41
Key-first scan 310
Key-only index scan 296, 310, 332

L
Last committed isolation level 250
Latch

defined 105
monitoring 105, 106, 106

Latency, disk I/O 322
Leaf index pages, defined 210
Leaf scan mode 395, 414
Least recently used

flushing 156
memory management algorithm 14
queues 150
thresholds for I/O to physical log 114

lessthan() function 241
lessthanorequal() function 241
Light append operations 284
Light scans

advantages 134
defined 134
isolation level 134

Lightweight I/O
when to use 72, 131

LIKE test 372

480



LO_DIRTY_READ flag 264
LO_TEMP flag

temporary smart large object 121
LOAD and UNLOAD statements 158, 184, 184, 
186, 222
Locating simple large objects 166
Lock

blobpage 124
determining owner 257
dynamic allocation 62, 78
isolation levels and join 297
promotable 252
retaining update locks 252
specifying mode 247

Lock table
specifying initial size 62, 78

LOCKBUFF configuration parameter 62
Locking

byte-range 261
Locks

byte 254
byte-range 261
changing lock mode 247
concurrency 244
configuring 255
database 247
defined 244
duration 249
exclusive 253, 254
granularity 244
initial number 255
intent 254
internal lock table 254
isolation level 249
key-value 245
maximum number of 78, 255
maximum number of rows or pages 244
monitoring 254, 255, 258, 262
not waiting for 248
page 245
row and key 245
shared 254
specifying a mode 247
table 246
types 254
update 254
waiting for 248

LOCKS configuration parameter 62, 78, 255
LOGBUFF configuration parameter 77, 114, 
128, 143
LOGFILES configuration parameter

effect on checkpoints 140
use in logical-log size determination 143

Logging
checkpoints 142
configuration effects 142
dbspaces 145
disabling on temporary tables 149
I/O activity 128
LOGSIZE configuration parameter 144, 145
none with SBSPACETEMP configuration 
parameter 121, 121
simple large objects 123, 145
smart large objects 146
with SBSPACENAME configuration 
parameter 121

Logical log
assigning files to a dbspace 111
buffer size 77
buffered 113
configuration parameters that affect 114

data replication buffers 105
determining disk space allocated 143
logging mode 113
mirroring 113
simple large objects 145
size guidelines 144
smart large objects 146
space 144
unbuffered 113
viewing records 7

LOGSSIZE configuration parameter 140
Long transaction

ALTER TABLE operation 196
configuration effects 146, 148
dynamic log effects 148
LTXHWM configuration parameter 195
preventing hangs from rollback 146

Loosely-coupled mode 448
LOW_MEMORY_RESERVE configuration 
parameter 77, 154
LRU tuning 156
lru_max_dirty value 138, 150, 156
lru_min_dirty value 138, 150, 156
LRU. 14
lrus value 150
LTAPEBLK configuration parameter 153
LTAPEDEV configuration parameter 153
LTAPESIZE configuration parameter 153
LTXEHWM configuration parameter 148
LTXHWM configuration parameter 148

M
Managing extents 178
Materialized view

defined 324
involving table hierarchy 332, 332

MAX_FILL_DATA_PAGES configuration 
parameter 208
MAX_PDQPRIORITY configuration 
parameter 44, 230, 421

and PDQPRIORITY 36
changing value 358
for DSS query limits 358, 359
increasing OLTP resources 359
limiting concurrent scans 362
limiting PDQ resources 120, 420
limiting user-requested resources 365, 366
MGM 356
PDQPRIORITY, and 360, 365

Memory
activity costs 320
cache 83

aggregate 330
data-dictionary 86

configuration parameters 69
data-replication buffers 105
estimate for sorting 230
hash join 119
hash joins 421
increase by logging 132
limited by

MAX_PDQPRIORITY 44
PDQ priority 36
STMT_CACHE_NOLIMIT 92

monitoring by session 368
monitoring MGM allocation 356
network buffer pool 50, 51, 53
opclass cache 330
PDQ priority effect 230, 358
private caches 58
private network free-buffer pool 50, 52

quantum allocated by MGM 356, 366
SPL routines 360
SQL statement cache 428
typename 330
UDR cache 330, 330
UNIX configuration parameters 35
utilizing 14
Windows parameters 35

Memory Grant Manager
defined 356
DSS queries 356
memory allocated 74
monitoring resources 356, 366, 367
scan threads 356
sort memory 230

Memory Grant Manager (MGM) 230, 421, 421
Memory-management system 14
Messages

portion of shared memory 64, 67
Metadata

area in sbspace
contents 168
estimating size 169, 169, 170
logging 146
mirroring 113
reserved space 168

improving I/O for smart large objects 170
Metric classes, onperf

database server 465
disk chunk 467
disk spindle 467
fragment 470
physical processor 467
session 468
tblspace 469
virtual processor 468

Microsoft Transaction Server
tightly coupled mode 448

Mirroring
critical media 112
root dbspace 112, 115
sbspaces 113

MIRROROFFSET configuration parameter 114
MIRRORPATH configuration parameter 114
MODIFY EXTENT SIZE keyword

in ALTER TABLE statement 179
MODIFY NEXT SIZE clause 179, 181
mon_table_profile 377
Monitoring

aggregate cache 330
AIO virtual processors 56
buffer pool 72
buffers 72
data-distribution cache 88
deadlocks 259
foreground writes 150
fragments 294
global transactions 448, 450
I/O queues for AIO VPs 41
latch waits 105, 106, 106
light scans 134
locks 254, 255, 257, 257, 258, 447, 449
locks used by sessions 255
logical-log files 31
LRU queues 150, 150
memory per thread 65
memory usage 65
memory utilization 27
MGM resources 367
network buffer size 53
network buffers 52

481



OPCACHEMAX 132
PDQ threads 367, 367
resources for a session 368
sbspace metadata size 169, 170
sbspaces 171, 171, 174
session memory 32, 65, 65, 103, 103, 432, 
432, 432, 432, 433, 433, 434, 434, 434, 434, 
434, 434, 434, 439, 439, 444, 444
sessions 439, 444
smart large objects 171
SPL routine cache 330, 330
SQL statement cache 96, 101, 435

entries 435
pool 101
size 97, 98

STAGEBLOB blobspace 132
statement cache 94, 94
statement memory 32, 432, 434
threads 439, 439, 440, 441, 442, 443

concurrent users 65
per CPU VP 43
session 43, 367

throughput 7
transaction 447
UDR cache 330, 330
user sessions 450
user threads 447, 447, 448
virtual processors 55, 56, 56

Monitoring database server
active tblspaces 182
blobspace storage 125
buffers 72
sessions 32, 438
threads 25, 438
transactions 447
virtual processors 55

Monitoring tools
database server utilities 22, 22
UNIX 21
Windows 21

Motif window manager 453, 454, 455
Multiple residency

avoiding 33
Multiplexed connection

defined 59
how to use 59
performance improvement 59

MULTIPROCESSOR configuration 
parameter 43
mwm window manager, required for 
onperf 455

N
NCHAR data type 205
Nested-loop join 297, 297, 338
NET VP class and NETTYPE 47
NETTYPE configuration parameter 49, 65

connections 51
estimating LOGSIZE 145
ipcshm connection 48, 67
network free buffer 51
poll threads 33, 54
specifying connections 46, 48

Network
buffer pools 50, 51
buffer size 53, 53
common buffer pool 50, 53
communication delays 107
connections 46
free-buffer threshold 51, 52
monitoring buffers 52

multiplexed connections 59
performance bottleneck 19
performance issues 326
private free-buffer pool 50, 52

NEXT SIZE clause 179
NFILE configuration parameters 35
NFILES configuration parameters 35
NOFILE configuration parameters 35
NOFILES configuration parameters 35
NOVALIDATE keyword

in ALTER TABLE statement 192
in SET CONSTRAINTS statement 192
in SET ENVIRONMENT statement 192

NS_CACHE configuration parameter 49
NUMFDSERVERS configuration parameter 49
NVARCHAR data type 164

table-size estimates 164

O
Obtaining 162
OFF_RECVRY_THREADS configuration 
parameter 153
OLTP applications

configuration parameter settings 70
effects of MAX_PDQPRIORITY 44
effects of PDQ 357
maximizing throughput with 
MAX_PDQPRIORITY 356, 359, 359
reducing DS_TOTAL_MEMORY 361
using MGM to limit DSS resources 356

OLTP query 6
ON_RECVRY_THREADS configuration 
parameter 153
ON-Bar utility

configuration parameters 152
onaudit utility 156
oncheck utility

-pB option 29, 125
-pe option 29, 172, 183, 185
-pk option 29
-pK option 29
-pl option 29
-pL option 29
-pp option 29
-pP option 29
-pr option 29, 201
-ps option 29
-pS option 29, 173, 173
-pt option 29, 162
-pT option 29, 201, 201
checking index pages 232
defined 29
displaying

data-page versions 201, 201
free space 185
free space in index 416
page size 201
size of table 162

index sizing 215
monitoring

table growth 179
obtaining information

blobspaces 125, 127
sbspaces 172

outstanding in-place alters 201
physical layout of chunk 183

ONDBSPACEDOWN configuration 
parameter 142
ONLIDX_MAXMEM configuration 
parameter 227, 229

onload and onunload utilities 153, 158, 184, 
186
onlog utility 7, 31
onmode -Y 305
onmode utility

-e option 429, 430
-F option 69
-p option 53
-P option 41
-W option 96

changing STMT_CACHE_NOLIMIT 99
flushing SQL statement cache 429
forced residency 79
shared-memory connections 33

onparams utility 111, 113
onperf utility

activity tools 464
data flow 453
defined 452
displaying recent history 462
graph tool 456
metric classes

database server 465
disk chunk 467
disk spindle 467
fragment 470
physical processor 467
session 468
tblspace 469
virtual processor 468

metrics 465
monitoring tool 22
query-tree tool 463
replaying metrics 454
requirements 454
saving metrics 453
starting 455
status tool 463
tools 454
user interface 456

onspaces utility
-Df option 129, 177
-S option 177
-t option 117, 122, 161, 229
EXTENT_SIZE flag for sbspaces 129
sbspaces 128
smart large objects 175

onstat utility
-- option 24
-a option 24
-b option 24, 64, 162, 165
-d option 56, 169, 170
-F option 24, 150
-g act option 439, 442
-g afr option 53
-g ath option 43, 367, 439, 441, 443
-g bth option 439
-g BTH option 439
-g cac stmt option 94
-g cpu option 439
-g dic option 88
-g dsc option 88
-g glo option 55, 59
-g ioq option 41, 56
-g mem option 27, 439, 444
-g mgm option 27, 356, 367
-g ntm option 52
-g ntu option 52
-g opn option 189
-g option 24
-g osi option 27

482



-g ppf option 294
-g prc option 330, 330
-g rea option 56
-g scn to monitor light scans 134
-g seg option 27, 65, 80
-g ses option 27, 32, 43, 65, 368, 432, 432, 
432, 432, 433, 433, 434, 434, 434, 439, 444
-g smb option 171
-g smb s option 174
-g spf option 434, 434, 434
-g spi option 101
-g sql option 32, 434, 434, 434
-g sql session-id option 447
-g ssc all option 96
-g ssc option 94, 94, 96, 97, 101, 435, 435
-g ssc output description 101
-g stm option 27, 32, 65, 65, 103, 103, 432, 
434, 434, 439, 444
-g sts option 65
-k option 254, 257, 263, 447, 449
-l option 24
-L option 258
-m option 139
-O option 132
-p option 7, 24, 72, 105, 255, 259
-R option 24
-s option 106
-t option 182
-u option 24, 65, 255, 257, 257, 367, 439, 
440, 447, 447, 450
-x option 24, 448, 448
monitoring

AIO virtual processors 56
buffer use 72
byte locks 254
locks 449
PDQ 367
sessions 440
tblspaces 182
transactions 447, 448, 448
user sessions 450
virtual processors 55, 56, 59

options for monitoring disk I/O 
utilization 29
options for monitoring threads 25
options for monitoring transactions 31
overview for performance monitoring 24

ontape utility 153, 153
Opaque data types 233
OPCACHEMAX configuration parameter

defined 133, 133
Operating system

configuration parameters 33
file descriptors 35
NOFILE, NOFILES, NFILE, or NFILES 
configuration parameters 35
semaphores 33
SHMMAX configuration parameter 68
SHMMNI configuration parameter 68
SHMSEG configuration parameter 68
SHMSIZE configuration parameter 68
timing commands 10

Operator class
defined 235, 240

OPT_GOAL configuration parameter 423
OPT_GOAL environment variable 423
OPTCOMPIND

directives 346
effects on query plan 319, 319
preferred join plan 363

OPTCOMPIND configuration parameter 36, 
43, 363
OPTCOMPIND environment variable 36, 43, 
44, 363
OPTCOMPIND session environment option 44
Optical Subsystem 132
Optimization goal

default total query time 423
precedence of settings 424
setting with directives 340, 424
total query time 423, 425
user-response and fragmented indexes 425
user-response time 423, 423, 423, 424

Optimization level
default 422
setting to low 422
table scan versus index scan 425

Optimizer
autoindex path 393
choosing query plan 334, 335
composite index use 393
data distributions used by 385
hash join 298
index not used by 372
optimization goal 340, 423
SET OPTIMIZATION statement 422, 423
specifying high or low level of 
optimization 422

Optimizer directives
access method 337
ALL_ROWS 340
altering query plan 343
AVOID_EXECUTE 371
AVOID_FULL 336, 337
AVOID_HASH 339
AVOID_INDEX 337
AVOID_INDEX_SJ 304, 337
AVOID_NL 336, 339
effect on views 338, 338
embedded in queries 333
EXPLAIN 341, 341, 371
EXPLAIN AVOID_EXECUTE 341
external 348
external directives 334
FIRST_ROWS 340, 340
FULL 337
guidelines 336, 336
INDEX 337
INDEX_SJ 337
join method 339
join order 336, 338
OPTCOMPIND 346
Optimizer directives

INDEX_SJ 304
ORDERED 336, 338, 338, 338
purpose 333
SPL routines 346, 346
star-join 336, 341
types 336
USE_HASH 339
USE_NL 339
using DIRECTIVES 346
using IFX_DIRECTIVES 346

ORDER BY clause 318, 420
Ordered merge 425
Outer join

effect on PDQ 356
Outer table 297
Output description

onstat -g ssc 101
Outstanding in-place alters

defined 201
displaying 201
performance impact 201

Overloaded disks 471

P
Page

cleaning 150
memory 14
obtaining size 162
specifying size for a standard dbspace 72, 
218

Page size 162
obtaining 64

Paging
defined 14
DS_TOTAL_MEMORY 361
expected delay 14
monitoring 21, 72
RESIDENT configuration parameter 62

Parallel
access to table and simple large 
objects 128
backup and restore 152
executing UDRs 426
index builds 354
inserts and DBSPACETEMP 352
joins 360
scans 369, 426
sorts

PDQ priority 420
when used 120

Parallel database queries
allocating resources 357
controlling resources 366
effect of table fragmentation 351
fragmentation 264
how used 352
monitoring resources allocated 366
priority

effect of remote database 356
queries that do not use PDQ 354
remote tables 356
scans 46
SET PDQPRIORITY statement 364
SPL routines 355
SQL 264
statements affected by PDQ 355
triggers 353, 354, 355
user-defined routines 426
using 351

Parallel processing
fragmentation 273, 351
MGM control of resources 356
ON-Bar utility 152
PDQ threads 351
user-defined routines 426

Parallel UDRs
defined 354, 426
enabling 426
sample query 426
when to use 426

Partitioning
defined 264

partitions
defragmenting 187

Partitions
creating in a detached index 276
creating in a fragmented index 275
creating in an attached index 275

483



for storing multiple fragments of the same 
index 232
for storing multiple fragments of the same 
table 188

PC_HASHSIZE configuration parameter 83, 
330
PC_POOLSIZE configuration parameter 83, 
330
PDQ

DELETE operations 352
UPDATE operations 352

PDQ priority
BOUND_IMPL_PDQ session environment 
variable 364
DEFAULT tag 358
determining parallelism 360
effect of remote database 360
effect on parallel execution 358
effect on sorting memory 229
IMPLICIT_PDQ session environment 
variable 364
maximum parallel processing 360
outer joins 360
parallel execution limits 360
SET PDQPRIORITY statement 364
SPL routines 360

PDQPRIORITY
environment variable

requesting PDQ resources 356
limiting PDQ priority 359

PDQPRIORITY configuration parameter
effect of outer joins 356

PDQPRIORITY environment variable
adjusting the value 358
for UPDATE STATISTICS 390
limiting PDQ priority 358, 359
limiting resources 36
parallel sorts 420
setting PDQ priority 229

Peak loads 11
Performance

basic approach to measurement and 
tuning 5
capturing data 21
contiguous extents 129, 178
create a history 20, 21, 21
dropping indexes for updates 222
dropping indexes to speed 
modifications 192
effect of

contiguous disk space 129, 171, 178
contiguous extents 183
data mismatch 325
disk access 322, 323, 418
disk I/O 107
duplicate keys 220
filter expression 372, 372
filter selectivity 317
indexes 219, 220
redundant data 207
regular expressions 372
sequential access 418
simple-large-object location 166
table size 418

goals 6
improved by

contiguous extents 129, 178, 178
specifying optimization level 422
temporary table 420

index time during modification 218
measurements 7, 7

slowed by data mismatch 325
slowed by duplicate keys 220
tips 5
tips for a small database 6

Performance problems
early indications 5
sudden performance loss 464

PHYSBUFF configuration parameter 62, 77, 
143
PHYSFILE configuration parameter 141
Physical log

buffer size 77
configuration parameters that affect 114
effects of

checkpoints on sizing 141
frequent updating 141

increasing size 72, 141
mirroring 114
overflow during fast recovery 154
when you have non-default page sizes 72

Playback process 454
PLCY_HASHSIZE configuration parameter 83
PLCY_POOLSIZE configuration parameter 83
PLOG_OVERFLOW_PATH configuration 
parameter 154
Poll threads

added with network VP 54
configuring with NETTYPE configuration 
parameter 33, 46
connections per 48
for connection 48, 53
NETTYPE configuration parameter 48

Priority
setting on Windows 35

Probe table, directives 339, 339
PSORT_DBTEMP environment variable 119
PSORT_DTEMP environment variable 115
PSORT_NPROCS environment variable 36, 
120, 229, 420

Q
Quantum, of memory 45, 74, 74, 356, 366
Queries

improving performance 393
resources allocated 366
response time and throughput 9
temporary files 269, 420

Query plan
with index self-join 302

Query plans 296
all rows 340
altering with directives 336, 343, 343, 343
autoindex path 393
avoid query execution 341
chosen by optimizer 335
collection-derived table 312
disk accesses 300
displaying 304, 417
first-row 340
fragment elimination 295, 369
how the optimizer chooses one 334
indexes 301
join order 343
pseudocode 299, 301
restrictive filters 334
row access cost 322
time costs 298, 320, 320, 322

Query statistics 306
Query-tree tool (onperf) 454, 463

R
R-tree index

defined 213, 237
using 233

Range expression, defined 280
Range scan mode 414
Raw disk space 108, 109
Read cache rate 72
Read-ahead

configuring 134
defined 134

Reclaiming empty extent space 186
Recovery time objective

Recovery point objective 144
Redundant data, introduced for 
performance 207
Redundant pairs, defined 304
Referential constraints 192
Regular expression, effect on 
performance 372
Relational model

denormalizing 204
Remainder pages

tables 162
Remote database

effect on PDQPRIORITY 356
RENAME statement 328
Repeatable Read isolation level 134, 251, 319
Residency 79
RESIDENT configuration parameter 79
Resident portion of shared memory 62, 64
Resizing table to reclaim empty space 186
Resource utilization

capturing data 21
CPU 13
defined 12
disk 15
factors that affect 17
memory 14
operating-system resources 11
performance 11

Resources
critical 11

Response time
actions that determine 9
contrasted with throughput 9
improving with MaxConnect 60
improving with multiplexed connections 59
measuring 10

Response times
SQL statement cache 428

Root dbspace
mirroring 112

Root index page 210
ROOTNAME configuration parameter 114
ROOTOFFSET configuration parameter 114
ROOTPATH configuration parameter 114
ROOTSIZE configuration parameter 114
Round-robin distribution scheme 271
Round-robin fragmentation, smart large 
objects 270
Row access cost 322
Row pointer

attached index 275
detached index 276
in fragmented table 269
space estimates 215, 269

RTO_SERVER_RESTART configuration 
parameter 134, 138, 139, 151, 154
RTO_SERVER_RESTART policy 138, 141, 144

S
Sampling

484



in UPDATE STATISTICS LOW 
operations 390

sar command 21, 72
Saturated disks 107
sbspace extents

performance 129, 170, 170
SBSPACENAME

configuration parameter 121
logging 121

SBSPACENAME configuration parameter 128
sbspaces

configuration impacts 128
creating 129
defined 113
estimating space 168
extent 129, 129, 131
metadata requirements 168
metadata size 169, 170
monitoring 171
monitoring extents 172, 173

SBSPACETEMP
no logging 121, 121

SBSPACETEMP configuration parameter 121, 
121, 122, 122, 122, 122
Scans

bufferpool 134
DS_MAX_QUERIES 356
DS_MAX_SCANS 356
first-row 311
key-only 296
light 134
lightweight I/O 131
limited by MAX_PDQPRIORITY 44
limiting number 362
limiting number of threads 362
limiting PDQ priority 362
memory-management system 14
parallel 369
parallel database query 46
read-ahead I/O 134
sequential 134
skip-duplicate-index 311
table 296, 297, 393
threads 43, 44, 46, 46

Scheduler
automated UPDATE STATISTICS tasks 377

Scheduler tasks
auto_tune_cpu_vps 54

Scheduling facility, cron 22, 69
Secondary-access methods

DataBlade modules 233
defined 233, 237
defined by database server 234
generic B-tree 234
R-Tree 237

SELECT statements
accessing data 268
collection-derived table 312
column filter 300
join order 298
materialized view 332
redundant join pair 304
row size 163
SPL routines and directives 346
three-way join 299
trigger performance 333
triggers 332, 333
using directives 333, 336

Selective filter
dimensional table 394

Selectivity

column, and filters 220
defined 317
estimates for filters 317
indexed columns 220
user-defined data 425, 427, 427

Semaphores
allocated for UNIX 33

Semi-join, defined 297
SEMMNI UNIX configuration parameter 33
SEMMNS UNIX configuration parameter 33
SEMMSL UNIX configuration parameter 33
Sequential

access costs 322
scans 134, 418

Service time formula 12
Session

monitoring 32, 32, 438, 439, 444
monitoring memory 65, 65, 103, 103, 439, 
439, 444, 444
setting optimization goal 423

SESSION_LIMIT_LOGSPACE configuration 
parameter 149
SESSION_LIMIT_TXN_TIME configuration 
parameter 149
SET DATASKIP statement 267
SET ENVIRONMENT FORCE_DDL_EXEC 
statement 284
SET ENVIRONMENT OPTCOMPIND 319, 363
SET ENVIRONMENT OPTCOMPIND 
statement 44
SET EXPLAIN

collection scan 312
complex query 308
converted data 325
data mismatch 326
decisions of query optimizer 363
determine UPDATE STATISTICS 388
directives 343, 343, 343, 343
fragments scanned 295, 295
how data accessed 268
join rows returned 388
key-first scan 310
optimizer access paths 309
optimizing 424
order of tables accessed 309
output

statistics 306
parallel scans 369
PDQ priority levels 369
query plan 304, 363
resources required by query 371
secondary threads 369
serial scans 369
simple query 308
SPL routines 328, 328
subquery 311
using 304, 311

SET EXPLAIN statement 305
SET INDEX COMPRESSION command 415, 
415
SET ISOLATION statement 249, 252
SET LOCK MODE statement 245, 248, 248, 
251, 254, 257, 259, 292
SET LOG statement 7
SET OPTIMIZATION statement

setting ALL_ROWS 423
setting FIRST_ROWS 423
setting HIGH or LOW 422
SPL routines 329

SET PDQPRIORITY statement
application 358, 364

DEFAULT tag 358, 364
in SPL routine 360
limiting CPU VP utilization 36
sort memory 390

SET STATEMENT CACHE statement 92, 430
SET TRANSACTION statement 249
Shared memory

allowed per query 74
amount for sorting 229, 230
buffer pool portion 64
connection 48, 53
freeing 69
message portion 61, 64, 67
resident portion 61, 62, 64
size limit 81
size of segments 80
virtual portion 61, 63, 65

SHMADD configuration parameter 63
SHMBASE configuration parameter 69
SHMMAX configuration parameter 68, 80, 81
SHMMNI operating-system configuration 
parameter 68
SHMSEG operating-system configuration 
parameter 68
SHMSIZE operating-system configuration 
parameter 68
SHMTOTAL configuration parameter 63, 81
SHMVIRT_ALLOCSEG configuration 
parameter 82
SHMVIRTSIZE configuration parameter 63, 65, 
81
Short rows, reducing disk I/O 204
Simple large objects

blobpage size 124
blobspace 123
configuration effects 123
disk I/O 124
estimating number of blobpages 165
estimating tblspace pages 167
how stored 166
in blobspace 123
in dbspace 162
locating 166
logging 123
logical-log size 145
Optical Subsystem 132

SINGLE_CPU_VP configuration parameter 43
slow alter algorithm

restrictions 197
Smart large objects

ALTER TABLE 177
buffer pool 72, 128, 131
buffer pool usage 175
changing characteristics 177
CREATE TABLE statement 177
data integrity 175
DataBlade API functions 128, 129, 175, 
181, 264
disk I/O 128
ESQL/C functions 128, 129, 175, 181, 264
estimating space 168
extent size 129, 130, 175, 181
fragmentation 175, 270
I/O operations 131, 170
I/O performance 72, 128, 131, 170, 170
last-access time 175
lightweight I/O 72, 131
lock mode 175, 175
logging status 175, 175
logical-log size 146
mirroring chunks 113

485



monitoring 171
sbspace name 175
sbspaces 128
setting isolation levels 264
size 175
specifying characteristics 177
specifying size 129, 181
storage characteristics 175

SMI tables
monitoring latches 106
monitoring sessions 446
monitoring virtual processors 57

Snowflake schema 394
Sort memory 230
Sorting

avoiding with temporary table 420
costs 320
DBSPACETEMP configuration 
parameter 115
DBSPACETEMP environment variable 115
effect of PDQ priority 390
effect on performance 420
estimating temporary space 231
memory estimate 230
PDQ priority for 230
query-plan cost 296
sort files 115
triggers in a table hierarchy 332

Space
reducing on disk 208, 208

SPL 330
SPL routines

automatic reoptimization 328
display query plan 328, 328
effect

of PDQ 355
of PDQ priority 360

optimization level 329
query response time 9
when executed 330
when optimized 327

SQL statement cache
changing size 98
cleaning 97
defined 428
effect on prepared statements 429
enabling 430, 430
exact match 431
flushing 429
hits 83, 92, 93, 93, 94, 96, 98, 99, 100, 101
host variables 429
memory 83
memory limit 92, 99
monitoring 94, 94, 96, 101
monitoring dropped entries 435, 435
monitoring pools 101
monitoring session memory 432, 432, 432, 
432, 433, 433, 434, 434, 434, 434, 434, 434, 
434
monitoring size 97, 98
monitoring statement memory 32, 432, 434
nonshared entries 96
number of pools 101
performance benefits 90, 428
response times 428
size 83, 97, 99
specifying 430
STMT_CACHE configuration parameter 92, 
430
STMT_CACHE environment variable 430

STMT_CACHE_SIZE configuration 
parameter 98
when to enable 430
when to use 429

SQLCODE field of SQL Communications 
Area 205
sqlhosts file

client buffer size 53
multiplexed option 59

sqlhosts information
connection type 46, 47, 48, 49
connections 81
number of connections 145

SQLWARN array 136
Stack

specifying size 83
STACKSIZE configuration parameter 83
STAGEBLOB configuration parameter 132

defined 133
Staging area

optimal size for blobspace 133
Star join, defined 394
Star schema 192, 394
Star-join directives 341
Statistics

automatically generated 383
Status tool (onperf) 454, 463
STMT_CACHE environment variable 430
STMT_CACHE_HITS configuration 
parameter 83, 92, 93, 93, 94, 96, 98, 100, 101
STMT_CACHE_NOLIMIT configuration 
parameter 83, 92
STMT_CACHE_NUMPOOL configuration 
parameter 101
STMT_CACHE_SIZE configuration 
parameter 83, 97, 99
Storage characteristics

Smart large objects
last-access time 175

system default 175
Storage spaces

for encrypted values 106, 326
Storage statistics

blobpages 125
blobspaces 125

Stored Procedure Languages 330, 330
Strategy functions

secondary-access methods 240
Strings

expelling long 205
Structured Query Language

ALTER FRAGMENT statement 187
ALTER INDEX statement 185, 186, 186, 221

TO CLUSTER clause 185
ALTER TABLE statement 179, 185

changing extent sizes 181
sbspace fragmentation 270

COMMIT WORK statement 7
CONNECT statement 108
CREATE CLUSTER INDEX statement 221
CREATE FUNCTION statement 37

selectivity and cost 427
CREATE INDEX statement

attached index 275
detached index 276
generic B-tree index 234
TO CLUSTER clause 185

CREATE PROCEDURE statement, SQL 
optimization 327
CREATE TABLE statement

blobspace assignment 123

extent sizes 179
fragmentation 275, 276
lock mode 247, 247
PUT clause 177
sbspace fragmentation 270
simple large objects 166
system catalog table 108
TEMP TABLE clause 115, 121

CREATE TEMP TABLE statement 278
DATABASE statement 108
EXECUTE PROCEDURE statement 330
EXTENT SIZE clause 179
FRAGMENT BY clause 275
GROUP BY clause 318

MGM memory 356
INSERT statements 270
LOAD and UNLOAD statements 158, 184, 
184, 186, 222
MODIFY EXTENT SIZE clause 179
MODIFY NEXT SIZE clause 179, 181
NEXT SIZE clause 179
optimizer directives 336
ORDER BY clause 318
RENAME statement 328
SELECT statements

collection-derived tables 312
column filter 300
join order 298
materialized view 332
redundant join pair 304
row size 163
SPL routines and directives 346
three-way join 299
triggers 333
using directives 333, 336

SET DATASKIP statement 267
SET EXPLAIN statement 295, 295

accessing data 268, 268
collection scan 312
complex query 308
directives 343
flattened subquery 311
optimizer decisions 363
order of tables 309
show query plan 304
simple query 308

SET EXPLAIN statement directives 343
SET ISOLATION statement 249
SET LOCK MODE statement 245, 248, 248, 
251, 254, 257, 259
SET OPTIMIZATION statement 422, 423, 
423
SET PDQPRIORITY statement 36

DEFAULT tag 358, 364
in application 358, 364
in SPL routine 360
sort memory 390

SET STATEMENT CACHE 92, 430
SET TRANSACTION statement 249
TO CLUSTER clause 185, 186
UPDATE STATISTICS statement 63, 316, 
335

and directives 335, 346
creating data distributions 385, 385
data distributions 316
effect of PDQ 355
guidelines to run 383, 390
HIGH mode 383, 385, 388, 389, 391
LOW mode 383, 384, 390, 425
MEDIUM mode 385, 389
multiple column distributions 390

486



on join columns 388
on user-defined data columns 389
optimizing SPL routines 360
query optimization 383
reoptimizing SPL routines 328
updating system catalog 316, 383
user-defined data 425

WHERE clause 318, 371, 372
Subquery 360

flattening 311
rewriting 311

Support functions
description for secondary access 
method 240

Swap device 14
Swap space 14, 68
Swapping, memory 14, 361
Symbol table

building 205
sysdirectives system catalog table 334
sysmaster database 22
sysprofile table 255
System catalog tables

data distributions 316
optimizer use of 316, 316
sysams 235, 242
syscolumns 385, 389
sysdistrib 385, 389
sysfragments 276, 295
sysopclasses 242
sysprocbody 327
sysprocedure 327
sysprocplan 327, 328
systables 232, 328
systrigbody 331
systriggers 331
updated by UPDATE STATISTICS 316

System resources, measuring utilization 11
System-monitoring interface 22, 22, 22, 22

T
Table

adding redundant data 207
assigning to dbspace 158
companion, for long strings 205
configuring I/O for 134
cost of access 418
denormalizing 204
division by bulk 206
estimating

blobpages in tblspace 165
data page size 162
size with fixed-length rows 162
size with variable-length rows 164

expelling long strings 205
fact 394
frequently updated attributes 206
infrequently accessed attributes 206
isolating high-use 159
locks 246
managing

extents 178
managing indexes for 217
nonfragmented 161
partitioning, defined 264
placement on disk 158
reducing contention between 159
redundant and derived data 207
remote, used with PDQ 356
rows too wide 206
shorter rows 204

size estimates 162
Table

splitting if too wide 206
temporary 161

Table distributions
automated UPDATE STATISTICS 376

Table hierarchy
SELECT triggers 332, 332

Table scan
defined 296
nested-loop join 297
OPTCOMPIND 43
replaced with composite index 393

tables
defragmenting 187

TAPEBLK configuration parameter 153
TAPEDEV configuration parameter 153
TAPESIZE configuration parameter 153
Tblspace

attached index 276
defined 162
extent size for tblspace tblspace 167
monitoring

active tblspaces 182
simple large objects 166, 166

TBLTBLFIRST configuration parameter 167
TBLTBLNEXT configuration parameter 167
TCP connections 48, 53
TCP/IP buffers 50
TEMP or TMP user environment variable 115
TEMP TABLE clause of the CREATE TABLE 
statement 115, 121, 278
Temporary dbspace

creating 229
DBSPACETEMP configuration 
parameter 118
DBSPACETEMP environment variable 119
for index builds 229, 231
onspaces -t 117
optimizing 117
root dbspace 115

Temporary sbspace
configuring 121
onspaces -t 122
optimizing 122
SBSPACETEMP configuration 
parameter 122, 122, 122

Temporary smart large object
LO_TEMP flag 121

Temporary tables
configuring 115
DBSPACETEMP configuration 
parameter 115, 118
DBSPACETEMP environment variable 119
decision-support queries 268
Decision-support queries

use of temporary files 268
explicit 278
fragmentation 278
in root dbspace 111
speeding up a query 420
Temporary dbspace

decision-support queries 268
TEMPTAB_NOLOG configuration 
parameter 149
TEXT data type 205

in blobspace 123
in table-size estimate 162
locating 166
memory cache 132
on disk 166

parallel access 128
staging area 132

Thrashing, defined 14
Thread-safe

UDRs 426
Threads

DS_MAX_SCANS configuration 
parameter 356
MAX_PDQPRIORITY 44
monitoring 25, 65, 65, 438, 439, 439, 440, 
441, 442, 443
page-cleaner 114
primary 351, 367
secondary 351, 369
sqlexec 150, 367

Throughput
benchmarks 8
capturing data 7
contrasted with response time 9
measure of performance 7
measured by logged COMMIT WORK 
statements 7

Tightly coupled 448, 448, 450
Time

getting current in ESQL/C 11
getting user, processor and elapsed 10
getting user, system, and elapsed 10

time command 10
Timing

commands 10
functions 11
monitoring 10

TO CLUSTER
clause 185, 186

TPC-A, TPC-B, TPC-C, and TPC-D 
benchmarks 8
Transaction processing

improving using B-tree scanner 395
Transaction Processing Performance 
Council 8
Transaction throughput, effects of 
MAX_PDQPRIORITY 44
Transactions

cost 11
forcing out 292
loosely coupled 448
monitoring 439, 440, 447, 447, 447, 447, 
448
monitoring global transactions 448, 450
rate 7
rollback 218
tightly-coupled mode 448, 450

Triggers
and PDQ 353, 354, 355
behavior in table hierarchy 332
defined 331
effect of PDQ 355
performance 332
row buffering 333

Troubleshooting
example of identifying overloaded 
disks 471
performance degradation 465
sudden performance loss 464

TRUNCATE STATEMENT 187
Truncating tables 187

U
UDR cache

buckets 330
number of entries 330

487



Unbuffered devices 322
Unbuffered logging 113
UNIX

cron scheduling facility 22
iostat command 21
network protocols 47, 49
ps command 21
sar command 21
SEMMNI configuration parameter 33
SEMMNS configuration parameter 33
SEMMSL configuration parameter 33
time command 10
vmstat command 21

UPDATE
run in parallel 352

Update cursor 252
UPDATE STATISTICS statement

and PDQ priority 389
automatically generated, viewing 380
automatically running 376
creating data distributions 385
data distributions 316
directives 335, 346
effect of PDQ 355
effect on virtual portion of memory 63
equivalent automatic operation 383
guidelines to run 383, 390
HIGH mode 335, 383, 385, 388, 389, 391
improving ALTER FRAGMENT ATTACH 
performance 288, 288
LOW mode 383, 384, 390, 425
MEDIUM mode 385, 389
multiple column distributions 390
not needed when statistics are generated 
automatically 383
on join columns 388
on user-defined data columns 389
optimizing SPL routines 346, 360
providing information for query 
optimization 316
query optimization 383
reoptimizing SPL routines 328
updating system catalog 316, 383
user-defined data 425, 428
using on very large databases 389

update_ipa argument 201
USCR_HASHSIZE configuration parameter 83
USELASTCOMMITTED configuration 
parameter 250
User-defined aggregates

parallel execution 426
User-defined data types

B-tree index 210
cost of routine 425, 427, 427
data distributions 389
generic B-tree index 235
opaque 233
optimizing queries on 425
selectivity 425, 427
UPDATE STATISTICS 389

User-defined index
DataBlade modules 213, 233

User-defined routine cache
changing size 330
contents 330

User-defined routines
parallel execution 354, 426
query filters 371
query response time 9
statistics 428
thread-safe 426

User-defined selectivity function 371
User-defined statistics 428
USING clause, CREATE INDEX statement 236
USRC_POOLSIZE configuration parameter 83
USTLOW_SAMPLE configuration 
parameter 390
USTLOW_SAMPLE keyword

in SET ENVIRONMENT statement 390
Utilities

Contiguous
extents, allocation 179

DB-Access 184
dbload 184, 222
dbschema 268, 273, 389, 391, 391
ISA 106

capabilities 23
defined 23

monitoring performance 22
onaudit 156
oncheck

-pB option 29
-pe option 29, 172, 183, 185
-pk option 29
-pK option 29
-pl option 29
-pL option 29
-pp option 29
-pP option 29
-pr option 29, 201
-ps option 29
-pS option 29, 173
-pt option 29, 162
-pT option 29, 201, 201
and index sizing 215
introduced 29
monitoring table growth 179

onload and onunload 153, 158, 184, 186
onlog 7, 31
onmode

-F option 69
-p option 53
-P option 41
-W option to change 
STMT_CACHE_NOLIMIT 99
forced residency 79
shared-memory connections 33

onparams 111, 113
onperf

activity tools 464
data flow 453
defined 452
graph tool 456
metrics 465
query-tree tool 463
replaying metrics 454
requirements 454
saving metrics 453
starting 455
status tool 463
tools 454
user interface 456

onspaces
-Df option 129, 177
-S option 177
-t option 117, 122, 161, 229
EXTENT_SIZE flag for sbspaces 129
sbspaces 128

onstat utility
-- option 24
-a option 24
-b option 24, 64, 162, 165

-d option 56, 169, 170
-F option 150
-g act option 439, 442
-g afr option 53
-g ath option 43, 367, 439, 441, 443
-g cac option 94
-g cac stmt option 94
-g dsc option 88
-g glo option 55
-g ioq option 41, 56
-g mem option 27, 439, 444
-g mgm option 27, 356, 367
-g ntm option 52
-g ntu option 52
-g option 24
-g osi option 27
-g ppf option 294
-g prc option 330, 330
-g rea option 56
-g scn option 134
-g seg option 27, 80
-g ses option 27, 32, 43, 65, 368, 439, 
444
-g smb option 171
-g smb s option 174
-g sql option 32
-g ssc option 435
-g stm option 27, 65, 65, 103, 103, 439, 
444
-g sts option 65
-k option 254, 257
-l option 24
-m option 139
-O option 132
-p option 7, 24, 72, 105, 255, 259
-P option 24
-R option 24
-s option 106
-u option 24, 65, 255, 257, 367, 439, 440
-x option 24
monitoring buffer pool 72
monitoring threads per session 43

ontape utility 153, 153
Utilization

capturing data 21
CPU 13, 33, 59
defined 11
disk 15
factors that affect 17
memory 14
service time 12

V
VARCHAR data type

access plan 296
byte locks 254
costs 326
expelling long strings 205
in table-size estimates 164, 164
when to use 205

Variable-length rows 164
View

effect of directives 338, 338
Virtual memory, size 68
Virtual portion 63, 65, 81
Virtual processors

adding 54
class name 37
CPU 53
monitoring 55, 55, 56, 56
multicore processors 37

488



NETTYPE 47
network, SOC or TLI 54
poll threads for 48, 53
processor affinity 37
semaphores required 33
setting number of CPU VPs 37
setting number of NET VPs 47
starting additional 53
user-defined 37

vmstat command 21, 72
VP_MEMORY_CACHE_KB configuration 
parameter 58
VPCLASS configuration parameter

process priority aging 39, 39
processor affinity 37
setting number of AIO VPs 41
setting number of CPU VPs 37, 37
setting processor affinity 39, 39, 40
specifying class of virtual processors 37

W
WHERE clause 318, 371, 372
Windows

NETTYPE configuration parameter 48
network protocols 47, 49
parameters that affect CPU utilization 35
Performance Logs and Alerts 10, 21
TEMP or TMP user environment 
variable 115

Write once read many
optical subsystem 132

X
X display server 455

489


	HCL Informix 14.10 - Performance Guide
	Contents
	Chapter 1. Performance Guide
	Performance basics
	Developing a basic approach to performance measurement and tuning
	Quick start for acceptable performance on a small database
	Performance goals
	Measurements of performance
	Throughput
	Ways to measure throughput
	Standard throughput benchmarks

	Response time
	Response time and throughput
	Response-time measurement
	Operating-system timing commands
	Operating-system tools for monitoring performance
	Timing functions within your application


	Cost per transaction

	Resource utilization and performance
	Resource utilization
	CPU utilization
	Memory utilization
	Disk utilization

	Factors that affect resource utilization
	Maintenance of good performance

	Performance monitoring and the tools you use
	Evaluate the current configuration
	Create a performance history
	The importance of a performance history
	Tools that create a performance history
	Operating-system tools
	UNIX™ Only
	Windows™ Only

	Database server tools
	Performance information that HCL Informix® Server Administrator provides
	Performance information that the onstat utility displays



	Monitor database server resources
	Monitor resources that impact CPU utilization
	Monitor memory utilization
	Monitor disk I/O utilization
	Using onstat -g to monitor I/O utilization
	Using the oncheck utility to monitor I/O utilization


	Monitor transactions
	Using the onlog utility to monitor transactions
	Using the onstat utility to monitor transactions

	Monitor sessions and queries
	Monitoring memory usage for each session
	Using the SET EXPLAIN statement


	Effect of configuration on CPU utilization
	UNIX™ configuration parameters that affect CPU utilization
	UNIX™ semaphore parameters
	UNIX™ file-descriptor parameters
	UNIX™ memory configuration parameters

	Windows™ configuration parameters that affect CPU utilization
	Configuration parameters and environment variables that affect CPU utilization
	Specifying virtual processor class information
	Setting the number of CPU VPs
	Disabling process priority aging for CPU VPs
	Specifying processor affinity
	Distributing computation impact
	Isolating AIO VPs from CPU VPs
	Avoiding a certain CPU

	Setting the number of AIO VPs

	Setting the MULTIPROCESSOR configuration parameter when using multiple CPU VPs
	Setting the SINGLE_CPU_VP configuration parameter when using one CPU VP
	Optimizing access methods
	Setting the value of OPTCOMPIND within a session

	Limiting PDQ resources in queries
	Limiting the performance impact of CPU-intensive queries
	Limiting the number of PDQ scan threads that can run concurrently
	Configuring poll threads
	Specifying the connection protocol
	Specifying virtual-processor classes for poll threads
	Specifying the number of connections and poll threads
	Improve connection performance and scalability

	Enabling fast polling

	Network buffer pools
	Network buffers
	Support for private network buffers
	Network buffer size

	Virtual processors and CPU utilization
	Adding virtual processors
	Automatic addition of CPU virtual processors
	Monitoring virtual processors
	Using some onstat-g commands to monitor virtual processors
	Monitor virtual processors with the onstat-g glo command
	Monitor virtual processors with the onstat-g rea command
	Monitor virtual processors with the onstat-g ioq command

	Using SMI tables to monitor virtual processors

	Private memory caches

	Connections and CPU utilization
	Multiplexed connections and CPU utilization
	MaxConnect for multiple connections UNIX™


	Effect of configuration on memory utilization
	Shared memory
	Resident portion of shared memory
	Virtual portion of shared memory
	Message portion of shared memory
	Buffer pool portion of shared memory
	Estimating the size of the resident portion of shared memory
	Estimating the size of the virtual portion of shared memory
	Estimating the size of the message portion of shared memory
	Configuring UNIX™ shared memory
	Freeing shared memory with onmode -F

	Configuration parameters that affect memory utilization
	Setting the size of the buffer pool, logical-log buffer, and physical-log buffer
	The BUFFERPOOL configuration parameter and memory utilization
	Smart large objects and buffers

	The DS_TOTAL_MEMORY configuration parameter and memory utilization
	Algorithm for determining DS_TOTAL_MEMORY
	Deriving a minimum for decision-support memory
	Deriving a working value for decision-support memory
	When the DS_TOTAL_MEMORY configuration parameter is set
	When the DS_TOTAL_MEMORY configuration parameter is not set

	Checking the derived value for decision-support memory

	The LOGBUFF configuration parameter and memory utilization
	The LOW_MEMORY_RESERVE configuration parameter and memory utilization
	The PHYSBUFF configuration parameter and memory utilization

	The LOCKS configuration parameter and memory utilization
	The RESIDENT configuration parameter and memory utilization
	The SHMADD and EXTSHMADD configuration parameters and memory utilization
	The SHMTOTAL configuration parameter and memory utilization
	The SHMVIRTSIZE configuration parameter and memory utilization
	The SHMVIRT_ALLOCSEG configuration parameter and memory utilization
	The STACKSIZE configuration parameter and memory utilization

	Configure and monitor memory caches
	Data-dictionary cache
	Data-dictionary configuration

	Data-distribution cache
	Data-distribution configuration

	Monitor and tune the SQL statement cache
	Prepared statements and the statement cache
	SQL statement cache configuration
	Number of SQL statement executions
	Monitoring the number of hits on the SQL statement cache
	Determining the number of nonshared entries in the SQL statement cache

	Monitoring and tuning the size of the SQL statement cache
	Changing the size of the SQL statement cache
	Too many single-use queries in the SQL statement cache

	Memory limit and size
	Multiple SQL statement cache pools
	Number of SQL statement cache pools

	SQL statement cache information in onstat -g ssc output


	Session memory
	Data-replication buffers and memory utilization
	Memory latches
	Monitoring latches with command-line utilities
	Monitoring latches with onstat -p
	Monitoring latches with onstat -s

	Monitoring latches with SMI tables

	Encrypted values

	Effect of configuration on I/O activity
	Chunk and dbspace configuration
	Associate disk partitions with chunks
	Associate dbspaces with chunks
	Placing system catalog tables with database tables

	I/O for cooked files for dbspace chunks
	Direct I/O (UNIX)
	Direct I/O (Windows™)
	Concurrent I/O (AIX only)
	Enabling the direct I/O or concurrent I/O option (UNIX™)
	Confirming the use of the direct or concurrent I/O option (UNIX™)

	Placement of critical data
	Consider separate disks for critical data components
	Consider mirroring for critical data components
	Consider mirroring the root dbspace
	Consider mirroring smart-large-object chunks
	Mirroring and its effect on the logical log
	Mirroring and its effect on the physical log


	Configuration parameters that affect critical data
	Configure dbspaces for temporary tables and sort files
	Creating temporary dbspaces
	Specify temporary tables in the DBSPACETEMP configuration parameter
	Override the DBSPACETEMP configuration parameter for a session
	Estimating temporary space for dbspaces and hash joins
	PSORT_NPROCS environment variable

	Configure sbspaces for temporary smart large objects
	Creating temporary sbspaces
	Specify which sbspaces to use for temporary storage

	Placement of simple large objects
	Advantage of blobspaces over dbspaces
	Blobpage size considerations
	Optimize blobspace blobpage size
	Obtain blobspace storage statistics
	Determine blobpage fullness with oncheck -pB output
	oncheck -pB Output
	Interpreting blobpage average fullness
	Analyzing efficiency criteria with oncheck -pB output



	Factors that affect I/O for smart large objects
	Disk layout for sbspaces
	Configuration parameters that affect sbspace I/O
	onspaces options that affect sbspace I/O
	Sbspace extents
	Lightweight I/O for smart large objects
	Advantages of lightweight I/O for smart large objects

	Logging


	How the Optical Subsystem affects performance
	Environment variables and configuration parameters for the Optical Subsystem
	STAGEBLOB, an Optical Subsystem configuration parameter
	OPCACHEMAX, an Optical Subsystem configuration parameter
	INFORMIXOPCACHE, an Optical Subsystem environment variable

	Table I/O
	Sequential scans
	Light scans
	Tables that cannot be accessed by light scans
	Configuration settings that affect light scans
	Example of onstat output during a light scan

	Unavailable data

	Configuration parameters that affect table I/O
	How DATASKIP affects table I/O

	Background I/O activities
	Configuration parameters that affect checkpoints
	RTO_SERVER_RESTART and its effect on checkpoints
	Automatic checkpoints, LRU tuning, and AIO virtual processor tuning

	CKPTINTVL and its effect on checkpoints
	LOGSIZE and LOGFILES and their effect on checkpoints
	Checkpoints and the physical log
	ONDBSPACEDOWN and its effect on checkpoints

	Configuration parameters that affect logging
	LOGBUFF and PHYSBUFF and their effect on logging
	LOGFILES and its effect on logging
	Calculating the space allocated to logical log files

	LOGSIZE and its effect on logging
	Estimating logical-log size when logging dbspaces
	Estimating the logical-log size when logging simple large objects
	Estimating the logical-log size when logging smart large objects

	DYNAMIC_LOGS and its effect on logging
	AUTO_LLOG and its effect on logging
	LTXHWM and LTXEHWM and their effect on logging
	TEMPTAB_NOLOG and its effect on logging
	SESSION_LIMIT_LOGSPACE and its effect on logging
	SESSION_LIMIT_TXN_TIME and its effect on logging

	Configuration parameters that affect page cleaning
	CLEANERS and its effect on page cleaning
	BUFFERPOOL and its effect on page cleaning
	RTO_SERVER_RESTART and its effect on page cleaning

	Configuration parameters that affect backup and restore
	ON-Bar configuration parameters
	ontape configuration parameters (UNIX)

	Configuration parameters that affect rollback and recovery
	OFF_RECVRY_THREADS and ON_RECVRY_THREADS and their effect on fast recovery
	PLOG_OVERFLOW_PATH and its effect on fast recovery
	RTO_SERVER_RESTART and its effect on fast recovery
	The LOW_MEMORY_RESERVE configuration parameter and memory utilization

	Configuration parameters that affect data replication and auditing
	Configuration parameters that affect data replication
	Configuration parameters that affect auditing

	LRU tuning


	Table performance considerations
	Placing tables on disk
	Isolating high-use tables
	Placing high-use tables on middle partitions of disks
	Using multiple disks
	Using multiple disks for a dbspace
	Using multiple disks for logical logs
	Spreading temporary tables and sort files across multiple disks

	Backup and restore considerations when placing tables on disks
	Factors affecting the performance of nonfragmented tables and table fragments

	Estimating table size
	Estimating data pages
	Estimating tables with fixed-length rows
	Estimating tables with variable-length rows
	Selecting an intermediate value for the size of the table

	Estimating pages that simple large objects occupy
	Storing simple large objects in the tblspace or a separate blobspace
	Estimating tblspace pages for simple large objects


	Managing the size of first and next extents for the tblspace tblspace
	Managing sbspaces
	Estimating pages that smart large objects occupy
	Estimating the size of the sbspace and metadata area
	Sizing the metadata area manually for a new chunk
	Example of calculating the metadata area for a new chunk


	Improving metadata I/O for smart large objects
	Monitoring sbspaces
	Monitoring sbspaces with oncheck -cS
	Monitoring sbspaces with oncheck -pe
	Monitoring sbspaces with oncheck -pS
	Monitoring sbspaces with onstat -g smb

	Changing storage characteristics of smart large objects
	Altering smart-large-object columns


	Managing extents
	Choosing table extent sizes
	Extent sizes for tables in a dbspace
	Avoid creating large numbers of extents
	Tips for allocating space for table extents
	Allocating space for table extents

	Extent sizes for table fragments
	Extent sizes for smart large objects in sbspaces

	Monitoring active tblspaces
	Monitoring the upper limit on extents and extent interleaving
	Considering the upper limit on extents
	Checking for extent interleaving
	Eliminating interleaved extents
	Reorganizing dbspaces and tables to eliminate extent interleaving
	Creating or altering an index to cluster
	Using ALTER TABLE to eliminate extent interleaving


	Reclaiming unused space within an extent
	Reclaiming space in an empty extent with ALTER INDEX
	Reclaiming space in an empty extent by unloading and re-creating or reloading a table
	Releasing space in an empty extent with ALTER FRAGMENT

	Managing extent deallocation with the TRUNCATE keyword
	Defragment partitions to merge extents

	Storing multiple table fragments in a single dbspace
	Displaying a list of table and index partitions
	Changing tables to improve performance
	Loading and unloading tables
	Advantages of logging tables
	Advantages of nonlogging tables
	Quickly loading a large standard table
	Quickly loading a new nonlogging table


	Dropping indexes for table-update efficiency
	Creating and enabling referential constraints efficiently
	Enabling a foreign-key constraint using index-scan validation
	Skipping validation of foreign-key constraints

	Attaching or detaching fragments
	Altering a table definition
	Slow alter
	In-place alter
	Conditions for in-place alter operations
	ALTER TABLE operations that can be done in place
	Conditions that prevent in-place alter operations

	Performance considerations for DML statements
	Performance of in-place alters for DDL operations
	Altering a column that is part of an index

	Fast alter


	Denormalize the data model to improve performance
	Shortening rows
	Expelling long strings
	Convert CHAR columns into VARCHAR columns to shorten rows (GLS)
	Convert a long string to a TEXT data type column
	Move strings to a companion table
	Build a symbol table

	Splitting wide tables
	Division by Bulk
	Division by Frequency of Use
	Division by Frequency of Update
	Performance Costs of Splitting Tables

	Redundant data
	Adding redundant data


	Reduce disk space in tables with variable length rows
	Reduce disk space by compressing tables and fragments

	Boosted Partition Free Space Caches (PFSC)
	Indexes and index performance considerations
	Types of indexes
	B-tree indexes
	Structure of conventional index pages

	Forest of trees indexes
	R-tree indexes
	Indexes that DataBlade modules provide

	Estimating index pages
	Index extent sizes
	Formula for estimating the extent size of an attached index
	Formula for estimating the extent size of a detached index

	Estimating conventional index pages

	Managing indexes
	Space costs of indexes
	Time costs of indexes
	Unclaimed index space
	Indexes on columns
	Filtered columns in large tables
	Order-by and group-by columns
	Avoiding columns with duplicate keys
	Clustering
	Configuration parameters that affect the degree of clustering


	Nonunique indexes

	Improve query performance with a forest of trees index
	Detecting root node contention
	Creating a forest of trees index
	Disabling and enabling a forest of trees index
	Performing a range scan on a forest of trees index
	Determining if you are using a forest of trees index
	Finding the number of hashed columns and subtrees in a forest of trees index

	Creating and dropping an index in an online environment
	When you cannot create or drop indexes online
	Creating attached indexes in an online environment
	Limiting memory allocation while creating indexes online

	Improving performance for index builds
	Estimating memory needed for sorting
	Estimating temporary space for index builds

	Storing multiple index fragments in a single dbspace
	Improving performance for index checks
	Indexes on user-defined data types
	Defining indexes for user-defined data types
	B-tree secondary-access method
	Uses for a B-tree index
	Extending a generic B-tree index

	Identifying the available access methods
	User-defined secondary-access methods
	R-tree indexes

	Using a functional index
	What is a functional index?
	When is a functional index used?
	Creating a functional index


	Using an index that a DataBlade® module provides
	Choosing operator classes for indexes
	Operator classes
	Strategy and support functions of a secondary access method
	Default operator classes

	Built-in B-tree operator class
	B-tree strategy functions
	B-tree support function

	Identifying the available operator classes
	User-defined operator classes



	Locking
	Locks
	Locking granularity
	Row and key locks
	Key-value locks

	Page locks
	Table locks
	Database locks

	Configuring the lock mode
	Setting the lock mode to wait
	Locks with the SELECT statement
	Isolation level
	Dirty Read isolation
	Committed Read isolation
	Ways to reduce the risk of Committed Read isolation level conflicts

	Cursor Stability isolation
	Repeatable Read isolation

	Locking nonlogging tables
	Update cursors

	Locks placed with INSERT, UPDATE, and DELETE statements
	The internal lock table
	Monitoring locks
	Configuring and managing lock usage
	Maximum number of locks allowed on 32-bit and 64-bit platforms
	View messages concerning increases to the size of the lock table
	Monitor out-of-locks errors
	Examine how applications use locks

	Monitoring lock waits and lock errors
	Monitoring the number of free locks
	Monitoring deadlocks
	Monitoring isolation levels that sessions use

	Locks for smart large objects
	Types of locks on smart large objects
	Byte-range locking
	How the database server manages byte-range locks
	Using byte-range locks
	Monitoring byte-range locks
	Setting number of locks for byte-range locking

	Lock promotion
	Dirty Read isolation level and smart large objects


	Fragmentation guidelines
	Planning a fragmentation strategy
	Fragmentation goals
	Improved query performance through fragmentation strategy
	Reduced contention between queries and transactions
	Increased data availability
	Increased granularity for backup and restore

	Examining your data and queries
	Considering physical fragmentation factors

	Distribution schemes
	Random distribution among fragments
	Value-based distribution among fragments
	Choosing a distribution scheme
	Designing an expression-based distribution scheme
	Suggestions for improving fragmentation

	Strategy for fragmenting indexes
	Attached indexes
	Detached indexes
	Restrictions on indexes for fragmented tables

	Strategy for fragmenting temporary tables
	Distribution schemes that eliminate fragments
	Fragmentation expressions for fragment elimination
	Query expressions for fragment elimination
	Range expressions in query
	Equality expressions in query

	Effectiveness of fragment elimination
	Nonoverlapping fragments on a single column
	Overlapping fragments on a single column
	Nonoverlapping fragments, multiple columns


	Improve the performance of operations that attach and detach fragments
	Improving ALTER FRAGMENT ATTACH performance
	Distribution schemes for reusing indexes
	Fragmenting the index in the same way as the table
	Example of Fragmenting the Index in the Same Way as the Table

	Fragmenting the index with the same distribution scheme as the table
	Example of Fragmenting the Index with the Same Distribution Scheme as the Table

	Attaching unfragmented tables together

	Ensuring no data movement when you attach a fragment
	Indexes on attached tables
	Automatically Gathered Statistics for New Indexes
	Run UPDATE STATISTICS Before Attaching Tables
	Example for situation when corresponding index does not exist
	Example for situation when index on table is not usable


	Improving ALTER FRAGMENT DETACH performance
	Fragmenting the index in the same way as the table
	Fragmenting the index using same distribution scheme as the table

	Forcing out transactions when altering table fragments

	Monitoring Fragment Use
	Monitoring fragmentation with the onstat -g ppf command
	Monitoring fragmentation with SET EXPLAIN output


	Queries and the query optimizer
	The query plan
	The access plan
	The join plan
	Nested-loop join
	Hash join
	Join order

	Example of query-plan execution
	Example of a join with column filters
	Example of a join with indexes

	Query plans that include an index self-join path
	Query plan evaluation
	Report that shows the query plan chosen by the optimizer
	The explain output file
	Query statistics section provides performance debugging information

	Sample query plan reports
	Single-table query
	Multitable query
	Key-first scan
	Query plans for subqueries
	Query plans for collection-derived tables
	Example showing how the database server completes the query
	Derived tables folded into parent queries


	XML query plans in IBM® Data Studio

	Factors that affect the query plan
	Statistics held for the table and index
	Filters in the query
	Indexes for evaluating a filter
	Effect of PDQ on the query plan
	Effect of OPTCOMPIND on the query plan
	Single-table query
	Multitable query

	Effect of available memory on the query plan

	Time costs of a query
	Memory-activity costs
	Sort-time costs
	Row-reading costs
	Sequential access costs
	Nonsequential access costs
	Index lookup costs
	Reading duplicate values from an index
	Searching for NCHAR or NVARCHAR columns in an index

	In-place ALTER TABLE costs
	View costs
	Small-table costs
	Data-mismatch costs
	Encrypted-value costs
	GLS functionality costs
	Network-access costs

	Optimization when SQL is within an SPL routine
	SQL optimization
	Displaying the execution plan
	Automatic reoptimization
	Reoptimizing SPL routines
	Optimization levels for SQL in SPL routines

	Execution of an SPL routine
	SPL routine executable format stored in UDR cache
	Adjust the UDR cache


	Trigger execution
	Performance implications for triggers
	SELECT triggers on tables in a table hierarchy
	SELECT triggers and row buffering



	Optimizer directives
	What optimizer directives are
	Optimizer directives that are embedded in queries
	External optimizer directives

	Reasons to use optimizer directives
	Preparation for using directives
	Guidelines for using directives
	Types of optimizer directives that are supported in SQL statements
	Access-method directives
	Join-order directives
	Effect of join order on join plan
	Join order when you use views

	Join-method directives
	Optimization-goal directives
	Star-join directives
	EXPLAIN directives
	Example of directives that can alter a query plan

	Configuration parameters and environment variables for optimizer directives
	Optimizer directives and SPL routines
	Forcing reoptimization to avoid an index and previously prepared statement problem
	External optimizer directives
	Creating and saving external directives
	Enabling external directives
	Deleting external directives


	Parallel database query (PDQ)
	What PDQ is
	Structure of a PDQ query
	Database server operations that use PDQ
	Parallel update and delete operations
	Parallel insert operations
	Explicit inserts with SELECT...INTO TEMP statements
	Implicit inserts with INSERT INTO...SELECT statements

	Parallel index builds
	Parallel user-defined routines
	Hold cursors that use PDQ
	SQL operations that do not use PDQ
	Update statistics operations affected by PDQ
	SPL routines and triggers and PDQ
	Correlated and uncorrelated subqueries
	OUTER index joins and PDQ
	Remote tables used with PDQ

	The Memory Grant Manager
	The allocation of resources for parallel database queries
	Limiting the priority of decision-support queries
	Limiting the value of the PDQ priority
	Maximizing OLTP throughput for queries
	Conserving resources when using PDQ
	Allowing maximum use of parallel processing
	Determining the level of parallel processing
	Limits on parallel operations associated with PDQ priority
	Using SPL routines with PDQ queries

	Adjusting the amount of memory for DSS and PDQ queries
	Limiting the number of concurrent scans
	Limiting the maximum number of PDQ queries

	Managing PDQ queries
	Analyzing query plans with SET EXPLAIN output
	Influencing the choice of a query plan
	Setting the PDQ priority dynamically
	Enabling the database server to allocate PDQ memory
	Limiting PDQ resource allocation by setting BOUND_IMPL_PDQ

	User control of PDQ resources
	DBA control of resources for PDQ and DSS queries
	Controlling resources allocated to PDQ
	DBA control of resources allocated to decision-support queries


	Monitoring resources used for PDQ and DSS queries
	Using the onstat Utility
	Monitoring PDQ threads with onstat utility commands
	Monitoring resources allocated for a session running a DSS query

	Identifying parallel scans in SET EXPLAIN output


	Improving individual query performance
	Test queries using a dedicated test system
	Display the query plan
	Improve filter selectivity
	Filters with user-defined routines
	Avoid some filters
	Avoid difficult regular expressions
	Avoid noninitial substrings

	Use join filters and post-join filters

	Automatic statistics updating
	How AUS works
	AUS expiration policies
	Changing AUS expiration policies

	Viewing AUS statements
	Prioritizing databases in AUS
	Example

	Rescheduling AUS
	Disabling AUS

	Update statistics when they are not generated automatically
	Update the statistics for the number of rows
	Drop data distributions if necessary when upgrading
	Drop distributions in LOW mode without gathering statistics

	Creating data distributions
	Examples

	Updating statistics for join columns
	Updating statistics for columns with user-defined data types
	Update statistics in parallel on very large databases
	Adjust the amount of memory and disk space for UPDATE STATISTICS
	Data sampling during update statistics operations
	Display data distributions

	Improve performance by adding or removing indexes
	Replace autoindexes with permanent indexes
	Use composite indexes
	Indexes for data warehouse applications
	Configure B-tree scanner information to improve transaction processing
	Alice scan mode values
	Leaf and range scan mode settings
	B-tree scanner index compression levels and transaction processing performance
	Index Compression and the Index Fill Factor

	Setting the level for B-tree scanner compression of indexes
	Examples


	Determine the amount of free space in an index page

	Optimizer estimates of distributed queries
	Buffer data transfers for a distributed query
	The query plan of a distributed query

	Improve sequential scans
	Enable view folding to improve query performance
	Reduce the join and sort operations
	Avoid or simplify sort operations
	Use parallel sorts
	Use temporary tables to reduce sorting scope
	Configuring memory for queries with hash joins, aggregates, and other memory-intensive elements
	Configuring memory for non-PDQ queries
	Configuring memory for PDQ queries


	Optimize user-response time for queries
	Optimization level
	Optimization goals
	Specifying the query performance goal
	Preferred query plans for user-response-time optimization
	Nested-loop joins versus hash joins
	Table scans versus index scans
	Ordering with fragmented indexes



	Optimize queries for user-defined data types
	Parallel UDRs
	Selectivity and cost functions
	User-defined statistics for UDTs

	Optimize queries with the SQL statement cache
	When to use the SQL statement cache
	Using the SQL statement cache
	Enabling the SQL statement cache
	Placing statements in the cache

	Monitoring memory usage for each session
	Display all user threads and session memory usage
	Display detailed session information and memory usage
	Display information about session SQL statements
	Display information about the memory that SQL statements use in a session

	Monitoring usage of the SQL statement cache
	Invalidating a statement
	Locking a statement


	Monitor sessions and threads
	Monitor sessions and threads with onstat commands
	Monitor blocking threads with the onstat -g bth and onstat -g BTH commands
	Monitor threads with onstat –u output
	Monitor threads with onstat -g ath output
	Monitor threads with onstat -g act output
	Monitor threads with onstat -g cpu output
	Monitor session resources with onstat -g ses output
	Monitor session memory with onstat -g mem and onstat -g stm output

	Monitor sessions and threads with ON-Monitor (UNIX)
	Monitor sessions and threads with SMI tables

	Monitor transactions
	Display information about transactions
	Display information about transaction locks
	Display statistics on user sessions
	Display Statistics on Sessions Executing SQL Statements


	The onperf utility on UNIX
	Overview of the onperf utility
	Basic onperf utility functions
	Display metric values
	Save metric values to a file
	Review metric measurements

	onperf utility tools

	Requirements for running the onperf utility
	Starting the onperf utility and exiting from it
	Exiting from the onperf Utility

	The onperf user interface
	Graph tool
	Graph-tool title bar
	Graph-tool graph menu
	Graph-tool metrics menu
	Graph-tool view menu
	The graph-tool Configure menu and the Configuration dialog box
	Graph-tool Tools menu
	Changing the scale of metrics
	Displaying recent-history values

	Query-tree tool
	Status tool
	Activity tools

	Why you might want to use onperf
	Routine monitoring with onperf
	Diagnosing sudden performance loss
	Diagnosing performance degradation

	onperf utility metrics
	Database server metrics
	Disk-chunk metrics
	Disk-spindle metrics
	Physical-processor metrics
	Virtual-processor metrics
	Session metrics
	Tblspace metrics
	Fragment metrics


	Appendix
	Case studies and examples
	Case study of a situation in which disks are overloaded



	Index

