<L

HCL Informix 14.10 - .NET Provider Reference Guide

Contents

Chapter 1. Informix® .NET Provider Guide........................ 3 IfxSmartLOBCreateTimeFlags enumeration......... 83

Overview of HCL Informix® .NET Provider..................... 3 IfxSmartLOBFileLocation enumeration................. 84
What is the Informix® .NET Provider?.................... 3 IfxSmartLOBLocator class.........ccccceeeveveerieeennnnen 85
Supported programming environments.................. 3 IfxSmartLOBLockMode enumeration.................... 85
Support for IPV6.........c.ocoeieiiiicieeceee e 4 IfxSmartLOBOpenMode enumeration................... 85
Installing the HCL Informix® .NET Provider........... 4 IfxSmartLOBWhence enumeration........................ 86
Overview of the .NET provider class library............ 5 IfxTimeSpan structure............ccoooeeeevieeiceeeenee 86
Thread-safety of provider types.........cccccoeveevrueenne 6 IfxTimeUnit enumeration...........ccccoeeveierieniieennane 92
Namespace requirements..........ccocceevveeeeiieneennenne 6 IfxTransaction class.........ccccccevvevieviieieieieieeee 93
Connecting to a database............ccccoeoveeieieiinn, 7 IfXType enumeration...........ccccoeveeieineieenieneeennn 94
The ? parameter markers.........cococveeveveeeeeeveeenenne. 9 Sample programs..........ccceeeeeeeerieneseeeeee s 95
Call stored procedures...........ccccvevevieienieeeeerennene. 10 Demonstration programs............ccccceeevevvenieeeeennennnn 95
IfxProviderFactory objects to write database- Informix® .NET Provider examples.........c.cccceco..... 95
independent COLE. ... 10 INAEX..iieiieieeereeeeeeeeeeeeeeeeeeeeeanreseeesnneesssessnneanans 104
Distributed transactions..........cccccoeoeeiiieienienieenne 10
The OUT and INOUT Parameters.........c.ccccevueuennene 10
Generic coding with the ADO.NET common base
ClaSSES....iiieiieieeeeee e 13
Error messages.....coooveviieeviieeiieeeeeeeeee e 14

Mapping data types........ccoceveiririeieerieieeeeeeee e 14
Retrieve data.........cccooieeeieiieeeeeeeee e 15
Set data types for a parameter............cccccveueenne. 16
Display format of FLOAT, DECIMAL, or MONEY
data tYPES.....eeieieeeeeeeee s 17

TYPE FEfEreNCE......ovieieeieeieeeeee e 17
Supported public .NET interfaces...........ccc.c........ 17
Supported Public .NET base classes.................... 18
Prototype syntaX........ccoooeiieiinieneieeee e 19
IfXBIOD Class.......cccoveieeiieieieieciceeee e 20
IFXCIOD ClaSS......cveuieeiieieieeee e 25
IfxCommand Class........ccocerveirinieciiinieieeeeeee 30
IfxCommandBuilder class..........cccceeeveerrevrernnenns 35
IfxConnection class.......c.cccooveiiieieneieeiceee 37
IfxConnectionStringBuilder class..........c.c........... 45
IfxDataAdapter class..........cccoooevveeieeeieieeee 47
IfxDataReader class.........cccceevrievieiienieeeeeeenn, 50
IfxDataSourceEnumerator class..........ccccccveueeneene. 53
IfxDateTime Sstructure..........cccoeveevereecrereeenne. 57
IfxDecimal structure...........ccccooevvecveeneceeereeee 65
IFXEMTOr ClaSS.....cvvuiieieiieieieeeieiecee et 71
IfxErrorCollection class.........cccocovvvieievienienienee. 71
IfXException class........ccoovevieieieviicicieieieeee 72
IfxMonthSpan structure...........c.ccoooveveveieeeenne. 72
IfxParameter class........ccocoeveeviivieiienieieeeeeeeee 77
IfxParameterCollection class..........cccccevvrurrrenenne. 80

IfxProviderFactory class........ccccocoecveeveienieicnienn, 82

Chapter 1. Informix® .NET Provider Guide

These topics contain the information you need in order to use the Informix® .NET Provider to access and manipulate data in

HCL Informix® databases.

These topics assume you are familiar with the Microsoft™ .NET specification, object-oriented programming principles, and

using HCL Informix® servers and databases.

Microsoft™ provides information about programming with .NET on its website. For more information about working with HCL

Informix®, see the release notes in your server documentation set.

These topics are taken from IBM® Informix® .NET Provider Reference Guide.

Overview of HCL Informix® .NET Provider

The topics in this overview describe the Informix® .NET Provider and provide information on the environment in which to use
it. These topics also provide installation and connection information and general information to help you get started using
the Informix® .NET Provider.

What is the Informix® .NET Provider?

The Informix® .NET Provider is a .NET assembly that lets .NET applications access and manipulate data in Informix®
databases. It does this by implementing several interfaces in the Microsoft™ .NET Framework that are used to access data

from a database.

Using the Informix® .NET Provider is more efficient than accessing the Informix® database through either of these two

methods:

« Using the Microsoft™ .NET Framework Data Provider for ODBC along with the HCL Informix® ODBC Driver
« Using the Microsoft™ .NET Framework Data Provider for OLE DB along with the HCL Informix® OLE DB Provider

Related information

Differences between .NET Providers on page

Supported programming environments

The Informix® .NET Provider can be used by any application that can be run by the Microsoft™ .NET Framework.

The following list includes examples of supported programming environments:

« Visual BASIC .NET
* Visual C# .NET

* Visual J# .NET

« ASPNET

../%20cpi/ids_cpi_010.html#ids_cpi_010
../%20cpi/ids_cpi_010.html#ids_cpi_010
../%20cpi/ids_cpi_010.html#ids_cpi_010
../%20cpi/ids_cpi_010.html#ids_cpi_010

HCL Informix 14.10 - .NET Provider Reference Guide

The Informix® .NET Provider runs on all Microsoft™ Windows™ operating systems that support all .NET Framework features.
If you want to use the Informix® .NET Provider that implements ADO.NET interfaces, you must have the corresponding
version of Microsoft™ .NET Framework installed on your system. The Informix® .NET Provider that implements ADO.NET
interfaces is available with HCL® Informix® Client Software Development Kit (Client SDK) 3.0 and later releases.

Support for IPv6
The Informix® .NET Provider can use Internet Protocol Version 6 (IPv6) addresses, as well as Internet Protocol Version 4

(IPv4) addresses.

If your system uses IPv6 it is recommended that you use host names in your connection strings instead of using IPv6 format
IP addresses. Other than that, no special actions need be taken.

Installing the HCL Informix® .NET Provider
You can install the Informix® .NET Provider with the HCL® Informix® Client Software Development Kit (Client SDK) through

a typical or custom installation.

The Informix® .NET Provider installation registers strong-named assemblies in the Global Assembly Cache (GAC). If your
application is not running in a debugger, the application automatically finds the assembly that is registered in the GAC. If you
are upgrading .NET applications on 64-bit Windows™, you must clear the GAC to load the new version of the Informix® .NET

Provider DLL. Clear the GAC with the gacutil utility using the following command:
gacutil /u IBM.Data.Informix

You can perform this operation before upgrading HCL Informix® .NET Provider.

The locations of the HCL Informix® .NET Framework assemblies are shown in the following table:

Table 1. Locations of the .NET Framework assemblies

Framework that the ass

embly implements Location
Informix® .NET Provider 2.0 Framework 9% NFORM XDl R% bi n\ net f 20

Informix® .NET Provider 4.0 Framework % NFORM XDl R bi n\ net f 40

Use the Informix® .NET Framework 2.0 Provider for .NET Framework 2.0, 3.0, and 3.5.
Use the Informix® .NET Framework 4.0 Provider for NET Framework 4.0 and 4.5.

Because of security functions in .NET, you must reference one of these versions instead of the GAC version when you run
your application in a debugger. If you are using Microsoft™ Visual Studio .NET, complete the following steps to add the

reference:

1. In the Solution Explorer window, right-click References.
2. Click Browse and go to the assembly. The file name of the assembly is | BM Dat a. | nf or mi x. dI | . Select the file

from the folder for the version that you want to use.

Chapter 1. Informix® .NET Provider Guide

> % NFORM XDl R% bi n\ net f 11
> 94 NFORM XDl R% bi n\ net f 20
° 94 NFORM XDl R% bi n\ net f 40
3. Select the assembly and click Open.
4. Click OK.

To verify the version of the .NET assembly file, right-click the file and select Properties.

Related information

Installing Client Products on UNIX, Linux, Mac OS X on page

Installing Client Products on Windows Systems on page

Update the PATH environment variable for Microsoft™ Windows™ 64-bit Systems
If you run .NET programs on Microsoft™ Windows™ 64-bit systems, such as Windows™ Vista and Windows™ Server 2003, set

your PATH environment variable to include the path to the | f xDot Net | nt ri nsi cModul e. dl | file.

Set your PATH environment variable to include the path to | f xDot Net | nt ri nsi cModul e. dl | as follows:
* %4 NFORM XDI R¥ bi n/ net f 20/ if you use the Microsoft™ .NET Framework Version 2.0

The DLL is not required on 32-bit Windows™ operating systems. If you move your application from a 32-bit to a 64-bit

Windows™ operating system, you must update the PATH environment variable or you will receive an error.

Prepare the database server

Before you use the Informix® .NET Provider to access databases on a particular database server, you must execute the

cdot net . sqgl script against the sysmaster database on that server as the user informix.

Overview of the .NET provider class library

The Informix® .NET Provider supports all of the .NET public classes and base classes that are needed to access the

Informix® database.

In the .NET Framework, access to a data source and its data is handled by the ADO.NET classes (ADO.NET stands for
ActiveX Data Objects on the .NET platform). The .NET Framework is a set of services and programs that provide the runtime
environment for .NET applications. ADO.NET contains two primary components: the data set classes and the .NET provider

classes.

The DataSet object represents a data source in memory (in a disconnected state). .NET applications use the DataSet object
to manipulate data. The DataTable and DataColumn interfaces represent the source table and its columns. The DataRelation
interface represents relationships, such as parent-child, between tables.

../%20cpi/ids_cpi_005.html#ids_cpi_005
../%20cpi/ids_cpi_005.html#ids_cpi_005
../%20cpi/ids_cpi_005.html#ids_cpi_005
../%20cpi/ids_cpi_005.html#ids_cpi_005
../%20cpi/ids_cpi_006.html#ids_cpi_006
../%20cpi/ids_cpi_006.html#ids_cpi_006
../%20cpi/ids_cpi_006.html#ids_cpi_006
../%20cpi/ids_cpi_006.html#ids_cpi_006

HCL Informix 14.10 - .NET Provider Reference Guide

When you retrieve data from the database, the full result set is stored on the client. Keep your data sets as small as possible.

If you do not need to return all the data, use a projection clause in the SELECT statement to limit the returned rows.

Following are the main Informix® .NET Provider classes that provide data access:

« IfxConnection: Connection to a database and management of transactions.
« IfxCommand: Issues SQL commands.

« IfxDataReader: Reads a forward-only stream of data records.

- IfxTransaction: Controls transactions.

- IfxDataAdapter: Pushes data into a data set and for reconciling changes in a data set with the database.
You can use the following .NET Provider classes to develop provider-independent code:

» DbProviderFactory
« DbConnectionStringBuilder
« DbCommand

The IfxDataReader object provides quick retrieval of data from the database. However, the data is read-only and you can
only move forward, one record at a time, through the result set. Unlike DataSet objects, IfxDataReader objects do not create
temporary tables to hold the data, and so they use less memory.

If data is changed on the client, you might want to apply those changes to the database. You can use the primary key
of your database table to ensure that you update the correct row in the table. For single-table updates, you can use the
IfxCommandBuilder class to automatically reconcile changes in the data set with the database.

Related reference

Supported public .NET interfaces on page 17

Supported Public .NET base classes on page 18
Related information

Reconcile DataSet changes with the database on page 8
IfxCommandBuilder class on page 35

Projection Clause on page

Thread-safety of provider types

Only static members of the Informix® .NET Provider type are thread-safe.
No instance of any of the types is guaranteed to be safe when called from multiple threads at the same time.

Namespace requirements

The namespace for the Informix® .NET Provider is: IBM.Data.Informix. This means that the full name of the objects in the
Informix® .NET Provider all begin with IBM.Data.Informix.

../sqs/ids_sqs_0156.html#ids_sqs_0156
../sqs/ids_sqs_0156.html#ids_sqs_0156
../sqs/ids_sqs_0156.html#ids_sqs_0156
../sqs/ids_sqs_0156.html#ids_sqs_0156

Chapter 1. Informix® .NET Provider Guide

For example, the full name of IfxConnection is IBM.Data.Informix.IfxConnection.

To avoid having to enter the entire namespace for each of the objects you can import the namespace. The exact way that
you do this depends on your programming language. The C# language uses the keyword usi ng. If you are programming in

C#, you can reference the namespace by including this line at the start of your module:

using IBM.Data.Informix;

The Informix® .NET Provider supports the System.Transaction namespace, but does not support the

System.EnterpriseServices namespace.

Connecting to a database

You connect to a database by using the Open method of an IfxConnection object.
About this task

You define information about how to connect to the database (such as the machine and server where the database is
located) by passing a connection string to the IfxConnection object. The connection string has the form:

attribute=value [; attribute=value] . . .

The brackets ([]) and the ellipsis (...) are not part of the string. They show that attribute/value pairs beyond the first are
optional and any number of attribute/value pairs can be included. Separate attribute/value pairs from each other with a

semicolon.
The full list of possible attributes is described in the topic IfxConnection class on page 37.

If you are using Microsoft™ Visual Studio you can create a connection visually:

1. Drag an IfxConnection from the Data tab of the toolbox onto one of your forms.
2. Click in the ConnectionString property of the new IfxConnection object.
3. Click the ellipses (...) button that appears in the ConnectionString text box.

A dialog box opens.

4. Complete the items of the dialog to provide the connection information.

Results

The following fragment shows a simple connection to a database called testdb on the HCL Informix® server that is called

testserver that is located on a machine named berry:

IfxConnection conn=new IfxConnection("Host=berry; Service=9401;
Server=testserver;User ID=1informix; password=ifxtest;
Database=testdb");

conn.Open();

An IfxConnection object can also determine the connection properties from the environment variables. If you set the
properties in the connection string, the IfxConnection object uses those values. If you do not set the properties in the

connection string, the IfxConnection object uses the values that are set by the environment.

HCL Informix 14.10 - .NET Provider Reference Guide

However, you can set the value for the DELIMIDENT property in the registry by using the Setnet utility. If you do not set the
value for the DELIMIDENT property in the connection string or in the environment, but you set it by using the Setnet utility, the

IfxConnection object uses the value that you set with the Setnet utility.

In compliance with industry standards, the Informix® .NET Provider acts as though DELIMIDENT is set to Y unless you
explicitly set it to N.

When your application finishes using the database, close the connection as in the following fragment:

conn.Close();

Connection string attribute names are not case-sensitive, but often their values are not.

Related information

The DELIMIDENT Environment Variable on page

DELIMIDENT environment variable on page

Reconcile DataSet changes with the database

If you retrieve data from the database using an IfxDataAdapter object and make changes to the data in the data set, the
IfxCommandBuilder class allows you to generate automatic INSERT, DELETE, and UPDATE commands to reconcile those

changes with the database.

Retrieve data into a DataSet on page 98 includes an example that demonstrates how to use IfxDataAdapter objects.
IfxCommandBuilder object to reconcile changes with the database on page 99 includes an example that demonstrates

how to use IfxCommandBuilder objects.

Automatic generation of SQL statements for data reconciliation is initiated when you set the SelectCommand property of an
IfxDataAdapter object with the SELECT statement you want to execute. Then, when you create an IfxCommandBuilder object,
it automatically generates SQL statements for single-table updates to reconcile changes in the data set with the database.

An IfxCommandBuilder object is always associated with an IfxDataAdapter object (in a one-to-one relationship).

The SELECT statement that you execute using the SelectCommand property must return at least one primary key or unique

column. If none are present, an InvalidOperation exception is returned, and the reconciliation commands are not generated.

The IfxCommandBuilder object also uses the IfxCommand Connection, CommandTimeout, and Transaction properties for
the SELECT statement you are executing (set by the SelectCommand property). If any of these properties are modified, or
if the SELECT statement itself is replaced, you should call the IfxCommandBuilder.RefreshSchema method. Otherwise, the

InsertCommand, UpdateCommand, and DeleteCommand properties retain their original values.

The IfxCommandBuilder.Dispose method disassociates the IfxCommandBuilder object from the IfxDataAdapter object, and

the generated commands are no longer used.

An IfxCommandBuilder object may not generate efficient SQL statements. You can view the commands it generates by using
the GetDeleteCommand, GetInsertCommand, and GetUpdateCommand methods.

../sqs/ids_sqs_1614.html#ids_sqs_1614
../sqs/ids_sqs_1614.html#ids_sqs_1614
../sqs/ids_sqs_1614.html#ids_sqs_1614
../sqs/ids_sqs_1614.html#ids_sqs_1614
../sqr/ids_sqr_233.html#ids_sqr_233
../sqr/ids_sqr_233.html#ids_sqr_233
../sqr/ids_sqr_233.html#ids_sqr_233
../sqr/ids_sqr_233.html#ids_sqr_233

Chapter 1. Informix® .NET Provider Guide

The following limitations apply to the use of IfxCommandBuilder objects:

» The SELECT statement must retrieve at least one primary key or unique column as part of the query.

« The SELECT statement must refer to a single table; it cannot contain stored procedures or views that contain JOIN
operators.

» The SELECT statement must refer to columns that permit read-write operations.

« The IfxCommandBuilder object makes no attempt, nor does it provide any mechanism, to fetch output arguments
from the SELECT statement.

« If the CommandText, Connection, CommandTimeout or Transaction properties for the query change, you must
execute the IfxCommandBuilder.RefreshSchema method.

» The UPDATE and DELETE commands generated by an IfxCommandBuilder object will not change any row that was
modified in the database after the data was read by the SELECT.

 The IfxCommandBuilder object is designed to work with single, unrelated tables. You cannot use IfxCommandBuilder
objects to update tables with primary key/foreign key relationships.

« If columns in your SELECT command contain special characters, such spaces, periods, quotation marks or
non-alphanumeric characters, you cannot use IfxCommandBuilder objects unless you use the QuotePrefix and

QuoteSuffix properties to specify the delimiter for table and column names in the queries it generates.

The IfxDataAdapter, fxCommandBuilder, and other classes are described in detail and illustrated with examples in Type
reference on page 17.

The connection pool

Connection pooling allows client applications to reuse connections instead of creating a new one each time the
Informix® .NET Provider needs to connect to a database.

To make a connection available in the pool, you must close it after your application has finished using the connection. For
reuse, a connection must currently be unused and must still be connected to the server.

You use the Pooling, Max Pool Size, Connection Life Time, and Min Pool Size connection string attributes to control the
connection pool.

The Idle Timeout internal parameter is the standard protocol for removing connections from the pool and prevents
connections from remaining active indefinitely in the server. Idle Timeout has a value of 120 seconds, which cannot be
changed by setting a new value in the connection string. With Idle Timeout, when a connection is unused in the connection
pool for more than 120 seconds, the connection is closed and removed from the pool.

Set FullTrust permission

In order to use the Informix® .NET Provider, calling applications must have FullTrust permission set.

The ? parameter markers

You can use the question mark symbol (?) to mark a parameter's place in an SQL statement or stored procedure.

HCL Informix 14.10 - .NET Provider Reference Guide

Because the Informix® .NET Provider does not have access to names for these parameters, you must pass them in the
correct order. The order you add IfxParameter objects to an IfxParameterCollection object must directly correspond to the
position of the placeholder ? symbol for that parameter. You use the ParameterCollection.Add method to add a parameter to
a collection.

Call stored procedures

To use stored procedures in your applications, you must set some properties of the IfxCommand object.

Set the following properties of the IfxCommand object as shown:

- CommandText - set to the name of the stored procedure

« CommandType - set to StoredProcedure

You can use the IfxCommandBuilder.DeriveParameters method to retrieve information about parameters for stored

procedures.

If a stored procedure returns a value, your application must add a parameter for this to the parameter collection used by the
IfxCommand object.

The topic Call a stored procedure on page 100 includes an example that shows how to run a stored procedure and read
any results that it returns.

IfxProviderFactory objects to write database-independent code

Starting with Informix® .NET Provider Version 2, you can use the IfxProviderFactory class to write database-independent
code.

For more information about the IfxProviderFactory class, see IfxProviderFactory class on page 82.

Distributed transactions

Your application can enlist a connection for distributed transactions by setting the Enlist connection string attribute to t r ue,

yes, Or 1.
You should set the Pooling connection string attribute to t r ue, yes, or 1 while working with distributed transactions.
Distributed transactions on page 100 includes an example of how to use distributed transactions with your application.

Distributed transactions are supported through the Microsoft™ Distributed Transaction Coordinator (MS DTC). The MS DTC
components are required to call some unmanaged code, which can affect the level of security available and potentially

degrade performance.

The OUT and INOUT Parameters

As of Version 3.50.xC4, HCL Informix® Client Software Development Kit supports the use of OUT and INOUT parameters

during execution of SPL.

10

Chapter 1. Informix® .NET Provider Guide

The following data types are supported:

* BIGINT

« BLOB

« BOOLEAN

* DATETIME
* CHAR

- CLOB

« DECIMAL

« FLOAT

+ INT8

* INTEGER

« INTERVAL
« LVARCHAR
* MONEY

* NCHAR

* NVARCHAR
* SMALLFLOAT
* SMALLINT
* VARCHAR

These restrictions exist when using OUT or INOUT parameters in SPL execution:

« Collection data types such as LIST, MULTISET, ROW and SET are not supported.

« Returning result sets is not supported. After executing SPL with OUT or INOUT parameters, you cannot call SQLFetch
or SQL GetData.

- Only one value can be returned; that is, only one set of OUT or INOUT parameters can be returned per individual SPL

execution.

The following SPL execution example creates one OUT, one INOUT, and one IN (default) parameter and one return

value.

create procedure myproc(OUT dintparam INT, INOUT charparam char(20),
inparam 1int) returns dint

<body of SPL>

end procedure;

The following code example shows how to use OUT and INOUT parameters.

using System;

using System.Data;

using System.IO;

using IBM.Data.Informix;

namespace SPLInOutParamTest

{

class Program

11

12

HCL Informix 14.10 - .NET Provider Reference Guide

static void Main(string[] args)

/* Build connection string and create connection object */

IfxConnection conn = new IfxConnection("Server=ol_ids1150;

Database=common_db1;UID=1informix;PWD=1informix");

/* Create command object */
IfxCommand cmd = new IfxCommand();

/* Connect to the server x*/

conn.Open();

/* Associate connection object to command object x/

cmd.Connection = conn;

try
{

try

}

cat

/*
cmd
(IN

cmd.

cmd

/*

Ifx
Ifx
Ifx
Ifx

/*

pl.
p2.
p3.
p4.

/*
pl.
p2.

/* Drop the procedure x/
cmd.CommandText = "DROP PROCEDURE test_proc;";
cmd. ExecuteNonQuery () ;

ch { /x Ignore the exception */ };

Create procedure with INOUT params x/
.CommandText = "CREATE PROCEDURE test_proc
OUT argl int, OUT arg2 1int, INOUT arg3 int) " +

"returning int " +

"define ret 1int; " +

"let ret = (argl + arg3);" +

"let argl = 1; " +

"let arg2 = 2; " +

"let arg3 = 3;" +

"return ret; " +

"end procedure;";

ExecuteNonQuery () ;

.CommandText = "{? = call test_proc(?,?,?)};";

Bind the required parameters =/

Parameter pl = cmd.Parameters.Add("ID", IfxType.Integer);
Parameter p2 = cmd.Parameters.Add("ID1", IfxType.Integer);
Parameter p3 = cmd.Parameters.Add("ID2", IfxType.Integer);

Parameter p4 = cmd.Parameters.Add("ID3", IfxType.Integer);

Initialize the values for the parameters */

Value = 0;
Value = 5;
Value = 4;
Value = 10;
Bind the appropriate direction */

Direction = ParameterDirection.Output;
Direction = ParameterDirection.InputOutput;

Chapter 1. Informix® .NET Provider Guide

p3.Direction = ParameterDirection.Output;
p4.Direction = ParameterDirection.InputOutput;

/* Execute the procedure x/
cmd . ExecuteNonQuery () ;

/* Print the data */
Console.WriteLine("\n Return value from procedure
=" + (Int32)pl.Value);

Console.WriteLine("\n Out paraml value = " + (Int32)p2.Value);
Console.WriteLine("\n Out param2 value = " + (Int32)p3.Value);
Console.WriteLine("\n Out param3 value = " + (Int32)p4.Value);
}
catch (IfxException e)
{
Console.WriteLine(e.Message);
}

Generic coding with the ADO.NET common base classes

The .NET Framework features a namespace that is called the System.Data.Common namespace, which contains a set of

base classes that can be shared by any .NET data provider.

The main classes in the HCL Informix® .NET Data Provider are inherited from the System.Data.Common base classes. As a

result, generic ADO.NET applications work with Informix® databases through the Informix® .NET Data provider.

The following C# code demonstrates a generic approach to establishing a database connection.

DbProviderFactory factory = DbProviderFactories.GetFactory("IBM.Data.Informix");
DbConnection conn = factory.CreateConnection();
DbConnectionStringBuilder sb = factory.CreateConnectionStringBuilder();

if(sb.ContainsKey("Database"))
{

sb.Remove("database");
sb.Add("database", "SAMPLE");

conn.ConnectionString = sb.ConnectionString;

conn.Open();

The DbPr ovi der Fact ory object is the point where any generic ADO.NET application begins. This object creates generic
instances of .NET data provider objects, such as connections, data adapters, commands, and data readers, which work with

a specific database product.

The "1 BM Dat a. | nf or mi x" string that is passed into the Get Fact ory method uniquely identifies the Informix® .NET Data
Provider, and initializes a DbPr ovi der Fact ory instance that creates database provider object instances specific to the
Informix® .NET Data Provider.

13

14

HCL Informix 14.10 - .NET Provider Reference Guide

The DbConnect i on object can connect to Informix® databases, just as a | f xConnect i on object, which is inherited from the

DbConnect i on object.

By using the DbConnect i onSt ri ngBui | der class, you can determine the connection string keywords for a data provider,
and generate a custom connection string. The code in the example checks if a keyword named " dat abase" exists in the
Informix® .NET Data Provider, and if so, generates a connection string to connect to the SAMPLE database.

Error messages

Error messages from the HCL Informix® server are represented as Informix® .NET Provider exceptions.

Tracing

An application can enable tracing by setting the IFXDOTNETTRACE environment variable.

0

No tracing
1

Tracing of API entry and exit, with return code
2

Tracing of API entry and exit, with return code, plus tracing of parameters to the API
Trace information is written to the file you set using the IFXDOTNETTRACEFILE environment variable.

Error checking during data transfer

The IFX_LOB_XFERSIZE environment variable is used to specify the number of kilobytes in a CLOB or BLOB to transfer from
a client application to the database server before checking whether an error has occurred. The error check occurs each time
the specified number of kilobytes is transferred.

If an error occurs, the remaining data is not sent and an error is reported. If no error occurs, the file transfer will continue until

it finishes.

The valid range for IFX_LOB_XFERSIZE is from 1 to 9223372036854775808 kilobytes. The IFX_LOB_XFERSIZE environment
variable is set on the client.

For more information on IFX_LOB_XFERSIZE, see the HCL® Informix® Guide to SQL: Reference.

Mapping data types

These topics describe how data types are mapped between HCL Informix® databases and the .NET Framework.

The information on mapping includes:

Chapter 1. Informix® .NET Provider Guide

- How data types are mapped when you retrieve data from the database using IfxDataReader and IfxDataAdapter

objects

» How a parameter's data type is mapped (when you use IfxParameter objects)

Retrieve data

Each HCL Informix® data type can fit in a .NET Framework data type.

The following table shows each HCL Informix® data type, the recommended type to store that data type in, and the .NET

Framework data type that it best fits in. The recommended type should be used when accessing data through an

IfxDataReader. The best-fit NET type is the type that an IfxDataAdapter object will use when it fills a DataSet object.

You can use types other than those shown, for example you can use the IfxDataReader.GetString method to get any data type

that can be stored in the Informix® database. The types recommended are the most efficient and least likely to change the

value.

Table 2. Best-fit types for retrieving Informix® data types

Informix® data type

Recommended type

Best-fit native .NET data type

BIGINT Int64 Int64
BIGSERIAL Int64 Int64
BLOB IfxBlob Byte[l
BOOLEAN Boolean Boolean
BYTE Byte[] Bytel]
CHAR String String
CHAR(1) String String
CLOB IfxClob Byte[l
DATE IfxDateTime DateTime
DATETIME IfxDateTime DateTime
DECIMAL(p<=28) fixed scale IfxDecimal Decimal
DECIMAL (p<=28) floating point IfxDecimal Double
DECIMAL (p>28) IfxDecimal String
DOUBLE Double Double
FLOAT Double Double
IDSSECURITYLABEL Int64(] Int64(]
INTEGER Int32 Int32
INT8 Int64 Int64

15

HCL Informix 14.10 - .NET Provider Reference Guide

Table 2. Best-fit types for retrieving Informix® data types (continued)

Informix® data type Recommended type Best-fit native .NET data type
INTERVAL, year-month IfxMonthSpan String
INTERVAL, day-fraction IfxTimeSpan TimeSpan
LVARCHAR String String
MONEY IfxDecimal As for Decimal with same precision
NCHAR String String
REAL Float Float
SERIAL nt32 Int32
SERIAL8 Int64 Int64
SMALLFLOAT Float Float
TEXT String String
VARCHAR String String

For the format of Informix® data types, DECIMAL, MONEY, DATETIME, and INTERVAL returned using IfxDataReader.GetString
method see the section about the Literal Row segment in HCL® Informix® Guide to SQL: Syntax.

The ROW and TEXT types and the collection types, LIST, MULTISET, SET, can be mapped to a string literal NET Framework

type and accessed with the IfxDataReader.GetString method. The format for the string is documented in the HCL® Informix®

Guide to SQL: Syntax, in the section about the Literal Row segment.

In order to make the expression of any nested string literals simpler, a leading quotation mark is not returned in the string. A
single-quotation mark, rather than a double-quotation mark, is used to begin and end any string literals embedded in the ROW

type. This is to avoid confusion if a double-quotation mark might be used as a delimited identifier.

Set data types for a parameter

Your application should set the type for a parameter as the HCL Informix® type whenever possible (using the IfxType

argument of IfxParameter constructor).
IfxType enumeration on page 94 shows the IfxType enumeration.

You can specify a parameter type as a .NET DbType instead, and the Informix® .NET Provider will infer the Informix® type as
best it can. The .NET DbType specifies the data type of a Parameter object of a .NET Framework data provider. Some DbType
types, such as GUID, do not map to any Informix® type, and an error will be returned. Some DbType types, such as AnsiString,
can map to several Informix® types, such as VARCHAR, TEXT, or BLOB; you must be aware that the Informix® .NET Provider

may not choose the data type you intend.

16

Chapter 1. Informix® .NET Provider Guide

If you do not specify either the Informix® data type or a .NET DbType, the Informix® .NET Provider attempts to infer the
Informix® data type from the value itself. For example, if the value is 4, the provider maps this to an INTEGER data type.
Relying on these inferred mappings can lead to unexpected results.

Display format of FLOAT, DECIMAL, or MONEY data types

The display format of the HCL Informix® FLOAT, DECIMAL, or MONEY data types is specified by the values of the DBMONEY
or CLIENT_LOCALE environment variables.

The DBMONEY environment variable takes precedence over the CLIENT_LOCALE environment variable. If you do not set
DBMONEY, the locale setting (CLIENT_LOCALE) is used to format the value. By default, DBMONEY is set to a dollar sign and
a period ($.), and CLIENT_LOCALE is set to US English (en_us.CP1252). For example, if you set DBMONEY=Pt, the separator

becomes a comma (,). A decimal value of 169.0 will then be formatted with a comma: 169,0.

The Informix® .NET Provider determines display format using the following precedence:

1. Connection string
2. Environment
3. Registry (SetNet settings)

The values in the connection string override all other settings. For more information, see the HCL® Informix® Guide to SQL:

Reference.

Type reference

All of the classes described in these topics belong in the namespace IBM.Data.Informix.

For example, the full identification of the IfxConnection class is IBM.Data.Informix.IfxConnection.
Supported public .NET interfaces

The Informix® .NET Provider implements specific Microsoft™ .NET interfaces.

For more information about the Microsoft™ public interfaces and classes, see the Microsoft™ .NET Framework SDK
documentation. If the Informix® .NET Provider does not support a particular .NET class or method, that class or method is

implemented as no-operation.

Table 3. Interfaces implemented by Informix® .NET Provider classes

Class Extends Description

IfxCommand IDbCommand Represents a query or command that is run when the

application is connected to the database

IfxCommandBuilder DbCommandBuilder Generates single-table INSERT, DELETE, and UPDATE
commands that reconcile changes made in a data set

with the associated Informix® database

17

18

HCL Informix 14.10 - .NET Provider Reference Guide

Table 3. Interfaces implemented by Informix® .NET Provider classes (continued)

Class

Extends

Description

IfxConnection

IDbConnection

Represents an application's unique session with a
data source

IfxDataAdapter IDbDataAdapter Enables an application to run SQL commands against
the database, fill data sets, and reconcile changes in
the data set with the database

IfxDataReader IDDataReader Allows forward-only, read-only, access to a stream of
data from the database

IfXError Represents an instance of a warning or an error that is
generated by the Informix® database

IfxErrorCollection ICollection Represents a collection of IfxError objects in an
IfxException object

IfxException Represents an exception that is generated when a
warning or error is returned by the Informix® database

IfxParameter IDbDataParameter Implements a parameter to a command and maps it to

a column within a data set

IfxParameterCollection

IDbParameterCollection

Implements multiple parameters to a command and

maps them to columns within a data set

IfxTransaction

IDbTransaction

Represents a local transaction

Supported Public .NET base classes

The Informix® .NET Provider implements specific Microsoft™ .NET base classes.

For more information about the Microsoft™ public classes, see the Microsoft™ .NET Framework SDK documentation. If the

Informix® .NET Provider does not support a particular .NET base class, that class is implemented as no-operation.

Table 4. Base classes implemented by Informix® .NET Provider classes

Class

Base class

Description

[fxCommand

DbCommand

Represents a query or command that is run when the
application is connected to the database.

IfxCommandBuilder

DBCommandBuilder

Generates single-table INSERT, DELETE, and UPDATE
commands that reconcile changes made in a data set

with the associated Informix® database.

IfxConnection

DbConnection

Represents an application's unique session with a
data source.

Chapter 1. Informix® .NET Provider Guide

Table 4. Base classes implemented by Informix® .NET Provider classes (continued)

Class

Base class

Description

IfxConnectionStringBuilder

DbConnectionStringBuilder

Provides the base class from which the
strongly typed connection string builders
(OdbcConnectionStringBuilder and

SQLconnectionStringBuilder) derive.

IfxDataAdapter DbDataAdapter Enables an application to run SQL commands against
the database, fill data sets, and reconcile changes in
the data set with the database.

IfxDataReader DbDataReader Allows forward-only, read-only, access to a stream of

data from the database.

IfxDataSourceEnumerator

DbDataSourceEnumerator

Allows data providers to obtain a list of data sources.

IfxParameter

DbParameter

Implements a parameter to a command and maps it to

a column within a data set.

IfxParameterCollection

DbParameterCollection

Implements multiple parameters to a command and

maps them to columns within a data set.

IfxProviderFactory

DbProviderFactory

Represents a set of methods that you can use to
create instances of a provider's implementation of the
data source classes.

IfxTransaction

DbTransaction

Represents a local transaction. The TransactionScope

class is not supported by this .NET provider

Prototype syntax

Because the objects of the Informix® .NET Provider can be used in many different programming languages, the prototypes

of the methods are given in this publication using a pseudo code.

The syntax of the pseudo code is as follows:

>>—d—m——m o +--returntype--methodname-- (- —-—+---—-—--————————————— Foto=)-><
' —parmtype--parmlabel-"'

'-static-'

returntype

This is the type of the object that is returned. If the method returns nothing then this will be voi d.

methodname

The name of the method.

parmtype

What type of object is expected at this position in the argument list.

19

20

HCL Informix 14.10 - .NET Provider Reference Guide

parmlabel
A name for the parameter. This is only used as a convenience when referring to the parameter in the text. This

parameter name will always be italicized, even in the text.

If the static keyword is present it means that the method is callable without creating an instance of the class of whichitis a
part. In place of the instance of the class use the name of the class itself. In Visual Basic this is called a Shared method. In

C# it is called a static method.

Example: The IfxDecimal.Floor method is static and accepts a single IfxDecimal. That means that if mydec is an
instance of IfxDecimal you can call floor on it like this: IfxDecimal.Floor(mydec). But you cannot call it like this:

mydec.Floor(mydec).

The syntax for prototypes of constructors is the same as the syntax shown in this topic except that st ati ¢ and returntype are
not used.

IfxBlob class

An IfxBlob represents a BLOB, which is a large block of binary data that allows random access of its contents. You can treat
a BLOB in much the same way you treat an operating system file. You can read or write to certain positions in the file without

reading or writing through all of the data up to that position.

BLOBs and CLOBs, are both types of smart large objects. Both types share many of the same methods. BLOBs differ from
CLOBs in that the data in a CLOB is treated as text characters but the data in a BLOB is not. The data in a BLOB is considered
to be binary data and no translation or conversion of any kind is performed on it as it is moved to or from the database

server.

The IfxBlob internal cursor

Each IfxBlob has an internal pointer to a position in the BLOB. This is referred to in this publication as the cursor of the

instance.

The position of the cursor when an IfxBlob object is opened depends on the mode in which it is opened. The section
IfxSmartLOBOpenMode enumeration on page 85 lists the possible modes.

After a read or a write the cursor is moved to the character after the last one affected by the operation. The method
IfxBlob.Seek allows you to set the cursor position explicitly.

Create an IfxBlob

You can get existing IfxBlob objects or you can create them.

You can get IfxBlob objects from these methods:

« IfxConnection.GetlfxBlob
« |fxDataReader.GetlfxBlob

You can create an IfxBlob with a constructor.

IfxBlob constructors

IfxBlob(IfxConnection connection)

Creates a new IfxBlob that is associated with connection.

IfxBlob public properties

These are the public properties of the IfxBlob object.

Table 5. IfxBlob public properties

Chapter 1. Informix® .NET Provider Guide

Property Type

Access notes

Description

EstimatedSize System.Int64

Gets or sets the estimated final size of the
BLOB. You can set this if you have a good
estimate of what the final size will be. The
database server's optimizer can then use
that information.

Do not set this unless you have a good idea
of the final size. Setting it too large will
cause wasted resources on the database

server.

ExtentSize System.Int32

Gets or sets the next extent size that the
database server will use when allocating disk
space for this BLOB.

Only applications that encounter severe
storage fragmentation should ever set the

allocation extent size.

Flags System.Int32

Gets or sets the flags for this BLOB.

To interpret this value compare

it to the members of the
IfxSmartLOBCreateTimeFlags enumeration.
See IfxSmartLOBCreateTimeFlags

enumeration on page 83 for details.

IsNull System.Boolean

read-only

Returns true if the instance is null; otherwise

it returns false.

21

HCL Informix 14.10 - .NET Provider Reference Guide

Table 5. IfxBlob public properties (continued)

Property

Type

Access notes

Description

IsOpen

System.Boolean

read-only

Returns true if the instance is open;

otherwise it returns false.

LastAccessTime

System.Int32

read-only

The system time on the database server
(rounded to the second) at which the BLOB
was last accessed.

This information is only available if
KeepAccessTime is set in the Flags property.

LastChangeTime

System.Int32

read-only

The system time on the database server
(rounded to the second) at which the status
of the BLOB was last changed.

Updating, changing ownership, and changes
in the number of references are all changes

in status.

LastModificationTime

System.Int32

read-only

The system time on the database server
(rounded to the second) at which the BLOB

was last written to.

MaxBytes System.Int64 Get or set the maximum size for this BLOB.
The database server will not let the BLOB be
larger than this value.

Null IfxBlob read-only static | An IfxBlob object that has a null value.

Position System.Int64 Returns the current position of the cursor in
the BLOB. The value is the number of bytes
from the first byte of the BLOB.

ReferenceCount System.Int32 read-only Returns the number of rows in the database
that currently contain a reference to this
BLOB.

SBSpace System.String Gets or sets the name of the sbspace in
which the BLOB is stored.

Size System.Int64 read-only Gets the current size of the BLOB in bytes.

22

Chapter 1. Informix® .NET Provider Guide

IfxBlob public methods

IfxBlob.Close

void IfxBlob.Close()

Closes the instance.

IfxBlob.FromFile

void IfxBlob.FromFile(System.String filename, System.Boolean
appendToSmartLOB, IfxSmartLOBFilelLocation fileLocation)

Writes the operating system file filename into the BLOB. If appendToSmartLOB is true the file is written to the end of the

BLOB. If it is false it overwrites the current contents of the BLOB.

The value of fileLocation indicates whether the file indicated in filename is located on the client or the server. Server side files

are not currently supported.

IfxBlob.GetLocator

IfxSmartLOBLocator IfxBlob.GetLocator ()

Returns the IfxSmartLOBLocator associated with this instance.

IfxBlob.Lock

void IfxBlob.Lock(System.Int64 smartLOBOffset, IfxSmartLOBWhence whence,
System.Int64 range, IfxSmartLOBLockMode lockMode)

Use this method to place a lock on a portion of the BLOB. The type of lock (exclusive or shared) is determined by lockMode.

The lock is placed on a group of contiguous bytes that is range bytes long. The start of the locked range is determined
by the values of smartLOBOffset and whence. How these values interact is describe in the section IfxSmartLOBWhence

enumeration on page 86.

IfxBlob.Open

void IfxBlob.Open(IfxSmartLOBOpenMode mode)

Before an instance of IfxBlob can be read from or written to it must be opened using this method. The value of mode
determines what sort of access will be allowed to the BLOB. See IfxSmartLOBOpenMode enumeration on page 85 for a
description of the different modes.

IfxBlob.Read
System.Int64 IfxBlob.Read(char[] buff)

System.Int64 IfxBlob.Read(char[] buff, System.Int64 buffOffset,
System.Int64 numBytesToRead, System.Int64 smartLOBOffset,
IfxSmartLOBWhence whence)

Reads characters into buff from the BLOB represented by this instance. The number returned is how many bytes were

successfully read into buff.

23

24

HCL Informix 14.10 - .NET Provider Reference Guide

If only buff is given, then the BLOB is read into it starting at element 0. This version of the method will not write past the end

of the array buff. The BLOB is truncated if it is longer than the buffer. The read begins at current cursor position in the BLOB.

If the other arguments are provided then exactly numBytesToRead bytes are read into buff starting at element buffOffset. An

error is returned if this method is asked to write outside the bounds of the array.

Before the read occurs the cursor is moved according to the values of whence and smartLOBOffset. How these values

interact is describe in the section IfxSmartLOBWhence enumeration on page 86.

IfxBlob.Release

void IfxBlob.Release()

Use this method to free database server resources used by this instance if the instance was never read from or written to a
database. Do not call this method if you have written the BLOB to a database or if it was created because of a read from a

database.

After calling this method do not use the instance.

IfxBlob.Seek

System.Int64 IfxBlob.Seek(System.Int64 offset, IfxSmartLOBWhence whence)

Changes the position of the cursor within the BLOB. The value returned is the new position of the cursor from the start of the
BLOB.

The new position of the cursor is determined by the values of offset and whence. How these values interact is describe in the

section IfxSmartLOBWhence enumeration on page 86.

IfxBlob.ToFile

System.String IfxBlob.ToFile(System.String filename, System.IO.FileMode mode,
IfxSmartLOBFileLocation fileLocation)

Writes the contents of the BLOB to an operating system file named filename. The value of fileLocation determines whether

the file will be written on the client or on the server. Server side files are not currently supported.

The value of mode determines how the output file is opened. Look up System.|0.FileMode in the .NET Framework Class

Library for details on the available modes.

IfxBlob.Truncate

void IfxBlob.Truncate(System.Int64 offset)

Deletes everything in the BLOB past the position offset.

IfxBlob.Unlock

void IfxBlob.Unlock(System.Int64 smartLOBOffset, IfxSmartLOBWhence whence,
System.Int64 range)

Chapter 1. Informix® .NET Provider Guide

Use this method to remove all locks placed on a certain range of bytes in the BLOB. The size of the range that is unlocked is

range bytes.

The values of smartLOBOffset and whence determine where the range starts. How these values interact is describe in the

section IfxSmartLOBWhence enumeration on page 86.

IfxBlob.Write
System.Int64 IfxBlob.Write(char[] buff)

System.Int64 IfxBlob.Write(char[] buff, System.Int64 buffOffset,
System.Int64 numBytesToWrite, System.Int64 smartLOBOffset,
IfxSmartLOBWhence whence)

Writes bytes from buff to the BLOB represented by this instance. The number returned is how many bytes were successfully

written.
If only buff is given, then the entire array is written to the BLOB starting at the BLOB's current cursor position.

If the other arguments are provided then exactly numBytesToWrite bytes are written to the BLOB from buff starting at array

element buffOffset. An error is returned if buffOffset is outside the bounds of the array.

Before the write is performed the cursor is moved according to the values of whence and smartLOBOffset. How these values

interact is describe in the section IfxSmartLOBWhence enumeration on page 86.

If the write starts beyond the current end of the BLOB then it will be padded with bytes that have a value of 0 from the current

end to the point where the write begins.

IfxClob class

An IfxClob represents a CLOB, which is a large block of character data that allows random access of its contents. You can
treat a CLOB in much the same way you treat an operating system file. You can read or write to certain positions in the file
without reading or writing through all of the data up to that position.

CLOBs and BLOBs, are both types of smart large objects. Both types share many of the same methods. A CLOB is different
from a BLOB in that the data in it is treated as characters instead of bytes. This means that it is subject to code set
conversion and other functions of the Global Language System (GLS). If a multibyte character set is being used then one

character may require more than one byte to represent it in the CLOB.
The IfxClob internal cursor
Each IfxClob tracks an internal pointer to a position in the CLOB. This is referred to as the cursor of the instance.

The position of the cursor when an IfxClob object is opened depends on the mode in which it is opened. See

IfxSmartLOBOpenMode enumeration on page 85 for a list of the possible modes.

After a read or a write the cursor is moved to the next character after the last one affected by the operation. The method

IfxClob.Seek allows you to set the cursor position explicitly.

25

26

HCL Informix 14.10 - .NET Provider Reference Guide

Create an IfxClob

You can get IfxClob objects from these methods:

« [fxConnection.GetIfxClob
« [fxDataReader.GetlfxClob

You can also create an IfxClob with a constructor:

IfxClob constructors

IfxClob(IfxConnection connection)

Creates a new IfxClob that is associated with connection.

IfxClob public properties

These are the public properties of the IfxClob object.

Table 6. IfxClob public properties

Property Type

Access notes

Description

EstimatedSize System.Int64

Gets or sets the estimated final size of the
CLOB. You can set this if you have a good
estimate of what the final size will be. The
database server's optimizer can then use that
information.

Do not set this unless you have a good idea
of the final size. Setting it too large will cause
wasted resources on the database server.

ExtentSize System.Int32

Gets or sets the next extent size that the
database server will use when allocating disk
space for this BLOB.

Only applications that encounter severe
storage fragmentation should ever set the

allocation extent size.

Flags System.Int32

Gets or sets the flags for this CLOB.

To interpret this value compare
it to the members of the

IfxSmartLOBCreateTimeFlags enumeration.

Table 6. IfxClob public properties (continued)

Chapter 1. Informix® .NET Provider Guide

Property

Type

Access notes

Description

See IfxSmartLOBCreateTimeFlags

enumeration on page 83 for details.

IsNull

System.Boolean

read-only

Returns true if the instance is null; otherwise

it returns false.

IsOpen

System.Boolean

read-only

Returns true if the instance is open; otherwise
it returns false.

LastAccessTime

System.Int32

read-only

The system time on the database server
(rounded to the second) at which the CLOB

was last accessed.

This information is only available if

KeepAccessTime is set in the Flags property.

LastChangeTime

System.Int32

read-only

The system time on the database server
(rounded to the second) at which the status

of the CLOB was last changed.

Updating, changing ownership, and changes
in the number of references are all changes in
status.

LastModificationTime

System.Int32

read-only

The system time on the database server
(rounded to the second) at which the CLOB

was last written to.

MaxBytes System.Int64 Get or set the maximum size, in bytes, for this
CLOB. The database server will not let the
CLOB be larger than this value.

Null IfxBlob read-only static | An IfxBlob object that has a null value.

Position System.Int64 Returns the current position of the cursor in
the CLOB. The value is the number of bytes
from the first byte of the CLOB.

ReferenceCount System.Int32 read-only Returns the number of rows in the database
that currently contain a reference to this
CLOB.

SBSpace System.String Gets or sets the name of the shspace in

which the BLOB is stored.

27

HCL Informix 14.10 - .NET Provider Reference Guide

Table 6. IfxClob public properties (continued)

Property Type Access notes Description

Size System.Int64 read-only Gets the current size of the BLOB in bytes.

IfxClob public methods

IfxClob.Close

void IfxClob.Close(IfxSmartLOBOpenMode mode)

Closes the instance.

IfxClob.FromFile

void FromFile(System.String filename, System.Boolean appendToSmartLOB,
IfxSmartLOBFileLocation fileLocation)

Writes the operating system file filename into the CLOB. If appendToSmartLOB is true the file is written to the end of the
CLOB. If it is false it overwrites the current contents of the CLOB.

The value of fileLocation indicates whether the file indicated in filename is located on the client or the server. Server side files

are not currently supported.

IfxClob.GetLocator

IfxSmartLOBLocator GetlLocator ()

Returns the IfxSmartLOBLocator associated with this instance.

IfxClob.Lock

void Lock(System.Int64 smartLOBOffset, IfxSmartLOBWhence whence,
System.Int64 range, IfxSmartLOBLockMode lockMode)

Use this method to place a lock on a portion of the CLOB. The type of lock (exclusive or shared) is determined by lockMode.

The lock is placed on a group of contiguous characters that is range characters long. The start of the locked range
is determined by the values of smartLOBOffset and whence. How these values interact is describe in the section

IfxSmartLOBWhence enumeration on page 86.

IfxClob.Open

void IfxClob.Open(IfxSmartLOBOpenMode mode)

Before an instance of IfxClob can be read from or written to it must be opened using this method. The value of mode
determines what sort of access will be allowed to the CLOB. See IfxSmartLOBOpenMode enumeration on page 85 for a

description of the different modes.

IfxClob.Read

System.Int64 IfxClob.Read(char[] buff)

Chapter 1. Informix® .NET Provider Guide

System.Int64 IfxClob.Read(char[] buff, System.Int64 buffOffset,
System.Int64 numCharsToRead, System.Int64 smartLOBOffset,
IfxSmartLOBWhence whence)

Reads characters into buff from the CLOB represented by this instance. The number returned is how many bytes were
successfully read into buff.

If only buff is given, then the CLOB is read into it starting at element 0. This version of the method will not write past the end
of the array buff. The CLOB is truncated if it is longer than the buffer. The read begins at the current cursor position of the
CLOB.

If the other arguments are provided then exactly numCharsToRead characters are read into buff starting at element
buffOffset. An error is returned if this method is asked to write outside the bounds of the array.

Before the read occurs the cursor is moved according to the values of whence and smartLOBOffset. How these values

interact is describe in the section [fxSmartLOBWhence enumeration on page 86.

IfxClob.Release

void IfxClob.Release()

Use this method to free database server resources used by this instance if the instance was never read from or written to a
database. Do not call this method if you have written the CLOB to a database or if it was created because of a read from a
database.

After calling this method do not use the instance.

IfxClob.Seek

System.Int64 IfxClob.Seek(System.Int64 offset, IfxSmartLOBWhence whence)
Changes the position of the cursor within the CLOB. The value returned is the new value of IfxClob.Position.

The new position of the cursor is determined by the values of offset and whence. How these values interact is describe in the

section IfxSmartLOBWhence enumeration on page 86.

IfxClob.ToFile

System.String IfxClob.ToFile(System.String filename, System.IO.FileMode mode,
IfxSmartLOBFileLocation fileLocation)

Writes the contents of the CLOB to an operating system file named filename. The value of fileLocation determines whether

the file will be written on the client or on the server. Server side files are not currently supported.

The value of mode determines how the output file is opened. Look up System.lO.FileMode in the .NET Framework Class

Library for details on the available modes.

IfxClob.Truncate

void IfxClob.Truncate(System.Int64 offset)

Deletes everything past offset bytes from the start of the CLOB.

29

30

HCL Informix 14.10 - .NET Provider Reference Guide

IfxClob.Unlock

void IfxClob.Unlock(System.Int64 smartLOBOffset, IfxSmartLOBWhence whence,
System.Int64 range)

Use this method to remove all locks placed on a certain range of characters in the CLOB. The size of the range that is
unlocked is range characters.

The values of smartLOBOffset and whence determine where the range starts. How these values interact is describe in the

section IfxSmartLOBWhence enumeration on page 86.

IfxClob.Write
System.Int64 IfxClob.Write(char[] buff)

System.Int64 IfxClob.Write(char[] buff, System.Int64 buffOffset,
System.Int64 numCharsToWrite, System.Int64 smartLOBOffset, IfxSmartLOBWhence whence)

Writes characters from buff to the CLOB represented by this instance. The number returned is how many characters were

successfully written.
If only buff is given, then the entire array is written to the CLOB starting at the current cursor position.

If the other arguments are provided then exactly numCharsToWrite characters are written to the CLOB from buff starting at

array element buffOffset. An error is returned if buffOffset is outside the bounds of the array.

Before the write is performed the cursor is moved according to the values of whence and smartLOBOffset. How these values

interact is describe in the section [fxSmartLOBWhence enumeration on page 86.

If the write starts beyond the current end of the CLOB then it will be padded with values of 0 from the current end to the point

where the write begins.

IfxCommand class

The IfxCommand class represents an SQL statement that is to be executed in the database.

Create an IfxCommand

You can create an IfxCommand by using the constructors or by using the IfxConnection.CreateCommand method.

See IfxConnection.CreateCommand on page 44.

To write provider-independent code, you can use the CreateCommand() method of the DbProviderFactory class to create a

provider-specific instance of DbCommand.

Related information

IfxProviderFactory class on page 82

[fxCommand constructors

¢ | f xCommand()

¢ | f xCommand(System String cndText)

Chapter 1. Informix® .NET Provider Guide

¢ | f xCommand(System String cndText, |fxConnection connection)

¢ | f xConmand(System String cndText, |fxConnection connection, |fxTransaction transaction)

¢ | f xCommand(System String cndText, |fxConnection connection, int rowretchCount)

If cmdText is given it is used as the SQL statement of the command. The connection and transaction will be used when the

command is executed if they are given.

IfxCommand public properties

The following table shows the public properties of the IfxCommand class.

Table 7. IfxCommand public properties

Property

Type

Description

CommandText

System.String

Gets or sets the text command to run against the
data source. The CommandType property is used to
interpret this property. All ODBC escape sequence
syntax that the HCL Informix® ODBC Driver supports
is also supported by the Informix® .NET Provider.

CommandTimeout

System.Int32

Gets or sets the wait time before terminating the

attempt to execute a command and generating an

error.

CommandType System.Data.CommandType Indicates how the CommandText property
is interpreted. The possible values of the
CommandType property are described after the
table.

Connection IfxConnection Gets or sets the IfxConnection object used by this
IfxCommand object.

Parameters IfxParameterCollection Gets the IfxParameterCollection object.

RowFetchCount System.Int32

Sets the number of rows to fetch in each fetch
operation. This value affects the performance of
the fetch operation. The value is not applicable if
the table contains columns of BLOB, CLOB, TEXT or
BYTE data type.

Transaction

IfxTransaction

Gets or sets the transaction in which the
IfxCommand object executes.

31

32

HCL Informix 14.10 - .NET Provider Reference Guide

Table 7. IfxCommand public properties (continued)

Property Type Description

UpdatedRowSource System.Data.UpdateRowSource Gets or sets how command results are

applied to the DataRow when used by the
IfxDataAdapter.Update method. The possible values
of the UpdatedRowSource property are described
after the table.

The CommandType property can have any of the following values:

« StoredProcedure—The name of a stored procedure.

« TableDirect—When the CommandType property is set to TableDirect, the CommandText property should be set to
the name of the table or tables to be accessed. If any table names contain special characters, you might need to
dereference them, for example, by using escape-character syntax or including qualifying characters. All rows and
columns of the named tables are returned when you call the ExecuteNonQuery, ExecuteScalar, or ExecuteReader
methods of the IfxCommand class. To access multiple tables, use a comma delimited list, without spaces or
padding, that contains the names of the tables to access. When the CommandText property specifies multiple tables,
a join of those tables is returned.

« Text—An SQL text command (the default)

Set the RowFetchCount property immediately after creation of the IfxCommand object or before invoking methods such as
ExecuteReader that return an instance of DataReader. You can also set the RowFetchCount value by using the constructor.
For example to set the RowFetchCount to 1, complete either of the following steps:

« IfxCommand SelCmd = new IfxCommand(SQLcom, conn1); SelCmd.RowFetchCount = 1

« int rowFetchCount = 1; IfxCommand SelCmd = IfxCommand(cmdText, connection, rowFetchCount)
The UpdatedRowSource property can have any of the following values:

» Both—Both the output parameters and the first returned row are mapped to the changed row in the DataSet object.
- FirstReturnedRecord—The data in the first returned row is mapped to the changed row in the DataSet object.
« None—Any returned parameters or rows are ignored.

« OutputParameters—Output parameters are mapped to the changed row in the DataSet object.

IfxCommand public methods

IfxCommand.Cancel

void IfxCommand.Cancel()
Attempts to cancel the execution of a command. If the attempt to cancel fails, no exception is generated.

IfxCommand.CreateParameter

IfxParameter IfxCommand.CreateParameter ()

Chapter 1. Informix® .NET Provider Guide

Creates a new instance of an IfxParameter object.

IfxCommand.ExecuteNonQuery

System.Int32 IfxCommand.ExecuteNonQuery ()

Executes an SQL statement against the IfxConnection object. For UPDATE, INSERT, and DELETE statements the return value
is the number of rows affected; for all other statements, it is -1. Returns the InvalidOperationException error if the connection
does not exist or is not open.

IfxCommand.ExecuteReader
IfxDataReader IfxCommand.ExecuteReader ()

IfxDataReader IfxCommand.ExecuteReader (System.DataCommandBehavior behavior)

Executes the command in the CommandText property against the IfxConnection object and builds an IfxDataReader object.

The IfxDataReader object is built using the command behavior in behavior:

« CloseConnection—When the command is executed, the IfxConnection object is closed when the associated
IfxDataReader object is closed.

- Default—The query can return multiple result sets. Execution of the query can affect the database state. The default
sets no CommandBehavior flags.

« Keylnfo—The query returns column and primary key information. The query is executed without any locking on the
selected rows.

« SchemaOnly—The query returns column information only and does not affect the database state.

- SequentialAccess—Provides a way for the IfxDataReader object to handle rows that contain columns with large
binary values. Rather than loading the entire row, the SequentialAccess parameter enables the IfxDataReader object
to load data as a stream. You can then use the IfxDataReader.GetBytes or IfxDataReader.GetChars method to
specify a byte location to start the read operation, and to specify a limited buffer size for the data being returned.
Specifying the SequentialAccess parameter does not limit you to reading the columns in the order they are returned.
However, after you have read past a location in the returned stream of data, you can no longer read data from the
IfxDataReader object at or before that location.

- SingleResult—The query returns a single result set. Execution of the query can affect the database state.

- SingleRow—The query is expected to return a single row. Execution of the query can affect the database state. If
you expect your SQL statement to return only one row, specifying the SingleRow parameter can improve application

performance.

IfxCommand.ExecuteScalar

System.Object IfxCommand.ExecuteScalar ()

Executes the query, and returns the first column of the first row in the result set returned by the query. Extra columns or rows

are ignored.

IfxCommand.Prepare

void IfxCommand.Prepare()

33

34

HCL Informix 14.10 - .NET Provider Reference Guide

Creates a prepared (or compiled) version of the command against the database. If the CommandType property is set to

TableDirect, this method does nothing.

IfxCommand examples

The following example fills a data set, adds new customer information records, and then updates the database with the

changes.

IfxDataAdapter idap = new IfxDataAdapter("select x from customer",con);
DataSet ds = new DataSet("customer");

idap.Fill(ds,"customer");

DataRow drow = ds.Tables["customer"].NewRow();

drow["lname"]=""};

ds.Tables["customer"].Rows.Add(drow) ;

idap.InsertCommand = new IfxCommand();

idap.InsertCommand.CommandType = CommandType.Text;
idap.InsertCommand.CommandText = "execute procedure add_cust(?,?,?)";
idap.InsertCommand.Connection = con;

IfxParameter iparaml = idap.InsertCommand.CreateParameter();
IfxParameter iparam2 = idap.InsertCommand.CreateParameter();
IfxParameter iparam3 = idap.InsertCommand.CreateParameter();

iparaml.ParameterName = "fname";
iparaml.Value = "Hoopla";
iparam2.ParameterName = "lname";
iparam2.Value = "MAuie";
iparam3.ParameterName = "company";
iparam3.Value = "Fredonia";

idap.InsertCommand.Parameters.Add(iparaml);
idap.InsertCommand.Parameters.Add(iparam2);
idap.InsertCommand.Parameters.Add(iparam3);

//Inform the command object that the update

//results in data being returned and it must be

//updated against the changed row in the

//dataset. The source of the data 1is in the

//first returned row

idap.InsertCommand.UpdatedRowSource= UpdateRowSource.FirstReturnedRecord;
idap.RowUpdated += new IfxRowUpdatedEventHandler (OnRowUpdated);
idap.InsertCommand.Connection.Open();
idap.Update(ds,"customer");

IfxConnection conn = new IfxConnection
("Database=stores7;Server=ol_sigaram_11;UID=1informix;Password=ids4data");

IfxCommand cmd = new IfxCommand("select coll from tbltest", conn);

conn.Open();

IfxDataReader myReader = cmd.ExecuteReader();

while (myReader.Read())

{

Console.WriteLine("{0}", myReader.GetString(0));

}

myReader.Close();

myReader .Dispose();

cmd.Dispose();

conn.Close();

conn.Dispose();

Chapter 1. Informix® .NET Provider Guide

[fxCommandBuilder class

The IfxCommandBuilder class automatically generates single-table INSERT, DELETE, and UPDATE commands that

are used to reconcile changes made in a data set with the associated instance of the HCL Informix® database. An
IfxCommandBuilder object is always associated with an IfxDataAdapter object (in a one-to-one relationship). The
IfxDataAdapter object uses IfxCommand objects to execute SQL commands against the database, fill data sets, and
reconcile changes in the data set with the database. Automatic generation of SQL statements for data reconciliation is
initiated when you set the SelectCommand property of the IfxDataAdapter object. The SelectCommand property gets or
sets an SQL SELECT statement to be run against the database. Then, when you create an IfxCommandBuilder object, it
automatically generates SQL statements for single-table updates to reconcile changes in the data set with the database.
(The IfxCommandBuilder object registers itself as a listener for RowUpdating events of the IfxDataAdapter object.)

For more information about using IfxCommandBuilder objects, see Reconcile DataSet changes with the database on
page 8.

Create an IfxCommandBuilder

Use the constructor to create an IfxCommandBuilder.

[fxCommandBuilder constructors

IfxCommandBuilder ()

IfxCommandBuilder (IfxDataAdapter adapter)

Initializes a new instance of the IfxCommandBuilder class optionally associated with an IfxDataAdapter object.

IfxCommandBuilder public properties

The following table shows the public properties of the IfxCommandBuilder class.

Table 8. IfxCommandBuilder public properties

Property Type Description
ConflictOption Specifies which ConflictOption is to be used by the IfxCommandBuilder.
DataAdapter IfxDataAdapter Gets or sets the IfxDataAdapter object for which the SQL statements are
generated.
QuotePrefix System.String Gets or sets the beginning character to use when specifying HCL

Informix® server object names, (for example, tables or columns), that
contain characters such as spaces. QuotePrefix should only be set to a

quotation mark, not to an apostrophe or an empty or null string.

QuoteSuffix System.String Gets or sets the ending character to use when specifying HCL Informix®
server object names, (for example, tables or columns), that contain

characters such as spaces. QuoteSuffix should only be set to a quotation

mark, not to an apostrophe or an empty or null string.

35

HCL Informix 14.10 - .NET Provider Reference Guide

IfxCommandBuilder public methods

IfxCommandBuilder.DeriveParameters

void IfxCommandBuilder.DeriveParameters(IfxCommand command)

Retrieves information about parameters for the stored procedures specified by an IfxCommand object and overwrites the

IfxParameterCollection object with this information.

IfxCommandBuilder.GetDeleteCommand

IfxCommand IfxCommandBuilder.GetDeleteCommand()

Gets the automatically generated IfxCommand object required to perform deletions on the database when an application
calls the IfxDataAdapter.Update method.

IfxCommandBuilder.GetInsertCommand

IfxCommand IfxCommandBuilder.GetInsertCommand()

Gets the automatically generated IfxCommand object required to perform inserts on the database when an application calls
the IfxDataAdapter.Update method.

IfxCommandBuilder.GetUpdateCommand

IfxCommand IfxCommandBuilder.GetUpdateCommand /()

Gets the automatically generated IfxCommand object required to perform updates on the database when an application calls
the IfxDataAdapter.Update method.

IfxCommandBuilder.RefreshSchema

void IfxCommandBuilder.RefreshSchema

Refreshes the database schema information used to generate INSERT, UPDATE, or DELETE statements.

IfxCommandBuilder examples

The first example shows you how to perform an update using an IfxCommandBuilder object.

// IfxConnection -- con
DataSet ds = new DataSet();
string sql = "select fname, lname from customer";

IfxDataAdapter da = new IfxDataAdapter(sql,con);

//Build new CommandBuilder

IfxCommandBuilder 1ifxbuilder = new IfxCommandBuilder(da);
con.Open();

da.Fill(ds,"customer");

//code to modify data in DataSet goes here

ds.Tables[0] .Rows[0].ItemArray[0] = "William";

//the following line will fail without the IfxCommandBuilder

//as we have not explicitly set an UpdateCommand 1in the DataAdapter
da.Update(ds,"customer");

This example shows how to retrieve information about parameters for stored procedures.

36

Chapter 1. Informix® .NET Provider Guide

// IfxConnection - con

IfxCommand cmd = new IfxCommand("SP_GETUSERINFO",con);
IfxCommandBuilder cb = new IfxCommandBuilder();
con.Open();

IfxCommandBuilder.DeriveParameters(cmd)

foreach (IfxParameter param in cmd.Parameters)

{

Console.WriteLine(param.ParameterName) ;

}

con.Close();

IfxConnection class

The IfxConnection class represents a unique session with a data source, for example, a network connection to the HCL
Informix® server. This class cannot be inherited.

Create an IfxConnection

Some methods of other objects create IfxConnection objects implicitly. To create an IfxConnection object explicitly, use one
of its constructors.

To write provider-independent code, you can use the CreateConnection() method of the DbProviderFactory class to create a

provider-specific instance of DbCommand.

Related information

IfxProviderFactory class on page 82

I[fxConnection constructors

IfxConnection()

IfxConnection(System.String connectionString)

Initializes a new instance of the IfxConnection class using the information in the connectionString parameter, if provided.

IfxConnection public properties

The following table shows the public properties of the IfxConnection class.

Table 9. IfxConnection public properties

Property Type Description
ClientLocale System.String Gets or sets the locale used by the application.
ConnectionString System.String Gets or sets the string used to open a database. See

ConnectionString property on page 38 for more

information.

37

HCL Informix 14.10 - .NET Provider Reference Guide

Table 9. IfxConnection public properties (continued)

Property

Type

Description

ConnectionTimeout

System.Int32

Gets the time (in seconds) to wait while trying
to establish a connection before terminating the
attempt and generating an error.

Database

System.String

Gets the name of the current database or the
database to be used after a connection is open.

Databaselocale

System.String

Gets the locale of the database. (Not valid if the

connection is not open.)

FetchBufferSize

System.Int32

Gets or sets the default data transport buffer size
used by commands created using this connection.
Setting this property does not affect commands

already created.

38

GetActiveConnectionsCount

System.Int32

Gets the number of opened, in-use connections.

GetldleConnectionsCount

System.Int32

Gets the number of opened, unused connections.

PacketSize

System.Int32

Same as FetchBufferSize. The two settings are
semantically equivalent; changes in one are

reflected in the other.

ServerVersion

System.String

Gets a string containing the version of the instance

of the HCL Informix® server to which the client is

connected.
State System.Data.Connection.State Gets the current state of the connection.
UserDefinedTypeFormat System.String Sets the mapping of user-defined types to

either DbType.String or DbType.Binary. See
UserDefinedTypeFormat property on page 41 for
more information.

ConnectionString property

The value of the ConnectionString property is a connection string that includes the source database name and the

parameters you need to establish the connection.

The default value of the ConnectionString property is an empty string. The Server attribute is mandatory in all situations.

The minimum required connection string attributes that must be set for non-DSN connections are Server, Protocol, Service,

and Host name. If any of those are missing, the server ignores the remaining attributes and next checks the environmental

variables, followed by the values in specified in setnet32.

The following table shows the connection string attributes.

Chapter 1. Informix® .NET Provider Guide

Table 10. Connection string attributes

Attribute

Description

Default value

Client Locale, Client_Locale

The language locale used on the client side of the client-server

connection.

en_us.CP1252
(Windows™)

Connection Lifetime

When a connection is returned to the pool, the creation time
of the connection is compared with the current time, and the
connection is destroyed if that time span (in seconds) exceeds

the value specified by connection lifetime.

0

Database, DB

The name of the database within the server instance. If no
database is specified, a server-only connection is created. You
can switch a server-only connection to a database connection
by using the ChangeDatabase method. If you use DATABASE...
or CREATE DATABASE... statements, you must manage their
execution fully, because the Informix® .NET Provider does not
automatically recognize when these commands are issued.
Using these statements without proper management can lead to
unexpected results.

(Empty string)

Database Locale, DB_LOCALE

The language locale of the database.

en_US.819

DELIMIDENT

When set to true or y for yes, any string within double quotes (")
is treated as an identifier, and any string within single quotes (')

is treated as a string literal.

y

Enlist

Enables or disables automatic enlistment in a distributed
transaction. You can disable automatic enlistment in existing
transactions by specifying Enlist=false as a connection string

parameter.

true

Exclusive, XCL

The EXCLUSIVE keyword opens the database in exclusive mode
and prevents access by anyone but the current user. If another
user has already opened the database, exclusive access is
denied, an error is returned, and the database is not opened.

Valid values are No, 0, Yes, or 1.

No

Host

The name or IP address of the machine on which the Informix®

server is running. Required.

localhost

Max Pool Size

The maximum number of connections allowed in the pool.

100

Min Pool Size

The minimum number of connections allowed in the pool.

0

Optimize OpenFetchClose,
OPTOFC

Reduces the number of round trips to the server for result-set

queries. Recommended only for forward-only retrieval of data.

(Empty string)

39

HCL Informix 14.10 - .NET Provider Reference Guide

Table 10. Connection string attributes (continued)

Attribute

Description

Default value

Packet Size, Fetch Buffer Size,
FBS

The size in bytes of the buffers used to send data to or from the
server. Maximum value is 2147483648 (2GB).

32767

Password, PWD

The password associated with the User ID. Required if the client
machine or user account is not trusted by the host. Prohibited if
a User ID is not given.

(Empty string)

Persist Security Info

When set to false, security-sensitive information, such as

the password, is not returned as part of the connection if the
connection is open or has ever been in an open state. Resetting
the connection string resets all connection string values,

including the password.

‘false'

Pooling

When set to true, the IfxConnection object is drawn from the
appropriate pool, or if necessary, it is created and added to the

appropriate pool.

‘true’

Protocol, PRO

The communication protocol used between the

CreateConnection() and the database server.

(Empty string)

Server

The name or alias of the instance of the Informix® server to

which to connect. Required.

(Empty string)

Service

The service name or port number through which the server is

listening for connection requests.

(Empty string)

Single Threaded

If your application is single threaded, you might have better
performance with this property. Do not use this option in an
XA/MSDTC environment.

‘false'

Skip Parsing

You can avoid SQL parsing overhead by setting this value to
'true’. However, you must be certain that your queries are correct,

otherwise an error will result.

‘false’

User ID, UID

The login account. Required, unless the client machine is trusted

by the host machine.

(Empty string)

You can only set the ConnectionString property when the connection is closed. Some of the connection string values have
corresponding read-only properties. When the connection string is set, all of these properties are updated, except when an
error is detected. In this case, none of the properties are updated. IfxConnection properties return those settings contained in

the ConnectionString as well as default values or values gathered elsewhere.

Resetting the ConnectionString on a closed connection resets all connection string values and related properties, including
the password. For example, if you set a connection string that includes "Database=superstores"’, and then reset the

connection string to "Server=myServer", the Database property is no longer set to superstores.

Chapter 1. Informix® .NET Provider Guide

The connection string is parsed immediately after being set. If errors in syntax are found when parsing, a runtime exception,
ArgumentException, is returned. Other errors can be found only when an attempt is made to open the connection. If an
attribute name occurs more than once in the connection string, the value associated with the last occurrence is used.

The CreateConnection() ConnectionString is not identical to the Informix® ODBC connection string. The connection string
that is returned is the same as the one set by the user. Neither the ODBC 'Driver' attribute or the OLE DB 'Provider' attribute
are supported.

If you set the Persist Security Info attribute to false (the default), if the connection has ever been opened, the returned
connection string will not contain any security information. If the connection has not been opened, the returned connection
string does contain security information, regardless of the setting of Persist Security Info. If you set the Persist Security Info

attribute to true, the returned connection string contains security information.

UserDefinedTypeFormat property

The UserDefinedTypeFormat property of IfxConnection and IfxCommand sets the mapping of user-defined types to either
DbType.String or DbType.Binary. Use this property instead of FetchExtendedTypesAs.

To access user-defined types as String objects, set the UserDefinedTypeFormat attribute or the UserDefinedTypeFormat
property to string, "™, or null. UDT columns and parameters are mapped to DbType.String. The shorthand, UDTFormat, is also

a valid connection string attribute. These settings are not case-sensitive.

To access user-defined types as Byte[] objects, set the UserDefinedTypeFormat attribute or the UserDefinedTypeFormat
property to byt es. UDT columns and parameters are mapped to DbType.Binary. The IfxType property of a parameter or
column is not affected.

The following table shows what the IfxDataReader access methods, GetBytes() and GetString(), return depending on the
setting of the UserDefinedTypeFormat property.

41

HCL Informix 14.10 - .NET Provider Reference Guide

Table 11. Results for the UserDefinedTypeFormat setting with IfxDataReader access methods

42

Us
er
De
fi
ne
dT
yp
eF
or
mat
Se
tt
ing Operation

str GetBytes()
ing

str GetString()
ing

by GetBytes()
tes

by GetString()

tes

es
ult

Inv

lid

ast
ex
ce
pt
ion
Re
tu

mns

str
ing
Re
tu
rns
by
tes

Re
tu
rns
the
bin

ary

Chapter 1. Informix® .NET Provider Guide

Table 11. Results for the UserDefinedTypeFormat setting with IfxDataReader access methods (continued)

Us
er
De
fi
ne
dT
YP
eF
or
mat
Se R
tt es
ing Operation ult
va
lue
as
a
he
xa
de
Ci
mal
str
ing

When an IfxCommand object is bound to a connection, the object takes the UserDefinedTypeFormat property of that
connection. Later changes to the connection setting of the property do not affect the IfxCommand object. Use one of the

following ways to associate a command with a connection:

« IfxConnection.CreateCommand()

« IfxCommand.Connection_set()

« IfxCommand.DbConnection_set()

« IfxCommand(string cmdText, IfxConnection connection)

« IfxCommand(string cndText, IfxConnection connection, IfxTransaction transaction)

You can set the UserDefinedTypeFormat property of an IfxCommand independently from the UserDefinedTypeFormat

property of its connection, but you cannot set it during the following times:

» When executing a command
« Between the first call of an IfxDataReader.Read() method and the closing of that data reader.

43

44

HCL Informix 14.10 - .NET Provider Reference Guide

IfxConnection public methods

IfxConnection.BeginTransaction
IfxTransaction IfxConnection.BeginTransaction()

IfxTransaction IfxConnection.BeginTransaction(System.Data.IsolationLevel isoLevel)

Begins a database transaction.

IfxConnection.ChangeDatabase

void IfxConnection.ChangeDatabase(System.String value)

Changes the current database for an open IfxConnection object.

IfxConnection.Close

void IfxConnection.Close()

Closes the connection to the database.

IfxConnection.CreateCommand

IfxCommand IfxConnection.CreateCommand()

Creates and returns an IfxConnection object associated with the connection.

IfxConnection.GetlfxBlob

IfxBlob IfxConnection.GetIfxBlob()

Returns an IfxBlob structure based on this connection.

GetlfxClob

IfxClob IfxConnection.GetIfxClob()

Returns an IfxClob structure based on this connection.

IfxConnection.EnlistTransaction

void IfxConnection.EnlistTransaction()

Enlists in the specified transaction as a distributed transaction.

IfxConnection.Open

void IfxConnection.Open()

Opens a database connection with the settings specified by the ConnectionString property of the IfxConnection object.

IfxConnection public events

The following table shows the public events of the IfxConnection class.

Chapter 1. Informix® .NET Provider Guide

Table 12. IfxConnection public events

Event Description
Disposed Adds an event handler to listen to the Disposed event on the component.
InfoMessage Occurs when the provider or server returns a warning or informational message.
StateChange Occurs when the state of the connection changes.

IfxConnection example

The following C# example shows how to use a constructor to set the connection string.

IfxConnection conn = new IfxConnection(
"User Id=me;Password=myPassword;" +
"Host=ajax;Server=myServer;" +
"Service=9401;Database=superstores"
)3
IfxCommand cmd = new IfxCommand("select fname from customer", conn);
conn.Open() ;
IfxDataReader myReader = cmd.ExecuteReader();
while (myReader.Read())

{
Console.WriteLine("{0}", myReader.GetString(0));

}

myReader.Close();
myReader .Dispose();
cmd.Dispose();
conn.Close();
conn.Dispose();

IfxConnectionStringBuilder class

Provides the base class from which strongly typed connection string builders derive. This class extends from the

DbConnectionStringBuilder class. You can use an instance of IfxConnectionString to construct the connection strings

Create an IfxConnectionStringBuilder

To create an IfxConnectionStringBuilder use one of the constructors.

To develop provider independent code, you can use the CreateConnectionStringBuilder() method from a provider-specific
instance of the DbProviderFactory class to create a provider-specific instance of the DbConnectionStringBuilder class.

IfxConnectionStringBuilder public properties

The following table shows the public properties of the IfxConnectionStringBuilder class.

45

46

HCL Informix 14.10 - .NET Provider Reference Guide

Table 13. IfxConnectionStringBuilder public properties

Property

Description

Count

Returns the number of keys that are contained within the connection string
that is maintained by the IfxConnectionStringBuilder instance.

ConnectionString

Gets or sets the connection string that is associated with the
IfxConnectionStringBuilder. Returns a semicolon-delimited list of

key-value pairs stored in the collection that is maintained by the
IfxConnectionStringBuilder. Each pair contains the key and value, which are

separated by an equal sign.

IsFixedSize Indicates whether the IfxConnectionStringBuilder has a fixed size. A value of
true indicates that the IfxConnectionStringBuilder has a fixed size.

IsReadOnly Indicates whether the IfxConnectionStringBuilder is read-only. A value of
true indicates that the IfxConnectionStringBuilder is read only. A read-only
collection prohibits adding, removing, or modifying elements after the
collection is created.

Keys Returns an ICollection that contains the keys that are in the
IfxConnectionStringBuilder.
The ICollection contains an unspecified order of values, but it is the same
order as the associated values in the ICollection returned by the Values
property.

Values Returns an ICollection that contains the values in the

DbConnectionStringBuilder.

The ICollection contains an unspecified order of values, but it is the same
order as the associated values in the ICollection returned by the Keys

property.

IfxConnectionStringBuilder public methods

IfxConnectionStringBuilder.Add

Adds an entry with the specified key and value into the IfxConnectionStringBuilder.

IfxConnectionStringBuilder.AppendKeyValuePair

Appends a key and value to an existing StringBuilder object.

IfxConnectionStringBuilder.Clear

Clears the contents from the IfxConnectionStringBuilder instance.

Chapter 1. Informix® .NET Provider Guide

IfxConnectionStringBuilder.ContainsKey
Indicates whether this IfxConnectionStringBuilder object contains a specific key.
IfxConnectionStringBuilder.EquivalentTo

Compares the connection information in this IfxConnectionStringBuilder object with the connection information

in another object.
IfxConnectionStringBuilder.Remove

Removes the specified key from the IfxConnectionStringBuilder instance.
IfxConnectionStringBuilder.ToString

Returns the connection string that is associated with this IfxConnectionStringBuilder object.
IfxConnectionStringBuilder. TryGetValue

Retrieves a value that corresponds to the supplied key from this IfxConnectionStringBuilder object.

IfxDataAdapter class

The IfxDataAdapter object uses IfxCommand objects to execute SQL commands against the database, fill data sets, and

reconcile changes in the data set with the database.

Create an IfxDataAdapter

To create an IfxDataAdapter use one of the constructors.

IfxDataAdapter constructors

¢ | f xDat aAdapt er ()
¢ | f xDat aAdapt er (1 f xCommand sel ect Conmand)
¢ | f xDat aAdapt er (System String sel ect CommandText, |fxConnection sel ect Connecti on)

¢ | f xDat aAdapt er (System String sel ect ConmandText, System String sel ect Connecti onString)

An SQL query that returns rows and connection to a database can be provided as either .NET types or strings. The value of
selectCommandText is the query written in SQL. The value of selectConnectionString is a connection string as used by the

constructors for the IfxConnection object.

IfxDataAdapter public properties

The following table shows the public properties of the IfxDataAdapter class.

Table 14. IfxDataAdapter public properties

Property Description

AcceptChangedDuringFill Gets or sets a value indicating if AcceptChanges is called on a DataRow
after it is added to the DataTable during any of the Fill operations.

47

HCL Informix 14.10 - .NET Provider Reference Guide

Table 14. IfxDataAdapter public properties (continued)

Property Description
AcceptChangesDuringUpdate Gets or sets whether AcceptChanges is called during an Update.
DeleteCommand Gets or sets an SQL statement for deleting records from the database.
FillLoadOption Gets or sets the LoadOption that determines how the adapter fills the

DataTable from the DbDataReader.

InsertCommand Gets or sets an SQL statement used to insert new records into the
database.
MissingMappingAction The action to be taken when incoming data does not have matching table

or column data sets. Indicates or specifies whether unmapped source
tables or columns are passed with their source names so that they can be
filtered or to raise an error. The MissingMappingAction property can have
any of the values from the MissingMappingAction enumeration, described
after the table.

MissingSchemaAction Indicates or specifies whether missing source tables, columns, and their
relationships are added to the data set schema, ignored, or cause an error
to be returned. The MissingSchemaAction property can have any of the

MissingSchemaAction enumeration values described after the table.

ReturnProviderSpecifictypes Gets or sets whether the Fill method should return provider-specific values

or common CLS-compliant values.

SelectCommand Gets or sets an SQL statement used to select records in the database.

TableMappings Indicates how a source table is mapped to a data set table. The default
table name of a DataTable is Table. The default DataTableMapping that
uses the default DataTable name is also Table.

UpdateBatchSize Gets or sets a value that enables or disables batch processing support,

and specifies the number of commands that can be executed in a batch.

UpdateCommand Gets or sets an SQL statement used to update records in the database.

The MissingMappingAction property can have the following values:

« Error—A SystemException is generated.
« Ignore—A column or table without a mapping is ignored.
» Passthrough—The source column and table are created if they do not already exist and they are added to the DataSet.

This is the default value.

The MissingSchemaAction property can have the following values:

48

Chapter 1. Informix® .NET Provider Guide

» Add—Adds any columns necessary to complete the schema.

- AddWithKey—Adds the necessary columns and primary key information to complete the schema. By default, primary
keys are not created in the DataSet unless this property is specified. Setting this value ensures that incoming records
that match existing records are updated instead of getting appended, which could potentially result in multiple copies
of the same row.

« Error—A SystemException is generated.

« Ignore—Ignores the extra columns.

IfxDataAdapter public methods

IfxDataAdapter.Fill

Adds or refreshes rows in the DataSet to match those in the database using the DataSet name, and creates a
DataTable named Table.

IfxDataAdapter.FillSchema

Adds a DataTable to the specified DataSet and configures the schema to match that in the database based on
the specified SchemaType.

IfxDataAdapter.GetFillParameters
Gets the parameters set by the user when executing an SQL SELECT statement.
IfxDataAdapter.Update

Calls the respective INSERT, UPDATE, or DELETE statements for each inserted, updated, or deleted row in the
specified DataSet from a DataTable.

IfxDataAdapter examples

The first example demonstrates the use of the TableMappings and MissingMappingAction properties.

// IfxConnection -- con
DataSet ds = new DataSet();
string sql = "select fname from customer";

IfxDataAdapter da = new IfxDataAdapter(sql,con);

// Default -- MissingMappingAction set to Passthrough.

// Database Column name is used as Data Set Column Name. This

//is the default setting

//da.MissingMappingAction = MissingMappingAction.Passthrough;

// MissingMappingAction set to Ignore

// The column or table not having a mapping is ignored. Returns a

// null reference . Will return error while accessing DataRow
da.MissingMappingAction = MissingMappingAction.Ignore;

// MissingMappingAction set to Error

// DataColumnMapping & DataTableMapping is not done

// then DataAdapter.Fill returns Exception

da.MissingMappingAction = MissingMappingAction.Error;

// If set to Error, DataColumnMapping and DataTableMapping has to

// be done

DataColumnMapping dcFnm = new DataColumnMapping("fname", "FirstName");
DataTableMapping dtCus = new DataTableMapping ("customer","CustomerTable");
dtCus.ColumnMappings.Add(dcFnm) ;

// Activates the Mapping

49

HCL Informix 14.10 - .NET Provider Reference Guide

da.TableMappings.Add(dtCus);
da.Fill(ds,"customer");
foreach(DataRow dr in ds.Tables["CustomerTable'"].Rows)

{

Console.WriteLine(dr["FirstName"]);

}

//Close Connection

The next example demonstrates how to use the FillSchema method in conjunction with the MissingSchemaAction property.

// IfxConnection -- con
DataSet ds = new DataSet();
string sql = "select fname from customer";

IfxDataAdapter da = new IfxDataAdapter(sql,con);
//MissSchemaAction 1is set to error so Fill will return
// exception if Data Set and Customer table schema
// do not match
da.MissingSchemaAction = MissingSchemaAction.Error;
// Fills Data Set Schema with the customer table schema
da.FillSchema(ds,SchemaType.Source,"customer");
da.Fill(ds,"customer");
foreach(DataRow dr in ds.Tables["customer"].Rows)
{

Console.WriteLine(dr["fname"]);

}

//Close Connection

The following example illustrates the use of the SelectCommand and UpdateCommand properties.

IfxDataAdapter adpt = new IfxDataAdapter();

adpt.SelectCommand = new IfxCommand("SELECT CustomerID, Name FROM Customers
WHERE Country = ? AND City = 2", conn);

IfxParameter ifxpl = new IfxParameter ("Country",DbType.String);

IfxParameter ifxp2 = new IfxParameter ("City",DbType.String);

Adpt.SelectCommand.Parameters.Add(ifxpl);

Adpt.SelectCommand.Parameters.Add (ifxp2);

//similarly for an UpdateCommand

//adpt.UpdateCommand.Parameters.Add("CustomerName" ,DbType.String);

adpt.UpdateCommand.Parameters. ["CustomerName"] = "xyz";

IfxDataReader class

The IfxDataReader object is a forward-only cursor that allows read-only access to the data it retrieves from the database. The
data source connection must remain active while your application accesses the IfxDataReader object.

In general, performance is better when you use an IfxDataReader object than when you use an IfxDataAdapter object.

IfxDataReader public properties

The following table shows the public properties of the IfxDataReader class.

Table 15. IfxDataReader public properties

Property Type Description

Depth System.Int32 Always returns 0.

Chapter 1. Informix® .NET Provider Guide

Table 15. IfxDataReader public properties (continued)

Property Type Description
FieldCount System.Int32 Gets the number of columns in the current row.
IsClosed System.Boolean Gets a value indicating whether the IfxDataReader object is closed.
RecordsAffected System.Int32 Gets the number of rows changed, inserted, or deleted by execution
of the SQL statement.
VisibleFieldCount System.Int32 Gets the number of fields in the DbDataReader that are not hidden.

IfxDataReader public methods

IfxDataReader.Close

Closes the IfxDataReader object.
IfxDataReader.GetBoolean

Gets the value of the specified column as a Boolean.
IfxDataReader.GetByte

Throws a NotSupported exception.
IfxDataReader.GetBytes

Reads a stream of bytes from the specified column offset into the buffer as an array, starting at the given buffer

offset.
IfxDataReader.GetChar

Gets the character value of the specified column.
IfxDataReader.GetChars

Reads a stream of characters from the specified column offset into the buffer as an array, starting at the given
buffer offset.

IfxDataReader.GetData

Throws a NotSupported exception.
IfxDataReader.GetDateTime

Gets the date and time data value of the specified field.
IfxDataReader.GetDataTypeName

Gets the data type information for the specified field.
IfxDataReader.GetDecimal

Gets the fixed-point numeric value of the specified field.
IfxDataReader.GetDouble

Gets the double-precision floating point number of the specified field.

51

HCL Informix 14.10 - .NET Provider Reference Guide

IfxDataReader.GetFieldType

Gets the Type information for the object returned by GetValue.
IfxDataReader.GetFloat

Gets the single-precision floating point number of the specified field.
IfxDataReader.GetGuid

Returns the GUID value of the specified field.
IfxDataReader.GetInt16

Gets the 16-bit signed integer value of the specified field.
IfxDataReader.GetInt32

Gets the 32-bit signed integer value of the specified field.
IfxDataReader.GetInt64

Gets the 64-bit signed integer value of the specified field.
IfxDataReader.GetName

Gets the name for the field to find.
IfxDataReader.GetOrdinal

Returns the index of the named field.
IfxDataReader.GetSchemaTable

Returns a DataTable object that describes the column metadata of the IfxDataReader object.
IfxDataReader.GetString

Gets the string value of the specified field.
IfxDataReader.GetTimeSpan

Gets the time span value of the specified field.
IfxDataReader.GetValue

Returns the value of the specified field.
IfxDataReader.GetValues

Gets all the attribute fields in the collection for the current record.
IfxDataReader.IsDBNull

Returns whether the specified field is set to null.
IfxDataReader.NextResult

When reading the results of batch SQL statements, advances the IfxDataReader object to the next result.
IfxDataReader.Read

Advances the IfxDataReader object to the next record.

Chapter 1. Informix® .NET Provider Guide

IfxDataReader example

The following example demonstrates how to use the properties and methods of the IfxDataReader class.

// IfxConnection - con
string sql = "select stock_num,manu_code,description from stock";
con.Open();
IfxCommand selectCommand = new IfxCommand(sql,con);
IfxDataReader reader = selectCommand.ExecuteReader (CommandBehavior.Default);
//schema for Dataset can be created by GetSchemaTable()
DataTable schema = reader.GetSchemaTable();
//read to use reader properties.
reader.Read();
Console.WriteLine("Depth is ");
Console.WriteLine(reader.Depth);
Console.WriteLine("Number of Columns are");
Console.WriteLine(reader.FieldCount);
Console.WriteLine("Number of Rows Changed");
Console.WriteLine(reader.RecordsAffected);
Console.WriteLine("Is Data Reader Closed ?");
Console.WriteLine(reader.IsClosed);
do
{
while (reader.Read())
{
Int32 num = reader.GetInt32(0);
Console.WriteLine(num);
String stringl = reader.GetString(1);
Console.WriteLine(stringl);
String string2 = reader.GetString(2);
Console.WriteLine(string2);
}
} while (reader.NextResult());
reader.Close();
reader.Dispose(); //To prevent high memory usage, Dispose() method 1is called.
//Close Connection

IfxDataSourceEnumerator class

IfxDataSourceEnumerator allows .NET applications to read HCL Informix® SQLHOST entries programmatically. Setnet32 is

utility that provides a GUI interface to SQLHOST entries.

Create an IfxDataSourceEnumerator

You can create an IfxDataSourceEnumerator by using the following method:
DbDataSourceEnumerator enum = factory.CreateDataSourceEnumerator();

where fact ory is a provider-specific instance of DbProviderFactory.

IfxDataSourceEnumerator public properties

The following table shows the public properties of the IfxDataSourceEnumerator class.

HCL Informix 14.10 - .NET Provider Reference Guide

Table 16. IfxDataSourceEnumerator public properties

Property Description

Instance Retrieves an enumerator.

IfxDataSourceEnumerator public methods

IfxDataSourceEnumerator.GetDataSources

Returns a DataTable. Each DataRecord in the DataTable represents a client server entry that is configured on the computer.

Table 17. Columns of System.Data.DataTable

Col
umn
n
ame Ordinal position

IfxD 0
ata
bas
eSe

rver

54

De
sc
ri
pt
ion

ame
of
the
ser
ver
ins

ta

ce.

ulti
ple
ins

ta

ces
can
ex
ist

on

sin
gle
ser

Chapter 1. Informix® .NET Provider Guide

Table 17. Columns of System.Data.DataTable (continued)
De
Col sc
umn ri
n pt
ame Ordinal position ion

er.

Hos 1 H
tCo ost
mp en
uter try

SQ
LH
0S
TS.

Use 2 U
rN ser

ame n
ame

sed
to
co
nn
ect
to
the
da
ta
ba
se.

Pas 3 Pa
SWO ss
rdO w
pt ord

ion op

ion

55

HCL Informix 14.10 - .NET Provider Reference Guide

Table 17. Columns of System.Data.DataTable (continued)

De

Col sc
umn ri
n pt
ame Ordinal position ion
as

st

red
thr

ugh
Se
N

132
for
the
ho
st.

Pas 4 E

swW m

ord pty
str

ng.

Prot 5 Pr
ocol ot

col

sed
for

co

uni

ca

56

Chapter 1. Informix® .NET Provider Guide

Table 17. Columns of System.Data.DataTable (continued)
De
Col sc
umn ri
n pt
ame Ordinal position ion
ti
on.
Serv 6 Se
ice rv
ice
na

me.

Opt 7 Op

ion t
ion
fi
eld

rom
Se
N
et
32.

IfxDateTime structure

An IfxDateTime represents a single moment in the span of time from midnight on 1 January 0001 to 11:59:59.99999 pm. on
31 December 9999.

An IfxDateTime is treated as if it were made up of a separate value for each of these time units:

* Year

« Month

 Day

* Hour

* Minute

 Second

« Fractions of a second

57

58

HCL Informix 14.10 - .NET Provider Reference Guide

You can create an IfxDateTime that uses only a subset of these time units. This is allowed in order to mimic the behavior
of the database server's DATETIME data type. It does not save any space in memory when you use fewer time units in an
IfxDateTime.

The largest time unit of an IfxDateTime is called the start time unit. The smallest time unit of an IfxDateTime is called the end
time unit. The start time unit, the end time unit, and all time units in between are called the range of the IfxDateTime.

Example: If an IfxDateTime uses the year, month, and day portions then the start time unit is year, the end time unit is

day, and the range is year to day.

Time units that are not included in the range of the IfxDateTime are assumed to have a default value as listed in this table.

Table 18. Default values for time units in IfxDateTime objects

Time unit Default value
Year 1200
Month 1
Day 1
Hour 0
Minute 0
Second 0
Fraction 0

When creating an IfxDateTime you specify time units using the members of the IfxTimeUnit enumeration. For details about
this enumeration see IfxTimeUnit enumeration on page 92.

Create an IfxDateTime

All values for time units other than ticks are assumed to be numeric representations for the unit in an actual date.

Example: If you use a value of 13 for a month then you will get an error because there are only twelve months in a

year. The 13 will not be converted to one year and one month.

IfxDateTime constructors

IfxDateTime(System.Int64 ticks)

The new instance is set to a value equal to ticks since midnight on 1 Jan 0001. There are 10 000 000 ticks in one second.
The range of the new instance is Year to Fraction5.

Ticks are more precise than Fraction5. The extra precision is ignored by all methods and operators.

IfxDateTime(System.DateTime dt)

The new instance is set to the same value as dt. The range of the new instance is Year to Fraction5.

IfxDateTime(System.Int32 numUnits, IfxTimeUnit unit)

Chapter 1. Informix® .NET Provider Guide

The instance has a range of unit to unit. The value is set to numUnits units past midnight on 1 Jan 0001.

¢ | f xDat eTi ne(
¢ | f xDat eTi nme(

e | fxDateTi me(

System I nt32 nunbnitsl,

System I nt 32 nunbni tsl,

System I nt 32 nunni tsi,

I fxTi meUnit end)

¢ | f xDat eTi nme(
System | nt 32
e | fxDateTi me(
System | nt 32
¢ | f xDat eTi nme(

System | nt 32

System I nt32 nunbnitsl,
nunni t s5,

System I nt 32 nunmni tsi,

nunmni t s5, System | nt32 nunbnits6,

System I nt 32
System | nt 32

System | nt 32

System I nt 32

I fxTineUnit end)

System | nt 32

nunni t s2,

nunni ts2,

nunmni t s2,

nunni t s2,

nunmni t s2,

I fxTineUnit end)

System | nt 32

System | nt 32

System I nt 32

System | nt 32

I fxTimeUnit end)

System I nt32 nunbnitsl, SystemInt32 nunbnits2, System|nt32

nunmni ts5, System Int32 nunbnits6, System|Int32 nunbnits?,

nunbni ts3,

nunmni ts3,

nunni t s3,

nunmni t s3,

nunni t s3,

I fxTineUnit end)

System | nt 32 nunlni t s4,

System I nt 32 nunbni t s4,

System | nt 32 nunlni t s4,

System I nt 32 nunbni t s4,

I fxTineUnit end)

If numUnits1 through numUnits7 are given then there is no start parameter because the start time unit is automatically

assumed to be Year; otherwise the range of the new instance is start to end. The end time unit is always required because it

determines the precision of the fractional portion.

Values must be provided for all units in the range. The numUnits1 parameter is interpreted as the value for the start time unit.

The rest of the values are interpreted as the values of the other time units in the range in order.

IfxDateTime public properties

These are the public properties of the IfxDateTime object.

Table 19. IfxDateTime public properties

Property Type Access notes Description
Date IfxDateTime read-only An IfxDateTime that has the same value as the
instance but has a range of Year to Day.
Day System.Int32 read-only The day portion of the value.
EndTimeUnit IfxTimeUnit read-only The end time unit of the instance.
Hour System.Int32 read-only The hour portion of the value.
MaxValue IfxDateTime read-only static An IfxDateTime that has the largest value possible

Year to Fraction5.

in an IfxDateTime. The range of the IfxDateTime is

59

HCL Informix 14.10 - .NET Provider Reference Guide

Table 19. IfxDateTime public properties (continued)

Property Type Access notes Description

Millisecond System.Int32 read-only The number of whole milliseconds in the fractional
portion of the instance. There are 1000 milliseconds
in one second.

MinValue IfxDateTime read-only static An IfxDateTime that has the smallest value possible
in an IfxDateTime. The range of the IfxDateTime is
Year to Fraction5.

Minute System.Int32 read-only The minute portion of the value.

Month System.Int32 read-only The month portion of the value.

Now IfxDateTime read-only static An IfxDateTime that is set to the current date and
time and has a range of Year to Fraction5.

Null IfxDateTime read-only static An IfxDateTime that is set to null.

Second System.Int32 read-only The seconds portion of the value.

StartTimeUnit IfxTimeUnit read-only The start time unit of the instance.

Ticks System.Int64 read-only The number of ticks from midnight on 1 Jan 0001 to
the time in this instance. There are 10 000 000 ticks
in one second.

Today IfxDateTime read-only static An IfxDateTime set to the current time and having a
range of Year to Day.

Year System.Int32 read-only The year portion of the value.

IfxDateTime public methods

IfxDateTime.Add
IfxDateTime IfxDateTime.Add(IfxTimeSpan ifxTS)

IfxDateTime IfxDateTime.Add(IfxMonthSpan ifxMS)

Returns a new IfxDateTime set to the value of the instance plus the amount of time represented by ifxTS or ifxMS. The new

IfxDateTime has the same range as the instance. The instance itself is not changed.

Adding an IfxMonthSpan is not the same as adding a well defined span of time because there are a varying number of
days in a month. When you add an IfxMonthSpan the addition is performed only on the year and month portions of the

IfxDateTime. All other time units will be the same as they are in the instance.

IfxDateTime.AddDays

IfxDateTime IfxDateTime.AddDays(System.Double days)

60

Chapter 1. Informix® .NET Provider Guide

Returns a new IfxDateTime set to the same value as this instance plus the number of days in days. The value of days can be

negative. Fractional values are permitted. The instance itself is not changed.

The new IfxDateTime has the same range as the instance. If the resulting date will not fit in that range an error is given.

IfxDateTime.AddMilliseconds

IfxDateTime IfxDateTime.AddMilliseconds(System.Double milliseconds)

Returns a new IfxDateTime set to the same value as this instance plus the number of milliseconds in milliseconds. The value
of milliseconds can be negative. It must be greater than -1 000 000 000 and less than 1 000 000 000. Fractional values are
permitted. The instance itself is not changed.

The new IfxDateTime has the same range as the instance. If the resulting date will not fit in that range an error is given.

IfxDateTime.AddMinutes

IfxDateTime IfxDateTime.AddMinutes(System.Double minutes)

Returns a new IfxDateTime set to the same value as this instance plus the number of minutes in minutes. The value
of minutes can be negative. It must be greater than -1 000 000 000 and less than 1 000 000 000. Fractional values are

permitted.

The new IfxDateTime has the same range as the instance. The instance itself is not changed. If the resulting date will not fit

in that range an error is given.

IfxDateTime.AddMonths

IfxDateTime IfxDateTime.AddMonths(System.Double months)

Returns a new IfxDateTime set to the same value as this instance except that the months portion has the value of months
added to it. The value of months can be negative. The instance itself is not changed.

This is not the same as adding a well-defined span of time because the length of a month varies. Units smaller than month
will never be affected by the addition.

The new IfxDateTime has the same range as the instance. If the resulting date will not fit in that range an error is given. You
will also get an error if the resulting date is invalid, such as February 31.

IfxDateTime.AddSeconds

IfxDateTime IfxDateTime.AddSeconds(System.Double seconds)

Returns a new IfxDateTime set to the same value as this instance plus the number of seconds in seconds. The value of
seconds can be negative. It must be greater than -1 000 000 and less than 1 000 000 000. Fractional values are permitted.

The instance itself is not changed.

The new IfxDateTime has the same range as the instance. If the resulting date will not fit in that range an error is given.

61

HCL Informix 14.10 - .NET Provider Reference Guide

IfxDateTime.AddYears

IfxDateTime IfxDateTime.AddYears(System.Int32 years)

Returns a new IfxDateTime set to the same value as this instance except that the years portion has the value of years added

to it. The value of years can be negative. The instance itself is not changed.

This is not the same as adding a well-defined span of time because the length of a year varies. Units smaller than year will
never be affected by the addition.

The new IfxDateTime has the same range as the instance. If the resulting date will not fit in that range an error is given. You

will also get an error if the resulting date is February 29 on a non-leap year.

IfxDateTime.Compare

static IfxDateTime IfxDateTime.Compare(IfxDateTime ifxDT1, IfxDateTime ifxDT1)

Returns a value based on the relative values of ifxDT1 and ifxDT2:
-1

ifxDT1 is earlier than ifxDT2

ifxDT1 and ifxDT2 are the same time

ifxDT1 is later than ifxDT2

Objects in the Informix® .NET Provider consider two null values to be equal to each other. They also consider a null value to

be less than any non-null value.

Any two IfxDateTime objects can be compared. Default values are used for any time units that are not in the range of the
IfxDateTime. See Table 18: Default values for time units in IfxDateTime objects on page 58 for the default values that are
used.

IfxDateTime.CompareTo

System.Int32 IfxDateTime.CompareTo(System.Object obj)
The object obj must be an IfxDateTime.

This is equivalent to calling IfxDateTime.Compare with this instance as ifxDT1 and obj as ifxDT2.

IfxDateTime.DaysInMonth

static System.Int32 IfxDateTime.DaysInMonth(System.Int32 year, System.Int32 month
)

Returns the number of days in the month of the year.

62

Chapter 1. Informix® .NET Provider Guide

IfxDateTime.Equals

static System.Boolean IfxDateTime.Equals(IfxDateTime ifxDT1, IfxDateTime ifxDT2
)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return 0. If not it returns false.

IfxDateTime.GetHashCode

System.Int32 IfxDateTime.GetHashCode ()
Returns the hash code for this instance.

The hash code will be the same for any two IfxDateTime objects that have the same value but might also be the same for

two IfxDateTime objects with different values.

See the description of the Object.GetHashCode method in the .NET Framework Class Library for details about hash codes.

IfxDateTime.GreaterThan

static System.Boolean IfxDateTime.GreaterThan(IfxDateTime ifxDT1, IfxDateTime
ifxDT2)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return 1. If not it returns false.

IfxDateTime.GreaterThanOrEqual

static System.Boolean IfxDateTime.GreaterThanOrEqual(IfxDateTime ifxDT1, IfxDateTime
ifxDT2)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return 0 or 1. If not, it returns false.

IfxDateTime.LessThan

static System.Boolean IfxDateTime.LessThan(IfxDateTime ifxDT1l, IfxDateTime
ifxDT2)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return -1. If not it returns false.

IfxDateTime.LessThanOrEqual

static System.Boolean IfxDateTime.LessThanOrEqual(IfxDateTime ifxDT1, IfxDateTime
ifxDT2)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return 0 or -1. If not it returns false.

IfxDateTime.NotEquals

static System.Boolean IfxDateTime.NotEquals(IfxDateTime ifxDT1l, IfxDateTime
ifxDT2)

This method returns true if IfxDateTime.Compare(ifxDT1, ifxDT2) would return 1 or -1. If not it returns false.

IfxDateTime.Parse

static IfxDateTime IfxDateTime.Parse(System.String dateTimeString)

63

64

HCL Informix 14.10 - .NET Provider Reference Guide

static IfxDateTime IfxDateTime.Parse(System.String dateTimeString, IfxTimeUnit
start, IfxTimeUnit end)

static IfxDateTime IfxDateTime.Parse(System.String dateTimeString, System.String

format, IfxTimeUnit start, IfxTimeUnit end)

Returns a new IfxDateTime with a value based on dateTimeString. If format is not given, the dateTimeString string must be in
this format:

Y-M-DD hh:mm:ss.f

Y
An integer indicating the year.
M
The number of the month in the range 1 to 12.
D
The number of day in the month.
h
The hour of the day in the range 0 to 23.
m
The minute of the hour in the range 0 to 59.
s
The second of the minute in the range 0 to 59.
f

The fractional portion of the seconds. Precision beyond 5 decimal places is ignored.
The range of the new IfxDateTime is start to end. If start and end are not given the range is Day to Fraction5.

All time units in the range must be present in dateTimeString, even if they are zero. If format is provided then time units
outside the range are optional. If they are present they are ignored. If format is not provided then time units outside the range
are not allowed.

The format string uses the same syntax as the DBTIME environment variable. For the details about the syntax, refer to the
description of the DBTIME environment variable in the HCL® Informix® Guide to SQL: Reference.

IfxDateTime.ToString
System.String IfxDateTime.ToString()

System.String IfxDateTime.ToString (System.String format)

Returns the value of the instance as a string. If format is not present the format used is:

YYYY-MM-DD hh:mm:ss.f

Chapter 1. Informix® .NET Provider Guide

YYvy

Four digit year
MM

Two digit month
DD

Two digit day
hh

Two digit hour in range of 00 to 23
mm

Two digit minute
ss

Two digit second

The fractional portion of the seconds
Portions outside the range of the instance are not included in the string.

If format is provided the output is formatted in the way indicated in that string. The format string uses the same syntax as the
DBTIME environment variable. For the details of the syntax, refer to the description of the DBTIME environment variable in
the HCL® Informix® Guide to SQL: Reference.

IfxDecimal structure

An IfxDecimal object represents a decimal number with up to 32 significant digits. The range of valid values is from 10" to

10"%°,

The DECIMAL data type in HCL Informix® databases can represent a larger range of values than will fit in any of the .NET
Framework data types. It can also be a floating point number rather than a fixed point number. This is why you should use an
IfxDecimal object to store values that are stored on the database as a DECIMAL or its equivalent.

You can use IfxDecimal to preserving numerical value, but not for preserving the scale. For example, a value 100 can be
displayed as 100.0. Similarly, 100.00 can be displayed as 100.0. IfxDecimal always stores a floating point value. To preserve
scale, use Decimal instead of IfxDecimal.

Create an IfxDecimal

IfxDecimal objects are created automatically by some methods of other objects. You can create them explicitly by using one
of the constructors.

65

HCL Informix 14.10 - .NET Provider Reference Guide

IfxDecimal constructors

IfxDecimal(System.Double d)

IfxDecimal(System.Decimal d)

IfxDecimal(System.Int64 d)

IfxDecimal(System.Int32 i32)

The new instance will have the value of the parameter.

IfxDecimal properties

Table 20. IfxDateTime public properties

Property Type Access notes Description
E IfxDecimal read-only static The value of the irrational number e.
IsFloating System.Boolean read-only This is true if the instance is a floating point number;
otherwise it is false.
IsNull System.Boolean read-only This is true if the instance is null otherwise it is false.
IsPositive System.Boolean read-only This is true if the instance is a positive number;

otherwise it is false.

MaxPrecision System.Byte read-only static The highest precision (number of significant digits)
supported by an IfxDecimal. This is currently 32.

MaxValue IfxDecimal read-only static The largest value that can be held in an IfxDecimal.

MinusOne IfxDecimal read-only static The value -1.

MinValue IfxDecimal read-only static The smallest value that can be held in an IfxDecimal.

Null IfxDecimal read-only static An IfxDecimal that is set to null.

One IfxDecimal read-only static The value 1.

Pi IfxDecimal read-only static The value of the irrational number pi.

Zero IfxDecimal read-only static The value 0.

IfxDecimal methods

IfxDecimal.Abs

static IfxDecimal IfxDecimal.Abs(IfxDecimal IfxDec_)

Creates a new IfxDecimal that has a value equal to the absolute value of IfxDec_.

IfxDecimal.Add

static IfxDecimal IfxDecimal.Add(IfxDecimal IfxDecl, IfxDecimal IfxDec2)

66

Chapter 1. Informix® .NET Provider Guide

Creates a new IfxDecimal that has a value equal to the sum of IfxDec1 and IfxDec2.

IfxDecimal.Ceiling

static IfxDecimal IfxDecimal.Ceiling(IfxDecimal IfxDec)

Creates a new IfxDecimal that is the smallest integer that is not less than IfxDec.

IfxDecimal.Clone

IfxDecimal IfxDecimal.Clone()

Creates a new IfxDecimal that is a duplicate of this instance.

IfxDecimal.Compare

static System.Int32 IfxDecimal.Compare(IfxDecimal IfxDecl, IfxDecimal IfxDec2)

The value returned is based on the relative values of IfxDec1 and IfxDec2.
-1

The value of IfxDec1 is less than the value of IfxDec2

The IfxDecimal objects have the same value

The value of IfxDec1 is greater than the value of IfxDec2

Objects in the Informix® .NET Provider consider two null values to be equal to each other. They also consider a null value to

be less than any non-null value.

IfxDecimal.CompareTo

System.Int32 IfxDecimal.CompareTo(System.Object obj)
This is the same as calling IfxDecimal.Compare with the instance as IfxDec1 and obj as IfxDec2.

The object obj must be an IfxDecimal object. You will get an error if you call this method from an instance that is null.

IfxDecimal.Divide

static IfxDecimal IfxDecimal.Divide(IfxDecimal Dividend, IfxDecimal Divisor)

Creates a new IfxDecimal that is the result of dividing Dividend by Divisor.

IfxDecimal.Equals

static System.Boolean IfxDecimal.Equals(IfxDecimal IfxDecl, IfxDecimal
IfxDec2)

System.Boolean IfxDecimal.Equals(System.Object obj)

Returns true if IfxDecimal.Compare(IfxDec1, IfxDec2) would return 0.

67

HCL Informix 14.10 - .NET Provider Reference Guide

If just obj is given then the instance is used as IfxDec7 and obj is used as IfxDec2. The obj object must be an IfxDecimal.

IfxDecimal.Floor

static IfxDecimal IfxDecimal.Floor (IfxDecimal IfxDec)

Creates a new IfxDecimal whose value is the largest integer not larger than the value of IfxDec.

IfxDecimal.GetHashCode

System.Int32 IfxDecimal.GetHashCode()
Returns the hash code for this instance.

The hash code will be the same for any two IfxDecimal objects that have the same value but might also be the same for two

IfxDecimal objects with different values.

See the description of the Object.GetHashCode method in the .NET Framework Class Library for details about hash codes.

IfxDecimal.GreaterThan

static System.Boolean IfxDecimal.GreaterThan(IfxDecimal IfxDecl, IfxDecimal
IfxDec2)

Returns true if IfxDecimal.Compare(/fxDec1, IfxDec2) would return 1; otherwise returns false.

IfxDecimal.GreaterThanOrEqual

static System.Boolean IfxDecimal.GreaterThanOrEqual(IfxDecimal IfxDecl, IfxDecimal
IfxDec2)

Returns true if IfxDecimal.Compare(/fxDec1, IfxDec2) would return 0 or 1; otherwise returns false.

IfxDecimal.LessThan

static System.Boolean IfxDecimal.LessThan(IfxDecimal IfxDecl, IfxDecimal
IfxDec2)

Returns true if IfxDecimal.Compare(/fxDec1, IfxDec2) would return -1; otherwise returns false.

IfxDecimal.LessThanOrEqual

static System.Boolean IfxDecimal.LessThanOrEqual(IfxDecimal IfxDecl, IfxDecimal
IfxDec2)

Returns true if IfxDecimal.Compare(/fxDec1, IfxDec2) would return 0 or -1; otherwise returns false.

IfxDecimal.Max

static IfxDecimal IfxDecimal.Max(IfxDecimal IfxDecl, IfxDecimal IfxDec2)
Creates a new IfxDecimal with a value equal to the value of IfxDec or IfxDec2, whichever is larger.

Neither IfxDec1 nor IfxDec2 can be null.

Chapter 1. Informix® .NET Provider Guide

IfxDecimal.Min

static IfxDecimal IfxDecimal.Min(IfxDecimal IfxDecl, IfxDecimal IfxDec2)
Creates a new IfxDecimal with a value equal to the value of IfxDec1 or IfxDec2, whichever is smaller.

Neither IfxDec1 nor IfxDec2 can be null.

IfxDecimal.Modulo

static IfxDecimal IfxDecimal.Modulo(IfxDecimal a, IfxDecimal b)

Synonym for IfxDecimal.Remainder.

IfxDecimal.Multiply

static IfxDecimal IfxDecimal.Multiply(IfxDecimal IfxDecl, IfxDecimal IfxDec2)

Creates a new IfxDecimal that has a value equal to IfxDec1 times IfxDec2.

IfxDecimal.Negate

static IfxDecimal IfxDecimal.Negate(IfxDecimal IfxDec)

Creates a new IfxDecimal that is the result of reversing the sign (positive or negative) of this instance.

IfxDecimal.NotEquals

static System.Boolean IfxDecimal.NotEquals(IfxDecimal IfxDecl, IfxDecimal
IfxDec2)

Returns true if IfxDecimal.Compare(/fxDec1, IfxDec2) would return 1 or -1.

IfxDecimal.Parse

static IfxDecimal IfxDecimal.Parse(System.String s)

Leading and trailing spaces in s are ignored. You can include an optional exponent by placing an e or E between the decimal

value and the exponent. Exponents can be negative.
Example: This C# statement creates an IfxDecimal named d that has a value of -0.000032:
IfxDecimal d = IfxDecimal.Parse(" -3.2e-5 ");

Creates a new IfxDecimal with a value equal to the decimal value represented in s.

IfxDecimal.Remainder

static IfxDecimal IfxDecimal.Remainder (IfxDecimal a, IfxDecimal b)

Creates a new IfxDecimal the value of which is the remainder of the integer division of a by b. Integer division in this case

means that b goes into a an integral (whole) number of times and what is left over is the remainder.

The sign (positive or negative) of the remainder will always match the sign of a.

69

70

HCL Informix 14.10 - .NET Provider Reference Guide

IfxDecimal.Round

static IfxDecimal IfxDecimal.Round(IfxDecimal IfxDecl, System.Int32
FractionDigits)

Returns a new IfxDecimal that has the value of IfxDec7 rounded to FractionDigits digits to the right of the decimal point. If
FractionDigits is 0 the value is rounded to the ones place. If FractionDigits is -1 the value is rounded to the tens place, and so
on.

Example: If IfxDec1 is an IfxDecimal with a value of 123.45 then this table gives the results of rounding to different

positions.

Value of FractionDigits Result of IfxDecimal.Round(/fxDec1,FractionDigits)
-2 100.0

-1 120.0

0 123.0

1 123.5

2 123.45

IfxDecimal.Subtract

static IfxDecimal IfxDecimal.Subtract(IfxDecimal IfxDecl, IfxDecimal IfxDec2)

Creates a new IfxDecimal that has a value of IfxDecT minus IfxDec2.

IfxDecimal.ToString
System.String IfxDecimal.ToString()

System.String IfxDecimal.ToString (System.String format)

Returns the value of the instance as a string. If format is not present the format used is that of an ordinary decimal number,
no exponent is used.

If format is provided, the output is formatted in the way indicated in that string. The syntax of format is as described in the

section "Formatting Numeric Strings" in HCL® Informix® Enterprise Replication Guide.

IfxDecimal.Truncate

static IfxDecimal IfxDecimal.Truncate(IfxDecimal IfxDecl, System.Int32
FractionDigits)

Like IfxDecimal.Round(/fxDec1, FractionDigits) except that all digits to the right of the indicated digit are set to zero rather
than rounded.

Example: This table gives the results of truncating an IfxDecimal named /fxDec1 that has a value of 999.99.

Chapter 1. Informix® .NET Provider Guide

Value of Fract . L
onDiait Result of IfxDecimal.Truncate(IfxDec1,FractionDigits)
ionDigits

-2 900.0
-1 990.0
0 999.0
1 9999
2 999.99

IfxError class

The IfxError class represents an instance of a warning or an error generated by the HCL Informix® database.

IfxError public properties

The following table shows the public properties of the IfxError class.

Table 21. IfxError public properties

Property Description
Message Gets the description of the error.
NativeError Gets the error code returned from the HCL Informix® database.
SQLState Gets the five-character error code that follows the ANSI SQL standard for the database.

IfxErrorCollection class

The IfxErrorCollection class represents a collection of IfxError object occurrences in an IfxException object.

IfxErrorCollection public properties

The following table shows the public properties of the IfxErrorCollection class.

Table 22. IfxErrorCollection public properties

Property Description

Count Returns the number of IfxError occurrences in the collection.

IfxErrorCollection public methods

IfxErrorCollection.GetEnumerator

Returns an Enumerator (IEnumerator) to this collection.

71

HCL Informix 14.10 - .NET Provider Reference Guide

IfxException class

The IfxException class represents an exception that is generated when a warning or error is returned by the HCL Informix®

database.

IfxException public properties

The following table shows the public properties of the IfxException class.

Table 23. IfxException public properties

Property Description
Errors Gets the collection of IfxError objects as an IfxErrorCollection object.
HelpLink Gets the help link URL for the exception errors, if available.
InnerException Gets the exception that caused the current exception.
Message Gets the text describing the exception.
StackTrace Gets a string representation of the frames on the call stack when the exception occurred.
TargetSite Gets the method that returned the exception.

IfxMonthSpan structure

An IfxMonthSpan represents an offset of a particular number of months and years. A positive IfxMonthSpan represents an
offset forward in time and a negative IfxMonthSpan represents an offset backward in time. An IfxMonthSpan can hold values
from -11 999 999 999 months to 11 999 999 999 months (11 999 999 999 months = 999 999 999 years and 11 months).

An IfxMonthSpan is treated as if it were made up of a separate value for years and months.

You can create an IfxMonthSpan that uses only years or only months. This is allowed to mimic the behavior of the database

server's INTERVAL data type. It does not save any space in memory to use only one time unit.

The largest time unit of an IfxMonthSpan is called the start time unit. The smallest time unit of an IfxMonthSpan is called the

end time unit. The start time unit and the end time unit together are called the range of the IfxMonthSpan.
Example: If an IfxMonthSpan uses years and months, start time unit is year, the end time unit is month, and the range
is year to month. If only months are used then the range is month to month and both the start time unit and end time

unit are month.

When creating an IfxMonthSpan you specify time units using the members of the enumeration IfxTimeUnit enumeration on

page 92. For details about this enumeration see IfxTimeUnit enumeration on page 92.

Create an IfxMonthSpan

72

IfxMonthSpan constructors

IfxMonthSpan(System.Int32 val, IfxTimeUnit timeUnit)

The new instance has only one time unit and it is set to the value val.

The StartTimeUnit and EndTimeUnit are both set to timeUnit.

IfxMonthSpan(System.Int32 _years, System.Int32 _months)

Chapter 1. Informix® .NET Provider Guide

The new instance has a value equal to the sum of _years years and _months months. Negative values are allowed.

IfxMonthSpan public properties

Table 24. IfxMonthSpan public properties

Property Type Access notes Description

EndTimeUnit IfxTimeUnit read-only An IfxTimeUnit enumeration element indicating the
end time unit of this instance.

IsNull System.Boolean read-only Returns true if the instance is null; otherwise false.

MaxValue IfxMonthSpan read-only static An IfxMonthSpan set to the largest value that it can
hold.

MinValue IfxMonthSpan read-only static An IfxMonthSpan set to the smallest value that it can
hold.

Months System.Int32 read-only Returns the remainder of dividing the total number
of months in the IfxTimeSpan by 12.
If the IfxMonthSpan is negative then this value will
be negative.

Null IfxMonthSpan read-only static An IfxMonthSpan set to null.

StartTimeUnit IfxTimeUnit read-only The largest unit included in the IfxMonthSpan.

TotalMonths System.Int64 read-only The total number of months in the IfxMonthSpan.
If the IfxMonthSpan is negative then this value will
be negative.

Years System.Int32 read-only The number of full years in the IfxMonthSpan.
If the IfxMonthSpan is negative then this value will
be negative.

Zero IfxMonthSpan read-only static An IfxMonthSpan set to 0.

73

74

HCL Informix 14.10 - .NET Provider Reference Guide

IfxMonthSpan public methods

IfxMonthSpan.Add

IfxMonthSpan IfxMonthSpan.Add(IfxMonthSpan ms)
Returns a new IfxMonthSpan set to the value of the this instance plus the amount of time in ms.

The resulting IfxMonthSpan has the same range as this instance. This instance is not changed.

IfxMonthSpan.Compare

static System.Int32 IfxMonthSpan.Compare(IfxMonthSpan msl, IfxMonthSpan ms2)

This method does not compare the relative sizes of the spans, rather the IfxTimeSpan objects are compared as if they were

both numbers. This means, for instance, that a span of -12 years is less than a span of 2 months.

Returns a value based on the relative values of ms7 and ms2.
-1

msT is less than ms2

ms1 and ms2 have the same value

ms1 is greater than ms2

Objects in the Informix® .NET Provider consider two null values to be equal to each other. They also consider a null value to

be less than any non-null value

IfxMonthSpan.CompareTo

System.Boolean IfxMonthSpan.CompareTo(System.Object obj)
The object obj must be an IfxMonthSpan.

This is equivalent to calling IfxMonthSpan.Compare with this instance as ms7 and obj as ms2.

IfxMonthSpan.Divide

IfxMonthSpan IfxMonthSpan.Divide(Decimal val)

Returns a new IfxMonthSpan set to the value of this instance divided by val.

IfxMonthSpan IfxMonthSpan.Divide(IfxMonthSpan ms)

Returns the number of spans of time that are the size of ms that will fit in the span of time represented by this instance. The

result is negative if one of the IfxMonthSpan objects is negative and the other is not.

IfxMonthSpan.Duration

IfxMonthSpan IfxMonthSpan.Duration()

Chapter 1. Informix® .NET Provider Guide

Returns a new IfxMonthSpan with a value that is the absolute value of this instance.

IfxMonthSpan.Equals

static Boolean IfxMonthSpan.Equals(IfxMonthSpan msl, IfxMonthSpan ms2)

Returns true if ms7 and ms2 have the same value; otherwise returns false.

Boolean IfxMonthSpan.Equals(System.Object obj)

Returns true if obj is an IfxMonthSpan that represents the same time offset as this instance; otherwise it returns false.

IfxMonthSpan.GetHashCode

System.Int32 IfxMonthSpan.GetHashCode ()
Returns the hash code for this instance.

The hash code will be the same for any two IfxMonthSpan objects that have the same value but might also be the same for

two IfxMonthSpan objects with different values.

See the description of the Object.GetHashCode method in the .NET Framework Class Library for details about hash codes.

IfxMonthSpan.GreaterThan

static System.Boolean IfxMonthSpan.GreaterThan(IfxMonthSpan msl, IfxMonthSpan ms2
)

Returns true if IfxMonthSpan.Compare(ms 1, ms2) would return 1; otherwise, it returns false.

IfxMonthSpan.GreaterThanOrEqual

static System.Boolean IfxMonthSpan.GreaterThanOrEqual(IfxMonthSpan msl, IfxMonthSpan
ms2)

Returns true if IfxMonthSpan.Compare(ms1, ms2) would return either 1 or 0; otherwise, it is false.

IfxMonthSpan.LessThan

System.Boolean IfxMonthSpan.LessThan(IfxMonthSpan msl, IfxMonthSpan ms2)

Returns true if IfxMonthSpan.Compare(ms1, ms2) would return -1; otherwise, it returns false.

IfxMonthSpan.LessThanOrEqual

System.Boolean IfxMonthSpan.LessThanOrEqual(IfxMonthSpan msl, IfxMonthSpan ms2)

Returns true if IfxMonthSpan.Compare(ms1, ms2) would return -1 or 0; otherwise, it returns false.

IfxMonthSpan.Multiply

IfxMonthSpan IfxMonthSpan.Multiply(Decimal val)

Returns a new IfxMonthSpan set to the value of this instance multiplied by val.

75

76

HCL Informix 14.10 - .NET Provider Reference Guide

IfxMonthSpan.Negate

IfxMonthSpan IfxMonthSpan.Negate()
Returns a new IfxMonthSpan with a value equal to this instance but with opposite sign (positive or negative).

IfxMonthSpan.NotEquals

static System.Boolean IfxMonthSpan.NotEquals(IfxMonthSpan msl, IfxMonthSpan ms2
)

Returns true if IfxMonthSpan.Compare(ms1, ms2) would return -1 or 1; otherwise, it returns false.

IfxMonthSpan.Parse
static IfxTimeSpan IfxMonthSpan.Parse(System.String val)

static IfxTimeSpan IfxMonthSpan.Parse(System.String val, IfxTimeUnit start,
IfxTimeUnit end)

static IfxTimeSpan IfxMonthSpan.Parse(System.String val, System.String format,
IfxTimeUnit start, IfxTimeUnit end)

Returns a new IfxMonthSpan with a value based on val. If format is not given, the val string must be in this format:
[sly- m
s

Optional sign. If present this can be either + or -. The default is +. The brackets ([]) are not part of the time span.
They indicate that the sign is optional.

The number of whole years in the span. This must be an integer in the range 0 to 999 999 999.

The number of months. This must be an integer in the range 0 to 11.

The range of the new IfxMonthSpan is start to end. Only Year and Month are allowed in an IfxMonthSpan. If start and end
are not given, the range is Year to Month. Values each unit in the range must be present in val, even if one or both are zero.

Values outside the range must not be present. If only one time unit is used then the - is not used.

The format string uses the same syntax as the DBTIME environment variable except that the only placeholders it can include
are %Y and %m. The %Y placeholder in this context accepts the number of years in a range from 0 to 999 999 999. All units
for which there are placeholders must be present . For the details of the syntax, refer to the description of the DBTIME
environment variable in the HCL® Informix® Guide to SQL: Reference.

If both year and month are given in val and accepted in format, then they are both used even if the range is year to year or
month to month. If a IfxMonthSpan has a range of year to year and its value includes a total number of months that is not
evenly divisible by 12 the extra months are ignored.

Example: The string output by this command is 1.

Chapter 1. Informix® .NET Provider Guide

e IfxMonthSpan.Parse("1-11","%Y-%m",
/ System.Double.Year,System.Double.Year).ToString()

If the range of an IfxMonthSpan is month to month and both years and months are given in val and accepted by format then

the years are converted to months.

Example: The string output by this command is 23.

IfxMonthSpan.Parse("1-11","%Y-%m",
System.Double.Month,System.Double.Month).ToString()

IfxMonthSpan.Subtract

IfxMonthSpan IfxMonthSpan.Subtract(IfxMonthSpan ms)

Returns a new IfxMonthSpan set to the value of this instance minus the value of ms.

IfxMonthSpan.ToString
System.String IfxMonthSpan.ToString()

System.String IfxMonthSpan.ToString (System.String format)

Returns the value of the instance as a string. If format is not present the format used is:
sy-m
s

Optional sign. A minus sign is shown here if the IfxMonthSpan is negative. Nothing is shown for positive

values.
The number of whole years in the value

The number of months left over after calculating y

If the IfxMonthSpan has only one time unit then only that time unit is output and the dash that goes between the year and

month is omitted.

If format is provided, the output is formatted in the way indicated in that string. The format string uses the same syntax as
the DBTIME environment variable except that only the %m, %y and %Y placeholders are allowed. The %y and %Y placeholders
work the same way in this string. For the details of the syntax, refer to the description of the DBTIME environment variable in
the HCL® Informix® Guide to SQL: Reference.

IfxParameter class

The IfxParameter class represents a parameter to an IfxCommand object. It represents a single parameter stored in a

collection that is represented by an IfxParameterCollection object.

77

HCL Informix 14.10 - .NET Provider Reference Guide

Create an IfxParameter class

IfxParameter constructors

e | f xParaneter ()

e | fxParaneter(System String nane, System Cbject val ue)

e | fxParaneter(System String nane, |fxType type)

e | fxParaneter(System String nane, |fxType type, SystemInt32 size)

e | fxParaneter(System String nanme, |fxType type, System Int32 size, System String sourceCol um)

e | fxParaneter(System String nane, |fxType type, SystemInt32 size, System Data.ParaneterDirection
paraneterDirection, System Boolean isNullable, System Byte precision, SystemByte scale, System String

sour ceCol utm, Syst em Dat a. Dat aRowVer si on srcVersi on, System bj ect val ue)

The parameters are as follows:
name
The name of the parameter.
value
The value that will be assigned to the parameter.
type
The informix type of the parameter. See |fxType enumeration on page 94 for details.
size
The size of the parameter.
parameterDirection

Whether this parameter is an input, output, or input/output parameter. Look up

System.Data.ParameterDirection in the .NET Framework Class Library for details on the directions.
sourceColumn
The source column for the parameter.
isNullable
Set to true if the parameter can accept null values; otherwise false.
precision
The precision of the parameter.
scale
The scale of the parameter.
srcVersion

The source version of the parameter.

Chapter 1. Informix® .NET Provider Guide

IfxParameter public properties

The following table shows the public properties of the IfxParameter class.

Table 25. IfxParameter public properties

Property Description

DbType Gets or sets the DbType of the parameter. The DbType property specifies the data type of

the IfxParameter object.

Direction Gets or sets a value indicating whether the parameter is input-only, output-only,
bidirectional, or a stored procedure return value parameter. If the direction is output,

and execution of the associated IfxCommand does not return a value, the IfxParameter
contains a null value. After the last row from the last result set is read, Output, InputOut,
and ReturnValue parameters are updated. The possible values for the Direction property are

shown after the table.

IfxType Gets or sets the IfxType of the parameter. The IfxType property specifies the data type
enumeration of the Informix® .NET Provider that maps to the Informix® data type.

IsNullable Gets or sets a value indicating whether the parameter accepts null values.

ParameterName Gets or sets the name of the parameter. The ParameterName is used to reference the

parameter in the parameter collection.

SourceColumn Gets or sets the name of the source column that is mapped to the DataSet and used for
loading or returning the value. The SourceColumn property can be passed as an argument
to the IfxParameter constructor, or set as a property of an existing IfxParameter object (See

IfxParameter examples on page 79).

SourceVersion Gets or sets the DataRowVersion to use when loading value. The SourceVersion specifies
which DataRow version the IfxDataAdapter object uses to retrieve the value. The
SourceVersion property can be passed as an argument to the IfxParameter constructor, or

set as a property of an existing IfxParameter (See IfxParameter examples on page 79).

Value Gets or sets the value of the parameter.

IfxParameter examples

The first example creates an IfxParameter object.

//illustrates example of creating and using IfxParameter

//assume we have obtained a connection

IfxDataAdapter adpt = new IfxDataAdapter();

adpt.SelectCommand = new IfxCommand("SELECT CustomerID, Name FROM Customers
WHERE Country = ? AND City = ?", conn);

IfxParameter ifxpl = new IfxParameter ("Country",DbType.String);

IfxParameter ifxp2 = new IfxParameter("City",DbType.String);

//add parameter to the Parameter collection

//since our provider does not support named parameters, the order of parameters

//added to the collection s important.

79

80

HCL Informix 14.10 - .NET Provider Reference Guide

Adpt.SelectCommand.Parameters.Add (ifxpl);
Adpt.SelectCommand.Parameters.Add(ifxp2);

//the above method of creating and adding a parameter can also be done in a
//single step as shown
//adpt.UpdateCommand.Parameters.Add ("CustomerName" ,DbType.String) ;

//assign value to the parameter

adpt.UpdateCommand.Parameters. ["CustomerName"] = '"xyz";

The next example demonstrates the use of the SourceVersion and SourceColumn properties:

//The following assumptions have been made:
// 1.We have obtained a connection (conn) to our data source
//2. We have a filled a DataSet using a DataAdapter(custDA) that has the
//following SelectCommand:
// "SELECT CustomerID, CompanyName FROM Customers WHERE Country = ? AND City =
/12"
// 3. following 1is the update statement for the UpdateCommand:
// string updateSQL = "UPDATE Customers SET CustomerID = ?, CompanyName = ? " +
// "WHERE CustomerID = ? ";
// 4.The CustomerID column in the DataRow being used has been modified with a
// new value.
custDA.UpdateCommand = new IfxCommand(updateSQL,conn);
//The customer id column 1is being used as a source for 2 parameters.
//(set CustomerID = ?, and //where CustomerID = ?)
//the last parameter to the Add command specifies the SourceColumn for the
//parameter
IfxParameter myParaml = custDA.UpdateCommand.Parameters.Add(

"CustomerID", IfxType.Char,5,"CustomerID");
//The following line of code is implied as default, but is provided for
//illustrative purposes
//We want to update CustomerID with the current value in the DataRow.
myParaml.SourceVersion = DataRowVersion.Current;
//Current is the default value
custDA.UpdateCommand.Parameters.Add("CompanyName", IfxType.VarChar);
//The last parameter to the Add command specifies the SourceColumn for the
//parameter
IfxParameter myParm2 = custDA.UpdateCommand.Parameters.Add(

"OldCustomerID", IfxType.Char,5,"CustomerID");
//We want to use in our search filter, the original value of CustomerID in
//the DataRow
MyParm2.SourceVersion = DataRowVersion.Original;
CustDA.Update();

IfxParameterCollection class

The IfxParameterCollection class represents the parameters for an IfxCommand object.

Create an IfxParameterCollection

You do not create an IfxParameterCollection directly. It is created automatically as part of an IfxCommand. To access it use

the IfxCommand.Parameters property.

IfxParameterCollection public properties

The following table shows the public properties of the IfxParameterCollection class.

Table 26. IfxParameterCollection public properties

Chapter 1. Informix® .NET Provider Guide

Property

Description

Count

Returns the number of parameters in the collection.

Iltem

Gets the parameter at the specified index.

IfxParameterCollection public methods

IfxParameterCollection.Add

IfxParameter Add(IfxParameter value)

Adds the IfxParameter object value to the IfxParameterCollection.

IfxParameter Add(System.Object value)

IfxParameter Add(System.String parameterName, System.Object value)

IfxParameter Add(System.String parameterName, IfxType I[fXxType)

IfxParameter Add(System.String parameterName, IfxType ifxType, System.Int32

size)

IfxParameter Add(System.String parameterName, IfxType ifxType, System.Int32
size, System.String sourceColumn)

Create an IfxParameter object using the parameters given, then add it to the IfxParameterCollection. See Create an

IfxParameterCollection on page 80 for information on what each parameter does.

This method returns the IfxParameter that was added.

IfxParameterCollection.Clear

void IfxParameterCollection.Clear ()

Removes all the elements in the IfxParameterCollection object.

IfxParameterCollection.Contains

System.Boolean IfxParameterCollection.Contains(System.Object value)

System.Boolean IfxParameterCollection.Contains(System.String value)

Gets a value indicating whether a parameter in the collection has the specified source table name.

IfxParameterCollection.CopyTo

void IfxParameterCollection.CopyTo(System.Array array, System.Int32

Copies the elements of a collection into an array at a specified index.

IfxParameterCollection.GetEnumerator

System.Collections.IEnumerator IfxParameterCollection.GetEnumerator ()

index)

81

HCL Informix 14.10 - .NET Provider Reference Guide

Returns an enumerator to the collection.

IfxParameterCollection.IndexOf
System.Int32 IfxParameterCollection.IndexOf(System.Object value)

System.Int32 IfxParameterCollection.IndexOf(System.String value)

Gets the location of the IfxParameter object within the collection.

IfxParameterCollection.Insert

void IfxParameterCollection.Insert(System.Int32 index, System.Object value)

Inserts a parameter at a specified location.

IfxParameterCollection.Remove

void IfxParameterCollection.RemoveAt(System.Object value)

Removes the IfxParameter object from the collection.

IfxParameterCollection.RemoveAt
void IfxParameterCollection.RemoveAt(System.String parameterName)

void IfxParameterCollection.RemoveAt(System.Int32 index)

Removes the IfxParameter object named parameterName or at location index from the collection.

IfxProviderFactory class

You can use the IfxProviderFactory class to write provider-independent data access code. After getting an instance of the
required provider factory, you can use that provider factory to create instances of the provider-specific data access classes.

IfxProviderFactory exposes a series of methods that return these class instances.

You can use the DbProviderFactory class to create a DbProvider instance specifically for the HCL Informix® invariant,

IBM.Data.Informix, as shown in the following example:

DbProviderFactory factory = DbProviderFactories.GetFactory("IBM.Data.Informix");

IfxProviderFactory public methods

IfxProviderFactory.CreateConnectionStringBuilder

IfxProviderFactory CreateConnectionStringBuilder (IfxProviderFactory)

Returns an instance of a DbConnectionStringBuilder that the application developers can use to create connection strings

dynamically.

IfxProviderFactory.CreateConnection

IfxProviderFactory.CreateConnection(IfxParameter value)

82

Chapter 1. Informix® .NET Provider Guide

Returns an instance of a DbConnection that the application developers can use to connect to a data store. The DbConnection
class exposes a method CreateCommand() that returns a new DbCommand instance. The developers can use this instead of
the DbProviderFactory.CreateCommand() method to create a command for that connection

IfxProviderFactory.CreateCommand

IfxProviderFactory.CreateCommand /()

Developers can use to execute SQL statements and stored procedures. The DbCommand class exposes a
method CreateParameter() that returns a new DbParameter instance. The developers can use this instead of the

DbProviderFactory.CreateParameter() method to create parameters for that command.

IfxProviderFactory.CreateParameter

IfxProviderFactory.CreateParameter ()

Returns an instance of a DbParameter that the application developers can use to pass values into and out of SQL statements
and stored procedures.

IfxProviderFactory.CreateCommandBuilder

IfxProviderFactory.CreateCommandBuilder ()

Returns an instance of a DbCommandBuilder that the application developers can use to create the UPDATE, INSERT and
DELETE SQL statements for a DataAdapter automatically.

IfxProviderFactory.CreateDataAdapter

IfxProviderFactory.CreateDataAdapter ()

Returns an instance of a DbDataAdapter that the application developers can use to fill or update a DataSet or DataTable.

IfxProviderFactory.CreateDataSourceEnumerator

IfxProviderFactory.CreateDataSourceEnumerator ()

Returns an instance of a DbDataSourceEnumerator that the application developers can use to examine the data sources
available through this DbProviderFactory instance.

IfxProviderFactory.CreatePermission (PermissionState)

IfxProviderFactory.CreatePermission (PermissionState)

Takes a value from the PermissionState enumeration and returns an instance of a CodeAccessPermission that you can use
to ensure that callers have been granted appropriate permission for all the objects to which they require access.

IfxSmartLOBCreateTimeFlags enumeration

This table indicates the flags that can be set while creating a CLOB or BLOB object. The logical OR operation can be
performed on one or more enumeration members listed in this table and assigned to the IfxBlob.Flags or IfxClob.Flags
property.

83

HCL Informix 14.10 - .NET Provider Reference Guide

Member

Meaning

DontKeepAccessTime

If read this means that the smart large object does not keep track of the last time it

was accessed.

If written it tells the database server not to track the last access time for this smart

large object.

This flag overrides KeepAccessTime if both are given.

KeepAccessTime

If read this means that the smart large object keeps track of the last time it was

accessed.

If written it tells the database server to track the last access time for this smart large
object.

Use of the access time tracking feature causes significant extra work for the database

server. Consider carefully before turning it on.

Log If read this means that the database server logs changes to this smart large object in
the system log file.
If written it tells the database server to log changes to this smart large object in the
system log file.
Consider the extra overhead for the database server and the extra information that will
be placed in the system log file before turning this feature on.

NoLog If read this means that changes to this smart large object are not logged in the system

log file.

If written it tells the database server not to log changes to this smart large object in the

system log file.

This flag overrides Log if both are given.

84

IfxSmartLOBFileLocation enumeration

This enumeration is used to indicate which computer a particular file is on (or should be created on).

Member Lock
Client The file is on the computer that is running the client application.
Server The file is on the computer that is running the database server.

Chapter 1. Informix® .NET Provider Guide

I[fxSmartLOBLocator class

This is a lower-level class that holds information about where a smart large object is stored. It encapsulates the locator

structure of ESQL/C. You should never have to create or access an instance of this class explicitly.

[fxSmartLOBLockMode enumeration

This enumeration is used to indicate a particular type of lock.

Member

Lock

Exclusive

Open for writing only.

Shared

Open for reading and writing. The data is buffered locally and only written to the database server

when the smart large object is closed.

IfxSmartLOBOpenMode enumeration

This enumeration is used to indicate what mode an IfxBlob or IfxClob object should be opened in. You OR the members of

your choice together to specify how the smart large object will be accessed.

Member Meaning

Append If used by itself the smart large object is opened for reading only. If used with either
ReadWrite or Write then the cursor is moved to the end of the smart large object before every
write so that writes are always appended.

Buffer If this is part of the access mode then reads and writes will use the standard database server
buffer pool

DirtyRead Open for reading only. You are allowed to read uncommitted pages in the smart large object.

LockAll If this is part of the access mode then any locks placed on the smart large object will lock the
entire smart large object.

LockRange If this is part of the access mode then you are allowed to lock a range in the smart large
object without locking the entire smart large object.

Nobuffer If this is part of the access mode the reads and writes will use private buffers from the
session pool of the database server.

ReadOnly Open for reading only.

ReadWrite Open for reading and writing.

WriteOnly Open for writing only.

85

HCL Informix 14.10 - .NET Provider Reference Guide

[fxSmartLOBWhence enumeration

This enumeration is used to specify the meaning of an offset value. It is only used by methods of an IfxBlob or an IfxClob

(collectively known as smart large objects).

Member Lock
Begin The offset is considered to be from the start of the smart large object. In this case the offset cannot
be negative.
Current® The offset is considered to be from the current position of the smart large object's internal cursor.
End The offset is considered to be from the current end of the smart large object.

IfxTimeSpan structure

An IfxTimeSpan represents an offset of a particular length either forward or backward in time. A positive IfxTimeSpan

represents an offset forward in time and a negative IfxTimeSpan represents an offset backward in time.

An IfxTimeSpan is treated as if it is made up of a separate value for each of these time units:

» Day

* Hour

» Minute
» Second

« Fraction of a second

You can create an IfxTimeSpan that uses only a subset of these time units. This is allowed in order to mimic the behavior
of the database server's INTERVAL data type. It does not save any space in memory when you use fewer time units in an

IfxTimeSpan.
The largest time unit of an IfxTimeSpan is called the start time unit. The smallest time unit of an IfxTimeSpan is called the

end time unit. The start time unit, the end time unit, and all units in between are called the range of the IfxTimeSpan.

Example: If an IfxTimeSpan uses hour, minute, and second units then the start time unit is hour, the end time unit is

second, and the range is hour to second.

When creating an IfxTimeSpan you specify time units using the members of the IfxTimeUnit enumeration. For details about

this enumeration see IfxTimeUnit enumeration on page 92.

Create an IfxTimeSpan

In constructors that accept values for multiple time units, the values do not have to make sense with each other the way that
they do in the constructors for an IfxDateTime. The values for one or more of the time units can be negative. The value of the
created IfxTimeSpan is the sum of the time represented by each of the units.

86

Chapter 1. Informix® .NET Provider Guide

Example: If you create an IfxTimeSpan using values of 50 days, 27 hours, and -5 minutes. The resulting IfxTimeSpan

will be set to 51 days, 2 hours, and 55 minutes.

IfxTimeSpan constructors

IfxTimeSpan(System.Int64 _ticks)
IfxTimeSpan(System.Decimal _ticks)

The new instance has a range of Day to Fraction5 and is set to a value of _ticks ticks.
There are 10 000 000 ticks in one second.
Ticks are more precise than Fraction5. The extra precision is ignored by all methods and operators.

IfxTimeSpan(System.TimeSpan ts)

The new instance has the same value as ts and a range of Day to Fraction5.

IfxTimeSpan(System.Int32 val, IfxTimeUnit timeUnit)

The new instance has only one time unit and it is set to the value val.

The StartTimeUnit and EndTimeUnit are both set to timeUnit.

e | fxTi meSpan(System Int32 val 1, System Int32 val2, IfxTineUnit start, |fxTinmeUnit end)

e | fxTi neSpan(System I nt32 val 1, System Int32 val 2, SystemInt32 val 3, IfxTineUnit start, |fxTineUnit end)

¢ | fxTi neSpan(System I nt32 val 1, System Int32 val 2, SystemInt32 val3, SystemInt32 val4, |fxTineUnit start,
I fXTi neUnit end)

e | fxTi meSpan(System I nt32 val 1, System Int32 val 2, SystemInt32 val 3, SystemInt32 val4, SystemInt32 valb5,

I fxTi neUnit end)

If valT through val5 are given then there is no start parameter because the start time unit is automatically assumed to be
Day; otherwise the range of the new instance is start to end. The end time unit is always required because it determines the

precision of the fractional portion.

Values must be provided for all units in the range. The val7 parameter is interpreted as the value for the start time unit. The

rest of the values are interpreted as the values of the other time units in the range in order.

IfxTimeSpan public properties

Table 27. IfxTimeSpan public properties

Property Type Access notes Description

Days System.Int64 read-only The number of full days in the IfxTimeSpan. If the
IfxTimeSpan is negative then this value will be negative.

EndTimeUnit IfxTimeUnit read-only The smallest unit included in the IfxTimeSpan.

87

HCL Informix 14.10 - .NET Provider Reference Guide

Table 27. IfxTimeSpan public properties (continued)

Property Type Access notes Description
Example: If the IfxTimeSpan uses Day to Minute
then Minute is the EndTimeUnit.

Hours System.Int64 read-only Returns the remainder of dividing the number of full hours
in the IfxTimeSpan by 24.

IsNull System.Boolean read-only True if the IfxTimeSpan is null, otherwise False.

MaxScale System.Int32 read-only The largest number of digits allowed in the fraction of a

static second portion of the value. This currently has a value of
5.

MaxValue IfxTimeSpan read-only An IfxTimeSpan set to the largest value that it can hold.

static

Milliseconds System.Int64 read-only Returns the remainder of dividing the number of
full milliseconds in the IfxTimeSpan by 1000. If the
IfxTimeSpan is negative then this value will be negative.

Minutes System.Int64 read-only The component of TimeSpan that indicates the number
of minutes. The value ranges from -59 to 59. If the
IfxTimeSpan is negative then this value will be negative.

MinValue IfxTimeSpan read-only The smallest value that can be held in an IfxTimeSpan.

static

Null IfxTimeSpan read-only An IfxTimeSpan set to null.

static

Seconds System.Int64 read-only Returns the remainder of dividing the number of full
minutes in the instance by 60. If the instance is negative
then this value will be negative.

StartTimeUnit IfxTimeUnit read-only The largest unit included in the IfxTimeSpan.

Ticks System.Decimal read-only The total number of ticks in the length of time represented
by the IfxTimeSpan. There are 10 000 000 ticks in one
second.

If the IfxTimeSpan is negative then this value will be
negative.

Zero IfxTimeSpan read-only The value 0.

static

88

Chapter 1. Informix® .NET Provider Guide

IfxTimeSpan public methods

These are the methods of the IfxTimeSpan object.

IfxTimeSpan.Add

IfxTimeSpan IfxTimeSpan.Add(IfxTimeSpan ts)
Returns a new IfxTimeSpan set to the value of the this instance plus the amount of time in ts.

The resulting IfxTimeSpan has the same range as this instance. This instance is not changed.

IfxTimeSpan.Compare

static System.Int32 IfxTimeSpan.Compare(IfxTimeSpan tsl, IfxTimeSpan ts2)

This method does not compare the relative sizes of the spans, rather the IfxTimeSpan objects are compared as if they were

both numbers. This means, for instance, that a span of -12 hours is less than a span of 2 hours.

Returns a value based on the relative values of ts7 and ts2.
-1

ts1is less than ts2

ts7 and ts2 have the same value

ts1 is greater than ts2

Objects in the Informix® .NET Provider consider two null values to be equal to each other. They also consider a null value to
be less than any non-null value.

IfxTimeSpan.CompareTo

System.Boolean IfxTimeSpan.CompareTo(System.Object obj)
The object obj must be an IfxTimeSpan.

This is equivalent to calling IfxTimeSpan.Compare with the IfxTimeSpan as ts7 and obj as ts2.

IfxTimeSpan.Divide

IfxTimeSpan IfxTimeSpan.Divide(Decimal val)

Returns a new IfxTimeSpan set to the original IfxTimeSpan divided by val.

IfxTimeSpan IfxTimeSpan.Divide(IfxTimeSpan ts)

Returns the number of spans of time that are the size of ts that will fit in the span of time represented by this instance of

IfxTimeSpan. The result is negative if one of the IfxTimeSpan objects is negative and the other is not.

89

90

HCL Informix 14.10 - .NET Provider Reference Guide

IfxTimeSpan.Duration

IfxTimeSpan IfxTimeSpan.Duration()
Returns a new IfxTimeSpan with a value that is the absolute value of this instance.

IfxTimeSpan.Equals

static Boolean IfxTimeSpan.Equals(IfxTimeSpan tsl, IfxTimeSpan ts2)

Returns true if ts7 and ts2 have the same value; otherwise returns false.

Boolean IfxTimeSpan.Equals(System.Object obj)

Returns true if obj is an IfxTimeSpan that has the same value as this instance; otherwise it returns false.

IfxTimeSpan.GetHashCode

System.Int32 IfxTimeSpan.GetHashCode ()
Returns the hash code for this IfxTimeSpan.

The hash code will be the same for any two IfxTimeSpan objects that have the same value but might also be the same for

two IfxTimeSpan objects with different values.

See the description of the Object.GetHashCode method in the .NET Framework Class Library for details about hash codes.

IfxTimeSpan.GreaterThan

static System.Boolean IfxTimeSpan.GreaterThan(IfxTimeSpan tsl, IfxTimeSpan ts2)

Returns true if IfxTimeSpan.Compare(ts7, ts2) would return 1. Otherwise, it returns false.

IfxTimeSpan.GreaterThanOrEqual

static System.Boolean IfxTimeSpan.GreaterThanOrEqual(IfxTimeSpan tsl, IfxTimeSpan
ts2)

Returns true if IfxTimeSpan.Compare(ts1, ts2) would return either 1 or 0. Otherwise, it is false.

IfxTimeSpan.LessThan

System.Boolean IfxTimeSpan.LessThan(IfxTimeSpan tsl, IfxTimeSpan ts2)

Returns true if IfxTimeSpan.Compare(ts7, ts2) would return -1. Otherwise, it returns false.

IfxTimeSpan.LessThanOrEqual

System.Boolean IfxTimeSpan.LessThanOrEqual(IfxTimeSpan tsl, IfxTimeSpan ts2)

Returns true if IfxTimeSpan.Compare(ts7, ts2) would return -1 or 0. Otherwise, it returns false.

IfxTimeSpan.Negate

IfxTimeSpan IfxTimeSpan.Negate()

Chapter 1. Informix® .NET Provider Guide

Returns a new IfxTimeSpan with a value equal to this instance but with opposite sign (positive or negative).

IfxTimeSpan.NotEquals

static System.Boolean IfxTimeSpan.NotEquals(IfxTimeSpan tsl, IfxTimeSpan ts2)

Returns true if IfxTimeSpan.Compare(ts1, ts2) would return -1 or 1. Otherwise, it returns false.

IfxTimeSpan.Parse
static IfxTimeSpan IfxTimeSpan.Parse(System.String _szTime)

static IfxTimeSpan IfxTimeSpan.Parse(System.String _szTime,
IfxTimeUnit start, IfxTimeUnit end)

static IfxTimeSpan IfxTimeSpan.Parse(System.String _szTime, System.String format,
IfxTimeUnit start, IfxTimeUnit end)

Returns a new IfxTimeSpan with a value based on _szTime. If format is not given, the _szTime string must be in this format:

[-]1d h:m:s.f

Optional sign. If this is present the IfxTimeSpan will be negative. The brackets ([]) indicate that the sign is
optional. They are not part of the format.

d
An integer indicating the number of days. This must be an integer in the range 0 to 999 999 999.
h
The number of hours. This must be an integer in the range 0 to 23.
m
The number of minutes. This must be an integer in the range 0 to 59.
s
The number of whole seconds. This must be an integer in the range 0 to 59.
f

The fractional portion of the seconds. Precision beyond 5 decimal places is ignored.
The range of the new IfxTimeSpan is start to end. If start and end are not given the range is Day to Fraction5.

All time units in the range must be present in _szTime, even if they are zero. If format is provided then time units outside the
range are optional. If they are present they are ignored. If format is not provided then time units outside the range are not
allowed.

The format string uses the same syntax as the DBTIME environment variable except that it cannot contain placeholders for
month or year. For the details about the syntax, refer to the description of the DBTIME environment variable in the HCL®

Informix® Enterprise Replication Guide.

91

HCL Informix 14.10 - .NET Provider Reference Guide

IfxTimeSpan.ToString
System.String IfxTimeSpan.ToString()

System.String IfxTimeSpan.ToString (System.String format)

Returns the value of the instance as a string. If format is not present the format used is:

D hh:mm:ss.f
D

The number of whole days in the value
hh

Two digit hour in range of 00 to 23
mm

Two digit minute
ss

Two digit second

The fractional portion of the seconds
Portions outside the range of the instance are not included in the string.

If format is provided the output is formatted in the way indicated in that string. The format string uses the same syntax as the
DBTIME environment variable. For the details of the syntax, refer to the description of the DBTIME environment variable in
the HCL® Informix® Guide to SQL: Reference.

IfxTimeUnit enumeration

IfxTimeUnit is an enumeration that holds the valid time units used with IfxDateTime, IfxMonthSpan, and IfxTimeSpan.
IfxTimeUnit has members for each of the major time units.

Table 28. The non-fraction members of IfxTimeUnit

IfxTimeUnit member Unit
Year Years
Month Months
Day Days
Hour Hours
Minute Minutes
Second Full seconds

It also has several members that represent fractions of a second at several different precisions.

92

Chapter 1. Informix® .NET Provider Guide

Table 29. Fractional members of IfxTimeUnit

IfxTimeUnit
Precision Example
member
Fraction1 Tenths of a second 1962-04-16 11:35:10.1
Fraction2 Hundredths of a second 1962-04-16 11:35:10.12
Fraction or Thousandths of a second 1962-04-16 11:35:10.123
Fraction3
Fraction4 Ten thousandths of a second 1962-04-16 11:35:10.1234
Fraction5 Hundred thousandths of a second 1962-04-16 11:35:10.12345

The HCL Informix® time data types include properties that return the fractions of a second portion as milliseconds
(thousandths of a second). They do not, however, include properties that return the fractions of a second in any of the other
precisions.

IfxTransaction class

The IfxTransaction class represents the transaction to be performed with the database.

IfxTransaction public properties

The following table shows the public properties of the IfxTransaction class.

Table 30. IfxTransaction public properties

Property Description
Connection The IfxTransaction object to associate with the transaction.
IsolationLevel The isolation level for this transaction.

With HCL Informix® database servers the serializable isolation level is identical to the
repeatable-read isolation level. If you set the isolation level to repeatable-read in .NET it will
actually be set to serializable in the database server.

IfxTransaction public methods

IfxTransaction.Commit
Commits the database transaction.
IfxTransaction.Rollback

Rolls back a transaction from a pending state.

93

HCL Informix 14.10 - .NET Provider Reference Guide

Before your application runs a command for which you want to control the transaction, you must assign the
active transaction that is used in a connection to the Transaction property of the IfxCommand object, as shown
in the example that follows. If you do not do this, an exception is returned.

IfxTransaction example

The following example shows how to perform an insert within a local transaction. The command M/ Conmand. Transaction =

nyTrans; assigns the active transaction to the Transaction property of the IfxCommand object.

IfxConnection myConn = new IfxConnection("Host=ajax;Server=myServer;
Service=9401;database=dotnet;user id=xxx;password=xxx");

myConn.open();

IfxTransaction myTrans = myConn.BeginTransaction();

IfxCommand myCommand = new IfxCommand();

MyCommand.Transaction = myTrans;

MyCommand.CommandText = "INSERT INTO mytab(custid,custname)

values (1005,\"Name\") ;"

MyCommand . ExecuteNonQuery () ;

MyTrans.Commit();

MyConn.Close();

IfxType enumeration

This enumerator is used with the IfxParameter object. Each member represents a data type that is supported by HCL
Informix® database servers. The following table shows all of the members and how each maps to .NET DbType types and
to .NET Framework types. For detailed information about Informix® types, see the HCL® Informix® Guide to SQL: Reference.

Table 31. IfxType enumeration

Member .NET DbType (best fit) .NET Framework type (best fit)
Bigint Int64 Int64
BigSerial Int64 Int64
Blob Binary Bytel[l
Boolean Boolean Boolean
Byte Binary Byte[l
Char StringFixedLength String
Char1 StringFixedLength Char
Clob String String
Date Date DateTime
DateTime DateTime DateTime
Decimal Decimal Decimal
Float Double Double

94

Table 31. IfxType enumeration (continued)

Chapter 1. Informix® .NET Provider Guide

Member .NET DbType (best fit) .NET Framework type (best fit)
Int8 Int64 Int64
Integer Int32 Int32
IntervalDayFraction String TimeSpan
IntervalYearMonth String String
List String String
LVarChar String String
Money Currency Decimal
MultiSet String String
NChar StringFixedLength String
NVarChar String String
Row String String
Serial Int32 Int32
Serial8 Int64 Int64
Set String String
SmallFloat Single Single
Smallint Int16 Int16
SmartLOBLocator Binary Byte[l
Text String String
VarChar String String

Sample programs

Demonstration programs

Demonstration programs for the Informix® .NET Provider are available in the %4 NFORM XDl R% deno\ dot net deno folder.

The %8 NFORM XDI R4 denp\ dot net deno\ Qui ckSt ar t folder contains sample programs for C#.NET and VB.NET. The
% NFORM XDl R% denp\ dot net denp\ Sanpl es folder contains sample programs for C# Windows™ Forms.

Informix® .NET Provider examples

This section contains short examples that demonstrate the use of particular objects or show how to perform particular

database tasks. The examples are short, in order to enhance clarity.

HCL Informix 14.10 - .NET Provider Reference Guide

Therefore, they do not represent real-world, full-size applications. All of these example are assumed to be in console
applications written in the C# language. They all assume that you have already imported the IBM.Data.Informix namespace
by including this directive in the program:

using IBM.Data.Informix;

Many of the examples use one of the sample databases that are included with HCL Informix® database servers. The sample
databases used are stores_demo and superstores_demo. Instructions on how to create these databases are in the HCL®
Informix® DB-Access User's Guide.

Retrieve a single value

You can use the IfxCommand.ExecuteScalar method when you know that the SQL you want to execute will return a single

value.

The IfxCommand.ExecuteScalar method returns a System.Object. You must cast this to the type of data that you expect
to be returned. This example returns the output of count(*) which is a decimal value so the System.Object is cast to type

System.Decimal.

For more information about the IfxCommand class, see IfxCommand class on page 30.

try
{
// Open a connection
IfxConnection conn =
new IfxConnection(
"Host=myhost;Service=1541;Server=myifxserver;Database=stores_demo;"
+ "User ID=mylogin;password=mypassword"
)3

conn.Open();

// Create an SQL command
IfxCommand cmd = new IfxCommand(
"SELECT COUNT(x) FROM customer",
conn
)s
Decimal ccount = (Decimal)cmd.ExecuteScalar();
Console.WriteLine("There are " + ccount + " customers");

// Close the connection
conn.Close();
Console.ReadLine(); // Wait for a Return

}
catch(IfxException e)

{
Console.WriteLine(e.ToString());
Console.ReadLine(); //Wait for a Return

Retrieve multiple rows

You can use an IfxDataReader object for simple access to data when you do not have to write and do not have to move

backward.

96

Chapter 1. Informix® .NET Provider Guide

The following example connects to the stores_demo database and uses an IfxDataReader object to retrieve all of the
first names from the customer table. For more information about the IfxDataReader class, see IfxDataReader class on
page 50.

try
{
// Open a connection
IfxConnection conn =
new IfxConnection(
"Host=myhost;Service=1541;Server=myifxserver;Database=stores_demo;"
+ "User ID=mylogin;password=mypassword"
)5

conn.Open();

// Create an SQL command

IfxCommand cmd = new IfxCommand(
"SELECT fname FROM customer",
conn);

IfxDataReader dr = cmd.ExecuteReader();

// Write the data to the console

while (dr.Read())

{

Console.WriteLine(dr["fname"].ToString());
}
Console.ReadLine(); // Wait for a Return
dr.Close();

// Close the connection
conn.Close();

}
catch(IfxException e)
{
Console.WriteLine(e.ToString());
Console.ReadLine(); // Wait for a Return
}

Execute SQL that does not return data and using a transaction

You can use the IfxCommand.ExecuteNonQuery method to execute SQL statements that do not return any data

Types of SQL statements that do not return data include:

« Inserts
» Updates
* Deletes

- Creating or altering database objects

The example in this topic shows how to use IfxCommand.ExecuteNonQuery to perform an insert and also how to execute an
IfxCommand inside a local transaction. For this example to work, the stores_demo database must have transaction logging.

To create a stores_demo database that has transaction logging run the dbaccessdemo command with the -log option.

For the details about the IfxCommand class, see IfxCommand class on page 30. For the details about the IfxTransaction

class see IfxTransaction class on page 93

97

HCL Informix 14.10 - .NET Provider Reference Guide

try

{

// Open a connection

IfxConnection conn = new IfxConnection(
"Host=myhost;Service=1541;"
+ "Server=myifxserver;Database=stores_demo;"
+ "User ID=mylogin;password=mypassword"

)3

conn.Open();

//Begin the transaction
IfxTransaction tx = conn.BeginTransaction();

//Create an IfxCommand that uses the connection and transaction
IfxCommand cmd = new IfxCommand(
"INSERT INTO state VALUES('XX','No State')",
conn,
tx)

//Execute the command
cmd . ExecuteNonQuery () ;

//Commit the transaction
tx.Commit();

// Close the connection
conn.Close();

}
catch(IfxException e)

{
Console.WriteLine(e.ToString());
Console.ReadLine(); //Wait for a Return

}

Retrieve data into a DataSet

You can use an IfxDataAdapter object to retrieve database information into a System.Data.DataSet object for further

processing.

The following example creates a System.Data.DataSet and populates it with the first and last names from the customer

table. Then, to show that it is populated, it outputs the System.Data.DataSet to the console in the form of XML.

For the details about the IfxDataAdapter object, see [fxDataAdapter class on page 47. For more information about data

sets see your .NET or ADO documentation.

try
{
// Open a connection
IfxConnection conn =
new IfxConnection(
"Host=myhost;Service=1541;Server=myifxserver;Database=stores_demo;"
+ "User ID=mylogin;password=mypassword"
)5

conn.Open();

IfxDataAdapter da = new IfxDataAdapter (

98

"SELECT fname, lname FROM customer",
conn);
System.Data.DataSet ds = new System.Data.DataSet("Names");

//Fill the DataSet
da.Fill(ds);

//The DataSet is ready to use.

//This example outputs the DataSet to the Console as XML
//just to show that it is populated.
ds.WriteXml(Console.Out);

Console.ReadLine(); //Wait for a Return

// Close the connection
conn.Close();

}
catch(IfxException e)
{
Console.WriteLine(e.ToString());
Console.ReadLine(); //Wait for a Return
}

Chapter 1. Informix® .NET Provider Guide

IfxCommandBuilder object to reconcile changes with the database

You can use the IfxCommandBuilder object to retrieve data with an SQL SELECT statement, make changes in the data set,

and then reconcile those changes with the HCL Informix® database.

The IfxCommandBuilder object facilitates easy reconciliation of changes made in your data set with the database.

For more information about the IfxCommandBuilder class, see IfxCommandBuilder class on page 35. For more

information about reconciling changes in the database, see Reconcile DataSet changes with the database on page 8.

The following example shows how to use the IfxCommandBuilder object.

// Add the IBM Informix namespace
using System.Data;
using IBM.Data.Informix;
// Create a connection
IfxConnection conn=new IfxConnection("Host=berry; Service=3500;
Server=testserver; User ID=informix; password=ifxtest;
Database=testdb");
// Create a DataAdapter object
IfxDataAdapter allDataAdapter = new IfxDataAdapter();
IfxCommand selCmd = new IfxCommand("SELECT * FROM students'", conn);
allDataAdapter.SelectCommand = selCmd;
//Set up the CommandBuilder object
IfxCommandBuilder cbuild = new IfxCommandBuilder (allDataAdapter);
DataSet allDataSet = new DataSet ();
try
{
// Open the connection
conn.Open();
allDataAdapter.Fill(allDataSet);
// Change the age of a student
DataRow chRow;
chRow = allDataSet.Tables["Table"].Rows[5];

99

HCL Informix 14.10 - .NET Provider Reference Guide

chRow["age"] = 24;
// Use IfxDataAdapter.Update() to reconcile changes with the database
allDataAdapter.Update(allDataSet);

}

catch (Exception ex)

{
// Use a messagebox to show any errors
MessageBox.Show (ex.Message);

}

// Close the connection
conn.Close();

Call a stored procedure

You can use an IfxCommand object to call a stored procedure. You must set the IfxCommand object CommandType property

to StoredProcedure.

The example in this topic shows how to run a stored procedure and read any results returned by the stored procedure using

an IfxDataReader object.

For more information about the IfxCommand class, see [fxCommand class on page 30. For more information about

calling stored procedures, see Call stored procedures on page 10.

// Add the IBM Informix namespace
using System.Data;
using IBM.Data.Informix;
// Create a connection
IfxConnection conn=new IfxConnection("Host=berry; Service=3500;
Server=testserver; User ID=informix; password=ifxtest;
Database=testdb");
conn.Open();
//Create a command object for the stored procedure
IfxCommand spCmd = new IfxCommand("testproc", conn);
// Set the CommandType property to Storedprocedure
spCmd.CommandType = CommandType.StoredProcedure
IfxDataReader testDataReader;
try
{
testDataReader = spCmd.ExecuteReader();
testDataReader.Close();

}

catch (Exception ex)

{
// Use a messagebox to show any errors
MessageBox.Show (ex.Message);

}

// Close the connection
conn.Close();

Distributed transactions

The example in this topic uses pseudo-code to demonstrate how to use distributed transactions.

using System.EnterpriseServices;
using IBM.Data.Informix;

100

[assembly: AssemblyKeyFile("test.snk")]

public static void Main()

{

/* The 'using' construct below results in a call to Dispose on
exiting the curly braces. It 1is important to dispose of COM+
objects as soon as possible, so that COM+ services such as
Object Pooling work properly x/

using (TwoPhaseTxn txn = new TwoPhaseTxn)

{
txn.TestAutoComplete_Exception();

using (TwoPhaseTxn txn = new TwoPhaseTxn)

{

txn.TestAutoComplete_TransactionVote();

//Transaction attributes specify the type of transaction requested

[Transaction(TransactionOption.RequiresNew)]

public class TwoPhaseTxn : ServicedComponent

{
[AutoComplete]
public void TestAutoComplete_Exception()
{
IfxConnection ifxConnl = new IfxConnection("db=dbl;server=srvl;
enlist=true;");
IfxConnection ifxConn2 = new IfxConnection("db=db2;server=srv2;
enlist=true;");
try
{
// db operation on 1ifxConnl
}
catch
{
// throw exception
}
try
{
// db operation on ifxConn2
J
catch
{
// throw exception
}
}
[AutoComplete]

public void TestAutoComplete_TransactionVote()

{

Chapter 1. Informix® .NET Provider Guide

101

HCL Informix 14.10 - .NET Provider Reference Guide

IfxConnection ifxConnl = new IfxConnection("db=dbl;server=srvi;
enlist=true;");

IfxConnection ifxConn2 = new IfxConnection("db=db2;server=srv2;
enlist=true;");

try

{
// db operation on 1ifxConnl

}

catch

{
// In case of any failure, flag abort
ContextUtil.MyTransactionVote = TransactionVote.Abort

}

try

{
// db operation on 1ifxConn2

}

catch

{
// In case of any failure, flag abort
ContextUtil.MyTransactionVote = TransactionVote.Abort

}

}
Write CLOBs to files

The example in this topic connects to the superstores_demo database and writes all of the CLOBs in the table catalog into
files in the directory C: \ t mp. The same technique is used to write BLOBs to files.

Note that the IfxClob instance must be opened before it is accessed.

For more information about the IfxClob class see IfxClob class on page 25.

try
{
// Open a connection
IfxConnection conn =
new IfxConnection(
"Host=myhost;" +
"Service=1576;" +
"Server=mydbserver;"+
"Database=superstores_demo;" +
"User ID=mylogin;password=mypassword"
)3

conn.Open();

// Create an SQL command

IfxCommand cmd = new IfxCommand (
"SELECT advert_descr, catalog_num FROM catalog",
conn
)3

IfxDataReader dr = cmd.ExecuteReader();

// Write any CLOBs to files in C:\tmp
while (dr.Read())

102

Chapter 1. Informix® .NET Provider Guide

if(!dr.IsDBNull(0)){
IfxClob ¢ = dr.GetIfxClob(0);
long num = dr.GetInt64(1);

c.Open(IBM.Data.Informix.IfxSmartLOBOpenMode.ReadOnly);
c.ToFile(
"C:\\tmp\\" + num.ToString() + ".txt",
System.IO.FileMode.Create,
IfxSmartLOBFileLocation.Client
)3

}
dr.Close();

// Close the connection
conn.Close();

}

catch(Exception e)

{
//This is assumed to be a console application
Console.WriteLine(e.ToString());

}

103

Index

Special Characters

? symbol, parameters 9
.NET base classes 18
.NET DbType types 16, 94
.NET Framework types 94
.NET interfaces 17

A

Abs method

of IfxDecimal structure 66
AcceptChangesDuringFill property

of IfxDataAdapter class 47
AcceptChangesDuringUpdate property

of IfxDataAdapter class 47
Add method

of IfxConnectionStringBuilder class 46

of IfxDateTime structure 60

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxParameterCollection class 81

of IfxTimeSpan structure 89
Add value 47
AddDays method

of IfxDateTime structure 60
AddMilliseconds method

of IfxDateTime structure 60
AddMinutes method

of IfxDateTime structure 60
AddMonths method

of IfxDateTime structure 60
AddSeconds method

of IfxDateTime structure 60
AddWithKey value 47
AddYears method

of IfxDateTime structure 60
ADO.NET 5
AnsiString type 16
Append member

of IfxSmartLOBOpenMode enumeration 85
AppendKeyValuePair method

of IfxConnectionStringBuilder class 46
ArgumentException exception 38
ASP.NET 3
Assembly, strong-named 4
Attributes, for connecting 7
Automatic INSERT, DELETE and UPDATE 8, 35

Begin member
of IfxSmartLOBWhence enumeration 86
BeginTransaction method
of IfxConnection class 44
Bigint member
of IfxType enumeration 94
BIGINT type 15
BigSerial member
of IfxType enumeration 94
BIGSERIAL type 15
Blob member
of IfxType enumeration 94
BLOB type 15
Boolean member
of IfxType enumeration 94
BOOLEAN type 15
Both value 31
Buffer member
of IfxSmartLOBOpenMode enumeration 85
Byte member

of IfxType enumeration 94
BYTE type 15

c

Calling a stored procedure

example of 100
Cancel method

of IfxCommand class 32
casting, example of 96
cdotnet.sql script 5
Ceiling method

of IfxDecimal structure 66
ChangeDatabase method

of IfxConnection class 44
Char member

of IfxType enumeration 94
CHAR type 15
CHAR(1) type 15
Char1 member

of IfxType enumeration 94
Classes, unsupported 17,18
Clear method

of IfxConnectionStringBuilder class 46

of IfxParameterCollection class 81
Client Locale connection string attribute 38
Client member

of IfxSmartLOBFileLocation

enumeration 84
Client SDK 3
ClientLocale property

of IfxConnection class 37
Clob member

of IfxType enumeration 94
CLOB type 15
Clone method

of IfxDecimal structure 66
Close method

of IfxBlob class 23

of IfxClob class 28

of IfxConnection class 44

of IfxDataReader class 51
Close property

of IfxConnection

use of 7

CloseConnection value 32
Closing connections 7
Codes, errors 71
COLLECTION type 15
CommandText property 10

of IfxCommand 31
CommandTimeout property 8

of IfxCommand 31
CommandType property 10

of IfxCommand 31

of IfxCommand class

example of use 100

Commit method

of IfxTransaction class 93
Compare method

of IfxDateTime structure 60

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89
CompareTo method

of IfxDateTime structure 60

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89

104

ConflictOption property

of IfxCommandBuilder class 35
Connecting to databases 7
Connection Lifetime connection string
attribute 38
Connection pool 9, 38, 38
Connection property 8

of IfxCommand 31

of IfxTransaction class 93
Connection string 7

attributes of 38

defining visually 7

example of 45
ConnectionString property

attributes of 38

of IfxConnection

use of 7

of IfxConnection class 37

of IfxConnectionStringBuilder class 45
ConnectionString property of IfxConnection

defining visually 7
ConnectionTimeout property

of IfxConnection class 37
Constructors

of IfxBlob class 21

of IfxClob class 26

of IfxCommand class 31

of IfxCommandBuilder class 35

of IfxConnection class 37

of IfxDataAdapter class 47

of IfxDateTime structure 58

of IfxDecimal structure 66

of IfxMonthSpan structures 73

of IfxParameter class 78

of IfxTimeSpan structure 87
Contains method

of IfxParameterCollection class 81
ContainsKey method

of IfxConnectionStringBuilder class 46
CopyTo method

of IfxParameterCollection class 81
Count property

of IfxConnectionStringBuilder class 45

of IfxErrorCollection class 71

of IfxParameterCollection class 80
CREATE DATABASE... statements 38
CreateCommand method

of IfxConnection class 44

of IfxProviderFactory class 82
CreateCommandBuilder method

of IfxProviderFactory class 82
CreateConnection method

of IfxProviderFactory class 82
CreateConnectionStringBuilder method

of IfxProviderFactory class 82
CreateDataAdapter method

of IfxProviderFactory class 82
CreateDataSourceEnumerator method

of IfxProviderFactory class 82
CreateParameter method

of IfxCommand class 32

of IfxProviderFactory class 82
CreatePermission method

of IfxProviderFactory class 82
Creating

IfxCommand class 30

IfxCommandBuilder class 35

IfxConnection class 37

IfxConnectionStringBuilder class 45
IfxDataAdapter class 47
IfxDataSourceEnumerator class 53
IfxDateTime structure 58
IfxDecimal structure 65
IfxMonthSpan structure 72
IfxParameter class 78
IfxParameterCollection class 80
IfxTimeSpan structure 86

Current member
of IfxSmartLOBWhence enumeration 86

Data source 5
Data transfer

error checking 14
DataAdapter property

of IfxCommandBuilder class 35
Database connection string attribute 38
Database Locale connection string
attribute 38
Database property

of IfxConnection class 37
DATABASE... statements 38
Databaselocale property

of IfxConnection class 37
Databases

connecting to 7
DataColumn interface 5
DataReader object 5
DataRelation interface 5
DataSet object 5,15

example of use 98
DataTable interface 5
Date member

of IfxType enumeration 94
Date property

of IfxDateTime structure 59
DATE type 15
DATETIME data type 57
DateTime member

of IfxType enumeration 94
DATETIME type 15
Day member

of IfxTimeUnit enumeration 92
Day property

of IfxDateTime structure 59
Days property

of IfxTimeSpan structure 87
DB connection string attribute 38
DB_LOCALE connection string attribute 38
DbProviderFactory class 82
DbType property

of IfxParameter class 79
Decimal member

of IfxType enumeration 94
DECIMAL type 15
Default value 32
DELETE statements 35
DELETE, automatic 8
DeleteCommand property 8

of IfxDataAdapter class 47
DELIMIDENT connections string attribute 38
DELIMIDENT environment variable 7

default setting of 7
Delimiters 8, 15, 35
Demonstration programs

Informix

.NET Provider

95
Depth property

of IfxDataReader class 50
DeriveParameters method 10
of IfxCommandBuilder class 36
Direction property
of IfxParameter class 79
DirtyRead member
of IfxSmartLOBOpenMode enumeration 85
Dispose method 8
Disposed event
of IfxConnection class 44
Distributed transactions 38, 100
example of use 100
Divide method
of IfxMonthSpan structure 74
of IfxTimeSpan structure 89
DontKeepAccessTime member
of IfxSmartLOBCreateTimeFlags
enumeration 83
dotnetdemo folder 95
DOUBLE type 15
Double-quote characters 15
Duration method
of IfxMonthSpan structure 74
of IfxTimeSpan structure 89
Dynamic SQL 9

E property
of IfxDecimal structure 66
Efficient SQL statements 8
End member
of IfxSmartLOBWhence enumeration 86
end time unit 57, 72
EndTimeUnit property
of IfxDateTime structure 59
of IfxMonthSpan structure 73
of IfxTimeSpan structure 87
Enlist attribute 10
Enlist connection string attribute 38
Environment variables
IFX_LOB_XFERSIZE 14
Equals method
of IfxDecimal structure 66
of IfxMonthSpan structure 74
of IfxTimeSpan structure 89
EquivalentTo method
of IfxConnectionStringBuilder class 46
Error handling
checking during data transfer 14
Error messages 14, 71
Error value 47, 47
Errors property
of IfxException class 72
EstimatedSize property
of IfxBlob 21
of IfxClob 26
Events
of IfxConnection class 44
Example code
IfxCommand class 34
Examples
calling a stored procedure 100
casting a data type to a new type 96
Informix
.NET Provider
95,95
Inserting rows 97
of a connection string 45
Reconciling changes in a DataSet with the
database 99
retrieving a single value 96

105

G

Retrieving data into a DataSet 98

retrieving multiple rows 96

use of ExecuteNonQuery 97

use of ExecuteScalar method 96

use of IfxCommand.CommandType

property 100

use of IfxCommandBuilder 99

use of IfxDataAdapter 98

use of IfxDataReader class 96

use of IfxParameter class 79

use of IfxTransaction class 94

use of local transaction 97

use of System.DataSet 98

using distributed transactions 100
Exceptions 14
Exclusive connection string attribute 38
Exclusive member

of IfxSmartLOBLockMode enumeration 85
ExecuteNonQuery method

example of use 97

of IfxCommand class 32
ExecuteNonQuery() method 97
ExecuteReader method

of IfxCommand class 32
ExecuteScalar method

of IfxCommand class 32
ExecuteScalar method, example of use 96
ExtentSize property

of IfxBlob 21

of IfxClob 26

FBS connection string attribute 38
Fetch Buffer Size connection string
attribute 38
FetchBufferSize property

of IfxConnection class 37
FieldCount property

of IfxDataReader class 50
Fill method

of IfxDataAdapter class 49
FilLoadOption property

of IfxDataAdapter class 47
FillSchema method

of IfxDataAdapter class 49
FirstReturnedRecord value 31
Flags property

of IfxBlob 21

of IfxClob 26
Float member

of IfxType enumeration 94
FLOAT type 15
Foreign keys 8
Forward-only cursor 5, 38, 50, 96
Fraction member

of IfxTimeUnit enumeration 92
Fraction1 member

of IfxTimeUnit enumeration 92
Fraction2 member

of IfxTimeUnit enumeration 92
Fraction3 member

of IfxTimeUnit enumeration 92
Fraction4 member

of IfxTimeUnit enumeration 92
Fraction5 member

of IfxTimeUnit enumeration 92
FromFile method

of IfxBlob class 23

of IfxClob class 28
FullTrust permission 9

GAC 4
gacutil utility 4
GetActiveConnectionsCount property

of IfxConnection class 37
GetBoolean method

of IfxDataReader class 51
GetByte method

of IfxDataReader class 51
GetBytes method

of IfxDataReader class 51
GetChar method

of IfxDataReader class 51
GetChars method

of IfxDataReader class 51
GetData method

of IfxDataReader class 51
GetDataSources method

of IfxDataSourceEnumerator class 54

GetDataTypeName method

of IfxDataReader class 51
GetDateTime method

of IfxDataReader class 51
GetDecimal method

of IfxDataReader class 51
GetDeleteCommand method 8

of IfxCommandBuilder class 36
GetDouble method

of IfxDataReader class 51
GetEnumerator method

of IfxErrorCollection class 71

of IfxParameterCollection class 81
GetFieldType method

of IfxDataReader class 51
GetFillParameters method

of IfxDataAdapter class 49
GetFloat method

of IfxDataReader class 51
GetGuid method

of IfxDataReader class 51
GetHashCode method

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89
GetldleConnectionsCount property

of IfxConnection class 37
GetlfxBlob method

of IfxConnection class 44
GetlfxClob method

of IfxConnection class 44
GetInsertCommand method 8

of IfxCommandBuilder class 36
GetInt16 method

of IfxDataReader class 51
GetInt32 method

of IfxDataReader class 51
GetInt64 method

of IfxDataReader class 51
GetLocator method

of IfxBlob class 23

of IfxClob class 28
GetName method

of IfxDataReader class 51
GetOrdinal method

of IfxDataReader class 51
GetSchemaTable method

of IfxDataReader class 51
GetString method

of IfxDataReader class 51
GetString() method 15
GetTimeSpan method

of IfxDataReader class 51

GetUpdateCommand method 8
GetValue method

of IfxDataReader class 51
GetValues method

of IfxDataReader class 51
Global Assembly Cache (GAC) 4
GreaterThan method

of IfxDateTime structure 60, 60

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89
GreaterThanOrEqual method

of IfxDateTime structure 60

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89
GUID type 16

HCL
Informix
.NET Provider
installing 4
overview 5
HCL
Informix
Client SDK
3
HCL
Informix
ODBC Driver
3
HCL
Informix
OLE DB Provider
3
HelpLink property
of IfxException class 72
Host connection string attribute 38
Hostnames
using in sqlhosts 4
Hour member
of IfxTimeUnit enumeration 92
Hour property
of IfxDateTime structure 59
Hours property
of IfxTimeSpan structure 87

IBM.Data.

Informix

82

IBM.Data.

Informix

namespace

6

IDSSECURITYLABEL type 15

IFX_LOB_XFERSIZE
environment variable 14

IfxBlob class 20, 23
Close method 23
constructors 21
creating 20
EstimatedSize property 21
ExtentSize property 21
Flags property 21
FromFile method 23
GetLocator method 23
IfxBlob class

SBSpace property 21
Size property 21

internal cursor 20

106

IsNull property 21
IsOpen property 21
LastAccessTime property 21
LastChangeTime property 21
LastModificationTime property 21
Lock method 23
MaxBytes property 21
Null property 21
Open method 23
Position property 21
properties 21
Read method 23
ReferenceCount property 21
Release method 23
SBSpace property
of IfxBlob 21
Seek method 23
Size property
of IfxBlob 21
ToFile method 23
Truncate method 23
Unlock method 23
Write method 23
IfxBlob class methods
Methods
of IfxBlob class 23
IfxClob 25, 28
constructors 26
IfxClob class
Close method 28
creating 26
EstimatedSize property 26
ExtentSize property 26
Flags property 26
FromFile method 28
GetLocator method 28
IfxClob class
SBSpace property 26
Size property 26
internal cursor of 25
IsNull property 26
IsOpen property 26
LastAccessTime property 26
LastChangeTime property 26
LastModification property 26
Lock method 28
MaxBytes property 26
methods of 28
Null property 26
Open method 28
Position property 26
Read method 28
ReferenceCount property 26
SBSpace property
of IfxClob 26
Seek method 28
Size property
of IfxClob 26
Truncate method 28
Unlock method 28
Write method 28
IfxClob class properties
Properties
of IfxClob class 26
IfxCommand class 30
Cancel method 32
CommandText property 31
CommandTimeout property 31
CommandType property 31
Connection property 31
constructors 31

CreateParameter method 32
creating 30

example code 34
ExecuteNonQuery method 32
ExecuteReader method 32
ExecuteScalar method 32
methods 32

Parameters property 31
Prepare method 32
properties 31
RowFetchCount property 31
Transaction property 31
UpdatedRowSource property 31

IfxCommand.ExecuteNonQuery() method 97

IfxCommandBuilder class 5, 8, 35
ConflictOption property 35
constructors 35
creating 35
DataAdapter property 35
DeriveParameters method 36
example of use 36,99
GetDeleteCommand method 36
GetlnsertCommand method 36
methods of 36
properties of 35
QuotePrefix property 35
QuoteSuffix property 35
RefreshSchema method 36

IfxConnection class 37
BeginTransaction method 44
ChangeDatabase method 44
ClientLocale property 37
Close method 44
connecting to a database 7
ConnectionString property 37
ConnectionTimeout property 37
CreateCommand method 44
creating 37
creating visually 7
Database property 37
DatabaselLocale property 37
Disposed event 44
events of 44
FetchBufferSize property 37

GetActiveConnectionsCount property 37

GetldleConnectionsCount property 37
GetlfxBlob method 44
GetlfxClob method 44
InfoMessage event 44
methods 44
Open method 7, 44
PacketSize property 37
properties 37
ServerVersion property 37
State property 37
StateChange event 44
UserDefinedTypeFormat property 37
IfxConnection class constructors 37
IfxConnection object
Close property
use of 7
ConnectionString property
defining visually 7
use of 7
IfxConnectionStringBuilder class 45
Add method 46
AppendKeyValuePair method 46
Clear method 46
ConnectionString property 45
ContainsKey method 46
Count property 45

creating 45
EquivalentTo method 46
IsFixedSize property 45
IsReadOnly property 45
Keys property 45
methods 46

properties 45

Remove method 46
ToString method 46
TryGetValue method 46
Values property 45

IfxDataAdapter

examples of use 49

IfxDataAdapter class 8, 15, 35, 47

AcceptChangesDuringFill property 47
AcceptChangesDuringUpdate property 47
constructors 47

creating 47

DeleteCommand property 47
example of use 98

Fill method 49

FillLoadOption property 47
FillSchema method 49
GetFillParameters method 49
InsertCommand property 47
methods 49

MissingMappingAction property 47
MissingSchemaAction property 47
properties 47
ReturnProviderSpecifictypes property 47
SelectCommand property 47
TableMappings property 47

Update method 49

UpdateBatchSize property 47
UpdateCommand property 47

IfxDataReader class 50, 96

Close method 51

Depth property 50

example of use 53, 96
FieldCount property 50
GetBoolean method 51
GetByte method 51

GetBytes method 51
GetChar method 51
GetChars method 51
IsClosed property 50
methods 51

properties 50
RecordsAffected property 50
VisibleFieldCount property 50

IfxDataReader.GetString() method 15
IfxDataSourceEnumerator class 53

creating 53
GetDataSources method 54
Instance property 53
methods 54

properties 53

IfxDateTime structure 57

Add method 60
AddDays method 60
AddMilliseconds method 60
AddMinutes method 60
AddMonths method 60
AddSeconds method 60
AddYears method 60
Compare method 60
CompareTo method 60
constructors 58
creating 58

Date property 59

Day property 59

107

default values 57
EndTimeUnit property 59
GreaterThan method 60, 60
GreaterThanOrEqual method 60
Hour property 59
LessThan method 60
limits of 57

MaxValue property 59
methods 60

Millisecond property 59
Minute property 59
MinValue property 59
Month property 59
NotEquals method 60
Now property 59

Null property 59

Parse method 60
properties 59

Second property 59
StartTimeUnit property 59
Ticks property 59

time units in 57

Today property 59
ToString method 60

Year property 59

IfxDecimal structure 65

Abs method 66
Add method 66
Ceiling method 66
Clone method 66
Compare method 66
CompareTo method 66
constructors 66
creating 65
E property 66
Equals method 66
GetHashCode method 66
GreaterThan method 66
GreaterThanOrEqual method 66
IsFloating property 66
IsNull property 66
IsPositive property 66
LessThan method 66
LessThanOrEqual method 66
Max method 66
MaxPrecision property 66
MaxValue property 66
methods 66
Min method 66
MinusOne property 66
MinValue property 66
Modulo method 66
Multiply method 66
Negate method 66
NotEquals method 66
Null property 66
One property 66
Parse method 66
Pi property 66
properties 66
Remainder method 66
Round method 66
Subtract method 66
ToString method 66
Truncate method 66
example of use 66
Zero property 66

IFXDOTNETTRACE environment variable 14
IFXDOTNETTRACEFILE environment
variable 14

IfxError class 71

Message property 71
NativeError property 71
properties 71
SQLState property 71
IfxErrorCollection class 71
Count property 71
GetEnumerator method 71
methods 71
IfxErrorCollection class properties 71
IfxException class 72
Errors property 72
HelpLink property 72
InnerException property 72
Message property 72
properties 72
StackTrace property 72
TargetSite property 72
IfxMonthSpan structure 72
Add method 74
Compare method 74
CompareTo method 74
constructors 73
creating 72
Divide method 74
Duration method 74
EndTimeUnit property 73
Equals method 74
GetHashCode method 74
GreaterThan method 74
GreaterThanOrEqual method 74
IsNull property 73
LessThan method 74
LessThanOrEqual method 74
limits of 72
MaxValue property 73
MinValue property 73
Months property 73
Multiply method 74
Negate method 74
NotEquals method 74
Null property 73
Parse method 74
properties 73
StartTimeUnit property 73
ToString method 74
TotalMonths property 73
Years property 73
Zero property 73
IfxMonthSpan structure methods 74
IfxParameter class 77
constructors 78
creating 78
DbType property 79
Direction property 79
example of use 79
IfxType property 79
IsNullable property 79
ParameterName property 79
properties 79
SourceColumn property 79
SourceVersion property 79
Value property 79
IfxParameter constructors 16
IfxParameterCollection class 80
Add method 81
Clear method 81
Contains method 81
CopyTo method 81
Count property 80
creating 80
GetEnumerator method 81

IndexOf method 81

Insert method 81

Item property 80

methods 81

properties 80

Remove method 81

RemoveAt method 81
IfxProviderFactory class 82

CreateCommand method 82

CreateCommandBuilder method 82

CreateConnection method 82

CreateConnectionStringBuilder method 82

CreateDataAdapter method 82

CreateDataSourceEnumerator method 82

CreateParameter method 82
CreatePermission method 82
methods 82

IfxSmartLOBCreateTimeFlags enumeration 83
DontKeepAccessTime member 83

KeepAccessTime member 83
Log member 83
NoLog member 83

IfxSmartLOBFileLocation enumeration 84

Client member 84
Server member 84

IfxSmartLOBLockMode enumeration 85

Exclusive member 85
Shared member 85

IfxSmartLOBOpenMode enumeration 85

Append member 85
Buffer member 85
DirtyRead member 85
LockAll member 85
LockRange member 85
NoBuffer member 85
ReadOnly member 85
ReadWrite member 85
WriteOnly member 85

IfxSmartLOBWhence enumeration 86

Begin member 86
Current member 86
End member 86
IfxTimeSpan structure 86
Add method 89
Compare method 89
CompareTo method 89
constructors 87
creating 86
Days property 87
Divide method 89
Duration method 89
EndTimeUnit property 87
Equals method 89
GetHashCode method 89
GreaterThan method 89
GreaterThanOrEqual method 89
Hours property 87
IsNull property 87
LessThan method 89
LessThanOrEqual method 89
MaxScale property 87
MaxValue property 87
methods 89
Milliseconds property 87
Minutes property 87
MinValue property 87
Negate method 89
NotEquals method 89
Null property 87
Parse method 89
properties 87

108

Seconds property 87
StartTimeUnit property 87
Ticks property 87
ToString method 89

Zero property 87

IfxTimeUnit enumeration 92

Day member 92
Fraction member 92
Fraction1 member 92
Fraction2 member 92
Fraction3 member 92
Fraction4 member 92
Fraction5 member 92
Hour member 92
Minute member 92
Month member 92
Second member 92
Year member 92
IfxTransaction class 93
Commit method 93
Connection property 93
example of use 94
IsolationLevel property 93
methods 93
properties 93
Rollback method 93
IfxType argument 16
IfxType enumeration 94
Bigint member 94
BigSerial member 94
Blob member 94
Boolean member 94
Byte member 94
Char member 94
Char1 member 94
Clob member 94
Date member 94
DateTime member 94
Decimal member 94
Float member 94
Int8 member 94
Integer member 94
IntervalDayFraction member 94
IntervalYearMonth member 94
List member 94
LVarChar member 94
Money member 94
MultiSet member 94
NChar member 94
NVarChar member 94
Row member 94
Serial member 94
Serial8 member 94
Set member 94
SmallFloat member 94
Smallint member 94
SmartLOBLocator member 94
Text member 94
VarChar member 94
IfxType property
of IfxParameter class 79
Ignore value 47, 47
Importing a namespace 6
IN parameters
used during execution of SPL 10
IndexOf method

of IfxParameterCollection class 81

InfoMessage event

of IfxConnection class 44
Informix
.NET Provider

namespace of 6
Informix
Client SDK
3
Informix
data types
79
Informix
ODBC Driver
3
Informix
OLE DB Provider
3
Informix
types
94
InnerException property
of IfxException class 72
Input parameters 79
Insert method
of IfxParameterCollection class 81
INSERT statements 35
INSERT, automatic 8
InsertCommand property 8
of IfxDataAdapter class 47
Inserting rows, example of 97
Installing
HCL
Informix
.NET Provider
4
Instance property
of IfxDataSourceEnumerator class 53
Int32 type 15
Int64 type 15
Int64]] type 15
Int8 member
of IfxType enumeration 94
INT8 type 15
Integer member
of IfxType enumeration 94
INTEGER type 15
Internet protocol version 6 (IPv6) 4
INTERVAL type 15
IntervalDayFraction member
of IfxType enumeration 94
IntervalYearMonth member
of IfxType enumeration 94
IP address 38
IP addresses
IPv6 format in sqlhosts 4
IPv6. 4
IsClosed property
of IfxDataReader class 50
IsDBNull method
of IfxDataReader class 51
IsFixedSize property
of IfxConnectionStringBuilder class 45
IsFloating property
of IfxDecimal structure 66
IsNull property
of IfxBlob 21
of IfxClob 26
of IfxDecimal structure 66
of IfxMonthSpan structure 73
of IfxTimeSpan structure 87
IsNullable property
of IfxParameter class 79
IsolationLevel property
of IfxTransaction class 93
IsOpen property

J

K

M

of IfxBlob 21

of IfxClob 26
IsPositive property

of IfxDecimal structure 66
IsReadOnly property

of IfxConnectionStringBuilder class 45
Item property

of IfxParameterCollection class 80

JOIN operators 8

KeepAccessTime member
of IfxSmartLOBCreateTimeFlags
enumeration 83

KeylInfo value 32

Keys property
of IfxConnectionStringBuilder class 45

Language locale 38
LastAccessTime property

of IfxBlob 21

of IfxClob 26
LastChangeTime property

of IfxBlob 21

of IfxClob 26
LastModificationTime property

of IfxBlob 21

of IfxClob 26
LessThan method

of IfxDateTime structure 60

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89
LessThanOrEqual method

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89
List member

of IfxType enumeration 94
LIST type 15
Local transactions

example of use 97
Locales 38, 38
Lock method

of IfxBlob class 23

of IfxClob class 28
LockAll member

of IfxSmartLOBOpenMode enumeration 85
LockRange member

of IfxSmartLOBOpenMode enumeration 85
Log member

of IfxSmartLOBCreateTimeFlags

enumeration 83
LvarChar member

of IfxType enumeration 94
LVARCHAR type 15

Max method

of IfxDecimal structure 66
Max Pool Size attribute 9
Max Pool Size connection string attribute 38
MAX ROWS parameter 5
MaxBytes property

of IfxBlob 21

of IfxClob 26
MaxPrecision property

of IfxDecimal structure 66
MaxScale property

109

of IfxTimeSpan structure 87
MaxValue property

of IfxDateTime structure 59

of IfxDecimal structure 66

of IfxMonthSpan structure 73

of IfxTimeSpan structure 87
Message property

of IfxError class 71

of IfxException class 72
Messages 71
Methods

GetData method 51

GetDataTypeName method 51

GetDateTime method 51

GetDecimal method 51

GetDouble method 51

GetFieldType method 51

GetFloat method 51

GetGuid method 51

GetInt16 method 51

GetInt32 method 51

GetInt64 method 51

GetName method 51

GetOrdinal method 51

GetSchemaTable method 51

GetString method 51

GetTimeSpan method 51

GetValue method 51

GetValues method 51

IsDBNull method 51

NextResult method 51

of IfxClob class 28

of IfxCommand class 32

of IfxCommandBuilder class 36

of IfxConnection class 44

of IfxConnectionStringBuilder class 46

of IfxDataAdapter class 49

of IfxDataReader class 51

of IfxDataSourceEnumerator class 54

of IfxDateTime structure 60

of IfxDecimal structure 66

of IfxErrorCollection class 71

of IfxMonthSpan structure 74

of IfxParameterCollection class 81

of IfxProviderFactory class 82

of IfxTimeSpan structure 89

of IfxTransaction class 93

Read method 51
Methods, unsupported 17, 18
Microsoft .NET Framework SDK 3
Microsoft ODBC .NET 3
Microsoft OLE DB .NET 3
Microsoft public .NET base classes 18
Microsoft public .NET interfaces 17
Millisecond property

of IfxDateTime structure 59
Milliseconds property

of IfxTimeSpan structure 87
Min method

of IfxDecimal structure 66
Min Pool Size attribute 9
Min Pool Size connection string attribute 38
MinusOne property

of IfxDecimal structure 66
Minute member

of IfxTimeUnit enumeration 92
Minute property

of IfxDateTime structure 59
Minutes property

of IfxTimeSpan structure 87
MinValue property

of IfxDateTime structure 59

of IfxDecimal structure 66

of IfxMonthSpan structure 73

of IfxTimeSpan structure 87
MissingMappingAction property 49

of IfxDataAdapter class 47
MissingSchemaAction property

of IfxDataAdapter class 47
Modulo method

of IfxDecimal structure 66
Money member

of IfxType enumeration 94
MONEY type 15
Month member

of IfxTimeUnit enumeration 92
Month property

of IfxDateTime structure 59
Months property

of IfxMonthSpan structure 73
Multiply method

of IfxDecimal structure 66

of IfxMonthSpan structure 74
MultiSet member

of IfxType enumeration 94
MULTISET type 15

Namespace

importing 6

of

Informix

.NET Provider

6
namespaces, System.Transaction 5
NativeError property

of IfxError class 71
NChar member

of IfxType enumeration 94
NCHAR type 15
Negate method

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89
Nested string literals 15
NextResult method

of IfxDataReader class 51
Nobuffer member

of IfxSmartLOBOpenMode enumeration 85
NoLog member

of IfxSmartLOBCreateTimeFlags

enumeration 83
None value 31
NotEquals method

of IfxDateTime structure 60

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89
Now property

of IfxDateTime structure 59
Null property

of IfxBlob 21

of IfxClob 26

of IfxDateTime structure 59

of IfxDecimal structure 66

of IfxMonthSpan structure 73

of IfxTimeSpan structure 87
Null values 79
NVarChar member

of IfxType enumeration 94

ODBC .NET 3

ODBC connection string 38
ODBC Driver 3
OLE DB .NET 3
OLE DB Provider 3
One property

of IfxDecimal structure 66
Open method

of IfxBlob class 23

of IfxClob class 28

of IfxConnection class 44

Optimize OpenFetchClose connection string

attribute 38
OPTOFC connection string attribute 38
OUT parameters

used during execution of SPL 10
Output parameters 8, 79
OutputParameters value 31

Packet Size connection string attribute 38
PacketSize property

of IfxConnection class 37
Parameter types 16
ParameterCollection.Add method 9
ParameterName property

of IfxParameter class 79
Parameters

used during execution of SPL 10
Parameters property

of IfxCommand 31
Parse method

of IfxDateTime structure 60

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89
Passthrough value 47
Password connection string attribute 38
Performance 50
Persist Security Info attribute 38, 38
Persist Security Info connection string
attribute 38
Pi property

of IfxDecimal structure 66
Placeholder symbols 9
Platforms 3
Pooling attribute 9, 10
Pooling connection string attribute 38
Port numbers 38
Position property

of IfxBlob 21

of IfxClob 26
Prepare method

of IfxCommand class 32
Primary key 8, 8
PRO connection string attribute 38
Properties

IfxErrorCollection class 71

of IfxBlob class 21

of IfxCommand class 31

of IfxCommandBuilder class 35

of IfxConnection class 37

of IfxConnectionStringBuilder class 45

of IfxDataAdapter class 47

of IfxDataReader class 50

of IfxDataSourceEnumerator class 53

of IfxDateTime structure 59

of IfxDecimal structure 66

of IfxError class 71

of IfxException class 72

of IfxMonthSpan structure 73

of IfxParameter class 79

110

of IfxParameterCollection class 80
of IfxTimeSpan structure 87
of IfxTransaction class 93
Protocol connection string attribute 38
Provider independence 5
Public base classes 18
Public interfaces 17
Public interfaces, objects 5
PWD connection string attribute 38

QuotePrefix property 8

of IfxCommandBuilder class 35
QuoteSuffix property 8

of IfxCommandBuilder class 35

range of time types 57, 72
Read method
of IfxBlob class 23
of IfxClob class 28
of IfxDataReader class 51
Read-only data 5, 50, 96
ReadOnly member
of IfxSmartLOBOpenMode enumeration 85
ReadWrite member
of IfxSmartLOBOpenMode enumeration 85
REAL type 15
Reconciling changed data 5, 8, 35, 47,99
RecordsAffected property
of IfxDataReader class 50
ReferenceCount property
of IfxBlob 21
of IfxClob 26
RefreshSchema method 8
of IfxCommandBuilder class 36
Registry 7
Relationships 5
Release method
of IfxBlob class 23
Remainder method
of IfxDecimal structure 66
Remove method
of IfxConnectionStringBuilder class 46
of IfxParameterCollection class 81
RemoveAt method
of IfxParameterCollection class 81
Retrieving a single value, example of 96
Retrieving data 96
Retrieving data into a DataSet
example of 98
Retrieving multiple rows
example of 96
ReturnProviderSpecifictypes property
of IfxDataAdapter class 47
Rollback method
of IfxTransaction class 93
Round method
of IfxDecimal structure 66
Row member
of IfxType enumeration 94
RowFetchCount property
of IfxCommand 31
RowUpdating events 35

Sample programs
Informix
.NET Provider
95
SchemaOnly value 32
Second member

of IfxTimeUnit enumeration 92
Second property

of IfxDateTime structure 59
Seconds property

of IfxTimeSpan structure 87
Seek method

of IfxBlob class 23

of IfxClob class 28
SELECT statements 5
SelectCommand property 8, 35

of IfxDataAdapter class 47
SequentialAccess value 32
Serial member

of IfxType enumeration 94
SERIAL type 15
Serial8 member

of IfxType enumeration 94
Server connection string attribute 38
Server member

of IfxSmartLOBFileLocation

enumeration 84
ServerVersion property

of IfxConnection class 37
Service connection string attribute 38
Set member

of IfxType enumeration 94
SET type 15
Setnet utility 7
Shared member

of IfxSmartLOBLockMode enumeration 85
Single-quote characters 15
Single-table updates 35
SingleResult value 32
SingleRow value 32
SmallFloat member

of IfxType enumeration 94
SMALLFLOAT type 15
Smallint member

of IfxType enumeration 94
SmartLOBLocator member

of IfxType enumeration 94
SourceColumn property

of IfxParameter class 79
SourceVersion property

of IfxParameter class 79
Special characters 8
sqglhosts

IPv6 IP addresses in 4

using hostnames in 4
SQLState property

of IfxError class 71
StackTrace property

of IfxException class 72
start time unit 57, 72
StartTimeUnit property

of IfxDateTime structure 59

of IfxMonthSpan structure 73

of IfxTimeSpan structure 87
State property

of IfxConnection class 37
StateChange event

of IfxConnection class 44
Stored procedures 10, 36, 100
StoredProcedure value 31
String literals 15
String type 15
Strong-named assembly 4
Subtract method

of IfxDecimal structure 66
sysmaster database 5
System.Data.Common namespace 13

System.DataSet class
Reconciling changes with the database
example of 99
System.EnterpriseServices namespace 5
System.Transaction namespace 5
SystemException exception 47

T

TableDirect value 31
TableMappings property 49

of IfxDataAdapter class 47
TargetSite property

of IfxException class 72
Text member

of IfxType enumeration 94
TEXT type 15
Text value 31
Thread-safety of provider 6
Ticks property

of IfxDateTime structure 59

of IfxTimeSpan structure 87
Time units

in IfxDateTime 57
Today property

of IfxDateTime structure 59
ToFile method

of IfxBlob class 23
ToString method

of IfxConnectionStringBuilder class 46

of IfxDateTime structure 60

of IfxDecimal structure 66

of IfxMonthSpan structure 74

of IfxTimeSpan structure 89
TotalMonths property

of IfxMonthSpan structure 73
Tracing 14
Transaction property 8, 93

of IfxCommand 31
Transactions 93

distributed 10, 38, 100

local

example of use 97

Truncate method

of IfxBlob class 23

of IfxClob class 28

of IfxDecimal structure 66
TryGetValue method

of IfxConnectionStringBuilder class 46

u

UID connection string attribute 38
Unlock method

of IfxBlob class 23

of IfxClob class 28
Unsupported methods 17, 18
Update method

of IfxDataAdapter class 49
UPDATE statements 35
UPDATE, automatic 8
UpdateBatchSize property

of IfxDataAdapter class 47
UpdateCommand property 8

of IfxDataAdapter class 47
UpdatedRowSource property

of IfxCommand 31
Upgrading .NET applications 4
User ID connection string attribute 38
UserDefinedTypeFormat

attributes of 41
UserDefinedTypeFormat property

attributes of 41

of IfxConnection class 37

111

w

X

Y

z

Value property

of IfxParameter class 79
Values property

of IfxConnectionStringBuilder class 45
VarChar member

of IfxType enumeration 94
VARCHAR type 15
VisibleFieldCount property

of IfxDataReader class 50
Visual BASIC .NET 3
Visual C# .NET 3
Visual J# .NET 3

Warning messages 71
Write method
of IfxBlob class 23
of IfxClob class 28
WriteOnly member
of IfxSmartLOBOpenMode enumeration 85

XCL connection string attribute 38

Year member

of IfxTimeUnit enumeration 92
Year property

of IfxDateTime structure 59
Years property

of IfxMonthSpan structure 73

Zero property
of IfxDecimal structure 66
of IfxMonthSpan structure 73
of IfxTimeSpan structure 87

	HCL Informix 14.10 - .NET Provider Reference Guide
	Contents
	Chapter 1. Informix® .NET Provider Guide
	Overview of HCL Informix® .NET Provider
	What is the Informix® .NET Provider?
	Supported programming environments
	Support for IPv6
	Installing the HCL Informix® .NET Provider
	Update the PATH environment variable for Microsoft™ Windows™ 64-bit Systems
	Prepare the database server

	Overview of the .NET provider class library
	Thread-safety of provider types
	Namespace requirements
	Connecting to a database
	Reconcile DataSet changes with the database
	The connection pool
	Set FullTrust permission

	The ? parameter markers
	Call stored procedures
	IfxProviderFactory objects to write database-independent code
	Distributed transactions
	The OUT and INOUT Parameters
	Generic coding with the ADO.NET common base classes
	Error messages
	Tracing
	Error checking during data transfer

	Mapping data types
	Retrieve data
	Set data types for a parameter
	Display format of FLOAT, DECIMAL, or MONEY data types

	Type reference
	Supported public .NET interfaces
	Supported Public .NET base classes
	Prototype syntax
	IfxBlob class
	The IfxBlob internal cursor
	Create an IfxBlob
	IfxBlob constructors

	IfxBlob public properties
	IfxBlob public methods
	IfxBlob.Close
	IfxBlob.FromFile
	IfxBlob.GetLocator
	IfxBlob.Lock
	IfxBlob.Open
	IfxBlob.Read
	IfxBlob.Release
	IfxBlob.Seek
	IfxBlob.ToFile
	IfxBlob.Truncate
	IfxBlob.Unlock
	IfxBlob.Write

	IfxClob class
	The IfxClob internal cursor
	Create an IfxClob
	IfxClob constructors

	IfxClob public properties
	IfxClob public methods
	IfxClob.Close
	IfxClob.FromFile
	IfxClob.GetLocator
	IfxClob.Lock
	IfxClob.Open
	IfxClob.Read
	IfxClob.Release
	IfxClob.Seek
	IfxClob.ToFile
	IfxClob.Truncate
	IfxClob.Unlock
	IfxClob.Write

	IfxCommand class
	Create an IfxCommand
	IfxCommand constructors

	IfxCommand public properties
	IfxCommand public methods
	IfxCommand.Cancel
	IfxCommand.CreateParameter
	IfxCommand.ExecuteNonQuery
	IfxCommand.ExecuteReader
	IfxCommand.ExecuteScalar
	IfxCommand.Prepare

	IfxCommand examples

	IfxCommandBuilder class
	Create an IfxCommandBuilder
	IfxCommandBuilder constructors

	IfxCommandBuilder public properties
	IfxCommandBuilder public methods
	IfxCommandBuilder.DeriveParameters
	IfxCommandBuilder.GetDeleteCommand
	IfxCommandBuilder.GetInsertCommand
	IfxCommandBuilder.GetUpdateCommand
	IfxCommandBuilder.RefreshSchema

	IfxCommandBuilder examples

	IfxConnection class
	Create an IfxConnection
	IfxConnection constructors

	IfxConnection public properties
	ConnectionString property
	UserDefinedTypeFormat property

	IfxConnection public methods
	IfxConnection.BeginTransaction
	IfxConnection.ChangeDatabase
	IfxConnection.Close
	IfxConnection.CreateCommand
	IfxConnection.GetIfxBlob
	GetIfxClob
	IfxConnection.EnlistTransaction
	IfxConnection.Open

	IfxConnection public events
	IfxConnection example

	IfxConnectionStringBuilder class
	Create an IfxConnectionStringBuilder
	IfxConnectionStringBuilder public properties
	IfxConnectionStringBuilder public methods

	IfxDataAdapter class
	Create an IfxDataAdapter
	IfxDataAdapter constructors

	IfxDataAdapter public properties
	IfxDataAdapter public methods
	IfxDataAdapter examples

	IfxDataReader class
	IfxDataReader public properties
	IfxDataReader public methods
	IfxDataReader example

	IfxDataSourceEnumerator class
	Create an IfxDataSourceEnumerator
	IfxDataSourceEnumerator public properties
	IfxDataSourceEnumerator public methods
	IfxDataSourceEnumerator.GetDataSources

	IfxDateTime structure
	Create an IfxDateTime
	IfxDateTime constructors

	IfxDateTime public properties
	IfxDateTime public methods
	IfxDateTime.Add
	IfxDateTime.AddDays
	IfxDateTime.AddMilliseconds
	IfxDateTime.AddMinutes
	IfxDateTime.AddMonths
	IfxDateTime.AddSeconds
	IfxDateTime.AddYears
	IfxDateTime.Compare
	IfxDateTime.CompareTo
	IfxDateTime.DaysInMonth
	IfxDateTime.Equals
	IfxDateTime.GetHashCode
	IfxDateTime.GreaterThan
	IfxDateTime.GreaterThanOrEqual
	IfxDateTime.LessThan
	IfxDateTime.LessThanOrEqual
	IfxDateTime.NotEquals
	IfxDateTime.Parse
	IfxDateTime.ToString

	IfxDecimal structure
	Create an IfxDecimal
	IfxDecimal constructors

	IfxDecimal properties
	IfxDecimal methods
	IfxDecimal.Abs
	IfxDecimal.Add
	IfxDecimal.Ceiling
	IfxDecimal.Clone
	IfxDecimal.Compare
	IfxDecimal.CompareTo
	IfxDecimal.Divide
	IfxDecimal.Equals
	IfxDecimal.Floor
	IfxDecimal.GetHashCode
	IfxDecimal.GreaterThan
	IfxDecimal.GreaterThanOrEqual
	IfxDecimal.LessThan
	IfxDecimal.LessThanOrEqual
	IfxDecimal.Max
	IfxDecimal.Min
	IfxDecimal.Modulo
	IfxDecimal.Multiply
	IfxDecimal.Negate
	IfxDecimal.NotEquals
	IfxDecimal.Parse
	IfxDecimal.Remainder
	IfxDecimal.Round
	IfxDecimal.Subtract
	IfxDecimal.ToString
	IfxDecimal.Truncate

	IfxError class
	IfxError public properties

	IfxErrorCollection class
	IfxErrorCollection public properties
	IfxErrorCollection public methods

	IfxException class
	IfxException public properties

	IfxMonthSpan structure
	Create an IfxMonthSpan
	IfxMonthSpan constructors

	IfxMonthSpan public properties
	IfxMonthSpan public methods
	IfxMonthSpan.Add
	IfxMonthSpan.Compare
	IfxMonthSpan.CompareTo
	IfxMonthSpan.Divide
	IfxMonthSpan.Duration
	IfxMonthSpan.Equals
	IfxMonthSpan.GetHashCode
	IfxMonthSpan.GreaterThan
	IfxMonthSpan.GreaterThanOrEqual
	IfxMonthSpan.LessThan
	IfxMonthSpan.LessThanOrEqual
	IfxMonthSpan.Multiply
	IfxMonthSpan.Negate
	IfxMonthSpan.NotEquals
	IfxMonthSpan.Parse
	IfxMonthSpan.Subtract
	IfxMonthSpan.ToString

	IfxParameter class
	Create an IfxParameter class
	IfxParameter constructors

	IfxParameter public properties
	IfxParameter examples

	IfxParameterCollection class
	Create an IfxParameterCollection
	IfxParameterCollection public properties
	IfxParameterCollection public methods
	IfxParameterCollection.Add
	IfxParameterCollection.Clear
	IfxParameterCollection.Contains
	IfxParameterCollection.CopyTo
	IfxParameterCollection.GetEnumerator
	IfxParameterCollection.IndexOf
	IfxParameterCollection.Insert
	IfxParameterCollection.Remove
	IfxParameterCollection.RemoveAt

	IfxProviderFactory class
	IfxProviderFactory public methods
	IfxProviderFactory.CreateConnectionStringBuilder
	IfxProviderFactory.CreateConnection
	IfxProviderFactory.CreateCommand
	IfxProviderFactory.CreateParameter
	IfxProviderFactory.CreateCommandBuilder
	IfxProviderFactory.CreateDataAdapter
	IfxProviderFactory.CreateDataSourceEnumerator
	IfxProviderFactory.CreatePermission (PermissionState)

	IfxSmartLOBCreateTimeFlags enumeration
	IfxSmartLOBFileLocation enumeration
	IfxSmartLOBLocator class
	IfxSmartLOBLockMode enumeration
	IfxSmartLOBOpenMode enumeration
	IfxSmartLOBWhence enumeration
	IfxTimeSpan structure
	Create an IfxTimeSpan
	IfxTimeSpan constructors

	IfxTimeSpan public properties
	IfxTimeSpan public methods
	IfxTimeSpan.Add
	IfxTimeSpan.Compare
	IfxTimeSpan.CompareTo
	IfxTimeSpan.Divide
	IfxTimeSpan.Duration
	IfxTimeSpan.Equals
	IfxTimeSpan.GetHashCode
	IfxTimeSpan.GreaterThan
	IfxTimeSpan.GreaterThanOrEqual
	IfxTimeSpan.LessThan
	IfxTimeSpan.LessThanOrEqual
	IfxTimeSpan.Negate
	IfxTimeSpan.NotEquals
	IfxTimeSpan.Parse
	IfxTimeSpan.ToString

	IfxTimeUnit enumeration
	IfxTransaction class
	IfxTransaction public properties
	IfxTransaction public methods
	IfxTransaction example

	IfxType enumeration

	Sample programs
	Demonstration programs
	Informix® .NET Provider examples
	Retrieve a single value
	Retrieve multiple rows
	Execute SQL that does not return data and using a transaction
	Retrieve data into a DataSet
	IfxCommandBuilder object to reconcile changes with the database
	Call a stored procedure
	Distributed transactions
	Write CLOBs to files

	Index

