
HCL Informix 14.10 - ESQL/C Programmer’s Guide

ii

Contents
Chapter 1. ESQL/C Guide.. 3

What is Informix® ESQL/C?..3
Informix® ESQL/C programming............................ 3
Compile programs..46
Informix® ESQL/C data types............................... 79
Character and string data types............................93
Numeric data types..107
Time data types... 124
Simple large objects.. 135
Smart large objects..178
Complex data types... 203
Opaque data types...254

Database server communication................................276
Exception handling...276
Working with the database server...................... 318
Informix® libraries... 365

Dynamic SQL..399
Using dynamic SQL..399
Determine SQL statements................................. 438
A system-descriptor area.................................... 477
An sqlda structure..519

Appendixes...547
The ESQL/C example programs..........................547
The ESQL/C function library................................ 547
Examples for smart-large-object functions........ 823

Index...836

Chapter 1. ESQL/C Guide
The topics explain how to use IBM® Informix® ESQL/C, the Informix® implementation of Embedded Structured Query

Language (SQL) for C (ESQL/C), to create client applications with database-management capabilities.

These topics serve as complete guide to the features of Informix® ESQL/C that enable you to interact with the database

server, access databases, manipulate the data in your program, and check for errors. However, certain operating systems do

not support every documented ESQL/C feature. Check the HCL® Informix® Client Software Development Kit (Client SDK)

machine notes for your operating system to determine exactly which features do not operate in your environment.

These topics progress from general topics to more advanced programming techniques and examples.

These topics are written primarily for C programmers who want to embed SQL statements in their programs to access HCL

Informix® databases.

These topics assume that you have the following background:

• A working knowledge of your computer, your operating system, and the utilities that your operating system provides

• Some experience working with relational or object-relational databases, or exposure to relational database concepts

• C language programming

The following users might also be interested in some of these topics:

• Database server administrators

• Performance engineers

For information about software compatibility, see the Informix® Client SDK release notes.

These topics are taken from HCL® Informix® Enterprise Replication Guide.

What is Informix® ESQL/C?

Informix® ESQL/C programming

The last section of these topics, A sample Informix ESQL/C program on page 43, presents the demo1 sample program,

which is annotated. The demo1 program illustrates the basic concepts of Informix® ESQL/C programming that these topics

introduce.

What is Informix® ESQL/C?
IBM® Informix® ESQL/C is an SQL application programming interface (API) that enables you to embed Structured Query

Language (SQL) statements directly into a C program.

The Informix® ESQL/C preprocessor, esql, converts each SQL statement and all code specific to HCL® Informix® to C-

language source code and starts the C compiler to compile it.

3

HCL Informix 14.10 - ESQL/C Programmer’s Guide

4

ESQL/C components

IBM® Informix® ESQL/C consists of the following software components:

• The Informix® ESQL/C libraries of C functions, which provide access to the database server.

• The Informix® ESQL/C header files, which provide definitions for the data structures, constants, and macros useful to

the Informix® ESQL/C program.

• The esql command, which processes the Informix® ESQL/C source code to create a C source file that it passes to

the C compiler.

• The finderr utility on the UNIX™ system and the Windows™ Informix Error Messages utility, which enable you to obtain

information about error messages specific to Informix®.

• The Informix® GLS locale and code-set-conversion files, which provide locale-specific information.

For more information about these files, see the HCL® Informix® GLS User's Guide.

ESQL/C files for Windows™

For Windows™ environments, the IBM® Informix® ESQL/C product contains the following additional executable files:

• The Setnet32 utility is a Windows-based utility that enables you to set configuration information.

For more information, see the Informix® Client Products Installation Guide.

• The ILOGIN utility is a demonstration program that opens a dialog box with fields for the connection parameters, for

testing a connection to the database server (uses the stores7 database).

For more information, see the Informix® Client Products Installation Guide.

• The ESQLMF.EXE multibyte filter changes escape characters in multibyte strings into hexadecimal literals.

These Informix® ESQL/C executable files are located in the %INFORMIXDIR%\bin, %INFORMIXDIR%\lib, and

%INFORMIXDIR%\demo directories. The %INFORMIXDIR% variable represents the value of the INFORMIXDIR environment

variable.

ESQL/C library functions
The IBM® Informix® ESQL/C library contains a set of C functions that you can use in your application.

These functions fall into the following categories:

• Data type alignment library functions provide support for computer-independent size and alignment information for

different data types and assist in working with null database values.

• Character and string library functions provide character-based manipulations such as comparison and copying.

• DECIMAL library functions support access to DECIMAL values through the decimal structure.

• Formatting functions enable you to specify display formats for different data types.

• DATE library functions support access to DATE values.

Chapter 1. ESQL/C Guide

• DATETIME and INTERVAL library functions support access to values of these data types through the datetime and

interval structures.

• Error message functions provide support for obtaining and formatting error-message text that is specific to

Informix® .

• Database server control functions enable your application to implement such features as canceling queries and

terminating connections.

• INT8 library functions enable you to access INT8 values through the int8 structure.

• Smart-large-object library functions provide a file-like interface to the BLOB and CLOB data types.

Creating an ESQL/C program

About this task

To create an ESQL/C program:

1. Embed Informix® ESQL/C statements in a C-language source program to perform the following tasks:

◦ Define host variables to store data for transfer between the Informix® ESQL/C program and the database

server.

◦ Access the database server through SQL statements.

◦ Provide directives for the Informix® ESQL/C preprocessor and the C compiler.

2. Preprocess the Informix® ESQL/C source file with the esql command to create a C-language source file and start the

C compiler.

3. As necessary, correct errors reported by the preprocessor and the compiler and repeat step 2 on page 5.

4. Using the esql command, link the compiled object code into one or more executable files.

Results

The Informix® ESQL/C source file can contain the following types of statements:

Preprocessor directives

Informix® ESQL/C preprocessor directives to create simple macro definitions, include Informix® ESQL/C files,

and perform conditional Informix® ESQL/C compilation.

C preprocessor directives to create macro definitions, include system and C source files, and perform

conditional C compilation.

Language statements

Informix® ESQL/C host variable definitions to store data for transfer between the Informix® ESQL/C program

and the database server.

Embedded SQL statements to communicate with the database server.

C language statements to provide program logic.

For information about C preprocessor directives and C language statements, see a C programming text.

5

HCL Informix 14.10 - ESQL/C Programmer’s Guide

6

Your Informix® ESQL/C source code file name can have either of the following forms:

• esqlc_source.ec

• esqlc_source.ecp

The particular suffix that your Informix® ESQL/C source file has determines the default order in which that source file gets

compiled by the esql command. The .ec suffix is the default suffix. For more information about the .ecp suffix and the non-

default order of compilation, see Run the C preprocessor before the ESQL/C preprocessor on page 63.

Embed SQL statements
The IBM® Informix® ESQL/C program can use SQL statements to communicate with the database server. The program can

use both static and dynamic SQL statements.

A static SQL statement is one in which all the components are known when you compile the program. A dynamic SQL

statement is one in which you do not know all the components at compile time; the program receives all or part of the

statement at run time. For a description of dynamic SQL, see Using dynamic SQL on page 399.

You can embed SQL statements in a C function with one of two formats:

• The EXEC SQL keywords:

EXEC SQL SQL_statement;

Using EXEC SQL keywords is the ANSI-compliant method to embed an SQL statement.

• The dollar sign ($) notation:

$SQL_statement;

In either of these formats, replace SQL_statement with the complete text of a valid statement. Informix® ESQL/C statements

can include host variables in most places where you can use a constant. For any exceptions, see the syntax of individual

statements in the HCL® Informix® Guide to SQL: Syntax.

Case sensitivity in embedded SQL statements

The following table describes how the IBM® Informix® ESQL/C preprocessor treats uppercase and lowercase letters.

Table 1. Case sensitivity in ESQL/C files

ESQL/C identifier
Case

sensitive
Example

Host variable Yes Informix® ESQL/C treats the variables fname and Fname as distinct variables:

EXEC SQL BEGIN DECLARE SECTION;
 char fname[16], lname[16];
 char Fname[16];
EXEC SQL END DECLARE SECTION;

Chapter 1. ESQL/C Guide

Table 1. Case sensitivity in ESQL/C files (continued)

ESQL/C identifier
Case

sensitive
Example

This sample does not generate a warning from the preprocessor.

Variable types Yes Both Informix® ESQL/C and C treat the names of data types as case sensitive. The

CHAR type in the following example is considered distinct from the char data type

and it generates an error:

EXEC SQL BEGIN DECLARE SECTION;
 char fname[16], lname[16];
 CHAR Fname[16];
EXEC SQL END DECLARE SECTION;

The CHAR type does not generate an error, however, if you provide a typedef

statement for it. In the following example, the CHAR type does not generate an error:

typedef char CHAR;

EXEC SQL BEGIN DECLARE SECTION;
 char fname[16], lname[16];
 CHAR Fname[16];
EXEC SQL END DECLARE SECTION;

SQL keyword No Both CONNECT statements are valid ways of establishing a connection to the

stores7 demonstration database:

EXEC SQL CONNECT TO 'stores7';
or
EXEC SQL connect to 'stores7';

In examples given in this publication, SQL keywords are displayed as lowercase

characters.

Statement identifiers

Cursor names

No The following example shows the creation of statement IDs and cursor names:

EXEC SQL prepare st from
 'select * from tab1';
/* duplicate */
EXEC SQL prepare ST from
 'insert into tab2
 values (1,2)';
EXEC SQL declare curname cursor
 for st;
/* duplicate */
EXEC SQL declare CURNAME cursor
 for ST;

This code produces errors because the statement IDs st and ST are duplicates,

as are the cursor names curname and CURNAME. For more information about

statement IDs and cursor names, see the HCL® Informix® Guide to SQL: Syntax.

7

HCL Informix 14.10 - ESQL/C Programmer’s Guide

8

Quotation marks and escape characters
An escape character indicates to the IBM® Informix® ESQL/C preprocessor that it should print the character as a literal

character instead of interpreting it. You can use the escape character with an interpreted character to make the compiler

escape, or ignore, the interpreted meaning.

In ANSI SQL, the backslash character (\) is the escape character. To search for data that begins with the string \abc, the

WHERE clause must use an escape character as follows:

... where col1 = '\\abc';

However, ANSI standards specify that using the backslash character (\) to escape single (' ') or double (" ") quotation marks

is invalid. For example, the following attempt to find a quotation mark does not conform to ANSI standards:

... where col1 = '\'';

In non-embedded tools such as DB-Access, you can escape a quotation mark with either of the following methods:

• You can use the same quotation mark as an escape character, as follows:

... where col1 = '''';

• You can use an alternative quotation mark. For example, to look for a double quotation mark, you can enclose this

double quotation mark with quotation marks, as follows:

... where col1 = ' "';

The following figure shows a SELECT statement with a WHERE clause that contains a double quotation mark enclosed with

quotation marks.

Figure 1. A SELECT statement with an invalid WHERE clause

EXEC SQL select col1 from tab1 where col1 = ' "';

For the WHERE clause in Table 2: Escaped query string as it is processed on page 9, the Informix® ESQL/C

preprocessor does not process a double quotation mark; it passes it on to the C compiler. When the C compiler receives

the string ' " ' (double quotation mark enclosed with quotation marks), it interprets the first quotation mark as the start of a

string and the double quotation mark as the end of a string. The compiler cannot match the quotation mark that remains and

therefore generates an error.

To cause the C compiler to interpret the double quotation mark as a character, precede the double quotation mark with the

C escape character, the backslash (\). The following example illustrates the correct syntax for the query in Table 2: Escaped

query string as it is processed on page 9:

EXEC SQL select col1 from tab1 where col1 = '\"';

Because both C and ANSI SQL use the backslash character as the escape character, be careful when you search for the

literal backslash in embedded queries. The following query shows the correct syntax to search for the string "\" (where the

double quotation marks are part of the string):

EXEC SQL select col1 from tab1 where col1 = '\"\\\\\"';

Chapter 1. ESQL/C Guide

This string requires five backslashes to obtain the correct interpretation. Three of the backslashes are escape characters,

one for each double quotation mark and one for the backslash. The following table shows the string after it passes through

each of the processing steps.

Table 2. Escaped query string as it is processed

Processor After processing

ESQL/C preprocessor '\"\\\\\"'

C compiler '"\\"'

ANSI-compliant database server '"\"'

Informix® ESQL/C supports strings in either quotation marks ('string') or double quotation marks ("string"). However, the C

language supports strings only in double quotation marks. Therefore, the Informix® ESQL/C preprocessor converts every

statement in the Informix® ESQL/C source file into a double-quoted string.

Newline characters in quoted strings

IBM® Informix® ESQL/C does not allow a newline character (0x0A) in a quoted string. The database server does allow a

newline character in a quoted string, however, if you specify that you want to allow it. Consequently, you can include the

newline character in a quoted string that is part of a dynamically prepared SQL statement because the database server,

rather than Informix® ESQL/C, processes the prepared statement.

You can specify that you want the database server to allow the newline character in a quoted string either on a per session

basis or on an all session basis. A session is the duration of the client connection to the database server.

To allow or disallow a newline character in a quoted string for a particular session, you must execute the user-defined routine

ifx_allow_newline(boolean). The following example illustrates how to start the ifx_allow_newline() user-defined routine to

allow newlines in quoted strings:

EXEC SQL execute procedure ifx_allow_newline('t');

To disallow newline in quoted strings, change the argument to f as in the following example:

EXEC SQL execute procedure ifx_allow_newline('f');

To allow or disallow a newline character in a quoted string for all sessions, set the ALLOW_NEWLINE parameter in the

onconfig file. A value of 1 allows the newline character. A value of 0 disallows the newline character. For more information

about the ALLOW_NEWLINE parameter, see your HCL® Informix® Administrator's Guide.

Add comments to ESQL/C programs

To add comments to the IBM® Informix® ESQL/C program, you can use either of the following formats:

9

HCL Informix 14.10 - ESQL/C Programmer’s Guide

10

• You can use a double dash (--) comment indicator on any Informix® ESQL/C statement. The statement must begin

with either EXEC SQL or $ and terminate with a semicolon. The comment continues to the end of the line.

For example, the comment on the first of the following lines notes that the Informix® ESQL/C statement opens the

stores7 demonstration database:

EXEC SQL database stores7; -- stores7 database is open now!
printf("\nDatabase opened\n"); /* This is not an ESQL/C */
 /* line so it needs a */
 /* regular C notation */
 /* for a comment */

• You can use a standard C comment on the Informix® ESQL/C line, as the following example shows:

EXEC SQL begin work; /* You can also use a C comment here */

Host variables
Host variables are IBM® Informix® ESQL/C or C variables that you use in embedded SQL statements to transfer data

between database columns and the Informix® ESQL/C program.

When you use a host variable in an SQL statement, you must precede its name with a symbol to distinguish it as a host

variable. You can use either of the following symbols:

• A colon (:)

For example, to specify the host variable that is called hostvar as a connection name, use the following syntax:

EXEC SQL connect to :hostvar;

Using the colon (:) as a host-variable prefix conforms to ANSI SQL standards.

• A dollar sign ($)

For example, to specify the host variable that is called hostvar as a connection name, use the following syntax:

EXEC SQL connect to $hostvar;

When you list more than one host variable within an SQL statement, separate the host variables with commas (,). For

example, the esql command interprets the following line as two host variables, host1 and host2:

EXEC SQL select fname, lname into :host1, :host2 from customer;

If you omit the comma, esql interprets the second variable as an indicator variable for the first host variable. The esql

command interprets the following line as one host variable, host1, and one indicator variable, host2, for the host1 host

variable:

EXEC SQL select fname, lname into :host1 :host2 from customer;

Outside an SQL statement, treat a host variable as you would a regular C variable.

Declaring and using host variables

About this task

Chapter 1. ESQL/C Guide

In IBM® Informix® ESQL/C applications, the SQL statements can refer to the contents of host variables. A host variable is an

ESQL/C program variable that you use to transfer information between the Informix® ESQL/C program and the database.

You can use host variables in Informix® ESQL/C expressions in the same way that you use literal values except that they

cannot be used:

• In prepared statements

• In stored procedures

• In check constraints

• In views

• In triggers

• As part of a string concatenation operation

To use a host variable in an SQL statement:

1. Declare the host variable in the C program.

2. Assign a value to the host variable.

3. Specify the host variable in an embedded SQL statement.

Declare a host variable
You must define the data storage that a host variable needs before you can use that variable in IBM® Informix® ESQL/C

programs. To assign an identifier to the variable and associate it with a data type, you declare the variable.

You declare host variables within the Informix® ESQL/C program as C variables, with the same basic syntax as C variables.

To identify the variable as a host variable, you must declare it in either of the following ways:

• Put the declarations in an ESQL declare section:

EXEC SQL BEGIN DECLARE SECTION;
 -- put host variable declarations here

EXEC SQL END DECLARE SECTION;

Make sure that you terminate the statements EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE

SECTION with semicolons.

Using the EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION keywords conforms to ANSI

standards.

• Preface each declaration with a dollar sign ($).

Within the declaration itself, you must specify the following information:

• The name of the host variable

• The data type of the host variable

• The initial value of the host variable (optional)

• The scope of the host variable (which the placement of the declaration within the program determines)

11

HCL Informix 14.10 - ESQL/C Programmer’s Guide

12

Host variable names
The name of the host variable must conform to the naming conventions of the C language. In addition, you must follow any

limitations that your C compiler imposes.

In general, a C variable must begin with a letter or an underscore (_) and can include letters and digits and underscores.

Important: Many variable names used in the implementation of the IBM® Informix® ESQL/C product begin with an

underscore. To avoid conflicting with internal Informix® ESQL/C variable names, avoid the use of an underscore for

the first character of a variable name.

The C variable names are case-sensitive, so the variables hostvar and HostVar are distinct.

You can use non-ASCII (non-English) characters in Informix® ESQL/C host-variable names if your client locale supports

these non-ASCII characters. For more information about how the client locale affects host-variable names, see the HCL®

Informix® GLS User's Guide.

Tip: Good programming practice requires that you create a naming convention for host-variable names.

Host-variable data types
Because a host variable is a C variable, you must assign a C data type to the variable when you declare it. Likewise, when you

use a host variable in an SQL statement, you also associate it with an SQL data type.

For more information about the relationship between SQL data types and C data types, see Informix ESQL/C data types on

page 79. In addition, the HCL® Informix® Guide to SQL: Reference contains information about the SQL data types.

You can also declare host variables as many of the more complex C data types, such as pointers, structures, typedef

expressions, and function parameters. For more information, see Host variables in data structures on page 18.

Initial host-variable values
You can declare host variables with normal C initializer expressions by using IBM® Informix® ESQL/C.

The following example shows valid C initializers:

EXEC SQL BEGIN DECLARE SECTION;
 int varname = 12;
 long cust_nos[8] = {0,0,0,0,0,0,0,9999};
 char descr[100] = "Steel eyelets; Nylon cording.";
EXEC SQL END DECLARE SECTION;

The Informix® ESQL/C preprocessor does not check initializer expressions for valid C syntax; it copies them to the C source

file. The C compiler diagnoses any errors.

Chapter 1. ESQL/C Guide

Scope of host variables
The scope of reference, or the scope, of a host variable is that portion of the program in which the host variable can be

accessed.

The placement of the IBM® Informix® ESQL/C declaration statement determines the scope of the variable as follows:

• If the declaration statement is inside a program block, the variable is local to that program block.

Only statements within that program block can access the variable.

• If the declaration statement is outside a program block, the variable is modular.

All program blocks that occur after the declaration can access the variable.

Host variables that you declare within a block of code are local to that block. You define a block of code with a pair of curly

braces, { }.

For example, the host variable blk_int in the following figure is valid only in the block of code between the curly braces,

whereas p_int is valid both inside and outside the block.

Figure 2. Declaring host variables inside and outside a code block

EXEC SQL BEGIN DECLARE SECTION;
 int p_int;
EXEC SQL END DECLARE SECTION;
⋮
EXEC SQL select customer_num into :p_int from customer
 where lname = "Miller";
⋮
{
 EXEC SQL BEGIN DECLARE SECTION;
 int blk_int;
 EXEC SQL END DECLARE SECTION;

 blk_int = p_int;

⋮
 EXEC SQL select customer_num into :blk_int from customer
 where lname = "Miller";
⋮
}

You can nest blocks up to 16 levels. The global level counts as level one.

The following C rules govern the scope of Informix® ESQL/C host variables as well:

• A host variable is an automatic variable unless you explicitly define it as an external or static variable or unless it is

defined outside of any function.

• A host variable that a function declares is local to that function and masks a definition with the same name outside

the function.

• You cannot define a host variable more than once in the same block of code.

13

HCL Informix 14.10 - ESQL/C Programmer’s Guide

14

Sample host-variable declarations

The following figure shows an example of how to use the EXEC SQL syntax to declare host variables.

Figure 3. Declaring host variables with the EXEC SQL syntax

EXEC SQL BEGIN DECLARE SECTION;
 char *hostvar; /* pointer to a character */
 int hostint; /* integer */
 double hostdbl; /* double */
 char hostarr[80]; /* character array */
 struct {
 int svar1;
 int svar2;

⋮

 } hoststruct; /* structure */
EXEC SQL END DECLARE SECTION;

The following figure shows an example of how to use the dollar sign ($) notation to declare host variables.

Figure 4. Declaring host variables with the dollar sign ($) notation

 $char *hostvar;
 $int hostint;
 $double hostdbl;
 $char hostarr[80];

 $struct {
 int svar1;
 int svar2;

⋮

 } hoststruct;

Host variable information

You can use host variables to contain the following types of information:

SQL identifiers

SQL identifiers include names of parts of the database such as tables, columns, indexes, and views.

Data

Data is information that the database server fetches from or stores in the database. This information can

include null values. A null value indicates that the value of the column or variable is unknown.

Host variables can be displayed within an SQL statement as syntax allows. (For information about the syntax of SQL

statements, see the HCL® Informix® Guide to SQL: Syntax.) However, you must precede the host-variable name with a

symbol to distinguish it from regular C variables.

Chapter 1. ESQL/C Guide

SQL identifiers
An SQL identifier is the name of a database object.

The following objects are examples of SQL identifiers:

• Parts of the database schema such as tables, columns, views, indexes, synonyms, and stored procedure names

• Dynamic IBM® Informix® ESQL/C structures such as cursors and statement IDs

As syntax allows, you can use a host variable within an embedded SQL statement to hold the name of an SQL identifier.

For information about the sizes and naming conventions for SQL identifiers, see the Identifier segment in the HCL®

Informix® Guide to SQL: Syntax.

Long identifiers
HCL Informix® allows identifiers of up to 128 characters in length, and user names up to 32 characters in length. Other

versions of Informix® database servers support an identifier length of 18 characters and a user name length of 8 characters.

The database server uses the following two criteria to determine whether the client program can receive long identifiers:

• The internal version number of the client program

• The setting of the IFX_LONGID environment variable

If the IFX_LONGID environment variable is set to 0 (zero) the database server treats the client as if it cannot handle long

identifiers. If IFX_LONGID is set to 1 (one) and the client version is recent enough, then the database server treats the client

as if it is able to receive long identifiers. If IFX_LONGID is not set it is treated as if it is set to 1 (one).

Important: If you set IFX_LONGID in the environment of the client, it takes effect only for that client. If you set the

IFX_LONGID environment variable in the environment of the database server, it takes effect for all client programs.

For more information about the IFX_LONGID environment variable, see the HCL® Informix® Guide to SQL: Reference.

Client programs that meet the following conditions can use long identifiers and long user names without recompiling:

• It was compiled with a version of ESQL/C that was released later than version 9.20

• It uses shared libraries (that is, program was compiled without the -static option)

If the database server truncates a long identifier or long user name, it sets the SQLSTATE variable to ‘01004' and sets the

sqlwarn1 flag to ‘W' in the SQL Communications Area (sqlca).

Delimited identifiers
If an identifier name does not conform to naming conventions, you must use a delimited identifier. A delimited identifier is an

SQL identifier that is enclosed in double quotation marks, " ".

15

HCL Informix 14.10 - ESQL/C Programmer’s Guide

16

When you use double quotation marks to delimit identifiers, you conform to ANSI standards; single quotation marks (' ')

delimit strings.

Use delimited identifiers when your program must specify some identifier name that would otherwise be syntactically invalid.

Examples of possible invalid identifiers include:

• An identifier that is the same as an SQL reserved word.

For a list of SQL reserved words, see the description of identifiers in the HCL® Informix® Guide to SQL: Syntax.

• An identifier that does not contain alphabetic characters.

To use delimited identifiers, you must compile and run your IBM® Informix® ESQL/C program with the DELIMIDENT

environment variable set. You can set DELIMIDENT at either of the following phases:

• At compile time, the Informix® ESQL/C preprocessor allows quoted strings in areas of the SQL syntax where

identifiers are valid.

• At run time, the database server accepts quoted strings in dynamic SQL statements where identifiers are valid.

Database utilities such as dbexport and DB-Access also accept delimited identifiers.

Important: When you use the DELIMIDENT environment variable, you can no longer use double quotation marks to

delimit strings. If you want to indicate a quoted string, enclose the text with single quotation marks (' ').

Delimited identifiers are case sensitive. All database object names that you place within quotation marks maintain their case.

Keep in mind that Informix® ESQL/C restricts identifier names to a maximum of 128 characters.

The following restrictions apply to delimited identifiers:

• You cannot use a delimited identifier for a database name.

• You cannot use a delimited identifier for a storage identifier, for instance, the name of a dbspace.

The DELIMIDENT environment variable applies only to database identifiers.

Example of a delimited identifier

The following figure shows a delimited identifier that specifies characters that are not alphabetic in both a cursor name and a

statement ID.

Chapter 1. ESQL/C Guide

Figure 5. Using delimited identifiers for a cursor name

EXEC SQL BEGIN DECLARE SECTION;
 char curname1[10];
 char stmtname[10];
EXEC SQL END DECLARE SECTION;

stcopy("%#!", curname1);
stcopy("(_=", stmtname);
EXEC SQL prepare :stmtname from
 'select customer_num from customer';
EXEC SQL declare :curname1 cursor for $stmtname;
EXEC SQL open :curname;

In the previous figure, you can also list the cursor name or statement ID directly in the SQL statement. For example, the

following PREPARE statement is also valid (with DELIMIDENT set):

EXEC SQL prepare "%#!" from
 'select customer_num from customer';

If you set DELIMIDENT, the SELECT string in the preceding PREPARE statement must be enclosed in quotation marks for the

preprocessor to treat it as a string. If you enclose the statement in double quotation marks, the preprocessor treats it as an

identifier.

To declare a cursor name that contains a double quotation mark, you must use escape characters in the delimited identifier

string. For example, to use the string "abc" as a cursor name, you must escape the initial quotation mark in the cursor name:

EXEC SQL BEGIN DECLARE SECTION;
 char curname2[10];
 char stmtname[10];
EXEC SQL END DECLARE SECTION;

stcopy("\"abc\"", curname2);
EXEC SQL declare :curname2 cursor for :stmtname;

In the preceding example, the cursor name requires several escape characters:

• The backslash (\) is the C escape character. You need it to escape the double quotation mark.

Without the escape character, the C compiler would interpret the double quotation mark as the end of the string.

• The cursor name must contain two double quotation marks.

The first double quotation mark escapes the double quotation mark and the second double quotation mark is the

literal double quotation mark. The ANSI standard states that you cannot use a backslash to escape quotation marks.

Instead, you must escape the quotation mark in the cursor name with another quotation mark.

The following table shows the string that contains the cursor name as it is processed.

17

HCL Informix 14.10 - ESQL/C Programmer’s Guide

18

Table 3. Escaped cursor name string as it is processed

Processor After processing

ESQL/C preprocessor \"\"abc

C Compiler ""abc

ANSI-compliant database server "abc

Null values in host variables
A null value represents unknown or not applicable values. This value is distinct from all legal values in any given data type.

The representation of null values depends on both the computer and the data type. Often, the representation does not

correspond to a legal value for the C data type. Do not attempt to perform arithmetic or other operations on a host variable

that contains a null value.

A program must, therefore, have some way to recognize a null value. To handle null values, IBM® Informix® ESQL/C provides

the following features:

• The risnull() and rsetnull() library functions enable you to test whether a host variable contains a null value and to set

a host variable to a null value.

• Indicator variables are special Informix® ESQL/C variables that you can associate with host variables that hold

values for database columns that allow null values.

The value of the indicator variable can show whether the associated host variable contains a null value.

In an ANSI-compliant database, a host variable that is used in an INSERT statement or in the WHERE clause of any SQL

statement must be null terminated.

Host variables in data structures

IBM® Informix® ESQL/C supports the use of host variables in the following data structures:

• Arrays

• C structures (struct)

• C typedef statements

• Pointers

• Function parameters

Arrays of host variables
IBM® Informix® ESQL/C supports the declaration of arrays of host variables. You must provide an integer value as the size

of the array when you declare the array. An array of host variables can be either one or two dimensional.

You can use elements of an array within Informix® ESQL/C statements. For example, if you provide the following declaration:

Chapter 1. ESQL/C Guide

EXEC SQL BEGIN DECLARE SECTION;
 long customer_nos[10];
EXEC SQL END DECLARE SECTION;

you can use the following syntax:

for (i=0; i<10; i++)
{
 EXEC SQL fetch customer_cursor into :customer_nos[i];

⋮

}

You can also use the array name alone within some SQL statements if the array is of type CHAR. For information about

specific statements, see the HCL® Informix® Guide to SQL: Syntax.

C structures as host variables
IBM® Informix® ESQL/C supports the declaration of a C structure (struct) as a host variable. You can use the components

of the structure within Informix® ESQL/C statements.

The following definition of the cust_rec variable serves as a host variable for the first three columns of the customer table in

the stores7 database:

EXEC SQL BEGIN DECLARE SECTION;
 struct customer_t
 {
 int c_no;
 char fname[32];
 char lname[32];
 } cust_rec;
EXEC SQL END DECLARE SECTION;

The following INSERT statement specifies the components of the cust_rec host variable in its VALUES clause:

EXEC SQL insert into customer (customer_num, fname, lname)
 values (:cust_rec.c_no, :cust_rec.fname,
 :cust_rec.lname);

If an SQL statement requires a single host variable, you must use the structure component name to specify the host variable.

Informix® requires structure component names in the SET clause of an UPDATE statement.

In SQL statements that allow a list of host variables, you can specify the name of the C structure and Informix® ESQL/C

expands the name of the structure variable to each of its component elements. You can use this syntax with SQL statements

such as the FETCH statement with an INTO clause or the INSERT statement with a VALUES clause.

The following INSERT statement specifies the entire cust_rec structure in its VALUES clause:

EXEC SQL insert into customer (customer_num, fname, lname)
 values (:cust_rec);

This insert performs the same task as the insert that specifies the individual component names of the cust_rec structure.

19

HCL Informix 14.10 - ESQL/C Programmer’s Guide

20

C typedef statements as host variables
IBM® Informix® ESQL/C supports the C typedef statements and allows the use of typedef names in declaring the types of

host variables.

For example, the following code creates the smallint type as a short integer and the serial type as a long integer. It then

declares a row_nums variable as an array of serial variables and a variable counter as a smallint.

EXEC SQL BEGIN DECLARE SECTION;
 typedef short smallint;
 typedef long serial;

 serial row_nums [MAXROWS];
 smallint counter;
EXEC SQL END DECLARE SECTION;

You cannot use a typedef statement that names a multidimensional array, or a union, or a function pointer, as the type of a

host variable.

Pointers as host variables
Use a pointer as a host variable if your program uses the pointer to input data to an SQL statement.

For example, the following figure shows how you can associate a cursor with a statement and insert values into a table.

Figure 6. Declaring a character pointer to input data

EXEC SQL BEGIN DECLARE SECTION;
 char *s;
 char *i;
EXEC SQL END DECLARE SECTION;

/* Code to allocate space for two pointers not shown */

s = "select * from cust_calls";
i = "NS";

⋮

EXEC SQL prepare x from :s;
EXEC SQL insert into state values (:i, 'New State');

The following figure shows how to use an integer pointer to input data to an INSERT statement.

Chapter 1. ESQL/C Guide

Figure 7. Declaring an integer pointer to input data

EXEC SQL BEGIN DECLARE SECTION;
 short *i;
 int *o;
 short *s;
EXEC SQL END DECLARE SECTION;

short i_num = 3;
int o_num = 1002;
short s_num = 8;

i = &i_num;
o = &o_num;
s = &s_num;

EXEC SQL connect to 'stores7';
EXEC SQL insert into items values (:*i, :*o, :*s, 'ANZ', 5, 125.00);
EXEC SQL disconnect current;

If you use a host variable that is a pointer to char to receive data from a SELECT statement, you receive a compile-time

warning and your results might be truncated.

Function parameters as host variables
You can use host variables as parameters to functions. You must precede the name of the host variable with the parameter

keyword to declare it as a function parameter.

For example, the following figure shows a code fragment with a Kernighan and Ritchie-style prototype declaration that

expects three parameters, two of which are host variables.

Figure 8. Using EXEC SQL to declare host variables as parameters to a Kernighan and Ritchie-Style function declaration

f(s, id, s_size)
EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER char s[20];
 PARAMETER int id;
EXEC SQL END DECLARE SECTION;
int s_size;
{
 select fname into :s from customer
 where customer_num = :id;
⋮;

}

You can also declare parameter host variables with the dollar sign ($) notation. For example, the following figure shows

the function header in Figure 8: Using EXEC SQL to declare host variables as parameters to a Kernighan and Ritchie-Style

function declaration on page 21, with the dollar sign ($) notation.

21

HCL Informix 14.10 - ESQL/C Programmer’s Guide

22

Figure 9. Using the dollar sign ($) to declare host variables as parameters to a function

f(s, id, s_size)
$parameter char s[20];
$parameter int id;
int s_size;

You can declare parameters in an ANSI-style prototype function declaration as host variables as well. You can also put all

parameters to a prototype function declaration inside the EXEC SQL declare section, even if some of the parameters cannot

be used as host variables. The following figure shows that the function pointer f can be included in the EXEC SQL declare

section, even though it is not a valid host-variable type and cannot be used as a host variable.

Figure 10. Using EXEC SQL to declare host variables as parameters to ANSI-style function declaration

int * foo(
EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER char s[20],
 PARAMETER int id,
 PARAMETER int (*f) (double)
EXEC SQL END DECLARE SECTION;
)
{
 select fname into :s from customer
 where customer_num = :id;
⋮;

}

The functionality that allows inclusion of function parameters inside of the EXEC SQL declare section is in compliance with

the requirement that any valid C declaration syntax must be allowed inside the EXEC SQL declare sections to use common

header files for C and Informix® ESQL/C source files. For more information about how to use common header files between

C and Informix® ESQL/C source files, see Define host variables based on C #defines and typedefs on page 65.

Important: If you want to define Informix® ESQL/C host variables that are ANSI-style parameters, you must use the

EXEC SQL BEGIN DECLARE SECTION and the EXEC SQL END DECLARE SECTION syntax. You cannot use the $BEGIN

DECLARE and $END DECLARE syntax. This restriction is because SQL statements that begin with the dollar sign ($)

notion must end with a semicolon (;). However, ANSI syntax requires that each parameter in a parameter list does not

end with a semicolon terminator, but with a comma (,) delimiter.

The following limitations apply to using host variables as function parameters:

• You cannot declare a parameter variable inside a block of C code.

• You cannot use the parameter keyword in declarations of host variables that are not part of a function header. If you

do, you receive unpredictable results.

Host variables in Windows™ environments

This section describes the following topics about IBM® Informix® ESQL/C host variables that are unique to the Windows™

environments:

Chapter 1. ESQL/C Guide

• How to declare host variables with non-ANSI storage-class modifiers

• How global Informix® ESQL/C variables are declared

Declare variables with non-ANSI storage-class modifiers

The ANSI C standards define a set of storage-class specifiers for variable declarations. The C compilers in Windows™

environments often support non-ANSI storage-class specifiers. To provide support for these non-ANSI storage-class

specifiers in IBM® Informix® ESQL/C host-variable declarations, the Informix® ESQL/C preprocessor supports the form of

the ANSI syntax, as shown.

{ EXEC SQL BEGIN DECLARE SECTION; <Declaration> EXEC SQL END DECLARE SECTION; | $ <Declaration> }

Declaration

“ @ ”

“ [('"modifier name ")] ”

“ variable type ”

“ [("modifier name ")] ”

“ variable name ”

Element Purpose Restrictions Syntax

modifier name Text that you want to pass to the

C compiler for translation.

This text is usually the name of

the storage-class modifier.

The modifier must be valid for

your C compiler or be a name that

you define in your program.

See your C compiler

documentation.

variable name Identifier name of the ESQL/C

host variable

None. See Declare a host variable on

page 11.

variable type Data type of the ESQL/C host

variable

The type must be a valid C or

ESQL/C data type.

See Declare a host variable on

page 11.

For example, the Microsoft™ Visual C++ compiler supports the declspec compiler directive to enable you to declare extended

storage-class attributes. This compiler directive has the following syntax:

__declspec(attribute) var_type var_name;

In this example, attribute is a supported keyword (such as thread, dllimport, or dllexport), var_type is the data type of the

variable, and var_name is the variable name.

23

HCL Informix 14.10 - ESQL/C Programmer’s Guide

24

To enable you to declare Informix® ESQL/C host variables as extended storage-class variables, the Informix® ESQL/C

preprocessor supports the declspec directive with the following syntax:

@("__declspec(attribute)") var_type var_name;

In this example, attribute, var_type, and var_name are the same as in the previous example. You might find it convenient

to declare a macro for the declspec syntax. The following example declares threadCount as an instance-specific integer

variable of the thread-extended storage class:

#define DLLTHREAD __declspec(thread)
⋮;

EXEC SQL BEGIN DECLARE SECTION;
 @("DLLTHREAD") int threadCount;
EXEC SQL END DECLARE SECTION;

This example creates the DLLTHREAD macro to simplify the declaration of thread-extended storage-class attributes. You can

declare similar macros to simplify declaration of variables to be exported (or imported) to the dynamic link library (DLL), as

follows:

#define DLLEXPORT __declspec(dllexport);
⋮;

EXEC SQL BEGIN DECLARE SECTION;
 @("DLLEXPORT") int winHdl;
EXEC SQL END DECLARE SECTION;

Indicator variables

When an SQL statement returns a value, it returns it in the host variable for the specified column. In some cases, you can

associate an indicator variable with the host variable to obtain additional information about the value that is returned. If you

specify an indicator variable, IBM® Informix® ESQL/C sets it in addition to returning the value to the host variable.

The indicator variable provides additional information in the following situations:

• If the host variable is associated with a database column or an aggregate function that allows null values, the

indicator variable can specify whether the value is null.

• If the host variable is a character array and the column value is truncated by the transfer, the indicator variable can

specify the size of the returned value.

The following topics describe how to declare an indicator variable and associate it with a host variable, and also how

Informix® ESQL/C sets an indicator variable to specify the two preceding conditions.

Declare indicator variables

You declare indicator variables in the same way as host variables, between BEGIN DECLARE SECTION and END DECLARE

SECTION statements as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;
 -- put indicator variable declarations here

EXEC SQL END DECLARE SECTION;

Chapter 1. ESQL/C Guide

Indicator variables can be any valid numeric host-variable data type. Usually, you declare an indicator variable as an integer.

For example, suppose your program declares a host variable called name. You can declare a short integer-indicator variable

called nameind, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;
 char name[16];
 short nameind;
EXEC SQL END DECLARE SECTION;

You can use non-ASCII (non-English) characters in Informix® ESQL/C indicator-variable names if your client locale supports

these non-ASCII characters. For more information about how the client locale affects host-variable names, see the HCL®

Informix® GLS User's Guide.

Associate an indicator variable with a host variable

You associate an indicator variable with its host variable in one of the following two ways:

• Prefix the indicator variable with a colon (:) and place the keyword INDICATOR between the host variable name and

the indicator variable name as follows:

:hostvar INDICATOR :indvar

• Place a separator symbol between the host variable name and the indicator variable name. The following separator

symbols are valid:

◦ A colon (:)

:hostvar:indvar

◦ A dollar sign ($)

$hostvar$indvar

You can use a dollar sign ($) instead of a colon (:), but the colon makes the code easier to read.

You can have one or more white space characters between the host variable and indicator variable. For example, both of the

following formats are valid to specify an indicator variable, hostvarind, on the hostvar host variable:

$hostvar:hostvarind
$hostvar :hostvarind

Indicate null values

When the IBM® Informix® ESQL/C statement returns a null value to a host variable, the value might not be a meaningful C

value. Your program can take one of the following actions:

• If you have defined an indicator variable for this host variable, Informix® ESQL/C sets the indicator variable to -1.

Your program can check the indicator variable for a value of -1.

• If you did not define an indicator variable, the runtime behavior of Informix® ESQL/C depends on how you compiled

the program:

25

HCL Informix 14.10 - ESQL/C Programmer’s Guide

26

◦ If you compile the program with the -icheck preprocessor option, Informix® ESQL/C generates an error and

sets sqlca.sqlcode to a negative value when the database server returns a null value.

◦ If you compile the program without the -icheck option, Informix® ESQL/C does not generate an error when

the database server returns a null value. In this case, you can use the risnull() function to test the host

variable for a null value.

If the value returned to the host variable is not null, Informix® ESQL/C sets the indicator variable to 0. If the SQL operation

is not successful, the value of the indicator variable is not meaningful. Therefore, check the outcome of the SQL statement

before you check for a null value in the host variable.

The NULL keyword of an INSERT statement allows you to insert a null value into a table row. As an alternative to the NULL

keyword in an INSERT statement, you can use a negative indicator variable with the host variable.

If you want to insert a variable while the indicator is set to NULL (-1), the indicator value takes precedence over the variable

value. The value inserted in this case will NULL instead of the value of the host variable.

When you return aggregate function values into a host variable, keep in mind that when the database server performs an

aggregate function on an empty table, the result of the aggregate operation is the null value. The only exception to this rule is

the COUNT(*) aggregate function, which returns 0 in this case.

Important: If you activate the DATASKIP feature of the database server, an aggregate function also returns null if all

fragments are offline or if all the fragments that are online are empty.

Indicate truncated values

When an SQL statement returns a non-null value into a host-variable character array, it might truncate the value to fit into the

variable. If you define an indicator variable for this host variable, IBM® Informix® ESQL/C:

• Sets the SQLSTATE variable to "01004" to signal the occurrence of truncation.

For more information about SQLSTATE, see List of SQLSTATE class codes on page 284.) Informix® ESQL/C also

sets sqlwarn1 of the sqlca.sqlwarn structure to W.

• Sets the associated indicator variable equal to the size in bytes of the SQL host variable before truncation.

If you do not define an indicator variable, Informix® ESQL/C still sets SQLSTATE and sqlca.sqlwarn to signal the truncation.

However, your program has no way to determine how much data was truncated.

If the database server returns a value that is not truncated or null, Informix® ESQL/C sets the indicator variable to 0.

An example of using indicator variables

The code segments in Figure 11: Using indicator variables with EXEC SQL and the colon (:) symbol on page 27 and Figure

12: Using indicator variables with the dollar sign ($) notation on page 27 show examples of how to use indicator variables

with host variables. Both examples use indicator variables to perform the following tasks:

Chapter 1. ESQL/C Guide

• Determine if truncation has occurred on a character array

If you define lname in the customer table with a length that is longer than 15 characters, nameind contains the

actual length of the lname column. The name host variable contains the first 15 characters of the lname value.

(The string name must be terminated with a null character.) If the family name of the company representative with

customer_num = 105 is shorter than 15 characters, Informix® ESQL/C truncates only the trailing blanks.

• Check for a null value

If company has a null value for this same customer, compind has a negative value. The contents of the character

array comp cannot be predicted.

The following figure shows the Informix® ESQL/C program that uses the EXEC SQL syntax for the SQL statements.

Figure 11. Using indicator variables with EXEC SQL and the colon (:) symbol

EXEC SQL BEGIN DECLARE SECTION;
 char name[16];
 char comp[20];
 short nameind;
 short compind;
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL select lname, company
 into :name INDICATOR :nameind, :comp INDICATOR :compind
 from customer
 where customer_num = 105;

Figure 11: Using indicator variables with EXEC SQL and the colon (:) symbol on page 27 uses the INDICATOR keyword to

associate the main and indicator variables. This method complies with the ANSI standard.

The following figure shows the Informix® ESQL/C program that uses the dollar sign ($) format for the SQL statements.

Figure 12. Using indicator variables with the dollar sign ($) notation

$char name[16];
$char comp[20];
$short nameind;
$short compind;
⋮;

$select lname, company
 into $name$nameind, $comp$compind
 from customer
 where customer_num = 105;

ESQL/C header files

When you install HCL Informix® ESQL/C, the installation script stores the header files in the $INFORMIXDIR/incl/esql

directory on a UNIX™ operating system and in the %INFORMIXDIR%\incl\esql directory in a Windows™ environment.

The following table shows the header files provided with the Informix® ESQL/C product.

27

HCL Informix 14.10 - ESQL/C Programmer’s Guide

28

Table 4. ESQL/C header files

Header file Contains Additional information

datetime.h Definitions of the Informix® ESQL/C datetime and interval structures, which are

the host variables for DATETIME and INTERVAL columns

Time data types on

page 124

decimal.h Definition of the Informix® ESQL/C decimal data type, which is the host

variable for DECIMAL and MONEY data types

Numeric data types on

page 107

gls.h Function prototypes and data structures for the GLS functionality HCL® Informix® GLS

User's Guide

ifxtypes.h Correctly maps the Informix® data types int1, int2, int4, mint, mlong, MSHORT,

and MCHAR for 32-bit and 64-bit platforms

The integer host

variable types on

page 108

locator.h Definition of the Informix® ESQL/C locator structure (ifx_loc_t or loc_t), which

is the host variable for byte and text columns

Simple large objects on

page 135

sqlca.h Definition of the structure that ESQL/C uses to store error-status codes

The esql preprocessor automatically includes this file when it preprocesses

your program.

Exception handling on

page 276

sqlda.h Structure definition for value pointers and descriptions of dynamically defined

variables

Determine SQL

statements on

page 438

sqlhdr.h This file includes the sqlda.h header file, other header files, and function

prototypes.

The preprocessor automatically includes this file when it preprocesses your

program.

Header files included

in your program on

page 30

sqliapi.h Function prototypes for internal library APIs

For internal Informix® ESQL/C use only.

None

sqlstype.h Definitions of constants for SQL statements

The DESCRIBE statement uses these constants to describe a dynamically

prepared SQL statement.

Determine SQL

statements on

page 438

sqltypes.h Defines constants that correspond to ESQL/C and SQL data types

ESQL/C uses these constants when your program contains a DESCRIBE

statement.

Data type constants on

page 82

Chapter 1. ESQL/C Guide

Table 4. ESQL/C header files (continued)

Header file Contains Additional information

sqlxtype.h Defines constants that correspond to Informix® ESQL/C and SQL data types

when you are in X/Open mode

ESQL/C uses these constants when your program contains a DESCRIBE

statement.

X/Open data type

constants on

page 85

value.h Value structures that Informix® ESQL/C uses

For internal Informix® ESQL/C use only.

None

varchar.h Macros that you can use with the VARCHAR data type Character and

string data types on

page 93

The following figure shows the Informix® ESQL/C header files specific to HCL Informix®.

Table 5. ESQL/C header files for HCL Informix®

Header file Contents Additional information

collct.h Definitions of data structures for complex types in Informix® ESQL/C Complex data types on

page 203

ifxgls.h Function prototypes for the GLS application programming interface

For internal Informix® ESQL/C use only.

None

int8.h Definition of the structure that stores the INT8 data type The int8 data type on

page 109

The following table shows the Informix® ESQL/C header files specific to Windows™ environments.

Table 6. ESQL/C header files for Windows™ environments

Header file Contents Additional information

sqlproto.h Function prototypes of all ESQL/C library functions for use with

source that is not fully ANSI C compliant

Declare function prototypes on

page 30

infxcexp.c Contains the C code to export the addresses of all C runtime

routines that the ESQL client-interface DLL uses

Same runtime routines for

version independence on

page 77

login.h The definition of the InetLogin and HostInfoStruct structures,

which enable you to customize configuration information for the

application

Fields of the InetLogin structure

on page 36

29

HCL Informix 14.10 - ESQL/C Programmer’s Guide

30

Table 6. ESQL/C header files for Windows™ environments (continued)

Header file Contents Additional information

Because this file does not contain ESQL statements, you do not

need to include it with the ESQL include directive. Use instead the

C #include preprocessor directive.

Declare function prototypes

IBM® Informix® ESQL/C provides the sqlproto.h header file to declare function prototypes for all Informix® ESQL/C

library functions. These function prototypes are required in the Informix® ESQL/C source file that you compile with an ANSI

C compiler. By default, the esql command processor does not include function-prototype declarations. Having the processor

include the ANSI-compliant function prototypes for the Informix® ESQL/C functions prevents an ANSI C compiler from

generating warnings.

Restriction: Although you can use an ANSI C compiler, the Informix® ESQL/C preprocessor does not fully support

ANSI C, so you might not be able to preprocess all programs that follow the ANSI C standards.

Because the sqlproto.h file does not contain any Informix® ESQL/C statements, you can include this file in either of the

following ways:

• With the Informix® ESQL/C include preprocessor directive:

EXEC SQL include sqlproto;

• With the C #include preprocessor directive:

#include "sqlproto.h";

Header files included in your program

The IBM® Informix® ESQL/C preprocessor automatically includes the following Informix® ESQL/C header files in your

program:

• The sqlhdr.h file provides cursor-related structures for your Informix® ESQL/C program.

This header file automatically includes the sqlda.h and ifxtypes.h header files.

• The sqlca.h file, which allows your program to check the success or failure of your Informix® ESQL/C statements

with the SQLSTATE or SQLCODE variable

Restriction: Although you can now use an ANSI C compiler, the Informix® ESQL/C preprocessor does not fully

support ANSI C, so you might not be able to preprocess all programs that follow the ANSI C standards.

To include any of the other header files in your Informix® ESQL/C program, you must use the include preprocessor directive.

However, you only need to include the Informix® ESQL/C header file if your program refers to the structures or the definitions

Chapter 1. ESQL/C Guide

that the header file defines. For example, if your program accesses datetime data, you must include the datetime.h header

file, as follows:

EXEC SQL include datetime.h;

Make sure to terminate the line of code with a semicolon. Some additional examples follow:

EXEC SQL include varchar.h;
EXEC SQL include sqlda;
$include sqlstype;

Tip: You do not have to enter the .h file extension for the Informix® ESQL/C header file; the esql preprocessor

assumes a .h extension.

ESQL/C preprocessor directives

You can use the following capabilities of the IBM® Informix® ESQL/C preprocessor when you write Informix® ESQL/C code:

• The include directive expands Informix® ESQL/C include files within your program.

• The define and undef directives create compile-time definitions.

• The ifdef, ifndef, else, elif, and endif directives specify conditional compilation.

As with embedded SQL statements, you can use either of two formats for Informix® ESQL/C preprocessor directives:

• The EXEC SQL keywords:

EXEC SQL preprocessor_directive;

The EXEC SQL keywords conform to ANSI standards.

• The dollar sign ($) notation:

$preprocessor_directive;

In either of these formats, replace preprocessor_directive with one of the valid preprocessor directives that the following

sections describe. You must terminate these directives with a semicolon (;).

The Informix® ESQL/C preprocessor works in two stages. In stage 1, it acts as a preprocessor for the Informix® ESQL/C

code. In stage 2, it converts all of the embedded SQL code to C code.

In stage 1, the Informix® ESQL/C preprocessor incorporates other files in the source file by processing all include directives

($include and EXEC SQL include statements). Also in stage 1, Informix® ESQL/C creates or removes compile-time

definitions by processing all define ($define and EXEC SQL define) and undef ($undef and EXEC SQL undef) directives.

The remainder of this section describes each of the Informix® ESQL/C preprocessor directives in more detail.

The include directive
The include directive allows you to specify a file to include within your IBM® Informix® ESQL/C program.

31

HCL Informix 14.10 - ESQL/C Programmer’s Guide

32

The Informix® ESQL/C preprocessor places the contents of the specified file into the Informix® ESQL/C source file. Stage

1 of the Informix® ESQL/C preprocessor reads the contents of filename into the current file at the position of the include

directive.

You can use the include preprocessor directive in either of the following two formats:

• EXEC SQL include filename;

• $include filename;

Replace filename with the name of the file you want to include in your program. You can specify filename with or without

quotation marks. If you use a full path name, however, you must enclose the path name in quotation marks.

The following example shows how to use full path names in a Windows™ environment.

EXEC SQL include decimal.h;

EXEC SQL include "C:\apps\finances\credits.h";

Tip: If you specify the full path name, you must recompile the program if the location of the file changes. Better

programming practice specifies search locations with the esql -I option and specifies only the file name with the

include directive.

If you omit the quotation marks around the file name, Informix® ESQL/C changes the file name to lowercase characters.

If you omit the path name, the Informix® ESQL/C preprocessor checks the preprocessor search path for the file. For more

information about this search path, see Name the location of include files on page 60.

You can use include for the following types of files:

• The Informix® ESQL/C header file

You do not have to use the .h file extension for the Informix® ESQL/C header file; the compiler assumes that your

program refers to a file with a .h extension. The following examples show valid statements to include Informix®

ESQL/C header files:

EXEC SQL include varchar.h;
$include sqlda;
EXEC SQL include sqlstype;

• Other user-defined files

You must specify the exact name of the file that you want to include. The compiler does not assume the .h extension

when you include a header file that is not the Informix® ESQL/C header file.

The following examples show valid statements to include the files constant_defs and typedefs.h in a UNIX™

environment:

EXEC SQL include constant_defs;
EXEC SQL include "constant_defs";
$include typedefs.h;
EXEC SQL include "typedefs.h";

Chapter 1. ESQL/C Guide

You must use the Informix® ESQL/C include directive if the file you specify contains embedded SQL statements, or other

Informix® ESQL/C statements.

Use the standard C #include directive to include system header files. The #include of C includes a file after Informix® ESQL/

C preprocessing.

Restriction: Embedded INCLUDE statements are not supported within declare sections and can generate misleading

errors. For correct usage, see Exclude statements inside C header files on page 67.

The define and undef directives

The IBM® Informix® ESQL/C preprocessor allows you to create simple variables that are available only to the Informix®

ESQL/C preprocessor. Informix® calls these variables definitions. The Informix® ESQL/C preprocessor manages these

definitions with two directives:

define

Creates a name-flag definition. The scope of this definition is from the point where you define it to the end of

the Informix® ESQL/C source file.

undef

Removes a name flag that EXEC SQL define or $define creates.

The Informix® ESQL/C preprocessor rather than the C preprocessor (which processes #define and #undef) processes

these directives. The Informix® ESQL/C preprocessor creates (define) or removes (undef) these definitions in stage 1 of

preprocessing.

The Informix® ESQL/C define directive can create definitions with the following formats:

• The format for Boolean symbols is define symbolname;

The following examples show the two ways to define a Boolean symbol that is called TRANS:

EXEC SQL define TRANS;
$define TRANS;

• The format for integer constants is define symbolname value;

The following examples show both formats for two integer constants, MAXROWS (with a value of 25), and

USETRANSACTIONS (with a value of 1):

EXEC SQL define MAXROWS 25;
$define MAXROWS 25;

EXEC SQL define USETRANSACTIONS 1;
$define USETRANSACTIONS 1;

33

HCL Informix 14.10 - ESQL/C Programmer’s Guide

34

Important: Unlike the C #define statement, the define directive does not support string constants or macros of

statements that receive values at run time.

You can override define and undef statements in the source program with the esql command-line options, -ED and -EU. For

more information about these options, see Define and undefine definitions while preprocessing on page 59.

The ifdef, ifndef, elif, else, and endif directives

The Informix® ESQL/C preprocessor supports the following directives for conditional compilation:

ifdef

Tests a name and executes subsequent statements if define has created the name.

ifndef

Tests a name and executes subsequent statements if define has not created the name.

elif

Begins an alternative section to an ifdef or ifndef condition and checks for the presence of another define. It is

shorthand for else if define.

else

Begins an alternative section to an ifdef or ifndef condition.

endif

Closes an ifdef or ifndef condition.

In the following example, the BEGIN WORK statement compiles only if you previously defined the name USETRANSACTIONS

with a define directive:

EXEC SQL ifdef USETRANSACTIONS;
EXEC SQL begin work;
EXEC SQL endif;

The following example illustrates the use of the elif statement. This sample code will print “USETRANSACTIONS defined.

EXEC SQL define USETRANSACTIONS;

⋮

 EXEC SQL ifndef USETRANSACTIONS;
 printf(“USETRANSACTIONS not defined);
 EXEC SQL elif USETRANSACTIONS;
 printf(“USETRANSACTIONS defined);
 EXEC SQL endif;

The Informix® ESQL/C preprocessor does not support a general if directive; it supports only the ifdef and ifndef statements

that test whether a name was defined with define.

The Informix® ESQL/C preprocessor processes conditional compilation definitions in stage 1 of the preprocessing.

Chapter 1. ESQL/C Guide

Set and retrieve environment variables in Windows™ environments
You might change the settings of environment variables or create new variables to increase the flexibility of an application.

Instead of assuming a particular environment configuration, you can define the environment at run time.

This option can benefit your application in the following ways:

• The application becomes less dependent on a predefined environment.

• Users can enter their user name and password within an application.

• Users can run two applications with different network parameters on the same client computer.

• The same application can run on client computers with different configurations.

The following Informix® ESQL/C library functions are available for setting and retrieving environment variables.

ifx_putenv()

Modifies or removes an existing environment variable or creates a variable.

ifx_getenv()

Retrieves the value of an environment variable.

Important: The ifx_putenv() function sets the value of an environment variable in the InetLogin structure, and the

ifx_getenv() function retrieves the value of an environment variable from InetLogin. It is recommended that you use

these functions to set and retrieve InetLogin field values.

These functions affect only the environment that is local to the current process. The ifx_putenv() function cannot modify the

command-level environment. The functions operate only on data structures accessible to the Informix® ESQL/C runtime

library and not on the environment segment that the operating system creates for the process. When the current process

terminates, the environment reverts to the level of the calling process (in most cases, the operating-system level).

The process cannot directly pass on the modified environment to any new processes that _spawn(), _exec(), or system()

creates. These new processes do not receive any new variables that ifx_putenv() added. You can, however, pass on an

environment variable to a new process in the following way:

1. The current process creates an environment variable with the Informix® ESQL/C ifx_putenv() function.

2. The current process uses the C putenv() function to put the environment variable into the operating-system

environment segment.

3. The current process starts a new process.

4. The new process uses the C getenv() function to retrieve the environment variable from the operating-system

environment segment.

5. The new process uses the Informix® ESQL/C ifx_getenv() function to retrieve the variable into the runtime

environment segment.

Environment variable guidelines

For environment variable entries, observe the following guidelines:

35

HCL Informix 14.10 - ESQL/C Programmer’s Guide

36

• If you plan to set any Informix® environment variables with ifx_putenv(), have the application set all of them before

it calls any other Informix® ESQL/C library routine, including ifx_getenv(), or any SQL statement. The first call to any

other Informix® ESQL/C library routine or SQL statement requires initialization of the GLS locales. This initialization

loads and freezes the values of CLIENT_LOCALE, DB_LOCALE, and the DATE, TIME, and DATETIME formatting

values.

• If Setnet32 sets the Informix® environment variable to a non-null value in the Registry, the ifx_putenv() function

cannot change the value of the variable to a null string.

If you specify a null string for an environment variable in an ifx_putenv() function call, Informix® ESQL/C clears

any value set for the environment variable from the runtime environment segment. Then the Registry value for the

environment variable is available to the application.

• Do not change an environment variable with setenv in the command line or with the C putenv() function because

a change to the operating-system environment segment has no effect on the ESQL client-interface DLL after

application execution begins.

Instead, use ifx_putenv() to change an environment variable in the runtime environment segment.

• To modify the return value of ifx_getenv() without affecting the environment table, use _strdup() or strcpy() to make a

copy of the string.

Restriction: Never free the pointer to an environment entry that ifx_getenv() returns. Also, do not pass ifx_putenv() a

pointer to a local variable and then exit the function that declares the variable.

The InetLogin structure
The IBM® Informix® ESQL/C client application in a Windows™ environment can use the InetLogin structure to set

dynamically the configuration information that the application needs.

Important: HCL Informix® supports the InetLogin structure for compatibility with earlier versions only. For new

development, it is recommended that you use the ifx_getenv() and ifx_putenv() functions instead.

This section provides the following information about InetLogin:

• A description of the InetLogin structure, its fields, and header file

• The precedence of configuration information that the client application sends when it establishes a connection

• How to set the InetLogin fields directly

Fields of the InetLogin structure
The InetLogin structure is a global C structure that the login.h header file declares.

To use this structure in your IBM® Informix® ESQL/C program, you must include login.h in your source file (.ec). For

more information about login.h, see Table 6: ESQL/C header files for Windows environments on page 29.

Chapter 1. ESQL/C Guide

Tip: Because login.h does not contain Informix® ESQL/C statements, you can include the file with the C #include

or the Informix® ESQL/C include directive.

The following table defines the fields in the InetLogin structure.

Table 7. Fields of the InetLogin structure

Inetlogin field Data type Purpose

InfxServer char[19] Specifies the value for the INFORMIXSERVER environment variable (the

default database server)

DbPath char[129] Specifies the value for the DBPATH environment variable

DbDate char[6] Specifies the value for the DBDATE environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

DbMoney char[19] Specifies the value for the DBMONEY environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

DbTime char[81] Specifies the value for the DBTIME environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

DbTemp char[81] Specifies the value for the DBTEMP environment variable

DbLang char[19] Specifies the value for the DBLANG environment variable

DbAnsiWarn char[1] Specifies the value for the DBANSIWARN environment variable

Informix®Dir char[255] Specifies the value for the INFORMIXDIR environment variable

Client_Loc char * Specifies the value for the CLIENT_LOCALE environment variable

DB_Loc char * Specifies the value for the DB_LOCALE environment variable

CollChar char[3] Specifies the value for the COLLCHAR environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® NLS products

Lang char[81] Specifies the value for the LANG environment variable for the database

locale

37

HCL Informix 14.10 - ESQL/C Programmer’s Guide

38

Table 7. Fields of the InetLogin structure (continued)

Inetlogin field Data type Purpose

Provides compatibility for client applications that are based on earlier

versions of HCL® Informix® NLS products

Lc_Collate char[81] Specifies the value for the LC_COLLATE environment variable for the

database locale

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® NLS products

Lc_CType char[81] Specifies the value of the LC_CTYPE environment variable for the database

locale

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® NLS products

Lc_Monetary char[81] Specifies the value of the LC_MONETARY environment variable for the

database locale

Provides compatibility for client applications that are based on earlier

versions of HCL® Informix® NLS products

Lc_Numeric char[81] Specifies the value of the LC_NUMERIC environment variable for the

database locale

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® NLS products

Lc_Time char[81] Specifies the value for the LC_TIME environment variable for the database

locale

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® NLS products

ConRetry char[4] Specifies the value of the environment variable INFORMIXCONRETRY

ConTime char[4] Specifies the value of the environment variable INFORMIXCONTIME

DelimIdent char[4] Specifies the value of the DELIMIDENT environment variable

Host char[19] Specifies the value for the HOST network parameter

User char[19] Specifies the value for the USER network parameter

Pass char[19] Specifies the value for the PASSWORD network parameter

Chapter 1. ESQL/C Guide

Table 7. Fields of the InetLogin structure (continued)

Inetlogin field Data type Purpose

AskPassAtConnect char[2] Indicates whether sqlauth() should request a password at connection time;

should contain the value for yes or no. AskPassAtConnect is set if the first

character is Y or y.

Service char[19] Specifies the value for the SERVICE network parameter

Protocol char[19] Specifies the value for the PROTOCOL network parameter

Options char[20] Reserved for future use

Informix®SqlHosts char[255] Specifies the value for the INFORMIXSQLHOSTS environment variable

FetBuffSize char[6] Specifies the value for the FET_BUF_SIZE environment variable

CC8BitLevel char[2] Specifies the value for the CC8BITLEVEL environment variable

EsqlMF char[2] Specifies the value for the ESQLMF environment variable

GlDate char[129] Specifies the value for the GL_DATE environment variable

GlDateTime char[129] Specifies the value for the GL_DATETIME environment variable

DbAlsBc char[2] Specifies the value for the DBALSBC environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

DbApiCode char[24] Specifies the value for the DBAPICODE environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

DbAsciiBc char[2] Specifies the value for the DBASCIIBC environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

DbCentury char[2] Specifies the value for the DBCENTURY environment variable

DbCodeset char[24] Specifies the value for the DBCODESET environment variable

Provides compatibility for client applications that are based on 4.x versions

of HCL Informix® Asian Language Support (ALS) products

DbConnect char[2] Specifies the value for the DBCONNECT environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

39

HCL Informix 14.10 - ESQL/C Programmer’s Guide

40

Table 7. Fields of the InetLogin structure (continued)

Inetlogin field Data type Purpose

DbCsConv char[9] Specifies the value for the DBCSCONV environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL® Informix® products

DbCsOverride char[2] Specifies the value for the DBCSOVERRIDE environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® Asian Language Support (ALS) products

DbCsWidth char[12] Specifies the value for the DBCSWIDTH environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

DbFltMsk char[4] Specifies the value for the DBFLTMASK environment variable

DbMoneyScale char[6] Specifies the value for the DBMONEYSCALE environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

DbSS2 char[5] Specifies the value for the DBSS2 environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

DbSS3 char[5] Specifies the value for the DBSS3 environment variable

Provides compatibility for client applications that are based on earlier

versions of HCL Informix® products

OptoFC char[2] Not used

OptMSG char[2] Not used

All fields in the InetLogin structure, except DbAnsiWarn, Client_Loc, and DB_Loc, are of data type char and are null-

terminated strings. The Client_Loc and DB_Loc fields are character pointers whose data space your Informix® ESQL/C

program must allocate.

InetLogin field values

Your application must set InetLogin values before it executes the SQL statement or Informix® ESQL/C library function that

needs the configuration information. It is recommended that you use the ifx_putenv() and ifx_getenv() functions to set and

retrieve InetLogin field values through environment variables, but you can set the values of the InetLogin fields directly.

Chapter 1. ESQL/C Guide

The following figure shows a dialog box that a client application might use to obtain network parameters from an end user.

This application takes the account information that the user enters and sets the appropriate network values in the InetLogin

structure.

Figure 13. User dialog box for login parameters

The following figure shows a code fragment that sets login values in the InetLogin structure. The application can obtain

these values from the end user through a dialog box (such as the one in Figure 13: User dialog box for login parameters on

page 41).

Figure 14. Code to prompt the user for InetLogin values

strcpy(InetLogin.InfxServer, "mainsrvr");

⋮;

case IDOK:
 *szDlgString = '\0';
 GetDlgItemText (hdlg, IDC_HOST, szDlgString, cbSzDlgMax);
 strcpy(InetLogin.Host, szDlgString);

 *szDlgString = '\0';
 GetDlgItemText (hdlg, IDC_USER, szDlgString, cbSzDlgMax);
 strcpy(InetLogin.User, szDlgString);

In the previous figure, if the user enters host information, the fragment sets the InetLogin.Host and InetLogin.User fields for

the mainsrvr database server to the user-specified names of the host name and user name. If the user does not enter host

information, Informix® ESQL/C uses the HOST and USER Registry values from the subkey for the mainsrvr database server.

Tip: For another example of how to set the InetLogin fields, see the ILOGIN demonstration program in the

%INFORMIXDIR%\demo\ilogin directory.

Precedence of configuration values

When a client application in a Windows™ environment requires configuration information, IBM® Informix® ESQL/C obtains it

from the following locations:

41

HCL Informix 14.10 - ESQL/C Programmer’s Guide

42

1. The InetLogin structure

If the application uses the InetLogin structure, Informix® ESQL/C first checks for configuration information in this

structure. (To set the value of an environment variable for the application process, the ifx_putenv() function changes

the value of an InetLogin field.)

2. The INFORMIX subkey of the Registry

If the application has not set the configuration information you want in InetLogin, Informix® ESQL/C checks for

this information in its copy of the Registry information. For more information about how to set the Registry, see the

Informix® Client Products Installation Guide.

You do not need to define all the values in the InetLogin structure. The application uses the configuration information in the

Registry for any values it cannot find in InetLogin. If you do not set the corresponding Registry value, the application uses its

default value.

Important: The first time that the application requires configuration information, Informix® ESQL/C reads this

information from the Registry, and stores it in memory. For subsequent references to Registry information, Informix®

ESQL/C accesses this in-memory copy and does not reread the Registry.

This hierarchy of configuration information is valuable if, for example, you want the application user to provide a user name

and password at run time, or if an application has some configuration information that differs from the general values in the

Registry. For example, suppose the application sets the ConRetry field of InetLogin to 2 but does not set the ConTime field,

as the following code fragment shows:

strcpy(InetLogin.ConRetry, "2");
EXEC SQL connect to 'accnts';

When Informix® ESQL/C establishes the connection to the accnts database, it tries to establish the connection twice

(instead of the default value of once) but it still uses a connection time of 15 seconds (the default value from the in-memory

copy of the Registry information). If Setnet32 has modified the connection values, Informix® ESQL/C uses the modified

Registry values instead of the default values.

Tip: Use the Setnet32 utility to define configuration information in the Registry. For more information about Setnet32,

see the Informix® Client Products Installation Guide.

Global ESQL/C variables in a Windows™ environment

In earlier versions of the IBM® Informix® ESQL/C product, Informix® ESQL/C provided several global variables to support

different features. The following table describes these global variables.

Table 8. Global ESQL/C variables

Global variable Description

SQLSTATE An ANSI-compliant status code as a five-character string (plus null terminator)

Chapter 1. ESQL/C Guide

Table 8. Global ESQL/C variables (continued)

Global variable Description

For more information about SQLSTATE, see Exception handling on page 276.

SQLCODE sqlca.sqlcode A status code specific to Informix® as an integer value

For more information about SQLCODE, see Exception handling on page 276.

sqlca structure Diagnostic information specific to Informix®

For more information about this structure, see Exception handling on page 276.

FetBufSize and

BigFetBufSize

The size of the fetch buffer

BigFetBufSize is same as FetBufSize except for a higher upper limit value of the cursor buffer

For more information about FetBufSize and BigFetBufSize, see Using dynamic SQL on

page 399.

InetLogin structure Environment information for the client ESQL/C application

For more information, see The InetLogin structure on page 36.

In environments, Informix® ESQL/C implements the global variables in Table 8: Global ESQL/C variables on page 42 as

functions, which the sqlhdr.h file defines. These functions return values that have the same data types as their global-

variable counterparts. Therefore, this change in implementation does not require modification of existing Informix® ESQL/C

code. You can still use these functions in the same context as their global-variable counterparts.

A sample Informix® ESQL/C program

The demo1.ec program illustrates most of the concepts that this section presents, such as include files, identifiers, host

variables, and embedded SQL statements. It demonstrates how to use header files, declare and use host variables, and

embed SQL statements.

Important: If you are using UNIX™, you can find an online version of this and other demonstration programs in the

$INFORMIXDIR/demo/esqlc directory. If you are using Windows™, you can find the demonstration programs in the

%INFORMIXDIR%\demo\esqldemo directory.

Compile the demo1 program

The following command compiles the demo1 program: esql demo1.ec

On UNIX™, the name of the executable program defaults to a.out.

In Windows™ environments, the name of the executable program defaults to demo.exe.

43

HCL Informix 14.10 - ESQL/C Programmer’s Guide

44

You can use the -o option to assign a different name to the executable program.

Guide to demo1.ec file

The sample IBM® Informix® ESQL/C program, demo1.ec, uses a static SELECT statement. This means that at compile time

the program can obtain all of the information that it needs to run the SELECT statement.

The demo1.ec program reads from the customer table in the stores7 database the first and family names of customers

whose family name begins with a value less than 'C'. Two host variables (:fname and :lname) hold the data from the

customer table. A cursor manages the rows that the database server retrieves from the table. The database server fetches

the rows one at a time. The program then prints the names to standard output.

1. #include <stdio.h>
2. EXEC SQL define FNAME_LEN 15;
3. EXEC SQL define LNAME_LEN 15;
4. main()
5. {
6. EXEC SQL BEGIN DECLARE SECTION;
7. char fname[FNAME_LEN + 1];
8. char lname[LNAME_LEN + 1];
9. EXEC SQL END DECLARE SECTION;

Line 1

The #include statement tells the C preprocessor to include the stdio.h system header file from the /usr/include

directory. The stdio.h file enables demo1 to use the standard C language I/O library.

Lines 2 - 3

Informix® ESQL/C processes the define directives in stage 1 of preprocessing. The directives define the constants

FNAME_LEN and LNAME_LEN, which the program uses later in host-variable declarations.

Lines 4 - 9

Line 4 begins the main() function, the entry point for the program. The EXEC SQL block declares host variables that are

local to the main() function that receive data from the fname and lname columns of the customer table. The length of each

array is 1 byte greater than the length of the character column from which it receives data. The extra byte stores the null

terminator.

10. printf("DEMO1 Sample ESQL Program running.\n\n");
11. EXEC SQL WHENEVER ERROR STOP;
12. EXEC SQL connect to 'stores7';
13. EXEC SQL DECLARE democursor cursor for
14. select fname, lname
15. into :fname, :lname
16. from customer
17. where lname < 'C';
18. EXEC SQL open democursor;

Chapter 1. ESQL/C Guide

Lines 10 - 12

The printf() function shows text to identify the program and to notify the user when the program begins to execute. The

WHENEVER statement implements a minimum of error handling, causing the program to display an error number and

terminate if the database server returns an error after processing an SQL statement. The CONNECT statement initiates a

connection to the default database server and opens the stores7 demonstration database. You specify the default database

server in the INFORMIXSERVER environment variable, which you must set before an application can connect to any database

server.

Lines 13 - 17

The DECLARE statement creates a cursor that is called democursor to manage the rows that the database server reads from

the customer table. The SELECT statement within the DECLARE statement determines the type of data that the database

server reads from the table. This SELECT statement reads the first and family names of those customers whose family name

(lname) begins with a letter less than 'C'.

Line 18

The OPEN statement opens the democursor cursor and begins execution of the SELECT statement.

19. for (;;)
20. {
21. EXEC SQL fetch democursor;
22. if (strncmp(SQLSTATE, "00", 2) != 0)
23. break;
24. printf("%s %s\n",fname, lname);
25. }
26. if (strncmp(SQLSTATE, "02", 2) != 0)
27. printf("SQLSTATE after fetch is %s\n", SQLSTATE);
28. EXEC SQL close democursor;
29. EXEC SQL free democursor;

Lines 19 - 25

This section of code executes a FETCH statement inside a loop that repeats until SQLSTATE is not equal to "00". This

condition indicates that either the end-of-data condition or a runtime error has occurred. In each iteration of the loop, the

FETCH statement uses the cursor democursor to retrieve the next row that the SELECT statement returns and to put the

selected data into the host variables fname and lname. The database server sets status variable SQLSTATE to "00" each

time it fetches a row successfully. If the end-of-data condition occurs, the database server sets SQLSTATE to "02"; if an error

occurs, it sets SQLSTATE to a value greater than "02". For more information about error handling and the SQLSTATE status

variable, see Opaque data types on page 254.

Lines 26 - 27

If the class code in SQLSTATE is any value except "02", then the SQLSTATE value for the user is displayed by this printf(). This

output is useful in the event of a runtime error.

45

HCL Informix 14.10 - ESQL/C Programmer’s Guide

46

Lines 28 - 29

The CLOSE and FREE statements free the resources that the database server had allocated for the cursor. The cursor is no

longer usable.

30. EXEC SQL disconnect current;
31. printf("\nDEMO1 Sample Program over.\n\n");
32. }

Lines 30 - 32

The DISCONNECT CURRENT statement closes the database and terminates the current connection to a database server. The

final printf() tells the user that the program is over. The right brace (}) on the line 32 marks the end of the main() function and

of the program.

Compile programs

These topics contain the following information:

• Compile the IBM® Informix® ESQL/C program

• Using the esql command

• Compiling and linking options of the esql command

• Windows™ environment system processor options available to the esql command

• Accessing the ESQL Client-Interface in Windows™ environments

Compile the Informix® ESQL/C program
You use the esql command to compile your IBM® Informix® ESQL/C program.

The esql command passes your Informix® ESQL/C source file to the Informix® ESQL/C preprocessor and to the C compiler.

It passes along options that are specific to both the Informix® ESQL/C preprocessor and the C compiler to preprocess,

compile, and link your Informix® ESQL/C program.

The ESQL/C preprocessor

To preprocess, compile, and link a program that contains IBM® Informix® ESQL/C statements, you must pass it through the

Informix® ESQL/C preprocessor. You use the esql command to run the preprocessor on your Informix® ESQL/C source file

and create an executable file. The esql command follows these steps to carry out the conversion:

• In stage one, the Informix® ESQL/C preprocessor performs the following steps:

◦ Incorporates header files into the source file when it processes all include directives ($include and EXEC SQL

include statements)

◦ Creates or removes compile-time definitions when it processes all define ($define and EXEC SQL define) and

undef ($undef and EXEC SQL undef) directives

Chapter 1. ESQL/C Guide

• In stage two, the Informix® ESQL/C preprocessor processes any conditional compilation directives (ifdef, ifndef,

else, elif, endif) and translates embedded SQL statements to Informix® ESQL/C function calls and special data

structures.

Stages 1 and 2 mirror the preprocessor and compiler stages of the C compiler. Successful completion of the

preprocessing step yields a C source file (.c extension). For information about command-line options that affect the

preprocessing step, see Options that affect preprocessing on page 57.

The esql command processor is installed as part of the Informix® ESQL/C product. Before you use esql, ensure that:

• The file name of the Informix® ESQL/C source file has the .ec or the .ecp.

• The INFORMIXDIR and PATH environment variables are set correctly.

If the INFORMIXDIR environment variable is not set in the command window or in the Windows™ Registry, it is set

internally to the location of the HCL® Informix® Client SDK dynamically linked libraries.

If the INFORMIXDIR environment variable is not set in UNIX™, an error is returned when compiling any HCL®

Informix® Client Software Development Kit (Client SDK) application.

For information about how to set the INFORMIXDIR and PATH variables, see the Informix® Client Products

Installation Guide for your operating system.

For a detailed explanation of the syntax of the esql command, see The esql command on page 49.

Important: Always link your Informix® ESQL/C program with the esql program. The lists of libraries that Informix®

uses can change between releases. Linking with esql assures that your Informix® ESQL/C program links correctly

with Informix® libraries.

The C code that the Informix® ESQL/C preprocessor generates might change from one release of the product to

the next. Therefore, do not design Informix® ESQL/C programs that depend on how Informix® implements the

functionality and features of the product in the C code that the Informix® ESQL/C preprocessor generates. Instead,

develop your programs with the functionality and features of the product that this publication describes.

The C preprocessor and compiler

The esql command does not itself compile and link the IBM® Informix® ESQL/C program. The esql command translates

Informix® ESQL/C code to C code and then calls the C compiler to compile and link the C code. The C preprocessor

preprocesses the C language preprocessing directives. The C compiler performs the compilation, and it also calls a link

editor to link the C object files.

Your Informix® ESQL/C source file contains commands for the C preprocessor (directives of the form #directive). When you

use the default order of compilation, these C directives have no effect on Informix® ESQL/C statements but take effect in the

usual way when the C compiler processes the source file.

47

HCL Informix 14.10 - ESQL/C Programmer’s Guide

48

If you choose to run the C preprocessor on the Informix® ESQL/C source file before the Informix® ESQL/C preprocessor, you

can use the C language #define and typedef directives to define Informix® ESQL/C host variables.

The C compiler takes the following actions:

• Compiles the C language statements to object code

• Links to Informix® ESQL/C libraries and any other files or libraries you specify

• Creates an executable file

If you use a compiler other than the local C compiler by setting the INFORMIXC environment variable to a non-default value,

you might need to override the default options of that compiler.

Default compilation order

After you have created the IBM® Informix® ESQL/C program file, you run the esql command on that file. By default, the

Informix® ESQL/C preprocessor runs first and translates the embedded SQL statements in the program into Informix®

ESQL/C function calls that communicate with the database server. The Informix® ESQL/C preprocessor produces a C source

file and calls the C compiler. The C compiler then preprocesses and compiles your source file and links any other C source

file, object file, or library file the same way as any other C program. If esql does not encounter errors in one of these steps,

it generates an executable file. You can run the compiled Informix® ESQL/C program as you would any C program. When

the program runs, it calls the Informix® ESQL/C library procedures; the library procedures set up communications with the

database server to carry out the SQL operations.

The following figure illustrates the process by which the Informix® ESQL/C program becomes an executable program.

Figure 15. Relationship between Informix® ESQL/C and C

Important: Keep in mind that with the default order of compilation, esql handles Informix® ESQL/C preprocessor

directives before it calls the C compiler. Therefore, the Informix® ESQL/C directives take effect before the C compiler

performs any preprocessing. You cannot access Informix® ESQL/C definitions within C preprocessor directives, nor

can you use the C preprocessor to perform conditional compilation of Informix® ESQL/C statements.

Run the C preprocessor first

With IBM® Informix® ESQL/C, you change the default order of processing when you compile your Informix® ESQL/C

program. Informix® ESQL/C allows you to run the C preprocessor on the Informix® ESQL/C source file first, and then pass

Chapter 1. ESQL/C Guide

that file to the Informix® ESQL/C preprocessor. This feature enables your Informix® ESQL/C program to access variables

made available by C preprocessor directives.

The esql command

To create an executable C program from IBM® Informix® ESQL/C source files, use the esql command. The HCL® Informix®

installation script installs the esql command as part of the Informix® ESQL/C product. This section describes what the esql

command can do and how you use it.

The esql command performs the following steps:

1. Converts the embedded SQL statements to C language code.

2. Converts your ESQL/C source files to C language source files.

3. Compiles the files that result with the C compiler to create an object file.

4. Creates the resource compiler and links any resource files (.res) that you specify on the esql command line for

Windows™.

5. Links the object file with the Informix® ESQL/C libraries and your own libraries.

Requirements for using the esql command

Before you use esql, make sure that:

• The file names of your Informix® ESQL/C source files have the .ec extension. You can also use the .ecp extension

if you want the C preprocessor to run before the Informix® ESQL/C preprocessor.

• You have set the environment variable INFORMIXDIR correctly and the PATH environment variable includes the

path to the bin directory of the INFORMIXDIR directory ($INFORMIXDIR/bin on the UNIX™ operating system and

%INFORMIXDIR%\bin in Windows™ environments).

For a complete description of INFORMIXDIR, see the HCL® Informix® Guide to SQL: Reference or the Informix®

Client Products Installation Guide for your operating system.

Syntax of the esql command

The following topics describe the syntax of the esql command.

This section organizes the command-line options by the processing phase that they affect:

• Preprocessing options determine how esql translates the embedded SQL statements.

• Compilation options affect the compilation phase, when the C compiler translates the C source to object code.

• Linking options affect the linking phase, when the C compiler links the object code to produce an executable file.

(explicit id unique_88_Connect_42_order) unique_88_Connect_42_order(explicit id unique_88_Connect_42_windows) unique_88_Connect_42_windows(explicit

id unique_88_Connect_42_unixonly) unique_88_Connect_42_unixonly esql [] [{ | -ansi | -ccccargs | -EDname [=value] | -EUname | { -g } | {

-G | -nln } | -Ipathname | -icheck | -local | -nowarn | source.ec | otherarg }] [-e] [-loglogfile] [-libs] [-ooutfile] [-

thread] [-static] [-V] [-version] [{ <UNIX-only arguments> [] | <Windows-only arguments>[] }] [-xopen]

49

FNtarg_unique_88_Connect_42_order
FNtarg_unique_88_Connect_42_windows
FNtarg_unique_88_Connect_42_unixonly

HCL Informix 14.10 - ESQL/C Programmer’s Guide

50

-ansi

Causes esql to warn you if the source file uses Informix® extensions to ANSI-standard SQL syntax. This

argument only affects source files to the right of it on the command line. See Check for ANSI-standard SQL

syntax on page 58.

-cc ccargs

Passes ccargs to the C compiler without interpreting or changing them. The variable ccargs represents all of

the arguments between the -cc and the next occurrence of any of these arguments:

• -l (Windows™ only)

• -r (Windows™ only)

• -f (Windows™ only)

• any file name except those file names that are arguments for an option

See Pass options to the C compiler on page 70.

-e

Preprocesses only, no compiling or linking. The ESQL/C preprocessor produces a C source file with a .c

extension. See Preprocess without compiling or linking on page 57.

-EDname

Creates a definition for name. The effect is the same as if the source file contained an ESQL/C define directive

for name. If =value is included, the definition is set to value. For details, see Define and undefine definitions

while preprocessing on page 59..

-EUname

Undefines the Informix® ESQL/C definition named name. The effect is as if the source file included the

Informix® ESQL/C undef directive for that name. For details, see Define and undefine definitions while

preprocessing on page 59.

-g

Reverses the effects of the last -G option for source files to the right of this option on the command line. See

Line numbers on page 61.

-G

Normally #line directives are added to the C source code so that the C compiler can direct you to the correct

line in the Informix® ESQL/C file when it detects an error in the C file. The -G option turns off this feature for the

Informix® ESQL/C source files that follow it on the command line. Use the -g argument to turn the feature back

on. The -nln argument is a synonym for -G. See Line numbers on page 61.

-Ipathname

Adds pathname to the search path for Informix® ESQL/C and C include files. The search path is used when

searching for the files named in include and #include directives. See Name the location of include files on

page 60.

Chapter 1. ESQL/C Guide

-icheck

Tells esql to add code that generates an error if a null value is returned to a host variable that does not have an

indicator variable associated with it. This argument only affects source files to the right of it on the command

line. See Check for missing indicator variables on page 60.

-local

Specifies that the static cursor names and static statement IDs that you declare in a source file are local to that

file. If you do not use the -local option, cursor names and statement IDs, by default, are global entities. This

argument only affects source files to the right of it on the command line. See Cursor names and statement IDs

on page 61.

-log logfile

Sends the error and warning messages generated by the Informix® ESQL/C preprocessor to the specified file

instead of to standard output. This option affects only preprocessor errors and warnings. See Redirect errors

and warnings on page 61.

-libs

Prevents all compiling and linking and instead shows the names of all the libraries that would be linked based

on the other options.

-nln

Synonym for -G.

-nowarn

Suppresses warning messages from the preprocessor. Error messages are still issued. This argument only

affects the preprocessing of source files to the right of it on the command line. See Suppress warnings on

page 62.

-o outfile

Specifies the name of the output file that will be created by the compiler. See Name the executable file on

page 69.

otherarg

Any argument that esql does not recognize or deal with directly is passed to the C compiler. This process

allows you to include libraries, resource files, C compiler options, and similar arguments on the command line.

If an argument that you want to pass to the C compiler conflicts with one of the esql arguments, use the -cc

option to protect it from esql. See Pass options to the C compiler on page 70.

source.ec

The Informix® ESQL/C source file with the default suffix .ec.

-thread

Tells the Informix® ESQL/C preprocessor to create thread-safe code. See Specify versions of Informix ESQL/C

general libraries on page 76.

51

HCL Informix 14.10 - ESQL/C Programmer’s Guide

52

-static

Links Informix® static libraries instead of the default Informix® shared libraries. See Specify versions of

Informix ESQL/C general libraries on page 76.

-V

Prints the version information for your Informix® ESQL/C preprocessor then exits. If this argument is given

then all other arguments are ignored.

-version

Prints the build and version information for your Informix® ESQL/C preprocessor then exits. If this argument is

given then all other arguments are ignored.

-xopen

Generates warning messages for SQL statements that use Informix® extensions to the X/Open standard.

It also indicates that dynamic SQL statements use the X/Open set of codes for data types (when using

GET DESCRIPTOR and SET DESCRIPTOR statements or an sqlda structure). See The X/Open standards on

page 62.

UNIX-only arguments

“ [{ (explicit id) | source.ecp }] ”

“ [-cp] ”

“ [-glu] ”

“ [-np] ”

“ [-nup] ”

“ [-onlycp] ”

-cp

Causes esql to run the C preprocessor before the Informix® ESQL/C preprocessor when processing source.ec

files. The SQL keywords in the file are protected from interpretation by the C preprocessor and the protection

is removed after the C preprocessor runs. This argument only affects source files to the right of it on the

command line. See Run the C preprocessor before the ESQL/C preprocessor on page 63.

-glu

Compile such that your application can use GLU (GLS for Unicode). For details, see Enabling the GLS for

Unicode (GLU) feature on page 62.

Chapter 1. ESQL/C Guide

-np

Prevents the protecting of SQL statements in source files that are processed by the C preprocessor before

being processed by the Informix® ESQL/C preprocessor. This argument only affects source files to the right of

it on the command line. See Run the C preprocessor before the ESQL/C preprocessor on page 63.

-nup

No unprotect mode. The SQL keyword protection is not removed after the C preprocessor is run. The

compilation stops after the C preprocessor and the results are put in a file with the extension .icp. See Run the

C preprocessor before the ESQL/C preprocessor on page 63.

-onlycp

This mode is like the -cp mode in that it forces the C preprocessor to run first before the Informix® ESQL/C

preprocessor. However, the processing stops after the C preprocessor runs, leaving the result in a .icp file. See

Run the C preprocessor before the ESQL/C preprocessor on page 63.

source.ecp

The Informix® ESQL/C source file with the special suffix .ecp. It is treated as a normal Informix® ESQL/C

file that was preceded with the -cp option. See Run the C preprocessor before the ESQL/C preprocessor on

page 63.

53

HCL Informix 14.10 - ESQL/C Programmer’s Guide

54

(explicit id unique_88_Connect_42_nospace) unique_88_Connect_42_nospace

Windows-only arguments

“ [{ | -llargs | -lw:width | -ts:width }] ”

“ [@respfile] ”

“ [-dcmdl] ”

“ [-ffilename] ”

“ [-mserr] ”

“ [-n] ”

“ [-p] ”

“ [{ -mc }] ”

“ [{ { -cpu:[] { alpha | i386 | mips } | -pa | -pi | -pm } }] ”

“ [{ -runtime: [] | -rt: [] } { { libc | s } | { libcmt | m } | { msvcrt | d } }] ”

“ [{ -target: [] { dll | exe } | -wd | -we }] ”

“ [{ { -subsystem: [] | -ss: [] } { { console | c } | { windows | w } } | -Sc | -Sw }] ”

@ respfile

Specifies a file containing additional options. For details, see Create a response file on page 71

-bc

Tells the preprocessor to use the Borland C compiler instead of the Microsoft™ Visual C++ compiler. See

Specify a particular C compiler (Windows) on page 70.

-cpu:

This argument has no effect if you are using Borland C to compile. This argument tells esql what type of

processor you would like the executable program to be optimized for. There are three possible values:

alpha

For processors that are compatible with the Alpha architecture.

i386

For processors that are compatible with the Intel386 architecture. This is the default.

FNtarg_unique_88_Connect_42_nospace

Chapter 1. ESQL/C Guide

mips

For processors that use the MIPS32 or MIPS64 instructions set architecture (ISA).

-dcmdl

Shows the command line used to start the C compiler. This lets you visually verify the options that are used.

-f filename

Specifies the name of a file that contains the names of additional Informix® ESQL/C source files.

-l largs

Passes largs to the linker without interpreting or changing them. The largs is all of the arguments between the

-cc and a -r option or the end of the line. See Pass arguments to the linker on page 76.

-lw:width

When the Informix® ESQL/C source file is converted into a C source file this argument causes lines in the C

source file to be wrapped at the column position that width indicates. This argument only affects source files to

the right of it on the command line. See Line wrapping on page 69.

-mc

Tells the preprocessor to use the Microsoft™ Visual C++ compiler to compile and link. See Specify a particular

C compiler (Windows) on page 70.

-mserr

Provides Microsoft-style messages and warnings.

-n

Prevents esql from printing a version message when it runs.

-p

Synonym for -e.

-pa

Synonym for -cpu:alpha.

-pi

Synonym for -cpu:i386.

-pm

Synonym for -cpu:mips.

-rt:

Synonym for -runtime:.

-runtime:

Determines what C runtime libraries will be linked with the executable. An indicator of the library type must

follow this option with no space in between. The type must be one of the following:

55

HCL Informix 14.10 - ESQL/C Programmer’s Guide

56

d

Links a multithreaded shared library. This is the default library that is used if -runtime: is not

given. You can also use the library name in place of d. If you are using Microsoft™ Visual C++ to

compile, the library name is msvcrt. If you are using Borland C, it is cw32mti.

m

Links a static multithreaded shared library. You can also use the library name in place of m. If you

are using Microsoft™ Visual C++ to compile, the library name is libcmt. If you are using Borland C,

it is cw32mt. Cannot be used with the -static option.

s

Links a static single-threaded library. You can also use the library name in place of s. If you are

using Microsoft™ Visual C++ to compile, the library name is libc. If you are using Borland C, it is

cw32. Cannot be used with the -static option.

t

This option can be used only if you are using Borland C. It links the static multithreaded library.

You can also use the library name cw32i in place of t. Cannot be used with the -static option.

-Sc

Synonym for -subsystem:console.

-ss:

Synonym for -subsystem:

-Sw

Synonym for -subsystem:windows.

-subsystem:

Determines what subsystem will be linked into the executable. An indicator of the subsystem type must follow

this option with no space in between. The type must be one of the following:

console

This is the default type. It creates a console application. This indicator can be abbreviated as c.

windows

Creates a Windows™ application. This indicator can be abbreviated as w.

The -subsystem: option can be abbreviated -ss:.

-target:

Determines what type of file will be created. An indicator of the target type must follow this option with no

space in between. The indicator must be one of the following:

dll

A Dynamic Load Library (DLL) file will be created.

Chapter 1. ESQL/C Guide

exe

This is the default type. A regular executable file will be created.

-ts:width

Tells the preprocessor to define tab stops every width columns when creating the C source file. By default, the

preprocessor sets tab stops every eighth column. See Set tab stops on page 69.

-v

Synonym for -V.

-wd

Synonym for -target:dll.

-we

Synonym for -target:exe.

Options that affect preprocessing

The Informix® ESQL/C program must be preprocessed before a C compiler can compile it. The Informix® ESQL/C

preprocessor converts the embedded SQL statements to C language code.

You can use all the preprocessor options that the following topics describe for preprocessing only or for preprocessing,

compiling, and linking.

Check the version number

Use the -V option to obtain the HCL® Informix® version number and serial number for your Informix® ESQL/C product, as

the following example shows:

esql -V

The -version option provides more detailed version information that might be needed when dealing with HCL Informix®

technical support.

Associate options with files

Many preprocessor options affect only files that are displayed to the right of the option on the command line. For example in

this command line:

esql -G source1.ec -ansi source2.ec

The -G option affects the source1.ec file, and both the -ansi and the -G options affect the source2.ec file.

Preprocess without compiling or linking

By default, the esql command causes the IBM® Informix® ESQL/C program to be preprocessed, compiled, and linked. The

output of the esql command is an executable file. You can specify the -e option to suppress the compilation and linking of

57

HCL Informix 14.10 - ESQL/C Programmer’s Guide

58

your Informix® ESQL/C program. With this option, esql only causes preprocessing of the code. The output of this command

is a C source file (.c extension).

For example, to preprocess the program that is in the file demo1.ec, you use the following command:

esql -e demo1.ec

The preceding command would generate a C source file that is called demo1.c. The following esql command preprocesses

demo1.ec, checks for Informix® extensions to ANSI-standard syntax, and does not use line numbers:

esql -e -ansi -G demo1.ec

Generate thread-safe code
You can use the -thread option to instruct the preprocessor to generate thread-safe code.

You must use the THREADLIB environment variable with this option to specify which thread package to use when you

compile your application.

For Windows™ environments, the HCL Informix® general libraries (libgen, libos, libgls, libafs, and libsql) are shared, thread-

safe DLLs. Therefore, the esql command links the shared, thread-safe DLLs automatically. You do not set the THREADLIB

environment variable when you compile multithreaded applications in a Windows™ environment.

Check for ANSI-standard SQL syntax

When you compile the IBM® Informix® ESQL/C program, you can instruct the preprocessor to check for Informix®

extensions to ANSI-standard SQL syntax in one of two ways:

• You can set the DBANSIWARN environment variable.

After you set the DBANSIWARN environment variable, every time you compile or run the Informix® ESQL/C program,

Informix® ESQL/C checks for ANSI compatibility. For information about how to set DBANSIWARN, see the HCL®

Informix® Guide to SQL: Reference. For details about how to check for runtime warnings, see Opaque data types on

page 254. For details on how to set environment variables, see the Informix® Client Products Installation Guide for

your operating system.

• You can specify the -ansi option at compile time whenever you want to check for ANSI compatibility.

The -ansi option does not cause Informix® ESQL/C to check for ANSI compatibility at run time.

With the -ansi option, the Informix® ESQL/C preprocessor generates a warning message when it encounters the Informix®

extension to ANSI SQL syntax. The following esql command preprocesses, compiles, and links the demo1.ec program and

verifies that it does not contain any Informix® extensions to the ANSI-standard syntax:

esql -ansi demo1.ec

If you compile a program with both the -ansi and -xopen options, the Informix® ESQL/C preprocessor generates warning

messages for Informix® extensions to both ANSI and X/Open SQL syntax.

Chapter 1. ESQL/C Guide

Define and undefine definitions while preprocessing
You can use the -ED and -EU options to create or remove definitions during IBM® Informix® ESQL/C preprocessing.

To create a global definition, use one of the following forms of the -ED option:

• Use the -EDname syntax to define a Boolean symbol, as follows:

esql -EDENABLE_CODE define_ex.ec

• Use the -EDname=value syntax to define an integer constant, as follows:

esql -EDMAXLENGTH=10 demo1.ec

The -EDname is equivalent to the define preprocessor directive ($define or EXEC SQL define) with name at the top of your

Informix® ESQL/C program.

To remove or undefine a definition globally for the entire source file, use the following syntax for the -EU option:

-EUname

The -EU option has a global effect over the whole file, regardless of other define directives for name.

Restriction: Do not put a space between ED or EU and the symbol name.

As with the define and undef statements, the Informix® ESQL/C preprocessor processes the -ED and -EU options in stage 1

of preprocessing (before it preprocesses the code in your source file).

The following figure shows a code fragment that uses conditional compilation (the ifdef and ifndef directives).

Figure 16. ESQL/C excerpt that uses ifdef, ifndef, and endif

/* define_ex.ec */
#include <stdio.h>
EXEC SQL include sqlca;
EXEC SQL define ENABLE_CODE;

main()
{
⋮

EXEC SQL ifdef ENABLE_CODE;
printf("First block enabled");
EXEC SQL endif ENABLE_CODE;
⋮

EXEC SQL ifndef ENABLE_CODE;
EXEC SQL define ENABLE_CODE;
EXEC SQL endif ENABLE_CODE;
⋮

EXEC SQL ifdef ENABLE_CODE;
printf("Second block enabled");
EXEC SQL endif ENABLE_CODE;
}

59

HCL Informix 14.10 - ESQL/C Programmer’s Guide

60

For the code fragment shown in Figure 16: ESQL/C excerpt that uses ifdef, ifndef, and endif on page 59, the following

esql command line does not generate code because the command line undefines the ENABLE_CODE definition for the entire

source file:

esql -EUENABLE_CODE define_ex.ec

Check for missing indicator variables

If you include the -icheck option, the Informix® ESQL/C preprocessor generates code in your program that returns a runtime

error if an SQL statement returns a null value to a host variable that does not have an associated indicator variable. For

example, the following command tells the preprocessor to insert code that checks for null values into the demo1.ec

program:

esql -icheck demo1.ec

If you do not use the -icheck option, Informix® ESQL/C does not generate an error if the database server passes a null value

to a host variable without an indicator variable.

Name the location of include files
The -I preprocessor option allows you to name a directory where the preprocessor searches for IBM® Informix® ESQL/C and

C include files.

This option is valid for both the Informix® ESQL/C and the C preprocessors as follows:

• The Informix® ESQL/C preprocessor (esql) processes only Informix® ESQL/C include files.

You specify these include files with the include preprocessor directive $include or EXEC SQL include.

• The C preprocessor (cc) processes only the C include files.

You specify these files with the #include preprocessor statement. Because the C preprocessing begins after the

Informix® ESQL/C compilation is completed, the C include files are processed after the Informix® ESQL/C include

files.

The preprocessor passes the -I option to the C compiler for processing of C include files (those files that a #include

preprocessor statement specifies). The syntax for the -I option is as follows:

esql -Idirectory esqlcprogram.ec

The directory can be on a mounted remote file system if the standard C library functions fopen(), fread(), and fclose() can

access them.

The following esql command names the UNIX™ directory /usr/johnd/incls as a directory to search for Informix® ESQL/

C and C include files within the demo1 program:

esql -I/usr/johnd/incls demo1.ec

Each -I option lists a single directory. To list several directories, you must list multiple -I options on the command line.

Chapter 1. ESQL/C Guide

To search in both the C:\dorrie\incl and C:\johnd\incls directories in a Windows™ environment, you would need to

issue the following command:

esql -IC:dorrie\incl -IC:\johnd\incls demo1.ec

When the preprocessor reaches an include directive, it looks through a search path for the file to include. It searches

directories in this sequence:

1. The current directory

2. The directories that -I preprocessor options specify (in the order in which you specify them on the command line)

3. The directory $INFORMIXDIR/incl/esql on a UNIX™ operating system and the %INFORMIXDIR%\incl\esql in

a Windows™ environment (where $INFORMIXDIR and %INFORMIXDIR% represent the contents of the environment

variable of that name)

4. The directory /usr/include

Line numbers

By default, the Informix® ESQL/C preprocessor puts #line directives in the .c file so that if an error is detected by the C

compiler it directs you to the line that generated the problem C code in the Informix® ESQL/C source file. If you instead want

to be directed to the problem line in the C file itself you can turn off line numbering by using the -G option. The -G option

prevents the generation of #line directives in source code files that follow it on the command line. To turn line numbers back

on, use the -g option. Files that follow the -g option will have #line directives generated.

Cursor names and statement IDs
By default, Informix® ESQL/C defines cursor names and statement IDs as global entities. If you use the -local option, static

cursor names and static statement IDs that you declare in a file are local to that file.

To create the local name, Informix® ESQL/C adds a unique tag (two to nine characters long) to the cursor names and

statement IDs in the Informix® ESQL/C program. If the combined length of the cursor name (or statement ID) and the unique

tag exceeds 128 characters, you receive a warning message.

The -local option is provided primarily for compatibility with applications that were created in previous versions of Informix®

ESQL/C. Do not use this option when you compile new applications. Do not mix files compiled with and without the -local

flag. If you mix them, you might receive unpredictable results.

If you use the -local option, you must recompile the source files every time you rename them.

Redirect errors and warnings
By default, esql directs error and warning messages it generates to standard output. If you want the errors and warnings to

be put into a file, use the -log option with the file name.

For example, the following esql command compiles the program demo1.ec and sends the errors to the err.out file:

esql -log err.out -o demorun demo1.ec

61

HCL Informix 14.10 - ESQL/C Programmer’s Guide

62

This option only affects the error warnings that the Informix® ESQL/C preprocessor generates. The warnings from the

compile and link stages still go to the standard error output, which is stderr on UNIX™, for example.

Suppress warnings
By default, the preprocessor generates warning messages when it processes the Informix® ESQL/C file. To suppress these

warning messages, use the -nowarn option. This option has no effect on error messages.

Enabling the GLS for Unicode (GLU) feature
The GLS for Unicode (GLU) is a feature that allows your application to use the International Components for Unicode (ICU)

libraries instead of the usual GLS libraries when handling Unicode.

About this task

The main advantage of using the ICU libraries is that they take the locale into account when collating Unicode characters, the

GLS libraries do not.

To enable GLU:

1. Compile your application by using the -glu option to the esql command.

2. Set the GL_USEGLU environment variable to 1 in the environment of both client and database server. The GL_USEGLU

environment variable must be set to a value of 1 (one) before the server is started, and before the database is

created.

3. Choose a locale that uses either Unicode or GB18030-2000 as a code set.

The X/Open standards
The -xopen option tells the IBM® Informix® ESQL/C preprocessor that your program uses X/Open standards.

When you specify this option, the preprocessor performs the following two tasks:

• It checks for Informix® extensions to X/Open-standard syntax.

If you include Informix® extensions to X/Open-standard syntax in your code, the preprocessor generates warning

messages.

• It uses the X/Open set of codes for SQL data types.

Informix® ESQL/C uses these codes in a dynamic management structure (a system-descriptor area or an sqlda

structure) to indicate column data types. Informix® defines these codes in the sqlxtype.h header file.

If you use X/Open SQL in the Informix® ESQL/C program, you must recompile any other source files in the same application

with the -xopen option.

If you compile a program with both the -xopen and -ansi options, the Informix® ESQL/C preprocessor generates warning

messages for Informix® extensions to both X/Open and ANSI SQL syntax.

Chapter 1. ESQL/C Guide

Run the C preprocessor before the ESQL/C preprocessor

The compilation of the IBM® Informix® ESQL/C source file can follow either the default order, where the Informix® ESQL/

C preprocessor runs first on the source file, or it can allow the C preprocessor to run on the source file before the Informix®

ESQL/C preprocessor.

The default sequence of compilation for the Informix® ESQL/C source file is as follows:

1. The Informix® ESQL/C preprocessor performs the following steps to create a .c file from the Informix® ESQL/C

source file:

◦ Incorporates Informix® ESQL/C header files into the source file when it processes all include directives

($include and EXEC SQL include statements)

◦ Creates or removes compile-time definitions when it processes all define ($define and EXEC SQL define) and

undef ($undef and EXEC SQL undef) directives

◦ Processes any conditional compilation directives (ifdef, ifndef, else, elif, endif) and translates embedded SQL

statements to Informix® ESQL/C function calls and special data structures

2. The C preprocessor takes the following actions:

◦ Incorporates C header files into the source file when it processes all C include directives (#include)

◦ Creates or removes compile-time definitions when it processes all C language define (#define) and undef

(#undef) directives

◦ Processes C conditional compilation directives (#ifdef, #ifndef, #else, #elif, #endif)

3. The C compiler, assembler, and linker work in the usual way, as they do for a C source file, translating the C code file

into an executable program.

This default order of compilation is restrictive because you cannot use #defines or typedefs defined in C system header files

or custom C header files to define Informix® ESQL/C host variables and constants, nor can you use them for conditional

compilation of Informix® ESQL/C code. With the default order of compilation, C header files do not get included into the

Informix® ESQL/C source code until after the Informix® ESQL/C preprocessor has run, making these definitions unavailable

to the Informix® ESQL/C preprocessor.

Options for running the C preprocessor first

You can make the C preprocessor run on the Informix® ESQL/C source file first, thus expanding any C-dependent typedefs or

#defines inside the Informix® ESQL/C source file before the Informix® ESQL/C preprocessor is run on that source file. You

can do this in any of the following ways:

• Pass the -cp or the -onlycp option to the esql command.

Both force the C preprocessor to run first, but in the case of the -cponly option, the compilation stops after the C

preprocessor is run, and the result is put in a .icp file.

• Create the Informix® ESQL/C source file with a .ecp extension.

This process triggers the -cp option on the file automatically.

63

HCL Informix 14.10 - ESQL/C Programmer’s Guide

64

• Set the CPFIRST environment variables to TRUE (uppercase only).

• Use the eprotect.exe utility.

The CPFIRST environment variable (UNIX™)
The CPFIRST environment variable specifies whether the C preprocessor is to run before the IBM® Informix® ESQL/C

preprocessor on all Informix® ESQL/C source files.

Set the environment variable to TRUE (uppercase only) to run the C preprocessor on all Informix® ESQL/C source files,

irrespective of whether the -cp option is passed to the esql command, and irrespective of whether the source file has the .ec

or the .ecp extension.

Using the eprotect.exe utility (Windows™)
Windows™ users can use the eprotect.exe utility to run the preprocessor on the IBM® Informix® ESQL/C source file.

About this task

The eprotect.exe utility protects all of the SQL keywords against interpretation by the C preprocessor. The eprotect.exe -u

option removes SQL keyword protection.

To change the preprocessor order for the Informix® ESQL/C source file on Windows™:

1. Run the following command:

%INFORMIXDIR%\lib\eprotect.exe filename.ec filename.c

This command protects all of the SQL keywords against interpretation by the C Preprocessor and writes the result to

the file filename.c.

2. Run the following command:

cl /E filename.c > filename2.c

This command runs the C Preprocessor on the source file filename.c and writes the result to the file

filename2.c.

3. Run the following command:

%INFORMIXDIR%\lib\eprotect.exe -u filename2.c filename.ec

This command removes SQL keyword protection and stores the result in filename.ec.

4. Run esql on the source file to compile it.

The order of compilation when the C preprocessor runs first

When a user chooses to run the C preprocessor on the IBM® Informix® ESQL/C source file before the Informix® ESQL/C

preprocessor, the file undergoes the following order of compilation.

1. The eprotect utility runs on the source file to protect all SQL keywords against interpretation by the C preprocessor.

2. The C preprocessor runs on the source file.

3. The eprotect utility runs on the output of the C preprocessor with the -u mode to remove SQL keyword protection.

Chapter 1. ESQL/C Guide

4. The Informix® ESQL/C preprocessor runs on the output of the C preprocessor, which no longer has any SQL keyword

protection.

5. The output of the Informix® ESQL/C preprocessor undergoes compilation and linking by the C compiler and linker to

produce an executable file.

Define host variables based on C #defines and typedefs

When the C preprocessor runs on a source file, it expands the contents of all C header files where they are included within the

source file. This expansion makes it possible to use host variables in IBM® Informix® ESQL/C source files based on types

and #define and typedef statements in C header files. The examples given here indicate some of the advantages of sharing

header files. In the following example, the same C header file is used by both Informix® ESQL/C and C source files.

Figure 17. ESQL/C and C excerpt that share a C header file

/*header file i.h*/
#define LEN 15
typedef struct customer_t{
 int c_no;
 char fname[LEN];
 char lname[LEN];
 } CUST_REC;
⋮

/*cust.ec*/
#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
#include "i.h"
EXEC SQL END DECLARE SECTION;

int main()
{

EXEC SQL BEGIN DECLARE SECTION;
 CUST_REC cust;
EXEC SQL END DECLARE SECTION;
⋮

}

/*name.c*/
#include “i.h"
int main ()
{...
 CUST_REC cust;
⋮

}

In the following example, the Informix® ESQL/C source file contains a host variable based on a type defined in the time.h

system-header file.

65

HCL Informix 14.10 - ESQL/C Programmer’s Guide

66

Figure 18. ESQL/C excerpt that uses a host variable of the type defined in a C system-header file

/*time.ec*/

#include <time.h>

main ()
{...
EXEC SQL BEGIN DECLARE SECTION;
 time_t time_hostvar;
EXEC SQL END DECLARE SECTION;
⋮

}

A C header file can be included anywhere inside the Informix® ESQL/C source file. However, to define host variables in

Informix® ESQL/C files based on #defines and typedefs defined in C header files, you must include the C header file within

the EXEC SQL declare section.

Contrast the example in Figure 19: ESQL/C excerpt that defines a host variable based on a c header file included outside the

declare section on page 66, which leads to error -33051: Syntax error on identifier or symbol ‘name_hostvar with the

example in Figure 17: ESQL/C and C excerpt that share a C header file on page 65 which does not. The only difference is

that in the example in Figure 17: ESQL/C and C excerpt that share a C header file on page 65, the C header file with the

#define and the typedef that is used in the EXEC SQL declare section is included within that declare section.

Figure 19. ESQL/C excerpt that defines a host variable based on a c header file included outside the declare section

/*header file i.h*/
#define LEN 15
typedef struct customer_t{
 int c_no;
 char fname[LEN];
 char lname[LEN];
 } CUST_REC;
⋮

/*cust.ec*/
#include "i.h"

int main()
{

EXEC SQL BEGIN DECLARE SECTION;
 CUST_REC cust;
⋮

}
⋮

...Leads to error -33051...

Chapter 1. ESQL/C Guide

Allow all valid C declaration syntax inside the EXEC SQL declare section

When the IBM® Informix® ESQL/C preprocessor runs on a file, it expands all the contents of header files inside the

Informix® ESQL/C source file where the header file was included in the source file. Therefore, one consequence of including

C header files inside the EXEC SQL declare section is that all types of C declaration syntax are included in the EXEC SQL

declare section after they pass through the C preprocessor. You can now include all valid C declaration syntax in the EXEC

SQL declare section in the EXEC SQL declare section. However, you can only declare host variables based on certain types

described in Host-variable data types on page 12.

Exclude statements inside C header files

If the IBM® Informix® ESQL/C preprocessor has problems with certain statements in C header files, you can exclude specific

lines from the preprocessing that the Informix® ESQL/C preprocessor performs as shown in the following example.

Figure 20. ESQL/C and C excerpt that uses a common C header file

/*header file i.h*/
#ifndef ESBDS /*define empty macros, if included by a C\
 source*/
#define ESBDS
#define ESEDS
#endif
⋮

ESEDS
statement that you do not want ESQL/C preprocessor to see
ESBDS

/*name.ec*/
#define ESBDS EXEC SQL BEGIN DECLARE SECTION;
#define ESEDS EXEC SQL END DECLARE SECTION
main ()
{...
EXEC SQL BEGIN DECLARE SECTION;
 #include “i.h"
EXEC SQL END DECLARE SECTION;
⋮

}

SQL keyword protection

If the code in the IBM® Informix® ESQL/C files is passed unprotected to the C preprocessor before it is passed to the

Informix® ESQL/C preprocessor, certain SQL keywords might be analyzed by the C preprocessor, which causes unintended

results. In the following example, the SQL keyword NULL is replaced by the C preprocessor with the value zero, which creates

a valid SQL statement, but one which inserts a value into the orders table other than the value that the programmer intended:

EXEC SQL insert into orders (shipcharge) values (NULL);

When a user gives the option to run the C preprocessor before the Informix® ESQL/C preprocessor, the utility eprotect runs

before the C preprocessor runs on the Informix® ESQL/C source file. The eprotect utility adds a prefix to any SQL keyword

67

HCL Informix 14.10 - ESQL/C Programmer’s Guide

68

that occurs in an SQL statement with the prefix SQLKEYWORD_. This prefix is affixed on all SQL keywords inside SQL

statements that begin with the EXEC SQL directive and end with a semicolon. When the Informix® ESQL/C source file that

contains the select statement mentioned earlier is passed to the C preprocessor, the SELECT statement has the following

form:

EXEC SQL SQLKEYWORD_insert SQLKEYWORD_into orders (order_num)
SQLKEYWORD_values (SQLKEYWORD_NULL);

After the C preprocessor runs on the Informix® ESQL/C source file, the esql command runs the eprotect utility with the -u

mode, which removes all the SQLKEYWORD_ prefixes before it runs the Informix® ESQL/C preprocessor on the output of the

C preprocessor.

SQL keyword protection and the dollar sign ($) symbol

All SQL statements within IBM® Informix® ESQL/C source files can either begin with the EXEC SQL key words or with the $

prefix. All of the following pairs of statements are equivalent:

EXEC SQL BEGIN DECLARE SECTION;
$BEGIN DECLARE SECTION;

EXEC SQL connect to ‘database9’;
$connect to ‘database9’;

EXEC SQL select fname into :hostvar1 from table1;
$ select fname into :hostvar1 from table1;

However, the $ symbol can also occur at the beginning of typedef definitions such as in the following example:

$int *ip = NULL;

In cases such as the preceding typedef example, program logic might require that the C preprocessor substitute the value

zero in the place of the keyword NULL. Not allowing the C preprocessor to make value substitutions in such cases would

lead to errors. Therefore, the eprotect utility does not add a prefix to the SQLKEYWORD_ prefix on SQL keywords that are

displayed in SQL statements that begin with the dollar sign ($) symbol.

Important: If you want to run the C preprocessor on your Informix® ESQL/C source file before the Informix®

ESQL/C preprocessor, and if you do not want the C preprocessor to substitute values for the SQL keywords in SQL

statements that occur in your source file, you must begin each SQL statement with the keywords EXEC SQL, and not

with the dollar sign ($) symbol.

Preprocessor options specific to Windows™ environments

The following additional preprocessing options are available to you if you use IBM® Informix® ESQL/C in a Windows™

environment.

Chapter 1. ESQL/C Guide

Line wrapping

The Informix® ESQL/C preprocessor translates one embedded SQL statement as one C line. Long lines can cause problems

for some debuggers and editors. You can use the -lw option to tell the preprocessor to wrap output lines at a specific column

position. For example, the following esql command tells the preprocessor to wrap lines at column 75:

esql -lw:75 demo.ec

If you omit the -lw option, the preprocessor does not perform line wrapping.

Change error and warning displays

By default, the IBM® Informix® ESQL/C preprocessor generates error and warning messages when it processes the

Informix® ESQL/C file. It displays these errors and warnings in the console window. You can change the display of error and

warning messages with the following command-line options:

• Use the -nowarn option to suppress warning messages. This option has no effect on error messages.

• Use the -mserr option to display error and warning messages in Microsoft™ Error Message format. Some text editors

understand this format and can use it to go to the line in the Informix® ESQL/C source file that caused the error or

warning.

Set tab stops

By default, the IBM® Informix® ESQL/C preprocessor formats the C source file with tab stops at every eighth column

position. You can use the -ts option to set different tab stops. For example, the following esql command tells the

preprocessor to set tab stops every four characters:

esql -ts:4 demo.ec

Compiling and linking options of the esql command

The following sections describe the compiling and linking options of the esql command.

Name the executable file
You can explicitly specify the name of the executable file with the -o option.

For example, the following esql command produces an executable file called inpt:

esql -o inpt custinpt.ec ordinpt.ec

If esql is running on a Windows™ operating system, the name of the target file defaults to the name of the first IBM®

Informix® ESQL/C source file on the esql command line. The extension is changed to either .exe or .dll depending on the

type of target being generated.

If esql is running on a UNIX™ operating system, the name of the target file defaults to whatever is the default for your C

compiler, usually a.out.

69

HCL Informix 14.10 - ESQL/C Programmer’s Guide

70

Set the type of executable files created (Windows™)

The esql command can be used to compile regular executable files and also Dynamic Link Libraries (DLLs). Use the -target:

option to tell esql which type of output you want. The -target: option only tells esql how to compile your application. If you

compile to a DLL, your source code must be written as a DLL or the compile fails

Pass options to the C compiler
The esql command processor passes any unrecognized arguments in the command line to the C compiler.

For example, because esql does not recognize /Zi as an option, the following esql command passes the /Zi option to the C

compiler:

esql /Zi demo1.ec

If you want to pass C compiler options that have the same names as IBM® Informix® ESQL/C processor options, precede

them with the -cc option. The esql command ignores any options between the -cc and the next occurrence of any of these

arguments:

• -l (Windows™ only)

• -r (Windows™ only)

• -f (Windows™ only)

• The Informix® ESQL/C source file.

Specify a particular C compiler (Windows™)

ESQL/C in Windows™ environments supports the following C compilers:

• Microsoft™ Visual C++, Version 2.x or later

• Borland C++, Version 5

Either the Microsoft™ C compiler or the Borland C compiler must be on your computer before you can compile the IBM®

Informix® ESQL/C program. The default C compiler option, -mc, starts the Microsoft™ compiler. To choose the Borland

compiler, use the -bc option.

Compile without linking

By default, the IBM® Informix® ESQL/C command processor preprocesses, compiles, and links the Informix® ESQL/C

program and creates either an executable file or a DLL. To suppress the linking of your Informix® ESQL/C program specify

the -c option. With this option, esql only preprocesses and compiles the code. The output of this command is a C object file

(.obj extension) for each C source file (.c) or Informix® ESQL/C source file (.ec).

For example, to preprocess and compile the Informix® ESQL/C source file demo1.ec, use the following command:

esql -c demo1.ec

The preceding command generates a C object file called demo1.obj. The following esql command preprocesses

demo1.ec, checks for Informix® extensions to X/Open-standard syntax, and suppresses warning messages:

Chapter 1. ESQL/C Guide

esql -c -xopen -nowarn demo1.ec

Important: If you specify the conflicting options -c and -o, the preprocessor ignores the -o option and processes the

-c option. The preprocessor reports the conflict in an error message.

Special compile options for Windows™ environments

You can give the following additional compile options to the esql command if you are running IBM® Informix® ESQL/C in a

Windows™ environment.

Specify the name of a project file
The -f option enables you to specify the name of a project file at the esql command line.

The filename that follows -f is a project file that contains the names of the IBM® Informix® ESQL/C source (.ec) files to

compile.

For example, suppose the project file, project.txt, contains the following lines:

first.ec
second.ec
third.ec

In this example, first.ec, second.ec, and third.ec represent the names of Informix® ESQL/C source files that you

want to compile.

The following esql command uses the project.txt project file to specify the three source files to compile and link:

esql -f project.txt

The preceding esql command is the equivalent of the following esql command:

esql first.ec second.ec third.ec

You can accomplish the same task with a response file.

Create a response file
You can specify the command-line arguments for the IBM® Informix® ESQL/C command processor in a response file and

specify the file name for the Informix® ESQL/C processor.

The Informix® ESQL/C response file is a text file with Informix® ESQL/C command-line options and file names, separated by

a space, a new line, a carriage return, a line feed, or a combination of these characters.

The following example shows the syntax that specifies a response file called resp.esq:

esql @resp.esq

The response file, resp.esq, might contain the following lines:

-we
first.ec

71

HCL Informix 14.10 - ESQL/C Programmer’s Guide

72

second.ec
third.ec
-r foo.rc

Use of this response file is the equivalent of the following esql command:

esql -we -f project.txt -r foo.rc

In this example, project.txt is a project file that contains the file names first.ec, second.ec, and third.ec on

separate lines, as the previous shows.

You might use a response file for the following reasons:

• The command line is limited to 1,024 characters. If your esql options exceed this length, you must use a response

file.

• If you use one or more sets of esql options regularly, you can avoid a lot of typing by putting each set in a different

response file. Instead of typing the options, you can list the appropriate response file in the esql command.

Implicit options invoked by the esql preprocessor in Windows™ environments

The Informix® ESQL/C command processor implicitly passes compiler and linker flags to the supported C compilers. The

following table lists the implicit options that esql passes when you use the indicated esql options. If you choose to create

your own build file, use the indicated flags as appropriate for your application.

Important: The esql command does not implicitly pass any options to the resource compiler.

Table 9. Implicitly passed compiler options

The first column shows the compiler that applies to the columns to the right. The compilers are Microsoft™ Visual C++, Version 2.x and later or Borland C++, Version 5. The next two columns show the Module type, and esql options. The fourth and fifth columns show the Implicit options: Compiler and Linker.

Implicit options
Compiler Module type esql options

Compiler Linker

executable -target:exe

-we

-c

-I%INFORMIXDIR%

\incl\esql/D_systype/D_procty

pe/threadtype/DWIN32

-DEF:deffile -OUT:target -MAP
-SUBSYSTEM:systype
%INFORMIXDIR%\lib\isqlt09a.lib
%INFORMIXDIR%\lib\igl4g303.lib
%INFORMIXDIR%\lib\iglxg303.lib
%INFORMIXDIR%\lib\igo4g303.lib
libset

Microsoft™

Visual C++,

Version 2.x

or later

dll -target:dll

-wd

-c

-I%INFORMIXDIR%

\incl\esql/D_systype/D_procty

pe/threadtype/DWIN32

-DLL -DEF:deffile -OUT:target -MAP
-SUBSYSTEM:systype

%INFORMIXDIR%\lib\isqlt09a.lib
%INFORMIXDIR%\lib\igl4g303.lib
%INFORMIXDIR%\lib\iglxg303.lib
%INFORMIXDIR%\lib\igo4g303.lib
libset

Chapter 1. ESQL/C Guide

Table 9. Implicitly passed compiler options

The first column shows the compiler that applies to the columns to the right. The compilers are Microsoft™ Visual C++, Version 2.x and later or Borland C++, Version 5. The next two columns show the Module type, and esql options. The fourth and fifth columns show the Implicit options: Compiler and Linker.

(continued)

Implicit options
Compiler Module type esql options

Compiler Linker

executable -target:exe

-we

-c -I%INFORMIXDIR%\

incl\esql-etarget-subtype-libt

log-libtlg

-c -Tpe -M
-DEF:deffile-subsystem

%INFORMIXDIR%\lib\igl4b303.lib
%INFORMIXDIR%\lib\iglxb303.lib
%INFORMIXDIR%\lib\igo4b303.lib
c0t32.obj
libset

Borland

C++,

Version 5

dll -target:dll

-wd

-c

-I%INFORMIXDIR%

\incl\esql-etarget-subtype-lib

tlog-libtlg

-c -Tpd -M
-DEF:deffile-subsystem

%INFORMIXDIR%\lib\igl4b303.lib
%INFORMIXDIR%\lib\iglxb303.lib
%INFORMIXDIR%\lib\igo4b303.lib
c0d32.obj
libset

The italicized terms in the compiler and linker options represent the following definitions.

deffile

Name of a .def file (The -DEF option executes only if you specify a .def file on the command line.)

libset

Library set (depends on whether the application is WINDOWS or CONSOLE).

libtlg

-D_RTLDLL for a dynamic library or " " for a shared library

libtlog

-WM for a multithread library or " " for a single-thread library

proctype

Type of processor (X86)

subsystem

ap for a console subsystem or aa for a Windows™ subsystem

subtype

WC for an executable console, W for a Windows™ executable file, WCD for a console DLL, or WD for a

Windows™ DLL

73

HCL Informix 14.10 - ESQL/C Programmer’s Guide

74

systype

Type of subsystem (WINDOWS or CONSOLE)

t

X for a console subsystem and W for a Windows™ subsystem

target

Name of the executable file (name of first .ec file or the name specified by the -o command-line option)

threadtype

Type of thread option (ML, MT, MD, depending on the value of the -runtime command-line option)

For more information about the -target, -wd, and -we command-line options, see Syntax of the esql command on page 49

The library set that the linker uses depends on whether you are creating a Windows™ or console application. The following

table lists the library sets that the indicated esql options use.

Table 10. Library sets that the linker uses

The first column shows the compiler that applies to the columns to the right. The compilers are Microsoft™ Visual C++, Version 2.x or later and Borland C++, Version 5. The next two columns show the Options for esql and Library sets that the linker uses.

Compiler Options for esql Library sets that the linker uses

• -subsystem:windows

• -Sw

• -ss:w

• advapi32.lib

• wsock32.lib

• user32.lib

• winmm.lib

• gdi32.lib

• comdlg32.lib

• winspool.lib

Microsoft™ Visual C++, Version 2.x

or later

• -subsystem:console

• -Sc

• -ss:c

• netapi32.lib

• wsock32.lib

• user32.lib

• winmm.lib

Borland C++, Version 5
• -subsystem:windows

• -Sw

• -ss:w

• cw32mti.lib

• import32.lib

Chapter 1. ESQL/C Guide

Table 10. Library sets that the linker uses

The first column shows the compiler that applies to the columns to the right. The compilers are Microsoft™ Visual C++, Version 2.x or later and Borland C++, Version 5. The next two columns show the Options for esql and Library sets that the linker uses.

(continued)

Compiler Options for esql Library sets that the linker uses

• -subsystem:console

• -Sc

• -ss:c

• cw32mti.lib

• import32.lib

Linking options
The C compiler performs the linking phase of the IBM® Informix® ESQL/C compile.

This section describes the esql command-line arguments that affect how this linking occurs.

General linking options

The following linking options affect both UNIX™ and Windows™ environments:

• Linking other C source and object files

• Specifying the versions of HCL Informix® general libraries

Linking other C source and object files

You can list the following types of files on the esql command line to indicate that you want the link editor to link to the

resulting object file:

• C source files in the form otherCsrc.c

If you list files with the .c extensions, esql passes them through to the C compiler, which compiles them to object

files (.o extensions) and links these object files.

• C object files in the form otherCobj.o on a UNIX™ operating system or otherCobj.obj in a Windows™

environment

If you list files with .o or .obj extensions, esql passes them through to the C compiler, which links these object files.

The link editor links the C object files with the appropriate IBM® Informix® ESQL/C library functions.

• Library files, either your own libraries or system libraries that are compatible with the linker

• Module definitions (.def)

75

HCL Informix 14.10 - ESQL/C Programmer’s Guide

76

• Resource files, either compiled (.res) or uncompiled (.rc)

Tip: If you specify uncompiled resource files, esql passes them to the resource compiler and links the

resulting .res file to the Informix® ESQL/C application.

The Informix® ESQL/C command preprocessor passes these files directly to the linker. It also links the libraries it needs to

support the Informix® ESQL/C function library. You can use the -libs option to determine which libraries esql automatically

links, as follows:

esql -libs

Specify versions of Informix® ESQL/C general libraries

By default, the esql command links the shared libraries for the HCL Informix® general libraries: libgen, libos, libgls, libafs,

and libsql. To use shared libraries, your computer must support shared memory.

You can use the following command-line options to change which versions of the Informix® general libraries the

preprocessor links with your program:

• The -thread option tells the preprocessor to link the thread-safe versions of the Informix® shared libraries.

• The -static option tells the preprocessor to link the static libraries for the Informix® general libraries in a UNIX™

environment. If you use the -static option, you cannot set the IFX_LONGID environment variable. You must recompile

with libos.a.

You can combine these options to tell the preprocessor to link in the thread-safe versions of the Informix® static libraries.

Special linking options for Windows™

The following sections give linking options that you can only use in Windows™ environments.

Pass arguments to the linker
On the esql command line, you can list linker arguments by prefacing them with the -l processor option.

The esql command processor passes to the linker all arguments after the -l option, up to whichever of the following items it

encounters first:

• The -r option to specify resource compiler options

• The end of the command line

Pass arguments to the resource compiler
On the esql command line, you can list resource compiler arguments by prefacing them with the -r processor option.

The IBM® Informix® ESQL/C command processor passes to the resource compiler all arguments after the -r, up to the end

of the command line. The processor then runs the resource compiler to create a .res file, which it then passes to the linker.

Chapter 1. ESQL/C Guide

If you specify the -r option but do not specify an associated resfile.rc, esql uses the name for the target and appends the

.rc extension.

ESQL/C dynamic link libraries

For Windows™ environments, the IBM® Informix® ESQL/C product includes the following dynamic link libraries (DLLs):

• The ESQL client-interface DLL (isqlt09a.dll) contains the Informix® ESQL/C library functions that the Informix®

ESQL/C preprocessor needs to translate embedded SQL statements and other internal functions that are needed at

run time.

• The esqlauth.dll DLL provides runtime verification of the connection information that the client application sends

to the database server. When your application requests a connection, Informix® ESQL/C calls the sqlauth() function,

which esqlauth.dll defines. For more information about sqlauth(), see Connection authentication functionality in

a Windows environment on page 324.

• The Registry DLL, iregt07b.dll, is used by the Setnet32 utility and the HCL Informix® Connect library to set and

access configuration information in the Registry.

• The igl4b304.dll, igo4g303.dll, and iglxg303.dll DLLs are required for Global Language Support (GLS).

For more information about code-set conversion, see the HCL® Informix® GLS User's Guide.

Informix® DLLs are located in the %INFORMIXDIR%\bin directory. %INFORMIXDIR% is the value of the INFORMIXDIR

environment variable.

Same runtime routines for version independence

If your application was compiled with a version of Microsoft™ Visual C++ earlier than 4.x, you must export your C runtime

library to the ESQL client-interface DLL (isqlt09a.dll). The ESQL client-interface DLL uses your runtime routines to make

sure all the pieces of your application are compiled with the same runtime version. Any application that is linked to your

application and calls IBM® Informix® ESQL/C library routines or SQL statements must also use your C runtime library.

To export a C runtime library, include the following line in your code before the first call to the Informix® ESQL/C library

routine or SQL statement:

#include "infxcexp.c";

The infxcexp.c file contains the C code to export the addresses of all C runtime routines that the ESQL client-interface

DLL uses. This file is in the %INFORMIXDIR%\incl\esql directory, which the esql command processor automatically

searches when it compiles a program. If you do not use the esql command processor, add the %INFORMIXDIR%\incl

\esql directory to the compiler search path before you compile.

You must include the infxcexp.c file only once, in the main() routine (once per process), before the first Informix® ESQL/

C library call or SQL statement in the program. The code in this file exports your runtime library to the ESQL runtime DLL

(isqlt09a.dll) so that they use the same C runtime code. Exporting your runtime routines enables the ESQL runtime

routines to allocate memory (malloc()), return the pointer to a C program, and let the program free the memory (free()). It also

enables a C program to open a file and to pass the handle (or file pointer) to the ESQL runtime routines for read/write access.

77

HCL Informix 14.10 - ESQL/C Programmer’s Guide

78

Access the ESQL Client-interface DLL in Windows™ environments

A dynamic link library (DLL) is a collection of functions and resources that can be shared by applications. It is similar to a

runtime library in that it stores functions that many applications need. It differs, however, from a runtime library in the way

that it is linked to the calling application.

Libraries that are linked at compile time are static-link libraries. The libraries such as libc and libcmt (used with the

Microsoft™ Visual C++, Version 2.x) are static-link libraries. Whenever you link one of these Microsoft™ Visual C++ (Version

2.x) libraries to your application, the linker copies the code from the appropriate static-link library to the executable

file (.exe) for your application. By contrast, when you link dynamically, no code is copied to the executable file of your

application. Instead, your functions are linked at run time.

Static-link libraries are effective in an environment where no multitasking is required. However, they become inefficient

when more than one application calls the same functions. For example, if two applications that are running simultaneously

in a Windows™ environment call the same static-link function, two copies of the function is in memory. This situation is

inefficient.

But if a function is dynamically linked, the Windows™ system first checks memory to see if a copy of the function already is

there. If a copy exists, the Windows™ system uses that copy rather than making another copy. If the function does not yet

exist in memory, the Windows™ system links or copies the function into memory from the DLL.

The IBM® Informix® ESQL/C library functions, and other internal functions, are contained in the ESQL client-interface DLL.

To use these functions in your Informix® ESQL/C application, you must perform the following tasks:

• Access the import library for the ESQL client-interface DLL

• Locate the ESQL client-interface DLL

Access the import library
The import library of the DLL is provided to enable your IBM® Informix® ESQL/C application to access the ESQL client-

interface DLL.

The linker uses an import library to locate functions that are contained in the DLL. It contains references that reconcile

function names used in an application with the library module that contains the function.

When you link a static library to your application, the linker copies program code from your static-link libraries to the

executable file. However, if you link an import library to your application, the linker does not copy the program code when it

links the executable file. Instead, the linker stores the information needed to locate the functions in the DLL. When you run

your application, this location information serves as a dynamic link to the DLL.

The ESQL client-interface library provides location information for the Informix® ESQL/C function calls. The esql command

processor automatically links the import and Windows™ libraries for the DLL whenever you use it to compile and link your

Informix® ESQL/C program.

Chapter 1. ESQL/C Guide

Locate a DLL

During the development of your application, the IBM® Informix® ESQL/C software (such as the esql command processor)

must be able to access object libraries and import libraries. However, DLLs must be accessible when the application is

running. Consequently, Windows™ must be able to locate them on your hard disk.

Search directories for your DLL in the following order:

1. The directory from which you loaded the application

2. The Windows™ environment system directory, SYSTEM

3. The current directory (where the executable file exists or the working directory that the Program Item Properties value

for the icon specifies)

4. Directories that your PATH environment variable lists

For the most recent information about your particular Windows™ operating system, see the Dynamic-Link Library Search

Order documentation at http://www.microsoft.com.

Build an application DLL
You can tell the IBM® Informix® ESQL/C processor to build the Informix® ESQL/C program as a DLL (.dll file) with the

-target (or -wd) command-line option. Such a program is called an application DLL.

To build the Informix® ESQL/C program as a DLL, follow the guidelines for general-purpose DLLs. For more information,

see your system documentation. Compile the Informix® ESQL/C source file with the -target:dll (or -wd) to create the

application DLL.

For an example of how to build an application DLL, see the WDEMO demonstration program in the %INFORMIXDIR%\demo

\wdemo directory. The Informix® ESQL/C source file for the sample application DLL is called wdll.ec. To compile this DLL,

use the following esql command:

esql -subsystem:windows -target:dll wdll.ec

The source code for the WDEMO executable file is in the wdemo.exe file.

Informix® ESQL/C data types
These topics contain information about the correspondence between SQL and C data types and how to handle data types in

the IBM® Informix® ESQL/C program.

These topics contain the following information:

• Choosing the appropriate data type for a host variable

• Converting from one data type to another

• Functions for working with nulls and different data types

79

http://www.microsoft.com

HCL Informix 14.10 - ESQL/C Programmer’s Guide

80

Choose data types for host variables

When you access a database column in your IBM® Informix® ESQL/C program, you must declare a host variable of the

appropriate C or Informix® ESQL/C data type to hold the data. Table 11: Corresponding SQL and host variable data types on

page 80 lists the SQL data types of the HCL Informix® and the corresponding Informix® ESQL/C data types that you can

declare for host-variables. Table 12: Corresponding SQL and host variable data types specific to HCL Informix on page 81

lists the additional SQL data types available with Informix® and the Informix® ESQL/C data types that you can use as host

variables for those types of columns. Both figures include a reference to the section or chapter in this book where you can

obtain more information about the host-variable data type. For more information about the SQL data types that you can

assign to database columns, see the HCL® Informix® Guide to SQL: Reference.

Table 11. Corresponding SQL and host variable data types

SQL data type
ESQL/C predefined

data type
C language type See

BIGINT BIGINT 8-byte integer Numeric data types on page 107

BIGSERIAL BIGINT 8-byte integer Numeric data types on page 107

BOOLEAN boolean Table 18: SQL data types and ESQL/C header files

that are specific to HCL Informix on page 87

BYTE ifx_loc_t or loc_t Simple large objects on page 135

CHAR(n)

CHARACTER(n)

fixchar [n] or string

[n+1]

char [n + 1] or char * Character and string data types on page 93

DATE date 4-byte integer Time data types on page 124

DATETIME datetime or dtime_t Time data types on page 124

DECIMAL

DEC

NUMERIC

MONEY

decimal or dec_t Numeric data types on page 107

FLOAT

DOUBLE PRECISION

double Time data types on page 124

INT8 int8 or ifx_int8_t Numeric data types on page 107

INTEGER

INT

4-byte integer Numeric data types on page 107

Chapter 1. ESQL/C Guide

Table 11. Corresponding SQL and host variable data types (continued)

SQL data type
ESQL/C predefined

data type
C language type See

INTERVAL interval or intrvl_t Time data types on page 124

LVARCHAR lvarchar char [n + 1] or char * Character and string data types on page 93

NCHAR(n) fixchar [n] or string

[n+1]

char [n + 1] or char * Character and string data types on page 93

NVARCHAR(m) varchar[m+1] or

string [m+1]

char [m+1] Character and string data types on page 93

SERIAL 4-byte integer Numeric data types on page 107

SERIAL8 int8 or ifx_int8_t Numeric data types on page 107

SMALLFLOAT

REAL

float Numeric data types on page 107

SMALLINT 2-byte integer Numeric data types on page 107

TEXT loc_t Simple large objects on page 135

VARCHAR(m,x) varchar[m+1] or

string [m+1]

char d[m+1] Character and string data types on page 93

Table 12. Corresponding SQL and host variable data types specific to HCL Informix®

SQL data type
ESQL/C predefined data

type
See

BLOB ifx_lo_t Smart large objects on page 178

CLOB ifx_lo_t Smart large objects on page 178

LIST(e) collection Smart large objects on page 178

MULTISET(e) collection Complex data types on page 203

Opaque data type lvarchar, fixed binary, or

var binary

Opaque data types on page 254

ROW(...) row Complex data types on page 203

SET(e) collection Complex data types on page 203

81

HCL Informix 14.10 - ESQL/C Programmer’s Guide

82

Data type constants

The IBM® Informix® ESQL/C sqltypes.h header file contains integer constants for both SQL and Informix® ESQL/C data

types. Some Informix® ESQL/C library functions require data type constants as arguments. You can also compare these

data type constants in dynamic SQL programs to determine the type of column that the DESCRIBE statement described. The

Informix® ESQL/C code excerpt in the following figure compares the sqltype element of an sqlvar structure to a series of

SQL data type constants to determine what types of columns a DESCRIBE statement returned.

Figure 21. Code excerpt with SQL data type constants

for (col = udesc->sqlvar, i = 0; i < udesc->sqld; col++, i++)
 {
 switch(col->sqltype)
 {
 case SQLSMFLOAT:
 col->sqltype = CFLOATTYPE;
 break;

 case SQLFLOAT:
 col->sqltype = CDOUBLETYPE;
 break;

 case SQLMONEY:
 case SQLDECIMAL:
 col->sqltype = CDECIMALTYPE;
 break;

 case SQLCHAR:
 col->sqltype = CCHARTYPE;
 break;

 default:
 /* The program does not handle INTEGER,
 * SMALL INTEGER, DATE, SERIAL or other
 * data types. Do nothing if we see
 * an unsupported type.
 */
 return;
 }

For more information about the use of data type constants with the DESCRIBE statement, see Determine SQL statements on

page 438.

SQL data type constants

Table 13: Constants for Informix SQL column data types on page 83 shows the SQL data type constants for the HCL

Informix®. Table 14: Constants for Informix SQL column data types that are specific to HCL Informix on page 83 shows

the SQL data type constants for the additional data types that are available with the Informix®.

Chapter 1. ESQL/C Guide

Table 13. Constants for Informix® SQL column data types

SQL data type Defined constant Integer value

CHAR SQLCHAR 0

SMALLINT SQLSMINT 1

INTEGER SQLINT 2

FLOAT SQLFLOAT 3

SMALLFLOAT SQLSMFLOAT 4

DECIMAL SQLDECIMAL 5

SERIAL SQLSERIAL 6

DATE SQLDATE 7

MONEY SQLMONEY 8

DATETIME SQLDTIME 10

BYTE SQLBYTES 11

TEXT SQLTEXT 12

VARCHAR SQLVCHAR 13

INTERVAL SQLINTERVAL 14

NCHAR SQLNCHAR 15

NVARCHAR SQLNVCHAR 16

INT8 SQLINT8 17

BIGSERIAL SQLBIGSERIAL 53

LVARCHAR SQLLVARCHAR 43

BOOLEAN SQLBOOL 45

BIGINT SQLINFXBIGINT 52

BIGSERIAL SQLBIGSERIAL 53

Table 14. Constants for Informix® SQL column data types that are specific to HCL Informix®

SQL data type Defined constant Integer value

SET SQLSET 19

MULTISET SQLMULTISET 20

LIST SQLLIST 21

83

HCL Informix 14.10 - ESQL/C Programmer’s Guide

84

Table 14. Constants for Informix® SQL column data types that are specific to HCL Informix® (continued)

SQL data type Defined constant Integer value

ROW SQLROW 22

Varying-length opaque type SQLUDTVAR 40

Fixed-length opaque type SQLUDTFIXED 41

SENDRECV (client-side only) SQLSENDRECV 44

Important: The SENDRECV data type has an SQL constant but can only be used in the Informix® ESQL/C program.

You cannot define a database column as type SENDRECV.

ESQL/C data type constants

You assign the IBM® Informix® ESQL/C data type to a host variable in the Informix® ESQL/C program. The following table

shows these constants.

Table 15. Constants for ESQL/C host-variable data types

ESQL/C data type Constant Integer value

char CCHARTYPE 100

short int CSHORTTYPE 101

int4 CINTTYPE 102

long CLONGTYPE 103

float CFLOATTYPE 104

double CDOUBLETYPE 105

dec_t or decimal CDECIMALTYPE 107

fixchar CFIXCHARTYPE 108

string CSTRINGTYPE 109

date CDATETYPE 110

dec_t or decimal CMONEYTYPE 111

datetime or dtime_t CDTIMETYPE 112

ifx_loc_t or loc_t CLOCATORTYPE 113

varchar CVCHARTYPE 114

intrvl_t or interval CINVTYPE 115

char CFILETYPE 116

Chapter 1. ESQL/C Guide

Table 15. Constants for ESQL/C host-variable data types (continued)

ESQL/C data type Constant Integer value

int8 CINT8TYPE 117

collection CCOLTYPE 118

lvarchar CLVCHARTYPE 119

fixed binary CFIXBINTYPE 120

var binary CVARBINTYPE 121

boolean CBOOLTYPE 122

row CROWTYPE 123

You can use these Informix® ESQL/C data types as arguments for some of the functions in the Informix® ESQL/C library. For

example, both the rtypalign() and rtypmsize() functions require data type values as arguments.

X/Open data type constants

If your programs conform to the X/Open standards (compile with the -xopen option), you must use the data type values that

the following table shows. HCL Informix® defines the constants for these values in the sqlxtype.h header file.

Table 16. Constants for Informix® SQL column data types in an X/Open environment

SQL data type Defined constant X/Open integer value

CHAR XSQLCHAR 1

DECIMAL XSQLDECIMAL 3

INTEGER XSQLINT 4

SMALLINT XSQLSMINT 5

FLOAT XSQLFLOAT 6

Header files for data types

To use an SQL data type, your program must include the appropriate IBM® Informix® ESQL/C header file. Table 17: SQL data

types and ESQL/C header files on page 85 shows the relationship between host-variable data types and Informix® ESQL/

C header files for all database servers. Table 18: SQL data types and ESQL/C header files that are specific to HCL Informix on

page 87 shows the relationship between host-variable data types and Informix® ESQL/C header files that are specific to

HCL Informix® with Universal Data Option.

Table 17. SQL data types and ESQL/C header files

SQL data type ESQL/C or C data type ESQL/C header file

BLOB ifx_lo_t locator.h

85

HCL Informix 14.10 - ESQL/C Programmer’s Guide

86

Table 17. SQL data types and ESQL/C header files (continued)

SQL data type ESQL/C or C data type ESQL/C header file

BOOLEAN boolean Defined automatically

BYTE ifx_loc_t or loc_t locator.h

CHAR(n)

CHARACTER(n)

fixchar array[n] or string array[n+1] Defined automatically

DATE date Defined automatically

DATETIME datetime or dtime_t datetime.h

DECIMAL

DEC

NUMERIC

MONEY

decimal or dec_t decimal.h

FLOAT

DOUBLE PRECISION

double Defined automatically

INT8 int8 int8.h

INTEGER

INT

4-byte integer Defined automatically

INTERVAL interval or intrvl_t datetime.h

LVARCHAR lvarchar array[n + 1] where n is the

length of the longest string that might

be stored in the LVARCHAR field.

Defined automatically

MULTISET(e) collection Defined automatically

NCHAR(n) fixchar array[n] or string array[n+1] Defined automatically

NVARCHAR(m) varchar[m+1] or string array[m+1] Defined automatically

SERIAL 4-byte integer Defined automatically

SERIAL8 int8 int8.h

BIGINT BIGINT Defined automatically

BIGSERIAL BIGINT Defined automatically

SMALLFLOAT float Defined automatically

Chapter 1. ESQL/C Guide

Table 17. SQL data types and ESQL/C header files (continued)

SQL data type ESQL/C or C data type ESQL/C header file

REAL

SMALLINT short int Defined automatically

TEXT loc_t locator.h

VARCHAR(m,x) varchar[m+1] or string array[m+1] Defined automatically

Table 18. SQL data types and ESQL/C header files that are specific to HCL Informix®

SQL data type ESQL/C or C data type ESQL/C header file

BLOB ifx_lo_t locator.h

CLOB ifx_lo_t locator.h

LIST(e) collection Defined automatically

Opaque data type lvarchar or fixed binary or var binary User-defined header file that contains

definition of internal structure for

opaque type

ROW(...) row Defined automatically

SET(e) collection Defined automatically

Data conversion

When a discrepancy exists between the data types of two values, IBM® Informix® ESQL/C attempts to convert one of the

data types. The process of converting a value from one data type to another is called data conversion.

The following list names a few common situations in which data conversion can occur:

Comparison

Data conversion can occur if you use a condition that compares two different types of values, such as

comparing the contents of a zip-code column to an integer value.

For example, to compare a CHAR value and a numeric value, Informix® ESQL/C converts the CHAR value to a

numeric value before it performs the comparison.

Fetching and inserting

Data conversion can occur if you fetch or insert values with host variables and database columns of different

data types.

Arithmetic operations

Data conversion can occur if a numeric value of one data type operates on a value of a different data type.

87

HCL Informix 14.10 - ESQL/C Programmer’s Guide

88

Fetch and insert with host variables

If you try to fetch a value from a database column into a host variable that you do not declare according to the

correspondence shown in Table 11: Corresponding SQL and host variable data types on page 80, IBM® Informix®

ESQL/C attempts to convert the data types. Similarly, if you try to insert a value from a host variable into a database

column, Informix® ESQL/C might need to convert data types if the host variable and database column do not use the

correspondences in Table 11: Corresponding SQL and host variable data types on page 80. Informix® ESQL/C converts

the data types only if the conversion is meaningful.

This section provides the following information about data conversion for fetching and inserting values with host variables:

• How Informix® ESQL/C converts between numeric and character data

• How Informix® ESQL/C converts floating-point numbers to strings

• How Informix® ESQL/C converts BOOLEAN values to characters

• How Informix® ESQL/C converts DATETIME and INTERVAL values

• How Informix® ESQL/C converts between VARCHAR columns and character data

Convert numbers and strings

Before IBM® Informix® ESQL/C can convert a value from one data type to another, it must determine whether the conversion

is meaningful.

The following table shows possible conversions between numeric data types and character data types. In this figure, N

represents a value with a numeric data type (such as DECIMAL, FLOAT, or SMALLINT) and C represents a value with a

character data type (such as CHAR or VARCHAR).

If conversion is not possible, either because it makes no sense or because the target variable is too small to accept the

converted value, Informix® ESQL/C returns values that the Results column in the following table describes.

Table 19. Data conversion problems and results

Conversion Problem Results

C C Does not fit Informix® ESQL/C truncates the string, sets a warning

(sqlca.sqlwarn.sqlwarn1 to W and SQLSTATE to 01004), and sets any indicator

variable to the size of the original string.

N C None Informix® ESQL/C creates a string for the numeric value; it uses an

exponential format for large or small numbers.

N C Does not fit Informix® ESQL/C fills the string with asterisks, sets a warning

(sqlca.sqlwarn.sqlwarn1 to W and SQLSTATE to 01004), and sets any indicator

variable to a positive integer.

When the fractional part of a number does not fit in a character variable,

Informix® ESQL/C rounds the number. Asterisks are displayed only when the

integer part does not fit.

Chapter 1. ESQL/C Guide

Table 19. Data conversion problems and results (continued)

Conversion Problem Results

C N None Informix® ESQL/C determines the numeric data type based on the format

of the character value; if the character contains a decimal point, Informix®

ESQL/C converts the value to a DECIMAL value.

C N Not a number The number is undefined; Informix® ESQL/C sets sqlca.sqlcode and

SQLSTATE to indicate a runtime error.

C N Overflow The number is undefined; Informix® ESQL/C sets sqlca.sqlcode and

SQLSTATE to indicate a runtime error.

N N Does not fit Informix® ESQL/C attempts to convert the number to the new data type.

For information about possible errors, see the HCL® Informix® Guide to SQL:

Reference.

N N Overflow The number is undefined; Informix® ESQL/C sets sqlca.sqlcode and

SQLSTATE to indicate a runtime error.

In Table 19: Data conversion problems and results on page 88, the phrase Does not fit means that the size of the data

from the source variable or column exceeds the size of the target column or variable.

Convert floating-point numbers to strings

IBM® Informix® ESQL/C can automatically convert floating-point column values (data type of DECIMAL(n), FLOAT, or

SMALLFLOAT) between database columns and host variables of character type char, varchar, string, or fixchar. When

Informix® ESQL/C converts a floating-point value to a character string whose buffer is not large enough to hold the full

precision, Informix® ESQL/C rounds the value to fit it in the character buffer.

Convert BOOLEAN values to characters
The database server can automatically convert BOOLEAN values between database columns and host variables of the

fixchar date type.

The following list shows the character representations for the BOOLEAN values.

'\01'

'T'

'\00'

'F'

89

HCL Informix 14.10 - ESQL/C Programmer’s Guide

90

Convert DATETIME and INTERVAL values

IBM® Informix® ESQL/C can automatically convert DATETIME and INTERVAL values between database columns and host

variables of character type char, string, or fixchar. Informix® ESQL/C converts a DATETIME or INTERVAL value to a character

string and then stores it in a host variable.

You can use Informix® ESQL/C library functions to explicitly convert between DATE and DATETIME values.

Convert between VARCHAR and character data types
IBM® Informix® ESQL/C can automatically convert VARCHAR values between database columns and host variables of

character type char, string, or fixchar.

Perform arithmetic operations
When IBM® Informix® ESQL/C performs an arithmetic operation on two values, it might need to convert data types if the two

values do not have data types that match.

This section provides the following information about data conversion for arithmetic operations:

• How Informix® ESQL/C converts numeric values

• How Informix® ESQL/C handles operations that involve floating-point values

Convert numbers to numbers

If two values of different numeric data types operate on one another, Informix® ESQL/C converts the values to the data type

that the following table indicates and then performs the operation.

Table 20. Data types for which ESQL/C carries out numeric operations

Operands DEC FLOAT INT SERIAL SMALLFLOAT SMALLINT

DEC DEC DEC DEC DEC DEC DEC

FLOAT DEC FLOAT FLOAT FLOAT FLOAT FLOAT

INT DEC FLOAT INT INT FLOAT INT

SERIAL DEC FLOAT INT INT FLOAT INT

SMALLFLOAT DEC FLOAT FLOAT FLOAT FLOAT FLOAT

SMALLINT DEC FLOAT INT INT FLOAT INT

Table 20: Data types for which ESQL/C carries out numeric operations on page 90 shows that if Informix® ESQL/C

performs an operation between an operand with a data type of FLOAT and a second operand with a data type of DECIMAL

(DEC), Informix® ESQL/C generates a result that has a DECIMAL data type.

Chapter 1. ESQL/C Guide

Operations that involve a decimal value

The following table shows the numeric data types. Database columns use the SQL data types, and IBM® Informix® ESQL/C

host variables use the corresponding Informix® ESQL/C data types.

SQL data type ESQL/C data type

INTEGER 4-byte integer

SMALLINT short integer

DECIMAL decimal

MONEY decimal

FLOAT double

SMALLFLOAT float

When Informix® ESQL/C performs arithmetic operations on operands with numeric data types and one of the operands has

a decimal value (an SQL data type of DECIMAL or the Informix® ESQL/C data type of decimal), Informix® ESQL/C converts

each operand and the result to a decimal value.

An SQL DECIMAL data type has the format DECIMAL(p,s), where p and s represent the following parameters:

• The p parameter is the precision, which is the total number of significant digits in a real number.

For example, the number 1237.354 has a precision of seven.

• The s parameter is the scale, which is the number of digits that represent the fractional part of the real number.

For example, the number 1237.354 has a scale of three. If the DECIMAL data type includes a scale parameter

(DECIMAL(p,s)), it holds fixed-point decimal numbers. If the DECIMAL data type omits a scale parameter

(DECIMAL(p)), it holds floating-point decimal numbers.

The Informix® ESQL/C decimal data type tracks precision and scale differently from the SQL DECIMAL data type. For

simplicity, this section uses the format of the SQL DECIMAL data type to describe how Informix® ESQL/C performs data

conversion for arithmetic operations that involve a decimal value. However, this same data-conversion information applies to

arithmetic operations that involve the Informix® ESQL/C decimal host variable.

Convert the non-decimal numeric operand
IBM® Informix® ESQL/C converts all operands that are not already DECIMAL (or decimal) to DECIMAL before it performs the

arithmetic operation.

The following list shows the precision and scale that Informix® ESQL/C uses for the non-DECIMAL operand.

Operand type

Convert to

91

HCL Informix 14.10 - ESQL/C Programmer’s Guide

92

FLOAT

DECIMAL(17)

SMALLFLOAT

DECIMAL(9)

INTEGER

DECIMAL(10,0)

SMALLINT

DECIMAL(5,0)

Informix® ESQL/C does not consider leading or trailing zeros as significant digits. Leading or trailing zeros do not contribute

to the determination of precision and scale. If the operation is addition or subtraction, Informix® ESQL/C adds trailing zeros

to the operand with the smaller scale until the scales are equal.

Obtain the DECIMAL data type of the arithmetic result

The precision and scale of the arithmetic result depend on the precision and scale of the operands and on whether one of the

operands is a floating-point decimal, as follows:

• When one of the operands is a floating-point decimal, the arithmetic result is a floating-point decimal.

For example, for an arithmetic operation between a fixed-point decimal of DECIMAL(8,3) and a FLOAT value, IBM®

Informix® ESQL/C converts the FLOAT value to a floating-point decimal of DECIMAL(17). The arithmetic result has a

data type of DECIMAL(17).

• When both of the operands are fixed-point decimals, the arithmetic result is also a fixed-point decimal.

The following table summarizes the rules for arithmetic operations on operands with definite scale (fixed-point

decimals). In the following table, p1 and s1 are the precision and scale of the first operand, and p2 and s2 are the

precision and scale of the second operand.

Table 21. Precision and scale of fixed-decimal arithmetic results

Operation Precision and scale of result

Addition and Subtraction Precision:

Scale:

MIN(32, MAX(p1 - s1, p2 - s2) + MAX(s1, s2) + 1) MAX(s1, s2)

Multiplication Precision:

Scale:

MIN(32, p1 + p2)

s1 + s2;

If (s1 + s2) > precision, the result is a floating-point decimal number

(no scale value).

Division Precision:

Scale:

32

Chapter 1. ESQL/C Guide

Operation Precision and scale of result

Result is a floating-point decimal number.

The sum: 32 - p1 + s1 - s2 cannot be negative.

If the data type of the result of an arithmetic operation requires the loss of significant digits, Informix® ESQL/C reports an

error.

Data-type alignment library functions

The following IBM® Informix® ESQL/C library functions provide machine-independent size and alignment information for

different data types and help you work with null database values.

Function name Description See

risnull() Checks whether a C variable is null The risnull() function

on page 770

rsetnull() Sets a C variable to null The rsetnull() function

on page 777

rtypalign() Aligns data on correct type boundaries The rtypalign() function

on page 788

rtypmsize() Gives the byte size of SQL data types The rtypmsize()

function on page 791

rtypname() Returns the name of a specified SQL data type The rtypname()

function on page 794

rtypwidth() Returns the minimum number of characters that a character data type

needs to avoid truncation

The rtypwidth()

function on page 797

When you compile your Informix® ESQL/C program with the esql command, esql calls on the linker to link these functions to

your program.

Character and string data types
These topics explain how to use character data types in the HCL Informix® ESQL/C program.

The topics contain the following information:

• An overview of the character data types

• Some issues to consider when you insert data from character host variables into the database

• The syntax of Informix® ESQL/C library functions that you can use to manipulate the character data type

For information about SQL data types, see the HCL® Informix® Guide to SQL: Reference.

93

HCL Informix 14.10 - ESQL/C Programmer’s Guide

94

Character data types
IBM® Informix® ESQL/C supports five data types that can hold character data that you retrieve from and send to the

database.

If you use a character data type (such as the SQL data types CHAR and VARCHAR) for your database column, you can

choose any of the following data types for your host variable:

• The C character data type: char

• One of the Informix® ESQL/C predefined data types: fixchar, string, varchar

• The lvarchar data type

If you use locale-sensitive character data types (NCHAR or NVARCHAR), you have the same choice of character data types

for your associated host variables. For more information about how to declare host variables for the NCHAR and NVARCHAR

data types, see the HCL® Informix® GLS User's Guide.

The following two conditions determine which character data type to use:

• Whether you want Informix® ESQL/C to terminate the character data with the null character

• Whether you want Informix® ESQL/C to pad the character data with trailing blanks

The following table summarizes the attributes of each of the character data types.

Table 22. ESQL/C character data types

ESQL/C character data type Null terminated Contains trailing blanks

char Y Y

fixchar Y

string Y Returns a trailing blank only if the column

contains an empty string.

varchar Y Y

lvarchar Y

The char data type
The char data type is the C data type that holds character data.

When an application reads a value from a CHAR column into a host variable of type char, IBM® Informix® ESQL/C pads this

value with trailing blanks up to the size of the host variable. It leaves just one place for the null character that terminates the

host array. The behavior is the same if an application reads a value from a VARCHAR (or NVARCHAR) column into a host

variable of the char data type.

Declare a char data type with a length of [n + 1] (where n is the size of the column with values that you want read) to allow for

the null terminator. Use the following syntax to declare a host variable of the char data type:

Chapter 1. ESQL/C Guide

EXEC SQL BEGIN DECLARE SECTION;
 char ch_name[n + 1];
EXEC SQL END DECLARE SECTION;

The fixchar data type
The fixchar data type is the IBM® Informix® ESQL/C data type that holds character data that does not append a null

terminator.

When an application reads a value from a CHAR column into a host variable of type fixchar, Informix® ESQL/C pads this

value with trailing blanks up to the size of the host variable. Informix® ESQL/C does not append any null character. The

behavior is the same if an application reads a value from a VARCHAR (or NVARCHAR) column into a host variable of the

fixchar data type.

Restriction: Do not use the fixchar data type with VARCHAR, or NVARCHAR, data. With a fixchar, even if the length

of the data is shorter than the size of the fixchar, the database server stores all n characters of the fixchar, including

any blanks at the end of the string. Unless the blanks have significance, storing them defeats the space savings that

the VARCHAR data type provides.

Declare a fixchar host variable as an array with n components (where n is the size of the column with values that you want

read). Use the following syntax to declare a host variable of the fixchar data type:

EXEC SQL BEGIN DECLARE SECTION;
 fixchar fch_name[n];
EXEC SQL END DECLARE SECTION;

Important: You can copy a null-terminated C string into a fixchar variable if space is available for the null character.

However, this is not good practice. When the database server inserts this value into a column, it also inserts the null

terminator. As a result, later searches of the table might fail to find the value.

The string data type
The string data type is the IBM® Informix® ESQL/C data type that holds character data that is null terminated and does not

contain trailing blanks.

However, if a string of blanks (that is, ‘ ’) is stored in a database field and selected into a host variable of the string data type,

the result is a single blank character.

When an application reads a value from a CHAR column into a host variable of the string data type, it strips the value of any

trailing blanks and appends a null terminator. The behavior is the same if an application reads a value from a VARCHAR

column into a host variable of the string data type.

The one exception to this rule is that if the BLANK_STRINGS_NOT_NULL environment variable is set to 1 or any other value,

like 0 or 2, the string host variable stores an empty string as a single blank followed by a null terminator. If this environment

variable is not set, string host variables store an empty string as a null string.

95

HCL Informix 14.10 - ESQL/C Programmer’s Guide

96

EXEC SQL BEGIN DECLARE SECTION;
 string buffer[16];
EXEC SQL END DECLARE SECTION;
⋮

EXEC SQL select lname into :buffer from customer
 where customer_num = 102;

Declare the string data type with a length of [n + 1] (where n is the size of the column with values that you want read) to allow

for the null terminator. In the preceding code fragment, the lname column in the customer table is 15 bytes so the buffer host

variable is declared as 16 bytes. Use the following syntax to declare a host variable of the string data type:

EXEC SQL BEGIN DECLARE SECTION;
 string str_name[n + 1];
EXEC SQL END DECLARE SECTION;

The varchar data type
The varchar data type is the IBM® Informix® ESQL/C data type that holds character data of varying lengths.

When an application reads a value from a CHAR column into a host variable of type varchar, Informix® ESQL/C preserves

any trailing blanks and terminates the array with a null character. The behavior is the same if an application reads a value

from a VARCHAR column into a host variable of the varchar data type.

Declare the varchar data type with a length of [n+1] (where n is the maximum size of the column with values that you want

read) to allow for the null terminator. Use the following syntax to declare a host variable of the varchar data type:

EXEC SQL BEGIN DECLARE SECTION;
 varchar varc_name[n + 1];
EXEC SQL END DECLARE SECTION;

VARCHAR size macros

HCL Informix® includes the varchar.h header file with the Informix® ESQL/C libraries. This file defines the names and

macro functions shown in the following table.

Table 23. VARCHAR size macros

Name of Macro Description

MAXVCLEN The maximum number of characters that you can store in a VARCHAR column. This value is

255.

VCLENGTH(s) The length to declare the host variable.

VCMIN(s) The minimum number of characters that you can store in the VARCHAR column. Can range

from 1 to 255 bytes but must be smaller than the maximum size of the VARCHAR.

VCMAX(s) The maximum number of characters that you can store in the VARCHAR column. Can range

from 1 to 255 bytes.

VCSIZ(min, max) The encoded size value, based on min and max, for the VARCHAR column.

Chapter 1. ESQL/C Guide

These macros are useful when your program uses dynamic SQL. After a DESCRIBE statement, the macros can manipulate

size information that the database server stores in the LENGTH field of the system-descriptor area (or the sqllen field of the

sqlda structure). Your database server stores size information for a VARCHAR column in the syscolumns system catalog

table.

The varchar.ec demonstration program

The varchar.ec demonstration program obtains collength from the syscolumns system catalog table for the cat_advert

column (of the stores7 database). It then uses the macros from varchar.h to display size information about the column.

This sample program is in the varchar.ec file in the demo directory. The following figure shows the main() function for the

varchar.ec demonstration program.

97

HCL Informix 14.10 - ESQL/C Programmer’s Guide

98

Figure 22. The varchar.ec demonstration program

/*
 * varchar.ec *

 The following program illustrates the use of VARCHAR macros to
 obtain size information.
*/

EXEC SQL include varchar;

char errmsg[512];

main()
{
 mint vc_code;
 mint max, min;
 mint hv_length;

 EXEC SQL BEGIN DECLARE SECTION;
 mint vc_size;
 EXEC SQL END DECLARE SECTION;

 printf("VARCHAR Sample ESQL Program running.\n\n");

 EXEC SQL connect to 'stores7';
 chk_sqlcode("CONNECT");

 printf("VARCHAR field 'cat_advert':\n");
 EXEC SQL select collength into $vc_size from syscolumns
 where colname = "cat_advert";
 chk_sqlcode("SELECT");
 printf("\tEncoded size of VARCHAR (from syscolumns.collength) = %d\n",
 vc_size);

 max = VCMAX(vc_size);
 printf("\tMaximum number of characters = %d\n", max);

 min = VCMIN(vc_size);
 printf("\tMinimum number of characters = %d\n", min);

 hv_length = VCLENGTH(vc_size);
 printf("\tLength to declare host variable = char(%d)\n", hv_length);

 vc_code = VCSIZ(max, min);
 printf("\tEncoded size of VARCHAR (from VCSIZ macro) = %d\n", vc_code);

 printf("\nVARCHAR Sample Program over.\n\n");
}

When the IFX_PAD_VARCHAR environment variable is set to 1, the client sends the VARCHAR data type with padded trailing

spaces. When this environment is not set (the default), the client sends the VARCHAR data type value without trailing spaces.

The IFX_PAD_VARCHAR environment variable must be set only at the client side and is supported only with IBM® Informix®

ESQL/C Version 9.53 and 2.90 or later and HCL Informix® Version 9.40 or later.

Chapter 1. ESQL/C Guide

The lvarchar data type
The lvarchar data type is the IBM® Informix® ESQL/C data type that holds character data of varying lengths.

The lvarchar data type is implemented as a variable length user-defined type that is similar to the varchar data type except

that it can support strings of greater than 256 bytes and has the following two uses:

• To hold a value for an LVARCHAR column in the database.

When an application reads a value from an LVARCHAR column into a host variable of the lvarchar data type,

Informix® ESQL/C preserves any trailing blanks and terminates the array with a null character. The behavior is the

same if an application reads a value from a VARCHAR column into a host variable of the lvarchar data type.

• To represent the string or external format of opaque data types.

Important: You cannot retrieve or store smart large objects (CLOB or BLOB data types) from or to an lvarchar host

variable.

The lvarchar keyword syntax
To declare an lvarchar host variable for a character column (CHAR, VARCHAR, or LVARCHAR), use the lvarchar keyword as

the variable data type.

The following syntax shows the lvarchar keyword as the variable data type.

(explicit id) lvarchar { | variable name[variable size] | *variable name } ;

Element Purpose Restrictions

variable name Name of an lvarchar variable of a

specified size

None

variable size Number of bytes to allocate for an

lvarchar variable of specified size

Integer value can be 1 - 32,768 (32 KB).

*variable name Name of an lvarchar pointer variable

for data of unspecified length

Not equivalent to a C char pointer (char *). Points to an internal

ESQL/C representation for this type. You must use the ifx_var()

functions to manipulate data.

The following figure shows declarations for three lvarchar variables that hold values for LVARCHAR columns.

Figure 23. Sample lvarchar host variables

EXEC SQL BEGIN DECLARE SECTION;
 lvarchar *a_polygon;
 lvarchar circle1[CIRCLESZ], circle2[CIRCLESZ];
EXEC SQL END DECLARE SECTION;

99

HCL Informix 14.10 - ESQL/C Programmer’s Guide

100

Important: To declare a lvarchar host variable for the external format of an opaque data type, use the syntax

described in Declare lvarchar host variables on page 257.

A lvarchar host variable of a fixed size

If you do not specify the size of a lvarchar host variable, the size is equivalent to a one-byte C-language char data type. If you

specify a size, the lvarchar host variable is equivalent to a C-language char data type of that size. When you specify a fixed-

size lvarchar host variable, any data beyond the specified size is truncated when the column is fetched. Use an indicator

variable to check for truncation.

Because a lvarchar host variable of a known size is equivalent to a C-language char data type, you can use C-language

character string operations to manipulate them.

The lvarchar pointer host variable

When the lvarchar host variable is a pointer, the size of the data that the pointer references can range up to 2 GB. The

lvarchar pointer host variable is designed to insert or select user-defined or opaque types that can be represented in a

character string format.

You must use the ifx_var() functions to manipulate a lvarchar pointer host variable.

Fetch and insert character data types

You can transfer character data between CHAR and VARCHAR columns and character (char, string, fixchar, varchar, or

lvarchar) host variables with either of the following operations:

• A fetch operation transfers character data from a CHAR or VARCHAR column to a character host variable.

• An insert or update operation transfers character data from a character host variable to a CHAR, VARCHAR, or

LVARCHAR column.

If you use locale-sensitive character data types (NCHAR or NVARCHAR), you can also transfer character data between

NCHAR or NVARCHAR columns and character host variables. For more information about how to declare host variables for

the NCHAR and NVARCHAR data types, see the HCL® Informix® GLS User's Guide.

Fetch and insert CHAR data
When an application uses a character host variable to fetch or insert a CHAR value, IBM® Informix® ESQL/C must ensure

that the character value fits into the host variable or database column.

Fetch CHAR data

An application can fetch data from a database column of type CHAR or VARCHAR into a character (char, string, fixchar,

varchar, or lvarchar) host variable. If the column data does not fit into the character host variable, IBM® Informix® ESQL/C

truncates the data. To notify the user of the truncation, Informix® ESQL/C performs the following actions:

Chapter 1. ESQL/C Guide

• It sets the sqlca.sqlwarn.sqlwarn1 warning flag to W and the SQLSTATE variable to 01004.

• It sets any indicator variable that is associated with the character host variable to the size of the character data in the

column.

Insert CHAR data

An application can insert data from a character host variable (char, string, fixchar, varchar, or lvarchar) into a database

column of type CHAR. If the value is shorter than the size of the database column then the database server pads the value

with blanks up to the size of the column.

If the value is longer than the size of the column the database server truncates the value if the database is non-ANSI. No

warning is generated when this truncation occurs. If the database is ANSI and the value is longer than the column size then

the insert fails and this error is returned:

-1279: Value exceeds string column length.

Although char, varchar, lvarchar, and string host variables contain null terminators, Informix® ESQL/C never inserts these

characters into a database column. (Host variables of type fixchar must never contain null characters.)

If you use the locale-sensitive character data type, NCHAR, you can insert a value from a character host variable into an

NCHAR column. Insertion into NCHAR columns follows the same behavior as insertion into CHAR columns. For more

information about how to declare host variables for the NCHAR data type, see the HCL® Informix® GLS User's Guide.

Do not use the fixchar data type for host variables that insert character data into ANSI-compliant databases.

Fetch and insert VARCHAR data

When an application uses a character host variable to fetch or insert a VARCHAR value, Informix® ESQL/C must ensure that

the character value fits into the host variable or database column. When Informix® ESQL/C calculates the length of a source

item, it does not count trailing spaces. The following sections describe how Informix® ESQL/C performs the conversion of

VARCHAR data to and from char, fixchar, and string character data types.

These conversions also apply to NVARCHAR data. For more information about the NVARCHAR data type, see the HCL®

Informix® GLS User's Guide.

Fetch VARCHAR data

The following table shows the conversion of VARCHAR data when an application fetches it into host variables of char,

fixchar, lvarchar, and string character data types.

Table 24. Converting the VARCHAR data type to ESQL/C character data types

Source type Destination type Result

VARCHAR char If the source is longer, truncate and null terminate the value, and set any

indicator variable. If the destination is longer, pad the value with trailing spaces

and null terminate it.

101

HCL Informix 14.10 - ESQL/C Programmer’s Guide

102

Table 24. Converting the VARCHAR data type to ESQL/C character data types (continued)

Source type Destination type Result

VARCHAR fixchar If the source is longer, truncate the value and set any indicator variable. If the

destination is longer, pad the value with trailing spaces.

VARCHAR string If the source is longer, truncate and null terminate the value, and set any

indicator variable. If the destination is longer, null terminate the value.

VARCHAR lvarchar If the source is longer, truncate and set any indicator variable. If the destination

is longer, null terminate it.

The following table shows examples of conversions from VARCHAR column data to character host variables that IBM®

Informix® ESQL/C might perform during a fetch. In this figure, a plus (+) symbol represents a space character and the value

in the Length column includes any null terminators.

Table 25. Examples of VARCHAR conversion during a fetch

Source type Contents Length Destination type Contents Indicator

VARCHAR(9) Fairfield 9 char(5) Fair\0 9

VARCHAR(9) Fairfield 9 char(12) Fairfield++\0 0

VARCHAR(12) Fairfield+++ 12 char(10) Fairfield\0 12

VARCHAR(10) Fairfield+ 10 char(4) Fai\0 10

VARCHAR(11) Fairfield++ 11 char(14) Fairfield++++\0 0

VARCHAR(9) Fairfield 9 fixchar(5) Fairf 9

VARCHAR(9) Fairfield 9 fixchar(10) Fairfield+ 0

VARCHAR(10) Fairfield+ 10 fixchar(9) Fairfield 10

VARCHAR(10) Fairfield+ 10 fixchar(6) Fairfi 10

VARCHAR(10) Fairfield+ 10 fixchar(11) Fairfield++ 0

VARCHAR(9) Fairfield 9 string(4) Fai\0 9

VARCHAR(9) Fairfield 9 string(12) Fairfield\0 0

VARCHAR(12) Fairfield+++ 12 string(10) Fairfield\0 12

VARCHAR(11) Fairfield++ 11 string(6) Fairf\0 11

VARCHAR(10) Fairfield++ 10 string(11) Fairfield\0 0

VARCHAR(10) Fairfield+ 10 lvarchar(11) Fairfield+ 0

VARCHAR(9) Fairfield 9 lvarchar(5) Fair\0 9

Chapter 1. ESQL/C Guide

Insert VARCHAR data

When an application inserts a value from a char, varchar, lvarchar, or string host variable into a VARCHAR column, IBM®

Informix® ESQL/C also inserts any trailing blanks. Informix® ESQL/C does not, however, add trailing blanks.

If the value is longer than the maximum size of the column, the database server truncates the value if the database is

non-ANSI. No warning is generated when this truncation occurs. If the database is ANSI and the value is longer than the

maximum column size then the insert fails and this error is returned:

-1279: Value exceeds string column length.

Although char, varchar, lvarchar, and string host variables contain null terminators, Informix® ESQL/C never inserts these

characters into a database column. (Host variables of type fixchar must never contain null characters.) If an application

inserts a char, varchar, lvarchar, or string value into a VARCHAR column, the database server tracks the end of the value

internally.

The following table shows the conversion of VARCHAR data when an application inserts it from host variables of char,

fixchar, lvarchar, and string character data types.

Table 26. Converting ESQL/C character data types to the VARCHAR data type

Source type Destination type Result

char VARCHAR If the source is longer than the max VARCHAR, truncate the value and set the indicator

variable. If the max VARCHAR is longer than the source, the length of the destination

equals the length of the source (not including the null terminator of the source).

fixchar VARCHAR If the source is longer than the max VARCHAR, truncate the value and set the indicator

variable. If the max VARCHAR is longer than the source, the length of the destination

equals the length of the source.

string VARCHAR If the source is longer than the max VARCHAR, truncate the value and set the indicator

variable. If the max VARCHAR is longer than the source, the length of the destination

equals the length of the source (not including the null terminator of the source).

lvarchar VARCHAR If the source is longer than the max VARCHAR, truncate the value and set the indicator

variable. If the max VARCHAR is longer than the source, the length of the destination

equals the length of the source.

If you use the locale-sensitive character data type, NVARCHAR, you can insert a value from a character host variable into an

NVARCHAR column. Insertion into NVARCHAR columns follows the same behavior as insertion into VARCHAR columns.

For more information about how to declare host variables for the NVARCHAR data type, see the HCL® Informix® GLS User's

Guide.

The following table shows examples of conversions from character host variables to VARCHAR column data that Informix®

ESQL/C might perform during an insert. In this figure, a plus (+) symbol represents a space character.

103

HCL Informix 14.10 - ESQL/C Programmer’s Guide

104

Table 27. Examples of VARCHAR conversion during an insert

Source Type Contents Length Destination type Contents Length

char(10) Fairfield\0 10 VARCHAR(4) Fair 4

char(10) Fairfield\0 10 VARCHAR(11) Fairfield 9

char(12) Fairfield++\0 12 VARCHAR(9) Fairfield 9

char(13) Fairfield+++\0 13 VARCHAR(6) Fairfi 6

char(11) Fairfield+\0 11 VARCHAR(11) Fairfield+ 10

fixchar(9) Fairfield 9 VARCHAR(3) Fai 3

fixchar(9) Fairfield 9 VARCHAR(11) Fairfield 9

fixchar(11) Fairfield++ 11 VARCHAR(9) Fairfield 9

fixchar(13) Fairfield++++ 13 VARCHAR(7) Fairfie 7

fixchar(10) Fairfield+ 10 VARCHAR(12) Fairfield+ 10

string(9) Fairfield\0 9 VARCHAR(4) Fair 4

string(9) Fairfield\0 9 VARCHAR(11) Fairfield 9

Fetch and insert lvarchar data
When an application uses a lvarchar host variable to fetch or insert a data value, IBM® Informix® ESQL/C must ensure that

the value fits into the host variable or database column.

Fetch lvarchar data

An application can fetch data from a database column of type LVARCHAR into a character (char, string, fixchar, varchar, or

lvarchar) host variable. If the column data does not fit into the host variable, IBM® Informix® ESQL/C truncates the data. To

notify the user of the truncation, Informix® ESQL/C performs the following actions:

• It sets the sqlca.sqlwarn.sqlwarn1 warning flag to W and the SQLSTATE variable to 01004.

• It sets any indicator variable that is associated with the character host variable to the size of the character data in the

column.

Insert lvarchar data

An application can insert data from a character host variable (char, string, fixchar, varchar, or lvarchar) into a database

column of type LVARCHAR.

If the value is longer than the maximum size of the column the database server truncates the value if the database is

non-ANSI. No warning is generated when this truncation occurs. If the database is ANSI and the value is longer than the

maximum column size then the insert fails and this error is returned:

Chapter 1. ESQL/C Guide

-1279: Value exceeds string column length.

If the host variable you use for the insert is a char or varchar, the database server casts the type to lvarchar.

When you write data to an LVARCHAR column, the database server imposes a limit of 32 KB on the column. If the host

variable is a lvarchar data type and the data exceeds 32 KB, the database server returns an error. If the column has an input

support function, it must use any data beyond 32 KB, if necessary, to prevent the database server from returning the error.

Fetch and insert with an ANSI-compliant database

For an ANSI-compliant database, when you use a character host variable in an INSERT statement or in the WHERE clause of

an SQL statement (SELECT, UPDATE, or DELETE), the character value in the host variable must be null terminated. Therefore,

use the following data types for character host variables:

• char, string, or varchar

• lvarchar

For example, the following insertion is valid because the first and last host variables are of type char, which is null

terminated:

EXEC SQL BEGIN DECLARE SECTION;
 char first[16], last[16];
EXEC SQL END DECLARE SECTION;
⋮;

stcopy("Dexter", first);
stcopy("Haven", last);
EXEC SQL insert into customer (fname, lname)
 values (:first, :last);

The stcopy() function copies the null terminator into the host variable and the char data type retains the null terminator.

Do not use the fixchar data type for host variables because it does not include a null terminator on the string. For an ANSI-

compliant database, the database server generates an error under either of the following conditions:

• If you try to insert a string that is not null terminated.

• If you use a string that is not null terminated in a WHERE clause.

Character and string library functions

The IBM® Informix® ESQL/C library contains the following character-manipulation functions. You can use these functions in

your C programs to manipulate single characters and strings of bytes and characters, including variable-length expressions

of the following data types:

• varchar

• fixed-size lvarchar

105

HCL Informix 14.10 - ESQL/C Programmer’s Guide

106

The internal structure referenced by the lvarchar pointer data type is different from the character representation of a fixed-

size lvarchar variable. You must use the ifx_var() functions to manipulate lvarchar pointer variables. For more information

about the ifx_var() functions, see The lvarchar pointer and var binary library functions on page 275.

The functions whose names begin with by act on and return fixed-length strings of bytes. The functions whose names begin

with rst and st (except stchar) operate on and return null-terminated strings. The rdownshift() and rupshift() functions also

operate on null-terminated strings but do not return values. When you compile your Informix® ESQL/C program with the esql

preprocessor, it calls on the linker to link these functions to your program. The following list provides brief descriptions of the

character and string library functions and refers you to the pages where detailed information for each function is given.

Function name Description See

bycmpr() Compares two groups of contiguous bytes The bycmpr()

function on

page 565

bycopy() Copies bytes from one area to another The bycopy()

function on

page 567

byfill() Fills an area you specify with a character The byfill()

function on

page 568

byleng() Counts the number of bytes in a string The byleng()

function on

page 570

ldchar() Copies a fixed-length string to a null-terminated string The ldchar()

function on

page 744

rdownshift() Converts all letters to lowercase The

rdownshift()

function on

page 752

rstod() Converts a string to a double value The rstod()

function on

page 780

rstoi() Converts a string to a short integer value The rstoi()

function on

page 781

Chapter 1. ESQL/C Guide

Function name Description See

rstol() Converts a string to a 4-byte integer value The rstol()

function on

page 783

rupshift() Converts all letters to uppercase The rtypmsize()

function on

page 791

stcat() Concatenates one string to another The stcat()

function on

page 817

stchar() Copies a null-terminated string to a fixed-length string The stchar()

function on

page 819

stcmpr() Compares two strings The stcmpr()

function on

page 820

stcopy() Copies one string to another string The stcopy()

function on

page 821

stleng() Counts the number of bytes in a string The stleng()

function on

page 822

Numeric data types

HCL Informix® database servers support the following numeric data types:

• Integer data types: SMALLINT, INTEGER, INT8, SERIAL, SERIAL8

• The Boolean data type

• Fixed-point data types: DECIMAL and MONEY

• Floating-point data types: SMALLFLOAT and FLOAT

These topics contain information about working with numeric data types:

• Informix® ESQL/C data types to use as host variables for SQL numeric data types

• Characteristics of Informix® ESQL/C numeric data types

• Formatting masks, which you can use to format numeric data types

• Informix® ESQL/C library functions that you can use to manipulate numeric data types

107

HCL Informix 14.10 - ESQL/C Programmer’s Guide

108

The integer data types

The database server supports the following data types for integer values.

SQL integer data type Number of bytes Range of values

SMALLINT 2 -32767 to 32767

INTEGER, INT, SERIAL 4 -2,147,483,647 to 2,147,483,647

INT8, BIGINT, SERIAL8, BIGSERIAL 8 -9,223,372,036,854,775,807 to

9,223,372,036,854,775,807

The C language supports the short int and long int data types for integer values.

The storage size of the C short int data type depends on the hardware and operating system of the computer that you use.

In ESQL/C, the long int data type of C is always treated as 4 bytes, regardless of the platform or hardware. This makes long

int useful for storing values of the SMALLINT, INTEGER, INT, and SERIAL data types of Informix®.

Important:

Do not, however, attempt to use a long int data type to store the 8-byte Informix® integer data types INT8, BIGINT,

SERIAL8, or BIGSERIAL. For example, the database server issues this error when your query attempts to select an 8-

byte BIGSERIAL value outside the range of -2,147,483,647 through + 2,147,483,647 into an integer C variable whose

data type is long int:

-1215 Value too large to fit in an INTEGER.

When you declare an integer host variable, you must ensure that this host variable is large enough for all possible values

of the SQL integer data type with which the variable is associated. For 8-byte whole numbers, use host variables of the C

data types bigint or int8. For more information about how to implement integer data types on your system, check with your

system administrator or your C documentation.

The integer host variable types

The following data types are provided for specifying integer host variables of specific lengths.

Data type

Length

int1

One-byte integer

int2

Two-byte integer

Chapter 1. ESQL/C Guide

int4

Four-byte integer

mint

Native integer data type for the machine

mlong

Native long integer data type for the machine, the size of which is equal to that of the pointer for the machine.

The mlong data type is mapped to the long data type on Windows™ 32-bit and UNIX™ and Linux™ 32-bit and 64-

bit platforms. It is mapped to the __int64 data type on Windows™ 64-bit platforms.

MSHORT

Native short integer data type for the machine

MCHAR

Native char data type for the machine

Restriction: The preceding integer data types are reserved. Your programs must not use typedef or

$typedef statements to define these data types.

The integer host variable data types are defined in the ifxtypes.h file, which is automatically included in your program

when you compile it with the esql script.

Important: Many of the IBM® Informix® ESQL/C library functions have been changed to declare the Informix®

integer data types rather than the machine-specific types such as int, short, and long. It is recommended that you

use the Informix® integer types when you call Informix® ESQL/C library functions.

The INT8 and SERIAL8 SQL data types
IBM® Informix® ESQL/C supports the SQL INT8 and SERIAL8 data types with the int8 data type. The int8 data type is a

machine-independent method that represents numbers in the range -(263 -1) to 263-1.

For a complete description of the INT8 and SERIAL8 SQL data types, see the HCL® Informix® Guide to SQL: Reference. This

section describes how to manipulate the Informix® ESQL/C data type, int8.

The int8 data type
Use the Informix® ESQL/C int8 data type to declare host variables for database values of type INT8 and SERIAL8.

The following table shows the fields of the structure ifx_int8_t, which represents an INT8 or SERIAL8 value.

109

HCL Informix 14.10 - ESQL/C Programmer’s Guide

110

Table 28. Fields of the ifx_int8_t structure

Field name Field type Purpose

data unsigned 4-byte

integer[INT8SIZE]

An array of integer values that make up the 8-byte integer value. When

the INT8SIZE constant is defined as 2, this array contains two unsigned

4-byte integers. The actual data type of an unsigned 4-byte integer can be

machine specific.

sign short integer A short integer to hold the sign (null, negative, or positive) of the 8-byte

integer. The actual data type of a 2-byte integer can be machine specific.

The int8.h header file contains the ifx_int8 structure and a typedef called ifx_int8_t. Include this file in all C source files

that use any int8 host variables as shown in the following example:

EXEC SQL include int8;

You can declare an int8 host variable in either of the following ways:

EXEC SQL BEGIN DECLARE SECTION;
 int8 int8_var1;
 ifx_int8_t int8_var2;
EXEC SQL BEGIN DECLARE SECTION;

The int8 library functions

You must perform all operations on int8 type numbers through the IBM® Informix® ESQL/C library functions for the int8

data type. Any other operations, modifications, or analyses can produce unpredictable results. The Informix® ESQL/C library

provides functions that allow you to manipulate int8 numbers and convert int8 type numbers to and from other data types.

The following tables describes these functions.

Table 29. Manipulation functions

Function name Description See

ifx_getserial8() Returns an inserted SERIAL8 value The ifx_int8add() function

on page 640

ifx_int8add() Adds two int8 numbers The ifx_int8cmp() function

on page 642

ifx_int8cmp() Compares two int8 numbers The ifx_int8copy() function

on page 644

ifx_int8copy() Copies an int8 number The ifx_int8cvasc() function

on page 646

ifx_int8div() Divides two int8 numbers The ifx_int8div() function on

page 657

Chapter 1. ESQL/C Guide

Table 29. Manipulation functions (continued)

Function name Description See

ifx_int8mul() Multiplies two int8 numbers The ifx_int8mul() function

on page 659

ifx_int8sub() Subtracts two int8 numbers The ifx_int8sub() function

on page 661

Table 30. Type conversion functions

Function name Description See

ifx_int8cvasc() Converts a C char type value to an int8 type value The ifx_int8cvdbl() function

on page 648

ifx_int8cvdbl() Converts a C double type value to an int8 type value The ifx_int8cvdbl() function

on page 648

ifx_int8cvdec() Converts a C decimal type value to a int8 type value The ifx_int8cvdec() function

on page 650

ifx_int8cvflt() Converts a C float type value to an int8 type value The ifx_int8cvflt() function

on page 652

ifx_int8cvint() Converts a C int type value to an int8 type value The ifx_int8cvint() function

on page 654

ifx_int8cvlong() Converts a C 4-byte integer type value to an int8 type value The ifx_int8cvlong()

function on page 656

ifx_int8toasc() Converts an int8 type value to a text string The ifx_int8toasc() function

on page 663

ifx_int8todbl() Converts an int8 type value to a C double type value The ifx_int8todbl() function

on page 666

ifx_int8todec() Converts an int8 type value to a decimal type value The ifx_int8todec() function

on page 668

ifx_int8toflt() Converts an int8 type value to a C float type value The ifx_int8toflt() function

on page 671

ifx_int8toint() Converts an int8 type value to a C int type value The ifx_int8toint() function

on page 674

ifx_int8tolong() Converts an int8 type value to a C 4-byte integer type value The ifx_int8tolong() function

on page 676

111

HCL Informix 14.10 - ESQL/C Programmer’s Guide

112

The BOOLEAN data type
IBM® Informix® ESQL/C uses the boolean data type to support the SQL BOOLEAN data type.

For a complete description of the SQL BOOLEAN data type, see the HCL® Informix® Guide to SQL: Reference. This section

describes how to manipulate the Informix® ESQL/C boolean data type.

You can declare a boolean host variable as follows:

EXEC SQL BEGIN DECLARE SECTION;
 boolean flag;
EXEC SQL BEGIN DECLARE SECTION;

In the Informix® ESQL/C program, the following values are the only valid values that you can assign to boolean host

variables:

TRUE

'\1'

FALSE

'\0'

NULL

Use the rsetnull() function with the CBOOLTYPE as the first argument

If you want to assign the character representations of 'T' or 'F' to a BOOLEAN column, you must declare a fixchar host

variable and initialize it to the desired character value. Use this host variable in an SQL statement such as the INSERT or

UPDATE statement. The database server converts the fixchar value to the appropriate BOOLEAN value.

The following code fragment inserts two values into a BOOLEAN column called bool_col in the table2 table:

EXEC SQL BEGIN DECLARE SECTION;
 boolean flag;
 fixchar my_boolflag;
 int id;
EXEC SQL END DECLARE SECTION;

id = 1;
flag = '\0'; /* valid boolean assignment to FALSE */
EXEC SQL insert into table2 values (:id, :flag); /* inserts FALSE */

id = 2;
rsetnull(CBOOLTYPE, (char *) &flag); /* valid BOOLEAN assignment
 * to NULL */
EXEC SQL insert into table2 values (:id, :flag); /* inserts NULL */

id = 3;
my_boolflag = 'T' /* valid character assignment to TRUE */
EXEC SQL insert into table2 values (:id, :my_boolflag); /* inserts TRUE
 */

Chapter 1. ESQL/C Guide

The decimal data type
IBM® Informix® ESQL/C supports the SQL DECIMAL and MONEY data types with the decimal data type. The decimal data

type is a machine-independent method that represents numbers of up to 32 significant digits, with valid values in the range

10-129 - 10+125.

The DECIMAL data type can take the following two forms:

• DECIMAL(p) floating point

When you define a column with the DECIMAL(p) data type, it has a total of p (< = 32) significant digits. DECIMAL(p)

has an absolute value range 10-130 - 10124.

• DECIMAL(p,s) fixed point

When you define a column with the DECIMAL(p,s) data type, it has a total of p (< = 32) significant digits (the precision)

and s (< = p) digits to the right of the decimal point (the scale).

For a complete description of the DECIMAL data type, see the HCL® Informix® Guide to SQL: Reference.

The decimal structure
Use the decimal data type to declare host variables for database values of type DECIMAL.

A structure of type decimal represents a value in a decimal host variable, as follows:

#define DECSIZE 16

struct decimal
 {
 short dec_exp;
 short dec_pos;
 short dec_ndgts;
 char dec_dgts[DECSIZE];
 };

typedef struct decimal dec_t;

The decimal.h header file contains the decimal structure and the typedef dec_t. Include this file in all C source files that

use any decimal host variables with the following include directive:

EXEC SQL include decimal;

The decimal structure stores the number in pairs of digits. Each pair is a number in the range 00 - 99. (Therefore, you can

think of a pair as a base-100 digit.) The following table shows the four parts of the decimal structure.

Table 31. Fields in the decimal structure

Field Description

dec_exp The exponent of the normalized decimal type number. The normalized form of this number has

the decimal point at the left of the left-most digit. This exponent represents the number of digit

113

HCL Informix 14.10 - ESQL/C Programmer’s Guide

114

Table 31. Fields in the decimal structure (continued)

Field Description

pairs to count from the left to position the decimal point (or as a power of 100 for the number of

base-100 numbers).

dec_pos The sign of the decimal type number. The dec_pos field can assume any one of the following

three values:

1: when the number is zero or greater

0: when the number is less than zero

–1: when the value is null

dec_ndgts The number of digit pairs (number of base-100 significant digits) in the decimal type number.

This value is also the number of entries in the dec_dgts array.

dec_dgts[] A character array that holds the significant digits of the normalized decimal type number,

assuming dec_dgts[0] ! = 0.

Each byte in the array contains the next significant base-100 digit in the decimal type number,

proceeding from dec_dgts[0] to dec_dgts[dec_ndgts].

The following table shows some sample decimal values.

Table 32. Sample structure field values for decimal

Value dec_exp dec_pos dec_ndgts dec_dgts[]

-12345.6789 3 0 5 dec_dgts[0] = 01

dec_dgts[1] = 23

dec_dgts[2] = 45

dec_dgts[3] = 67

dec_dgts[4] = 89

1234.567 2 1 4 dec_dgts[0] = 12

dec_dgts[1] = 34

dec_dgts[2] = 56

dec_dgts[3] = 70

-123.456 2 0 4 dec_dgts[0] = 01

dec_dgts[1] = 23

dec_dgts[2] = 45

dec_dgts[3] = 60

Chapter 1. ESQL/C Guide

Table 32. Sample structure field values for decimal (continued)

Value dec_exp dec_pos dec_ndgts dec_dgts[]

480 2 1 2 dec_dgts[0] = 04

dec_dgts[1] = 80

.152 0 1 2 dec_dgts[0] = 15

dec_dgts[1] = 20

-6 1 0 1 dec_dgts[0] = 06

You can use the deccvasc demonstration program to experiment with how Informix® ESQL/C stores decimal numbers.

The decimal library functions

You must perform all operations on decimal type numbers through the following Informix® ESQL/C library functions for the

decimal data type. Any other operations, modifications, or analyses can produce unpredictable results.

Table 33. Manipulation functions

Function name Description See

decadd() Adds two decimal numbers The decadd()

function on

page 571

deccmp() Compares two decimal numbers The deccmp()

function on

page 573

deccopy() Copies a decimal number The deccopy()

function on

page 575

decdiv() Divides two decimal numbers The decdiv()

function on

page 585

decmul() Multiplies two decimal numbers The decmul()

function on

page 591

decround() Rounds a decimal number The decround()

function on

page 593

115

HCL Informix 14.10 - ESQL/C Programmer’s Guide

116

Table 33. Manipulation functions (continued)

Function name Description See

decsub() Subtracts two decimal numbers The decsub()

function on

page 595

dectrunc() Truncates a decimal number The dectrunc()

function on

page 604

Table 34. Type conversion functions

Function name Description See

deccvasc() Converts a C char type value to a decimal type value The deccvasc()

function on

page 576

deccvdbl() Converts a C double type value to a decimal type value The deccvdbl()

function on

page 578

deccvint() Converts a C int type value to a decimal type value The deccvint()

function on

page 582

deccvlong() Converts a C 4-byte integer type value to a decimal type value The deccvlong()

function on

page 583

dececvt() Converts a decimal value to an ASCII string The dececvt()

and decfcvt()

functions on

page 587

decfcvt() Converts a decimal value to an ASCII string The dececvt()

and decfcvt()

functions on

page 587

dectoasc() Converts a decimal type value to an ASCII string The dectoasc()

function on

page 597

dectodbl() Converts a decimal type value to a C double type value The dectodbl()

function on

page 599

Chapter 1. ESQL/C Guide

Table 34. Type conversion functions (continued)

Function name Description See

dectoint() Converts a decimal type value to a C int type value The dectoint()

function on

page 601

dectolong() Converts a decimal type value to a C 4-byte integer type value The dectolong()

function on

page 603

For information about the function rfmtdec(), which allows you to format a decimal number, see Numeric-formatting

functions on page 124. For additional information about decimal values, see Operations that involve a decimal value on

page 91

The floating-point data types

The database server supports the following data types for floating-point values.

SQL floating-point data type ESQL/C or C language type Range of values

SMALLFLOAT, REAL float Single-precision values with up to 9 significant digits

FLOAT, DOUBLE PRECISION double Double-precision values with up to 17 significant

digits

DECIMAL(p) decimal Absolute value range 10-130 - 10124

Declare float host variables

When you use the C float data type (for SMALLFLOAT values), be aware that most C compilers pass float to a function as

the double data type. If you declare the function argument as a float, you might receive an incorrect result. For example, in

the following excerpt, :hostvar might produce an incorrect value in tab1, depending on how your C compiler handles the float

data type when your program passes it as an argument.

main()
{
 double dbl_val;

 EXEC SQL connect to 'mydb';
 ins_tab(dbl_val);
⋮;

}

ins_tab(hostvar)
EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER double hostvar;
EXEC SQL END DECLARE SECTION;
{

117

HCL Informix 14.10 - ESQL/C Programmer’s Guide

118

 EXEC SQL insert into tab1 values (:hostvar, ...);
}

For more information about the SQL floating point data types, see the HCL® Informix® Guide to SQL: Reference

Implicit data conversion

When the IBM® Informix® ESQL/C program fetches a floating-point column value into a character host variable (char,

fixchar, varchar, or string), it includes only the number of decimal digits that can fit into the character buffer. If the host

variable is too small for the full precision of the floating-point number, Informix® ESQL/C rounds the number to the precision

that the host variable can hold.

In the following code fragment, the Informix® ESQL/C program retrieves the value 1234.8763512 from a FLOAT column that is

called principal into the prncpl_strng character host variable:

EXEC SQL BEGIN DECLARE SECTION;
 char prncpl_strng[15]; /* character host variable */
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL select principal into :prncpl_strng from loan
 where customer_id = 1098;
printf("Value of principal=%s\n", prncpl_strng);

Because the prncpl_strng host variable is a buffer of 15 characters, Informix® ESQL/C is able to put all decimal digits into

the host variable and this code fragment produces the following output:

Value of principal=1234.876351200

However, if the preceding code fragment declares the prncpl_strng host variable as a buffer of 10 characters, Informix®

ESQL/C rounds the FLOAT value to fit into prncpl_strng and the code fragment produces the following output:

Value of principal=1234.8764

Informix® ESQL/C assumes a precision of 17 decimal digits for FLOAT or SMALLFLOAT values. For DECIMAL(n,m),

Informix® ESQL/C assumes m decimal digits.

Format numeric strings
A numeric-formatting mask specifies a format to apply to some numeric value.

This mask is a combination of the following formatting characters:

*

This character fills with asterisks any positions in the display field that would otherwise be blank.

&

This character fills with zeros any positions in the display field that would otherwise be blank.

Chapter 1. ESQL/C Guide

#

This character changes leading zeros to blanks. Use this character to specify the maximum leftward extent of a

field.

<

This character left-justifies the numbers in the display field. It changes leading zeros to a null string.

,

This character indicates the symbol that separates groups of three digits (counting leftward from the units

position) in the whole-number part of the value. By default, this symbol is a comma. You can set the symbol

with the DBMONEY environment variable. In a formatted number, this symbol appears only if the whole-number

part of the value has four or more digits.

.

This character indicates the symbol that separates the whole-number part of a money value from the fractional

part. By default, this symbol is a period. You can set the symbol with the DBMONEY environment variable. You

can have only one period in a format string.

-

This character is a literal. It appears as a minus sign when expr1 is less than zero. When you group several

minus signs in a row, a single minus sign floats to the rightmost position that it can occupy; it does not interfere

with the number and its currency symbol.

+

This character is a literal. It appears as a plus sign when expr1 is greater than or equal to zero and as a minus

sign when expr1 is less than zero. When you group several plus signs in a row, a single plus or minus sign floats

to the rightmost position that it can occupy; it does not interfere with the number and its currency symbol.

(

This character is a literal. It appears as a left parenthesis to the left of a negative number. It is one of the pair

of accounting parentheses that replace a minus sign for a negative number. When you group several in a row, a

single left parenthesis floats to the rightmost position that it can occupy; it does not interfere with the number

and its currency symbol.

)

This is one of the pair of accounting parentheses that replace a minus sign for a negative value.

$

This character displays the currency symbol that appears at the front of the numeric value. By default, the

currency symbol is the dollar sign ($). You can set the currency symbol with the DBMONEY environment

variable. When you group several dollar signs in a row, a single currency symbol floats to the rightmost position

that it can occupy; it does not interfere with the number.

Any other characters in the formatting mask are reproduced literally in the result.

119

HCL Informix 14.10 - ESQL/C Programmer’s Guide

120

When you use the following characters within a formatting mask, the characters float; that is, multiple occurrences of the

character at the left of the pattern in the mask appear as a single character as far to the right as possible in the formatted

number (without removing significant digits):

-
+
(
)
$

For example, if you apply the mask $$$,$$$.## to the number 1234.56, the result is $1,234.56.

When you use rfmtdec(), rfmtdouble(), or rfmtlong() to format MONEY values, the function uses the currency symbols that

the DBMONEY environment variable specifies. If you do not set this environment variable, the numeric-formatting functions

use the currency symbols that the client locale defines. The default local, U.S. English, defines currency symbols as if you

set DBMONEY to $,.. For a discussion of DBMONEY, see the HCL® Informix® Guide to SQL: Reference. For more information

about locales, see the HCL® Informix® GLS User's Guide.

Sample format strings for numeric expressions

The following table shows sample format strings for numeric expressions. The character b represents a blank or space.

Table 35. Sample format patterns and their results

Formatting mask Numeric value Formatted result

"#####"

"&&&&&"

"$$$$$"

"*****"

"<<<<<"

0

0

0

0

0

bbbbb 00000 bbbb$ ***** (null string)

“##,###?

"##,###"

"##,###"

"##,###"

"##,###"

"##,###"

"##,###"

12345

1234

123

12

1

-1

0

12,345 b1,234 bbb123 bbbb12 bbbbb1

bbbbb1 bbbbbb

"&&,&&&"

"&&,&&&"

"&&,&&&"

"&&,&&&"

"&&,&&&"

12345

1234

123

12

1

12,345

01,234

000123

000012

000001

Chapter 1. ESQL/C Guide

Table 35. Sample format patterns and their results (continued)

Formatting mask Numeric value Formatted result

"&&,&&&"

"&&,&&&"

-1

0

000001

000000

"$$,$$$"

"$$,$$$"

"$$,$$$"

"$$,$$$"

"$$,$$$"

"$$,$$$"

"$$,$$$"

"$$,$$$"

(DBMONEY set to DM)

12345

1234

123

12

1

-1

0

1234

***** (overflow)

$1,234 bb$123 bbb$12 bbbb$1 bbbb$1

bbbbb$ DM1,234

"**,***"

"**,***"

"**,***"

"**,***"

"**,***"

"**,***"

12345

1234

123

12

1

0

12,345

*1,234

***123

****12

*****1

"##,###.##"

"##,###.##"

"##,###.##"

"##,###.##"

"##,###.##"

"##,###.##"

"##,###.##"

"##,###.##"

"##,###.##"

12345.67

1234.56

123.45

12.34

1.23

0.12

0.01

-0.01

-1

12,345.67

b1,234.56

bbb123.45

bbbb12.34

bbbbb1.23

bbbbbb.12

bbbbbb.01

bbbbbb.01

bbbbb1.00

"&&,&&&.&&"

"&&,&&&.&&"

"&&,&&&.&&"

"&&,&&&.&&"

.67

1234.56

123.45

0.01

000000.67

01,234.56

000123.45

000000.01

"$$,$$$.$$"

"$$,$$$.$$"

"$$,$$$.##"

"$$,$$$.##"

12345.67

1234.56

0.00

1234.00

********* (overflow)

$1,234.56 bbbbb$.00 $1,234.00

bbbbb$.00 $1,234.00

121

HCL Informix 14.10 - ESQL/C Programmer’s Guide

122

Table 35. Sample format patterns and their results (continued)

Formatting mask Numeric value Formatted result

"$$,$$$.&&"

"$$,$$$.&&"

0.00

1234.00

"-##,###.##"

"-##,###.##"

"-##,###.##"

"--#,###.##"

"---,###.##"

"---,-##.##"

"---,--#.##"

"--#,###.##"

"---,--#.##"

-12345.67

-123.45

-12.34

-12.34

-12.34

-12.34

-12.34

-1.00

-1.00

-12,345.67

-bbb123.45

-bbbb12.34

b-bbb12.34

bb-bb12.34

bbbb-12.34

bbbb-12.34

b-bbbb1.00

bbbbb-1.00

"-##,###.##"

"-##,###.##"

"-##,###.##"

"-##,###.##"

"--#,###.##"

"---,###.##"

"---,-##.##"

"---,---.##"

"---,---.--"

"---,---.&&"

12345.67

1234.56

123.45

12.34

12.34

12.34

12.34

1.00

-.01

-.01

b12,345.67

bb1,234.56

bbbb123.45

bbbbb12.34

bbbbb12.34

bbbbb12.34

bbbbb12.34

bbbbbb1.00

bbbbbb-.01

bbbbbb-.01

"-$$$,$$$.&&"

"-$$$,$$$.&&"

"-$$$,$$$.&&"

"--$$,$$$.&&"

"--$$,$$$.&&"

"--$$,$$$.&&"

"--$$,$$$.&&"

"--$$,$$$.&&"

-12345.67

-1234.56

-123.45

-12345.67

-1234.56

-123.45

-12.34

-1.23

-$12,345.67

-b$1,234.56

-bbb$123.45

-$12,345.67

b-$1,234.56

b-bb$123.45

b-bbb$12.34

b-bbbb$1.23

"----,--$.&&"

"----,--$.&&"

"----,--$.&&"

"----,--$.&&"

-12345.67

-1234.56

-123.45

-12.34

-$12,345.67

b-$1,234.56

bbb-$123.45

bbbb-$12.34

Chapter 1. ESQL/C Guide

Table 35. Sample format patterns and their results (continued)

Formatting mask Numeric value Formatted result

"----,--$.&&"

"----,--$.&&"

-1.23

-.12

bbbbb-$1.23

bbbbbb-$.12

"$***,***.&&"

"$***,***.&&"

"$***,***.&&"

"$***,***.&&"

"$***,***.&&"

"$***,***.&&"

12345.67

1234.56

123.45

12.34

1.23

0.12

$*12,345.67

$**1,234.56

$****123.45

$*****12.34

$******1.23

$*******.12

"($$$,$$$.&&)"

"($$$,$$$.&&)"

"($$$,$$$.&&)"

-12345.67

-1234.56

-123.45

($12,345.67)

(b$1,234.56)

(bbb$123.45)

"(($$,$$$.&&)"

"(($$,$$$.&&)"

"(($$,$$$.&&)"

"(($$,$$$.&&)"

"(($$,$$$.&&)"

"((((,(($.&&)"

"((((,(($.&&)"

"((((,(($.&&)"

"((((,(($.&&)"

"((((,(($.&&)"

"((((,(($.&&)"

-12345.67

-1234.56

-123.45

-12.34

-1.23

-12345.67

-1234.56

-123.45

-12.34

-1.23

-.12

($12,345.67)

b($1,234.56)

b(bb$123.45)

b(bbb$12.34)

b(bbbb$1.23)

($12,345.67)

b($1,234.56)

bbb($123.45)

bbbb($12.34)

bbbbb($1.23)

bbbbbb($.12)

"($$$,$$$.&&)"

"($$$,$$$.&&)"

"($$$,$$$.&&)"

12345.67

1234.56

123.45

b$12,345.67

bb$1,234.56

bbbb$123.45

“(($$,$$$.&&)?

"(($$,$$$.&&)"

"(($$,$$$.&&)"

"(($$,$$$.&&)"

"(($$,$$$.&&)"

12345.67

1234.56

123.45

12.34

1.23

b$12,345.67

bb$1,234.56

bbbb$123.45

bbbbb$12.34

bbbbbb$1.23

"((((,(($.&&)"

"((((,(($.&&)"

"((((,(($.&&)"

12345.67

1234.56

123.45

b$12,345.67

bb$1,234.56

bbbb$123.45

123

HCL Informix 14.10 - ESQL/C Programmer’s Guide

124

Table 35. Sample format patterns and their results (continued)

Formatting mask Numeric value Formatted result

"((((,(($.&&)"

"((((,(($.&&)"

"((((,(($.&&)"

12.34

1.23

0.12

bbbbb$12.34

bbbbbb$1.23

bbbbbbb$.12

"<<<,<<<"

"<<<,<<<"

"<<<,<<<"

"<<<,<<<"

12345

1234

123

12

12,345

1,234

123

12

Numeric-formatting functions
Special functions are provided, which allow you to format numeric expressions for display.

These formatting functions apply a given formatting mask to a numeric value to allow you to line up decimal points, right

or left align the number, enclose a negative number in parentheses, and other formatting features. The Informix® ESQL/C

library includes the following functions that support formatting masks for numeric values.

Function name Description See

rfmtdec() Converts a decimal value to a string The rfmtdec() function

on page 758

rfmtdouble() Converts a double value to a string The rfmtdouble()

function on page 761

rfmtlong() Converts a 4-byte integer value to a string The rfmtlong() function

on page 763

Time data types
These topics explain how to use date, datetime, and interval data types in the HCL Informix® ESQL/C program.

This section contains the following information:

• An overview of the Informix® ESQL/C date data type

• The syntax of the Informix® ESQL/C library functions that you can use to manipulate the date data type

• An overview of the Informix® ESQL/C datetime and interval data types and how to use them

• The syntax of Informix® ESQL/C library functions that you can use to manipulate the datetime and interval data

types

For information about SQL data types, see the HCL® Informix® Guide to SQL: Reference.

Chapter 1. ESQL/C Guide

The SQL DATE data type

IBM® Informix® ESQL/C supports the SQL DATE data type with the Informix® ESQL/C date data type for host variables.

The date data type stores internal DATE values. It is implemented as a 4-byte integer whose value is the number of days

since December 31, 1899. Dates before December 31, 1899, are negative numbers, while dates after December 31, 1899, are

positive numbers. For a complete description of the SQL DATE data type, see the HCL® Informix® Guide to SQL: Reference.

Format date strings
A date-formatting mask specifies a format to apply to some date value.

This mask is a combination of the following formats.

dd

Day of the month as a two-digit number (01 - 31)

ddd

Day of the week as a three-letter abbreviation (Sun - Sat)

mm

Month as a two-digit number (01 - 12)

mmm

Month as a three-letter abbreviation (Jan - Dec)

yy

Year as a two-digit number (00 - 99)

yyyy

Year as a four-digit number (0001 - 9999)

ww

Day of the week as a two-digit number (00 for Sunday, 01 for Monday, 02 for Tuesday 06 for Saturday)

Any other characters in the formatting mask are reproduced literally in the result.

When you use a nondefault locale whose dates contain eras, you can use extended-format strings in a numeric-formatting

mask.

When you use rfmtdate() or rdefmtdate() to format DATE values, the function uses the date end-user formats that the

GLDATE or DBDATE environment variable specifies. If neither of these environment variables is set, these date-formatting

functions use the date end-user formats for the locale. The default locale, U.S. English, uses the format mm/dd/yyyy. For a

discussion of GLDATE and DBDATE environment variables, see the HCL® Informix® GLS User's Guide.

DATE library functions

The following date-manipulation functions are in the Informix® ESQL/C library. They convert dates between a string format

and the internal DATE format.

125

HCL Informix 14.10 - ESQL/C Programmer’s Guide

126

Function name Description See

rdatestr() Converts an internal DATE to a character string format The rdatestr() function on

page 745

rdayofweek() Returns the day of the week of a date in internal format The rdayofweek() function

on page 747

rdefmtdate() Converts a specified string format to an internal DATE The rdefmtdate() function on

page 749

rfmtdate() Converts an internal DATE to a specified string format The rfmtdate() function on

page 754

rjulmdy() Returns month, day, and year from a specified DATE The rjulmdy() function on

page 772

rleapyear() Determines whether specified year is a leap year The rleapyear() function on

page 774

rmdyjul() Returns an internal DATE from month, day, and year The rmdyjul() function on

page 776

rstrdate() Converts a character string format to an internal DATE The rstrdate() function on

page 785

rtoday() Returns a system date as an internal DATE The rtoday() function on

page 787

When you compile your Informix® ESQL/C program with the esql command, esql automatically links these functions into

your program.

The SQL DATETIME and INTERVAL data types

Informix® ESQL/C supports two data types that can hold information about time values:

• The datetime data type, which encodes an instant in time as a calendar date and a time of day.

• The interval data type, which encodes a span of time.

The following table summarizes these two time data types.

Table 36. ESQL/C time data types

SQL data type
ESQL/C data

type
C typedef name Sample declaration

DATETIME datetime dtime_t EXEC SQL BEGIN DECLARE SECTION;

datetime year to day sale;

Chapter 1. ESQL/C Guide

Table 36. ESQL/C time data types (continued)

SQL data type
ESQL/C data

type
C typedef name Sample declaration

EXEC SQL END DECLARE SECTION;

INTERVAL interval intrvl_t EXEC SQL BEGIN DECLARE SECTION;

interval hour to second test_num;

EXEC SQL END DECLARE SECTION;

The header file datetime.h contains the dtime_t and intrvl_t structures, along with a number of macro definitions that you

can use to compose qualifier values. Include this file in all C source files that use any datetime or interval host variables:

EXEC SQL include datetime;

The decimal.h header file defines the type dec_t, which is a component of the dtime_t and intrvl_t structures.

Because of the multiword nature of these data types, it is not possible to declare an uninitialized datetime or interval host

variable named year, month, day, hour, minute, second, or fraction. Avoid the following declarations:

EXEC SQL BEGIN DECLARE SECTION;
 datetime year; /* will cause an error */
 datetime year to day year, today; /* ambiguous */
EXEC SQL END DECLARE SECTION;

A datetime or interval data type is stored as a decimal number with a scale factor of zero and a precision equal to the

number of digits that its qualifier implies. When you know the precision and scale, you know the storage format. For example,

if you define a table column as DATETIME YEAR TO DAY, it contains four digits for year, two digits for month, and two digits

for day, for a total of eight digits. It is thus stored as decimal(8,0).

If the default precision of the underlying decimal value is not appropriate, you can specify a different precision. For example,

if you have a host variable of type interval, with the qualifier day to day, the default precision of the underlying decimal value

is two digits. If you have intervals of one hundred or more days, this precision is not adequate. You can specify a precision of

three digits as follows:

interval day(3) to day;

For more information about the DATETIME and INTERVAL data types, see the HCL® Informix® Guide to SQL: Reference.

The datetime data type
Use the datetime data type to declare host variables for database values of type DATETIME. You specify the accuracy of the

datetime data type with a qualifier.

For example, the qualifier in the following declaration is year to day:

datetime year to day sale;

As a host variable, a dtime_t. structure represents a datetime value:

127

HCL Informix 14.10 - ESQL/C Programmer’s Guide

128

typedef struct dtime {
 short dt_qual;
 dec_t dt_dec;
} dtime_t;

The dtime structure and dtime_t typedef have two parts. The following table lists these parts.

Table 37. Fields in the dtime structure

Field Description

dt_qual Qualifier of the datetime value

dt_dec Digits of the fields of the datetime value This field is a decimal value.

Declare a host variable for a DATETIME column with the datetime data type followed by an optional qualifier, as the following

example shows:

EXEC SQL include datetime;
⋮;

EXEC SQL BEGIN DECLARE SECTION;
 datetime year to day holidays[10];
 datetime hour to second wins, places, shows;
 datetime column6;
EXEC SQL END DECLARE SECTION;

If you omit the qualifier from the declaration of the datetime host variable, as in the last example, your program must

explicitly initialize the qualifier with the macros shown in Table 39: Qualifier macros for datetime and interval data types on

page 129.

The interval data type
Use the interval data type to declare host variables for database values of type INTERVAL.

You specify the accuracy of the interval data type with a qualifier. The qualifier in the following declaration is hour to second:

interval hour to second test_run;

As a host variable, an intrvl_t. represents an interval value:

typedef struct intrvl {
 short in_qual;
 dec_t in_dec;
} intrvl_t;

The intrvl structure and intrvl_t typedef have two parts. The following table lists these parts.

Table 38. Fields in the intrvl structure

Field Description

in_qual Qualifier of the interval value

in_dec Digits of the fields of the interval value This field is a decimal value.

Chapter 1. ESQL/C Guide

To declare a host variable for an INTERVAL column, use the interval data type followed by an optional qualifier, as shown in

the following example:

EXEC SQL BEGIN DECLARE SECTION;
 interval day(3) to day accrued_leave, leave_taken;
 interval hour to second race_length;
 interval scheduled;
EXEC SQL END DECLARE SECTION;

If you omit the qualifier from the declaration of the interval host variable, as in the last example, your program must explicitly

initialize the qualifier with the macros described in the following section.

Macros for datetime and interval data types

In addition to the datetime and interval data structures, the datetime.h file defines the macro functions shown in the

following table for working directly with qualifiers in binary form.

Table 39. Qualifier macros for datetime and interval data types

Name of Macro Description

TU_YEAR Time unit for the YEAR qualifier field

TU_MONTH Time unit for the MONTH qualifier field

TU_DAY Time unit for the DAY qualifier field

TU_HOUR Time unit for the HOUR qualifier field

TU_MINUTE Time unit for the MINUTE qualifier field

TU_SECOND Time unit for the SECOND qualifier field

TU_FRAC Time unit for the leading qualifier field of FRACTION

TU_Fn Names for datetime ending fields of FRACTION(n), for n from 1 - 5

TU_START(q) Returns the leading field number from qualifier q

TU_END(q) Returns the trailing field number from qualifier q

TU_LEN(q) Returns the length in digits of the qualifier q

TU_FLEN(f) Returns the length in digits of the first field, f, of an interval qualifier

TU_ENCODE(p,f,t) Creates a qualifier from the first field number f with precision p and trailing field number

t

TU_DTENCODE(f,t) Creates a datetime qualifier from the first field number f and trailing field number t

TU_IENCODE(p,f,t) Creates an interval qualifier from the first field number f with precision p and trailing

field number t

129

HCL Informix 14.10 - ESQL/C Programmer’s Guide

130

For example, if your program does not provide an interval qualifier in the host-variable declaration, you need to use the

interval qualifier macros to initialize and set the interval host variable. In the following example, the interval variable gets a

day to second qualifier. The precision of the largest field in the qualifier, day, is set to 2:

/* declare a host variable without a qualifier */
EXEC SQL BEGIN DECLARE SECTION;
 interval inv1;
EXEC SQL END DECLARE SECTION;
⋮;

/* set the interval qualifier for the host variable */
inv1.in_qual = TU_IENCODE(2, TU_DAY, TU_SECOND);
⋮;

/* assign values to the host variable */
incvasc ("5 2:10:02", &inv1);

Fetch and insert DATETIME and INTERVAL values

When an application fetches or inserts a DATETIME or INTERVAL value, IBM® Informix® ESQL/C must ensure that the

qualifier field of the host variable is valid:

• When an application fetches a DATETIME value into a datetime host variable or inserts a DATETIME value from a

datetime host variable, it must ensure that the dt_qual field of the dtime_t structure is valid.

• When an application fetches an INTERVAL value into an interval host variable or inserts an INTERVAL value from an

interval host variable, it must ensure that the in_qual field of the intrvl_t structure is valid.

Fetch and insert into datetime host variables

When an application uses a datetime host variable to fetch or insert a DATETIME value, IBM® Informix® ESQL/C must find a

valid qualifier in the datetime host variable. Informix® ESQL/C takes one of the following actions, based on the value of the

dt_qual field in the dtime_t structure that is associated with the host variable:

• When the dt_qual field contains a valid qualifier, Informix® ESQL/C extends the column value to match the dt_qual

qualifier.

Extending is the operation of adding or dropping fields of a DATETIME value to make it match a given qualifier. You

can explicitly extend DATETIME values with the SQL EXTEND function and the Informix® ESQL/C dtextend() function.

• When the dt_qual field does not contain a valid qualifier, Informix® ESQL/C takes different actions for a fetch and an

insert:

◦ For a fetch, Informix® ESQL/C uses the DATETIME column value and its qualifier to initialize the datetime

host variable.

Zero (0) is an invalid qualifier. Therefore, if you set the dt_qual field to zero, you can ensure that Informix®

ESQL/C uses the qualifier of the DATETIME column.

Chapter 1. ESQL/C Guide

◦ For an insert, Informix® ESQL/C cannot perform the insert or update operation.

Informix® ESQL/C sets the SQLSTATE status variable to an error-class code (and SQLCODE to a negative

value) and the update or insert operation on the DATETIME column fails.

Fetch and insert into interval host variables

When an application uses an interval host variable to fetch or insert an INTERVAL value, IBM® Informix® ESQL/C must find

a valid qualifier in the interval host variable. Informix® ESQL/C takes one of the following actions, based on the value of the

in_qual field of the intrvl_t structure that is associated with the host variable:

• When the in_qual field contains a valid qualifier, Informix® ESQL/C checks it for compatibility with the qualifier from

the INTERVAL column value.

The two qualifiers are compatible if they belong to the same interval class: either year to month or day to fraction.

If the qualifiers are incompatible, Informix® ESQL/C sets the SQLSTATE status variable to an error-class code (and

SQLCODE is set to a negative value) and the select, update, or insert operation fails.

If the qualifiers are compatible but not the same, Informix® ESQL/C extends the column value to match the in_qual

qualifier. Extending is the operation of adding or dropping fields within one of the interval classes of an INTERVAL

value to make it match a given qualifier. You can explicitly extend INTERVAL values with the Informix® ESQL/C

invextend() function.

• When the in_qual field does not contain a valid qualifier, Informix® ESQL/C takes different actions for a fetch and an

insert:

◦ For a fetch, if the in_qual field contains zero or is not a valid qualifier, Informix® ESQL/C uses the INTERVAL

column value and its qualifier to initialize the interval host variable.

◦ For an insert, if the in_qual field is not compatible with the INTERVAL column or if it does not contain a valid

value, Informix® ESQL/C cannot perform the insert or update operation.

Informix® ESQL/C sets the SQLSTATE status variable to an error-class code (and SQLCODE is set to a

negative value) and the update or insert operation on the INTERVAL column fails.

Implicit data conversion

You can fetch a DATETIME or INTERVAL column value into a character (char, string, or fixchar) host variable. IBM®

Informix® ESQL/C converts the DATETIME or INTERVAL column value to a character string before it stores it in the character

host variable. This character string conforms to the ANSI SQL standards for DATETIME and INTERVAL values. If the host

variable is too short, Informix® ESQL/C sets sqlca.sqlwarn.sqlwarn1 to W, fills the host variable with asterisk (*) characters,

and sets any indicator variable to the length of the untruncated character string.

You can also insert a DATETIME or INTERVAL column value from a character (char, string, fixchar, or varchar) host variable.

Informix® ESQL/C uses the data type and qualifiers of the column value to convert the character value to a DATETIME

or INTERVAL value. It expects the character string to contain a DATETIME or INTERVAL value that conforms to ANSI SQL

standards.

131

HCL Informix 14.10 - ESQL/C Programmer’s Guide

132

If the conversion fails, Informix® ESQL/C sets the SQLSTATE status variable to an error-class code (and SQLCODE status

variable to a negative value) and the update or insert operation fails.

Important: HCL Informix® products do not support automatic data conversion from DATETIME and INTERVAL

column values to numeric (double, int, and so on) host variables. Nor do HCL Informix® products support automatic

data conversion from numeric (double, int, and so on) or date host variables to DATETIME and INTERVAL column

values.

ANSI SQL standards for DATETIME and INTERVAL values

The ANSI SQL standards specify qualifiers and formats for character representations of DATETIME and INTERVAL values.

The standard qualifier for a DATETIME value is YEAR TO SECOND, and the standard format is as follows:

YYYY-MM-DD HH:MM:SS

The standards for an INTERVAL value specify the following two classes of intervals:

• The YEAR TO MONTH class has the format: YYYY-MM

A subset of this format is also valid: for example, just a month interval.

• The DAY TO FRACTION class has the format: DD HH:MM:SS.F

Any subset of contiguous fields is also valid: for example, MINUTE TO FRACTION.

Converting data for datetime values
You can use the Informix® ESQL/C library functions dtcvasc(), dtcvfmtasc(), dttoasc(), and dttofmtasc() to explicitly convert

between DATETIME column values and character strings.

About this task

For example, you can perform conversions between the DATETIME and DATE data types with Informix® ESQL/C library

functions and intermediate strings.

To convert a DATETIME value to a DATE value:

1. Use the dtextend() function to adjust the DATETIME qualifier to year to day.

2. Apply the dttoasc() function to create a character string in the form yyyy-mm-dd.

3. Use The rdefmtdate() function with a pattern argument of yyyy-mm-dd to convert the string to a DATE value.

Converting data for interval values
You can use the Informix® ESQL/C library functions incvasc(), incvfmtasc(), intoasc(), and intofmtasc() to explicitly convert

between INTERVAL column values and character strings.

About this task

Chapter 1. ESQL/C Guide

For example, you can perform conversions between the DATETIME and DATE data types with Informix® ESQL/C library

functions and intermediate strings.

To convert a DATE value to a DATETIME value:

1. Declare a host variable with a qualifier of year to day (or initialize the qualifier with the value that the

TU_DTENCODE(TU_YEAR,TU_DAY) macro returns).

2. Use the rfmtdate() function with a pattern of yyyy-mm-dd to convert the DATE value to a character string.

3. Use the dtcvasc() function to convert the character string to a value in the prepared DATETIME variable.

4. If necessary, use the dtextend() function to adjust the DATETIME qualifier.

Support of non-ANSI DATETIME formats
IBM® Informix® ESQL/C supports conversions from a data-time string in a non-ANSI format to the DATETIME data type.

This conversion makes it easier to upgrade from Asian Language Support (ALS) client/server products to Global Language

Support (GLS) client/server products.

The USE_DTENV environment variable
To support compatibility with earlier versions, IBM® Informix® ESQL/C uses the USE_DTENV environment variable to

activate support for non-ANSI date-time formats.

When the USE_DTENV environment variable is enabled, the following order or precedence is used:

1. DBTIME

2. GL_DATETIME

3. CLIENT_LOCALE

4. LC_TIME

5. LANG (if LC_TIME is not set)

6. ANSI format

When enabled, the USE_DTENV environment variable is passed from the ESQL/C program to the database server. Enabling

it for the database server only has no effect. You must set it for the ESQL/C client program, which then passes it to the

database server.

If the database server does not support non-ANSI date-time formats, do not set the USE_DTENV environment variable for the

ESQL/C client program.

You must set this environment variable to display localized DATETIME values correctly in a database that uses a non-default

locale, and for which the GL_DATETIME environment variable has a non-default setting.

133

HCL Informix 14.10 - ESQL/C Programmer’s Guide

134

DATETIME and INTERVAL library functions

You must use the following IBM® Informix® ESQL/C library functions for the datetime and interval data types to perform

all operations on those types of values. The following C functions are available in Informix® ESQL/C to handle datetime and

interval host variables.

Function name Description See

dtaddinv() Adds an interval value to a datetime value The dtaddinv()

function on

page 606

dtcurrent() Gets the current date and time The dtcurrent()

function on

page 608

dtcvasc() Converts an ANSI-compliant character string to a datetime value The dtcvasc()

function on

page 609

dtcvfmtasc() Converts a character string with a specified format to a datetime value The dtcvfmtasc()

function on

page 612

dtextend() Changes the qualifier of a datetime value The dtextend()

function on

page 615

dtsub() Subtracts one datetime value from another The dtsub() function

on page 616

dtsubinv() Subtracts an interval value from a datetime value The dtsubinv()

function on

page 619

dttoasc() Converts a datetime value to an ANSI-compliant character string The dttoasc()

function on

page 620

dttofmtasc() Converts a datetime value to a character string with a specified format The dttofmtasc()

function on

page 622

incvasc() Converts an ANSI-compliant character string to an interval value The incvasc()

function on

page 726

Chapter 1. ESQL/C Guide

Function name Description See

incvfmtasc() Converts a character string with a specified format to an interval value The incvfmtasc()

function on

page 729

intoasc() Converts an interval value to an ANSI-compliant character string The intoasc()

function on

page 731

intofmtasc() Converts an interval value to a character string with a specified format The intoasc()

function on

page 731

invdivdbl() Divides an interval value by a numeric value The intofmtasc()

function on

page 733

invdivinv() Divides an interval value by another interval value The invdivdbl()

function on

page 736

invextend() Extends an interval value to a different interval qualifier The invdivinv()

function on

page 738

invmuldbl() Multiplies an interval value by a numeric value The invextend()

function on

page 740

For more information about operations on the SQL DATETIME and INTERVAL data types, see the HCL® Informix® Guide to

SQL: Reference.

Simple large objects
A simple large object is a large object that is stored in a blobspace on disk and is not recoverable.

Simple large objects include the TEXT and BYTE data types. The TEXT data type stores any text data. The BYTE data type

can store any binary data in an undifferentiated byte stream.

These topics describe the following information about simple large objects:

• Choosing whether to use a simple large object or a smart large object in your IBM® Informix® ESQL/C application

• Programming with simple large objects, including how to declare host variables and how to use the locator structure

• Locating simple large objects in memory

• Locating simple large objects in files, both open files and named files

• Locating simple large objects at a user-defined location

• Reading and writing simple large objects to optical disc

135

HCL Informix 14.10 - ESQL/C Programmer’s Guide

136

The end of this section presents an annotated example program called dispcat_pic. The dispcat_pic sample program

demonstrates how to read and display the cat_descr and cat_picture simple-large-object columns from the catalog table of

the stores7 demonstration database.

For information about the TEXT and BYTE data types, as well as other SQL data types, see the HCL® Informix® Guide to SQL:

Reference.

Choose a large-object data type
If you use HCL Informix® as your database server, you can choose between using simple large objects or smart large

objects.

Informix® supports simple large objects primarily for compatibility with earlier versions of Informix® applications. When you

write new applications that need to access large objects, use smart large objects to hold character (CLOB) and binary (BLOB)

data.

The following table summarizes the advantages that smart large objects present over simple large objects:

Large-object feature Simple large objects Smart large objects

Maximum size of data 2 GB 4 TB

Data accessibility No random access to data Random access to data

Reading the large object The database server reads a simple large

object on an all or nothing basis.

Library functions provide access that is

similar to accessing an operating-system

file. You can access specified portions of

the smart large object.

Writing the large object The database server updates a simple large

object on an all or nothing basis.

The database server can rewrite only a

portion of a smart large object.

Data logging Data logging is always on. Data logging can be turned on and off.

Programming with simple large objects
IBM® Informix® ESQL/C supports SQL simple large objects and the data types TEXT and BYTE with the loc_t data type.

Tip: You cannot use literal values in an INSERT or UPDATE statement to put simple-large-object data into a TEXT or

BYTE column. To insert values into a simple large object, you can use the LOAD statement from DB-Access or loc_t

host variables from the Informix® ESQL/C client application.

Because of the potentially huge size of simple-large-object data, the Informix® ESQL/C program does not store the data

directly in a loc_t host variable. Instead, the loc_t structure is a locator structure. It does not contain the actual data; it

contains information about the size and location of the simple-large-object data. You choose whether to store the data in

memory, an operating-system file, or even user-defined locations.

To use simple-large-object variables in the Informix® ESQL/C program, take the following actions:

Chapter 1. ESQL/C Guide

• Declare a host variable with the loc_t data type

• Access the fields of the loc_t locator structure

Declare a host variable for a simple large object

Use the loc_t data type to declare host variables for database values of type TEXT or BYTE. You declare a host variable for a

simple-large-object column with the data type loc_t, as shown in the following example:

EXEC SQL include locator;
⋮;

EXEC SQL BEGIN DECLARE SECTION;
 loc_t text_lob;
 loc_t byte_lob;
EXEC SQL END DECLARE SECTION;

A locator variable with a TEXT data type has the loc_type field of the locator structure set to SQLTEXT. For a BYTE variable,

loc_type is SQLBYTE.

Tip: The sqltypes.h header file defines both SQLTEXT and SQLBYTE. Therefore, make sure that you include

sqltypes.h before you use these constants.

From the Informix® ESQL/C program, you can both select and insert simple-large-object data into loc_t host variables. You

can also select only portions of a simple-large-object variable with subscripts on the simple-large-object column name.

These subscripts can be coded into the statement as shown in the following example:

EXEC SQL declare catcurs cursor for
 select catalog_num, cat_descr[1,10]
 from catalog
 where manu_code = 'HSK';
EXEC SQL open catcurs;
while (1)
 {
 EXEC SQL fetch catcurs into :cat_num, :cat_descr;

⋮;

 }

Subscripts can also be passed as input parameters as the following code fragment shows:

EXEC SQL prepare slct_id from
 'select catalog_num, cat_descr[?,?] from catalog \
 where catalog_num = ?'
EXEC SQL execute slct_id into :cat_num, :cat_descr
 using :n, :x, :cat_num;

Access the locator structure
In the IBM® Informix® ESQL/C program, you use a locator structure to access simple-large-object values.

137

HCL Informix 14.10 - ESQL/C Programmer’s Guide

138

The locator structure is the host variable for TEXT and BYTE columns when they are stored in or retrieved from the database.

This structure describes the location of a simple-large-object value for the following two database operations:

• When the program inserts the simple large object into the database, the locator structure identifies the source of the

simple-large-object data to insert.

It is recommended that you initialize the data structure before using it, as in the following example:

byfill(&blob1, sizeof(loc_t), 0);
where blob1 is declared as --
EXEC SQL BEGIN DECLARE SECTION;
loc_t blob1;
EXEC SQL END DECLARE SECTION;

This ensures that all variables of the data structure have been initialized and will avoid inconsistencies

• When the program selects the simple large object from the database, the locator structure identifies the destination

of the simple-large-object data.

The locator.h header file defines the locator structure, called loc_t. The following figure shows the definition of the loc_t

locator structure from the locator.h file.

Chapter 1. ESQL/C Guide

Figure 24. Declaration of loc_t in the locator.h header file

typedef struct tag_loc_t
 {
 int2 loc_loctype; /* USER: type of locator - see below */
 union /* variant on 'loc' */
 {
 struct /* case LOCMEMORY */
 {
 int4 lc_bufsize; /* USER: buffer size */
 char *lc_buffer; /* USER: memory buffer to use */
 char *lc_currdata_p; /* INTERNAL: current memory buffer */
 mint lc_mflags; /* USER/INTERNAL: memory flags */
 /* (see below) */
 } lc_mem;

 struct /* cases L0CFNAME & LOCFILE */
 {
 char *lc_fname; /* USER: file name */
 mint lc_mode; /* USER: perm. bits used if creating */
 mint lc_fd; /* USER: os file descriptior */
 int4 lc_position; /* INTERNAL: seek position */
 } lc_file;
 } lc_union;

 int4 loc_indicator; /* USER/SYSTEM: indicator */
 int4 loc_type; /* SYSTEM: type of blob */
 int4 loc_size; /* USER/SYSTEM: num bytes in blob or -1 */
 mint loc_status; /* SYSTEM: status return of locator ops */
 char *loc_user_env; /* USER: for the user's PRIVATE use */
 int4 loc_xfercount; /* INTERNAL/SYSTEM: Transfer count */
 /* USER: open function */
 mint (*loc_open)(struct tag_loc_t *loc, mint flag, mint bsize);
; /* USER: close function */
 mint (*loc_close)(struct tag_loc_t *loc)
; /* USER: read function */
 mint (*loc_read)(struct tag_loc_t *loc, char *buffer, mint buflen)
; /* USER: write function */
 mint (*loc_write)(struct tag_loc_t *loc, char *buffer, mint buflen)
 /* USER/INTERNAL: see flag definitions below */
 mint loc_oflags;
 } loc_t;

In Figure 24: Declaration of loc_t in the locator.h header file on page 139, the following comments in the locator.h file

indicate how the fields are used in the locator structure.

USER

The Informix® ESQL/C program sets the field, and the Informix® ESQL/C libraries inspect the field.

SYSTEM

The Informix® ESQL/C libraries set the field, and the Informix® ESQL/C program inspects the field.

INTERNAL

The field is a work area for the Informix® ESQL/C libraries, and the Informix® ESQL/C program does not need

to examine the field.

139

HCL Informix 14.10 - ESQL/C Programmer’s Guide

140

Informix® ESQL/C does not automatically include the locator.h header file in the Informix® ESQL/C program. You must

include the locator.h header file in any Informix® ESQL/C program that defines simple-large-object variables.

EXEC SQL include locator;

The fields of the locator structure

The locator structure has the following parts:

• The loc_loctype field identifies the location of the simple-large-object data. It also indicates the variant type of the

lc_union structure.

For more information about loc_loctype, see Locations for simple-large-object data on page 141.

• The lc_union structure is a union (overlapping variant structures) structure.

The variant in use depends on where Informix® ESQL/C can expect to find the simple large object at run time. For

more information about this structure, see Locate simple large objects in memory on page 142 and Locate simple

large objects in files on page 148.

• Several fields are common to all types of simple-large-object variables.

The lists the fields in the locator structure common to all simple-large-object locations.

Table 40. Fields in locator structure common to all simple-large-object data locations

Field Data type Description

loc_indicator 4-byte integer A value of -1 in the loc_indicator field indicates a null simple-large-object value.

The IBM® Informix® ESQL/C program can set the field to indicate insertion of a

null value; Informix® ESQL/C libraries set it on a select or fetch.

For consistent behavior on various platforms, it is advised to set the value of

the indicator to 0 or -1. If indicator is not set you can experience inconsistent

behavior. The value set in the indicator field takes the higher precedence when

set.

You can also use the loc_indicator field to indicate an error when your program

selects into memory. If the simple large object to be retrieved does not fit in the

space provided, the loc_indicator field contains the actual size of the simple

large object.

loc_size 4-byte integer Contains the size of the simple-large-object data in bytes. This field indicates

the amount of simple-large-object data that the Informix® ESQL/C libraries read

or write. The Informix® ESQL/C program sets loc_size when it inserts a simple

large object in the database; the Informix® ESQL/C libraries set loc_size after it

selects or fetches a simple large object.

Chapter 1. ESQL/C Guide

Table 40. Fields in locator structure common to all simple-large-object data locations (continued)

Field Data type Description

loc_status mint Indicates the status of the last locator operation. The Informix® ESQL/C

libraries set loc_status to zero when a locator operation is successful and to a

negative value when an error occurs. The SQLCODE variable also contains this

status value.

loc_type 4-byte integer Specifies whether the data type of the variable is TEXT (SQLTEXT) or BYTE

(SQLBYTES). The sqltypes.h header file defines SQLTEXT and SQLBYTES.

Locations for simple-large-object data
Before your Informix® ESQL/C program accesses a simple-large-object column, it must determine where the simple-large-

object data is located.

To specify whether the simple large object is located in memory or in a file, specify the contents of the loc_loctype field of

the locator structure. The following table shows the possible locations for simple-large-object data.

Table 41. Possible locations for simple-large-object data

Value of loc_loctype field Location of simple-large-object data See

LOCMEMORY In memory Locate simple

large objects

in memory on

page 142

LOCFILE In an open file Locate simple

large objects

in open files on

page 149

LOCFNAME In a named file Locate simple

large objects in

named files on

page 153

LOCUSER At a user-defined location User-defined

simple-large-obj

ect locations on

page 158

Set loc_loctype after you declare the locator variable and before this declared variable receives a simple-large-object value.

141

HCL Informix 14.10 - ESQL/C Programmer’s Guide

142

The locator.h header file defines the LOCMEMORY, LOCFILE, LOCFNAME, and LOCUSER location constants. In your

IBM® Informix® ESQL/C program, use these constant names rather than their constant values when you assign values to

loc_loctype.

In a client-server environment, Informix® ESQL/C locates the simple large object on the client computer (the computer on

which the application runs).

Locate simple large objects in memory

To have IBM® Informix® ESQL/C locate the TEXT or BYTE data in primary memory, set the loc_loctype field of the locator

structure to LOCMEMORY as follows:

EXEC SQL BEGIN DECLARE SECTION;
 loc_t my_simple_lo;
EXEC SQL END DECLARE SECTION;
⋮;

my_simole_lo.loc_loctype = LOCMEMORY;

When you use memory as a simple-large-object location, a locator structure uses the lc_mem structure of the lc_union

structure. The following table summarizes the lc_union.lc_mem fields.

Table 42. Fields in lc_union.lc_mem structure used for simple large objects located in memory

Field Data type Description

lc_bufsize 4-byte integer The size, in bytes, of the buffer to which the lc_buffer field points.

lc_buffer char * The address of the buffer to hold the simple large-object value. Your Informix®

ESQL/C program must allocate the space for this buffer and store its address

here in lc_buffer.

lc_currdata_p char * The address of the system buffer. This is an internal field and must not be

modified by the Informix® ESQL/C program.

lc_mflags mint The flags to use when you allocate memory.

The locator.h file provides the following macro shortcuts to use when you access fields in lc_union.lc_mem:

#define loc_bufsize lc_union.lc_mem.lc_bufsize
#define loc_buffer lc_union.lc_mem.lc_buffer
#define loc_currdata_p lc_union.lc_mem.lc_currdata_p
#define loc_mflags lc_union.lc_mem.lc_mflags

Tip: It is recommended that you use these shortcut names when you access the locator structure. The shortcut

names improve code readability and reduce coding errors. This publication uses these shortcut names when it refers

to the lc_bufsize, lc_buffer, lc_currdata_p, and lc_mflags fields of the lc_union.lc_mem structure.

The demo directory contains the following two sample Informix® ESQL/C programs that demonstrate how to handle simple-

large-object data located in memory:

Chapter 1. ESQL/C Guide

• The getcd_me.ec program selects a simple large object into memory.

• The updcd_me.ec program inserts a simple large object from memory.

These programs assume the stores7 database as the default database for the simple-large-object data. The user can specify

another database (on the default database server) as a command-line argument.

getcd_me mystores

The getcd_me and updcd_me programs are briefly explained in Select a simple large object into memory on page 144 and

Insert a simple large object from memory on page 146.

Allocate the memory buffer
When your program selects simple-large-object data into memory, IBM® Informix® ESQL/C uses a memory buffer.

Before your program fetches TEXT or BYTE data, you must set the loc_bufsize (lc_union.lc_mem.lc_bufsize) field as follows

to indicate how Informix® ESQL/C allocates this memory buffer:

• If you set the loc_bufsize to -1, Informix® ESQL/C allocates the memory buffer to hold the simple-large-object data.

• If you set the loc_bufsize to a value that is not -1, Informix® ESQL/C assumes that the program handles memory-

buffer allocation and deallocation.

Important: When you locate simple large objects in memory, you must always set loc_mflags

(lc_union.lc_mem.lc_mflags) and loc_oflags to 0 initially.

A memory buffer that the ESQL/C libraries allocate

When you set loc_bufsize to -1, IBM® Informix® ESQL/C allocates the memory buffer on a fetch or select. Informix®

ESQL/C uses the malloc() system call to allocate the memory buffer to hold a single simple-large-object value. (If it cannot

allocate the buffer, Informix® ESQL/C sets the loc_status field to -465 to indicate an error.) When the select (or the first fetch)

completes, Informix® ESQL/C sets loc_buffer to the address of the buffer and both loc_bufsize and loc_size to the size of

the fetched simple large object to update the locator structure.

To fetch subsequent simple-large-objects whose data is of larger or smaller size, set loc_mflags to the LOC_ALLOC constant

(that locator.h defines) to request that Informix® ESQL/C reallocate a new memory buffer. Leave loc_bufsize to the size

of the currently allocated buffer.

If you do not set loc_mflags to LOC_ALLOC after the initial fetch, Informix® ESQL/C does not release the memory it has

allocated for the loc_buffer buffer. Instead, it allocates a new buffer for subsequent fetches. This situation can cause

your program size to grow for each fetch unless you explicitly free the memory allocated to each loc_buffer buffer. If your

application runs on a Windows™ operating system and uses the multithreaded library then use the SqlFreeMem() Informix®

ESQL/C function to free it. Otherwise use the free() system call.

When you set loc_mflags to LOC_ALLOC, Informix® ESQL/C handles memory allocation as follows:

143

HCL Informix 14.10 - ESQL/C Programmer’s Guide

144

• If the size of the simple-large-object data increases, Informix® ESQL/C frees the existing buffer and allocates the

necessary memory.

If this reallocation occurs, Informix® ESQL/C alters the memory address at which it stores simple-large-object data.

Therefore, if you reference the address in your programs, your program logic must account for the address change.

Informix® ESQL/C also updates the loc_bufsize and loc_size field to the size of the fetched simple large object.

• If the size of the data decreases, Informix® ESQL/C does not need to reallocate the buffer.

After the fetch, the loc_size field indicates the size of the fetched simple large object while the loc_bufsize field still

contains the size of the allocated buffer.

Informix® ESQL/C frees the allocated memory when it fetches the next simple-large-object value. Therefore, Informix®

ESQL/C does not explicitly free the last simple-large-object value fetched until your program disconnects from the database

server.

For an example in which loc_bufsize is set to -1, see Select a simple large object into memory on page 144.

A memory buffer that the program allocates

If you want to handle your own memory allocation for simple large objects, use the malloc() system call to allocate the

memory and then set the following fields in the locator structure:

• Before a select or fetch of a TEXT or BYTE column, set the loc_buffer field to the address of the allocated memory

buffer, and set the loc_bufsize field to the size of the memory buffer.

• Before an insert of a TEXT or BYTE column, set the same fields as for a select or fetch. In addition, set loc_size to the

size of the data to be inserted in the database.

If the fetched data does not fit in the allocated buffer, the IBM® Informix® ESQL/C libraries set loc_status (and SQLCODE)

to a negative value (-451) and put the actual size of the data in loc_indicator. If the fetched data does fit, Informix® ESQL/C

sets loc_size to the size of the fetched data.

Important: When you allocate your own memory buffer, also free the memory when you are finished selecting or

inserting simple large objects. Informix® ESQL/C does not free this memory because it has no way to determine

when you are finished with the memory. Because you have allocated the memory with malloc(), you can use the

free() system call to free the memory.

Select a simple large object into memory
The getcd_me sample program from the demo directory shows how to select a simple large object from the database into

memory.

The following figure shows a code excerpt that selects the cat_descr TEXT column of the catalog table into memory and

then displays it.

Chapter 1. ESQL/C Guide

Figure 25. Code excerpt from the getcd_me sample program

cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
cat_descr.loc_bufsize = -1; /* let db get buffer */
cat_descr.loc_oflags = 0; /* clear loc_oflags */
cat_descr.loc_mflags = 0; /* set loc_mflags to 0 */
EXEC SQL select catalog_num, cat_descr /* look up catalog number */
 into :cat_num, :cat_descr from catalog
 where catalog_num = :cat_num;
if((ret = exp_chk2("SELECT", WARNNOTIFY)) == 100) /* if not found */
 {
 printf("\nCatalog number %ld not found in catalog table\n",
 cat_num);
 if(!more_to_do()) /* More to do? */
 break; /* no, terminate loop */
 else
 continue; /* yes */
 }
if(ret < 0)
 {
 printf("\nSelect for catalog number %ld failed\n", cat_num);
 EXEC SQL disconnect current;
 printf("GETCD_ME Sample Program over.\n\n");
 exit(1);
 }
prdesc(); /* if found, print cat_descr */

The program sets the cat_descr locator structure fields as follows:

• The loc_loctype field is set to LOCMEMORY so that Informix® ESQL/C returns the cat_descr text in a memory buffer.

• The loc_bufsize field is set to -1 to have Informix® ESQL/C allocate the memory for the buffer. For more information,

see A memory buffer that the ESQL/C libraries allocate on page 143.

• The loc_oflags field is set to 0 because the program does not use a file for the simple large object.

• You must always set the loc_mflags field to 0 when you locate a simple large object in memory.

After the SELECT or FETCH statement, the locator structure contains the following information:

• The loc_buffer field contains the address of the memory buffer.

• The loc_bufsize field contains the size of the loc_buffer buffer. This is the total amount of memory allocated for

simple-large-object storage.

• The loc_size field contains the number of bytes of simple-large-object data in loc_buffer.

• The loc_indicator field contains -1 if the selected simple-large-object value is null.

• The loc_status field contains the status of the operation: 0 for success and a negative value if an error has occurred.

For information about possible errors, see Allocate the memory buffer on page 143.

The program excerpt in Figure 25: Code excerpt from the getcd_me sample program on page 145 calls prdesc() to display

the text that the SELECT statement returned. For a description of the prdesc() function, see Guide to the prdesc.c file on

page 175. If this program selects a second simple large object, it would need to set the loc_mflags to the LOC_ALLOC

constant before the second SELECT statement to prevent memory leaks.

145

HCL Informix 14.10 - ESQL/C Programmer’s Guide

146

The excerpt also displays the cat_descr column for a catalog number that the user enters. The following figure shows the

user input and the output from the cat_descr column of the stores7 demonstration database.

Figure 26. Sample output from the getcd_me sample program

GETCD_ME Sample ESQL Program running.

Connected to stores7

This program requires you to enter a catalog number from the catalog
table. For example: '10001'. It then displays the content of the
cat_descr column for that catalog row. The cat_descr value is stored
in memory.

Enter a catalog number: 10004
Description for 10004:

Jackie Robinson signature glove. Highest professional quality,
used by National League.

**** More? (y/n)

Insert a simple large object from memory
The updcd_me sample program from the demo directory shows how to insert a simple large object from memory into the

database.

The program updates the cat_descr TEXT column of the catalog table from a memory buffer that contains text that the user

enters. The following figure shows sample output as the user updates the cat_descr column of the stores7 database.

Figure 27. Sample output from the updcd_me sample program

Enter catalog number: 10004
Description for 10004:

Jackie Robinson signature ball. Highest professional quality,
used by National League.

Update this description? (y/n) y

Enter description (max 255 chars):and press RETURN
Jackie Robinson home run ball, signed, 1955.

*** Update complete.
**** More?(y/n).... n

The following figure shows a code excerpt that illustrates how the updcd_me program uses the locator structure to update

the cat_descr column from the text that is stored in memory.

Chapter 1. ESQL/C Guide

Figure 28. Code excerpt from the updcd_me sample program

/* Update? */
 ans[0] = ' ';
 while((ans[0] = LCASE(ans[0])) != 'y' && ans[0] != 'n')
 {
 printf("\nUpdate this description? (y/n) ");
 getans(ans, 1);
 }
 if(ans[0] == 'y') /* if yes */
 {
 printf("Enter description (max of %d chars) and press RETURN\n",
 BUFFSZ - 1);
 /* Enter description */
 getans(ans, BUFFSZ - 1);
 cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
 cat_descr.loc_buffer = ans; /* set buffer addr */
 cat_descr.loc_bufsize = BUFFSZ; /* set buffer size */
 /* set size of data *
 cat_descr.loc_size = strlen(ans);
 /* Update */
 EXEC SQL update catalog
 set cat_descr =:cat_descr
 where catalog_num = :cat_num;

⋮;

 }

The program sets the cat_descr locator structure fields as follows:

• The loc_loctype field is set to LOCMEMORY so that IBM® Informix® ESQL/C reads the cat_descr text from a memory

buffer.

• The loc_buffer field is set to ans, the address of the memory buffer that holds the simple-large-object value to be

inserted.

• The loc_bufsize field is set to BUFFSZ, the size of the allocated ans memory buffer.

• The loc_size field is set to strlen(ans) + 1, the number of bytes in the memory buffer that currently holds the new

simple-large-object value.

If you insert a null simple-large-object value, your program also needs to set the loc_indicator field to -1.

The following figure shows a code excerpt that illustrates how to use a locator structure in an INSERT statement.

147

HCL Informix 14.10 - ESQL/C Programmer’s Guide

148

Figure 29. Sample INSERT operation from primary memory

char photo_buf[BUFFSZ];

EXEC SQL BEGIN DECLARE SECTION;
 char name[20];
 loc_t photo;
EXEC SQL END DECLARE SECTION;

photo.loc_loctype = LOCMEMORY; /* Photo resides in memory */
photo.loc_buffer = photo_buf; /* pointer to where it is */
photo.loc_size = BUFFSZ - 1; /* length of image*/

EXEC SQL insert into employee (name, badge_pic)
 values (:name, :photo);

After the UPDATE or INSERT statement, Informix® ESQL/C updates the loc_size field with the number of bytes read from the

memory buffer and sent to the database server. It also sets the loc_status field to indicate the status of the operation: 0 for

success and a negative value if an error has occurred. For information about possible errors, see Allocate the memory buffer

on page 143.

Locate simple large objects in files
You can locate simple-large-object data in the open or named types of files.

• An open file is one that has already been opened before the program accesses the simple-large-object data. The

program provides a file descriptor as the location of the simple-large-object data.

• A named file is one that your program has not yet opened. The program provides a file name as the location of the

simple-large-object data.

When you use a file as a simple-large-object location, a locator structure uses the lc_file structure for the lc_union structure.

The following table summarizes the lc_union.lc_file fields.

Table 43. Fields in lc_union.lc_file structure used for simple large objects located in files

Field Data type Description

lc_fname char * The address of the path name string that contains the file for the simple-large-object

data. The program sets this field when it uses named files for simple-large-object

locations.

lc_mode int The permission bits to use to create a file. This value is the third argument passed

to the system open() function. For valid values of lc_mode, see your system

documentation.

lc_fd int The file descriptor of the file that contains the simple-large-object data. The program

sets this field when it uses open files.

lc_position 4-byte integer The current seek position in the opened file. This is an internal field and must not be

modified by the ESQL/C program.

Chapter 1. ESQL/C Guide

The locator.h file provides the following macro shortcuts to use when you access simple large objects stored in files:

#define loc_fname lc_union.lc_file.lc_fname
#define loc_fd lc_union.lc_file.lc_fd
#define loc_position lc_union.lc_file.lc_position

Tip: It is recommended that you use these shortcut names when you access the locator structure. The shortcut

names improve code readability and reduce coding errors. This publication uses these shortcut names when it refers

to the lc_fname, lc_fd, and lc_position fields of the lc_union.lc_file structure.

File-open mode flags

When you use files for simple-large-object data, also set the loc_oflags field of the locator structure. The loc_oflags field is of

type integer and it contains the host-system file-open mode flags.

These flags determine how the file is to be accessed once it is opened:

• LOC_RONLY is a mask for read-only mode. Use this value when you insert a simple large object into a file.

• LOC_WONLY is a mask for write-only mode. Use this value when you select a simple large object into a file and you

want each selected simple large object to write over any existing data.

• LOC_APPEND is a mask for write mode. Use this value when you select a simple large object into a file and you want

to append the value to the end of the file.

Error returns in loc_status

One of these flags is passed to the loc_open() function when IBM® Informix® ESQL/C opens the file. Informix® ESQL/C

reads the data and writes it to the current location (which the loc_position field indicates) in the file. If Informix® ESQL/C

is unable to read or write to a file, it sets the loc_status field of the locator structure to -463 or -464. If Informix® ESQL/C is

unable to close a file, it sets loc_status to -462. Informix® ESQL/C updates the SQLCODE variable with this same value.

Locate simple large objects in open files

To have IBM® Informix® ESQL/C locate the TEXT or BYTE data in an open file, set the loc_loctype field of the locator

structure to LOCFILE.

EXEC SQL BEGIN DECLARE SECTION;
 loc_t my_simple_lo;
EXEC SQL END DECLARE SECTION;
⋮;

my_simple_lo.loc_loctype = LOCFILE;

To use an open file as a simple-large-object location, your Informix® ESQL/C program must open the desired file before

it accesses the simple-large-object data. It must then store its file descriptor in the loc_fd field of the locator structure to

specify this file as the simple-large-object location. The loc_oflags field should also contain a file-open mode flag to tell

Informix® ESQL/C how to access the file when it opens it.

149

HCL Informix 14.10 - ESQL/C Programmer’s Guide

150

The demo directory contains the following two sample Informix® ESQL/C programs that demonstrate how to handle simple-

large-object data located in an open file:

• The getcd_of.ec program selects a simple large object into an open file.

• The updcd_of.ec program inserts a simple large object from an open file.

These programs assume the stores7 database as the default database for the simple-large-object data. The user can specify

another database (on the default database server) as a command-line argument:

getcd_of mystores

Select a simple large object into an open file

The getcd_of sample program from the demo directory shows how to select a simple large object from the database into an

open file. The following figure shows a code excerpt that selects the cat_descr column into a file that the user specifies.

Figure 30. Code excerpt from the getcd_of sample program

EXEC SQL BEGIN DECLARE SECTION;
 char db_name[30];
 mlong cat_num;
 loc_t cat_descr;
EXEC SQL END DECLARE SECTION;
⋮;

if((fd = open(descfl, O_WRONLY)) < 0)
 {
 printf("\nCan't open file: %s, errno: %d\n", descfl, errno);
 EXEC SQL disconnect current;
 printf("GETCD_OF Sample Program over.\n\n"):
 exit(1);
 }
/*
 * Prepare locator structure for select of cat_descr
 */
cat_descr.loc_loctype = LOCFILE; /* set loctype for open file */
cat_descr.loc_fd = fd; /* load the file descriptor */
cat_descr.loc_oflags = LOC_APPEND; /* set loc_oflags to append */
EXEC SQL select catalog_num, cat_descr /* verify catalog number */
 into :cat_num, :cat_descr from catalog
 where catalog_num = :cat_num;
if(exp_chk2("SELECT", WARNNOTIFY) != 100) /* if not found */
 printf("\nCatalog number %ld not found in catalog table\n",
 cat_num);
else
 {
 if(ret < 0)
 {

⋮;

 exit(1);
 }
 }

Chapter 1. ESQL/C Guide

To prepare the locator structure for the SELECT statement, the getcd_of program sets the cat_descr locator structure fields

as follows:

• The loc_loctype field is set to LOCFILE to tell IBM® Informix® ESQL/C to place the text for the cat_descr column in

the open file.

• The loc_fd field is set to the fd file descriptor to identify the open file.

• The loc_oflags field is set to LOC_APPEND to specify that the data is to be appended to any data that exists in the

file.

To access the file descriptor (loc_fd) field of the locator structure, the getcd_of program uses the name cat_descr.loc_fd.

However, the actual name of this field in the locator structure is as follows:

cat_descr.lc_union.lc_file.lc_fd

The shortcut name of loc_fd is defined as a macro in the locator.h file.

After Informix® ESQL/C writes data to an open file, it sets the following fields of the locator structure:

• The loc_size field contains the number of bytes written to the open file.

• The loc_indicator field contains -1 if the selected simple-large-object value is null.

• The loc_status field contains the status of the operation: 0 for success and a negative value if an error has occurred.

For possible causes of the error, see Error returns in loc_status on page 149.

Insert a simple large object from an open file

The updcd_of sample program from the demo directory shows how to insert a simple large object from an open file into the

database. The program updates the cat_descr TEXT column of the catalog table from an open file that contains a series

of records; each consists of a catalog number and the text to update the corresponding cat_descr column. The program

assumes that this input file has the following format:

\10001\
Dark brown leather first baseman's mitt. Specify right-handed or
left-handed.

\10002\
Babe Ruth signature glove. Black leather. Infield/outfield style.
Specify right- or left-handed.
⋮;

The following figure shows a code excerpt that illustrates how to use the locator structure to update the cat_descr column of

the catalog table from an open file.

151

HCL Informix 14.10 - ESQL/C Programmer’s Guide

152

Figure 31. Code excerpt from the updcd_of sample program

EXEC SQL BEGIN DECLARE SECTION;
 mlong cat_num;
 loc_t cat_descr;
EXEC SQL END DECLARE SECTION;
⋮;

if ((fd = open(descfl, O_RDONLY)) < 0) /* open input file */
 {

⋮;

 }
while(getcat_num(fd, line, sizeof(line))) /* get cat_num line from file */
 {

⋮;

 printf("\nReading catalog number %ld from file...\n", cat_num);
 flpos = lseek(fd, 0L, 1);
 length = getdesc_len(fd);
 flpos = lseek(fd, flpos, 0);

 /* lookup cat_num in catalog table */
 EXEC SQL select catalog_num
 into :cat_num from catalog
 where catalog_num = :cat_num;
 if((ret = exp_chk2("SELECT", WARNNOTIFY)) == 100) /* if not found */
 {
 printf("\nCatalog number %ld not found in catalog table.",
 cat_num);

⋮;

 }
 /*if found */
 cat_descr.loc_loctype = LOCFILE; /* update from open file */
 cat_descr.loc_fd = fd; /* load file descriptor */
 cat_descr.loc_oflags = LOC_RONLY; /* set file-open mode (read) */
 cat_descr.loc_size = length; /* set size of simple large obj */

 /* update cat_descr column of catalog table */
 EXEC SQL update catalog set cat_descr = :cat_descr
 where catalog_num = :cat_num;
 if(exp_chk2("UPDATE", WARNNOTIFY) < 0)
 {
 EXEC SQL disconnect current;
 printf("UPDCD_OF Sample Program over.\n\n");
 exit(1);
 }
 printf("Update complete.\n");
 }

The updcd_of program opens the input file (descfl) that the user specified in response to a prompt, calls the getcat_num()

function to read a catalog number from the file, and then calls the getdesc_len() function to determine the length of the text

Chapter 1. ESQL/C Guide

for the update to the cat_descr column. The program performs a SELECT statement to verify that the catalog number exists

in the catalog table.

If this number exists, the updcd_of program prepares the locator structure as follows to update cat_descr from the text in the

open file:

• The loc_loctype field is set to LOCFILE to tell IBM® Informix® ESQL/C that the cat_descr column is to be updated

from an open file.

• The loc_fd field is set to fd, the file descriptor for the open-input file.

• The loc_oflags field is set to LOC_RONLY, the file-open mode flag for read-only mode.

• The loc_size field is set to length, the length of the incoming text for cat_descr.

If you insert a null simple-large-object value, your program also needs to set the loc_indicator field to -1.

The updcd_of program is then able to perform the database update. After Informix® ESQL/C reads data from the open

file and sends it to the database server, Informix® ESQL/C updates the loc_size field with the number of bytes read from

the open file and sent to the database server. Informix® ESQL/C also sets the loc_status field to indicate the status of the

operation: 0 for success and a negative value if an error has occurred. For possible causes of the error, see Error returns in

loc_status on page 149.

Locate simple large objects in named files

To have IBM® Informix® ESQL/C locate the TEXT or BYTE data in a named file, set the loc_loctype field of the locator

structure to LOCFNAME, as shown in the following example:

EXEC SQL BEGIN DECLARE SECTION;
 loc_t my_simple_lo;
EXEC SQL END DECLARE SECTION;
⋮;

my_simple_lo.loc_loctype = LOCFNAME;

To use a named file as a simple-large-object location, your Informix® ESQL/C program must specify a pointer to the file

name in the loc_fname field of the locator structure. You must also set the loc_oflags field with a file-open mode flag to tell

Informix® ESQL/C how to access the file when it opens it.

To open a named file, Informix® ESQL/C opens the file named in the loc_fname field with the mode flags that the loc_oflags

field specifies. If this file does not exist, Informix® ESQL/C creates it. Informix® ESQL/C then puts the file descriptor of the

open file in the loc_fd field and proceeds as if your program opened the file. If Informix® ESQL/C cannot open this file, it sets

the loc_status field (and SQLCODE) to -461. When the transfer is complete, Informix® ESQL/C closes the file, which releases

the file descriptor in the loc_fd field.

The demo directory contains the following two sample Informix® ESQL/C programs that demonstrate how to handle simple-

large-object data located in a named file:

• The getcd_nf.ec program selects a simple large object into a named file.

• The updcd_nf.ec program inserts a simple large object from a named file.

153

HCL Informix 14.10 - ESQL/C Programmer’s Guide

154

These programs assume the stores7 database as the default database for the simple-large-object data. The user can specify

another database (on the default database server) as a command-line argument as follows:

getcd_of mystores

Select a simple large object into a named file

The getcd_nf sample program from the demo directory shows how to select a simple large object from the database into a

named file. The following code excerpt prompts the user to enter a catalog number for the catalog table and the name of the

file to which the program writes the contents of the cat_descr column for that row. The program stores the name of the file in

the descfl array. It then executes a SELECT statement to read the cat_descr TEXT column from the catalog table and write it

to a file that the user specifies in response to a prompt.

The following figure shows a code excerpt from the getcd_nf sample program.

Chapter 1. ESQL/C Guide

Figure 32. Code excerpt from the getcd_nf sample program

EXEC SQL BEGIN DECLARE SECTION;
 char db_name[30];
 mlong cat_num;
 loc_t cat_descr;
EXEC SQL END DECLARE SECTION;
⋮;

 printf("\nEnter a catalog number: "); /* prompt for catalog number */
 getans(ans, 6);
 if(rstol(ans, &cat_num)) /* cat_num string too long */
 {
 printf("\tCannot convert catalog number '%s' to integer\n", ans);
 continue;
 }
 while(1)
 {
 printf("Enter the name of the file to receive the description: ");
 if(!getans(ans, 15))
 continue;
 break;
 }
 strcpy(descfl, ans);
 break;
 }

 /*
 * Prepare locator structure for select of cat_descr
 */
 cat_descr.loc_loctype = LOCFNAME; /* set loctype for in memory */
 cat_descr.loc_fname = descfl; /* load the addr of file name */
 cat_descr.loc_oflags = LOC_APPEND; /* set loc_oflags to append */
 EXEC SQL select catalog_num, cat_descr /* verify catalog number */
 into :cat_num, :cat_descr from catalog
 where catalog_num = :cat_num;
 if(exp_chk2("SELECT", WARNNOTIFY) != 0) /* if error, display and quit */
 printf("\nSelect for catalog number %ld failed\n", cat_num);

 EXEC SQL disconnect current;
 printf("\nGETCD_NF Sample Program over.\n\n");
}

The program sets the cat_descr locator structure fields as follows:

• The loc_loctype field contains LOCFNAME to tell Informix® ESQL/C to place the text for the cat_descr column in a

named file.

• The loc_fname field is the address of the descfl array to tell Informix® ESQL/C to write the contents of the cat_descr

column to the file named in descfl.

• The loc_oflags field, the file-open mode flags, is set to LOC_APPEND to tell Informix® ESQL/C to append selected

data to the existing file.

The getcd_nf program then executes the SELECT statement to retrieve the row. After Informix® ESQL/C writes data to the

named file, it sets the following fields of the locator structure:

155

HCL Informix 14.10 - ESQL/C Programmer’s Guide

156

• The loc_size field contains the number of bytes written to the file. If the Informix® ESQL/C program fetches a null (or

empty) simple-large-object column into a named file that exists, it truncates the file.

• The loc_indicator field contains -1 if the selected simple-large-object value is null.

• The loc_status field contains the status of the operation: 0 for success and a negative value if an error has occurred.

For possible causes of the error, see Error returns in loc_status on page 149.

Insert a simple large object from a named file

The updcd_nf sample program from the demo directory shows how to insert a simple large object from a named file into the

database. The program updates the cat_descr TEXT column from a named input file. The program assumes that this input

file has the following format:

Babe Ruth signature glove. Black leather. Infield/outfield
 style. Specify right- or left-handed.

The following figure shows a code excerpt that updates the cat_descr column in the catalog table from text in a named file.

Chapter 1. ESQL/C Guide

Figure 33. Code excerpt from the updcd_nf sample program

EXEC SQL BEGIN DECLARE SECTION;
 mlong cat_num;
 loc_t cat_descr;
EXEC SQL END DECLARE SECTION;
⋮;

 cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
 cat_descr.loc_bufsize = -1; /* let server get memory */
 EXEC SQL select catalog_num, cat_descr /* verify catalog number */
 into :cat_num, :cat_descr from catalog
 where catalog_num = :cat_num;

 /* if error,display and quit */
 if ((ret = exp_chk2("SELECT", WARNNOTIFY)) == 100)
 {
 printf("\nCatalog number %ld not found in catalog table\n",
 cat_num);
 EXEC SQL disconnect current;
 printf("UPDCD_NF Sample Program over.\n\n");
 exit(1);
 }
 if(ret<0)
 {
 EXEC SQL disconnect current;
 printf("UPDCD_NF Sample Program over.\n\n");
 exit(1);
 }
 prdesc(); /* print current cat_descr */

 /* Update? */
 ans[0] = ' ';
 while((ans[0] = LCASE(ans[0])) != 'y' && ans[0] != 'n')
 {
 printf("Update this description? (y/n) ");
 scanf("%1s", ans);
 }
 if(ans[0] == 'y')
 {
 cat_descr.loc_loctype = LOCFNAME; /* set type to named file */
 cat_descr.loc_fname = descfl; /* supply file name */
 cat_descr.loc_oflags = LOC_RONLY; /* set file-open mode (read) */
 cat_descr.loc_size = -1; /* set size to size of file */
 EXEC SQL update catalog
 set cat_descr = :cat_descr /* update cat_descr column */
 where catalog_num = :cat_num;
 if(exp_chk2("UPDATE", WARNNOTIFY) < 0) /* check status */
 {
 EXEC SQL disconnect current;
 printf("UPDCD_NF Sample Program over.\n\n");
 exit(1);
 }
 printf("Update complete.\n");
 }

157

HCL Informix 14.10 - ESQL/C Programmer’s Guide

158

The updcd_nf program in Figure 33: Code excerpt from the updcd_nf sample program on page 157 first performs a

SELECT statement on the catalog table for a catalog number that the user enters in response to a prompt. The SELECT

statement returns the catalog_num and cat_descr columns. The prdesc() function (Guide to the prdesc.c file on page 175)

displays the current content of cat_descr.

The program then asks whether the user wants to update this description. If the user answers yes (ans[0] = = 'y'), the

updcd_nf program prepares the locator structure as follows to update the cat_descr column from text in a file that the user

has specified:

• The cat_descr.loc_loctype field is set to LOCFNAME to indicate that the source of the update text is a named file.

• The cat_descr.loc_fname field is set to descfl, the name of the file that contains the simple-large-object data.

• The cat_descr.loc_oflags field is set to LOC_RONLY to tell IBM® Informix® ESQL/C to open the file in read-only mode.

• The cat_descr.loc_size field is set to -1 to tell Informix® ESQL/C to transfer the simple large object all at once, not

to transfer it in smaller pieces, one piece at a time. You can also set the loc_oflags field to the LOC_USEALL mask to

perform this operation.

If you insert a null simple-large-object value, your program also needs to set the loc_indicator field to -1.

After Informix® ESQL/C reads data from the named file and sends it to the database server, Informix® ESQL/C updates the

loc_size field with the number of bytes read from the named file and sent to the database server. Informix® ESQL/C also sets

the loc_status field to indicate the status of the operation: 0 for success and a negative value if an error has occurred. For

possible causes of the error, see Error returns in loc_status on page 149.

User-defined simple-large-object locations
You can create your own versions of the loc_open(), loc_read(), loc_write(), and loc_close() functions to define your own

location for simple-large-object data.

A typical use for user-defined location functions is when the data needs to be translated in some manner before the

application can use it. For example, if the data is compressed, the application must uncompress it before this data can be

sent to the database. The application might even have a number of different translation functions that you can choose at run

time; it simply sets the appropriate function pointer to the desired translation function.

To have Informix® ESQL/C use your own C functions to define the TEXT or BYTE data location, set the loc_loctype field of

the locator structure to LOCUSER as follows:

EXEC SQL BEGIN DECLARE SECTION;
 ifx_loc_t my_simple_lo;
EXEC SQL END DECLARE SECTION;
⋮;

my_simple_lo.loc_loctype = LOCUSER;

With a user-defined simple-large-object location, a locator structure uses the fields that the following table summarizes.

Chapter 1. ESQL/C Guide

Table 44. Fields in the locator structure used to create user-defined location functions

Field Data type Description

loc_open mint (*)() A pointer to a user-defined open function that returns an integer value.

loc_read mint (*)() A pointer to a user-defined read function that returns an integer value.

loc_write mint (*)() A pointer to a user-defined write function that returns an integer value.

loc_close mint (*)() A pointer to a user-defined close function that returns an integer value.

loc_user_env char * The address of the buffer to hold data that a user-defined location function

needs. For example, you can set loc_user_env to the address of a common

work area.

loc_xfercount 4-byte integer The number of bytes that the last transfer operation for the simple large object

transferred.

With a user-defined simple-large-object location, a locator structure can use either the lc_mem structure or the lc_file

structure of the lc_union structure. Table 42: Fields in lc_union.lc_mem structure used for simple large objects located in

memory on page 142 and Table 43: Fields in lc_union.lc_file structure used for simple large objects located in files on

page 148 summarize fields of the lc_union.lc_mem structure and lc_union.lc_file structure.

Select a simple large object into a user-defined location

When your program selects a simple-large-object value, the IBM® Informix® ESQL/C libraries must receive the data from

the database server and transfer it to the Informix® ESQL/C program. To do this, Informix® ESQL/C performs the following

steps:

1. Before the transfer, Informix® ESQL/C calls the user-defined open function to initialize the user-defined location. The

oflags argument of this open function is set to LOC_WONLY.

2. Informix® ESQL/C receives the simple-large-object value from the database server and puts it into a program buffer.

3. Informix® ESQL/C calls the user-defined write function to transfer the simple-large-object data from the program

buffer to the user-defined location.

Informix® ESQL/C repeats steps 2 on page 159 and 3 on page 159 as many times as needed to transfer the

entire simple-large-object value from the database server to the user-defined location.

4. After the transfer, Informix® ESQL/C performs the clean-up operations that the user-defined close function specifies.

To select a simple large object into a user-defined location, set loc_loctype to LOCUSER and set the loc_open, loc_write, and

loc_close fields so they contain the addresses of appropriate user-defined open, write, and close functions.

Insert a simple large object into a user-defined location

When your program inserts a simple-large-object value, the IBM® Informix® ESQL/C libraries must transfer the data from the

Informix® ESQL/C program to the database server. To do this, Informix® ESQL/C performs the following steps:

159

HCL Informix 14.10 - ESQL/C Programmer’s Guide

160

1. Before the transfer, Informix® ESQL/C calls the user-defined open function to initialize the user-defined location. The

oflags argument of this open function is set to LOC_RONLY.

2. Informix® ESQL/C calls the user-defined read function to transfer the simple-large-object data from the user-defined

location to the program buffer.

3. Informix® ESQL/C sends the value in the program buffer to the database server.

Informix® ESQL/C repeats steps 2 on page 160 and 3 on page 160 as many times as needed to transfer the

entire simple-large-object value from the user-defined location to the database server.

4. After the transfer, Informix® ESQL/C performs the clean-up operations specified in the user-defined close function.

To insert a simple large object that is stored in a user-defined location, set loc_loctype to LOCUSER and set the loc_open,

loc_read, and loc_close fields so that they contain the addresses of appropriate user-defined open, read, and close functions.

If the simple large object to be inserted is null, set the loc_indicator field to -1.

Set the loc_size field to the length of the simple-large-object data that you insert. A loc_size value of -1 tells Informix®

ESQL/C to send the entire user-defined simple-large-object data in a single operation. If the program sets loc_size to -1, the

database server reads in data until the read function returns an end-of-file (EOF) signal. When the count is not equal to the

number of bytes requested, the database server assumes an EOF signal.

User-defined simple-large-object functions
IBM® Informix® ESQL/C provides four transfer functions that you can redefine to handle a user-defined simple-large-object

location.

The loc_open, loc_read, loc_write, and loc_close fields contain pointers to these user-defined location functions. Each of

the functions receives the address of the ifx_loc_t structure as its first (or only) parameter. You can use the loc_user_env

field to hold data that a user-defined location function needs. In addition, the loc_xfercount and all the fields of the lc_union

substructure are available for these functions.

The user-defined open function
To define how to prepare the user-defined location for a transfer operation (read or write), you create a C function called a

user-defined open function.

Before you begin a transfer of simple-large-object data to or from the database server, IBM® Informix® ESQL/C calls the

open function supplied in the loc_open field of the locator structure.

This user-defined open function must receive the following two arguments:

• The address of the locator structure, ifx_loc_t *loc_struc, where loc_struc is the name of a locator structure that your

user-defined open function declares

• The open-mode flags, int oflags, where oflags is a variable that contains the open-mode flag

This flag contains LOC_RONLY if Informix® ESQL/C calls the open function to send the simple large object to the

database, or LOC_WONLY if Informix® ESQL/C calls the function to receive data from the database.

Chapter 1. ESQL/C Guide

The user-defined open function must return the success code for the open operations as follows:

0

The initialization was successful.

-1

The initialization failed. This return code generates a loc_status (and SQLCODE) error of -452.

The following figure shows a skeleton function of a user-defined open function.

Figure 34. A sample user-defined open function

open_simple_lo(adloc, oflags)
ifx_loc_t *adloc;
int oflags;
{
 adloc->loc_status = 0;
 adloc->loc_xfercount = 0L;
 if (0 == (oflags & adloc->loc_oflags))
 return(-1);
 if (oflags & LOC_RONLY)
 /*** prepare for store to db ***/
 else
 /*** prepare for fetch to program ***/
 return(0);
}

The user-defined read function
To define how to read the user-defined location, you create a C function called a user-defined read function.

When IBM® Informix® ESQL/C sends data to the database server, it reads this data from a character buffer. To transfer the

data from a user-defined location to the buffer, Informix® ESQL/C calls the user-defined read function. Your Informix® ESQL/

C program must supply the address of your user-defined read function in the loc_read field of the locator structure.

This user-defined read function must receive the following three arguments:

• The address of the locator structure, ifx_loc_t *loc_struc, where loc_struc is a locator structure that your user-defined

read function uses

• The address of the buffer to send data to the database server, char *buffer, where buffer is the buffer that your

program allocates

• The number of bytes to be read from the user-defined location, int nread, where nread is a variable that contains the

number of bytes

This function must transfer the data from the user-defined location to the character buffer that buffer indicates. Informix®

ESQL/C might call the function more than once to read a single simple-large-object value from the user-defined location.

Each call receives the address and length of a segment of data. Track the current seek position of the user-defined location

in your user-defined read function. You might want to use the loc_position or loc_currdata_p fields for this purpose. You can

also use the loc_xfercount field to track the amount of data that was read.

161

HCL Informix 14.10 - ESQL/C Programmer’s Guide

162

The user-defined read function must return the success code for the read operation as follows:

>0

The read operation was successful. The return value indicates the number of bytes actually read from the

locator structure.

-1

The read operation failed. This return code generates a loc_status (and SQLCODE) error of -454.

The following figure shows a skeleton function of a user-defined read function.

Figure 35. A sample user-defined read function

read_simple_lo(adloc, bufp, ntoread)
ifx_loc_t *adloc;
char *bufp;
int ntoread;
{
 int ntoxfer;

 ntoxfer = ntoread;
 if (adloc->loc_size != -1)
 ntoxfer = min(ntoread,
 adloc->loc_size - adloc->loc_xfercount);

 /*** transfer "ntoread" bytes to *bufp ***/

 adloc->loc_xfercount += ntoxfer;
 return(ntoxfer);
}

The user-defined write function
To define how to write to the user-defined location, you create a C function called a user-defined write function.

When IBM® Informix® ESQL/C receives data from the database server, it stores this data in a character buffer. To transfer

the data from the buffer to a user-defined location, Informix® ESQL/C calls the user-defined write function. Your Informix®

ESQL/C program must supply the address of your user-defined write function in the loc_write field of the locator structure.

This user-defined write function must receive the following three arguments:

• The address of the locator structure, ifx_loc_t *loc_struc, where loc_struc is a locator structure that your user-defined

write function uses

• The address of the buffer to receive the data from the database server, char *buffer, where buffer is the buffer that

your program allocates

• The number of bytes to be written to the user-defined location, int nwrite, where nwrite is a variable that contains the

number of bytes

The user-defined write function must transfer the data from the character buffer that buffer indicates to the user-defined

location. Informix® ESQL/C might call the function more than once to write a single simple-large-object value to the user-

Chapter 1. ESQL/C Guide

defined location. Each call receives the address and length of a segment of data. Track the current seek position of the user-

defined location in your user-defined write function. You might want to use the loc_position or loc_currdata_p field for this

purpose. You can also use the loc_xfercount field to track the amount of data that was written.

The user-defined write function must return the success code for the write operation as follows:

>0

The write operation was successful. The return value indicates the number of bytes written to the user-defined

location

-1

The write operation failed. This return code generates a loc_status (and SQLCODE) error of -455.

The following figure shows a skeleton function of a user-defined write function.

Figure 36. A Sample User-Defined Write Function

write_simple_lo(adloc, bufp, ntowrite)
ifx_loc_t *adloc;
char *bufp;
int ntowrite;
{
 int xtoxfer;

 ntoxfer = ntowrite;
 if (adloc->loc_size != -1)
 ntoxfer = min(ntowrite,
 (adloc->loc_size) - (adloc->loc_xfercount));

 /*** transfer "ntowrite" bytes from *bufp ***/

 adloc->loc_xfercount += ntoxfer;
 return(ntoxfer);
}

The user-defined close function
To define how to perform clean-up tasks for the user-defined location, you create a C function called a user-defined close

function.

When a transfer to or from the database server is complete, IBM® Informix® ESQL/C calls the close function that the

loc_close field of the locator structure supplies. Cleanup tasks include closing files or deallocating memory that the user-

defined location uses.

This function must receive one argument: the address of the locator structure, ifx_loc_t *loc_struc, where loc_struc is a

locator structure that your user-defined close function uses. The user-defined close function must return the success code

for the close operation as follows:

0

The cleanup was successful.

163

HCL Informix 14.10 - ESQL/C Programmer’s Guide

164

-1

The cleanup failed. This return code generates a loc_status (and SQLCODE) error of -453.

The following figure shows a skeleton function of a user-defined close function.

Figure 37. A sample user-defined close function

close_simple_lo (adloc)
ifx_loc_t *adloc;
{
 adloc->loc_status = 0;
 if (adloc->loc_oflags & LOC_WONLY) /* if fetching */
 {
 adloc->loc_indicator = 0; /* clear indicator */
 adloc->loc_size = adloc->loc_xfercount;
 }
 return(0);
}

Read and write simple large objects to an optical disc (UNIX™)

In a table, columns of type simple-large-object do not include the simple-large-object data in the table itself. Instead, the

simple-large-object column contains a 56-byte simple-large-object descriptor that includes a forward pointer (rowid) to the

location where the first segment of simple-large-object data is stored. The descriptor can point to a dbspace blobpage, a

blobspace blobpage, or a platter in an optical storage subsystem. For details, see your HCL® Informix® Administrator's Guide

and the Informix® Optical Subsystem Guide.

When a simple large object is stored on a write-once-read-many (WORM) optical-storage subsystem, you can have a

single physical simple large object in more than one table to conserve storage space on the WORM optical disc. The

LOC_DESCRIPTOR flag enables you to migrate a simple-large-object descriptor, rather than the simple large object itself, from

one table to another.

When you read or write a simple-large-object column that is stored on a WORM optical disc, you can manipulate only the

simple-large-object descriptor if you set the loc_oflags field of the locator structure to LOC_DESCRIPTOR.

Important: Only use LOC_DESCRIPTOR with simple large objects that are stored on WORM optical media.

The following figure shows a code fragment that selects the stock_num, manu_code, cat_descr, and cat_picture columns

from the catalog table of the named database. The program uses the DESCR() SQL function expression to retrieve the

simple-large-object descriptor, rather than to retrieve the simple large object itself, for the cat_picture column. The program

then sets the loc_oflags field of the cat_picture locator structure to LOC_DESCRIPTOR to signal that the simple-large-object

descriptor, rather than the simple large object, is to be inserted into the cat_picture column of the pictures table. The result is

that the cat_picture columns in both the catalog and pictures tables refer to a single set of physical simple large objects.

Chapter 1. ESQL/C Guide

Figure 38. Code fragment to retrieve the simple-large-object descriptor

#include <stdio.h>
EXEC SQL include locator;

char errmsg[400];

EXEC SQL BEGIN DECLARE SECTION;
 mlong cat_num;
 int2 stock_num;
 char manu_code[4];
 ifx_loc_t cat_descr;
 ifx_loc_t cat_picture;
EXEC SQL END DECLARE SECTION;

main(argc, argv)
mint argc;
char *argv[];
{
 EXEC SQL BEGIN DECLARE SECTION;
 char db_name[250];
 EXEC SQL END DECLARE SECTION;

 if (argc > 2) /* correct no. of args? */
 {
 printf("\nUsage: %s [database]\nIncorrect no. of argument(s)\n",
 argv[0]);
 exit(1);
 }
 strcpy(db_name, "stores7");
 if(argc == 2)
 strcpy(db_name, argv[1]);
 EXEC SQL connect to :db_name;
 sprintf(db_msg, "CONNECT TO %s",db_name);
 err_chk(db_msg);
 EXEC SQL declare catcurs cursor for /* setup cursor for select */
 select stock_num, manu_code, cat_descr, DESCR(cat_picture)
 from catalog
 where cat_picture is not null;
 /*
 * Prepare locator structures cat_descr(TEXT) and
 * cat_picture (BYTE that is the simple-large-object descriptor).
 */
 cat_descr.loc_loctype = LOCMEMORY; /* set loctype for in memory */
 cat_picture.loc_loctype = LOCMEMORY; /* set loctype for in memory */
 while(1)
 {
 /*
 * Let server get buffers and set loc_buffer (buffer for
 * simple-large-object descriptor) and loc_bufsize (size of buffer)
 */
 cat_descr.loc_bufsize = -1;
 cat_picture.loc_bufsize = -1;
 /*
 * Select row from catalog table (descr() returns TEXT descriptor
 * for cat_picture. For cat_descr, the actual simple LO is returned.
 */
 EXEC SQL fetch catcurs into :stock_num, :manu_code, :cat_descr,
 :cat_picture;
 if(err_chk("FETCH") == SQLNOTFOUND) /* end of data */
 break;
 /*
 * Set LOC_DESCRIPTOR in loc_oflags to indicate simple-large-object
 * descriptor is being inserted rather than simple-large-object data.
 */
 cat_picture.loc_oflags |= LOC_DESCRIPTOR;
 /*
 * Insert
 */
 EXEC SQL insert into pictures values (:stock_num, :manu_code,
 :cat_descr, :cat_picture);
 if(err_chk("INSERT") < 0)
 printf("Insert failed for stock_num %d, manu_code %s", stock_num,
 manu_code);
 }
 /* Clean up db resources */
 EXEC SQL close catcurs;
 EXEC SQL free catcurs;

 /* Deallocate memory buffers */
 free(cat_descr.loc_buffer);
 free(cat_picture.loc_buffer);

 EXEC SQL disconnect current;
}

/*
 * err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 * rgetlmsg() to display to stderr the message for the error number in
 * sqlca.sqlcode.
 */

int err_chk(stmt)
char *stmt;
{
 char buffer[512];

 if(sqlca.sqlcode < 0)
 {
 fprintf(stderr, "Error: %s\n", stmt);
 rgetlmsg(sqlca.sqlcode, buffer, sizeof(buffer));
 fprintf(stderr, "SQL %d: ", sqlca.sqlcode);
 fprintf(stderr, buffer sqlca.sqlerrm);
 if (sqlca.sqlerrd[1] != 0)
 {
 rgetlmsg(sqlca.sqlerrd[1], buffer, sizeof(buffer));
 fprintf(stderr, "ISAM %d: ", sqlca.sqlerrd[1]);
 fprintf(stderr, buffer, sqlca.sqlerrm);
 }
 exit(1);
 }
 return(sqlca.sqlcode);
}

165

HCL Informix 14.10 - ESQL/C Programmer’s Guide

166

You can also use the SQL DESCR() function to achieve the same result without a loc_oflags value of LOC_DESCRIPTOR. The

SQL statement shown in the following figure accomplishes the same task as the locator structure in the preceding example.

Figure 39. Using DESCR() to access a simple- large-object descriptor

EXEC SQL insert into pictures (stock_num, manu_code, cat_descr, cat_picture)
 select stock_num, manu_code, cat_descr, DESCR(cat_picture)
 from catalog
 where cat_picture is not null;

The dispcat_pic program
The dispcat_pic program uses the IBM® Informix® ESQL/C ifx_loc_t locator structure to retrieve two simple-large-object

columns. The program retrieves the cat_descr TEXT simple-large-object column and the cat_picture BYTE column from the

catalog table of the stores7 demonstration database.

The dispcat_pic program allows you to select a database from the command line in case you created the stores7 database

under a different name. If no database name is given, dispcat_pic opens the stores7 database. For example, the following

command runs the dispcat_pic executable and specifies the mystores database:

dispcat_pic mystores

The program prompts the user for a catalog_num value and performs a SELECT statement to read the description column

from the stock table and the catalog_num, cat_descr, and cat_picture columns from the catalog table. If the database server

finds the catalog number and the cat_picture column is not null, it writes the cat_picture column to a .gif file.

If the SELECT statement succeeds, the program displays the catalog_num, cat_descr, and description columns. Since these

columns store text, they can be displayed on any Informix® ESQL/C platform. The program also allows the user to enter

another catalog_num value or terminate the program.

Preparing to run the dispcat_pic program

About this task

To prepare to run the dispcat_pic program:

1. Load the simple-large-object images into the catalog table with the blobload utility.

2. Compile the dispcat_pic.ec file into an executable program.

Load the simple-large-object images

When the catalog table is created as part of the stores7 demonstration database, the cat_picture column for all rows is set

to null. The IBM® Informix® ESQL/C demonstration directory provides five graphic images. Use the blobload utility to load

simple-large-object images into the cat_picture column of the catalog table.

To display these simple-large-object images from the dispcat_pic program, you must load the images to the catalog table.

Choose the image files
The five cat_picture images are provided in the Graphics Interchange Format files, which have the .gif file extension.

Chapter 1. ESQL/C Guide

IBM® Informix® ESQL/C provides the images in .gif files to provide them in a standard format that can be displayed on all

platforms or translated into other formats with filter programs that other vendors supply. The right column of the following

table shows the names of the .gif files for the simple-large-object images.

Table 45. Image files for simple-large-object demo

Image Graphics Interchange Format (.gif files)

Baseball glove cn_10001.gif

Bicycle crankset cn_10027.gif

Bicycle helmet cn_10031.gif

Golf balls cn_10046.gif

Running shoe cn_10049.gif

The numeric portion of the image file name is the catalog_num value for the row of the catalog table to which the image is to

be updated. For example, cn_10027.gif should be updated to the cat_picture column of the row where 10027 is the value

of catalog_num.

Loading the simple-large-object images with the blobload utility
The blobload utility is the IBM® Informix® ESQL/C program that is provided as part of the Informix® ESQL/C demonstration

files. It uses a command-line syntax to load a byte image into a specified table and column of a database.

To load the simple-large-object images with blobload:

1. Compile the blobload.ec program with the following command:

esql -o blobload blobload.ec

2. Enter blobload on the UNIX™ command line without any arguments.

The following figure shows the output of this command that describes the command-line arguments that blobload

expects.

167

HCL Informix 14.10 - ESQL/C Programmer’s Guide

168

Figure 40. Sample output from the blobload utility

Sorry, you left out a required parameter.

Usage: blobload {-i | -u} -- choose insert or update
 -f filename -- file containing the blob data
 -d database_name -- database to open
 -t table_name -- table to modify
 -b blob_column -- name of target column
 -k key_column key_value -- name of key column and a value
 -v -- verbose documentary output

All parameters except -v are required.

Parameters may be given in any order.

As many as 8 -k parameter pairs may be specified.

3. Run the blobload program to load each image to its proper cat_picture column.

The -u option of blobload updates a specified column with a simple-large-object image. To identify which column to

update, you must also use the -f, -d, -t, -b, and -k options of blobload.

You must run the blobload program once for each image file that you want to update. For example, the following command

loads the contents of the cn_10027.gif file into the cat_picture column of the row for catalog_num 10027. The catalog_num

column is the key column in the catalog table.

blobload -u -f cn_10027.gif -d stores7 -t catalog -b cat_picture -k
 catalog_num 10027

Use the same command to update each of the four remaining image files, substituting the file name (-f option) and

corresponding catalog_num value (-k option) of the image file that you want to load.

Guide to the dispcat_pic.ec File

===
1. /*
2. * dispcat_pic.ec *
3.The following program prompts the user for a catalog number,
4. selects the cat_picture column, if it is not null, from the
5. catalog table of the demonstration database and saves the
6. image into a .gif file.
7. */
8. #include <stdio.h>
9. #include <ctype.h>
10. EXEC SQL include sqltypes;
11. EXEC SQL include locator;
12. #define WARNNOTIFY 1
13.#define NOWARNNOTIFY 0
14. #define LCASE(c) (isupper(c) ? tolower(c) : (c))
15. #define BUFFSZ 256
16. extern errno;
17. EXEC SQL BEGIN DECLARE SECTION;
18. mlong cat_num;
19. ifx_loc_t cat_descr;

Chapter 1. ESQL/C Guide

20. ifx_loc_t cat_picture;
21. EXEC SQL END DECLARE SECTION;
22. char cpfl[18]; /* file to which the .gif will be copied */
===

Lines 8 - 11

The #include <stdio.h> statement includes the stdio.h header file from the /usr/include directory on UNIX™ and from

the include subdirectory for Microsoft™ Visual C++ on Windows™. The stdio.h file enables dispcat_pic to use the standard

C I/O library. The program also includes the Informix® ESQL/C header files sqltypes.h and locator.h (lines 10 and

11). The locator.h file contains the definition of the locator structure and the constants that you need to work with this

structure.

Lines 12 - 16

Use the WARNNOTIFY and NOWARNNOTIFY constants (lines 12 and 13) with the exp_chk2() exception-handling function.

Calls to exp_chk2() specify one of these constants as the second argument to indicate whether to display SQLSTATE and

SQLCODE information for warnings (WARNNOTIFY or NOWARNNOTIFY). See lines 171 - 177 for more information about the

exp_chk2() function.

The program uses BUFFSZ (line 15) to specify the size of arrays that store input from the user. Line 16 defines errno, an

external integer where system calls store an error number.

Lines 17 - 21

These lines define global host variables needed for the program. The cat_num variable holds the catalog_num column value

of the catalog table. Lines 19 and 20 specify the locator structure as the data type for host variables that receive data for the

cat_descr and cat_picture simple-large-object columns of the catalog table. The locator structure is the host variable for a

simple-large-object column that is retrieved from or stored to the database. The locator structure has a ifx_loc_t typedef. The

program uses the locator structure to specify simple-large-object size and location.

Line 22

Line 22 defines a single global C variable. The cpfl character array stores the name of a file. This named file is the location

for the simple-large-object .gif image of cat_picture that the database server writes.

===
23. main(argc, argv)
24. mint argc;
25. char *argv[];
26. {
27. char ans[BUFFSZ];
28. int4 ret, exp_chk2();
29. char db_msg[BUFFSZ + 1];
30. EXEC SQL BEGIN DECLARE SECTION;
31. char db_name[20];
32. char description[16];
33. EXEC SQL END DECLARE SECTION;
===

169

HCL Informix 14.10 - ESQL/C Programmer’s Guide

170

Lines 23 - 26

The main() function is the point at which program execution begins. The first argument, argc, is an integer that gives the

number of arguments submitted on the command line. The second argument, argv[], is a pointer to an array of character

strings that contain the command-line arguments. The dispcat_pic program expects only the argv[1] argument, which is

optional, to specify the name of the database to access. If argv[1] is not present, the program opens the stores7 database.

Lines 27 - 29

Lines 27 - 29 define the C variables that are local in scope to the main() function. The ans[BUFFSZ] array is the buffer

that receives input from the user, namely the catalog number for the associated cat_picture column. Line 28 defines a

4-byte integer (ret) for the value that exp_chk2() returns and declares exp_chk2() as a function that returns a long. The

db_msg[BUFFSZ + 1] character array holds the form of the CONNECT statement used to open the database. If an error

occurs while the CONNECT executes, the string in db_msg is passed into the exp_chk2() function to identify the cause of the

error.

Lines 30 - 33

Lines 30 - 33 define the IBM® Informix® ESQL/C host variables that are local to the main() function. A host variable receives

data that is fetched from a table and supplies data that is written to a table. The db_name[20] character array is a host

variable that stores the database name if the user specifies one on the command line. The description variable holds the

value that the user entered, which is to be stored in the column of the stock table.

===
34. printf("DISPCAT_PIC Sample ESQL Program running.\n\n");
35. if (argc > 2) /* correct no. of args? */
36. {
37. printf("\nUsage: %s [database]\nIncorrect no. of
 argument(s)\n",
38. argv[0]);
39. printf("DISPCAT_PIC Sample Program over.\n\n");
40. exit(1);
41. }
42. strcpy(db_name, "stores7");
43. if(argc == 2)
44. strcpy(db_name, argv[1]);
45. EXEC SQL connect to :db_name;
46. sprintf(db_msg,"CONNECT TO %s",db_name);
47. if(exp_chk2(db_msg, NOWARNNOTIFY) < 0)
48. {
49. printf("DISPCAT_PIC Sample Program over.\n\n");
50. exit(1);
51. }
52. if(sqlca.sqlwarn.sqlwarn3 != 'W')
53. {
54. printf("\nThis program does not work with Informix SE. ");
55. EXEC SQL disconnect current;
56. printf("\nDISPCAT_PIC Sample Program over.\n\n");
57. exit(1);
58. }
59. printf("Connected to %s\n", db_name);

Chapter 1. ESQL/C Guide

60. ++argv;
===

Lines 34 - 51

These lines interpret the command-line arguments and open the database. Line 35 checks whether more than two

arguments are entered on the command line. If so, dispcat_pic displays a message to show the arguments that it expects

and then it terminates. Line 42 assigns the default database name of stores7 to the db_name host variable. The program

opens this database if the user does not enter a command-line argument.

The program then tests whether the number of command-line arguments is equal to 2. If so, dispcat_pic assumes that the

second argument, argv[1], is the name of the database that the user wants to open. Line 44 uses the strcpy() function to

copy the name of the database from the argv[1] command line into the db_name host variable. The program then executes

the CONNECT statement (line 45) to establish a connection to the default database server and open the specified database

(in db_name).

The program reproduces the CONNECT statement in the db_msg[] array (line 46). It does so for the sake of the exp_chk2()

call on line 47, which takes as its argument the name of a statement. Line 47 calls the exp_chk2() function to check on the

outcome. This call to exp_chk2() specifies the NOWARNNOTIFY argument to prevent the display of warnings that CONNECT

generates.

Lines 52 - 60

After CONNECT successfully opens the database, it stores information about the database server in the sqlca.sqlwarn

array. Because the dispcat_pic program handles simple-large-object data types that are not supported on older version of

the server, line 52 checks the type of database server. If the sqlwarn3 element of sqlca.sqlwarn is set to W, the database

server is the program continues. Otherwise, the program notifies the user that it cannot continue and exits. The program has

established the validity of the database server and now displays the name of the database that is opened (line 59).

===
61. while(1)
62. {
63. printf("\nEnter catalog number: "); /* prompt for cat.
 * number */
64. if(!getans(ans, 6))
65. continue;
66. printf("\n");
67. if(rstol(ans, &cat_num)) /* cat_num string to long */
68. {
69. printf("** Cannot convert catalog number '%s' to long
 integer\n",
 ans);
70. EXEC SQL disconnect current;
71. printf("\nDISPCAT_PIC Sample Program over.\n\n");
72. exit(1);
73. }
74. ret=sprintf(cpfl, "pic_%s.gif", ans);
75. /*
76. * Prepare locator structure for select of cat_descr
77. */
78. cat_descr.loc_loctype = LOCMEMORY; /* set for 'in memory' */

171

HCL Informix 14.10 - ESQL/C Programmer’s Guide

172

79. cat_descr.loc_bufsize = -1; /* let db get buffer */
80. cat_descr.loc_mflags = 0; /* clear memory-deallocation
 * feature */
81. cat_descr.loc_oflags = 0; /* clear loc_oflags */
82. /*
83. * Prepare locator structure for select of cat_picture
84. */
85. cat_picture.loc_loctype = LOCFNAME; /* type = named file */
86. cat_picture.loc_fname = cpfl; /* supply file name */
87. cat_picture.loc_oflags = LOC_WONLY; /* file-open mode = write
 */
88. cat_picture.loc_size = -1; /* size = size of file */
===

Lines 61 - 74

The while(1) on line 61 begins the main processing loop in dispcat_pic. Line 63 prompts the user to enter a catalog number

for the cat_picture column that the user wants to see. Line 64 calls getans() to receive the catalog number that the user

inputs. The arguments for getans() are the address in which the input is stored, ans[], and the maximum length of the input

that is expected, including the null terminator. If the input is unacceptable, getans() returns 0 and line 65 returns control to

the while at the top of the loop in line 61, which causes the prompt for the catalog number to be displayed again. For a more

detailed explanation of getans(), see Guide to the inpfuncs.c file on page 176. Line 67 calls the Informix® ESQL/C library

function rstol() to convert the character input string to a long data type to match the data type of the catalog_num column.

If rstol() returns a nonzero value, the conversion fails and lines 69 - 72 display a message to the user, close the connection,

and exit. Line 74 creates the name of the .gif file to which the program writes the simple-large-object image. The file name

consists of the constant pic_, the catalog number that the user entered, and the extension .gif. The file is created in the

directory from which the program is run.

Lines 75 - 81

These lines define the simple-large-object location for the TEXT cat_descr column of the catalog table, as follows:

• Line 78 sets loc_loctype in the cat_descr locator structure to LOCMEMORY to tell Informix® ESQL/C to select the

data for cat_descr into memory.

• Line 79 sets loc_bufsize to -1 so that Informix® ESQL/C allocates a memory buffer to receive the data for cat_descr.

• Line 80 sets loc_mflags to 0 to disable the memory-deallocation feature (see Line 149) of Informix® ESQL/C.

If the select is successful, Informix® ESQL/C returns the address of the allocated buffer in loc_buffer. Line 81 sets the

loc_oflags file-open mode flags to 0 because the program retrieves the simple-large-object information into memory rather

than a file.

Lines 82 - 88

These lines prepare the locator structure to retrieve the BYTE column cat_picture of the catalog table. Line 85 moves

LOCFNAME to loc_loctype to tell Informix® ESQL/C to locate the data for cat_descr in a named file. Line 86 moves the

address of the cpfl file name into loc_fname. Line 87 moves the LOC_WONLY value into the loc_oflags file-open mode flags

to tell Informix® ESQL/C to open the file in write-only mode. Finally, line 88 sets loc_size to -1 to tell Informix® ESQL/C to

send the BYTE data in a single transfer rather than break the value into smaller pieces and use multiple transfers.

Chapter 1. ESQL/C Guide

===
89. /* Look up catalog number */
90. EXEC SQL select description, catalog_num, cat_descr, cat_picture
91. into :description, :cat_num, :cat_descr, :cat_picture
92. from stock, catalog
93. where catalog_num = :cat_num and
94. catalog.stock_num = stock.stock_num and
95. catalog.manu_code = stock.manu_code;
96. if((ret = exp_chk2("SELECT", WARNNOTIFY)) == 100) /* if not
 * found */
97. {
98. printf("** Catalog number %ld not found in ", cat_num);
99. printf("catalog table.\n");
100. printf("\t OR item not found in stock table.\n");
101. if(!more_to_do())
102. break;
103. continue;
104. }
105. if (ret < 0)
106. {
107. EXEC SQL disconnect current;
108. printf("\nDISPCAT_PIC Sample Program over.\n\n");
109. exit(1);
110. }
111. if(cat_picture.loc_indicator == -1)
112. printf("\tNo picture available for catalog number %ld\n\n",
113. cat_num);
114. else
115. {
116. printf("Stock Item for %ld: %s\n", cat_num, description);
117. printf("\nThe cat_picture column has been written to the
 file:
118. %s\n", cpfl);
119. printf("Use an image display tool or a Web browser ");
120. printf("to open %s for viewing.\n\n", cpfl);
121 }
122. prdesc(); /* display catalog.cat_descr */
===

Lines 89 - 95

These lines define a SELECT statement to retrieve the catalog_num, cat_descr, and cat_picture columns from the catalog

table and the description column from the stock table for the catalog number that the user entered. The INTO clause of the

SELECT statement identifies the host variables that contain the selected values. The two ifx_loc_t host variables, cat_descr

and cat_picture, are listed in this clause for the TEXT and BYTE values.

Lines 96 - 104

The exp_chk2() function checks whether the SELECT statement was able to find the stock_num and manu_code for the

selected row in the catalog table and in the stock table. The catalog table does not contain a row that does not have a

corresponding row in the stock table. Lines 98 - 103 handle a NOT FOUND condition. If the exp_chk2() function returns 100,

the row was not found; lines 98 - 100 display a message to that effect. The more_to_do() function (line 101) asks whether

the user wants to continue. If the user answers n for no, a break terminates the main processing loop and control transfers to

line 131 to close the database before the program terminates.

173

HCL Informix 14.10 - ESQL/C Programmer’s Guide

174

Lines 105 - 110

If a runtime error occurs during the select, the program closes the current connection, notifies the user, and exits with a

status of 1.

Lines 111 - 113

If cat_picture.loc_indicator contains-1 (line 111), the cat_picture column contains a null and the program informs the user

(line 112). Execution then continues to line 113 to display the other returned column values.

Lines 114 - 122

These lines display the other columns that the SELECT statement returned. Line 116 displays the catalog number that is

being processed and the description column from the stock table. Line 122 calls prdesc() to display the cat_descr column.

For a detailed description of prdesc(), see Guide to the prdesc.c file on page 175.

===
123. if(!more_to_do()) /* More to do? */
124. break; /* no, terminate loop */
125. /* If user chooses to display more catalog rows, enable the
126. * memory-deallocation feature so that ESQL/C deallocates old
127. * cat_desc buffer before it allocates a new one.
128. */
129. cat_descr.loc_mflags = 0; /* clear memory-deallocation feature
 */
130. }
131. EXEC SQL disconnect current;
132. printf("\nDISPCAT_PIC Sample Program over.\n\n");
133. } /* end main */
134. /* prdesc() prints cat_desc for a row in the catalog table */
135. #include "prdesc.c"
===

Lines 123 - 130

The more_to_do() function then asks whether the user wants to enter more catalog numbers. If not, more_to_do() returns 0

and the program performs a break to terminate the main processing loop, close the database, and terminate the program.

The closing brace on line 130 terminates the main processing loop, which began with the while(1) on line 61. If the user

wants to enter another catalog number, control returns to line 61.

Line 131 - 133

When a break statement (line 124) terminates the main processing loop that the while(1) on line 61 began, control transfers

to line 131, which closes the database and the connection to the default database server. The closing brace on line 133

terminates the main() function on line 23 and terminates the program.

Lines 134 and 135

Several of the Informix® ESQL/C simple-large-object demonstration programs call the prdesc() function. To avoid having the

function in each program, the function is put in its own source file. Each program that calls prdesc() includes the prdesc.c

Chapter 1. ESQL/C Guide

source file. Since prdesc() does not contain any Informix® ESQL/C statements, the program can include it with the C

#include preprocessor statement (instead of the Informix® ESQL/C include directive). For a description of this function, see

Guide to the prdesc.c file on page 175.

===
136. /*
137. * The inpfuncs.c file contains the following functions used in this
138. * program:
139. * more_to_do() - asks the user to enter 'y' or 'n' to indicate
140. * whether to run the main program loop again.
141. *
142. * getans(ans, len) - accepts user input, up to 'len' number of
143. * characters and puts it in 'ans'
144. */
145. #include "inpfuncs.c"
146. /*
147. * The exp_chk.ec file contains the exception handling functions to
148. * check the SQLSTATE status variable to see if an error has
 occurred
149. * following an SQL statement. If a warning or an error has
150. * occurred, exp_chk2() executes the GET DIAGNOSTICS statement and
151. * displays the detail for each exception that is returned.
152. */
153. EXEC SQL include exp_chk.ec;
===

Lines 136 and 145

Several of the Informix® ESQL/C demonstration programs also call the more_to_do() and getans() functions. These

functions are also broken out into a separate C source file and included in the appropriate demonstration program. Neither

of these functions contain Informix® ESQL/C, so the program can use the C #include preprocessor statement to include the

files. For a description of these functions, see Guide to the inpfuncs.c file on page 176.

Line 146 - 153

The exp_chk2() function examines the SQLSTATE status variable to determine the outcome of an SQL statement. Because

many demonstration programs use exception checking, the exp_chk2() function and its supporting functions are broken

out into a separate exp_chk.ec source file. The dispcat_pic program must use the Informix® ESQL/C include directive

to include this file because the exception-handling functions use Informix® ESQL/C statements. For a description of the

exp_chk.ec source file, see Guide to the exp_chk.ec file on page 309.

Tip: In a production environment, functions such as prdesc(), more_to_do(), getans(), and exp_chk2() would be put

into C libraries and included on the command line of the Informix® ESQL/C program at compile time.

Guide to the prdesc.c file

The prdesc.c file contains the prdesc() function. This function sets the pointer p to the address that is provided in the

loc_buffer field of the locator structure to access the simple large object. The function then reads the text from the buffer 80

175

HCL Informix 14.10 - ESQL/C Programmer’s Guide

176

bytes at a time up to the size specified in loc_size. This function is used in several of the simple-large-object demonstration

programs so it is in a separate file and included in the appropriate source files.

===
1. /* prdesc() prints cat_desc for a row in the catalog table */
2. prdesc()
3. {
4. int4 size;
5. char shdesc[81], *p;
6. size = cat_descr.loc_size; /* get size of data */
7. printf("Description for %ld:\n", cat_num);
8. p = cat_descr.loc_buffer; /* set p to buffer addr */
9. /* print buffer 80 characters at a time */
10. while(size >= 80)
11. {
12. ldchar(p, 80, shdesc); /* mv from buffer to shdesc */
13. printf("\n%80s", shdesc); /* display it */
14. size -= 80; /* decrement length */
15. p += 80; /* bump p by 80 */
16. }
17. strncpy(shdesc, p, size);
18. shdesc[size] = '\0';
19. printf("%-s\n", shdesc); /* display last segment */
20. }
===

Lines 1 - 20

Lines 2 - 20 make up the main() function, which displays the cat_descr column of the catalog table. Line 4 defines size, a

long integer that main() initializes with the value in cat_descr.loc_size. Line 5 defines shdesc[81], an array into which main()

temporarily moves 80-byte chunks of the cat_descr text for output. Line 5 also defines *p, a pointer that marks the current

position in the buffer as it is being displayed.

In loc_size, the database server returns the size of the buffer that it allocates for a simple large object. Line 6 moves

cat_descr.loc_size to size. Line 7 displays the string "Description for:" as a header for the cat_descr text. Line 8 sets the p

pointer to the buffer address that the database server returned in cat_descr.loc_size.

Line 10 begins the loop that displays the cat_descr text to the user. The while() repeats the loop until size is less than 80. Line

11 begins the body of the loop. The Informix® ESQL/C ldchar() library function copies 80 bytes from the current position in

the buffer, which p addresses, to shdesc[] and removes any trailing blanks. Line 13 prints the contents of shdesc[]. Line 14

subtracts 80 from size to account for the portion of the buffer that was printed. Line 15, the last in the loop, adds 80 to p to

move it past the portion of the buffer that was displayed.

The process of displaying cat_descr.loc_size 80 bytes at a time continues until fewer than 80 characters are left to be

displayed (size < 80). Line 17 copies the remainder of the buffer into shdesc[] for the length of size. Line 18 appends a null to

shdesc[size] to mark the end of the array and line 19 displays shdesc[].

Guide to the inpfuncs.c file

The inpfuncs.c file contains the getans() and more_to_do() functions.

Chapter 1. ESQL/C Guide

Because these functions are used in several IBM® Informix® ESQL/C demonstration programs, they are in a separate file

and included in the appropriate demonstration source files.

===
1. /* The inpfuncs.c file contains functions useful in character-based
2. input for a C program.
3. */
4. #include <ctype.h>
5. #ifndef LCASE
6. #define LCASE(c) (isupper(c) ? tolower(c) : (c))
7. #endif
8. /*
9. Accepts user input, up to 'len' number of characters and returns
10 it in 'ans'
11. */
12. #define BUFSIZE 512
13. getans(ans, len)
14. char *ans;
15. mint len;
16. {
17. char buf[BUFSIZE + 1];
18. mint c, n = 0;
19. while((c = getchar()) != ';' && n < BUFSIZE)
20. buf[n++] = c;
21. buf[n] = '\0';
22. if(n > 1 && n >= len)
23. {
24. printf("Input exceeds maximum length");
25. return 0;
26. }
27. if(len <= 1)
28. *ans = buf[0];
29. else
30. strnpy(ans, buf, len);
31. return 1;
32. }
===

Lines 1 - 7

Line 4 includes the UNIX™ ctype.h header file. This header file provides the definitions of the islower() and tolower()

macros used in the definition of the LCASE() macro (defined on line 6). The program only defines the LCASE macro if it has

not yet been defined in the program.

Lines 8 - 32

The BUFSIZE constant (line 12) defines the size of the character buffer used in the getans() function. Lines 13 - 32 constitute

the getans() function. The getans() function uses the getchar() standard library function to accept input from the user. Lines

14 and 15 define the arguments for getans(), the address of the buffer (ans) where it copies the input, and the maximum

number of characters (len) that the calling function expects. Line 17 defines buf[], an input buffer array. The int variable c

(line 18) receives the character that getchar() returned. The second integer defined on line 18, n, is used to subscript the buf[]

input buffer.

177

HCL Informix 14.10 - ESQL/C Programmer’s Guide

178

Line 19 calls getchar() to receive input from the user until a \n newline character is encountered or until the maximum input

is received; that is, n is not less than BUFFSZ. Line 20 moves the input character c into the current position in buf[]. Line 21

places a null terminator at the end of the input, buf[n].

Lines 22 - 26 check whether the number of characters received, n, is less than the number of characters expected, len. If not,

line 24 displays a message to the user and line 25 returns 0 to the calling function to indicate that an error occurred. Line

27 checks whether one or more characters were entered. If the expected number of characters, len, is less than or equal to

1, line 28 moves only a single character to the address that the ans calling function gives. If only one character is expected,

getans() does not append a null terminator to the input. If the length of the input is greater than 1, line 30 copies the input of

the user to the address that the calling function (ans) supplies. Line 31 returns 1 to the calling function to indicate successful

completion.

===
33. /*
34. * Ask user if there is more to do
35. */
36. more_to_do()
37. {
38. char ans;
39. do
40. {
41. printf("\n**** More? (y/n) ");
42. getans(&ans, 1);
43. } while((ans = LCASE(ans)) != 'y' && ans != 'n');
44. return (ans == 'n') ? 0 : 1;
45. }
===

Lines 33 - 45

The more_to_do() function displays "More? (y/n)..." to ask whether the user wants to continue program execution. The

more_to_do() function does not have any input arguments. Line 38 defines a one-character field, ans, to receive the response

from the user. The condition expressed on line 43 causes the question to be displayed again until the user answers y (yes) or

n (no). The LCASE macro converts the answer of the user to lowercase letters for the comparison. Line 42 calls getans() to

accept the input from the user. After the user answers yes or no, control passes to line 44, which returns 1 for yes and 0 for

no to the calling function.

Smart large objects
A smart large object is a data type that stores large, non-relational data objects such as images, sound clips, documents,

graphics, maps and other large objects, and allows you to perform read, write, and seek operations on those objects.

Smart large objects consist of the CLOB (character large object) and BLOB (binary large object) data types. The CLOB data

type stores large objects of text data. The BLOB data type stores large objects of binary data in an undifferentiated byte

stream. A smart large object is stored in a particular type of database space called an sbspace. For information about

creating and administering sbspaces, see your HCL® Informix® Administrator's Guide.

Chapter 1. ESQL/C Guide

The end of this section presents an example program called create_clob. The create_clob sample program demonstrates

how to create a new smart large object from the Informix® ESQL/C program, insert data into a CLOB column of the stores7

database, and then select the smart-large-object data back from this column.

For more information about the CLOB and BLOB data types, as well as other SQL data types, see the HCL® Informix® Guide

to SQL: Reference.

The information in these topics apply only if you are using HCL Informix® as your database server.

These topics describe the following information about programming with smart large objects:

• Data structures for smart large objects

• Creating a smart large object

• Accessing a smart large object

• Obtaining the status of a smart large object

• Altering a smart-large-object column

• Reading and writing smart large objects on an optical disc

• The Informix® ESQL/C API for smart large objects

Data structures for smart large objects

Informix® ESQL/C supports the SQL data types CLOB and BLOB with the ifx_lo_t data type. Because of the potentially huge

size of smart-large-object data, the Informix® ESQL/C program does not store the data directly in a host variable. Instead,

the client application accesses the data as a file-like structure. To use smart-large-object variables in the Informix® ESQL/C

program, take the following actions:

• Declare a host variable with the ifx_lo_t data type.

For more information, see Declare a host variable on page 180.

• Access the smart large object with a combination of the following three data structures:

◦ The LO-specification structure, ifx_lo_create_spec_t

For more information, see The LO-specification structure on page 180 and Obtain storage characteristics on

page 184.

◦ The LO-pointer structure, ifx_lo_t

For more information, see Deallocate the LO-specification structure on page 187.

◦ An integer LO file descriptor

For more information, see Open a smart large object on page 192.

Important: The structures that ESQL/C uses to access smart large objects begin with the LO prefix. This prefix is an

acronym for large object. Currently, the database server uses large object to refer to both smart large objects and

179

HCL Informix 14.10 - ESQL/C Programmer’s Guide

180

simple large objects. However, use of this prefix in the ESQL/C structures that access smart large objects is retained

for legacy purposes.

Declare a host variable

Declare IBM® Informix® ESQL/C host variables for database columns of type CLOB or BLOB as a fixed binary host variable

with the ifx_lo_t structure (called an ifx_lo_t data type) as follows:

EXEC SQL include locator;
⋮

EXEC SQL BEGIN DECLARE SECTION;
 fixed binary 'clob' ifx_lo_t clob_loptr;
 fixed binary 'blob' ifx_lo_t blob_loptr;
EXEC SQL END DECLARE SECTION;
⋮

EXEC SQL select blobcol into :blob_loptr from tab1;

Tip: For more information about the fixed binary Informix® ESQL/C data type, see Access a fixed-length opaque type

on page 264.

To access smart large objects, you must include the locator.h header file in your Informix® ESQL/C program. This header

file contains definitions of data structures and constants that your program needs to work with smart large objects.

The LO-specification structure
Before you create a new smart large object, you must allocate an LO-specification structure with the ifx_lo_def_create_spec()

function.

The ifx_lo_def_create_spec() function performs the following tasks:

1. It allocates a new LO-specification structure, whose pointer you provide as an argument.

2. It initializes all fields of the LO-specification structure: disk-storage information and create-time flags to the

appropriate null values.

The ifx_lo_create_spec_t structure
The LO-specification structure, ifx_lo_create_spec_t, stores the storage characteristics for a smart large object in the IBM®

Informix® ESQL/C program.

The locator.h header file defines the LO-specification structure, so you must include the locator.h file in your Informix®

ESQL/C programs that access this structure.

Important: The LO-specification structure, ifx_lo_create_spec_t, is an opaque structure to Informix® ESQL/C

programs. Do not access its internal structure directly. The internal structure of ifx_lo_create_spec_t might change

Chapter 1. ESQL/C Guide

in future releases. Therefore, to create portable code, always use the Informix® ESQL/C access functions for this

structure to obtain and store values in the LO-specification structure.

For a list of these access functions, see Table 46: Disk-storage information in the LO-specification structure on page 181

and Table 47: Create-time flags in the LO-specification structure on page 182.

The LO-specification structure stores the following storage characteristics for a smart large object:

• Disk-storage information

• Create-time flags

Disk-storage information
The LO-specification structure stores disk-storage information, which helps the database server determine how to store the

smart large object most efficiently on disk.

The following table shows the disk-storage information along with the corresponding IBM® Informix® ESQL/C access

functions.

Table 46. Disk-storage information in the LO-specification structure

Disk-storage information Description ESQL/C accessor functions

Estimated number of bytes An estimate of the final size, in bytes, of the smart

large object. The database server uses this value to

determine the extents in which to store the smart

large object. This value provides optimization

information. If the value is grossly incorrect, it does

not cause incorrect behavior. However, it does mean

that the database server might not necessarily

choose optimal extent sizes for the smart large

object.

ifx_lo_specget_estbytes()

ifx_lo_specset_estbytes()

Maximum number of bytes The maximum size, in bytes, for the smart large

object. The database server does not allow the smart

large object to grow beyond this size.

ifx_lo_specget_maxbytes()

ifx_lo_specset_maxbytes()

Allocation extent size The allocation extent size is specified in kilobytes.

Optimally, the allocation extent is the single extent

in a chunk that holds all the data for the smart large

object.

The database server performs storage allocations for

smart large objects in increments of the allocation

extent size. It tries to allocate an allocation extent

as a single extent in a chunk. However, if no single

ifx_lo_sepcget_extsz(),

ifx_lo_specset_extsz()

181

HCL Informix 14.10 - ESQL/C Programmer’s Guide

182

Table 46. Disk-storage information in the LO-specification structure (continued)

Disk-storage information Description ESQL/C accessor functions

extent is large enough, the database server must use

multiple extents as necessary to satisfy the request.

Name of the sbspace The name of the sbspace that contains the smart

large object. The sbspace name can be at most 18

characters long. This name must be null terminated.

ifx_lo_specget_sbspace()

ifx_lo_specset_sbspace()

For most applications, it is recommended that you use the values for the disk-storage information that the database server

determines.

Create-time flags
The LO-specification structure stores create-time flags, which tell the database server what options to assign to the smart

large object.

The following table shows the create-time flags along with the corresponding Informix® ESQL/C access functions.

Table 47. Create-time flags in the LO-specification structure

Type of indicator Create-time flag Description

Logging LO_LOG Tells the database server to log changes to the smart

large object in the system log file.

Consider carefully whether to use the LO_LOG flag

value. The database server incurs considerable

overhead to log smart large objects. You must also

ensure that the system log file is large enough to

hold the value of the smart large object. For more

information, see your HCL® Informix® Administrator's

Guide.

LO_NOLOG Tells the database server to turn off logging for all

operations that involve the associated smart large

object.

Last access-time LO_KEEP_LASTACCESS_TIME Tells the database server to save the last access time

for the smart large object. This access time is the time

of the last read or write operation.

Consider carefully whether to use the

LO_KEEP_LASTACCESS_TIME flag value. The database

Chapter 1. ESQL/C Guide

Table 47. Create-time flags in the LO-specification structure (continued)

Type of indicator Create-time flag Description

server incurs considerable overhead to maintain last

access times for smart large objects.

LO_NOKEEP_LASTACCESS_TIME Tells the database server not to maintain the last

access time for the smart large object.

The locator.h header file defines the LO_LOG, LO_NOLOG, LO_KEEP_LASTACCESS_TIME, and

LO_NOKEEP_LASTACCESS_TIME create-time constants. The two groups of create-time flags, logging indicators and the last

access-time indicators, are stored in the LO-specification structure as a single flag value. To set a flag from each group, use

the C-language OR operator to mask the two flag values together. However, masking mutually exclusive flags results in an

error.

The ifx_lo_specset_flags() function sets the create-time flags to a new value. The ifx_lo_specget_flags() function retrieves

the current value of the create-time flag.

If you do not specify a value for one of the flag groups, the database server uses the inheritance hierarchy to determine this

information. For more information about the inheritance hierarchy, see Obtain storage characteristics on page 184.

ESQL/C functions that use the LO-specification structure

The following table shows the IBM® Informix® ESQL/C library functions that access the LO-specification structure.

ESQL/C library function Purpose See

ifx_lo_col_info() Updates the LO-specification structure

with the column-level storage

characteristics

The ifx_lo_col_info() function on

page 680

ifx_lo_create() Reads an LO-specification structure to

obtain storage characteristics for a new

smart large object that it creates

The ifx_lo_create() function on

page 684

ifx_lo_def_create_spec() Allocates and initializes an

LO-specification structure

The ifx_lo_def_create_spec() function

on page 685

ifx_lo_spec_free() Frees the resources of the

LO-specification structure

The ifx_lo_spec_free() function on

page 695

ifx_lo_specget_estbytes() Gets the estimated number of bytes from

the LO-specification structure

The ifx_lo_specget_estbytes()

function on page 696

ifx_lo_specget_extsz() Gets the allocation extent size from the

LO-specification structure

The ifx_lo_specget_extsz() function

on page 697

183

HCL Informix 14.10 - ESQL/C Programmer’s Guide

184

ESQL/C library function Purpose See

ifx_lo_specget_flags() Gets the create-time flags from the

LO-specification structure

The ifx_lo_specget_flags() function

on page 698

ifx_lo_specget_maxbytes() Gets the maximum number of bytes from

the LO-specification structure

The ifx_lo_specget_maxbytes()

function on page 699

ifx_lo_specget_sbspace() Gets the name of the sbspace from the

LO-specification structure

The ifx_lo_specget_sbspace()

function on page 699

ifx_lo_specset_estbytes() Sets the estimated number of bytes from

the LO-specification structure

The ifx_lo_specset_estbytes()

function on page 701

ifx_lo_specset_extsz() Sets the allocation extent size in the

LO-specification structure

The ifx_lo_specset_extsz() function

on page 702

ifx_lo_specset_flags() Sets the create-time flags in the

LO-specification structure

The ifx_lo_specset_flags() function on

page 703

ifx_lo_specset_maxbytes() Sets the maximum number of bytes in the

LO-specification structure

The ifx_lo_specset_maxbytes()

function on page 703

ifx_lo_specset_sbspace() Sets the name of the sbspace in the

LO-specification structure

The ifx_lo_specset_sbspace()

function on page 704

ifx_lo_stat_cspec() Returns the storage characteristics

into the LO-specification structure for a

specified smart large object

The ifx_lo_stat_cspec() function on

page 706

Obtain storage characteristics

After you have allocated an LO-specification structure with the ifx_lo_def_create_spec() function, you must ensure that this

structure contains the appropriate storage characteristics when you create a smart large object.

HCL Informix® uses an inheritance hierarchy to obtain storage characteristics. The following figure shows the inheritance

hierarchy for smart-large-object storage characteristics.

Chapter 1. ESQL/C Guide

Figure 41. Inheritance hierarchy for storage characteristics

The system-specified storage characteristics

HCL Informix® uses one of the following sets of storage characteristics as the system-specified storage characteristics:

• If the sbspace in which the smart large object is stored has specified a value for a particular storage characteristic,

the database server uses the sbspace value as the system-specified storage characteristic.

The database administrator (DBA) defines storage characteristics for an sbspace with the onspaces utility.

• If the sbspace in which the smart large object is stored has not specified a value for a particular storage

characteristic, the database server uses the system default as the system-specified storage characteristic.

The database server defines the system defaults for storage characteristics internally. However, you can specify a

default sbspace name with the SBSPACENAME configuration parameter of the onconfig file. Also, an application

call to ifx_lo_col_info() or ifx_lo_specset_sbspace() can supply the target sbspace in the LO-specification structure.

Important: An error occurs if you do not specify the sbspacename configuration parameter and the LO-specification

structure does not contain the name of the target sbspace.

It is recommended that you use the values for the system-specified disk-storage information. Most applications do not need

to change these system-specified storage characteristics. For more information about database server and sbspace storage

characteristics, see the description of the onspaces utility in your HCL® Informix® Administrator's Guide.

To use the system-specified storage characteristics for a new smart large object, follow these steps:

1. Use the ifx_lo_def_create_spec() function to allocate an LO-specification structure and to initialize this structure to

null values.

2. Pass this LO-specification structure to the ifx_lo_create_function function to create the instance of the smart large

object.

185

HCL Informix 14.10 - ESQL/C Programmer’s Guide

186

The ifx_lo_create() function creates a smart-large-object instance with the storage characteristics in the LO-specification

structure that it receives as an argument. Because the previous call to ifx_lo_def_create_spec() stored null values in this

structure, the database server assigns the system-specified characteristics to the new instance of the smart large object.

The column-level storage characteristics

The database administrator (DBA) assigns column-level storage characteristics with the CREATE TABLE statement. The PUT

clause of CREATE TABLE specifies storage characteristics for a particular smart-large-object (CLOB or BLOB) column. (For

more information, see the description of the CREATE TABLE statement in the HCL® Informix® Guide to SQL: Syntax.) The

syscolattribs system catalog table stores column-level storage characteristics.

The ifx_lo_col_info() function obtains column-level storage characteristics for a smart-large-object column. To use the

column-level storage characteristics for a new smart-large-object instance, follow these steps:

1. Use the ifx_lo_def_create_spec() function to allocate an LO-specification structure and initialize this structure to null

values.

2. Pass this LO-specification structure to the ifx_lo_col_info() function and specify the desired column and table name

as arguments.

The function stores the column-level storage characteristics into the specified LO-specification structure.

3. Pass this same LO-specification structure to the ifx_lo_create() function to create the instance of the smart large

object.

When the ifx_lo_create() function receives the LO-specification structure as an argument, this structure contains the column-

level storage characteristics that the previous call to ifx_lo_col_info() stored. Therefore, the database server assigns these

column-level characteristics to the new instance of the smart large object.

When you use the column-level storage characteristics, you do not usually need to provide the name of the sbspace

for the smart large object. The sbspace name is specified in the PUT clause of the CREATE TABLE statement or by the

SBSPACENAME parameter in the ONCONFIG file.

The user-defined storage characteristics

The IBM® Informix® ESQL/C application program can define a unique set of storage characteristics for a new smart large

object, as follows:

• For smart large objects that are to be stored in a column, you can override some storage characteristics for the

column when it creates an instance of a smart large object.

If the application does not override some or all of these characteristics, the smart large object uses the column-level

storage characteristics.

Chapter 1. ESQL/C Guide

• You can specify a wider set of characteristics for each smart large object since the smart large object is not

constrained by table column properties.

If the application programmer does not override some or all of these characteristics, the smart large object inherits

the system-specified storage characteristics.

To specify user-defined storage characteristics, use the appropriate Informix® ESQL/C accessor functions for the LO-

specification structure. For more information about these accessor functions, see The LO-specification structure on

page 180.

Deallocate the LO-specification structure
After you are finished with an LO-specification structure, deallocate the resources assigned to it with the ifx_lo_spec_free()

function. When the resources are freed, they can be reallocated to other structures that your program needs.

The LO-pointer structure

To open a smart large object for read and write operations, the IBM® Informix® ESQL/C program must have an LO-pointer

structure for the smart large object. This structure contains the disk address and a unique hexadecimal identifier for a smart

large object.

To create an LO-pointer structure for a new smart large object, use the ifx_lo_copy_to_file() function. The ifx_lo_copy_to_file()

function performs the following tasks:

1. It initializes an LO-pointer structure, whose pointer you provide as an argument, for the new smart large object.

This new smart large object has the storage characteristics that the LO-specification structure you provide specifies.

2. It opens the new smart large object in the specified access mode and returns an LO file descriptor that is needed for

subsequent operations on the smart large object.

You must call ifx_lo_def_create_spec() before you call the ifx_lo_create() function to create a new smart large object.

Store a smart large object

The IBM® Informix® ESQL/C program accesses a smart large object through an LO-pointer structure. The Informix® ESQL/

C library functions in the table from ESQL/C functions that use the LO-pointer structure on page 189 accept an LO-pointer

structure as an argument. Through the LO-pointer structure, these functions allow you to create and manipulate a smart

large object without binding it to a database row.

An INSERT or UPDATE statement does not perform the actual input of the smart-large-object data. It does, however, provide

a means for the application program to identify which smart-large-object data to associate with the column. A CLOB or

BLOB column in a database table stores the LO-pointer structure for a smart large object. Therefore, when you store a CLOB

or BLOB column, you provide an LO-pointer structure for the column in an ifx_lo_t host variable to the INSERT or UPDATE

statement. For this reason, you declare host variables for CLOB and BLOB values as LO-pointer structures.

187

HCL Informix 14.10 - ESQL/C Programmer’s Guide

188

The following figure shows how the Informix® ESQL/C client application transfers the data of a smart large object to the

database server.

Figure 42. Transferring smart- large-object data from client application to database server

The smart large object that an LO-pointer structure identifies exists as long as its LO-pointer structure exists. When you store

an LO-pointer structure in the database, the database server can ensure that the smart large objects are deallocated when

appropriate.

When you retrieve a row and then update a smart large object which that row contains, the database server exclusively locks

the row for the time that it updates the smart large object. Moreover, long updates for smart large objects (whether logging

is enabled and whether they are associated with a table row) create the potential for a long transaction condition if the smart

large object takes a long time to update or create.

For an example of code that stores a new smart large object into a database column, see The create_clob.ec program on

page 825. For information about how to select a smart large object from the database, see Select a smart large object on

page 191.

The ifx_lo_t structure
The LO-pointer structure, ifx_lo_t, serves as a reference to a smart large object. It provides security-related information and

holds information about the actual disk location of the smart large object.

The locator.h header file defines the LO-pointer structure so you must include the locator.h file in your IBM® Informix®

ESQL/C programs that access this structure.

Chapter 1. ESQL/C Guide

Important: The LO-pointer structure, ifx_lo_t, is an opaque structure to Informix® ESQL/C programs. That is, you do

not access its internal structure directly. The internal structure of ifx_lo_t might change. Therefore, to create portable

code, use the correct Informix® ESQL/C library function to use this structure.

The LO-pointer structure, not the CLOB or BLOB data itself, is stored in a CLOB or BLOB column in the database. Therefore,

SQL statements such as INSERT and SELECT accept an LO-pointer structure as the column value for a smart-large-object

column. You declare the Informix® ESQL/C host variable to hold the value of a smart large object as an ifx_lo_t structure.

ESQL/C functions that use the LO-pointer structure

The following table shows the IBM® Informix® ESQL/C library functions that access the LO-pointer structure and how they

access it.

ESQL/C library function Purpose See

ifx_lo_copy_to_file() Copies the smart large object that the LO-pointer

structure identifies to an operating-system file.

The ifx_lo_copy_to_file() function on

page 681

ifx_lo_create() Initializes an LO-pointer structure for a new smart

large object that it creates and returns an LO file

descriptor for this smart large object.

The ifx_lo_create() function on

page 684

ifx_lo_filename() Returns the name of the file where the

ifx_lo_copy_to_file() function would store the

smart large object that the LO-pointer structure

identifies.

The ifx_lo_filename() function on

page 686

ifx_lo_from_buffer() Copies a specified number of bytes from a

user-defined buffer into the smart large object

that the LO-pointer structure references.

The ifx_lo_from_buffer() function on

page 687

ifx_lo_release() Tells the database server to release the

resources associated with the temporary

smart large object that the LO-pointer structure

references.

The ifx_lo_from_buffer() function on

page 687

ifx_lo_to_buffer() Copies a specified number of bytes from the

smart large object referenced by the LO-pointer

structure into a user-defined buffer.

The ifx_lo_to_buffer() function on

page 710

The LO file descriptor
The LO file descriptor is an integer value that identifies an open smart large object.

189

HCL Informix 14.10 - ESQL/C Programmer’s Guide

190

An LO file descriptor is similar to the file descriptors for operating-system files. It serves as an I/O handle to the data of the

smart large object in the server. The LO file descriptors start with a seek position of 0. Use the LO file descriptor in one of the

IBM® Informix® ESQL/C library functions that accepts LO file descriptors.

ESQL/C library functions that use an LO file descriptor

The following table shows the IBM® Informix® ESQL/C library functions that access the LO file descriptor.

ESQL/C library function Purpose See

ifx_lo_close() Closes the smart large object that the LO file

descriptor identifies and deallocates the LO

file descriptor

The ifx_lo_close() function on

page 680

ifx_lo_copy_to_lo() Copies an operating-system file to an open

smart large object that the LO file descriptor

identifies

The ifx_lo_copy_to_lo() function on

page 683

ifx_lo_create() Creates and opens a new smart large object

and returns an LO file descriptor

The ifx_lo_create() function on

page 684

ifx_lo_open() Opens a smart large object and returns an LO

file descriptor

The ifx_lo_open() function on

page 689

ifx_lo_read() Reads data from the open smart large object

that the LO file descriptor identifies

The ifx_lo_read() function on

page 691

ifx_lo_readwithseek() Seeks a specified file position in the open

smart large object that the LO file descriptor

identifies and then reads data from this

position

The ifx_lo_readwithseek() function on

page 692

ifx_lo_seek() Moves the file position in the open smart large

object that the LO file descriptor identifies

The ifx_lo_seek() function on

page 694

ifx_lo_stat() Obtains status information for the open

smart large object that the LO file descriptor

identifies

The ifx_lo_stat() function on

page 705

ifx_lo_tell() Determines the current file position in the open

smart large object that the LO file descriptor

identifies

The ifx_lo_tell() function on

page 710

ifx_lo_truncate() Truncates at a specified offset the open

smart large object that the LO file descriptor

identifies

The ifx_lo_truncate() function on

page 711

ifx_lo_write() Writes data to the open smart large object that

the LO file descriptor identifies

The ifx_lo_write() function on

page 713

Chapter 1. ESQL/C Guide

ESQL/C library function Purpose See

ifx_lo_writewithseek() Seeks a specified file position in the open

smart large object that the LO file descriptor

identifies and then writes data to this position

The ifx_lo_writewithseek() function on

page 714

Creating a smart large object

About this task

Perform the following steps to create a smart large object:

1. Allocate an LO-specification structure with the ifx_lo_def_create_spec() function.

2. Ensure that the LO-specification structure contains the desired storage characteristics for the new smart large object.

3. Create an LO-pointer structure for the new smart large object and open the smart large object with the ifx_lo_create()

function.

4. Write the data for the new smart large object to the open smart large object with the ifx_lo_write() or

ifx_lo_writewithseek() function.

5. Save the new smart large object in a column of the database.

6. Deallocate the LO-specification structure with the ifx_lo_spec_free() function.

Accessing a smart large object

About this task

To access a smart large object, take the following steps:

1. Select the smart large object from the database into an ifx_lo_t host variable with the SELECT statement.

2. Open the smart large object with the ifx_lo_open() function.

3. Perform the appropriate read or write operations to update the data of the smart large object.

4. Close the smart large object with the ifx_lo_close() function.

Select a smart large object

A SELECT statement does not perform the actual output for the smart-large-object data. It does, however, establish a

means for the application program to identify a smart large object so that it can then issue IBM® Informix® ESQL/C library

functions to open, read, write, or perform other operations on the smart large object.

A CLOB or BLOB column in a database table contains the LO-pointer structure for a smart large object. Therefore, when you

select a CLOB or BLOB column into an ifx_lo_t host variable, the SELECT statement returns an LO-pointer structure. For this

reason, you declare host variables for CLOB and BLOB values as LO-pointer structures.

The following figure shows how the database server transfers the data of a smart large object to the Informix® ESQL/C

client application.

191

HCL Informix 14.10 - ESQL/C Programmer’s Guide

192

Figure 43. Transferring smart- large-object data from database server to client application

For an example of code that selects a smart large object from a database column, see The create_clob.ec program on

page 825. For information about how to store a smart large object in the database, see Store a smart large object on

page 187.

Open a smart large object
When you open a smart large object, you obtain an LO file descriptor for the smart large object. Through the LO file

descriptor, you can access the data of a smart large object as if it were in an operating-system file.

Access modes
When you open a smart large object, you specify the access mode for the data.

The access mode determines which read and write operations are valid on the open smart large object. You specify an

access mode with one of the access-mode constants that the locator.h file defines.

The following table shows the access modes and their corresponding defined constants that the ifx_lo_open() and

ifx_lo_create() functions support.

Table 48. Access-mode flags for smart large objects

Access mode Purpose Access-mode constant

Read-only mode Only read operations are valid on the data. LO_RDONLY

Dirty-read mode For ifx_open() only, allows you to read uncommitted data pages for the

smart large object. You cannot write to a smart large object after you set

the mode to LO_DIRTY_READ. When you set this flag, you reset the current

transaction isolation mode to dirty read for the smart large object.

Do not base updates on data that you obtain from a smart large object in

dirty-read mode.

LO_DIRTY_READ

Write-only mode Only write operations are valid on the data. LO_WRONLY

Append mode Intended for use with LO_WRONLY or LO_RDWR. Sets the location pointer

to the end of the object immediately before each write. Appends any data

LO_APPEND

Chapter 1. ESQL/C Guide

Table 48. Access-mode flags for smart large objects (continued)

Access mode Purpose Access-mode constant

you write to the end of the smart large object. If LO_APPEND is used alone,

the object is opened for reading only.

Read/write mode Both read and write operations are valid on the data. LO_RDWR

Buffered access Use standard database server buffer pool. LO_BUFFER

Lightweight I/O Use private buffers from the session pool of the database server. LO_NOBUFFER

Lock all Specify that locking will occur for an entire smart large object. LO_LOCKALL

Lock byte range Specify that locking will occur for a range of bytes, which will be specified

through the ifx_lo_lock() function when the lock is placed.

LO_LOCKRANGE

Tip: These access-mode flags for a smart large object are patterned after the UNIX™ System V access modes.

Set dirty read access mode

To set dirty read isolation mode for a smart large object, set it for the transaction with the SET ISOLATION statement, or set

the LO_DIRTY_READ access mode when you open the smart large object. Setting the LO_DIRTY_READ access mode when

you open the smart large object affects the read mode only for the smart large object and not for the entire transaction. In

other words, if your transaction is executing in committed-read mode, you can use the LO_DIRTY_READ access mode to open

the smart large object in dirty-read mode, without changing the isolation mode for the transaction.

For more information about dirty read isolation mode, see the SET ISOLATION statement in the HCL® Informix® Guide to

SQL: Syntax.

The LO_APPEND flag

When you open a smart large object with LO_APPEND only, the smart large object is opened as read-only. Seek operations

move the file pointer but write operations to the smart large object fail and the file pointer is not moved from its position just

before the write. Read operations occur from where the file pointer is positioned and then the file pointer is moved.

You can mask the LO_APPEND flag with another access mode. In any of these OR combinations, the seek operation remains

unaffected. The following table shows the effect on the read and write operations that each of the OR combinations has.

OR operation Read operations Write operations

LO_RDONLY |

LO_APPEND

Occur at the file position and then move the

file position to the end of the data that was

read

Fail and do not move the file position.

193

HCL Informix 14.10 - ESQL/C Programmer’s Guide

194

OR operation Read operations Write operations

LO_WRONLY |

LO_APPEND

Fail and do not move the file position Move the file position to the end of the smart large

object and then write the data; file position is at the

end of the data after the write.

LO_RDWR | LO_APPEND Occur at the file position and then move the

file position to the end of the data that was

read

Move the file position to the end of the smart large

object and then write the data; file position is at the

end of the data after the write.

Lightweight I/O

When the database server accesses smart large objects, it uses buffers from the buffer pool for buffered access. Unbuffered

access is called lightweight I/O. Lightweight I/O uses private buffers instead of the buffer pool to hold smart large objects.

These private buffers are allocated out of the database server session pool.

Lightweight I/O allows you to bypass the overhead of the least-recently-used (LRU) queues that the database server uses to

manage the buffer pool. For more information about LRUs, see your .

You can specify lightweight I/O by setting the flags parameter to LO_NOBUFFER when you create a smart large object with

the ifx_lo_create() function or when you open a particular smart large object with the ifx_lo_open() function. To specify

buffered access, which is the default, use the LO_BUFFER flag.

Important: Keep in mind the following issues when you use lightweight I/O:

• Close smart large objects with ifx_lo_close() when you are finished with them to free memory allocated to the

private buffers.

• All opens that use lightweight I/O for a particular smart large object share the same private buffers.

Consequently, one operation can cause the pages in the buffer to be flushed while other operations expect

the object to be present in the buffer.

The database server imposes the following restrictions on switching from lightweight I/O to buffered I/O:

• You can use the ifx_lo_alter() function to switch a smart large object from lightweight I/O (LO_NOBUFFER) to buffered

I/O (LO_BUFFER) if the smart large object is not open. However, ifx_lo_alter() generates an error if you try to change a

smart large object that uses buffered I/O to one that uses lightweight I/O.

• Unless you first use ifx_lo_alter() to change the access mode to buffered access (LO_BUFFER), you can only open

a smart large object that was created with lightweight I/O with the LO_NOBUFFER access-mode flag. If an open

specifies LO_BUFFER, the database server ignores the flag.

• You can open a smart large object that was created with buffered access (LO_BUFFER) with the LO_NOBUFFER flag

only if you open the object in read-only mode. If you attempt to write to the object, the database server returns an

error. To write to the smart large object, you must close it then reopen it with the LO_BUFFER flag and an access flag

that allows write operations.

Chapter 1. ESQL/C Guide

You can use the database server utility onspaces to specify lightweight I/O for all smart large objects in an sbspace. For

more information about the onspaces utility, see your HCL® Informix® Administrator's Guide.

Smart-large-object locks

When you open a smart large object the database server locks either the entire smart large object or a range of bytes that

you specify to prevent simultaneous access to smart-large-object data, Locks on smart large objects are different from

row locks. If you retrieve a smart large object from a row, the database server might hold a row lock as well as a smart-

large-object lock. The database server locks smart-large-object data because many columns can contain the same smart-

large-object data. You use the access-mode flags, LO_RDONLY, LO_DIRTY_READ, LO_APPEND, LO_WRONLY, LO_RDWR, and

LO_TRUNC to specify the lock mode of a smart large object. You pass these flags to the ifx_lo_open() and ifx_lo_create()

functions. When you specify LO_RDONLY, the database server places a share lock on the smart large object. When you

specify LO_DIRTY_READ, the database server does not place a lock on the smart large object. If you specify any other

access-mode flag, the database server obtains an update lock, which it promotes to an exclusive lock on first write or other

update operation.

Share and update locks (read-only mode, or write mode before an update operation occurs) are held until your program takes

one of the following actions:

• Closes the smart large object

• Commits the transaction or rolls it back

Exclusive locks are held until the end of a transaction even if you close the smart large object.

Important: You lose the lock at the end of a transaction, even if the smart large object remains open. When the

database server detects that a smart large object has no active lock, it automatically obtains a new lock when the

first access occurs to the smart large object. The lock it obtains is based on the original open mode of the smart

large object.

Range of a lock

When you place a lock on a smart large object you can lock either the entire smart large object or you can lock a byte range.

A byte range lock allows you to lock only the range of bytes that you will affect within the smart large object.

Two access-mode flags, LO_LoCKALL and LO_LOCKRANGE, enable you to designate the default type of lock that will be

used for the smart large object. You can set them with ifx_lo_specset_flags() and retrieve them with ifx_specget_flags(). The

LO_LOCKALL flag specifies that the entire smart large object will be locked; the LO_LOCKRANGE flag specifies that you will

use byte-range locks for the smart large object. For more information, see The ifx_lo_specget_flags() function on page 698

and The ifx_lo_specset_flags() function on page 703.

You can use the ifx_lo_alter() function to change the default range from one type to the other. You can also override the

default range by setting either the LO_LOCKALL or the LO_LOCKRANGE flag in the access-mode flags for ifx_lo_open(). For

more information, see Open a smart large object on page 192 and The ifx_lo_open() function on page 689.

195

HCL Informix 14.10 - ESQL/C Programmer’s Guide

196

The ifx_lo_lock() function allows you to lock a range of bytes that you want to access for a smart large object and the

ifx_lo_unlock() function allows you to unlock the bytes when you are finished. For more information, see The ifx_lo_lock()

function on page 688 and The ifx_lo_unlock() function on page 712.

Duration of an open on a smart large object

After you open a smart large object with the ifx_lo_create() function or the ifx_lo_open() function, it remains open until one of

the following events occurs:

• The ifx_lo_close() function closes the smart large object.

• The session ends.

The end of the current transaction does not close a smart large object. It does, however, release any lock on a smart large

object. Have your applications close smart large objects as soon as they finish with them. Leaving smart large objects open

unnecessarily consumes system memory. Leaving a sufficient number of smart large objects open can eventually produce

an out-of-memory condition.

Delete a smart large object
A smart large object is not deleted until the current transaction commits and the smart large object is closed, if the

application opened the smart large object.

Modifying a smart large object

About this task

You can modify the data of the smart large object with the following steps:

1. Read and write the data in the open smart large object until the data is ready to save.

2. Store the LO-pointer for the smart large object in the database with the UPDATE or INSERT statement.

Read data from a smart large object
The ifx_lo_read() and ifx_lo_readwithseek() IBM® Informix® ESQL/C library functions read data from an open smart large

object.

They both read a specified number of bytes from the open smart large object into the user-defined character buffer. The

ifx_lo_read() function begins the read operation at the current file position. You can specify the starting file position of

the read with the ifx_lo_seek() function, and you can obtain the current file position with the ifx_lo_tell() function. The

ifx_lo_readwithseek() function performs the seek and read operations with a single function call.

The ifx_lo_read() and ifx_lo_readwithseek() functions require a valid LO file descriptor to identify the smart large object to be

read. You obtain an LO file descriptor with the ifx_lo_open() or ifx_lo_create() function.

Chapter 1. ESQL/C Guide

Write data to a smart large object

The ifx_lo_write() and ifx_lo_writewithseek() Informix® ESQL/C library functions write data to an open smart large object.

They both write a specified number of bytes from a user-defined character buffer to the open smart large object. The

ifx_lo_write() function begins the write operation at the current file position. You can specify the starting file position of

the write with the ifx_lo_seek() function, and you can obtain the current file position with the ifx_lo_tell() function. The

ifx_lo_writewithseek() function performs the seek and write operations with a single function call.

The ifx_lo_write() and ifx_lo_writewithseek() functions require a valid LO file descriptor to identify the smart large object to

write. You obtain an LO file descriptor with the ifx_lo_open() or ifx_lo_create() function.

Close a smart large object
After you have finished the read and write operations on the smart large object, deallocate the resources assigned to it with

the ifx_lo_close() function. When the resources are freed, they can be reallocated to other structures that your program

needs. In addition, the LO file descriptor can be reallocated to other smart large objects.

Obtaining the status of a smart large object

About this task

To obtain status information for a smart large object, take the following steps:

1. Obtain a valid LO-pointer structure to the smart large object for which you want status.

2. Allocate and fill an LO-status structure with the ifx_lo_stat() function

3. Use the appropriate IBM® Informix® ESQL/C accessor function to obtain the status information you need.

4. Deallocate the LO-status structure.

Obtaining a valid LO-pointer structure

About this task

You can obtain status information for any smart large object for which you have a valid LO-pointer structure. You can

perform either of the following steps to obtain an LO-pointer structure:

• Select a CLOB or BLOB column from a database table.

• Create a new smart large object.

Allocate and access an LO-status structure
The LO-status structure stores status information for a smart large object. This section describes how to allocate and

access an LO-status structure.

Allocate an LO-status structure

The ifx_lo_stat() function performs the following tasks:

197

HCL Informix 14.10 - ESQL/C Programmer’s Guide

198

• It allocates a new LO-status structure, whose pointer you provide as an argument.

• It initializes the LO-status structure with all status information for the smart large object that the LO file descriptor,

which you provide, identifies.

Access the LO-status structure

The LO-status structure, ifx_lo_stat_t, stores the status information for a smart large object in the IBM® Informix® ESQL/

C program. The locator.h header file defines the LO-status structure so you must include the locator.h file in your

Informix® ESQL/C programs that access this structure.

Important: The LO-status structure, ifx_lo_stat_t, is opaque to Informix® ESQL/C programs. Do not access its

internal structure directly. The internal structure of ifx_lo_stat_t might change in future releases. Therefore, to create

portable code, always use the Informix® ESQL/C accessor functions for this structure to obtain and store values in

the LO-status structure.

The following table shows the status information along with the corresponding Informix® ESQL/C accessor functions.

Table 49. Status information in the LO-status structure

Disk-storage information Description ESQL/C accessor functions

Last access time The time, in seconds, that the smart large object was last

accessed.

This value is available only if the

LO_KEEP_LASTACCESS_TIME flag is set for this smart large

object.

ifx_lo_stat_atime()

Storage characteristics The storage characteristics for the smart large object.

These characteristics are stored in an LO-specification

structure (see The LO-specification structure on

page 180). Use the Informix® ESQL/C accessor functions

for an LO-specification structure (see Table 46: Disk-storage

information in the LO-specification structure on page 181

and Table 47: Create-time flags in the LO-specification

structure on page 182) to obtain this information.

ifx_lo_stat_cspec()

Last change in status The time, in seconds, of the last status change for the smart

large object.

A change in status includes updates, changes in ownership,

and changes to the number of references.

ifx_lo_stat_ctime()

Last modification time

(seconds)

The time, in seconds, that the smart large object was last

modified.

ifx_lo_stat_mtime_sec()

Chapter 1. ESQL/C Guide

Table 49. Status information in the LO-status structure (continued)

Disk-storage information Description ESQL/C accessor functions

Reference count A count of the number of references to the smart large

object.

ifx_lo_stat_refcnt()

Size The size, in bytes, of the smart large object. ifx_lo_stat_size()

The time values (such as last access time and last change time) might differ slightly from the system time. This difference is

due to the algorithm that the database server uses to obtain the time from the operating system.

Deallocate the LO-status structure
After you have finished with an LO-status structure, deallocate the resources assigned to it with the ifx_lo_stat_free()

function. When the resources are freed, they can be reallocated to other structures that your program needs.

Alter a smart-large-object column

You can use the PUT clause of the ALTER TABLE statement to change the storage location and the storage characteristics

of a CLOB or BLOB column. You can change the sbspace where the column is stored and also implement round-robin

fragmentation, which causes the smart large objects in the CLOB or BLOB column to be distributed among a series of

specified sbspaces. For example, the ALTER TABLE statement in the following example changes the original storage location

of the advert.picture column from s9_sbspc to the sbspaces s10_sbspc and s11_sbspc. The ALTER TABLE statement also

changes the characteristics of the column:

advert ROW (picture BLOB, caption VARCHAR(255, 65)),

⋮;

PUT advert IN (s9_sbspc)
 (EXTENT SIZE 100)

ALTER TABLE catalog
 PUT advert IN (s10_sbspc, s11_sbspc)
 (extent size 50, NO KEEP ACCESS TIME);

When you change the storage location or storage characteristics of a smart-large-object column, the changes apply only to

new instances created for the column. The storage location and storage characteristics of existing smart large objects for

the column are not affected.

For a description of the catalog table that the preceding example references, see the Examples for smart-large-object

functions on page 823.

For more information about the ALTER TABLE statement, see the HCL® Informix® Guide to SQL: Syntax.

Migrate simple large objects

To migrate simple large objects to smart large objects, cast TEXT data to CLOB data and BYTE data to BLOB data. You can

use the cast syntax (bytecolblobcol, for example) to migrate a simple large object to a smart large object. The following

199

HCL Informix 14.10 - ESQL/C Programmer’s Guide

200

example migrates the BYTE column cat_picture from the catalog table in the stores7 database to the BLOB field picture

in the advert row type in the alternate catalog table that is described in Examples for smart-large-object functions on

page 823:

update catalog set advert = ROW ((SELECT cat_picture::blob
 FROM stores7:catalog WHERE catalog_num = 10027), pwd
 advert.caption)
 WHERE catalog_num = 10027

For a description of the stores7 table, see HCL® Informix® Guide to SQL: Reference.

You can also use the MODIFY clause of the ALTER TABLE statement to change a TEXT or BYTE column to a CLOB or BLOB

column. When you use the MODIFY clause of the ALTER TABLe statement, the database server implicitly casts the old data

type to the new data type to create the ClOB or BLOB column.

For example, if you want to change the cat_descr column from a TEXT column to a BYTE column in the catalog table of the

stores7 database, you can use a construction similar to the following statement:

ALTER TABLE catalog modify cat_descr CLOB,
 PUT cat_descr in (sbspc);

For more information about the ALTER TABLE statement, see the HCL® Informix® Guide to SQL: Syntax

For more information about casting, see the HCL® Informix® Guide to SQL: Syntax and the HCL® Informix® Guide to SQL:

Tutorial.

Read and write smart large objects on an optical disc (UNIX™)

Within a table, rows that include smart-large-object data do not include the smart-large-object data in the row itself. Instead,

the smart-large-object column contains the LO-pointer structure. The LO-pointer structure can point to an sbpage in an

sbspace or to a platter in an optical storage subsystem.

However, you can store smart large objects on optical disc only if this media is mounted as a UNIX™ file system and is write

many (WMRM). The optical disc must contain the sbspaces for the smart large objects. Your application can use the IBM®

Informix® ESQL/C API for smart large objects to access the smart large objects on the mounted optical disc.

The database server does not provide support for a write-once-read-many (WORM) optical-storage subsystem as a location

for smart large objects. However, it does support access to simple large objects (BYTE and TEXT) on WORM media.

For details about the optical subsystem, see your HCL® Informix® Administrator's Guide and the Informix® Optical

Subsystem Guide.

The ESQL/C API for smart large objects
The IBM® Informix® ESQL/C API for smart large objects allows an application program to access a smart large object much

like an operating-system file.

Chapter 1. ESQL/C Guide

A smart large object that does not fit into memory does not have to be read into a file and then accessed from a file; it can

be accessed one piece at a time. The Informix® ESQL/C application program accesses smart large objects through the

Informix® ESQL/C library functions in the following table.

ESQL/C function Description See

ifx_lo_alter() Alters the storage characteristics of an

existing smart large object

The ifx_lo_alter() function on

page 679

ifx_lo_close() Closes an open smart large object The ifx_lo_close() function on

page 680

ifx_lo_col_info() Retrieves column-level storage

characteristics in an LO-specification

structure

The ifx_lo_col_info() function on

page 680

ifx_lo_copy_to_file() Copies a smart large object into an

operating-system file

The ifx_lo_copy_to_file() function on

page 681

ifx_lo_copy_to_lo() Copies an operating-system file into

an open smart large object

The ifx_lo_copy_to_lo() function on

page 683

ifx_lo_create() Creates an LO-pointer structure for a

smart large object

The ifx_lo_create() function on

page 684

ifx_lo_def_create_spec() Allocates an LO-specification structure

and initializes its fields to null values

The ifx_lo_def_create_spec() function

on page 685

ifx_lo_filename() Returns the generated file name, given

an LO-pointer structure and a file

specification

The ifx_lo_filename() function on

page 686

ifx_lo_from_buffer() Copies a specified number of bytes

from a user-defined buffer into a smart

large object

The ifx_lo_from_buffer() function on

page 687

ifx_lo_open() Opens an existing smart large object The ifx_lo_open() function on

page 689

ifx_lo_read() Reads a specified number of bytes

from an open smart large object

The ifx_lo_read() function on

page 691

ifx_lo_readwithseek() Seeks to a specified position in an

open smart large object and reads a

specified number of bytes

The ifx_lo_readwithseek() function on

page 692

ifx_lo_release() Releases resources committed to a

temporary smart large object

The ifx_lo_release() function on

page 693

201

HCL Informix 14.10 - ESQL/C Programmer’s Guide

202

ESQL/C function Description See

ifx_lo_seek() Sets the seek position for the next

read or write on an open smart large

object

The ifx_lo_seek() function on

page 694

ifx_lo_spec_free() Frees the resources allocated to an

LO-specification structure

The ifx_lo_spec_free() function on

page 695

ifx_lo_specget_estbytes() Gets the estimated size, in bytes, of

the smart large object

The ifx_lo_specget_estbytes() function

on page 696

ifx_lo_specget_extsz() Gets the allocation extent size for the

smart large object

The ifx_lo_specget_extsz() function on

page 697

ifx_lo_specget_flags() Gets the create-time flags for the

smart large object

The ifx_lo_specget_flags() function on

page 698

ifx_lo_specget_maxbytes() Gets the maximum size for the smart

large object

The ifx_lo_specget_maxbytes() function

on page 699

ifx_lo_specset_sbspace() Gets the sbspace name for the smart

large object

The ifx_lo_specget_sbspace() function

on page 699

ifx_lo_specset_estbytes() Sets the estimated size, in bytes, of

the smart large object

The ifx_lo_specset_estbytes() function

on page 701

ifx_lo_specset_extsz() Sets the allocation extent size for the

smart large object

The ifx_lo_specset_extsz() function on

page 702

ifx_lo_specset_flags() Sets the create-time flags for the

smart large object

The ifx_lo_specset_flags() function on

page 703

ifx_lo_specset_maxbytes() Sets the maximum size for the smart

large object

The ifx_lo_specset_maxbytes() function

on page 703

ifx_lo_specset_sbspace() Sets the sbspace name for the smart

large object

The ifx_lo_specset_sbspace() function

on page 704

ifx_lo_stat() Obtains status information for an open

smart large object

The ifx_lo_stat() function on page 705

ifx_lo_stat_atime() Returns the last access time for a

smart large object

The ifx_lo_stat_atime() function on

page 705

ifx_lo_stat_cspec() Returns the storage characteristics for

a smart large object

The ifx_lo_stat_cspec() function on

page 706

ifx_lo_stat_ctime() Returns the last change-in-status time

for the smart large object

The ifx_lo_stat_ctime() function on

page 707

Chapter 1. ESQL/C Guide

ESQL/C function Description See

ifx_lo_stat_free() Frees the resources allocated to an

LO-status structure

The ifx_lo_stat_free() function on

page 707

ifx_lo_stat_mtime_sec() Returns the last modification time, in

seconds, for the smart large object

The ifx_lo_stat_mtime_sec() function on

page 708

ifx_lo_stat_refcnt() Returns the reference count for the

smart large object

The ifx_lo_stat_refcnt() function on

page 708

ifx_lo_stat_size() Returns the size of the smart large

object

The ifx_lo_stat_size() function on

page 709

ifx_lo_tell() Returns the current seek position of an

open smart large object

The ifx_lo_tell() function on page 710

ifx_lo_to_buffer() Copies a specified number of bytes

from a smart large object into a

user-defined buffer

The ifx_lo_to_buffer() function on

page 710

ifx_lo_truncate() Truncates a smart large object to a

specific offset

The ifx_lo_truncate() function on

page 711

ifx_lo_write() Writes a specified number of bytes to

an open smart large object

The ifx_lo_write() function on

page 713

ifx_lo_writewithseek() Seeks to a specified position in an

open smart large object and writes a

specified number of bytes

The ifx_lo_writewithseek() function on

page 714

Complex data types
These topics explain how to use collection and row data types in the IBM® Informix® ESQL/C program.

The information in these topics apply only if you are using HCL Informix® as your database server.

These Informix® ESQL/C data types access the complex data types, as the following table shows.

Data type ESQL/C host variable

Collection types: LIST, MULTISET,

SET

Typed collection host variable

Untyped collection host

variable

Row types: named and unnamed Typed row host variable

Untyped row host variable

203

HCL Informix 14.10 - ESQL/C Programmer’s Guide

204

For information about SQL complex data types, see the HCL® Informix® Guide to SQL: Reference.

Access a collection

HCL Informix® supports the following kinds of collections:

• The SET data type stores a collection of elements that are unique values and have no ordered positions.

• The MULTISET data type stores a collection of elements that can be duplicate values and have no ordered positions.

• The LIST data type stores a collection of elements that can be duplicate values and have ordered positions.

Both SQL and Informix® ESQL/C enable you to use the SQL collection derived table clause to access the elements of a

collection as if they were rows in a table. In Informix® ESQL/C, the collection derived table takes the form of a collection

variable. The collection variable is a host variable into which you retrieve the collection. After you have retrieved the collection

into a collection variable, you can perform select, insert, update, and delete operations on it, with restrictions.

Important: When the SQL statement references a collection variable, Informix® ESQL/C and not the database server,

processes the statement.

SQL allows you to perform read-only (SELECT) operations on a collection by implementing the collection derived table as a

virtual table.

Access a collection derived table

When the SELECT statement for a collection does not reference the IBM® Informix® ESQL/C collection variable, the

database server performs the query.

Consider, for example, the following schema:

create row type person(name char(255), id int);
create table parents(name char(255), id int,
 children list(person not null));

You can select the names of children and IDs from the table parent by using the following SELECT statement:

select name, id from table(select children from parents
 where parents.id = 1001) c_table(name, id);

To execute the query, the database server creates a virtual table (c_table) from the list children in the row of the parents

table where parents.id equals 1001.

Advantage of a collection derived table
The advantage of querying a collection as a virtual table as opposed to querying it through a collection variable is that the

virtual table provides more efficient access.

By contrast, if you were to use collection variables, you might be required to allocate multiple variables and multiple cursors.

For example, consider the following schema:

Chapter 1. ESQL/C Guide

EXEC SQL create row type parent_type(name char(255), id int,
 children list(person not null));
EXEC SQL create grade12_parents(class_id int,
 parents set(parent_type not null));

You can query the collection derived table as a virtual table as shown in the following SELECT statement:

EXEC SQL select name into :host_var1
 from table((select children from table((select parents
 from grade12_parents where class_id = 1))
 p_table where p_table.id = 1001)) c_table
 where c_table.name like ’Mer%’;

To perform the same query with collection variables, you need to execute the following statements:

EXEC SQL client collection hv1;
EXEC SQL client collection hv2;
EXEC SQL int parent_id;

EXEC SQL char host_var1[256];
⋮

EXEC SQL allocate collection hv1;
EXEC SQL allocate collection hv2;

EXEC SQL select parents into :hv1 from grade12_parents
 where class_id = 1;
EXEC SQL declare cur1 cursor for select id, children
 from table(:hv1);
EXEC SQL open cur1;
for(;;)
{
 EXEC SQL fetch cur1 into :parent_id, :hv2;
 if(parent_id = 1001)
 break;
}
EXEC SQL declare cur2 cursor for select name from
 table(:hv2));
EXEC SQL open cur2;
for(;;)
{
 EXEC SQL fetch cur2 into :host_var1;
 /* user needs to implement ’like’ function */
 if(like_function(host_var1, "Mer%"))
 break;
}

Restrictions on a collection derived table

The following restrictions apply to querying a collection derived table that is a virtual table:

• It cannot be the target of INSERT, DELETE, or UPDATE statements.

• It cannot be the underlying table of any cursors or views that can be updated.

• It does not support ordinality. For example, it does not support the following statement:

205

HCL Informix 14.10 - ESQL/C Programmer’s Guide

206

select name, order_in_list from table(select children
 from parents where parents.id = 1001)
 with ordinality(order_in_list);

• It is an error if the underlying collection expression of the collection derived table evaluates to a null value.

• It cannot reference columns of tables that are referenced in the same FROM clause. For example, it does not support

the following statement because the collection derived table table(parents.children) refers to the table parents,

which is referenced in the FROM clause:

select count(distinct c_id) from parents,
 table(parents.children) c_table(c_name, c_id)
 where parents.id = 1001

• The database server must be able to statically determine the type of the underlying collection expression. For

example, the database server cannot support: TABLE(?)

• The database server cannot support a reference to a host variable without casting it to a known collection type. For

example, rather than specifying TABLE(:hostvar), you must cast the host variable:

TABLE(CAST(:hostvar AS type))
TABLE(CAST(? AS type))

• It will not preserve the order of rows in the list if the underlying collection is a list.

Declaring collection variables

About this task

To access the elements of a column that has a collection type (LIST, MULTISET, or SET) as its data type, perform the

following steps:

1. Declare a collection host variable, either typed or untyped.

2. Allocate memory for the collection host variable.

3. Perform any select, insert, update, or delete operations on the collection host variable.

4. Save the contents of the collection host variable into the collection column.

Syntax of the collection data type
Use the collection data type to declare host variables for columns of collection data types (SET, MULTISET, or LIST).

As the following syntax diagram illustrates, you must use the collection keyword as the data type for a collection host

variable.

(explicit id) client collection [{ set | multiset | list } (element typenot null)] variable name ;

Element Purpose Restrictions SQL Syntax

element type Data type of the elements in the

collection variable

Can be any data type except SERIAL,

SERIAL8, BIGSERIAL, TEXT, or BYTE

Data Type segment in the

HCL® Informix® Guide to

SQL: Syntax

Chapter 1. ESQL/C Guide

Element Purpose Restrictions SQL Syntax

variable name Name of the Informix® ESQL/C

variable to declare as a collection

variable

Name must conform to

language-specific rules for

variable names.

A collection variable can be any SQL collection type: LIST, MULTISET, or SET.

Important: You must specify the client keyword when you declare collection variables.

Typed and untyped collection variables

Informix® ESQL/C supports the following two collection variables:

• A typed collection variable specifies the data type of the elements in the collection and the collection itself.

• An untyped collection variable does not specify the collection type or the element type.

The typed collection variable
A typed collection variable provides an exact description of the collection. This declaration specifies the data type of the

collection (SET, MULTISET, or LIST) and the element type for the collection variable.

The following figure shows declarations for three typed collection variables.

Figure 44. Sample typed collection variables

EXEC SQL BEGIN DECLARE SECTION;
 client collection list(smallint not null)
 list1;
 client collection set(row(
 x char(20),
 y set(integer not null),
 z decimal(10,2)) not null) row_set;
 client collection multiset(set(smallint
 not null)
 not null) collection3;
EXEC SQL END DECLARE SECTION;

Typed collection variables can contain elements with the following data types:

• Any built-in data type (such as INTEGER, CHAR, BOOLEAN, and FLOAT) except BYTE, TEXT, SERIAL, or SERIAL8.

• Collection data types, such as SET and LIST, to create a nested collection

• Unnamed row types (named row types are not valid)

• Opaque data types

When you specify the element type of the collection variable, use the SQL data types, not the IBM® Informix® ESQL/C data

types. For example, as the declaration for the list1 variable in Figure 44: Sample typed collection variables on page 207

illustrates, use the SQL SMALLINT data type, not the Informix® ESQL/C short data type, to declare a LIST variable whose

207

HCL Informix 14.10 - ESQL/C Programmer’s Guide

208

elements are small integers. Similarly, use the SQL syntax for a CHAR column to declare a SET variable whose elements are

character strings, as the following example illustrates:

client collection set(char(20) not null) set_var;

Important: You must specify the not-null constraint on the element type of a collection variable.

A named row type is not valid as the element type of a collection variable. However, you can specify an element type of

unnamed row type, whose fields match those fields of the named row type.

For example, suppose your database has the named row type, myrow, and the database table, mytable, that are defined as

follows:

CREATE ROW TYPE myrow
(
 a int,
 b float
);
CREATE TABLE mytable
(
 col1 int8,
 col2 set(myrow not null)
);

You can define a collection variable for the col2 column of mytable as follows:

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(row(a int, b float) not null)
 my_collection;
EXEC SQL END DECLARE SECTION;

You can declare a typed collection variable whose element type is different from that of the collection column as long as

the two data types are compatible. If the database server is able to convert between the two element types, it automatically

performs this conversion when it returns the fetched collection.

Suppose you create the tab1 table as follows:

CREATE TABLE tab1 (col1 SET(INTEGER NOT NULL))

You can declare a typed collection variable whose element type matches (set_int) or one whose element type is compatible

(set_float), as follows:

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(float not null) set_float;
 client collection set(integer not null) set_int;
EXEC SQL END DECLARE SECTION;

EXEC SQL declare cur1 cursor for select * from tab1;
EXEC SQL open cur1;
EXEC SQL fetch cur1 into:set_float;
EXEC SQL fetch cur1 into :set_int;

When it executes the first FETCH statement, the Informix® ESQL/C client program automatically converts the integer

elements in the column to the float values in the set_float host variable. The Informix® ESQL/C program only generates a

Chapter 1. ESQL/C Guide

type-mismatch error if you change the host variable after the first fetch. In the preceding code fragment, the second FETCH

statement generates a type-mismatch error because the initial fetch has already defined the element type as float.

Use a typed collection variable in the following cases:

• When you insert into a derived table (Informix® ESQL/C needs to know what the type is)

• When you update an element in a derived table (Informix® ESQL/C needs to know what the type is)

• When you want the server to perform a cast. (The Informix® ESQL/C client sends the type information to the

database server, which attempts to perform the requested cast operation. If it is not possible, the database server

returns an error.)

Match the declaration of a typed collection variable exactly with the data type of the collection column. You can then use this

collection variable directly in SQL statements such as INSERT, DELETE, or UPDATE, or in the collection-derived table clause.

Tip: If you do not know the exact data type of the collection column you want to access, use an untyped collection

variable.

In a single declaration line, you can declare several collection variables for the same typed collection, as the following

declaration shows:

EXEC SQL BEGIN DECLARE SECTION;
 client collection multiset(integer not null) mset1, mset2;
EXEC SQL END DECLARE SECTION;

You cannot declare collection variables for different collection types in a single declaration line.

The untyped collection variable
An untyped collection variable provides a general description of a collection. This declaration includes only the collection

keyword and the variable name.

The following lines declare three untyped collection variables:

EXEC SQL BEGIN DECLARE SECTION;
 client collection collection1, collection2;
 client collection grades;
EXEC SQL END DECLARE SECTION;

The advantage of an untyped collection host variable is that it provides more flexibility in collection definition. For an untyped

collection variable, you do not have to know the definition of the collection column at compile time. Instead, you obtain, at

run time, a description of the collection from a collection column with the SELECT statement.

Tip: If you know the exact data type of the collection column you want to access, use a typed collection variable.

To obtain the description of a collection column, execute a SELECT statement to retrieve the column into the untyped

collection variable. The database server returns the column description (the collection type and the element type) with the

column data. IBM® Informix® ESQL/C assigns this definition of the collection column to the untyped collection variable.

209

HCL Informix 14.10 - ESQL/C Programmer’s Guide

210

For example, suppose the a_coll host variable is declared as an untyped collection variable, as follows:

EXEC SQL BEGIN DECLARE SECTION;
 client collection a_coll;
EXEC SQL END DECLARE SECTION;

The following code fragment uses a SELECT statement to initialize the a_coll variable with the definition of the list_col

collection column (which Figure 45: Sample tables with collection columns on page 214 defines) before it uses the

collection variable in an INSERT statement:

EXEC SQL allocate collection :a_coll;

/* select LIST column into the untyped collection variable
 * to obtain the data-type information */
EXEC SQL select list_col into :a_coll from tab_list;

/* Insert an element at the end of the LIST in the untyped
 * collection variable */
EXEC SQL insert into table(:a_coll) values (7);

To obtain the description of a collection column, your application must verify that a collection column has data in it before

it selects the column. If the table has no rows in it, the SELECT statement does not returns column data or the column

description and Informix® ESQL/C cannot assign the column description to the untyped collection variable.

You can use an untyped collection variable to store collections with different column definitions, as long as you select the

associated collection column description into the collection variable before you use the variable in an SQL statement.

Important: You must obtain the definition of a collection column for an untyped collection variable before you

use the variable in an SQL statement. Before the collection variable can hold any values, you must use a SELECT

statement to obtain a description of the collection data type from a collection column in the database. Therefore, you

cannot insert or select values directly into an untyped collection variable.

Client collections

The IBM® Informix® ESQL/C application declares the collection variable name, allocates the memory for it with the

ALLOCATE COLLECTION statement, and performs operations on the collection data.

To access the elements of a collection variable, specify the variable in the Collection Derived Table clause of a SELECT,

INSERT, UPDATE, or DELETE statement. Informix® ESQL/C performs the select, insert, update, or delete operation. Informix®

ESQL/C does not send these statements to the database server when they include a client collection variable in the

collection-derived table clause.

For example, Informix® ESQL/C performs the following INSERT operation on the a_multiset collection variable:

EXEC SQL BEGIN DECLARE SECTION;
 client collection multiset(integer not null) a_multiset;
EXEC SQL END DECLARE SECTION;
EXEC SQL insert into table(:a_multiset) values (6);

When an SQL statement includes a collection variable, it has the following syntax restrictions:

Chapter 1. ESQL/C Guide

• You can only access elements of a client-side collection with the collection-derived table clause and a SELECT,

INSERT, UPDATE, or DELETE statement.

• An INSERT statement cannot have a SELECT, an EXECUTE FUNCTION, or an EXECUTE PROCEDURE statement in the

VALUES clause.

• You cannot include a WHERE clause

• You cannot include an expression

• You cannot use scroll cursors

Manage memory for collections
IBM® Informix® ESQL/C does not automatically allocate or deallocate memory for collection variables. You must explicitly

manage the memory that is allocated to a collection variable.

Use the following SQL statements to manage memory for both typed and untyped collection host variables:

• The ALLOCATE COLLECTION statement allocates memory for the specified collection variable.

This collection variable can be a typed or untyped collection. The ALLOCATE COLLECTION statement sets SQLCODE

(sqlca.sqlcode) to zero if the memory allocation was successful and a negative error code if the allocation failed.

• The DEALLOCATE COLLECTION statement deallocates memory for a specified collection variable.

After you free the collection variable with the DEALLOCATE COLLECTION statement, you can reuse the collection

variable.

Important: You must explicitly deallocate memory allocated to a collection variable. Use the DEALLOCATE

COLLECTION statement to deallocate the memory.

The following code fragment declares the a_set host variable as a typed collection, allocates memory for this variable, then

deallocates memory for this variable:

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL allocate collection :a_set;
⋮;

EXEC SQL deallocate collection :a_set;

The ALLOCATE COLLECTION statement allocates memory for the collection variable and the collection data.

When DEALLOCATE COLLECTION fails because a cursor on the collection is still open, an error message is returned. Before

this, the error is not trapped.

211

HCL Informix 14.10 - ESQL/C Programmer’s Guide

212

Operate on a collection variable

HCL Informix® supports access to a collection column as a whole through the SELECT, UPDATE, INSERT, and DELETE

statements. For example, the SELECT statement can retrieve all elements of a collection, and the UPDATE statement can

update all elements in a collection to a single value.

Tip: Informix® can only access the contents of collection columns directly with the IN predicate in the WHERE clause

of a SELECT statement and this IN predicate works only with simple collections (collections whose element types

are not complex types).

The SELECT, INSERT, UPDATE, and DELETE statements cannot access elements of a collection column in a table. To access

elements in a collection column, the Informix® ESQL/C application constructs a subtable, called a collection-derived table, in

the collection host variable. From collection-derived table, the Informix® ESQL/C application to access the elements of the

collection variable as rows of a table.

This section discusses the following topics on how to use a collection-derived table in the Informix® ESQL/C application to

access a collection column:

• Using the collection-derived table clause in SQL statements to access a collection host variable

• Initializing a collection host variable with a collection column

• Inserting elements into a collection host variable

• Selecting elements from a collection host variable

• Updating elements in a collection host variable

• Specifying element values for a collection host variable

• Deleting elements from a collection host variable

• Accessing a nested collection with collection host variables

The collection-derived table clause on collections
The collection-derived table clause allows you to specify a collection host variable as a table name.

This clause has the following syntax:

TABLE(:coll_var)

In this example, coll_var is a collection host variable. It can be either a typed or untyped collection host variable, but it must

be declared and have memory allocated in the IBM® Informix® ESQL/C application before it appears in a collection-derived

table clause.

For more information about the syntax of the collection-derived table clause, see the description of the collection-derived

table segment in the HCL® Informix® Guide to SQL: Syntax.

Access a collection variable

In SQL statements, the IBM® Informix® ESQL/C application specifies a collection-derived table in place of a table name to

perform the following operations on the collection host variable:

Chapter 1. ESQL/C Guide

• You can insert an element into the collection host variable with the collection-derived table clause after the INTO

keyword of an INSERT, or with the PUT statement.

For more information, see Insert elements into a collection variable on page 215.

• You can select an element from a collection host variable with the collection-derived table clause in the FROM clause

of the SELECT statement.

For more information, see Select from a collection variable on page 221.

• You can update all or some elements in the collection host variable with the collection-derived table clause (instead

of a table name) after the UPDATE keyword in an UPDATE statement.

For more information, see Update a collection variable on page 224.

• You can delete all or some elements from the collection host variable with the collection-derived table clause after

the FROM keyword in the DELETE statement.

For more information, see Delete elements from a collection variable on page 228.

Tip: If you only need to insert or update a collection column with literal values, you do not need to use a collection

host variable. Instead, you can explicitly list the literal-collection value in either the INTO clause of the INSERT

statement or the SET clause of the UPDATE statement.

For more information, see Insert into and update a collection column on page 234.

After the collection host variable contains valid elements, you update the collection column with the contents of the host

variable. For more information, see Operate on a collection column on page 233. For more information about the syntax of

the collection-derived table clause, see the description of the collection-derived table segment in the HCL® Informix® Guide

to SQL: Syntax.

Distinguish between columns and collection variables

When you use the collection-derived table clause with a collection host variable in an SQL statement (such as SELECT,

INSERT, or UPDATE), the statement is not sent to the database server for processing. Instead, IBM® Informix® ESQL/C

processes the statement. Consequently, some of the syntax checking that the database server performs is not done on SQL

statements that include the collection-derived table clause.

In particular, the Informix® ESQL/C preprocessor cannot distinguish between column names and host variables. Therefore,

when you use the collection-derived table clause with an UPDATE or INSERT statement, you must use valid host-variable

syntax in:

• The SET clause of an UPDATE statement

• The VALUES clause of an INSERT statement

213

HCL Informix 14.10 - ESQL/C Programmer’s Guide

214

Initialize a collection variable
You must always initialize an untyped collection variable by selecting a collection column into it. You must execute a SELECT

statement, regardless of the operation you want to perform on the untyped collection variable.

Important: Selecting the collection column into the untyped collection variable provides IBM® Informix® ESQL/C

with a description of the collection declaration.

You can initialize a collection variable by selecting a collection column into the collection variable, constructing the SELECT

statement as follows:

• Specify the name of the collection column in the select list.

• Specify the collection host variable in the INTO clause.

• Specify the table or view name (not the collection-derived table clause) in the FROM clause.

You can initialize a typed collection variable by executing an INSERT statement that uses the collection derived table syntax.

You do not need to initialize a typed collection variable before an INSERT or UPDATE because Informix® ESQL/C has a

description of the collection variable.

Suppose, for example, that you create the tab_list and tab_set tables with the statements in the following figure.

Figure 45. Sample tables with collection columns

EXEC SQL create table tab_list
 (list_col list(smallint not null));
EXEC SQL create table tab_set
(
 id_col integer,
 set_col set(integer not null)
);

The following code fragment accesses the set_col column with a typed collection host variable called a_set:

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col into :a_set from tab_set
 where id_col = 1234;

When you use a typed collection host variable, the description of the collection column (the collection type and the element

type) is compatible with the corresponding description of the typed collection host variable. If the data types do not match,

the database server will do a cast if it can. The SELECT statement in the preceding code fragment successfully retrieves

the set_col column because the a_set host variable has the same collection type (SET) and element type (INTEGER) as the

set_col column.

The following SELECT statement succeeds because the database server casts list_col column to a set in a_set host variable

and discards any duplicates:

Chapter 1. ESQL/C Guide

/* This SELECT generates an error */
EXEC SQL select list_col into :a_set from tab_list;

You can select any type of collection into an untyped collection host variable. The following code fragment uses an untyped

collection host variable to access the list_col and set_col columns that Figure 45: Sample tables with collection columns on

page 214 defines:

EXEC SQL BEGIN DECLARE SECTION;
 client collection a_collection;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_collection;
EXEC SQL select set_col into :a_collection
 from tab_set
 where id_col = 1234;
⋮;

EXEC SQL select list_col into :a_collection
 from tab_list
 where list{6} in (list_col);

Both SELECT statements in this code fragment can successfully retrieve collection columns into the a_collection host

variable.

After you have initialized the collection host variable, you can use the collection-derived table clause to select, update, or

delete existing elements in the collection or to insert additional elements into the collection.

Insert elements into a collection variable

To insert one or more elements into a collection variable, use the INSERT statement with the collection-derived table clause

after the INTO keyword. The collection- derived table clause identifies the collection variable in which to insert the elements.

Associate the INSERT statement and the collection-derived table clause with a cursor to insert more than one element into a

collection variable.

Restriction: You cannot use expressions in the VALUES clause and you cannot use a WHERE clause.

Insert one element
The INSERT statement and the collection-derived table clause allow you to insert one element into a collection.

IBM® Informix® ESQL/C inserts the values that the VALUES clause specifies into the collection variable that the collection-

derived table clause specifies.

215

HCL Informix 14.10 - ESQL/C Programmer’s Guide

216

Tip: When you insert elements into a client-side collection variable, you cannot specify a SELECT, an EXECUTE

FUNCTION, or an EXECUTE PROCEDURE statement in the VALUES clause of the INSERT.

Insert elements into SET and MULTISET collections

For SET and MULTISET collections, the position of the new element is undefined, because the elements of these collections

do not have ordered positions. Suppose the table readings has the following declaration:

CREATE TABLE readings
(
 dataset_id INT8,
 time_dataset MULTISET(INT8 NOT NULL)
);

To access the time_dataset column, the typed IBM® Informix® ESQL/C host variable time_vals has the following

declaration:

EXEC SQL BEGIN DECLARE SECTION;
 client collection multiset(int8 not null) time_vals;
 ifx_int8_t an_int8;
EXEC SQL END DECLARE SECTION;

The following INSERT statement adds a new MULTISET element of 1,423,231 to time_vals:

EXEC SQL allocate collection :time_vals;
EXEC SQL select time_dataset into :time_vals
 from readings
 where dataset_id = 1356;
ifx_int8cvint(1423231, &an_int8);
EXEC SQL insert into table(:time_vals) values (:an_int8);

For more information about the ifx_int8cvint() function and the INT8 data type, see Numeric data types on page 107.

Insert elements into LIST collections

LIST collections have elements that have ordered positions. If the collection is of type LIST, you can use the AT clause of the

INSERT statement to specify the position in the list at which you want to add the new element. Suppose the table rankings

has the following declaration:

CREATE TABLE rankings
(
 item_id INT8,
 item_rankings LIST(INTEGER NOT NULL)
);

To access the item_rankings column, the typed IBM® Informix® ESQL/C host variable rankings has the following

declaration:

EXEC SQL BEGIN DECLARE SECTION;
 client collection list(integer not null) rankings;
 int an_int;
EXEC SQL END DECLARE SECTION;

Chapter 1. ESQL/C Guide

The following INSERT statement adds a new list element of 9 as the new third element of rankings:

EXEC SQL allocate collection :rankings;
EXEC SQL select rank_col into :rankings from results;
an_int = 9;
EXEC SQL insert at 3 into table(:rankings) values (:an_int);

Suppose that before this insert, rankings contained the elements {1,8,4,5,2}. After this insert, this variable contains the

elements {1,8,9,4,5,2}.

If you do not specify the AT clause, INSERT adds new elements at the end of a LIST collection. For more information about

the AT clause, see the description of the INSERT statement in the HCL® Informix® Guide to SQL: Syntax.

Inserting more than one element
An insert cursor that includes an INSERT statement with the collection-derived table clause allows you to insert many

elements into a collection variable.

About this task

To insert elements, follow these steps:

1. Create a client collection variable in your IBM® Informix® ESQL/C program.

For more information, see Declaring collection variables on page 206 and Manage memory for collections on

page 211.

2. Declare the insert cursor for the collection variable with the DECLARE statement and open the cursor with the OPEN

statement.

3. Put the element or elements into the collection variable with the PUT statement and the FROM clause.

4. Close the insert cursor with the CLOSE statement, and if you no longer need the cursor, free it with the FREE

statement.

5. After the collection variable contains all the elements, you then use the UPDATE statement or the INSERT statement

on a table name to save the contents of the collection variable in a collection column (SET, MULTISET, or LIST).

For more information, see Operate on a collection column on page 233.

Results

Tip: Instead of an insert cursor, you can use an INSERT statement to insert elements one at a time into a collection

variable. However, an insert cursor is more efficient for large insertions.

For more information, see Insert one element on page 215.

For sample code that inserts several elements into a collection variable, see Figure 46: Insertion of many elements into a

collection host variable on page 220.

217

HCL Informix 14.10 - ESQL/C Programmer’s Guide

218

Declare an insert cursor for a collection variable
An insert cursor allows you to insert one or more elements in the collection.

To declare an insert cursor for a collection variable, include the collection-derived table clause in the INSERT statement that

you associate with the cursor. The insert cursor for a collection variable has the following restrictions:

• It must be a sequential cursor; the DECLARE statement cannot specify the SCROLL keyword.

• It cannot be a hold cursor; the DECLARE statement cannot specify the WITH HOLD cursor characteristic.

If you need to use input parameters, you must prepare the INSERT statement and specify the prepared statement identifier in

the DECLARE statement.

You can use input parameters to specify the values in the VALUES clause of the INSERT statement.

The following DECLARE statement declares the list_curs insert cursor for the a_list variable:

EXEC SQL prepare ins_stmt from
 'insert into table values';
EXEC SQL declare list_curs cursor for ins_stmt;
EXEC SQL open list_curs using :a_list;

You can then use the PUT statement to specify the values to insert. For a code fragment that includes this statement, see

Figure 46: Insertion of many elements into a collection host variable on page 220.

Important: Whenever you use a question mark (?) in a PREPARE statement for a collection host variable in a

collection-derived table, if you execute a DESCRIBE statement you must execute it after an OPEN statement. Until the

OPEN statement, IBM® Informix® ESQL/C does not know what the collection row looks like.

• The name of the collection variable in the collection-derived table clause

The following DECLARE statement declares the list_curs2 insert cursor for the a_list variable:

EXEC SQL prepare ins_stmt2 from
 'insert into table values';
EXEC SQL declare list_curs2 cursor for ins_stmt2;
EXEC SQL open list_curs2 using :a_list;
while (1)
 {
 EXEC SQL put list_curs2 from :an_element;

⋮;

 }

The USING clause of the OPEN statement specifies the name of the collection variable. You can then use the PUT

statement to specify the values to insert.

After you declare the insert cursor, you can open it with the OPEN statement. You can insert elements into the collection

variable once the associated insert cursor is open.

Chapter 1. ESQL/C Guide

Put elements into the insert cursor
To put elements, one at a time, into the insert cursor, use the PUT statement and the FROM clause.

The PUT statement identifies the insert cursor that is associated with the collection variable. The FROM clause identifies the

element value to be inserted into the cursor. The data type of any host variable in the FROM clause must be compatible with

the element type of the collection.

To indicate that the collection element is to be provided later by the FROM clause of the PUT statement, use an input

parameter in the VALUES clause of the INSERT statement. You can use the PUT statement with an insert cursor following

either a static DECLARE statement or the PREPARE statement. The following example uses a PUT following a static

DECLARE statement.

EXEC SQL DECLARE list_curs cursor FOR INSERT INTO table
 (:alist);
EXEC SQL open list_curs;
EXEC SQL PUT list_curs from :asmint;

No input parameters can appear in the DECLARE statement.

The following figure contains a code fragment that demonstrates how to insert elements into the collection variable a_list

and then to update the list_col column of the tab_list table (which Figure 45: Sample tables with collection columns on

page 214 defines) with this new collection.

219

HCL Informix 14.10 - ESQL/C Programmer’s Guide

220

Figure 46. Insertion of many elements into a collection host variable

EXEC SQL BEGIN DECLARE SECTION;
 client collection list(smallint not null) a_list;
 int a_smint;
EXEC SQL END DECLARE SECTION;
⋮

EXEC SQL allocate collection :a_list;

/* Step 1: declare the insert cursor on the collection variable */
EXEC SQL prepare ins_stmt from
 'insert into table values';
EXEC SQL declare list_curs cursor for ins_stmt;
EXEC SQL open list_curs using :a_list;

/* Step 2: put the LIST elements into the insert cursor */
for (a_smint=0; a_smint<10; a_smint++)
{
 EXEC SQL put list_curs from :a_smint;
};
/* Step 3: save the insert cursor into the collection variable
EXEC SQL close list_curs;

/* Step 4: save the collection variable into the LIST column */
EXEC SQL insert into tab_list values (:a_list);

/* Step 5: clean up */
EXEC SQL deallocate collection :a_list;
EXEC SQL free ins_stmt;
EXEC SQL free list_curs;

In Figure 46: Insertion of many elements into a collection host variable on page 220, the first statement that accesses the

a_list variable is the OPEN statement. Therefore, in the code, IBM® Informix® ESQL/C must be able to determine the data

type of the a_list variable. Because the a_list host variable is a typed collection variable, Informix® ESQL/C can determine

the data type from the variable declaration. However, if a_list was declared an untyped collection variable, you would need a

SELECT statement before the DECLARE statement executes to return the definition of the associated collection column.

Informix® ESQL/C automatically saves the contents of the insert cursor into the collection variable when you put them into

the insert cursor with the PUT statement.

Free cursor resources

The CLOSE statement explicitly frees resources assigned to the insert cursor. However, the cursor ID still exists, so you can

reopen the cursor with the OPEN statement. The FREE statement explicitly frees the cursor ID. To reuse the cursor, you must

declare the cursor again with the DECLARE statement.

The FLUSH statement does not effect an insert cursor that is associated with a collection variable. For the syntax of the

CLOSE statement, see the HCL® Informix® Guide to SQL: Syntax.

Chapter 1. ESQL/C Guide

Select from a collection variable
The SELECT statement with the collection-derived table clause allows you to select elements from a collection variable.

The collection-derived table clause identifies the collection variable from which to select the elements. The SELECT

statement on a client collection variable (one that has the collection-derived table clause) has the following restrictions:

• The select list of the SELECT cannot contain expressions.

• The select list must be an asterisk (*).

• Column names in the select list must be simple column names.

These columns cannot use the database@server:table.column syntax.

• The following SELECT clauses and options are not allowed: GROUP BY, HAVING, INTO TEMP, ORDER BY, WHERE,

WITH REOPTIMIZATION.

• The FROM clause has no provisions to do a join.

The SELECT statement and the collection-derived table clause allow you to perform the following operations on a collection

variable:

• Select one element from the collection

Use the SELECT statement with the collection-derived table clause.

• Select one row element from the collection.

Use the SELECT statement with the collection-derived table clause and a row variable.

• Select one or more elements into the collection

Associate the SELECT statement and the collection-derived table clause with a cursor to declare a select cursor for

the collection variable.

Select one element
The SELECT statement and the collection-derived table clause allow you to select one element into a collection.

The INTO clause identifies the variable in which to store the element value that is selected from the collection variable. The

data type of the host variable in the INTO clause must be compatible with the element type of the collection.

The following code fragment selects only one element from the set_col column (see Figure 45: Sample tables with collection

columns on page 214) with a typed collection host variable called a_set:

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(integer not null) a_set;
 int an_element, set_size;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col, cardinality(set_col)
 into :a_set, :set_size from tab_set
 where id_col = 3;

221

HCL Informix 14.10 - ESQL/C Programmer’s Guide

222

if (set_size == 1)
 EXEC SQL select * into :an_element from table(:a_set);

Important: Use this form of the SELECT statement when you are sure that the SELECT returns only one element.

IBM® Informix® ESQL/C returns an error if the SELECT returns more than one element. If you do not know the

number of elements in the set or if you know that the set contains more than one element, use a select cursor to

access the elements.

For more information about how to use a select cursor, see Selecting more than one element on page 222.

If the element of the collection is itself a complex type (collection or row type), the collection is a nested collection. For

information about how to use a cursor to select elements from a nested collection, see Select values from a nested

collection on page 230. The following section describes how to use a row variable to select a row element from a

collection.

Select one row element
You can select an entire row element from a collection into a row type host variable.

The INTO clause identifies a row variable in which to store the row element that is selected from the collection variable.

The following code fragment selects one row from the set_col column into the row type host variable a_row:

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(row(a integer) not null) a_set;
 row (a integer) a_row;
EXEC SQL END DECLARE SECTION;

EXEC SQL select set_col into :a_set from tab1
 where id_col = 17;
EXEC SQL select * into :a_row from table(:a_set);

Selecting more than one element
A select cursor that includes a SELECT statement with the collection-derived table clause allows you to select many

elements from a collection variable.

About this task

To select elements, follow these steps:

1. Create a client collection variable in your IBM® Informix® ESQL/C program.

For more information, see Declaring collection variables on page 206 and Manage memory for collections on

page 211.

2. Declare the select cursor for the collection variable with the DECLARE statement and open this cursor with the OPEN

statement.

3. Fetch the element or elements from the collection variable with the FETCH statement and the INTO clause.

Chapter 1. ESQL/C Guide

4. If necessary, perform any updates or deletes on the fetched data and save the modified collection variable in the

collection column.

For more information, see Operate on a collection column on page 233.

5. Close the select cursor with the CLOSE statement, and if you no longer need the cursor, free it with the FREE

statement.

Declare a select cursor for a collection variable

To declare a select cursor for a collection variable, include the collection-derived table clause with the SELECT statement

that you associate with the cursor. The DECLARE for this select cursor has the following restrictions:

• The select cursor is an update cursor.

The DECLARE statement cannot include the FOR READ ONLY clause that specifies the read-only cursor mode.

• The select cursor must be a sequential cursor.

The DECLARE statement cannot specify the SCROLL or WITH HOLD cursor characteristics.

When you declare a select cursor for a collection variable, the collection-derived table clause of the SELECT statement must

contain the name of the collection variable. For example, the following DECLARE statement declares a select cursor for the

collection variable, a_set:

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL declare set_curs cursor for
 select * from table(:a_set);

To select the element or elements from the collection variable, use the FETCH statement with the INTO clause.

If you want to modify the elements of the collection variable, declare the select cursor as an update cursor with the FOR

UPDATE keywords. You can then use the WHERE CURRENT OF clause of the DELETE and UPDATE statements to delete or

update elements of the collection.

Fetch elements from the select cursor
To fetch elements, one at a time, from a collection variable, use the FETCH statement and the INTO clause.

The FETCH statement identifies the select cursor that is associated with the collection variable. The INTO clause identifies

the host variable for the element value that is fetched from the collection variable. The data type of the host variable in the

INTO clause must be compatible with the element type of the collection.

The following figure contains a code fragment that selects all elements from the set_col column (see Figure 45: Sample

tables with collection columns on page 214) into the typed collection host variable called a_set then fetches these

elements, one at a time, from the a_set collection variable.

223

HCL Informix 14.10 - ESQL/C Programmer’s Guide

224

Figure 47. Selection of many elements from a collection host variable

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(integer not null) a_set;
 int an_element, set_size;
EXEC SQL END DECLARE SECTION;
int an_int
⋮

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col, cardinality(set_col)
 into :a_set from tab_set
 from tab_set where id_col = 3;

/* Step 1: declare the select cursor on the host variable */
EXEC SQL declare set_curs cursor for
 select * from table(:a_set);
EXEC SQL open set_curs;

/* Step 2: fetch the SET elements from the select cursor */
for (an_int=0; an_int<set_size; an_int++)
{
 EXEC SQL fetch set_curs into :an_element;

⋮

};
EXEC SQL close set_curs;

/* Step 3: update the SET column with the host variable */
EXEC SQL update tab_list SET set_col = :a_set
 where id_col = 3

EXEC SQL deallocate collection :a_set;
EXEC SQL free set_curs;

Update a collection variable
After you have initialized a collection host variable with a collection column, you can use the UPDATE statement with the

collection-derived table clause to update the elements in the collection. The collection-derived table clause identifies the

collection variable whose elements are to be updated.

The UPDATE statement and the collection-derived table clause allow you to perform the following operations on a collection

variable:

• Update all elements in the collection to the same value.

Use the UPDATE statement (without the WHERE CURRENT OF clause) and specify a derived column name in the SET

clause.

• Update a particular element in the collection.

You must declare an update cursor for the collection variable and use UPDATE with the WHERE CURRENT OF clause.

Chapter 1. ESQL/C Guide

Neither form of the UPDATE statement can include a WHERE clause.

Update all elements

You cannot include a WHERE clause on an UPDATE statement with a collection-derived table clause. Therefore, an UPDATE

statement on a collection variable sets all elements in the collection to the value you specify in the SET clause. No update

cursor is required to update all elements of a collection.

For example, the following UPDATE changes all elements in the a_list IBM® Informix® ESQL/C collection variable to a value

of 16:

EXEC SQL BEGIN DECLARE SECTION;

 client collection list(smallint not null) a_list;

 int an_int;

EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL update table(:a_list) (list_elmt)
 set list_elmt = 16;

In this example, the derived column list_elmt provides an alias to identify an element of the collection in the SET clause.

Updating one element
To update a particular element in a collection, declare an update cursor for the collection host variable.

About this task

An update cursor for a collection variable is a select cursor that was declared with the FOR UPDATE keywords. The update

cursor allows you to sequentially scroll through the elements of the collection and update the current element with the

UPDATE...WHERE CURRENT OF statement.

To update elements, follow these steps:

1. Create a client collection variable in your IBM® Informix® ESQL/C program.

For more information, see Declaring collection variables on page 206 and Manage memory for collections on

page 211.

2. Declare the update cursor for the collection variable with the DECLARE statement and the FOR UPDATE clause; open

this cursor with the OPEN statement.

By default, a select cursor on a collection variable supports updates. For more information about how to declare a

select cursor, see Declare a select cursor for a collection variable on page 223.

3. Fetch the element or elements from the collection variable with the FETCH statement and the INTO clause.

For more information, see Selecting more than one element on page 222.

4. Update the fetched data with the UPDATE statement and the WHERE CURRENT OF clause.

5. Save the modified collection variable in the collection column.

225

HCL Informix 14.10 - ESQL/C Programmer’s Guide

226

For more information, see Operate on a collection column on page 233.

6. Close the update cursor with the CLOSE statement, and if you no longer need the cursor, free it with the FREE

statement.

Results

The application must position the update cursor on the element to be updated and then use UPDATE...WHERE CURRENT OF

to update this value.

The Informix® ESQL/C program in the following figure uses an update cursor to update an element in the collection variable,

a_set, and then to update the set_col column of the tab_set table (see Figure 45: Sample tables with collection columns on

page 214).

Figure 48. Updating one element in a collection host variable

EXEC SQL BEGIN DECLARE SECTION;
 int an_element;
 client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col into :a_set from tab_set
 where id_col = 6;

EXEC SQL declare set_curs cursor for
 select * from table(:a_set)
 for update;

EXEC SQL open set_curs;
while (SQLCODE != SQLNOTFOUND)
 {
 EXEC SQL fetch set_curs into :an_element;
 if (an_element = 4)
 {
 EXEC SQL update table(:a_set)(x)
 set x = 10
 where current of set_curs;
 break;
 }
 }

EXEC SQL close set_curs;

EXEC SQL update tab_set set set_col = :a_set
 where id_col = 6;

EXEC SQL deallocate collection :a_set;
EXEC SQL free set_curs;

Specify element values

You can specify any of the following values as elements in a collection variable:

Chapter 1. ESQL/C Guide

• A literal value

You can also specify literal values directly for a collection column without first using a collection variable. For more

information, see Insert into and update a collection column on page 234.

• The Informix® ESQL/C host variable

The host variable must contain a value whose data type is compatible with the element type of the collection.

You cannot include complex expressions directly to specify values.

For information about how to insert elements into a collection variable, see Insert elements into a collection variable on

page 215. For information about how to update elements in a collection variable, see Update a collection variable on

page 224. The following sections describe the values you can assign to an element in a collection variable.

Literal values as elements
You can use a literal value to specify an element of a collection variable. The literal values must have a data type that is

compatible with the element type of the collection.

For example, the following INSERT statement inserts a literal integer into a SET(INTEGER NOT NULL) host variable called

a_set:

EXEC SQL insert into table(:a_set) values (6);

The following UPDATE statement uses a derived column name (an_element) to update all elements of the a_set collection

variable with the literal value of 19:

EXEC SQL update table(:a_set) (an_element)
 set an_element = 19;

The following INSERT statement inserts a quoted string into a LIST(CHAR(5)) host variable called a_set2:

EXEC SQL insert into table(:a_set2) values ('abcde');

The following INSERT statement inserts a literal collection into a SET(LIST(INTEGER NOT NULL) host variable called

nested_coll:

EXEC SQL insert into table(:nested_coll)
 values (list{1,2,3});

Tip: The syntax of a literal collection for a collection variable is different from the syntax of a literal collection for a

collection column. A collection variable does not need to be a quoted string.

The following UPDATE statement updates the nested_coll collection variable with a new literal collection value:

EXEC SQL update table(:nested_coll) (a_list)
 set a_list = list{1,2,3};

227

HCL Informix 14.10 - ESQL/C Programmer’s Guide

228

Tip: If you only need to insert or update the collection column with literal values, you do not need to use a collection

host variable. Instead, you can explicitly list the literal values as a literal collection in either the INTO clause of the

INSERT statement or the SET clause of the UPDATE statement.

ESQL/C host variables as elements
You can use the IBM® Informix® ESQL/C host variable to specify an element of a collection variable.

The host variable must be declared with a data type that is compatible with the element type of the collection and must

contain a value that is also compatible. For example, the following INSERT statement uses a host variable to insert a single

value into the same a_set variable as in the preceding example:

an_int = 6;
EXEC SQL insert into table(:a_set) values (:an_int);

To insert multiple values into a collection variable, you can use an INSERT statement for each value or you can declare an

insert cursor and use the PUT statement.

The following UPDATE statement uses a host variable to update all elements in the a_set collection to a value of 4:

an_int = 4;
EXEC SQL update table(:a_set) (an_element)
 set an_element = :an_int;

To update multiple values into a collection variable, you can declare an update cursor and use the WHERE CURRENT OF

clause of the UPDATE statement.

Delete elements from a collection variable
After you have initialized a collection host variable with a collection column, you can use the DELETE statement and the

collection-derived table clause to delete an element of a collection variable. The collection-derived table clause identifies the

collection variable in which to delete the elements.

The DELETE statement and the collection-derived table clause allow you to perform the following operations on a collection

variable:

• Delete all elements in the collection.

Use the DELETE statement (without the WHERE CURRENT OF clause).

• Delete a particular element in the collection.

You must declare an update cursor for the collection variable and use DELETE with the WHERE CURRENT OF clause.

Neither form of the DELETE statement can include a WHERE clause.

Chapter 1. ESQL/C Guide

Delete all elements

You cannot include a WHERE clause on a DELETE statement with a collection-derived table clause. Therefore, a DELETE

statement on a collection variable deletes all elements from the collection. No update cursor is required to delete all

elements of a collection.

For example, the following DELETE removes all elements in the a_list IBM® Informix® ESQL/C collection variable:

EXEC SQL BEGIN DECLARE SECTION;
 client collection list(smallint not null) a_list;
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL delete from table(:a_list);

Delete one element

To delete a particular element in a collection, declare an update cursor for the collection host variable. An update cursor for

a collection variable is a select cursor that was declared with the FOR UPDATE keywords. The update cursor allows you to

sequentially scroll through the elements of the collection and delete the current element with the DELETE...WHERE CURRENT

OF statement.

To delete particular elements, follow the same steps for how to update particular elements (see Updating one element on

page 225). In these steps, you replace the use of the UPDATE...WHERE CURRENT OF statement with the DELETE...WHERE

CURRENT OF statement.

The application must position the update cursor on the element to be deleted and then use DELETE...WHERE CURRENT OF to

delete this value. The following IBM® Informix® ESQL/C code fragment uses an update cursor and a DELETE statement with

a WHERE CURRENT OF clause to delete the element from the set_col column of tab_set (see Figure 45: Sample tables with

collection columns on page 214).

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(integer not null) a_set;
 int an_int, set_size;
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col, cardinality(set_col)
 into :a_set, :set_size
 from tab_set
 where id_col = 6;

EXEC SQL declare set_curs cursor for
 select * from table(:a_set)
 for update;

EXEC SQL open set_curs;
while (i < set_size)
{
 EXEC SQL fetch set_curs into :an_int;
 if (an_int == 4)
 {

229

HCL Informix 14.10 - ESQL/C Programmer’s Guide

230

 EXEC SQL delete from table(:a_set)
 where current of set_curs;
 break;
 }
 i++;
}
EXEC SQL close set_curs;
EXEC SQL free set_curs;

EXEC SQL update tab_set set set_col = :a_set
 where id_col = 6;

EXEC SQL deallocate collection :a_set;

Suppose that in the row with an id_col value of 6, the set_col column contains the values {1,8,4,5,2} before this code fragment

executes. After the DELETE...WHERE CURRENT OF statement, this collection variable contains the elements {1,8,5,2}. The

UPDATE statement at the end of this code fragment saves the modified collection into the set_col column of the database.

Without this UPDATE statement, the collection column never has element 4 deleted.

Access a nested collection

HCL Informix® supports nested collections as a column type. A nested collection is a collection column whose element type

is another collection. For example, the code fragment in the following figure creates the tab_setlist table whose column is a

nested collection.

Figure 49. Sample column with nested collection

EXEC SQL create table tab_setlist
 (setlist_col set(list(integer not null));

The setlist_col column is a set, each element of which is a list. This nested collection resembles a two-dimensional array

with a y-axis of set elements and an x-axis of list elements.

Select values from a nested collection
To select values from a nested collection, you must declare a collection variable and a select cursor for each level of

collection.

The following code fragment uses the nested collection variable, nested_coll and the collection variable list_coll to select

the lowest-level elements in the nested-collection column, setlist_col.

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(list(integer not null) not null) nested_coll;
 client collection list(integer not null) list_coll;
 int an_element;
EXEC SQL END DECLARE SECTION;
int num_elements = 1;
int an_int;
int keep_fetching = 1;
⋮

EXEC SQL allocate collection :nested_coll;
EXEC SQL allocate collection :list_coll;

Chapter 1. ESQL/C Guide

/* Step 1: declare the select cursor on the SET collection variable */
EXEC SQL declare set_curs2 cursor for
 select * from table(:nested_coll);

/* Step 2: declare the select cursor on the LIST collection variable */
EXEC SQL declare list_curs2 cursor for
 select * from table(:list_coll);

/* Step 3: open the SET cursor */
EXEC SQL open set_curs2;

while (keep_fetching)
 {

/* Step 4: fetch the SET elements into the SET insert cursor */
 EXEC SQL fetch set_curs2 into :list_coll;

/* Open the LIST cursor */
 EXEC SQL open list_curs2;

/* Step 5: put the LIST elements into the LIST insert cursor */
 for (an_int=0; an_int<10; an_int++)
 {
 EXEC SQL fetch list_curs2 into :an_element;

⋮

 };
 EXEC SQL close list_curs2;
 num_elements++;

 if (done_fetching(num_elements))
 {
 EXEC SQL close set_curs2;
 keep_fetching = 0;
 }
 };
EXEC SQL free set_curs2;
EXEC SQL free list_curs2;

EXEC SQL deallocate collection :nested_coll;
EXEC SQL deallocate collection :list_coll;:

Insert values into a nested collection
To insert literal values into a collection variable for a nested column, you specify the literal collection for the element type.

You do not need to specify the constructor keyword for the actual collection type. The following typed collection host

variable can access the setlist_col column of the tab_setlist table:

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(list(integer not null) not null)
 nested_coll;
EXEC SQL END DECLARE SECTION;

231

HCL Informix 14.10 - ESQL/C Programmer’s Guide

232

EXEC SQL allocate collection nested_coll;

The following code fragment inserts literal values into the nested_coll collection variable and then updates the setlist_col

column (which Figure 49: Sample column with nested collection on page 230 defines):

EXEC SQL insert into table(:nested_coll)
 values (list{1,2,3,4});
EXEC SQL insert into tab_setlist values (:nested_coll);

To insert non-literal values into a nested collection, you must declare a collection variable and an insert cursor for each

level of collection. For example, the following code fragment uses the nested collection variable, nested_coll, to insert new

elements into the nested-collection column, setlist_col.

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(list(integer not null) not null) nested_coll;
 client collection list(integer not null) list_coll;
 int an_element;
EXEC SQL END DECLARE SECTION;
int num_elements = 1;
int keep_adding = 1;
int an_int;
⋮

EXEC SQL allocate collection :nested_coll;
EXEC SQL allocate collection :list_coll;

/* Step 1: declare the insert cursor on the SET collection variable */
EXEC SQL declare set_curs cursor for
 insert into table(:nested_coll) values;

/* Step 2: declare the insert cursor on the LIST collection variable */
EXEC SQL declare list_curs cursor for
 insert into table(:list_coll) values;

/* Step 3: open the SET cursor */
EXEC SQL open set_curs;

while (keep_adding)
 {

/* Step 4: open the LIST cursor */
 SQL open list_curs;

/* Step 5: put the LIST elements into the LIST insert cursor */
 for (an_int=0; an_int<10; an_int++)
 {
 an_element = an_int * num_elements;
 EXEC SQL put list_curs from :an_element;

⋮

 };
 EXEC SQL close list_curs;
 num_elements++;

Chapter 1. ESQL/C Guide

/* Step 6: put the SET elements into the SET insert cursor */
 EXEC SQL put set_curs from :list_coll;
 if (done_adding(num_elements)
 {
 EXEC SQL close set_curs;
 keep_adding = 0;
 }
 };
EXEC SQL free set_curs;
EXEC SQL free list_curs;

/* Step 7: insert the nested SET column with the host variable */
EXEC SQL insert into tab_setlist values (:nested_coll);

EXEC SQL deallocate collection :nested_coll;
EXEC SQL deallocate collection :list_coll;

Operate on a collection column

The collection variable stores the elements of the collection. However, it has no intrinsic connection with a database column.

You must use an INSERT or UPDATE statement to explicitly save the contents of the collection variable into the collection

column.

You can use the SELECT, UPDATE, INSERT, and DELETE statements to access a collection column (SET, MULTISET, or LIST),

as follows:

• The SELECT statement fetches all elements from a collection column.

• The INSERT statement inserts a new collection into a collection column.

Use the INSERT statement on a table or view name and specify the collection variable in the VALUES clause.

Figure 46: Insertion of many elements into a collection host variable on page 220 shows an INSERT statement that

saves the contents of a collection variable in a collection column.

• The UPDATE statement updates the entire collection in a collection column with new values.

Use an UPDATE statement on a table or view name and specify the collection variable in the SET clause.

Figure 48: Updating one element in a collection host variable on page 226 shows an UPDATE statement that saves

the contents of a collection variable in a collection column.

For more information about how to use these statements with collection columns, see the HCL® Informix® Guide to SQL:

Tutorial.

Select from a collection column

To select all elements in a collection column, specify the collection column in the select list of the SELECT statement. If you

put a collection host variable in the INTO clause of the SELECT statement, you can access these elements from the IBM®

Informix® ESQL/C application. For more information, see Initialize a collection variable on page 214. For an example that

uses a collection variable to select and display the elements of a collection, see The collect.ec program on page 419.

233

HCL Informix 14.10 - ESQL/C Programmer’s Guide

234

Insert into and update a collection column

The INSERT and UPDATE statements support collection columns as follows:

• To insert a collection of elements into an empty collection column, specify the new elements in the VALUES clause of

the INSERT statement.

• To update the entire collection in a collection column, specify the new elements in the SET clause of the UPDATE

statement. The UPDATE statement must also specify a derived column name to create an identifier for the element.

You then use this derived column name in the SET clause to identify where to assign the new element values.

In the VALUES clause of an INSERT statement or the SET clause of an UPDATE statement, the element values can be in any

of the following formats:

• The IBM® Informix® ESQL/C collection host variable

• A literal collection value

To represent literal values for a collection column, you specify a literal-collection value. You create a literal-collection value,

introduce the value with the SET, MULTISET, or LIST keyword and provide the field values in a comma-separated list that

is enclosed in braces. You surround the entire literal-collection value with quotes (double or single). The following INSERT

statement inserts the literal collection of SET {7, 12, 59, 4} into the set_col column in the tab_set table (that Initialize a

collection variable on page 214 defines):

EXEC SQL insert into tab_set values
(
 5, 'set{7, 12, 59, 4}'
);

The UPDATE statement in the following figure overwrites the SET values that the previous INSERT added to the tab_set table.

Figure 50. Updating a collection column

EXEC SQL update tab_set
 set set_col = ("list{1,2,3,4}")
 where id_col = 5;

Important: If you omit the WHERE clause, the UPDATE statement in Figure 50: Updating a collection column on

page 234 updates the set_col column in all rows of the tab_set table.

If any character value appears in this literal-collection value, it too must be enclosed in quotes; this condition creates nested

quotes. For example, for column col1 of type SET(CHAR(5), a literal value can be expressed as follows:

'SET{"abcde"}'

To specify nested quotes in an SQL statement in the Informix® ESQL/C program, you must escape every double quotation

mark when it appears in a quotation mark string. The following INSERT statement shows how to use escape characters for

inner double quotation marks:

EXEC SQL insert into (col1) tab1
 values ('SET{\"abcde\"}');

Chapter 1. ESQL/C Guide

When you embed a double-quoted string inside another double-quoted string, you do not need to escape the inner-most

quotation marks, as the following INSERT statement shows:

EXEC SQL insert into tabx
 values (1, "set{""row(12345)""}");

For more information about the syntax of literal values for collection variables, see Literal values as elements on page 227.

For more information about the syntax of literal-collection values for collection columns, see the Literal Collection segment

in the HCL® Informix® Guide to SQL: Syntax.

If the collection or row type is nested, that is, if it contains another collection or row type as a member, the inner collection

or row does not need to be enclosed in quotes. For example, for column col2 whose data type is LIST(ROW(a INTEGER, b

SMALLINT) NOT NULL), you can express the literal value as follows:

'LIST{ROW(80, 3)}'

Delete an entire collection
To delete the entire collection in a collection column you can use the UPDATE statement to set the collection to empty.

The UPDATE statement in the following example effectively deletes the entire collection in the set_col column of the tab_set

table for the row in which id_col equals 5.

EXEC SQL create table tab_set
(
 id_col integer,
 set_col set(integer not null)
);
EXEC SQL update tab_set set set_col = set{}
 where id_col = 5;

The same UPDATE statement without the WHERE clause, as shown in the following example, would set the set_col column

to empty for all rows in the tab_set table.

EXEC SQL update tab_set set set_col = set{};

Access row types

IBM® Informix® ESQL/C supports the SQL row types with the Informix® ESQL/C row type host variable. A row type is a

complex data type that contains one or more members called fields. Each field has a name and a data type associated with

it.

HCL Informix® supports the following two kinds of row types:

• A named row type has a unique name that identifies to a group of fields.

The named row type is a template for a row definition. You create a named row type with the CREATE ROW TYPE

statement. You can then use a named row type as follows:

◦ In a column definition of a CREATE TABLE statement to assign the data type for a column in the database

◦ In the OF TYPE clause of the CREATE TABLE statement to create a typed table

235

HCL Informix 14.10 - ESQL/C Programmer’s Guide

236

• An unnamed row type uses the ROW constructor to define fields.

You can use a particular unnamed row type as the data type of one column in the database. You create an unnamed

row type with the ROW constructor in the column definition of a CREATE TABLE statement.

For more information about row types, see the CREATE ROW TYPE statement in the HCL® Informix® Guide to SQL: Syntax

and the HCL® Informix® Guide to SQL: Reference.

To access a column in a table that has a row type as its data type, perform the following steps:

1. Declare a row host variable.

2. Allocate memory for the row host variable with the ALLOCATE ROW statement.

3. Perform any select or update operations on the row host variable.

4. Save the contents of the row host variable in the row-type column.

Declare row variables

To declare a row host variable, use the following syntax.

(explicit id) row ['named row type'] [(field namefield type)] variable name ;

Element Purpose Restrictions SQL syntax

field name Name of a field in the row

variable

Must match the corresponding

field name in any associated

row-type column.

Identifier segment in the HCL®

Informix® Guide to SQL: Syntax

field type Data type of the field name field

in the row variable

Can be any data type except

SERIAL, SERIAL8, BIGSERIAL,

TEXT, or BYTE.

Data Type segment in the HCL®

Informix® Guide to SQL: Syntax

named row type Name of the named row type to

assign to the row variable

Named row type must be defined

in the database.

Identifier segment in the HCL®

Informix® Guide to SQL: Syntax

variable name Name of the ESQL/C variable to

declare as a row variable

Name must conform to

language-specific rules for

variable names.

Typed and untyped row variables

IBM® Informix® ESQL/C supports the following two row variables:

• A typed row variable specifies the names and data types of the fields in the row.

• An untyped row variable does not specify the field names or the field types for the row.

Informix® ESQL/C handles row variables as client-side collection variables.

Chapter 1. ESQL/C Guide

The typed row variable
A typed row variable specifies a field list, which contains the name and data type of each field in the row.

The following figure shows declarations for three typed row variables.

Figure 51. Sample typed row variables

EXEC SQL BEGIN DECLARE SECTION;
 row (circle_vals circle_t, circle_id integer) mycircle;
 row (a char(20),
 b set(integer not null),
 c decimal(10,2)) row2;
 row (x integer,
 y integer,
 length integer,
 width integer) myrect;
EXEC SQL END DECLARE SECTION;

Typed row variables can contain fields with the following data types:

• Any built-in data type (such as INTEGER, CHAR, BOOLEAN, and FLOAT) except BYTE, TEXT, SERIAL, or SERIAL8.

• Collection data types, such as SET and LIST

• Row types, named or unnamed

• Opaque data types

When you specify the type of a field in the row variable, use SQL data types, not IBM® Informix® ESQL/C data types. For

example, to declare a row variable with a field that holds small integers, use the SQL SMALLINT data type, not the Informix®

ESQL/C int data type. Similarly, to declare a field whose values are character strings, use the SQL syntax for a CHAR column,

not the C syntax for char variables. For example, the following declaration of the row_var host variable contains a field of

small integers and a character field:

row (
 smint_fld smallint,
 char_fld char(20)
) row_var;

Use a typed row variable when you know the exact data type of the row-type column that you store in the row variable. Match

the declaration of a typed row variable exactly with the data type of the row-type column. You can use this row variable

directly in SQL statements such as INSERT, DELETE, or UPDATE. You can also use it in the collection-derived table clause.

You can declare several row variables in a single declaration line. However, all variables must have the same field types, as

the following declaration shows:

EXEC SQL BEGIN DECLARE SECTION;
 row (x integer, y integer) typed_row1, typed_row2;
EXEC SQL END DECLARE SECTION;

If you do not know the exact data type of the row-type column you want to access, use an untyped row variable.

237

HCL Informix 14.10 - ESQL/C Programmer’s Guide

238

The untyped row variable

The definition of an untyped row variable specifies only the row keyword and a name. The following lines declare three

untyped row variables:

EXEC SQL BEGIN DECLARE SECTION;
 row row1, row2;
 row rectangle1;
EXEC SQL END DECLARE SECTION;

The advantage of an untyped row host variable is that it provides more flexibility in row definition. For an untyped row

variable, you do not have to know the definition of the row-type column at compile time. Instead, you obtain, at run time, a

description of the row from a row-type column.

To obtain this description at run time, execute a SELECT statement that retrieves the row-type column into the untyped row

variable. When the database server executes the SELECT statement, it returns the data type information for the row-type

column (the types of the fields in the row) to the client application.

For example, suppose the a_row host variable is declared as an untyped row variable, as follows:

EXEC SQL BEGIN DECLARE SECTION;
 row a_row;
EXEC SQL END DECLARE SECTION;

The following code fragment uses a SELECT statement to initialize the a_row variable with data type information before it

uses the row variable in an UPDATE statement:

EXEC SQL allocate row :a_row;

/* obtain the data-type information */
EXEC SQL select row_col into :a_row from tab_row;

/* update row values in the untyped row variable */
EXEC SQL update table(:a_row) set fld1 = 3;

The field name fld1, which refers to a field of :a_row, comes from the definition of the row column in the tab_row table.

For more information about the ALLOCATE ROW statement, see Manage memory for rows on page 241.

You can use the same untyped row variable to successively store different row types, but you must select the associated

row-type column into the row variable for each new row type.

Named row types
A named row type associates a name with the row structure. For a database, you create a named row type with the CREATE

ROW TYPE statement.

If the database contains more than one row type with the same structure but with distinctly different names, the database

server cannot properly enforce structural equivalence when it compares named row types. To resolve this ambiguity, specify

a row-type name in the declaration of the row variable.

A named IBM® Informix® ESQL/C row variable can be typed or untyped.

Chapter 1. ESQL/C Guide

The Informix® ESQL/C preprocessor does not check the validity of a row-type name and Informix® ESQL/C does not use this

name at run time. Informix® ESQL/C just sends this name to the database server to provide information for type resolution.

Therefore, Informix® ESQL/C treats the a_row variable in the following declaration as an untyped row variable even though a

row-type name is specified:

EXEC SQL BEGIN DECLARE SECTION;
 row 'address_t' a_row;
EXEC SQL END DECLARE SECTION;

If you specify both the row-type name and a row structure in the declaration (a typed named row variable), the row-type name

overrides the structure. For example, suppose the database contains the following definition of the address_t named row

type:

CREATE ROW TYPE address_t
(
 line1 char(20),
 line2 char(20),
 city char(20),
 state char(2),
 zipcode integer
);

In the following declaration, the another_row host variable has line1 and line2 fields of type CHAR(20) (from the address_t

row type:), not CHAR(10) as the declaration specifies

EXEC SQL BEGIN DECLARE SECTION;
 row 'address_t' (line1 char(10), line2 char(10),
 city char(20), state char(2), zipcode integer) another_row;
EXEC SQL END DECLARE SECTION;

In a collection-derived table

You cannot specify a named row type to declare a row variable that you use in a collection-derived table. IBM® Informix®

ESQL/C does not have information about the named row type, only the database server does. For example, suppose your

database has a named row type, r1, and a table, tab1, that are defined as follows:

CREATE ROW TYPE r1 (i integer);

CREATE TABLE tab1
(
 nt_col INTEGER,
 row_col r1
);

To access this column, suppose you declare two row variables, as follows:

EXEC SQL BEGIN DECLARE SECTION;
row (i integer) row1;
row (j r1) row2;
EXEC SQL END DECLARE SECTION;

With these declarations, the following statement succeeds because Informix® ESQL/C has the information it needs about

the structure of row1:

239

HCL Informix 14.10 - ESQL/C Programmer’s Guide

240

EXEC SQL update table(:row1) set i = 31;
checksql("UPDATE Collection Derived Table 1");

The following statement fails; however, because Informix® ESQL/C does not have the necessary information to determine

the correct storage structure of the row2 row variable.

EXEC SQL update table(:row2) set j = :row1;
checksql("UPDATE Collection Derived Table 2");

Similarly, the following statement also fails. In this case, Informix® ESQL/C treats r1 as a user-defined type instead of a

named row type.

EXEC SQL insert into tab1 values (:row2);
checksql("INSERT row variable");

You can get around this restriction in either of the following ways:

• Use the actual data types in the row-variable declarations, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;
row (i integer) row1;
row (j row(i integer)) row2;
EXEC SQL END DECLARE SECTION;

• Declare an untyped row variable and perform a select so that Informix® ESQL/C obtains the data type information

from the database server.

EXEC SQL BEGIN DECLARE SECTION;
row (i integer) row1;
row row2_untyped;
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL select row_col into :row2_untyped from tab1;

For this method to work, at least one row must exist in table tab1.

An UPDATE statement that uses either the row2 or row2_untyped row variable in its collection-derived table clause can now

execute successfully.

Client-side rows

A row variable is sometimes called a client-side row. When you declare a row variable, you must declare the row variable

name, allocate memory, and perform operations on the row.

To access the elements of a row variable, you specify the variable in the collection-derived table clause of a SELECT or

UPDATE statement. When either of these statements contains a collection-derived table clause, IBM® Informix® ESQL/

C performs the select or update operation on the row variable; it does not send these statements to the database server

for execution. For example, Informix® ESQL/C executes the update operation on the row variable, a_row, that the following

UPDATE statement specifies:

EXEC SQL update table(:a_row) set fld1 = 6;

Chapter 1. ESQL/C Guide

To access fields of a row type, you must use the SELECT or UPDATE statements with the collection-derived table clause.

For more information about the collection-derived table clause, see Access a collection on page 204.

Manage memory for rows

After you declare a row variable, IBM® Informix® ESQL/C recognizes the variable name. For typed row variables, Informix®

ESQL/C also recognizes the associated data type. However, Informix® ESQL/C does not automatically allocate or deallocate

memory for row variables. You must explicitly manage memory that is allocated to a row variable. To manage memory for

both typed and untyped row host variables, use the following SQL statements:

• The ALLOCATE ROW statement allocates memory for the specified row variable.

This row variable can be a typed or untyped row. The ALLOCATE ROW statement sets SQLCODE (sqlca.sqlcode) to

zero if the memory allocation was successful and a negative error code if the allocation failed.

• The DEALLOCATE ROW statement deallocates or frees memory for a specified row variable.

After you free the row variable with the DEALLOCATE ROW statement, you can reuse the row variable but you must

allocate memory for it again. You might, for example, use an untyped row variable to store different row types in

succession.

Important: Informix® ESQL/C does not implicitly deallocate memory that you allocate with the ALLOCATE ROW

statement. You must explicitly perform memory deallocation with the DEALLOCATE ROW statement.

The following code fragment declares the a_name host variable as a typed row, allocates memory for this variable, then

deallocates memory for this variable:

EXEC SQL BEGIN DECLARE SECTION;
 row (
 fname char(15),
 mi char(2)
 lname char(15)
) a_name;
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL allocate row :a_name;
⋮;

EXEC SQL deallocate row :a_name;

For syntax information for the ALLOCATE ROW and DEALLOCATE ROW statements, see their descriptions in the HCL®

Informix® Guide to SQL: Syntax.

Operate on a row variable
The SELECT, and UPDATE statements allow you to access a row-type column as a whole.

The IBM® Informix® ESQL/C client application can access individual fields as follows:

241

HCL Informix 14.10 - ESQL/C Programmer’s Guide

242

• Use SQL statements and dot notation to directly select, insert, update, or delete fields in row-type columns of the

database with SQL statements, as long as these operations involve literal values.

Unlike collection columns, the SELECT statement can access individual members of row-type columns. Therefore,

the Informix® ESQL/C client application can directly select or update fields in row-type columns of the database.

• Use a row host variable to perform operations on the row as a whole or on individual fields.

Restriction: You cannot use dot notation in a SELECT statement to access the fields of a nested row in a row

variable.

With a row host variable, you access a row-type column as a collection-derived table. The collection-derived table contains a

single row in which each column is a field. A collection-derived table allows you to decompose a row into its fields and then

access the fields individually.

The application first performs the operations on the fields through the row host variable. After modifications are complete,

the application can save the contents of the row variable into a row-type column of the database.

This section discusses the following topics on how to use a collection-derived table in the Informix® ESQL/C application to

access a row-type column:

• How to use the collection-derived table clause in SQL statements to access a row host variable

• How to initialize a row host variable with a row-type column

• How to select fields from a row host variable

• How to update field values in a row host variable

The collection-derived table clause on row types
The collection-derived table clause allows you to create a collection-derived table from a row-type column.

This clause has the following syntax:

TABLE(:row_var)

The variable row_var is a row host variable. It can be either a typed or untyped row host variable but you must declare it

beforehand.

For more information about the syntax of the collection-derived table clause, see the description of the collection-derived

table segment in the HCL® Informix® Guide to SQL: Syntax.

Access a row variable

You can perform the following operations on the row host variable with the collection-derived table clause:

Chapter 1. ESQL/C Guide

• You can select a field or fields from a row host variable with the collection-derived table clause in the FROM clause of

SELECT statement.

For more information, see Select from a row variable on page 245.

• You can update all or some fields in the row host variable collection-derived table clause after the UPDATE keyword in

an UPDATE statement.

For more information, see Update a row variable on page 247.

The insert and delete operations are not supported on row variables. For more information, see Insert into a row variable on

page 245 and Delete from a row variable on page 247.

Tip: If you only need to insert or update a row-type column with literal values, you do not need to use a row host

variable. Instead, you can explicitly list the literal-row value in either the INTO clause of the INSERT statement or the

SET clause of the UPDATE statement.

For more information, see Insert into and update row-type columns on page 252.

When the row host variable contains the values you want, update the row-type column with the contents of the host variable.

For more information, see Access a typed table on page 250. For more information about the syntax of the collection-

derived table clause, see the description of the collection-derived table segment in the HCL® Informix® Guide to SQL: Syntax.

Distinguish between columns and row variables

When you use the collection-derived table clause with a SELECT or UPDATE statement, IBM® Informix® ESQL/C processes

the statement. It does not send it to the database server. Therefore, some of the syntax checking that the database server

performs is not done on SQL statements that include the collection-derived table clause.

In particular, the Informix® ESQL/C preprocessor cannot distinguish between column names and host variables. Therefore,

when you use the collection-derived table clause with an UPDATE statement to modify a row host variable, the preprocessor

does not check that you correctly specify host variables. You must ensure that you use valid host-variable syntax.

If you omit the host-variable symbol (colon (:) or dollar sign ($)), the preprocessor assumes that the name is a column name.

For example, the following UPDATE statement omits the colon for the clob_ins host variable in the SET clause:

EXEC SQL update table(:named_row1)
 set (int_fld, clob_fld, dollar_fld) =
 (10000000, clob_ins, 110.02);

Initialize a row variable
To perform operations on existing fields in a row-type column, you must first initialize the row variable with the field values.

To perform this initialization, select the existing fields of the row-type column into a row variable with the SELECT statement,

as follows:

243

HCL Informix 14.10 - ESQL/C Programmer’s Guide

244

• Specify the row-column name in the select list of the SELECT statement.

• Specify the row host variable in the INTO clause of the SELECT statement.

• Specify the table or view name, not the collection-derived table clause, in the FROM clause of the SELECT statement.

Suppose you create the tab_unmrow and tab_nmrow tables with the statements in the following figure.

Figure 52. Sample tables with row-type columns

EXEC SQL create table tab_unmrow
(
 area integer,
 rectangle row(
 x integer,
 y integer,
 length integer,
 width integer)
);

EXEC SQL create row type full_name
(
 fname char(15),
 mi char(2),
 lname char(15)
);
EXEC SQL create table tab_nmrow
(
 emp_num integer,
 emp_name full_name
);

The following code fragment initializes a typed row host variable called a_rect with the contents of the rectangle column in

the row whose area column is 1234:

EXEC SQL BEGIN DECLARE SECTION;
 row (
 x integer,
 y integer,
 length integer,
 width integer
) a_rect;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate row :a_rect;
EXEC SQL select rectangle into :a_rect from tab_unmrow
 where area = 1234;

When you use a typed row host variable, the data types of the row-type column (the field types) must be compatible with the

corresponding data types of the typed row host variable. The SELECT statement in the preceding code fragment successfully

retrieves the rectangle column because the a_rect host variable has the same field types as the rectangle column.

The following SELECT statement fails because the data types of the fields in the emp_name column and the a_rect host

variable do not match:

/* This SELECT generates an error */
EXEC SQL select emp_name into :a_rect from tab_nmrow;

Chapter 1. ESQL/C Guide

You can select any row into an untyped row host variable. The following code fragment uses an untyped row host variable to

access the emp_name and rectangle columns that Figure 52: Sample tables with row-type columns on page 244 defines:

EXEC SQL BEGIN DECLARE SECTION;
 row an_untyped_row;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate row :an_untyped_row;
EXEC SQL select rectangle into :an_untyped row
 from tab_unmrow
 where area = 64;
⋮

EXEC SQL select emp_name into :an_untyped_row
 from tab_nmrow
 where row{'Tashi'} in (emp_name.fname);

Both SELECT statements in this code fragment can successfully retrieve row-type columns into the an_untyped_row host

variable. However, IBM® Informix® ESQL/C does not perform type checking on an untyped row host variable because its

elements do not have a predefined data type.

After you have initialized the row host variable, you can use the collection-derived table clause to select or update existing

fields in the row. For more information, see the following sections.

Insert into a row variable

You cannot insert to a row variable by using an INSERT statement. The row variable represents a single table row in the form

of a collection-derived table. Each field in the row type is like a column in this virtual table. Informix® ESQL/C returns an error

if you attempt to insert to a row variable.

You can, however, use the UPDATE statement to insert new field values into a row variable.

Select from a row variable
The SELECT statement and the collection-derived table clause allow you to select a particular field or group of fields in the

row variable.

The INTO clause identifies the host variables that hold the field values selected from the row-type variable. The data type of

the host variable in the INTO clause must be compatible with the field type.

For example, the following figure contains a code fragment that puts the value of the width field (in the row variable myrect)

into the rect_width host variable.

245

HCL Informix 14.10 - ESQL/C Programmer’s Guide

246

Figure 53. Selecting from a row variable

EXEC SQL BEGIN DECLARE SECTION;
 row (x int, y int, length float, width float) myrect;
 double rect_width;
EXEC SQL END DECLARE SECTION;
⋮

EXEC SQL select rect into :myrect from rectangles
 where area = 200;
EXEC SQL select width into :rect_width
 from table(:myrect);

The SELECT statement on a row variable (one that contains a collection-derived table clause) has the following restrictions:

• No expressions are allowed in the select list.

• The select list must be an asterisk (*) if the row contains elements of opaque, distinct, or built-in data types.

• Column names in the select list must be simple column names.

These columns cannot use the database@server:table.column syntax.

• The select list cannot use dot notation to access fields of the row.

• The following SELECT clauses are not allowed: GROUP BY, HAVING, INTO TEMP, ORDER BY, and WHERE.

• The FROM clause has no provisions to do a join.

• Row-type columns cannot be specified in a comparison condition in a WHERE clause.

If the row variable is a nested row, a SELECT statement cannot use dot notation to access the fields of the inner row. Instead,

you must declare a row variable for each row type. The code fragment in the following figure shows how to access the fields

of the inner row in the nested_row host variable.

Figure 54. Sample nested- row variable

EXEC SQL BEGIN DECLARE SECTION;
 row (a int, b row(x int, y int)) nested_row;
 row (x int, y int) inner_row;
 integer x_var, y_var;
EXEC SQL END DECLARE SECTION;

EXEC SQL select row_col into :nested_row from tab_row
 where a = 7;
EXEC SQL select b into :inner_row
 from table(:nested_row);
EXEC SQL select x, y into :x_var, :y_var
 from table(:inner_row);

The following SELECT statement is not valid to access the x and y fields of the nested_row variable because it uses dot

notation:

EXEC SQL select row_col into :nested_row from tab_row
EXEC SQL select b.x, b.y /* invalid syntax */
 into :x_var, :y_var from table(:nested_row);

Chapter 1. ESQL/C Guide

The IBM® Informix® ESQL/C application can use dot notation to access fields of a nested row when a SELECT statement

accesses a database column. For more information, see Select fields of a row column on page 252.

Update a row variable
The UPDATE statement and the collection-derived table clause allow you to update a particular field or group of fields in the

row variable.

You specify the new field values in the SET clause. An UPDATE of a field or fields in a row variable cannot include a WHERE

clause.

For example, the following UPDATE changes the x and y fields in the myrect Informix® ESQL/C row variable:

EXEC SQL BEGIN DECLARE SECTION;
 row (x int, y int, length float, width float) myrect;
 int new_y;
EXEC SQL END DECLARE SECTION;
⋮;

new_y = 4;
EXEC SQL update table(:myrect)
 set x=3, y=:new_y;

You cannot use a row variable in the collection-derived table clause of an INSERT statement. However, you can use the

UPDATE statement and the collection-derived table clause to insert new field values into a row host variable, as long as

you specify a value for every field in the row. For example, the following code fragment inserts new field values into the row

variable myrect and then inserts this row variable into the database:

EXEC SQL update table(:myrect)
 set x=3, y=4, length=12, width=6;
EXEC SQL insert into rectangles
 values (72, :myrect);

Delete from a row variable

A delete operation does not apply to a row variable because a delete normally removes a row from a table. The row variable

represents the row-type value as a single table row in the collection-derived table. Each field in the row type is a column in

this table. You cannot remove this single table row from the collection-derived table. Therefore, the DELETE statement does

not support a row variable in the collection-derived table clause. IBM® Informix® ESQL/C returns an error if you attempt to

perform a DELETE operation on a row variable.

However, you can use the UPDATE statement to delete existing field values in a row variable.

Specify field names

IBM® Informix® ESQL/C is not case sensitive regarding the field names of a row variable. In a SELECT or UPDATE statement,

Informix® ESQL/C always interprets field names of a row variable as lowercase. For example, in the following SELECT

statement, Informix® ESQL/C interprets the fields to select as x and y, even though the SELECT statement specifies them in

uppercase:

EXEC SQL select X, Y from table(:myrect);

247

HCL Informix 14.10 - ESQL/C Programmer’s Guide

248

This behavior is consistent with how the database server handles identifier names in SQL statements. To maintain the case

of a field name, specify the field name as a delimited identifier. That is, surround the field name in double quotation marks

and enable the DELIMIDENT environment variable before you compile the program.

Informix® ESQL/C interprets the fields to select as X and Y (uppercase) in the following SELECT statement (assuming the

DELIMIDENT environment variable is enabled):

EXEC SQL select "X", "Y" from table(:myrect);

For more information about delimited identifiers and the DELIMIDENT environment variable, see SQL identifiers on

page 15.

Host variable field names

If the field names of the row column and the row variable are different, you must specify the field names of the row host

variable. For example, if the last SELECT statement in the following example referenced field names x and y instead of the

field names of a_row, it would generate a runtime error.

EXEC SQL BEGIN DECLARE SECTION;
 row (a integer, b float) a_row;
 int i;
 double f;
EXEC SQL END DECLARE SECTION;

EXEC SQL create table tab (row_fld(x integer, y float));
EXEC SQL insert into tab values (’row(9, 3.34e7)’);
EXEC SQL select * into a_row from tab;
EXEC SQL select a, b into :i, :f from table(:a_row);

Specify field values

You can specify any of the following values for fields in a row variable:

• A literal value

You can also specify literal values directly for a row-type column without first using a row variable.

• A constructed row

You cannot include complex expressions directly to specify field values. However, a constructed row provides

support for expressions as field values.

• An Informix® ESQL/C host variable

Literal values as field values
You can use a literal value to specify a field value for a row variable. The literal values must have a data type that is

compatible with the field type.

For example, the following UPDATE statement specifies a literal integer as a field value for the length field of the myrect

variable. See Update a row variable on page 247 for a description of myrect.

Chapter 1. ESQL/C Guide

EXEC SQL update table(:myrect) set length = 6;

The following UPDATE statement updates the x- and y-coordinate fields of the myrect variable:

EXEC SQL update table(:myrect)
 set (x = 14, y = 6);

The following UPDATE statement updates a ROW(a INTEGER, b CHAR(5)) host variable called a_row2 with a quoted string:

EXEC SQL update table(:a_row2) set b = 'abcde';

The following UPDATE statement updates the nested_row host variable (which Figure 54: Sample nested- row variable on

page 246 defines) with a literal row:

EXEC SQL insert into table(:nested_row)
 values (1, row(2,3));

Important: The syntax of a literal row for a row variable is different from the syntax of a literal row for a row-type

column. A row variable does not need to be a quoted string.

If you only need to insert or update the row-type column with literal values, you can list the literal values as a literal-row value

in the INTO clause of the INSERT statement or the SET clause of the UPDATE statement.

Constructed rows
You can use a constructed row to specify an expression as a field value for a row variable. The constructed expression must

use a row constructor and evaluate to a data type that is compatible with the field type of the field.

Suppose you have a nested-row variable that is declared as follows:

EXEC SQL BEGIN DECLARE SECTION;
 row (fld1 integer, fld2 row(x smallint, y char(5))) a_nested_row;
EXEC SQL END DECLARE SECTION;

The following UPDATE statement uses the ROW constructor to specify expressions in the value for the fld2 field of the

a_nested_row variable:

EXEC SQL update table(:a_nested_row)
 set fld2 = row(:an_int, a_func(:a_strng));

For more information about the syntax of a row constructor, see the Expression segment in the HCL® Informix® Guide to

SQL: Syntax.

ESQL/C host variables as field values
You can use the IBM® Informix® ESQL/C host variable to specify a field value for a row variable.

The host variable must be declared with a data type that is compatible with the data type of the field and must contain a

value that is also compatible. For example, the following UPDATE statement uses a host variable to update a single value

into the a_row variable.

an_int = 6;
EXEC SQL update table(:a_row) set fld1 = :an_int;

249

HCL Informix 14.10 - ESQL/C Programmer’s Guide

250

To insert multiple values into a row variable, you can use an UPDATE statement for each value or you can specify all field

values in a single UPDATE statement:

one_fld = 469;
second_fld = 'dog';
EXEC SQL update table(:a_row)
 set fld1 = :one_fld, fld2 = :second_fld;

The following variation of the UPDATE statement performs the same task as the preceding UPDATE statement:

EXEC SQL update table(:a_row) set (fld1, fld2) =
 (:one_fld, :second_fld);

The following UPDATE statement updates the nested_row variable with a literal field value and a host variable:

EXEC SQL update table(:nested_row)
 set b = row(7, :i);

Access a typed table
You can use a row variable to access the columns of a typed table. A typed table is a table that was created with the OF TYPE

clause of the CREATE TABLE statement. This table obtains the information for its columns from a named row type.

Suppose you create a typed table called names from the full_name named row type that Figure 52: Sample tables with row-

type columns on page 244 defines:

EXEC SQL create table names of type full_name;

You can access a row of the names typed table with a row variable. The following code fragment declares a_name as a typed

row variable and selects a row of the names table into this row variable:

EXEC SQL BEGIN DECLARE SECTION;
 row (
 fname char(15),
 mi char(2)
 lname char(15)
) a_name;
 char last_name[16];
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL allocate row :a_name;
EXEC SQL select name_row into :a_name
 from names name_row
 where lname = 'Haven'
 and fname = 'C. K.'
 and mi = 'D';
EXEC SQL select lname into :last_name from table(:a_name);

The last SELECT statement accesses the lname field value of the :a_name row variable. For more information about typed

tables, see the CREATE TABLE statement in the HCL® Informix® Guide to SQL: Syntax and the HCL® Informix® Guide to SQL:

Tutorial.

The following example illustrates how you can also use an untyped row variable to access a row of an untyped table:

Chapter 1. ESQL/C Guide

EXEC SQL BEGIN DECLARE SECTION;
row untyped_row;
int i;
char s[21];
EXEC SQL END DECLARE SECTION;

EXEC SQL create table tab_untyped(a integer, b char(20));
EXEC SQL insert into tab_untyped(1, "junk");
EXEC SQL select tab_untyped into :untyped_row
 from tab_untyped;
EXEC SQL select a, b into :i, :s from table(:untyped);

Operate on a row-type column

The row variable stores the fields of the row type. The row variable, however, has no intrinsic connection with a database

column. You must use an INSERT or UPDATE statement to explicitly save the contents of the variable into the row type

column.

You can use the SELECT, UPDATE, INSERT, and DELETE statements to access a row-type column (named or unnamed), as

follows:

• The SELECT statement fetches all fields or a particular field from a row-type column.

• The INSERT statement inserts a new row into a row-type column.

• The UPDATE statement updates the entire row in a row-type column with new values.

Use an UPDATE statement on a table or view name and specify the row name in the values clause.

• The DELETE statement deletes from a table a row that contains a row-type column, thus deleting all field values from

the row-type column.

For more information about how to use these statements with row-type columns, see the HCL® Informix® Guide to SQL:

Tutorial.

Select from a row-type column

The SELECT statement allows you to access a row-type column in the following ways:

• Selecting all fields in the row-type column

• Selecting particular fields in the row-type column

Select the entire row-type column

To select all fields in a row-type column, specify the row-type column in the select list of the SELECT statement. To access

these fields from the Informix® ESQL/C application, specify a row host variable in the INTO clause of the SELECT statement.

For more information, see Initialize a row variable on page 243.

251

HCL Informix 14.10 - ESQL/C Programmer’s Guide

252

Select fields of a row column

You can access an individual field in a row-type column with dot notation. Dot notation allows you to qualify an SQL identifier

with another SQL identifier. You separate the identifiers with the period (.) symbol. The following SELECT statement performs

the same task as the two SELECT statements in Figure 53: Selecting from a row variable on page 246:

EXEC SQL select rect.width into :rect_width from rectangles;

For more information about dot notation, see the Column Expression section of the Expression segment in the HCL®

Informix® Guide to SQL: Syntax.

Insert into and update row-type columns

The INSERT and UPDATE statements support row-type columns as follows:

• To insert a new row into a row-type column, specify the new values in the VALUES clause of the INSERT statement.

• To update the entire row-type column, specify the new field values in the SET clause of the UPDATE statement.

In the VALUES clause of an INSERT statement or the SET clause of an UPDATE statement, the field values can be in any of

the following formats:

• The IBM® Informix® ESQL/C row host variable

For more information, see Access a typed table on page 250.

• A constructed row

Constructed rows are described with respect to row variables in Constructed rows on page 249. For information

about the syntax of a constructed row, see the Constructed Row segment in the HCL® Informix® Guide to SQL:

Syntax.

• A literal-row value

For more information about the syntax of a literal-row value, see the Literal Row segment in the HCL® Informix®

Guide to SQL: Syntax.

To represent literal values for a row-type column, you specify a literal-row value. You create a literal-row value or a named or

unnamed row type, introduce the value with the ROW keyword and provide the field values in a comma-separated list that

is enclosed in parentheses. You surround the entire literal-row value with quotes (double or single). The following INSERT

statement inserts the literal row of ROW(0, 0, 4, 5) into the rectangle column in the tab_unmrow table (that Figure 52: Sample

tables with row-type columns on page 244 defines):

EXEC SQL insert into tab_unmrow values
(
 20, "row(0, 0, 4, 5)"
);

The UPDATE statement in the following figure overwrites the SET values that the previous INSERT added to the tab_unmrow

table.

Chapter 1. ESQL/C Guide

Figure 55. Updating a row-type column

EXEC SQL update tab_unmrow
 set rectangle = ("row(1, 3, 4, 5)")
 where area = 20;

Important: If you omit the WHERE clause, the preceding UPDATE statement updates the rectangle column in all rows

of the tab_unmrow table.

If any character value appears in this literal-row value, it too must be enclosed in quotes; this condition creates nested

quotes. For example, a literal value for column row1 of row type ROW(id INTEGER, name CHAR(5), would be:

'ROW(6, "dexter")'

To specify nested quotes in an SQL statement in the Informix® ESQL/C program, you must escape every double quotation

mark when it appears in a quotation mark string. The following two INSERT statements show how to use escape characters

for inner quotes:

EXEC SQL insert into (row1) tab1
 values ('ROW(6, \"dexter\")');

EXEC SQL insert into (row2) tab1
 values ('ROW(1, \"SET{80, 81, 82, 83}\")');

When you embed a double-quoted string inside another double-quoted string, you do not need to escape the inner-most

quotation marks:

EXEC SQL insert into tabx
 values (1, "row(""row(12345)"")");

For more information about the syntax of literal values for row variables, see Literal values as field values on page 248. For

more information about the syntax of literal-row values, see the Literal Row segment in the HCL® Informix® Guide to SQL:

Syntax.

If the row type contains a row type or a collection as a member, the inner row does not need quotes. For example, for column

col2 whose data type is ROW(a INTEGER, b SET (INTEGER)), a literal value would be:

'ROW(1, SET{80, 81, 82, 83})'

Delete an entire row type
To delete all fields in a row-type column, specify the table, view, or synonym name after the FROM keyword of the DELETE

statement and use the WHERE clause to identify the table row or rows that you want to delete.

The following DELETE statement deletes the row in the tab_unmrow table that contains the row type that the UPDATE

statement in Figure 55: Updating a row-type column on page 253 saves:

EXEC SQL delete from tab_unmrow
 where area = 20;

253

HCL Informix 14.10 - ESQL/C Programmer’s Guide

254

Opaque data types
These topics explain how to use the lvarchar, fixed binary, and var binary data types to access an opaque data type from

the IBM® Informix® ESQL/C program. Use these Informix® ESQL/C data types to represent an opaque data type as it is

transferred to and from Informix®.

The information in these topics apply only if you are using HCL Informix® as your database server.

For information about SQL complex data types, see the HCL® Informix® Guide to SQL: Reference.

The SQL opaque data type
An opaque data type is a user-defined data type that can be used in the same way as the HCL Informix® built-in data types.

The opaque data type allows you to define new data types for your database applications.

An opaque data type is fully encapsulated; the database server does not know about the internal format of an opaque data

type. Therefore, the database server cannot make assumptions about how to access a column having an opaque data type.

The database developer defines a data structure that holds the opaque-type information and support functions that tell the

database server how to access this data structure.

For more information about how to create an opaque data type, see the description of the CREATE OPAQUE TYPE statement

in the HCL® Informix® Guide to SQL: Syntax and in HCL® Informix® User-Defined Routines and Data Types Developer's Guide.

You can access the value of an opaque data type from the Informix® ESQL/C application in one of two ways:

• In the external format, as a character string

Transfer of the external format between the client application and database server is supported by the database

server through the input and output support functions of the opaque data type.

• In the internal format, as a data structure in an external programming language (such as C)

Transfer of the internal format between the client application and database server is supported by the database

server through the receive and send support functions of the opaque data type.

The following list shows the Informix® ESQL/C data types you can use to access an opaque data type.

Informix® data type

ESQL/C host variable

External format of an opaque data type

lvarchar host variable

Internal format of an opaque data type

fixed binary host variable

var binary host variable

Chapter 1. ESQL/C Guide

This section uses an opaque data type called circle to demonstrate how Informix® ESQL/C lvarchar and fixed binary host

variables access an opaque data type. This data type includes an x,y coordinate, to represent the center of the circle, and a

radius value. The following figure shows the internal data structures for the circle data type.

Figure 56. Internal data structures for the circle opaque data type

typedef struct
 {
 double x;
 double y;
 } point_t;

typedef struct
 {
 point_t center;
 double radius;
 } circle_t;

The following figure shows the SQL statements that register the circle data type and its input, output, send, and receive

support functions in the database.

Figure 57. Registering the circle opaque data type

CREATE OPAQUE TYPE circle (INTERNALLENGTH = 24,
 ALIGNMENT = 4);

CREATE FUNCTION circle_in(c_in lvarchar) RETURNS circle
 EXTERNAL NAME '/usr/lib/circle.so(circle_input)'
 LANGUAGE C;
CREATE IMPLICIT CAST (lvarchar AS circle WITH circle_in);

CREATE FUNCTION circle_out(c_out circle) RETURNS lvarchar
 EXTERNAL NAME '/usr/lib/circle.so(circle_output)'
 LANGUAGE C;
CREATE IMPLICIT CAST (circle AS lvarchar WITH circle_out);

CREATE FUNCTION circle_rcv(c_rcv sendrcv) RETURNS circle
 EXTERNAL NAME '/usr/lib/circle.so(circle_receive)'
 LANGUAGE C;
CREATE IMPLICIT CAST (sendrcv AS circle WITH circle_rcv);

CREATE FUNCTION circle_snd(c_snd circle) RETURNS sendrcv
 EXTERNAL NAME '/usr/lib/circle.so(circle_send)'
 LANGUAGE C;
CREATE IMPLICIT CAST (circle AS sendrcv WITH circle_snd);

CREATE FUNCTION radius(circle) RETURNS FLOAT
 EXTERNAL NAME '/usr/lib/circle.so'
 LANGUAGE C;

Suppose the input and output functions of the circle data type define the following external format that the following figure

shows.

255

HCL Informix 14.10 - ESQL/C Programmer’s Guide

256

Figure 58. External Format of the circle Opaque data type

The following figure shows the SQL statements that create and insert several rows into a table called circle_tab, which has a

column of type circle.

Figure 59. Creating a column of the circle opaque data type

CREATE TABLE circle_tab (circle_col circle);
INSERT INTO circle_tab VALUES ('(12.00, 16.00, 13.00)');
INSERT INTO circle_tab VALUES ('(6.5, 8.0, 9.0)');

Access the external format of an opaque type
Use the lvarchar data type for operations on an opaque-type column that has an external representation of a character string.

To use the external format of an opaque type in an SQL statement, the opaque data type must have input and output support

functions defined. When the client application uses an lvarchar host variable to transfer data to or from an opaque-type

column, the database server invokes the following support functions of the opaque data type:

• The input support function describes how to transfer the opaque-type data from the lvarchar host variable into the

opaque-type column.

The database server invokes the input support function for operations such as INSERT and UPDATE statements that

send the external format of an opaque type to the database server.

• The output support function describes how to transfer the opaque-type data from the opaque-type column to the

lvarchar host variable.

The database server invokes the output support function for operations such as SELECT and FETCH statements that

send the external format of an opaque type to the client application.

Important: If the CREATE OPAQUE TYPE statement specifies a maxlength limit, that value is the maximum length the

database server stores for the column, regardless of the size of the data sent by the client application. If the length of

the data is more than the maxlength limit, the database server truncates the data and notifies the application.

Follow these steps to transfer the external format of an opaque-type column between the database server and the IBM®

Informix® ESQL/C application:

1. Declare an lvarchar host variable

2. Use the lvarchar host variable in an SQL statement to perform any select, insert, update or delete operations on the

external format of the opaque-type column.

Chapter 1. ESQL/C Guide

Declare lvarchar host variables
Use the lvarchar data type to declare a host variable for the external format of an opaque data type.

The following diagram illustrates the syntax to declare an lvarchar host variable. To declare, use the lvarchar keyword as the

variable data type, as the following syntax shows.

(explicit id) lvarchar [’opaque type ’] { | variable name[variable size] | *variable name } ;

Element Purpose Restrictions SQL syntax

opaque type Name of the opaque data type

whose external format is to be

stored in the lvarchar variable

Must already be defined in the

database

Identifier segment in the HCL®

Informix® Guide to SQL: Syntax

variable name Name of the IBM® Informix®

ESQL/C variable to declare as an

lvarchar variable

Name must conform to

language-specific rules for

variable names.

*variable name Name of an lvarchar pointer

variable for data of unspecified

length

Not equivalent to a C char pointer

(char *). Points to an internal

ESQL/C representation for this

type. You must use the ifx_var()

functions to manipulate data.

For more information, see The

lvarchar pointer and var binary

library functions on page 275.

Name must conform to

language-specific rules for

variable names.

variable size Number of bytes to allocate for

the lvarchar variable

Integer value can be 1 - 32,000

bytes (32 KB).

Tip: To declare an lvarchar host variable for an LVARCHAR column, use the syntax that The lvarchar data type on

page 99 shows.

The following figure shows declarations for four lvarchar variables that hold the external formats of opaque-type columns.

Figure 60. Sample lvarchar host variables for opaque data type

#define CIRCLESZ 20

EXEC SQL BEGIN DECLARE SECTION;
 lvarchar 'shape' a_polygon[100];
 lvarchar 'circle' circle1[CIRCLESZ],
 circle2[CIRCLESZ];
 lvarchar 'circle' *a_crcl_ptr;
EXEC SQL END DECLARE SECTION;

You can declare several lvarchar variables in a single declaration line. However, all variables must have the same opaque

type, as the declarations for circle1 and circle2 in Figure 60: Sample lvarchar host variables for opaque data type on

257

HCL Informix 14.10 - ESQL/C Programmer’s Guide

258

page 257 show. Figure 60: Sample lvarchar host variables for opaque data type on page 257 also shows the declaration

of an lvarchar pointer for the a_crcl_ptr host variable.

An lvarchar host variable of a fixed size

If you do not specify the size of an lvarchar host variable, the size is equivalent to a one-byte C-language char data type.

If you specify a size, the lvarchar host variable is equivalent to a C-language char data type of that size. When you specify

a fixed-size lvarchar host variable, any data beyond the specified size is truncated when the column is fetched. Use an

indicator variable to check for truncation.

Because an lvarchar host variable of a fixed size is equivalent to a C-language char data type, you can use C-language

character string operations to manipulate them.

The lvarchar pointer host variable
The lvarchar pointer host variable is designed for inserting or selecting user-defined or opaque types that can be represented

in a character-string format.

The size of the character-string representation for opaque type columns can vary for each row so that the size of the data

is unknown until the column is fetched into a host variable. The size of the data that an lvarchar pointer host variable

references can range up to 2 GB.

The lvarchar pointer type is not equivalent to a C-language char pointer. Informix® ESQL/C maintains its own internal

representation for the lvarchar pointer type. You must use the ifx_var() functions to manipulate an lvarchar pointer host

variable. The ifx_var() functions can only be used for lvarchar variables declared as pointers and for var binary variables, but

not for lvarchar variables of a fixed size. For a list of the functions that you can use with lvarchar and var binary variables,

see The lvarchar pointer and var binary library functions on page 275.

Because the size of the data in opaque type columns can vary from one row in the table to another, you can not know the

maximum size of the data that the database server will return. When you use an lvarchar pointer host variable, you can either

let Informix® ESQL/C allocate memory to hold the data, based on the size of the data coming from the database server, or

you can allocate the memory yourself. Use the ifx_var_flag() function to specify which method you will use. In either case you

must explicitly free the memory, by using the ifx_var_dealloc() function.

Starting 14.10.xC10, codeset conversion will be done when client locale differs from DB locale when CLVCHARPTRTYPE is

used.

To allocate memory yourself

To specify that you are allocating the memory to store data for an lvarchar host variable you must first call ifx_var_flag(),

giving the address of the lvarchar pointer and setting the flag value to zero (0), as the following example shows:

ifx_var_flag(&mypoly, 0);

Next you must fetch the data into sqlda or a system descriptor structure. You can then use the ifx_var_getllen() function to

obtain the length of the data and use the ifx_var_alloc() function to allocate memory of that size.

Chapter 1. ESQL/C Guide

#include <stdio.h>
exec sql include “polyvar.h" /* includes udt - polygon_type */

main()
{
 exec sql begin declare section;
 lvarchar ‘polygon_type’ *mypoly1
 char *buffer;
 int size, p_id, len;
 exec sql end declare section;

 ifx_var_flag(&mypoly1, 0); /* specifies that appl. will allocate
memory */
 exec sql select poly into :mypoly1 from polygon_tab where p_id = 1;
 if (ifx_var_getlen(&mypoly1) > 0) { /* If select returns valid data
 */
 buffer = (char *)ifx_var_getdata(&mypoly1); /*Access data in
 * mypoly1*/
 printf(“Length of data : %ld \n", (int)ifx_var_getlen(&mypoly));
 ifx_var_dealloc(&mypoly1); /* Always users responsibility to free */
}

The opaque type name

This opaque type name is optional; its presence affects the declaration as follows:

• When you omit opaque type from the lvarchar declaration, the database server attempts to identify the appropriate

support and casting functions to use when it converts between lvarchar and the opaque data type.

You can use the lvarchar host variable to hold data for several different opaque types (as long as the database server

is able to find the appropriate support functions).

• When you specify opaque type in the lvarchar declaration, the database server knows precisely which support and

casting functions to use when it converts between lvarchar and the opaque data type.

Using opaque type can make data conversion more efficient. In this case, however, the lvarchar host variable can hold

data only for the specified opaque type.

In the declaration of an lvarchar host variable, the name of the opaque type must be a quoted string.

Important: Both the quotation mark (') and the double quotation mark (") are valid quote characters in lvarchar

declarations. However, the beginning quote and ending quote characters must match.

The lvarchar host variables

Your IBM® Informix® ESQL/C program must manipulate the external data for an lvarchar host variable. If the length of the

data that come from an opaque type column does not vary, or if you know the maximum length of the data in an opaque type

column, you can use a fixed-size lvarchar host variable. If the size of the data varies from one table row to another, however,

use an lvarchar pointer variable and manipulate the data with the ifx_var() functions.

259

HCL Informix 14.10 - ESQL/C Programmer’s Guide

260

Fixed-size lvarchar host variables

The following figure shows how to use a fixed-size lvarchar host variable to insert and select data in the circle_col column of

the circle_tab table (see Figure 59: Creating a column of the circle opaque data type on page 256).

Figure 61. Accessing the external format of the circle opaque data type

EXEC SQL BEGIN DECLARE SECTION;
 lvarchar 'circle' lv_circle[30];
 char *x_coord;
EXEC SQL END DECLARE SECTION;

/* Insert a new circle_tab row with a literal opaque
 * value */
EXEC SQL insert into circle_tab
 values ('(3.00, 2.00, 11.5)');

/* Insert data into column circle of table circle_tab using an lvarchar host
 * variable */
strcpy(lv_circle, "(1.00, 17.00, 15.25)");
EXEC SQL insert into circle_tab values (:lv_circle);

/* Select column circle in circle_tab from into an lvarchar host variable
 */
EXEC SQL select circle_col into :lv_circle
 from circle_tab
 where radius(circle_col) = 15.25;

Inserting from a fixed-size lvarchar host variable

To insert the data from a fixed-size lvarchar host variable into an opaque-type column, take the following steps, which are

illustrated in Figure 61: Accessing the external format of the circle opaque data type on page 260:

1. Define the fixed-size lvarchar host variable.

The example explicitly reserves 30 bytes for the lv_circle host variable.

2. Put the character string that corresponds to the external format of the opaque data type into the lvarchar host

variable.

When you put data into an lvarchar host variable, you must know the external format of the opaque type. For the

INSERT statement to succeed, the data in the lvarchar host variable lv_circle must conform to the external format of

the opaque data type (which Figure 58: External Format of the circle Opaque data type on page 256 shows).

3. Insert the data that the lvarchar host variable contains into the opaque-type column.

When the database server executes the INSERT statement, it calls the input support function for the circle data type

(circle_in) to translate the external format of the data that the IBM® Informix® ESQL/C client application sent to the

internal format that it stores on disk.

Chapter 1. ESQL/C Guide

Figure 61: Accessing the external format of the circle opaque data type on page 260 also shows an INSERT of literal values

into the circle_col column. Literal values in an INSERT (or UPDATE) statement must also conform to the external format of

the opaque data type.

You can use a fixed-size lvarchar host variable to insert a null value into an opaque-type column with the following steps:

• Set the lvarchar host variable to an empty string.

• Set an indicator variable for the lvarchar host variable to -1.

The following code fragment inserts a null value into the circle_col column with the lv_circle host variable:

EXEC SQL BEGIN DECLARE SECTION;
 lvarchar lv_circle[30];
 int circle_ind;
EXEC SQL END DECLARE SECTION;
⋮;

strcpy(lv_circle, "");
circle_ind = -1;
EXEC SQL insert into circle_tab
 values (:lv_circle:circle_ind)l;

Select into a fixed-size lvarchar host variable

To select data from an opaque type column into a fixed-size lvarchar host variable, the code fragment in Figure 61:

Accessing the external format of the circle opaque data type on page 260 takes the following steps:

1. Selects the data that the circle_col opaque-type column contains into the lv_circle host variable.

When the database server executes the SELECT statement, it calls the output support function for the circle data

type (circle_out) to translate the internal format that it retrieved from disk to the external format that the Informix®

ESQL/C application requests. This SELECT statement also uses a user-defined function called radius (see Figure 57:

Registering the circle opaque data type on page 255) to extract the radius value from the opaque-type column. This

function must be registered with the database server for this SELECT statement to execute successfully.

2. Accesses the circle data from the lvarchar host variable.

After the SELECT statement, the lv_circle host variable contains data in the external format of the circle data type.

When you select a null value from an opaque-type column into an lvarchar host variable, Informix® ESQL/C sets any

accompanying indicator variable to -1.

The lvarchar pointer variables

The following sections illustrate how to insert to and select from an opaque type column with an lvarchar pointer host

variable. The structural representation of the opaque type column that the examples use is referred to as polygon_type, and

is defined in the following lines:

struct {
int no_of_edges; /* No of sides in the polygon */

261

HCL Informix 14.10 - ESQL/C Programmer’s Guide

262

int length[100]; /* Maximum number of edges in this polygon
 is 100 */
int center_x; /* Center x co-ordinate of the polygon */
int center_y; /* Center y co-ordinate of the polygon */
}

The following line illustrates the string representation of this column:

"no_of_edges, length_of_edge 1, . . . length_of_edge n, -1, center_x,
center_y

For information about a using an lvarchar pointer host variable with a FETCH or PUT statement that uses a dynamic SQL

descriptor, see An lvarchar pointer host variable with a descriptor on page 483.

Insert from an lvarchar pointer host variable

The following example code illustrates the steps to insert data from an lvarchar pointer host variable to an opaque type

column. To simplify the example, the code does not check returned values for errors.

#include <stdio.h>
exec sql include polyvar.h/* includes udt - polygon_type */

main()
{
 exec sql begin declare section;
 lvarchar ‘polygon_type’ *mypoly1
 char *buffer;
 int size, p_id, len;
 exec sql end declare section;

 exec sql create table polygon_tab (p_id int, poly polygon_type);
 ifx_var_flag(&mypoly1, 0); /* User does allocation */
 buffer = malloc(50);

 /* String representation of mypoly1 copied into buffer*/
 strcpy(buffer, “5, 10, 20 15, 10, 5, -1, 0, 0);
 size = strlen(buffer);
 ifx_var_alloc(&myploy1, size+1); /* Allocate memory for data in
 * mypoly1 */
 ifx_var_setlen(&myploy1, size); /* Set length of data bufferin
 * mypoly1 */
 ifx_var_setdata(&mypoly1, buffer, size); /* Store data inside mypoly1
 */
 exec sql insert into polygon_tab values (1, :mypoly1);
 ifx_var_setnull(&mypoly1, 1); /* Set data buffer in mypoly1 to NULL
 */
 ifx_var_dealloc(&mypoly1); /* Deallocate the data buffer in mypoly1
 */
 free (buffer);
}

The example code performs the following steps:

1. It declares the lvarchar pointer host variable, *mypoly1.

2. It creates a table that consists of an integer ID column, p_id, and a column of polygons, polygon_type.

Chapter 1. ESQL/C Guide

3. It calls the ifx_var_flag() function to specify that it will allocate memory for the data buffer (flag equals 0).

4. It creates a buffer, copies the string representation of the polygon to it, and sets the size variable to the size of the

buffer.

5. It calls ifx_var_alloc(), ifx_var_setlen(), and ifx_var_setdata() to allocate the data transfer buffer, set the length of the

buffer, and copy the data from the application buffer to the data transfer buffer.

6. It inserts an ID value of 1 and mypoly1 to the polygon_tab table.

Select into an lvarchar pointer host variable

The following example code illustrates the steps to select data from an opaque type column into an lvarchar pointer host

variable. To simplify the example, the code does not check returned values for errors.

#include <stdio.h>
exec sql include “polyvar.h" /* includes udt - polygon_type */

main()
{
 exec sql begin declare section;
 lvarchar ‘polygon_type’ *mypoly1
 char *buffer;
 int size, p_id, len;
 exec sql end declare section;

 ifx_var_flag(&mypoly1, 1); /* ESQL/C run time will do the allocation
 */

 exec sql select poly into :mypoly1 from polygon_tab where p_id = 1;
 if (ifx_var_getlen(&mypoly1) > 0) { /* If select returns valid data
 */
 buffer = (char *)ifx_var_getdata(&mypoly1); /*Access data in
 * mypoly1*/
 printf(“Length of data : %ld \n", (int)ifx_var_getlen(&mypoly));
 printf("Data: %s \n", buffer);
 ifx_var_dealloc(&mypoly1); /* Always users responsibility to free */
}

The example code performs the following steps:

1. It declares the lvarchar pointer host variable, *mypoly1.

2. It calls the ifx_var_flag() function to specify that it will let IBM® Informix® ESQL/C allocate memory for the data

buffer (flag equals 1). Informix® ESQL/C allocates the memory by default if you do not call ifx_var_flag().

3. It selects the column poly into the *mypoly host variable.

4. It calls ifx_var_getdata() to obtain the address of the data buffer, casting the return value to char * and storing the

address in buffer.

5. It calls ifx_var_getlen() to illustrate how to obtain the length of the data that was retrieved.

6. It deallocates the memory that Informix® ESQL/C allocated for *mypoly1.

For an example that uses lvarchar pointers as host variables for selecting from collection columns, see The lvarptr.ec

program on page 428.

263

HCL Informix 14.10 - ESQL/C Programmer’s Guide

264

Access the internal format of an opaque type

You can access the internal or binary format of an opaque data type with the IBM® Informix® ESQL/C host variable in two

ways:

• Use the fixed binary data type to access a fixed-length opaque data type for which you have the C-language data

structure that represents the opaque data type.

A fixed-length opaque data type has a predefined size for its data. This size is equal to the size of the internal data

structure for the opaque data type.

• Use the var binary data type to access a varying-length opaque data type or to access a fixed-length opaque data

type for which you do not have the C-language data structure.

A varying-length data type holds data whose size might vary from row to row or instance to instance.

Both the fixed binary and var binary data types have a one-to-one mapping between their declaration and the internal data

structure of the opaque data type. The database server invokes the following support functions of the opaque data type

when the application transfers data in the fixed binary or var binary host variables:

• The receive support function describes how to transfer the opaque-type data from the fixed binary or var binary host

variable into the opaque-type column.

The database server invokes the receive support function for operations such as INSERT and UPDATE statements

that send the internal format of an opaque type to the database server.

• The send support function describes how to transfer the opaque-type data from the opaque-type column to the fixed

binary or var binary host variable.

The database server invokes the send support function for operations such as SELECT and FETCH statements that

send the internal format of an opaque type to the client application.

Access a fixed-length opaque type
The fixed binary data type allows you to access a fixed-length opaque-type column in its internal format.

Follow these steps to transfer the internal format of a fixed-length opaque-type column between the database server and the

Informix® ESQL/C application:

1. Declare a fixed binary host variable

2. Use the fixed binary host variable in an SQL statement to perform any select, insert, update, or delete operations on

the internal format of the fixed-length opaque-type column.

Declare fixed binary host variables
Use the fixed binary data type to declare host variables that access the internal format of a fixed-length opaque data type.

To declare a fixed binary host variable, use the following syntax.

Chapter 1. ESQL/C Guide

(explicit id) fixed binary [’opaque type ’] structure name variable name ;

Element Purpose Restrictions SQL Syntax

opaque type Name of the fixed-length opaque data

type whose internal format is to be

stored in the fixed binary variable

Must already be defined in the

database.

Identifier segment in the

HCL® Informix® Guide

to SQL: Syntax

structure name Name of the C data structure that

represents the internal format of the

opaque data type

Must be defined in a header (.h) file

that the source file includes. Must

also match the data structure that the

database server uses to represent the

internal format of the opaque type.

Name must conform to

language-specific rules

for structure names.

variable name Name of the ESQL/C variable to

declare as a fixed binary variable

Name must conform to

language-specific rules

for variable names.

Important: A fixed binary host variable is only valid for a column of a fixed-length opaque data type. If the opaque

data type is of varying length, use a var binary host variable. If you do not know the internal data structure of a fixed-

length opaque data type, you must also use a var binary host variable to access it.

To use a fixed binary host variable, you must reference a C data structure that maps the internal data structure of the opaque

data type. You specify this C data structure as the structure name in the fixed binary declaration.

It is suggested that you create a C header file (.h file) for the C data structure that defines a fixed-length opaque data type.

You can then include this header file in each Informix® ESQL/C source file that uses fixed binary host variables to access the

opaque data type.

For example, the following code fragment declares a fixed binary host variable called my_circle for the circle opaque data

type:

#include <circle.h> /* contains definition of circle_t */

EXEC SQL BEGIN DECLARE SECTION;
 fixed binary 'circle' circle_t my_circle;
EXEC SQL END DECLARE SECTION;

In this example, the circle.h header file contains the declaration for the circle_t structure (see Figure 56: Internal data

structures for the circle opaque data type on page 255), which is the internal data structure for the circle opaque type.

The declaration for the my_circle host variable specifies both the name of the opaque data type, circle, and the name of its

internal data structure, circle_t.

The opaque type

When you declare a fixed binary host variable, you must specify the opaque type as a quoted string.

265

HCL Informix 14.10 - ESQL/C Programmer’s Guide

266

Important: Both the quotation mark (') and the double quotation mark (") are valid quote characters. However, the

beginning quote and ending quote characters must match.

The opaque type name is optional; it affects the declaration as follows:

• When you omit opaque type from the fixed binary declaration, the database server attempts to identify the

appropriate support functions to use when it sends the host variable to the database server for storage in the

opaque-type column.

You can use the fixed binary host variable to hold data for several different opaque types (as long as the database

server is able to find the appropriate support functions).

• When you specify opaque type in the fixed binary declaration, the database server knows precisely which support

functions to use to read and write to the opaque-type column.

Using opaque type can make data conversion more efficient. In this case, however, the fixed binary host variable can

hold data only for the specified opaque type data type.

You can declare several fixed binary variables in a single declaration. However, all variables must have the same opaque

type, as the following declaration shows:

#include <shape.h>;

EXEC SQL BEGIN DECLARE SECTION;
 fixed binary 'shape' shape_t square1, square2;
EXEC SQL END DECLARE SECTION;

Fixed binary host variables

Your IBM® Informix® ESQL/C program must handle all manipulation of the internal data structure for the fixed binary host

variable; it must explicitly allocate memory and assign field values.

The following figure shows how to use a fixed binary host variable to insert and select data in the circle_col column of the

circle_tab table (see Figure 59: Creating a column of the circle opaque data type on page 256).

Chapter 1. ESQL/C Guide

Figure 62. Accessing the internal format of the circle opaque data type with a fixed binary host variable

/* Include declaration for circle_t structure */
#include <circle.h>;

EXEC SQL BEGIN DECLARE SECTION;
 fixed binary 'circle' circle_t fbin_circle;
EXEC SQL END DECLARE SECTION;

/* Assign data to members of internal data structure */
fbin_circle.center.x = 1.00;
fbin_circle.center.y = 17.00;
fbin_circle.radius = 15.25;

/* Insert a new circle_tab row with a fixed binary host
 * variable */
EXEC SQL insert into circle_tab values (:fbin_circle);

/* Select a circle_tab row from into a fixed binary
 * host variable */
EXEC SQL select circle_col into :fbin_circle
 from circle_tab
 where radius(circle_col) = 15.25;
if ((fbin_circle.center.x == 1.00) &&
 (fbin_circle.center.y == 17.00))
 printf("coordinates = (%d, %d)\n",
 fbin_circle.center.x, fbin_circle.center.y);

Insert from a fixed binary host variable

To insert the data that a fixed binary host variable contains into an opaque-type column, the code fragment in Figure 62:

Accessing the internal format of the circle opaque data type with a fixed binary host variable on page 267 takes the

following steps:

1. Includes the definition of the internal structure of the circle opaque data type.

The definition of the circle_t internal data structure, which Figure 56: Internal data structures for the circle opaque

data type on page 255 shows, must be available to your IBM® Informix® ESQL/C program. Therefore, the code

fragment includes the circle.h header file, which contains the definition of the circle_t structure.

2. Stores the data for the fixed binary host variable into the internal data structure, circle_t.

The declaration of the fixed binary host variable associates the circle_t internal data structure with the fbin_circle

host variable. The code fragment assigns a value to each member of the circle_t data structure.

3. Inserts the data that the fbin_circle host variable contains into the circle_col opaque-type column.

When the database server executes the INSERT statement, it calls the receive support function for the circle data

type (circle_rcv) to perform any translation necessary between the internal format of the data that the Informix®

ESQL/C client application has sent (circle_t) and the internal format of the circle data type on disk.

267

HCL Informix 14.10 - ESQL/C Programmer’s Guide

268

To insert a null value into an opaque-type column with a fixed binary host variable, set an indicator variable to -1. The

following code fragment inserts a null value into the circle_col column with the fbin_circle host variable:

#include <circle.h>;

EXEC SQL BEGIN DECLARE SECTION;
 fixed binary 'circle' circle_t fbin_circle;
 int circle_ind;
EXEC SQL END DECLARE SECTION;
⋮

circle_ind = -1;
EXEC SQL insert into circle_tab
 values (:fbin_circle:circle_ind);

Select into a fixed binary host variable

To select the data that an opaque-type column contains into a fixed binary host variable, the code fragment in Figure 62:

Accessing the internal format of the circle opaque data type with a fixed binary host variable on page 267 takes the

following steps:

1. Selects the data that the circle_col opaque-type column contains into the fbin_circle host variable.

When the database server executes the SELECT statement, it calls the send support function for circle (circle_snd)

to perform any translation necessary between the internal format that it retrieved from disk and the internal format

that the IBM® Informix® ESQL/C application uses. This SELECT statement also uses a user-defined function called

radius (see Figure 57: Registering the circle opaque data type on page 255) to extract the radius value from the

opaque-type column.

2. Accesses the circle data from the fixed binary host variable.

After the SELECT statement, the fbin_circle host variable contains data in the internal format of the circle data type.

The code fragment obtains the value of the (x,y) coordinate from the members of the circle_t data structure.

When you select a null value from an opaque-type column into a fixed binary host variable, Informix® ESQL/C sets any

accompanying indicator variable to -1.

Access a varying-length opaque type

The var binary data type allows you to access the internal format of either of the following opaque data types:

• A fixed-length opaque-type column for which you do not have access to the C-structure of the internal format

• A varying-length opaque-type column

Follow these steps to transfer the internal format of either of these opaque data type columns between the database server

and the Informix® ESQL/C application:

Chapter 1. ESQL/C Guide

1. Declare a var binary host variable

2. Use the var binary host variable in an SQL statement to perform any select, insert, update, or delete operations on the

internal format of the opaque-type column.

Declare var binary host variables

To declare a var binary host variable, use the following syntax.

(explicit id) var binary [’opaque type ’] structure name variable name ;

Element Purpose Restrictions SQL syntax

opaque type Name of the opaque data type

whose internal format is to be

stored in the var binary variable.

Must already be defined in the

database

Identifier segment in the HCL®

Informix® Guide to SQL: Syntax

variable name Name of the ESQL/C variable to

declare as a var binary variable

Name must conform to

language-specific rules for

variable names.

The following figure shows declarations for three var binary variables.

Figure 63. Sample var binary host variables

#include <shape.h>;
#include <image.h>;

EXEC SQL BEGIN DECLARE SECTION;
 var binary polygon1;
 var binary 'shape' polygon2, a_circle;
 var binary 'image' an_image;
EXEC SQL END DECLARE SECTION;

In the declaration of a var binary host variable, the name of the opaque type must be a quoted string.

Important: Both the quotation mark (') and the quotation mark (") are valid quote characters. However, the beginning

quote and ending quote characters must match.

The opaque type name is optional; it affects the declaration as follows:

• When you omit opaque type from the var binary declaration, the database server attempts to identify the appropriate

support functions to use when the application receives the internal data structure from the opaque-type column in a

database.

The advantage of the omission of opaque type is that you can use the var binary host variable to hold data that was

selected from several different opaque types (as long as the database server is able to find the appropriate support

functions).

269

HCL Informix 14.10 - ESQL/C Programmer’s Guide

270

The disadvantage of the omission of opaque type is that host variables declared in this way cannot be used as

parameters to user defined routines (UDRs).

• When you specify opaque type in the var binary declaration, the database server knows precisely which support

functions to use when it sends the internal data structure to the database server for storage in the opaque-type

column.

The loss of ambiguity that the opaque type name provides can make data conversion more efficient. However, in this

case, the var binary host variable can only hold data from the specified opaque type data type.

You can declare several var binary variables in a single declaration line. However, all variables must have the same opaque

type, as Figure 63: Sample var binary host variables on page 269 shows.

The var binary host variables

In the IBM® Informix® ESQL/C program, the varying-length C structure, ifx_varlena_t, stores a binary value for a var binary

host variable. This data structure allows you to transfer binary data without knowing the exact structure of the internal

format for the opaque data type. It provides a data buffer to hold the data for the associated var binary host variable.

Important: The ifx_varlena_t structure is an opaque structure to Informix® ESQL/C programs. That is, you do

not access its internal structure directly. The internal structure of ifx_varlena_t might change in future releases.

Therefore, to create portable code, always use the Informix® ESQL/C accessor functions for this structure to obtain

and store values in the ifx_varlena_t structure. For a list of these Informix® ESQL/C access functions, see The

lvarchar pointer and var binary library functions on page 275.

This section uses a varying-length opaque data type called image to demonstrate how the Informix® ESQL/C var binary

host variable accesses an opaque data type. The image data type encapsulates an image such as a JPEG, GIF, or PPM file.

If the image is less than 2 kilobytes, the data structure for the data type stores the image directly. However, if the image is

greater than 2 kilobytes, the data structure stores a reference (an LO-pointer structure) to a smart large object that contains

the image data. The following figure shows the internal data structure for the image data type in the database.

Chapter 1. ESQL/C Guide

Figure 64. Internal data structures for the image opaque data type

typedef struct
 {
 int img_len;
 int img_thresh;
 int img_flags;
 union
 {
 ifx_lop_t img_lobhandle;
 char img_data[4];
 }

 } image_t;

typedef struct
 {
 point_t center;
 double radius;
 } circle_t;

The following figure shows the CREATE TABLE statement that creates a table called image_tab that has a column of type

image and an image identifier.

Figure 65. Creating a column of the image opaque data type

CREATE TABLE image_tab
(
 image_id integer not null primary key),
 image_col image
);

The following figure shows how to use a var binary host variable to insert and select data in the image_col column of the

image_tab table (see Figure 65: Creating a column of the image opaque data type on page 271).

271

HCL Informix 14.10 - ESQL/C Programmer’s Guide

272

Figure 66. Accessing the internal format of the image opaque data type with a var binary host variable

#include <image.h>;

EXEC SQL BEGIN DECLARE SECTION;
 var binary 'image' vbin_image;
EXEC SQL END DECLARE SECTION;

struct image_t user_image, *image_ptr;
int imgsz;

/* Load data into members of internal data structure
load_image(&user_image);
imgsz = getsize(&user_image);

/* Allocate memory for var binary data buffer */
ifx_var_flag(&vbin_image, 0);
ifx_var_alloc(&vbin_image, imgsz);

/* Assign data to data buffer of var binary host
 * variable */
ifx_var_setdata(&vbin_image, &user_image, imgsz);

/* Insert a new image_tab row with a var binary host
 * variable */
EXEC SQL insert into image_tab values (1, :vbin_image);

/* Deallocate image data buffer */
ifx_var_dealloc(&vbin_image);

/* Select an image_tab row from into a var binary
 * host variable */
ifx_var_flag(&vbin_image, 1);
EXEC SQL select image_col into :vbin_image
 from image_tab
 where image_id = 1;
image_ptr = (image_t *)ifx_var_getdata(&vbin_image);
unload_image(&user_image);
ifx_var_dealloc(&vbin_image);

For more information about the ifx_var_flag(), ifx_var_alloc(), ifx_var_setdata(), ifx_var_getdata(), and ifx_var_dealloc()

functions, see The lvarchar pointer and var binary library functions on page 275.

Insert from a var binary host variable

To insert the data that a var binary host variable contains into an opaque-type column, the code fragment in Figure 66:

Accessing the internal format of the image opaque data type with a var binary host variable on page 272 takes the

following steps:

1. Loads the image data from an external JPEG, GIF, or PPM file into the image_t internal data structure.

The load_image() C routine loads the user_image structure from an external file. The definition of the image_t internal

data structure, which Figure 64: Internal data structures for the image opaque data type on page 271 shows, must

Chapter 1. ESQL/C Guide

be available to your IBM® Informix® ESQL/C program. Therefore, the code fragment includes the image.h header file,

which defines the image_t structure.

The getsize() C function is provided as part of the Informix® ESQL/C support for the image opaque type; it returns

the size of the image_t structure.

2. Allocates memory for the data buffer of the var binary host variable, vbin_image.

The ifx_var_flag() function with a flag value of 0 notifies Informix® ESQL/C that the application will perform memory

allocation for the vbin_image host variable. The ifx_var_alloc() function then allocates for the data buffer the number

of bytes that the image data requires (imgsz).

3. Stores the image_t structure in the data buffer of the vbin_image host variable.

The ifx_var_setdata() function saves the data that the user_image structure contains into the vbin_image data buffer.

This function also requires the size of the data buffer, which the getsize() function has returned.

4. Inserts the data that the vbin_image data buffer contains into the image_col opaque-type column.

When the database server executes the INSERT statement, it calls the receive support function for the image data

type to perform any translation necessary between the internal format of the data that the Informix® ESQL/C client

application has sent (image_t) and the internal format of the image data type on disk.

5. Deallocates the data buffer of the vbin_image host variable.

The ifx_var_dealloc() function deallocates the vbin_image data buffer.

To insert a null value into an opaque-type column with a var binary host variable, you can use either of the following

methods:

• Set an indicator variable that is associated with a var binary host variable to -1.

The following code fragment uses the image_ind indicator variable and the vbin_image host variable to insert a null

value into the circle_col column:

#include <image.h>;

EXEC SQL BEGIN DECLARE SECTION;
 var binary 'image' vbin_image;
 int image_ind;
EXEC SQL END DECLARE SECTION;

image_ind = -1;
EXEC SQL insert into image_tab
 values (:vbin_image:image_ind);

• Use the ifx_var_setnull() function to set the data buffer of the var binary host variable to a null value.

For the same vbin_image host variable, the following lines use the ifx_var_setnull() function to insert a null value into

the circle_col column:

ifx_var_setnull(&vbin_image, 1);
EXEC SQL insert into image_tab values (:vbin_image);

273

HCL Informix 14.10 - ESQL/C Programmer’s Guide

274

Select into a var binary host variable

To select the data that an opaque-type column contains into a var binary host variable, the code fragment in Figure 66:

Accessing the internal format of the image opaque data type with a var binary host variable on page 272 takes the

following steps:

1. Allocates memory for the data buffer of the var binary host variable, vbin_image.

The ifx_var_flag() function with a flag value of 1 notifies IBM® Informix® ESQL/C that it is to allocate a new

data buffer for the vbin_image host variable. (This data buffer had been deallocated after the INSERT statement

completed.) Informix® ESQL/C performs this allocation when it receives the data from the SELECT statement.

2. Selects the data that the image_col opaque-type column contains into the vbin_image data buffer.

When the database server executes the SELECT statement, it calls the send support function for image to perform

any translation necessary between the internal format of the image data type on disk and the internal format that the

Informix® ESQL/C client application has sent (image_t).

3. Stores the data that the data buffer of the vbin_image host variable contains in an image_t structure.

After the SELECT statement, the data buffer of the vbin_image host variable contains data in the internal format

of the image data type. The ifx_var_getdata() function returns the contents of this data buffer into an image_t

data structure. Because the ifx_var_getdata() function returns the data buffer as a void * value, this call to

ifx_var_getdata() casts this return value as a pointer to an image_t structure before it assigns it to the image_ptr

variable.

4. Unloads the image data from the image_t internal data structure to an external JPEG, GIF, or PPM file.

The unload_image() routine unloads the user_image structure to an external file.

5. Deallocates the data buffer of the vbin_image host variable.

The ifx_var_dealloc() function deallocates the vbin_image data buffer. You must explicitly deallocate the data buffer

even when Informix® ESQL/C allocated it for you.

To check for a null value from an opaque-type column with a var binary host variable, you can use either of the following

methods:

• Check an indicator variable that is associated with a var binary host variable for a value of -1.

The following code fragment uses the image_ind indicator variable and the vbin_image host variable to check for a

null value from the circle_col column:

#include <image.h>;

EXEC SQL BEGIN DECLARE SECTION;
 var binary 'image' vbin_image;
 int image_ind;
EXEC SQL END DECLARE SECTION;

EXEC SQL select image_col into :vbin_image:image_ind

Chapter 1. ESQL/C Guide

 from image_tab
 where image_id = 1;
if (image_ind == -1)
⋮

• Use the ifx_var_isnull() function to check the data buffer of the var binary host variable for a null value.

For the same vbin_image host variable, the following lines use the ifx_var_isnull() function to check for a null value in

the image_col column:

EXEC SQL select image_col into :vbin_image
 from image_tab
 where image_id = 1;
if (ifx_var_isnull(&vbin_image) == 1)
⋮

The lvarchar pointer and var binary library functions

The following library functions are available in IBM® Informix® ESQL/C to access the data buffer of an lvarchar pointer or

var binary host variable.

Function name Purpose See

ifx_var_alloc() Allocates memory for the data buffer. The ifx_var_alloc() function on

page 718

ifx_var_dealloc() Deallocates memory for the data buffer. The ifx_var_dealloc() function on

page 719

ifx_var_flag() Determines whether ESQL/C or the application handles

memory allocation for the data buffer.

The ifx_var_flag() function on

page 720

ifx_var_getdata() Returns the contents of the data buffer. The ifx_var_getdata() function on

page 722

ifx_var_getlen() Returns the length of the data buffer. The ifx_var_getlen() function on

page 723

ifx_var_isnull() Checks whether the data in the data buffer is null. The ifx_var_isnull() function on

page 723

ifx_var_setdata() Sets the data for the data buffer. The ifx_var_setdata() function on

page 724

ifx_var_setlen() Sets the length of the data buffer. The ifx_var_setlen() function on

page 725

ifx_var_setnull() Sets the data in the data buffer to a null value. The ifx_var_setnull() function on

page 726

These lvarchar pointer and var binary functions are defined in the sqlhdr.h header file so you do not need to include a

special header file in your Informix® ESQL/C programs that use them.

275

HCL Informix 14.10 - ESQL/C Programmer’s Guide

276

Access predefined opaque data types

HCL Informix® implements several built-in data types as predefined opaque data types. These data types are opaque

data types for which support functions and the database definition are provided. For example, the smart-large-object data

types, CLOB and BLOB, as an opaque data type called clob and blob are implemented. Informix® ESQL/C uses the ifx_lo_t

structure, called an LO-pointer, to access the smart large objects. This structure is defined in the locator.h header file.

Therefore, you declare Informix® ESQL/C host variables for database columns of type CLOB or BLOB as a fixed binary host

variable, as follows:

EXEC SQL include locator;
⋮

EXEC SQL BEGIN DECLARE SECTION;
 fixed binary 'clob' ifx_lo_t clob_loptr;
 fixed binary 'blob' ifx_lo_t blob_loptr;
EXEC SQL END DECLARE SECTION;
⋮

EXEC SQL select blobcol into :blob_loptr from tab1;

Database server communication

Exception handling

Proper database management requires that you know whether the database server successfully processes your SQL

statements as you intend. If a query fails and you do not know it, you might display meaningless data to the user. A more

serious consequence might be that you update a customer account to show a payment of $100, and the update fails without

your knowledge. The account is now incorrect.

To handle such error situations, your Informix® ESQL/C program must check that every SQL statement executes as you

intend. These topics describe the following exception-handling information:

• How to interpret the diagnostic information that the database server presents after it executes an SQL statement

• How to use the SQLSTATE variable and the GET DIAGNOSTICS statement to check for runtime errors and warnings

that your Informix® ESQL/C program might generate

• How to use the SQLCODE variable and the SQL Communications Area (sqlca) to check for runtime errors and

warnings that your Informix® ESQL/C program might generate

• How to choose an exception-handling strategy that consistently handles errors and warnings in your Informix®

ESQL/C programs

• How to use the rgetlmsg() and rgetmsg() library functions to retrieve the message text that is associated with a given

Informix® error number

The end of these topics present an annotated example program that is called getdiag. The getdiag sample program

demonstrates how to handle exceptions with the SQLSTATE variable and the GET DIAGNOSTICS statement.

Chapter 1. ESQL/C Guide

Obtain diagnostic information after an SQL statement

After your IBM® Informix® ESQL/C program executes an SQL statement, the database server returns information about the

success of the statement. This section summarizes the following information:

• The types of diagnostic information that are available to the Informix® ESQL/C program

• The two methods that your Informix® ESQL/C program can use to obtain diagnostic information

Types of diagnostic information

The database server can return the following types of diagnostic information:

• Database exceptions are conditions that the database server returns to describe how successful the execution of the

SQL statement was.

• Descriptive information, such as the DESCRIBE and GET DIAGNOSTICS statements can provide about certain SQL

statements.

Types of database exceptions

When the database server executes an SQL statement, it can return one of four types of database exceptions to the

application program:

• Success

The SQL statement executed successfully. When a statement that might return data into host variables executes, a

success condition means that the statement has returned the data and that the program can access it through the

host variables.

• Success, but warning generated

A warning is a condition that does not prevent successful execution of an SQL statement; however, the effect of the

statement is limited and the statement might not produce the expected results. A warning can also provide additional

information about the executed statement.

• Success, but no rows found

The SQL statement executed without errors, with the following exceptions:

◦ No rows matched the search criteria (the NOT FOUND condition).

◦ The statement did not operate on a row (the END OF DATA condition).

• Error

The SQL statement did not execute successfully and did not change the database. Runtime errors can occur at the

following levels:

◦ Hardware errors include controller failure, bad sector on disk, and so on.

◦ Kernel errors include file-table overflow, insufficient semaphores, and so on.

◦ Access-method errors include duplicated index keys, SQL null inserted into non-null columns, and so on.

277

HCL Informix 14.10 - ESQL/C Programmer’s Guide

278

◦ Parser errors include invalid syntax, unknown objects, invalid statements, and so on.

◦ Application errors include user or lock-table overflow, and so on.

Descriptive information

The following SQL statements can return information about SQL statements:

• A DESCRIBE statement returns information about a prepared SQL statement. This information is useful when you

execute dynamic SQL.

• A GET DIAGNOSTICS statement, when you call it after you have established a connection to a database environment,

can return the name of the database server and the connection.

The HCL® Informix® Guide to SQL: Syntax fully describes these two statements.

Types of status variables

The following methods obtain diagnostic information about the outcome of an SQL statement:

• Access the SQLSTATE variable, a five-character string that contains status values that conform to the ANSI and

X/Open standards

• Access the SQLCODE variable, an int4 integer that contains status values that are specific to HCL Informix®

When you create applications that must conform to either the ANSI or X/Open standard, use the SQLSTATE variable as your

primary exception-handling method.

Exception handling with SQLSTATE

It is recommended that you obtain diagnostic information about SQL statements with the SQLSTATE variable and the GET

DIAGNOSTICS statement.

Important: SQLSTATE is a more effective way to detect and handle error messages than the SQLCODE variable

because SQLSTATE supports multiple exceptions. SQLSTATE is also more portable because it conforms to ANSI

and X/Open standards. IBM® Informix® ESQL/C supports the sqlca structure and SQLCODE for compatibility with

earlier versions and for exceptions specific to Informix®.

After the database server executes an SQL statement, it sets SQLSTATE with a value that indicates the success or failure

of the statement. From this value, your program can determine if it needs to perform further diagnostic tests. If SQLSTATE

indicates a problem, you can use the GET DIAGNOSTICS statement to obtain more information.

This section describes how to use the SQLSTATE variable and the GET DIAGNOSTICS statement to perform exception

handling. It describes the following topics:

• Using the GET DIAGNOSTICS statement to access fields of the diagnostics area

• Understanding the format of the SQLSTATE values

• Using SQLSTATE to check for the different types of exceptions

Chapter 1. ESQL/C Guide

The GET DIAGNOSTICS statement

This section briefly summarizes how to use the GET DIAGNOSTICS statement within the IBM® Informix® ESQL/C program.

For a full description of the GET DIAGNOSTICS statement, see the HCL® Informix® Guide to SQL: Syntax.

The GET DIAGNOSTICS statement returns information that is held in the fields of the diagnostics area. The diagnostics

area is an internal structure that the database server updates after it executes an SQL statement. Each application has one

diagnostics area. Although GET DIAGNOSTICS accesses the diagnostics area, it never changes the contents of this area.

To access a field in the diagnostics area, supply a host variable to hold the value and the field keyword to specify the field

that you want to access:

:host_var = FIELD_NAME

Make sure that the data types of the host variable and the diagnostics field are compatible.

The fields of the diagnostics area fall into two categories:

• Statement information describes the overall result of the SQL statement, in particular the number of rows that it has

modified and the number of exceptions that result.

• Exception information describes individual exceptions that result from the SQL statement.

Statement information
The GET DIAGNOSTICS statement returns information about the most-recently executed SQL statement.

This form of the GET DIAGNOSTICS statement has the following general syntax:

EXEC SQL get diagnostics statement_fields;

The following table summarizes the statement_fields of the diagnostics area.

Table 50. Statement information from the GET DIAGNOSTICS statement

Field-name keyword
ESQL/C data

type
Description

NUMBER mint This field holds the number of exceptions that the diagnostics area contains

for the most-recently executed SQL statement. NUMBER is in the range of 1

to 35,000. Even when an SQL statement is successful, the diagnostics area

contains one exception.

MORE char[2] This field holds either an N or a Y (plus a null terminator). An N character indicates

that the diagnostics area contains all of the available exception information. A Y

character indicates that the database server has detected more exceptions than

it can store in the diagnostics area. Now, the database server always returns an N

because the database server can store all exceptions.

279

HCL Informix 14.10 - ESQL/C Programmer’s Guide

280

Table 50. Statement information from the GET DIAGNOSTICS statement (continued)

Field-name keyword
ESQL/C data

type
Description

ROW_COUNT mint When the SQL statement is an INSERT, UPDATE, or DELETE, this field holds a

numeric value that specifies the number of rows that the statement has inserted,

updated, or deleted. ROW_COUNT is in the range of 0 to 999,999,999.

For any other SQL statement, the value of ROW_COUNT is undefined.

The following figure shows a GET DIAGNOSTICS statement that retrieves statement information for a CREATE TABLE

statement into the host variables :exception_count and :overflow.

Figure 67. Using GET DIAGNOSTICS to return statement information

EXEC SQL BEGIN DECLARE SECTION;
 mint exception_count;
 char overflow[2];
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL create database db;

EXEC SQL create table tab1 (col1 integer);
EXEC SQL get diagnostics :exception_count = NUMBER,
 :overflow = MORE;

Use the statement information to determine how many exceptions the most-recently executed SQL statement has generated.

For more information about the statement fields of the diagnostics area, see "The Statement Clause" in the GET

DIAGNOSTICS statement in the HCL® Informix® Guide to SQL: Syntax.

Exception information

The GET DIAGNOSTICS statement also returns information about the exceptions that the most-recently executed SQL

statement has generated. Each exception has an exception number. To obtain information about a particular exception, use

the EXCEPTION clause of the GET DIAGNOSTICS statement, as follows:

EXEC SQL get diagnostics exception except_num exception_fields;

The except_num argument can be a literal number or a host variable. An except_num of one (1) corresponds to the

SQLSTATE value that the most-recently executed SQL statement sets. After this first exception, the order in which the

database server fills the diagnostics area with exception values is not predetermined. For more information, see Multiple

exceptions on page 292.

The following table summarizes the exception_fields information of the diagnostics area.

Chapter 1. ESQL/C Guide

Table 51. Exception information from the GET DIAGNOSTICS statement

Field name keyword
ESQL/C data

type
Description

RETURNED_SQLSTATE char[6] This field holds the SQLSTATE value that describes the current exception.

For information about the values of this field, see The SQLSTATE variable

on page 282.

INFORMIX_SQLCODE int4 This field holds the status code specific to Informix®. This code is also

available in the global SQLCODE variable. For more information, see The

SQLCODE variable on page 296.

CLASS_ORIGIN char[255] This field holds a variable-length character string that defines the source

of the class portion of SQLSTATE. If Informix® defines the class code,

the value is "IX000". If the International Standards Organization (ISO)

defines the class code, the value of CLASS_ORIGIN is "ISO 9075". If a

user-defined routine has defined the message text of the exception, the

value of CLASS_ORIGIN is "U0001".

SUBCLASS_ORIGIN char[255] This field holds a variable-length character string that contains the source

of the subclass portion of SQLSTATE. If ISO defines the subclass, the

value of SUBCLASS_ORIGIN is "ISO 9075". If Informix® defines the

subclass, the value is "IX000". If a user-defined routine has defined the

message text of the exception, the value is "U0001".

MESSAGE_TEXT char[8191] This field holds a variable-length character string that contains the

message text to describe this exception. This field can also contain the

message text for any ISAM exceptions or a user-defined message from a

user-defined routine.

MESSAGE_LENGTH mint This field holds the number of characters that are in the text of the

MESSAGE_TEXT string.

SERVER_NAME char[255] This field holds a variable-length character string that holds the name of

the database server that is associated with the actions of a CONNECT

or DATABASE statement. This field is blank when no current connection

exists.

For more information about the SERVER_NAME field, see Identify an

explicit connection on page 336.

CONNECTION_NAME char[255] This field holds a variable-length character string that holds the name of

the connection that is associated with the actions of a CONNECT or SET

CONNECTION statement. This field is blank when no current connection

or no explicit connection exists. Otherwise, it contains the name of the last

successfully established connection.

281

HCL Informix 14.10 - ESQL/C Programmer’s Guide

282

Table 51. Exception information from the GET DIAGNOSTICS statement (continued)

Field name keyword
ESQL/C data

type
Description

For more information about the CONNECTION_NAME field, see Identify an

explicit connection on page 336.

Use the exception information to save detailed information about an exception. The code fragment in the following table

retrieves exception information about the first exception of a CREATE TABLE statement.

Figure 68. Example of using GET DIAGNOSTICS to return exception information

EXEC SQL BEGIN DECLARE SECTION;
 char class_origin_val[255];
 char subclass_origin_val[255];
 char message_text_val[8191];
 mint messlength_val;
EXEC SQL END DECLARE SECTION;

EXEC SQL create database db;

EXEC SQL create table tab1 (col1 integer);
EXEC SQL get diagnostics exception 1
 :class_origin_val = CLASS_ORIGIN,
 :subclass_origin_val = SUBCLASS_ORIGIN,
 :message_text_val = MESSAGE_TEXT,
 :messlength_val = MESSAGE_LENGTH;

For more information about the exception fields, see the GET DIAGNOSTICS statement in the HCL® Informix® Guide to SQL:

Syntax.

The SQLSTATE variable
The SQLSTATE variable is a five-character string that the database server sets after it executes each SQL statement.

The IBM® Informix® ESQL/C header file, sqlca.h, declares SQLSTATE as a global variable. Since the Informix® ESQL/C

preprocessor automatically includes sqlca.h in the Informix® ESQL/C program, you do not need to declare SQLSTATE.

After the database server executes an SQL statement, the database server automatically updates the SQLSTATE variable as

follows:

• The database server stores the exception value in the RETURNED_SQLSTATE field of the diagnostics area.

• Informix® ESQL/C copies the value of the RETURNED_SQLSTATE field to the global SQLSTATE variable.

These updates to the SQLSTATE variable are equivalent to the execution of the following GET DIAGNOSTICS statement

immediately after an SQL statement:

EXEC SQL get diagnostics exception 1 :SQLSTATE = RETURNED_SQLSTATE;

Chapter 1. ESQL/C Guide

Tip: At run time, Informix® ESQL/C automatically copies the value of the RETURNED_SQLSTATE field into the global

SQLSTATE variable. Therefore, you do not usually need to access the RETURNED_SQLSTATE field directly.

The value in SQLSTATE is the status of the most-recently executed SQL statement before the GET DIAGNOSTICS statement

executed. If the database server encounters an error when it executes the GET DIAGNOSTICS statement, it sets SQLSTATE

to "IX001" and sets SQLCODE (and sqlca.sqlcode) to the value of the error number that corresponds to the error; the

contents of the diagnostics area are undefined.

The SQLSTATE variable holds the ANSI-defined value for the exception. Each SQLSTATE value has an associated status

code that is specific to Informix®. You can obtain the value of this status code, which is specific to Informix®, from either of

the following items:

• The INFORMIX_SQLCODE field of the diagnostics area

• The SQLCODE variable

Class and subclass codes

To determine the success of an SQL statement, your IBM® Informix® ESQL/C program must be able to interpret the value

in the SQLSTATE variable. SQLSTATE consists of a two-character class code and a three-character subclass code. In the

following figure, IX is the class code and 000 is the subclass code. The value "IX000" indicates an error specific to Informix®.

Figure 69. The structure of the SQLSTATE code with the value IX000

SQLSTATE can contain only digits and capital letters. The class code is unique but the subclass code is not. The meaning of

the subclass code depends on the associated class code. The initial character of the class code indicates the source of the

exception code, which the following table summarizes.

Table 52. Initial SQLSTATE class-code values

Initial class-

Code value
Source of exception code Notes®

0 - 4

A - H

X/Open and ANSI/ISO The associated subclass codes also begin in the range 0 - 4 or A - H.

5 - 9 Defined by the implementation Subclass codes are also defined by the implementation.

I - Z Informix® ESQL/C Any of the error messages specific to Informix® (those that the

X/Open or ANSI/ISO reserved range does not support) have an

SQLSTATE value of "IX000".

283

HCL Informix 14.10 - ESQL/C Programmer’s Guide

284

Table 52. Initial SQLSTATE class-code values (continued)

Initial class-

Code value
Source of exception code Notes®

If a user-defined routine returns an error message was defined by the

routine, the SQLSTATE value is "U0001".

List of SQLSTATE class codes

The following table lists the valid SQLSTATE class and subclass values. This figure lists the first entry for each class code in

bold.

Table 53. Class and subclass codes for SQLSTATE

Class Subclass Meaning

00 000 Success

01

01

01

01

01

01

01

000

002

003

004

005

006

007

Success with warning

Disconnect error—transaction rolled back

Null value eliminated in set function

String data, right truncation

Insufficient item descriptor areas

Privilege not revoked

Privilege not granted

01

01

01

01

01

01

01

01

01

01

I01

I03

I04

I05

I06

I07

I08

I09

I10

I11

Database has transactions

ANSI-compliant database selected

The database server is a recent version of Informix®

Float to decimal conversion used

Informix® extension to ANSI-compliant standard syntax

After a DESCRIBE, a prepared UPDATE/DELETE statement does not have a WHERE clause

An ANSI keyword was used as cursor name

Number of items in select list is not equal to number of items in INTO list

Database server is running in secondary mode

DATASKIP feature is turned on

Chapter 1. ESQL/C Guide

Table 53. Class and subclass codes for SQLSTATE (continued)

Class Subclass Meaning

01 U01 User-defined warning returned by a user-defined routine

02 000 No data found or end of data reached

07

07

07

07

07

07

07

07

07

000

001

002

003

004

005

006

008

009

Dynamic SQL error

USING clause does not match dynamic parameters

USING clause does not match target specifications

Cursor specification cannot be executed

USING clause is required for dynamic parameters

Prepared statement is not a cursor specification

Restricted data type attribute violation

Invalid descriptor count

Invalid descriptor index

08

08

08

08

08

08

08

08

000

001

002

003

004

006

007

S01

Connection exception

Database server rejected the connection

Connection name in use

Connection does not exist

Client unable to establish connection

Transaction rolled back

Transaction state unknown

Communication failure

0A

0A

000

001

Feature not supported

Multiple database server transactions

21

21

21

000

S01

S02

Cardinality violation

Insert value list does not match column list

Degree of derived table does not match column list

285

HCL Informix 14.10 - ESQL/C Programmer’s Guide

286

Table 53. Class and subclass codes for SQLSTATE (continued)

Class Subclass Meaning

22

22

22

22

22

22

22

22

22

22

000

001

002

003

005

012

019

024

025

027

Data exception

String data, right truncation

Null value, no indicator parameter

Numeric value out of range

Error in assignment

Division by zero

Invalid escape character

Unterminated string

Invalid escape sequence

Data exception trim error

23 000 Integrity-constraint violation

24 000 Invalid cursor state

25 000 Invalid transaction state

2B 000 Dependent privilege descriptors still exist

2D 000 Invalid transaction termination

26 000 Invalid SQL statement identifier

2E 000 Invalid connection name

28 000 Invalid user-authorization specification

33 000 Invalid SQL descriptor name

34 000 Invalid cursor name

35 000 Invalid exception number

37 000 Syntax error or access violation in PREPARE or EXECUTE IMMEDIATE

3C 000 Duplicate cursor name

40

40

000

003

Transaction rollback

Statement completion unknown

42 000 Syntax error or access violation

Chapter 1. ESQL/C Guide

Table 53. Class and subclass codes for SQLSTATE (continued)

Class Subclass Meaning

S0

S0

S0

S0

S0

000

001

002

011

021

Invalid name

Base table or view table exists

Base table not found

Index exists

Column exists

S1 001 Memory-allocation error message

IX 000 Informix® reserved error message

IX 001 GET DIAGNOSTICS statement failed

U0 001 User-defined error returned by a user-defined routine

The ANSI or X/Open standards define all SQLSTATE values except the following:

• A "IX000" runtime error indicates an error message that is specific to Informix®.

• A "IX001" runtime error indicates the GET DIAGNOSTiCS statement failed.

• A "U0001" runtime error indicates a user-defined error message.

• The "01Ixx" warnings indicate warnings that are specific to Informix®.

• The "01U01" warning indicates a user-defined warning message.

For more information about non-standard error values, see Runtime errors in SQLSTATE on page 292. For more

information about non-standard warning values, see Warnings in SQLSTATE on page 289.

Check for exceptions with SQLSTATE

After an SQL statement executes, the SQLSTATE value can indicate one of the four conditions that the following table

shows.

Table 54. Exceptions that SQLSTATE returns

Exception condition SQLSTATE value

Success "00000"

Success, but no rows found "02000"

Success, but warnings generated Class code = "01"

Subclass code = "000" to "006" (for ANSI and X/Open warnings)

Subclass code = "I01" to "I11" (for warnings specific to HCL Informix®)

287

HCL Informix 14.10 - ESQL/C Programmer’s Guide

288

Table 54. Exceptions that SQLSTATE returns (continued)

Exception condition SQLSTATE value

Subclass code = "U01" (for user-defined warnings)

Failure, runtime error generated Class code > "02" (for ANSI and X/Open errors)

Class code = "IX" (for warnings specific to HCL Informix®)

Class code = "U0" (for user-defined errors)

Determining the cause of an exception in SQLSTATE
To determine the cause of an exception in SQLSTATE, use the GET DIAGNOSTICS statement.

About this task

To determine the cause of an exception in SQLSTATE:

1. Use GET DIAGNOSTICS to obtain the statement information such as the number of exceptions that the database

server has generated.

2. For each exception, use the EXCEPTION clause of GET DIAGNOSTICS to obtain detailed information about the

exception.

Success in SQLSTATE

When the database server executes an SQL statement successfully, it sets SQLSTATE to "00000" (class = "00", subclass =

"000"). To check for successful execution, your code needs to verify only the first two characters of SQLSTATE.

Tip: After a CONNECT, SET CONNECTION, DATABASE, CREATE DATABASE, or START DATABASE statement, the

SQLSTATE variable has a class value of "01" and a subclass value, which is specific to HCL Informix®, to provide

information about the database and connection. For more information, see Table 56: SQL statements that set a

warning specific to Informix for a given condition on page 290.

The getdiag sample program in Guide to the getdiag.ec file on page 308 uses the sqlstate_err() function to compare

the first two characters of SQLSTATE with the string "00" to check for successful execution of an SQL statement. The

sqlstate_exception() function shown in Figure 72: Example of an exception-handling function that uses SQLSTATE on

page 304 checks for a success in SQLSTATE with the system strncmp() function.

NOT FOUND in SQLSTATE

When a SELECT or FETCH statement encounters NOT FOUND (or END OF DATA), the database server sets SQLSTATE to

"02000" (class = "02"). The following table lists the conditions that cause SQL statements to yield NOT FOUND.

Chapter 1. ESQL/C Guide

Table 55. SQLSTATE values that are set when SQL statements do not return any rows

SQL statement that generates the indicated SQLSTATE

result

Result for ANSI-compliant

database

Result for

non-ANSI-compliant

database

FETCH statement: the last qualifying row has already been

returned (the end of data was reached).

"02000" "02000"

SELECT statement: no rows match the SELECT criteria. "02000" "02000"

DELETE and DELETE...WHERE statement (not part of

multistatement PREPARE): no rows match the DELETE

criteria.

"02000" "00000"

INSERT INTO tablename SELECT statement (not part of

multistatement PREPARE): no rows match the SELECT

criteria.

"02000" "00000"

SELECT... INTO TEMP statement (not part of multistatement

PREPARE): no rows match the SELECT criteria.

"02000" "00000"

UPDATE and UPDATE...WHERE statement (not part of

multistatement PREPARE): no rows match the UPDATE

criteria.

"02000" "00000"

Table 55: SQLSTATE values that are set when SQL statements do not return any rows on page 289 shows that the value

that the NOT FOUND condition generates depends, in some cases, on whether the database is ANSI compliant.

To check for the NOT FOUND condition, your code needs to verify only the class code of SQLSTATE. The subclass code is

always "000". The getdiag sample program in Guide to the getdiag.ec file on page 308 uses the sqlstate_err() function to

perform exception handling. To check for a warning in an SQL statement, sqlstate_err() compares the first two characters of

SQLSTATE with the string "02".

Warnings in SQLSTATE

When the database server executes an SQL statement successfully, but encounters a warning condition, it sets the class

code of SQLSTATE to "01". The subclass code then indicates the cause of the warning. This warning can be either of the

following types:

• An ANSI or X/Open warning message has a subclass code in the range "000" to "006".

The CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields of the diagnostics area have a value of "ISO 9075" to

indicate ANSI or X/Open as the source of the warning.

• A warning message specific to HCL Informix® has a subclass code in the range "I01" to "I11" (see Table 56: SQL

statements that set a warning specific to Informix for a given condition on page 290).

289

HCL Informix 14.10 - ESQL/C Programmer’s Guide

290

The CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields of the diagnostics area have a value of "IX000" to

indicate an exception, which is specific to Informix®, as the source of the warning.

• A user-defined warning message from a user-defined routine has a subclass code of "U01".

The CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields of the diagnostics area have a value of "U0001" to

indicate a user-defined routine as the source of the warning.

The following table lists the warning messages specific to Informix® and the SQL statements and conditions that generate

the warning.

Table 56. SQL statements that set a warning specific to Informix® for a given condition

Warning value SQL statement Warning condition

"01I01" CONNECT

CREATE DATABASE

DATABASE

SET CONNECTION

Your application opened a database that uses transactions.

"01I03" CONNECT

CREATE DATABASE

DATABASE

SET CONNECTION

Your application opened an ANSI-compliant database.

"01I04" CONNECT

CREATE DATABASE

DATABASE

SET CONNECTION

Your application opened a database that the Informix® manages.

"01I05" CONNECT

CREATE DATABASE

DATABASE

SET CONNECTION

Your application opened a database that is on a host database

server that requires float-to-decimal conversion for FLOAT

columns (or smallfloat-to-decimal conversions for SMALLFLOAT

columns).

"01I06" All statements The statement executed contains the Informix® extension to SQL

(only when the DBANSIWARN environment variable is set).

Chapter 1. ESQL/C Guide

Table 56. SQL statements that set a warning specific to Informix® for a given condition (continued)

Warning value SQL statement Warning condition

"01I07" PREPARE

DESCRIBE

A prepared UPDATE or DELETE statement has no WHERE clause.

The operation affects all rows of the table.

"01I09" FETCH

SELECT...INTO

EXECUTE...INTO

The number of items in the select list does not equal the number of

host variables in the INTO clause.

"01I10" CONNECT

CREATE DATABASE

DATABASE

SET CONNECTION

The database server is currently running in secondary mode. The

database server is a secondary server in a data-replication pair;

therefore, the database server is available only for read operations.

"01I11" Other statements (when your

application activates the DATASKIP

feature)

A data fragment (a dbspace) was skipped during query processing.

To check for a warning, your code only needs to verify the first two characters of SQLSTATE. However, to identify the

particular warning, you need to examine the subclass code. You might also want to use the GET DIAGNOSTICS statement to

obtain the warning message from the MESSAGE_TEXT field.

For example, the following block of code determines what database a CONNECT statement has opened.

int trans_db, ansi_db, online_db = 0;
⋮;

msg = "CONNECT stmt";
EXEC SQL connect to 'stores7';
if(!strncmp(SQLSTATE, "02", 2)) /* < 0 is an error */
 err_chk(msg);
if (!strncmp(SQLSTATE, "01", 2))
 {
 if (!strncmp(SQLSTATE[2], "I01", 3))
 trans_db = 1;
 if (!strncmp(SQLSTATE[2], "I03", 3))
 ansi_db = 1;
 if (!strncmp(SQLSTATE[2], "I04", 3))
 online_db = 1;
 }

The preceding code fragment checks SQLSTATE with the system strncmp() function. The getdiag sample program (Guide to

the getdiag.ec file on page 308) uses the sqlstate_err() function to check the success of an SQL statement by comparing

the first two characters of SQLSTATE with the string "01". For more information about the values of SQLSTATE that the

291

HCL Informix 14.10 - ESQL/C Programmer’s Guide

292

CONNECT, CREATE DATABASE, DATABASE, and SET CONNECTION statements set, see Determine features of the database

server on page 334.

Runtime errors in SQLSTATE

When an SQL statement results in a runtime error, the database server stores a value in SQLSTATE whose class code is

greater than "02". The actual class and subclass codes identify the particular error. Table 53: Class and subclass codes

for SQLSTATE on page 284 lists the class and subclass codes for SQLSTATE. To retrieve the error message text, use the

MESSAGE_TEXT field of the GET DIAGNOSTICS statement. The CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields

have a value of "ISO 9075" to indicate the source of the error.

If the SQL statement generates an error that the ANSI or X/Open standards do not support, SQLSTATE might contain either

of the following values:

• An SQLSTATE value of "IX000" indicates an error that is specific to HCL Informix®.

The SQLCODE variable contains the error code, and the MESSAGE_TEXT field contains the error message text and

any ISAM message text. The CLASS_ORIGIN and SUBCLASS_ORIGIN exception fields have a value of "IX000" to

indicate the source of the error.

• An SQLSTATE value of "U0001" indicates a user-defined error message from a user-defined routine.

The MESSAGE_TEXT field contains the error message text. The CLASS_ORIGIN and SUBCLASS_ORIGIN exception

fields have a value of "U0001" to indicate the source of the error.

GET DIAGNOSTICS failure
If the GET Diagnostics statement fails, SQLState contains a value of ix001. No other failure returns this value. The sqlcode

indicates the specific error that caused the failure.

Multiple exceptions

The database server can generate multiple exceptions for a single SQL statement. A significant advantage of the GET

DIAGNOSTICS statement is its ability to report multiple exception conditions.

To find out how many exceptions the database server has reported for an SQL statement, retrieve the value of the NUMBER

field from the statement information of the diagnostics area. The following GET DIAGNOSTICS statement retrieves the

number of exceptions that the database server generated and stores the number in the :exception_num host variable.

EXEC SQL get diagnostics :exception_num = NUMBER;

When you know the number of exceptions that occurred, you can initiate a loop to report each of them. Execute GET

DIAGNOSTICS within this loop and use the number of exceptions to control the loop. The following code illustrates one way

to retrieve and report multiple exception conditions after an SQL statement.

EXEC SQL get diagnostics :exception_count = NUMBER,
 :overflow = MORE;
printf("NUMBER: %d\n", exception_count);
printf("MORE : %s\n", overflow);

Chapter 1. ESQL/C Guide

for (i = 1; i <= exception_count; i++)
 {
 EXEC SQL get diagnostics exception :i
 :sqlstate = RETURNED_SQLSTATE,
 :class = CLASS_ORIGIN, :subclass = SUBCLASS_ORIGIN,
 :message = MESSAGE_TEXT, :messlen = MESSAGE_LENGTH;

 printf("SQLSTATE: %s\n",sqlstate);
 printf("CLASS ORIGIN: %s\n",class);
 printf("SUBCLASS ORIGIN: %s\n",subclass);
 message[messlen] ='\0'; /* terminate the string. */
 printf("TEXT: %s\n",message);
 printf("MESSAGE LENGTH: %d\n",messlen);
 }

Do not confuse the RETURNED_SQLSTATE value with the SQLSTATE global variable. The SQLSTATE variable provides

a general status value for the most-recently executed SQL statement. The RETURNED_SQLSTATE value is associated

with one particular exception that the database server has encountered. For the first exception, SQLSTATE and

RETURNED_SQLSTATE have the same value. However, for multiple exceptions, you must access RETURNED_SQLSTATE for

each exception.

To define a host variable in your application that receives the RETURNED_SQLSTATE value, you must define it as a character

array with a length of six (five for the field plus one for the null terminator). You can assign this variable whatever name you

want.

The following statements define such a host variable and assign it the name sql_state:

EXEC SQL BEGIN DECLARE SECTION;
 char sql_state[6];
EXEC SQL END DECLARE SECTION;

A database system that is compliant with X/Open standards must report any X/Open exceptions before it reports any

errors or warnings that are specific to HCL Informix®. Beyond this, however, the database server does not report the

exceptions in any particular order. The getdiag sample program (Guide to the getdiag.ec file on page 308) includes the

disp_sqlstate_err() function to display multiple exceptions.

Exception handling with the sqlca structure
An alternative way to obtain diagnostic information is through the SQL Communications Area. When an SQL statement

executes, the database server automatically returns information about the success or failure of the statement in a C

structure that is called sqlca.

To obtain exception information, your IBM® Informix® ESQL/C program can access the sqlca structure or the SQLCODE

variable as follows:

• The sqlca structure. You can use C statements to obtain additional exception information. You can also obtain

information relevant to performance or the nature of the data that is handled. For some statements, the sqlca

structure contains warnings.

• The SQLCODE variable directly. You can obtain the status code of the most-recently executed SQL statement.

SQLCODE holds an error code that is specific to HCL Informix®, which is copied from the sqlca.sqlcode field.

293

HCL Informix 14.10 - ESQL/C Programmer’s Guide

294

Important: Informix® ESQL/C supports the sqlca structure for compatibility with earlier versions. It is recommended,

however, that new applications use the SQLSTATE variable with the GET DIAGNOSTICS statement to perform

exception checking. This method conforms to X/Open and ANSI SQL standards and supports multiple exceptions.

The next three sections describe how to use the SQLCODE variable and the sqlca structure to perform exception handling.

These sections cover the following topics:

• Understanding the sqlca structure

• Using the SQLCODE variable to obtain error codes

• Checking for the different types of exceptions with the sqlca structure

Fields of the sqlca structure

The sqlca structure is defined in the sqlca.h header file. The IBM® Informix® ESQL/C preprocessor automatically includes

the sqlca.h header file in the Informix® ESQL/C program.

The following table illustrates the fields of the sqlca structure.

Table 57. Fields of the sqlca structure

Field Type Value Value description

sqlcode int4 0 Indicates success.

>=0, < 100 After a DESCRIBE statement, represents the type of SQL statement that is

described.

100 After a successful query that returns no rows, indicates the NOT FOUND

condition. NOT FOUND can also occur in an ANSI-compliant database

after an INSERT INTO/SELECT, UPDATE, DELETE, or SELECT... INTO TEMP

statement fails to access any rows. For more information, see NOT FOUND

in SQLSTATE on page 288.

<0 Error code.

sqlerrm character (72) or

character (600)

When working with Informix® database servers this field is 72 characters

long and contains the error message parameter. This parameter is used to

replace a %s token in the actual error message. If an error message requires

no parameter, this field is blank.

sqlerrp character (8) Internal use only.

sqlerrd array of 6 int4s [0] After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or

DELETE statement, or after a select cursor is opened, this field contains the

estimated number of rows affected.

Chapter 1. ESQL/C Guide

Table 57. Fields of the sqlca structure (continued)

Field Type Value Value description

[1] When SQLCODE contains an error code, this field contains either zero or an

additional error code, called the ISAM error code, that explains the cause of

the main error.

After a successful insert operation of a single row, this field contains the

value of any SERIAL value generated for that row.

[2] After a successful multirow insert, update, or delete operation, this field

contains the number of rows that were processed.

After a multirow insert, update, or delete operation that ends with an error,

this field contains the number of rows that were successfully processed

before the error was detected.

[3] After a successful PREPARE statement for a SELECT, UPDATE, INSERT, or

DELETE statement, or after a select cursor was opened, this field contains

the estimated weighted sum of disk accesses and total rows processed.

[4] After a syntax error in a PREPARE, EXECUTE IMMEDIATE, DECLARE, or

static SQL statement, this field contains the offset in the statement text

where the error was detected.

[5] After a successful fetch of a selected row, or a successful insert, update, or

delete operation, this field contains the rowid (physical address) of the last

row that was processed. Whether this rowid value corresponds to a row that

the database server returns to the user depends on how the database server

processes a query, particularly for SELECT statements.

Table 58. Fields of the sqlca structure when opening a database

Field Type Value Value description

sqlwarn array of 8

characters

sqlwarn0 Set to W when any other warning field is set to W. If blank, others do not

need to be checked.

sqlwarn1 Set to W when the database now open uses a transaction log.

sqlwarn2 Set to W when the database now open is ANSI compliant.

sqlwarn3 Set to W.

sqlwarn4 Set to W when the database server stores the FLOAT data type in DECIMAL

form (done when the host system lacks support for FLOAT data types).

sqlwarn5 Reserved.

295

HCL Informix 14.10 - ESQL/C Programmer’s Guide

296

Table 58. Fields of the sqlca structure when opening a database (continued)

Field Type Value Value description

sqlwarn6 Set to W when the application is connected to a database server that is

running in secondary mode. The database server is a secondary server

in a data-replication pair (the database server is available only for read

operations).

sqlwarn7 Set to W when client DB_LOCALE does not match the database locale.

For more information, see the chapter on Informix® ESQL/C in the HCL®

Informix® GLS User's Guide.

Table 59. Fields of the sqlca structure for all other operations:

Field Type Value Value description

sqlwarn array of 8

characters

sqlwarn0 Set to W when any other warning field is set to W. If blank, other fields in

sqlwarn do not need to be checked.

sqlwarn1 Set to W if a column value is truncated when it is fetched into a host variable

with a FETCH or a SELECT...INTO statement. On a REVOKE ALL statement,

set to W when not all seven table-level privileges are revoked.

sqlwarn2 Set to W when a FETCH or SELECT statement returns an aggregate function

(SUM, AVG, MIN, MAX) value that is null.

sqlwarn3 On a SELECT...INTO, FETCH...INTO, or EXECUTE...INTO statement, set to W

when the number of items in the select list is not the same as the number

of host variables given in the INTO clause to receive them. On a GRANT ALL

statement, set to W when not all seven table-level privileges are granted.

sqlwarn4 Set to W after a DESCRIBE statement if the prepared statement contains a

DELETE statement or an UPDATE statement without a WHERE clause.

sqlwarn5 Set to W following execution of a statement that does not use

ANSI-standard SQL syntax (provided the DBANSIWARN environment

variable is set).

sqlwarn6 Set to W when a data fragment (a dbspace) has been skipped during query

processing (when the DATASKIP feature is on).

sqlwarn7 Reserved.

The SQLCODE variable
The SQLCODE variable is an int4 that indicates whether the SQL statement succeeded or failed.

The IBM® Informix® ESQL/C header file, sqlca.h, declares SQLCODE as a global variable. Since the Informix® ESQL/C

preprocessor automatically includes sqlca.h in the Informix® ESQL/C program, you do not need to declare SQLCODE.

Chapter 1. ESQL/C Guide

When the database server executes an SQL statement, the database server automatically updates the SQLCODE variable as

follows:

1. The database server stores the exception value in the sqlcode field of the sqlca structure.

2. Informix® ESQL/C copies the value of sqlca.sqlcode to the global SQLCODE variable.

Tip: For readability and brevity, use SQLCODE in your Informix® ESQL/C program in place of sqlca.sqlcode.

The SQLCODE value can indicate the following types of exceptions:

SQLCODE = 0

Success

SQLCODE = 100

NOT FOUND condition

SQLCODE < 0

Runtime error

SQLCODE in pure C modules

To return the same values that the SQLCODE status variable in Informix® ESQL/C modules returns, you can use SQLCODE in

pure C modules (modules with the .c extension) that you link to the Informix® ESQL/C program. To use SQLCODE in a pure

C module, declare SQLCODE as an external variable, as follows:

extern int4 SQLCODE;

SQLCODE and the exit() call

To return an error code to a parent process, do not attempt to use the SQLCODE value as an argument to the exit() system

call. When Informix® ESQL/C passes back the argument of exit() to the parent, it passes only the lower eight bits of the

value. Since SQLCODE is a four-byte (long) integer, the value that Informix® ESQL/C returns to the parent process might not

be what you expect.

To pass error information between processes, use the exit value as an indication that some type of error has occurred.

To obtain information about the actual error, use a temporary file, a database table, or some form of interprocess

communication.

SQLCODE after a DESCRIBE statement

The DESCRIBE statement returns information about a prepared statement before the statement executes. It operates on a

statement ID that a PREPARE statement has previously assigned to a dynamic SQL statement.

After a successful DESCRIBE statement, the database server sets SQLCODE (and sqlca.sqlcode) to a nonnegative integer

value that represents the type of SQL statement that DESCRIBE has examined. The sqlstype.h header file declares

297

HCL Informix 14.10 - ESQL/C Programmer’s Guide

298

constant names for each of these return values. For a list of possible SQLCODE values after a DESCRIBE statement, see

Determine the statement type on page 447.

Because the DESCRIBE statement uses the SQLCODE field differently than any other statement, you might want to revise

your exception-handling routines to accommodate this difference.

Check for exceptions with sqlca

After an SQL statement executes, the sqlca structure can indicate one of the four possible conditions that the following table

shows.

Table 60. Exceptions that the sqlca structure returns

Exception condition sqlca value

Success SQLCODE (and sqlca.sqlcode) = 0

Success, but no rows found SQLCODE (and sqlca.sqlcode) = 100

Success, but warnings generated sqlca.sqlwarn.sqlwarn0 = 'W'

To indicate specific warning:

• One of sqlwarn1 to sqlwarn7 in the sqlca.sqlwarn structure

is also set to W

Failure, runtime error generated SQLCODE (and sqlca.sqlcode) < 0

For a general introduction to these four conditions, see Types of database exceptions on page 277.

Success in sqlca

When the database server executes an SQL statement successfully, it sets SQLCODE (sqlca.sqlcode) to 0. The database

server might also set one or more of the following informational fields in sqlca after a successful SQL statement:

• After a PREPARE for a SELECT, DELETE, INSERT, or UPDATE:

◦ sqlca.sqlerrd[0] indicates an estimated number of rows affected.

◦ sqlca.sqlerrd[3] contains the estimated weighted sum of disk accesses and total rows processed.

• After an INSERT, sqlca.sqlerrd[1] contains the value that the database server has generated for a SERIAL column.

• After a SELECT, INSERT, DELETE, or UPDATE:

◦ sqlca.sqlerrd[2] contains the number of rows that the database server processed.

◦ sqlca.sqlerrd[5] contains the rowid (physical address) of the last row that was processed. Whether this rowid

value corresponds to a row that the database server returns to the user depends on how the database server

processes a query, particularly for SELECT statements.

• After a CONNECT, SET CONNECTION, DATABASE, CREATE DATABASE, or START DATABASE, the

sqlca.sqlwarn.sqlwarn0 field is set to W and other fields of sqlca.sqlwarn provide information about the database and

connection.

Chapter 1. ESQL/C Guide

NOT FOUND in SQLCODE

When a SELECT or FETCH statement encounters NOT FOUND (or END OF DATA), the database server sets SQLCODE

(sqlca.sqlcode) to 100. The following table lists conditions that cause SQL statements to yield NOT FOUND.

Table 61. SQLCODE values that are set when SQL statements do not return any rows

SQL statement where SQLCODE gets the indicated result
Result for ANSI-compliant

database

Result for

Non-ANSI-compliant

database

FETCH statement: the last qualifying row has already been

returned (the end of data was reached).

100 100

SELECT statement: no rows match the SELECT criteria. 100 100

DELETE and DELETE...WHERE statement (not part of

multistatement PREPARE): no rows match the DELETE

criteria.

100 0

INSERT INTO tablename SELECT statement (not part of

multistatement PREPARE): no rows match the SELECT

criteria.

100 0

SELECT... INTO TEMP statement (not part of multistatement

PREPARE): no rows match the SELECT criteria.

100 0

UPDATE...WHERE statement (not part of multistatement

PREPARE): no rows match the UPDATE criteria.

100 0

Table 61: SQLCODE values that are set when SQL statements do not return any rows on page 299 shows that what the

NOT FOUND condition generates depends, in some cases, on whether the database is ANSI compliant.

In the following example, the INSERT statement inserts into the hot_items table any stock item that has an order quantity

greater than 10,000. If no items have an order quantity that great, the SELECT part of the statement fails to insert any rows.

The database server returns 100 in an ANSI-compliant database and 0 if the database is not ANSI compliant.

EXEC SQL insert into hot_items
 select distinct stock.stock_num,
 stock.manu_code,description
 from items, stock
 where stock.stock_num = items.stock_num
 and stock.manu_code = items.manu_code
 and quantity > 10000;

For readability, use the constant SQLNOTFOUND for the END OF DATA value of 100. The sqlca.h header file defines the

SQLNOTFOUND constant. The following comparison checks for the NOT FOUND and END OF DATA conditions:

if(SQLCODE == SQLNOTFOUND)

299

HCL Informix 14.10 - ESQL/C Programmer’s Guide

300

Warnings in sqlca.sqlwarn

When the database server executes an SQL statement successfully, but encounters a warning condition, it updates the

following two fields in the sqlca.sqlwarn structure:

• It sets the sqlca.sqlwarn.sqlwarn0 field to the letter W.

• It sets one other field within the sqlwarn structure (sqlwarn1 to sqlwarn7) to the letter W to indicate the specific

warning condition.

These warnings are specific to HCL Informix®. Table 57: Fields of the sqlca structure on page 294 contains two sets of

warning conditions that can occur in the fields of the sqlca.sqlwarn structure. The first set of warnings, shown in Table 57:

Fields of the sqlca structure on page 294, occurs after the database server opens a database or establishes a connection.

For more information about these conditions, see Determine features of the database server on page 334. The second set

of warnings is for conditions that can occur as a result of other SQL statements.

To test for warnings, check whether the first warning field (sqlwarn0) is set to W. After you determine that the database server

has generated a warning, you can check the values of the other fields in sqlca.sqlwarn to identify the specific condition. For

example, if you want to find out what database a CONNECT statement has opened, you can use the code that the following

figure shows.

Figure 70. Code fragment that checks for warnings after a CONNECT statement

int trans_db, ansi_db, us_db = 0;
⋮

msg = "CONNECT stmt";
EXEC SQL connect to 'stores7';
if(SQLCODE < 0) /* < 0 is an error */
 err_chk(msg);
if (sqlca.sqlwarn.sqlwarn0 == 'W')
 {
 if (sqlca.sqlwarn.sqlwarn1 == 'W')
 trans_db = 1;
 if (sqlca.sqlwarn.sqlwarn2 == 'W')
 ansi_db = 1;
 if (sqlca.sqlwarn.sqlwarn3 == 'W')
 us_db = 1;
 }

Runtime errors in SQLCODE
When an SQL statement results in a runtime error, the database server sets SQLCODE (and sqlca.sqlcode) to a negative

value. The actual number identifies the particular error. The error message documentation lists the error codes specific to

HCL Informix® and their corrective actions.

From within your Informix® ESQL/C program, you can retrieve error message text that is associated with a negative

SQLCODE (sqlca.sqlcode) value with the rgetlmsg() or rgetmsg() library function.

When the database server encounters a runtime error, it might also set the following other fields in the sqlca structure:

Chapter 1. ESQL/C Guide

• sqlca.sqlerrd[1] to hold the additional ISAM error return code. You can also use the rgetlmsg() and rgetmsg() library

functions to obtain ISAM error message text.

• sqlca.sqlerrd[2] to indicate the number of rows processed before the error occurred in a multirow INSERT, UPDATE, or

DELETE statement.

• sqlca.sqlerrm is used differently depending on what type of database server is using it.

If the server is the HCL Informix® database server this value is set to an error message parameter. This value is used

to replace a %s token in the error message.

For example, in the following error message, the name of the table (sam.xyz) is saved in sqlca.sqlerrm:

310: Table (sam.xyz) already exists in database.

If the server is theIBM® DB2® database server this field is set to the complete error message.

• sqlca.sqlerrd[4] after a PREPARE, EXECUTE IMMEDIATE, or DECLARE statement that encountered an error.

Tip: You can also test for errors with the WHENEVER SQLERROR statement.

Errors after a PREPARE statement

When the database server returns an error for a PREPARE statement, this error is usually because of a syntax error in the

prepared text. When this occurs, the database server returns the following information:

• The SQLCODE variable indicates the cause of the error.

• The sqlca.sqlerrd[4] field contains the offset into the prepared statement text at which the error occurs. Your

program can use the value in sqlca.sqlerrd[4] to indicate where the syntax of the dynamically prepared text is

incorrect.

If you prepare multiple statements with a single PREPARE statement, the database server returns an error status on the first

error in the text, even if it encounters several errors.

Important: The sqlerrd[4] field, which is the offset of the error into the SQL statement, might not always be correct

because the IBM® Informix® ESQL/C preprocessor converts the embedded SQL statements into host-language

format. In so doing, the preprocessor might change the relative positions of the elements within the embedded

statement.

For example, consider the following statement, which contains an invalid WHERE clause:

EXEC SQL INSERT INTO tab VALUES (:x, :y, :z)
 WHERE i = 2;

The preprocessor converts this statement to a string like the following string:

" insert into tab values (? , ? , ?) where i = 2 "

301

HCL Informix 14.10 - ESQL/C Programmer’s Guide

302

This string does not have the EXEC SQL keywords. Also, the characters ?, ?, ? have replaced :x, :y, :z (five characters

instead of eight). The Informix® ESQL/C preprocessor has also dropped a newline character between the left parenthesis

(")") and the WHERE keyword. Thus, the offset of error in the SQL statement that the database server sees is different from

the offset of the error in the embedded SQL statement.

The sqlca.sqlerrd[4] field also reports statement-offset values for errors in the EXECUTE IMMEDIATE and DECLARE

statements.

SQLCODE after an EXECUTE statement

After an EXECUTE statement, the database server sets SQLCODE to indicate the success of the prepared statement as

follows:

• If the database server cannot execute a prepared statement successfully, it sets SQLCODE to a value less than 0. The

SQLCODE variable holds the error that the database server returns from the statement that failed.

• If the database server can successfully execute the prepared statement in the block, it sets SQLCODE to 0; if the

prepared block includes multiple statements, all of the statements succeeded.

Display error text (Windows™)
Your IBM® Informix® ESQL/C application can use the HCL Informix® ERRMESS.HLP file to display text that describes an

error and its corrective action.

You can call the Windows™ API WinHelp() with the following WinHelp parameters.

WinHelp parameter

Data

HELP_CONTEXT

Error number from SQLCODE or sqlca.sqlcode

HELP_CONTEXTPOPUP

Error number from SQLCODE or sqlca.sqlcode

HELP_KEY

Pointer to string that contains error number from SQLCODE or sqlca.sqlcode and is converted to ASCII with

sprintf() or wsprintf()

HELP_PARTIALKEY

Pointer to string that contains error number from SQLCODE or sqlca.sqlcode and is converted to ASCII with

sprintf() or wsprintf()

Choose an exception-handling strategy

By default, the IBM® Informix® ESQL/C application does not perform any exception handling for SQL statements. Therefore,

unless you explicitly provide such code, execution continues when an exception occurs. While this behavior might not be too

Chapter 1. ESQL/C Guide

serious for successful execution, warnings, and NOT FOUND conditions, it can have serious consequences in the event of a

runtime error.

A runtime error might halt the program execution. Unless you check for and handle these errors in the application code, this

behavior can cause the user confusion and annoyance. It also can leave the application in an inconsistent state.

Within the Informix® ESQL/C application, choose a consistent strategy for exception handling. You can choose one of the

following exception-handling strategies:

• You can check after each SQL statement, which means that you include code to test the value of SQLSTATE (or

SQLCODE) after each SQL statement.

• You can use the WHENEVER statement to associate a response to take each time a particular type of exception

occurs.

Important: Consider how to perform exception handling in an application before you begin development so that you

take a consistent and maintainable approach.

Check after each SQL statement
To check for an exception, you can include code to explicitly test the value of SQLSTATE (or SQLCODE).

Tip: Decide whether to use SQLSTATE (and the diagnostics area) or SQLCODE (and the sqlca structure) to determine

exception values. Use the chosen exception-handling variables consistently. If you mix these two variables

unnecessarily, you create code that is difficult to maintain. Keep in mind that SQLSTATE is the more flexible and

portable of these two options.

For example, if you want to use SQLSTATE to check whether a CREATE DATABASE statement has executed as expected, you

can use the code that the following figure shows.

Figure 71. Using SQLSTATE to test whether an error occurred during an SQL statement

EXEC SQL create database personnel with log;
if(strncmp(SQLSTATE, "02", 2) > 0) /* > 02 is an error */
{
EXEC SQL get diagnostics exception 1
:message = MESSAGE_TEXT, :messlen = MESSAGE_LENGTH;
message[messlen] ='\0'; /* terminate the string. */

printf("SQLSTATE: %s, %s\n", SQLSTATE, message);
exit(1);
}

As an alternative, you can write an exception-handling function that processes any exception. Your program can then call this

single exception-handling function after each SQL statement.

303

HCL Informix 14.10 - ESQL/C Programmer’s Guide

304

The sqlstate_exception() function, which the following figure shows, is an example of an exception-handling function that

uses the SQLSTATE variable and the diagnostics area to check for warnings, the NOT FOUND condition, and runtime errors. It

is called after each SQL statement.

Figure 72. Example of an exception-handling function that uses SQLSTATE

EXEC SQL select * from customer where fname not like "%y";
sqlstate_exception("select");
⋮;

int4 sqlstate_exception(s)
char *s;
{
 int err = 0;

 if(!strncmp(SQLSTATE, "00", 2) ||
 !strncmp(SQLSTATE,"02",2))
 return(SQLSTATE[1]);

 if(!strncmp(SQLSTATE, "01", 2))
 printf("\n********Warning encountered in %s********\n",
 statement);
 else /* SQLSTATE class > "02" */
 {
 printf("\n********Error encountered in %s********\n",
 statement);
 err = 1;
 }

 disp_sqlstate_err(); /* See the getdiag sample program */
 if(err)
 {
 printf("********Program terminated*******\n\n");
 exit(1);
 }

 /*
 * Return the SQLCODE
 */
 return(SQLCODE);
}

The sqlstate_exception() function, which Figure 72: Example of an exception-handling function that uses SQLSTATE on

page 304 shows, handles exceptions as follows:

• If the statement was successful, sqlstate_exception() returns zero.

• If a NOT FOUND condition occurs after a SELECT or a FETCH statement, sqlstate_exception() returns a value of 2.

• If a warning or a runtime error occurs—that is, if the first two bytes of SQLSTATE are "01" (warning) or are greater

than "02" (error)—the sqlstate_exception() function calls the disp_sqlstate_err() function to display exception

information. (For the code of the disp_sqlstate_err() function, see Lines 32 - 80 on page 312.)

• If SQLSTATE indicates an error, the sqlstate_exception() function uses the exit() system call to exit the program.

Without this call to exit(), execution would continue at the next SQL statement after the one that had generated the

error.

Chapter 1. ESQL/C Guide

To handle errors, the sqlstate_exception() function can alternatively omit the exit() call and allow execution to continue. In

this case, the function must return the SQLSTATE or SQLCODE (for errors specific to HCL Informix®) value so the calling

program can determine what action to take for a runtime error.

The WHENEVER statement
You can use the WHENEVER statement to trap for exceptions that occur during the execution of SQL statements.

The WHENEVER statement provides the following information:

• What condition to check for:

◦ SQLERROR checks whether an SQL statement has failed. The application performs the specified action when

the database server sets SQLCODE (sqlca.sqlcode) to a negative value and the class code of SQLSTATE to a

value greater than "02".

◦ NOT FOUND checks whether specified data has not been found. The application performs the specified

action when the database server sets SQLCODE (sqlca.sqlcode) to SQLNOTFOUND and the class code of

SQLSTATE to "02".

◦ SQLWARNING checks whether the SQL statement has generated a warning. The application performs

the specified action when the database server sets sqlca.sqlwarn.sqlwarn0 (and some other field of

sqlca.sqlwarn) to W and sets the class code of SQLSTATE to "01".

In a Windows™ environment, do not use the WHENEVER ERROR STOP construction in the IBM® Informix® ESQL/C

program that you want to compile as a DLL.

• What action to take when the specified condition occurs:

◦ CONTINUE ignores the exception and continues execution at the next statement after the SQL statement.

◦ GO TO label transfers execution to the section of code that the specified label introduces.

◦ STOP stops program execution immediately.

◦ CALL function name transfers execution to the specified function name.

If no WHENEVER statement exists for a given condition, the Informix® ESQL/C preprocessor uses CONTINUE as the default

action. To execute the sqlstate_exception() function (shown in Figure 72: Example of an exception-handling function that

uses SQLSTATE on page 304) every time an error occurs, you can use the GOTO action of the WHENEVER SQLERROR

statement. If you specify the SQLERROR condition of WHENEVER, you obtain the same behavior as if you check the

SQLCODE or SQLSTATE variable for an error after each SQL statement.

The WHENEVER statement for the GOTO action can take the following two forms:

• The ANSI-standard form uses the keywords GOTO (one word) and introduces the label name with a colon (:):

EXEC SQL whenever goto :error_label;

• The Informix® extension uses the keywords GO TO (two words) and specifies just the label name:

EXEC SQL whenever go to error_label;

With the GOTO action, your program automatically transfers control to the error_label label when the SQL statement

generates an exception. When you use the GOTO label action of the WHENEVER statement, your code must contain the

305

HCL Informix 14.10 - ESQL/C Programmer’s Guide

306

label and appropriate logic to handle the error condition. In the following example, the logic at label is simply a call to the

sqlstate_exception() function:

error_label:
 sqlstate_exception (msg);

You must define this error_label label in each program block that contains SQL statements. If your program contains more

than one function, you might need to include the error_label label and code in each function. Otherwise, the preprocessor

generates an error when it reaches the function that does not contain the error_label. It tries to insert the code that the

WHENEVER...GOTO statement has requested, but the function has not defined the error_label label.

To remove the preprocessor error, you can put the labeled statement with the same label name in each function, you can

issue another action for the WHENEVER statement to reset the error condition, or you can replace the GOTO action with the

CALL action to call a separate function.

You can also use the CALL keyword in the WHENEVER statement to call the sqlstate_exception() function when errors occur.

(The CALL option is the Informix® extension to the ANSI standard.)

If you want to call the sqlstate_exception() function every time an SQL error occurs in the program, take the following steps:

• Modify the sqlstate_exception() function so that it does not need any arguments. Functions that the CALL action

specifies cannot take arguments. To pass information, use global variables instead.

• Put the following WHENEVER statement in the early part of your program, before any SQL statements:

EXEC SQL whenever sqlerror call sqlstate_exception;

Tip: In the preceding code fragment, you do not include the parentheses after the sqlstate_exception() function.

Make sure, however, that all functions that the WHENEVER...CALL affects can find a declaration of the sqlstate_exception()

function.

Library functions for retrieving error messages

Each SQLCODE value has an associated message. Error message files in the $INFORMIXDIR/msg directory store the

message number and its text.

When you use SQLCODE and the sqlca structure, you can retrieve error message text with the rgetlmsg() and rgetmsg()

functions. Both of these functions take the SQLCODE error code as input and return the associated error message.

Chapter 1. ESQL/C Guide

Tip: When you use SQLSTATE and the GET DIAGNOSTICS statement, you can access information in the

MESSAGE_TEXT field of the diagnostics area to retrieve the message text that is associated with an exception.

Important: Use rgetlmsg() in any new Informix® ESQL/C code that you write. Informix® ESQL/C provides the

rgetmsg() function primarily for compatibility with earlier versions.

Display error text in a Windows™ environment
Your IBM® Informix® ESQL/C application can use the HCL Informix® ERRMESS.HLP file to display text that describes an

error and its corrective action.

You can call the Windows™ API WinHelp() with the following WinHelp parameters.

WinHelp parameter

Data

HELP_CONTEXT

Error number from SQLCODE or sqlca.sqlcode

HELP_CONTEXTPOPUP

Error number from SQLCODE or sqlca.sqlcode

HELP_KEY

Pointer to string that contains error number from SQLCODE or sqlca.sqlcode and is converted to ASCII with

sprintf() or wsprintf()

HELP_PARTIALKEY

Pointer to string that contains error number from SQLCODE or sqlca.sqlcode and is converted to ASCII with

sprintf() or wsprintf()

A program that uses exception handling

The getdiag.ec program contains exception handling on each of the SQL statements that the program executes. This

program is a modified version of the demo1.ec program. The version that this section lists and describes uses the following

exception-handling methods:

• The SQLSTATE variable and the GET DIAGNOSTICS statement to obtain exception information.

• The SQLWARNING and SQLERROR keywords of the WHENEVER statement to call the whenexp_chk() function for

warnings and errors.

The whenexp_chk() function displays the error number and the accompanying ISAM error, if one exists. The exp_chk.ec

source file contains this function and its exception-handling functions. The getdiag.ec source file includes the

exp_chk.ec file.

307

HCL Informix 14.10 - ESQL/C Programmer’s Guide

308

Compile the program

Use the following command to compile the getdiag program:

esql -o getdiag getdiag.ec

The -o getdiag option tells esql to name the executable program getdiag. Without the -o option, the name of the executable

program defaults to a.out.

Guide to the getdiag.ec file

The annotations in this section primarily describe the exception-handling statements.

===
1. #include <stdio.h>
2. EXEC SQL define FNAME_LEN 15;
3. EXEC SQL define LNAME_LEN 15;
4. int4 sqlstate_err();
5. extern char statement[20];
6. main()
7. {
8. EXEC SQL BEGIN DECLARE SECTION;
9. char fname[FNAME_LEN + 1];
10. char lname[LNAME_LEN + 1];
11. EXEC SQL END DECLARE SECTION;
12. EXEC SQL whenever sqlerror CALL whenexp_chk;
13. EXEC SQL whenever sqlwarning CALL whenexp_chk;
14. printf("GETDIAG Sample ESQL program running.\n\n");
15. strcpy (statement, "CONNECT stmt");
16. EXEC SQL connect to 'stores7';
17. strcpy (statement, "DECLARE stmt");
18. EXEC SQL declare democursor cursor for
19. select fname, lname
20. into :fname, :lname;
21. from customer
22. where lname < 'C';
23. strcpy (statement, "OPEN stmt");
24. EXEC SQL open democursor;
25. strcpy (statement, "FETCH stmt");
26. for (;;)
27. {
28. EXEC SQL fetch democursor;
29. if(sqlstate_err() == 100)
30. break;
31. printf("%s %s\n", fname, lname);
32. }
33. strcpy (statement, "CLOSE stmt");
34. EXEC SQL close democursor;
===

Line 4

Line 4 declares an external global variable to hold the name of the most-recently executed SQL statement. The exception-

handling functions use this information (see Lines 169 - 213 on page 317).

Chapter 1. ESQL/C Guide

Lines 12 and 13

The WHENEVER SQLERROR statement tells the IBM® Informix® ESQL/C preprocessor to add code to the program to call the

whenexp_chk() function whenever an SQL statement generates an error. The WHENEVER SQLWARNING statement tells the

Informix® ESQL/C preprocessor to add code to the program to call the whenexp_chk() function whenever an SQL statement

generates a warning. The whenexp_chk() function is in the exp_chk.ec file, which line 40 includes.

Line 15

The strcpy() function copies the string "CONNECT stmt" to the global statement variable. If an error occurs, the whenexp_chk()

function uses this variable to print the name of the statement that caused the failure.

Lines 17, 23, 25, and 33

These lines copy the name of the current SQL statement into the statement variable before the DECLARE, OPEN, FETCH, and

CLOSE statements execute. This action enables the whenexp_chk() function to identify the statement that failed if an error

occurs.

===
36. strcpy (statement, "FREE stmt");
37. EXEC SQL free democursor;
38. strcpy (statement, "DISCONNECT stmt");
39. EXEC SQL disconnect current;
40. printf("\nGETDIAG Sample Program Over.\n");
41. } /* End of main routine */
42. EXEC SQL include exp_chk.ec;
===

Lines 35 and 37

These lines copy the name of the current SQL statement into the statement variable before the FREE and DISCONNECT

statements execute. The whenexp_chk() function uses the statement variable to identify the statement that failed if an error

occurs.

Line 41

The whenexp_chk() function examines the SQLSTATE status variable to determine the outcome of an SQL statement.

Because several demonstration programs use the whenexp_chk() function with the WHENEVER statement for exception

handling, the whenexp_chk() function and its supporting functions are placed in a separate source file, exp_chk.ec.

The getdiag program must include this file with the Informix® ESQL/C include directive because the exception-handling

functions use Informix® ESQL/C statements.

Tip: Consider putting functions such as whenexp_chk() into a library and include this library on the command line

when you compile the Informix® ESQL/C program.

Guide to the exp_chk.ec file
The exp_chk.ec file contains exception-handling functions for the Informix® ESQL/C demonstration programs.

309

HCL Informix 14.10 - ESQL/C Programmer’s Guide

310

These functions support the following two types of exception handling:

• A function that a WHENEVER SQLERROR CALL statement specifies performs exception handling.

Functions to support this type of exception handling include whenexp_chk(), sqlstate_err(), and disp_sqlstate_err().

The getdiag sample program in this chapter uses this form of exception handling.

• A function that the IBM® Informix® ESQL/C program calls explicitly after each SQL statement performs exception

handling.

Functions to support this type of exception handling include exp_chk(), exp_chk2(), sqlstate_err(), disp_sqlstate_err(),

and disp_exception(). The dispcat_pic sample program (Simple large objects on page 135) uses exp_chk2()

while the dyn_sql sample program (A system-descriptor area on page 477) uses exp_chk() to perform exception

handling.

To obtain exception information, the preceding functions use the SQLSTATE variable and the GET DIAGNOSTICS statement.

They use SQLCODE only when they need information specific to Informix®.

===
1. EXEC SQL define SUCCESS 0;
2. EXEC SQL define WARNING 1;
3. EXEC SQL define NODATA 100;
4. EXEC SQL define RTERROR -1;
5. char statement[80];
6. /*
7. * The sqlstate_err() function checks the SQLSTATE status variable
 * to see
8. * if an error or warning has occurred following an SQL statement.
9. */
10. int4 sqlstate_err()
11. {
12. int4 err_code = RTERROR;
13. if(SQLSTATE[0] == '0') /* trap '00', '01', '02' */
14. {
15. switch(SQLSTATE[1])
16. {
17. case '0': /* success - return 0 */
18. err_code = SUCCESS;
19. break;
20. case '1': /* warning - return 1 */
21. err_code = WARNING;
22. break;
23. case '2': /* end of data - return 100 */
24. err_code = NODATA;
25. break;
26. default: /* error - return -1*/
27. break;
28. }
29. }
30. return(err_code);
31. }
===

Chapter 1. ESQL/C Guide

Lines 1 - 4

These Informix® ESQL/C define directives create definitions for the success, warning, NOT FOUND, and runtime error

exceptions. Several functions in this file use these definitions instead of constants to determine actions to take for a given

type of exception.

Line 5

The statement variable is a global variable that the calling program (which declares it as extern) sets to the name of the

most-recent SQL statement.

The whenexp_chk() function displays the SQL statement name as part of the error information (see lines 85 and 92).

Lines 6 - 31

The sqlstate_err() function returns a status of 0, 1, 100, or -1 to indicate if the current exception in SQLSTATE is a success,

warning, NOT FOUND, or runtime error. The sqlstate_err() function checks the first two characters of the global SQLSTATE

variable. Because Informix® ESQL/C automatically declares the SQLSTATE variable, the function does not need to declare it.

Line 13 checks the first character of the global SQLSTATE variable. This character determines whether the most-recently

executed SQL statement has generated a non-error condition. Non-error conditions include the NOT FOUND condition (or

END OF DATA), success, and warnings. Line 15 checks the second character of the global SQLSTATE variable (SQLSTATE[1])

to determine the type of non-error condition generated.

The sqlstate_err() function sets err_code to indicate the exception status as follows:

• Lines 17 - 19: If SQLSTATE has a class code of "00", the most-recently executed SQL statement was successful. The

sqlstate_err() function returns 0 (which line 1 defines as SUCCESS).

• Lines 20 - 22: If SQLSTATE has a class code of "01", the most-recently executed SQL statement generated a warning.

The sqlstate_err() function returns 1 (which line 2 defines as WARNING).

• Lines 23 - 25: If SQLSTATE has a class code of "02", the most-recently executed SQL statement generated the NOT

FOUND (or END OF DATA) condition. The sqlstate_err() function returns 100 (which line 3 defines as NODATA).

If SQLSTATE[1] contains any character other than '0', '1', or '2', then the most-recently executed SQL statement generated

a runtime error. SQLSTATE also indicates a runtime error if SQLSTATE[0] contains some character other than '0'. In either

case, line 30 returns a negative one (-1) (which line 4 defines as RTERROR).

===
32. /*
33. * The disp_sqlstate_err() function executes the GET DIAGNOSTICS
34. * statement and prints the detail for each exception that is
35. * returned.
36. */
37. void disp_sqlstate_err()
38. {
39. mint j;
40. EXEC SQL BEGIN DECLARE SECTION;
41. mint exception_count;
42. char overflow[2];

311

HCL Informix 14.10 - ESQL/C Programmer’s Guide

312

43. int exception_num=1;
44. char class_id[255];
45. char subclass_id[255];
46. char message[8191];
47. mint messlen;
48. char sqlstate_code[6];
49. mint i;
50. EXEC SQL END DECLARE SECTION;
51. printf("---------------------------------");
52. printf("-------------------------\n");
53. printf("SQLSTATE: %s\n",SQLSTATE);
54. printf("SQLCODE: %d\n", SQLCODE);
55. printf("\n");
56. EXEC SQL get diagnostics :exception_count = NUMBER,
57. :overflow = MORE;
58. printf("EXCEPTIONS: Number=%d\t", exception_count);
59. printf("More? %s\n", overflow);
60. for (i = 1; i <= exception_count; i++)
61. {
62. EXEC SQL get diagnostics exception :i
63. :sqlstate_code = RETURNED_SQLSTATE,
64. :class_id = CLASS_ORIGIN, :subclass_id = SUBCLASS_ORIGIN,
65. :message = MESSAGE_TEXT, :messlen = MESSAGE_LENGTH;
66. printf("- - - - - - - - - - - - - - - - - - - -\n");
67. printf("EXCEPTION %d: SQLSTATE=%s\n", i,
68. sqlstate_code);
69. message[messlen-1] = '\0';
70. printf("MESSAGE TEXT: %s\n", message);
71. j = byleng(class_id, stleng(class_id));
72. class_id[j] = '\0';
73. printf("CLASS ORIGIN: %s\n",class_id);
74. j = byleng(subclass_id, stleng(subclass_id));
75. subclass_id[j] = '\0';
76. printf("SUBCLASS ORIGIN: %s\n",subclass_id);
77. }
78. printf("---------------------------------");
79. printf("-------------------------\n");
80. }
===

Lines 32 - 80

The disp_sqlstate_err() function uses the GET DIAGNOSTICS statement to obtain diagnostic information about the most-

recently executed SQL statement.

Lines 40 - 50 declare the host variables that receive the diagnostic information. The GET DIAGNOSTICS statement copies

information from the diagnostics area into these host variables. Line 48 includes a declaration for the SQLSTATE value

(called sqlstate_code) because the disp_sqlstate_err() function handles multiple exceptions. The sqlstate_code variable

holds the SQLSTATE value for each exception.

Lines 53 - 55 display the values of the SQLSTATE and SQLCODE variables. If SQLSTATE contains "IX000" (an error specific to

HCL Informix®), SQLCODE contains the error code that is specific toInformix®.

The first GET DIAGNOSTICS statement (lines 56 and 57) stores the statement information in the :exception_count and

:overflow host variables. Lines 58 and 59 then display this information.

Chapter 1. ESQL/C Guide

The for loop (lines 60 - 77) executes for each exception that the most-recently executed SQL statement has generated. The

:exception_count host variable, which holds the number of exceptions, determines the number of iterations that this loop

performs.

The second GET DIAGNOSTICS statement (lines 62 - 65) obtains the exception information for a single exception. Lines

67 - 70 print the SQLSTATE value (sqlstate_code) and its corresponding message text. In addition to SQL error messages,

disp_sqlstate_err() can display ISAM error messages because the MESSAGE_TEXT field of the diagnostics area also

contains these messages. The function uses the MESSAGE_LENGTH value to determine where to place a null terminator in

the message string. This action causes only the portion of the message variable that contains text to be output (rather than

the full 255-character buffer).

Declare both the class- and the subclass-origin host variables as character buffers of size 255. However, often the text for

these variables fills only a small portion of the buffer. Rather than display the full buffer, lines 71 - 73 use the Informix®

ESQL/C byleng() and stleng() library functions to display only that portion of :class_id that contains text; lines 74 - 76 perform

this same task for :subclass_id.

===
81. void disp_error(stmt)
82. char *stmt;
83. {
84. printf("\n********Error encountered in %s********\n",
85. stmt);
86. disp_sqlstate_err();
87. }
88. void disp_warning(stmt)
89. char *stmt;
90. {
91. printf("\n********Warning encountered in %s********\n",
92. stmt);
93. disp_sqlstate_err();
94. }
95. void disp_exception(stmt, sqlerr_code, warn_flg)
96. char *stmt;
97. int4 sqlerr_code;
98. mint warn_flg;
99. {
100. switch(sqlerr_code)
101. {
102. case SUCCESS:
103. case NODATA:
104. break;
105. case WARNING:
106. if(warn_flg)
107. disp_warning(stmt);
108. break;
109. case RTERROR:
110. disp_error(stmt);
111. break;
112. default:
113. printf("\n********INVALID EXCEPTION STATE for
 %s********\n",
114. stmt);
115. /* break;
116. }

313

HCL Informix 14.10 - ESQL/C Programmer’s Guide

314

117. }
===

Lines 81 - 87

The disp_error() function notifies the user of a runtime error. It calls the disp_sqlstate_err() function (line 86) to display the

diagnostic information.

Lines 88 - 94

The disp_warning() function notifies the user of a warning. It calls the disp_sqlstate_err() function (line 93) to display the

diagnostic information.

Lines 95 - 117

The disp_exception() function handles the display of the exception information. It expects the following three arguments:

stmt

The name of the most-recently executed SQL statement.

sqlerr_code

The code that sqlstate_err() returns to indicate the type of exception encountered.

warn_flg

A flag to indicate whether to display the diagnostic information for a warning.

Lines 102 - 104 handle the SUCCESS and NOData conditions. For either of these cases, the function displays no diagnostic

information. Lines 105 - 108 notify the user that a warning has occurred. The function checks the warn_flg argument to

determine whether to call the disp_warning() function to display warning information for the most-recently executed SQL

statement (lines 137 - 142). Lines 109 - 111 notify the user that a runtime error has occurred. The disp_err() function actually

handles display of the diagnostic information.

===
118. * The exp_chk() function calls sqlstate_err() to check the SQLSTATE
119. * status variable to see if an error or warning has occurred
 * following
120. * an SQL statement. If either condition has occurred, exp_chk()
121. * calls disp_sqlstate_err() to print the detailed error
 * information.
122. *
123. * This function handles exceptions as follows:
124. * runtime errors - call exit()
125. * warnings - continue execution, returning "1"
126. * success - continue execution, returning "0"
127. * Not Found - continue execution, returning "100"
128. */
129. long exp_chk(stmt, warn_flg)
130. char *stmt;
131. int warn_flg;
132. {
133. int4 sqlerr_code = SUCCESS;
134. sqlerr_code = sqlstate_err();

Chapter 1. ESQL/C Guide

135. disp_exception(stmt, sqlerr_code, warn_flg);
136. if(sqlerr_code == RTERROR) /* Exception is a runtime error */
137. {
138. /* Exit the program after examining the error */
139. printf("********Program terminated********\n\n");
140. exit(1);
141. }
142. /* else /* Exception is "success", "Not Found", */
143 . return(sqlerr_code); /* or "warning" */
144. }
===

Lines 118 - 144

The exp_chk() function is one of three wrapper functions that handle exceptions. It analyzes the SQLSTATE value to

determine the success or failure of the most-recent SQL statement. This function is called explicitly after each SQL

statement. This design requires the following features:

• The exp_chk() function passes as an argument the name of the SQL statement that generated the exception.

Because the WHENEVER statement does not invoke the function, the function is not restricted to using a global

variable.

• The exp_chk() function returns a value in the event of a successful execution of the SQL statement (0), the NOT

FOUND condition (100), or a warning (1).

Because the calling program explicitly calls exp_chk(), the calling program can handle the return value.

• The exp_chk() function uses a flag argument (warn_flg) to indicate whether to display warning information to the

user.

Because warnings can indicate non-serious errors and, after a CONNECT, can be informational, displaying warning

information can be both distracting and unnecessary to the user. The warn_flg argument allows the calling program

to determine whether to display warning information that SQL statements might generate.

The sqlstate_err() function (line 134) determines the type of exception that SQLSTATE contains. The function then calls

disp_exception() (line 135) and passes the warn_flg argument to indicate whether to display warning information. To handle

a runtime error, the sqlstate_err() function calls the exit() system function (lines 136 - 141) to terminate the program. This

behavior is the same as what the whenexp_chk() function (see lines 170 - 214) provides for runtime errors.

The dyn_sql sample program also uses exp_chk() to handle exceptions.

===
145. * The exp_chk2() function calls sqlstate_err() to check the
 * SQLSTATE
146. * status variable to see if an error or warning has occurred
 * following
147. * an SQL statement. If either condition has occurred, exp_chk2()
148. * calls disp_sqlstate_err() to print the detailed error
 * information.
149. *
150. * This function handles exceptions as follows:

315

HCL Informix 14.10 - ESQL/C Programmer’s Guide

316

151. * runtime errors - continue execution, returning SQLCODE (<0)
152. * warnings - continue execution, returning one (1)
153. * success - continue execution, returning zero (0)
154. * Not Found - continue execution, returning 100
155. */
156. int4 exp_chk2(stmt, warn_flg)
157. char *stmt;
158. mint warn_flg;
159. {
160. int4 sqlerr_code = SUCCESS;
161. int4 sqlcode;
162. sqlcode = SQLCODE; /* save SQLCODE in case of error */
163. sqlerr_code = sqlstate_err();
164. disp_exception(stmt, sqlerr_code, warn_flg);
165. if(sqlerr_code == RTERROR)
166. /* sqlerr_code = sqlcode;
167. return(sqlerr_code);
168. }
===

Lines 145 - 168

The exp_chk2() function is the second of the three exception-handling wrapper functions in the exp_chk.ec file. It performs

the same basic task as the exp_chk() function. Both functions are called after each SQL statement and both return a status

code. The only difference between the two is in the way they respond to runtime errors. The exp_chk() function calls exit() to

terminate the program (line 140), while the exp_chk2() function returns the SQLCODE value to the calling program (lines 165

- 166).

The exp_chk2() function returns SQLCODE rather than SQLSTATE to allow the program to check for particular error codes

that are specific to HCL Informix®. A possible enhancement might be to return both the SQLSTATE and SQLCODE values.

The dyn_sql sample program also uses exp_chk2() to handle exceptions.

===
169. *
170. * The whenexp_chk() function calls sqlstate_err() to check the
 * SQLSTATE
171. * status variable to see if an error or warning has occurred
 * following
172. * an SQL statement. If either condition has occurred, whenerr_chk()
173. * calls disp_sqlstate_err() to print the detailed error
 * information.
174. *
175. * This function is expected to be used with the WHENEVER SQLERROR
176. * statement: it executes an exit(1) when it encounters a negative
177. * error code. It also assumes the presence of the "statement"
 * global
178. * variable, set by the calling program to the name of the statement
179. * encountering the error.
180. */
181. whenexp_chk()
182. {
183. int4 sqlerr_code = SUCCESS;
184. mint disp = 0;
185. sqlerr_code = sqlstate_err();

Chapter 1. ESQL/C Guide

186. if(sqlerr_code == WARNING)
187. {
188. disp = 1;
189. printf("\n********Warning encountered in %s********\n",
190. statement);
191. }
192. else
193. if(sqlerr_code == RTERROR)
194. {
195. printf("\n********Error encountered in %s********\n",
196. statement);
197. disp = 1;
198. }
199. if(disp)
200. disp_sqlstate_err();
201. if(sqlerr_code == RTERROR)
202. {
203. /* Exit the program after examining the error */
204. printf("********Program terminated*******\n\n");
205. exit(1);
206. }
207. else
208. {
209. if(sqlerr_code == WARNING)
210. printf("\n********Program execution
 continues********\n\n");
211. return(sqlerr_code);
212. }
213. }
===

Lines 169 - 213

The whenexp_chk() function is the third exception-handling wrapper function in the exp_chk.ec file. It too analyzes the

SQLSTATE values and uses the GET DIAGNOSTICS statement for exception handling. However, this function is called with

the following WHENEVER statements:

EXEC SQL whenever sqlerror call whenexp_chk;
EXEC SQL whenever sqlwarning call whenexp_chk;

The WHENEVER statement imposes the following restrictions on the design of the whenexp_chk() function:

• The whenexp_chk() function cannot receive arguments; therefore, the function uses a global variable, statement, to

identify the SQL statement that generated the exception (lines 190 and 196).

To use arguments with the whenexp_chk() function, you can use the GOTO clause of the WHENEVER statement.

EXEC SQL whenever sqlerror goto :excpt_hndlng;

where the label :excpt_hndlng would have the following code:

:excpt_hndlng
 whenexp_chk(statement);

317

HCL Informix 14.10 - ESQL/C Programmer’s Guide

318

• The whenexp_chk() function cannot return any value; therefore, it cannot return the particular exception code to the

main program.

For this reason, whenexp_chk() handles runtime errors instead of the main program; whenexp_chk() calls the exit()

function when it encounters a runtime error. To have the main program access the error code, you can modify

whenexp_chk() to set a global variable.

The getdiag sample program, which this chapter describes, uses whenexp_chk() to handle exceptions. See lines 11 and 12 of

the getdiag.ec file in Guide to the getdiag.ec file on page 308.

The sqlstate_err() function (line 185) returns an integer that indicates the success of the most-recently executed SQL

statement. This return value is based on the SQLSTATE value.

Lines 186 - 198 display a special line to bring attention to the exception information that was generated. The disp variable

is a flag that indicates whether to display exception information. The function displays exception information for warnings

(WARNING) and runtime errors (RTERROR) but not for other exception conditions. The calls to the printf() function (lines 189

and 195) display the name of the SQL statement that generated the warning or error. A global variable (called statement)

must store this statement name because the function cannot receive it as an argument.

The disp_sqlstate_err() function (lines 199 and 200) displays the information that the diagnostics area contains only if

SQLSTATE indicates a warning or a runtime error (disp = 1).

Lines 201 - 206 handle a runtime error. They notify the user of the program termination and then use the exit() system call

(line 205) to terminate the program. The call to the disp_sqlstate_err() function (line 200) has already displayed information

about the cause of the runtime error.

Working with the database server
These topics explain how the HCL Informix® ESQL/C program can interact with a database server.

It contains the following information:

• A description of the client-server architecture of the Informix® ESQL/C application

• An overview of the ways the Informix® ESQL/C program can interact with the database server

• The syntax of the Informix® ESQL/C library functions that control the database server

The end of these topics present an annotated example program that is called timeout. The timeout sample program

demonstrates how to interrupt an SQL request.

The client-server architecture of ESQL/C applications

When the IBM® Informix® ESQL/C program executes an SQL statement, it effectively passes the statement to a database

server. The database server receives SQL statements from the database application, parses them, optimizes the approach to

data retrieval, retrieves the data from the database, and returns the data and status information to the application.

Chapter 1. ESQL/C Guide

The Informix® ESQL/C program and the database server communicate with each other through an interprocess-

communication mechanism. The Informix® ESQL/C program is the client process in the dialogue because it requests

information from the database server. The database server is the server process because it provides information in response

to requests from the client. The division of labor between the client and server processes is advantageous in networks where

data might not be on the same computer as the client program that needs it.

When you compile the Informix® ESQL/C program, it is automatically equipped to communicate with database servers

that are either on the same computer (local) or over a network on other computers (remote). The following figure shows a

connection between the Informix® ESQL/C application and local database servers.

Figure 73. ESQL/C application that connects to a local database server

The following figure illustrates the Informix® ESQL/C application that connects across a network to a remote database

server.

Figure 74. ESQL/C application that connects to a remote database server

To establish a connection to a database server, your application must take the following actions:

• Identify database server connections that have been defined for the client-server environment of the application

• Execute an SQL statement to connect to a database server

The client-server connection
The IBM® Informix® ESQL/C application can establish a connection to any valid database environment. A database

environment can be a database, a database server, or a database and a database server.

Every database must have a database server to manage its information. To establish connections, the client application

must be able to locate information about the available database servers. This information is in the sqlhosts file or registry.

At run time, the application must also be able to access information about environment variables relevant for connection.

The following environment variables are accessed:

INFORMIXCONTIME

Defines a limit in seconds within which the client must establish a server connection

319

HCL Informix 14.10 - ESQL/C Programmer’s Guide

320

INFORMIXCONRETRY

Defines a limit on connection attempts (after an initial failure) within the INFORMIXCONTIME limit

INFORMIXSQLHOSTS

Defines where to find the sqlhosts information. The sqlhosts information contains a list of valid database

servers that the client can connect to, the type of connection to be used, and the server machine name

on which each database server is. On a UNIX™ operating system, this is a path to a file. In a Windows™

environment, this is the name of the machine on the network that contains the central registry which is

accessible to the client application.

INFORMIXSERVER

Specifies the name of the default database server that the client connects to. This value identifies which entry

in the sqlhosts file or registry to use to establish the database connection.

Important: The client application connects to the default database server when the application does not explicitly

specify a database server for the connection. You must set the INFORMIXSERVER environment variable even if the

application does not establish a connection to the default database server.

The client also sends environment variables so that the database server can determine the server-processing locale. For

more information about how the database server establishes the server-processing locale, see the HCL® Informix® GLS

User's Guide.

The database server uses appropriate environment information when it processes the application requests. It ignores any

information that is not relevant. For example, if the application sends environment variables for a database with Asian

Language Support (ALS), but it connects to a non-ALS database, the database server ignores the ALS information.

For information about how to set environment variables, see the HCL® Informix® Guide to SQL: Reference for your operating

system.

Sources of connection information about a UNIX™ operating system

• The sqlhosts file, which contains definitions for all valid database servers in the network environment

• The INFORMIXSERVER environment variable, which specifies the default database server for the application

Many other environment variables can customize the database environment. For more information, see the HCL® Informix®

Guide to SQL: Reference and the HCL® Informix® Administrator's Guide.

Access the sqlhosts file

To establish a connection to a database server, the application process must be able to locate an entry for the database

server in the sqlhosts file. The sqlhosts file defines database server connections that are valid for the client-server

environment. For each database server, this file defines the following information:

Chapter 1. ESQL/C Guide

• The name of the database server.

• The type of connection to make between the client application and the database server.

• The name of the host computer where the database server is.

• The name of a system file or program to use to establish a connection.

The application expects to find the sqlhosts file in the $INFORMIXDIR/etc directory; however, you can change this

location or the name of the file with the INFORMIXSQLHOSTS environment variable. If the database server is not on the

computer where the client program runs, an sqlhosts file must be on the host computers of both the Informix® ESQL/C

client program and the database server.

The client application can connect to any database server that the sqlhosts file defines. If your application needs to

connect to a database server that sqlhosts does not define, you might need assistance from your database administrator

(DBA) to create the necessary entries in this file. In addition to the sqlhosts file, you might also need to configure system

network files to support connections. Your HCL® Informix® Administrator's Guide describes how to create a database server

entry in the sqlhosts file.

If you are enabling single-sign on (SSO), additional steps are in Configuring ESQL/C and ODBC drivers for SSO on page .

Specify the default database server

For your IBM® Informix® ESQL/C application to communicate with any database server, you must set the INFORMIXSERVER

environment variable to specify the name of the default database server. Therefore, the name of the default database server

must exist in the sqlhosts file and sqlhosts must exist on the computer that runs the application.

Sources of connection information in a Windows™ environment

To establish a connection to a database server, the IBM® Informix® ESQL/C application in a Windows™ environment

performs the following tasks:

• Provide information about the connection with the registry, the ifx_putenv() function, or the InetLogin structure

• Use a central registry for connection information

• Perform connection authentication for the application user

In Windows™ environments, Informix® ESQL/C obtains the configuration information from the InetLogin structure or the in-

memory copy of the registry.

If the application has initialized a field in InetLogin, Informix® ESQL/C sends this value to the database server. For any

field the application has not set in the InetLogin structure, Informix® ESQL/C uses the corresponding information in the

Informix® subkey of the registry.

Important: Because the application needs configuration information to establish a connection, you must set any

InetLogin configuration values before the SQL statement that establishes the connection.

The registry contains the following configuration information:

321

../sec/ids_sso_012.html#ids_sso_012
../sec/ids_sso_012.html#ids_sso_012
../sec/ids_sso_012.html#ids_sso_012
../sec/ids_sso_012.html#ids_sso_012

HCL Informix 14.10 - ESQL/C Programmer’s Guide

322

• The values of the Informix® environment variables

• Connection information

When a client Informix® ESQL/C application establishes a connection to a database server, it sends the configuration

information to the database server.

Set environment variables for connections in a Windows™ environment

The registry provides default values for most environment variables. For a description of environment variables and their

default values, see the HCL® Informix® Guide to SQL: Reference and the HCL® Informix® GLS User's Guide. To change the

value of an environment variable in the Registry, use the Environment tab of the Setnet32 utility, which the Informix® Client

Products Installation Guide describes.

For more information about how to change the environment variable for the current process, see Set and retrieve

environment variables in Windows environments on page 35. For more information about InetLogin, see The InetLogin

structure on page 36.

The sqlhosts information in a Windows™ environment

The registry contains the following connection information:

• The sqlhosts information defines a connection to an established database server.

This information includes the name of the host computer, the type of protocol to use, and the name of the

connection. The Registry stores the sqlhosts information in the SqlHosts subkey of the Informix® key. To store

sqlhosts information in the Registry, use the Server Information tab of the Setnet32 utility.

• The .netrc information defines a valid user for a remote connection.

On UNIX™ operating systems, this file is in the home directory of the user and specifies the name and password

for the user account. In Windows™ environments, the NETRC subkey of the Informix® key in the Registry stores

the same account information. To store .netrc information in the Registry, use the Host Information tab of the

Setnet32 utility.

The client sends network parameters to establish a connection to a database server. The first step in establishing a

connection is to log on to the correct host computer. The protocol software uses the network parameters for the current

database server. The client locates the network parameters for the current database server in either of the following ways:

1. If the SQL statement that requests the connection (such as a CONNECT or DATABASE) specifies the name of a

database server, the client sends the network parameters for this specified database server.

If the InfxServer field of InetLogin contains the name of the specified database server, the client checks InetLogin

for the network parameters. Otherwise, the client obtains network parameters for that database server from the in-

memory copy of the Registry.

2. If the SQL statement does not specify a database server, the client sends the network parameters for the default

database server.

Chapter 1. ESQL/C Guide

If the InfxServer field of InetLogin contains the name of a database server, the client checks InetLogin for the

network parameters. Otherwise, the client determines the default database server from the INFORMIXSERVER value

in the in-memory copy of the Registry. It then sends network parameter values from the Registry for that database

server.

Informix® ESQL/C checks the network parameter fields of InetLogin for any of these network parameters that the

application has currently set. For any fields (including the name of the default database server) that are not set, Informix®

ESQL/C obtains the values from the in-memory copy of the Registry. (For more information, see Precedence of configuration

values on page 41.)

For example, the following code fragment initializes the InetLogin structure with information for the mainsrvr database

server; mainsrvr is the default database server.

void *cnctHndl;
⋮;

strcpy(InetLogin.InfxServer, "mainsrvr");
strcpy(InetLogin.User, "finance");
strcpy(InetLogin.Password, "in2money");
EXEC SQL connect to 'accounts';
⋮;

QL connect to 'custhist@bcksrvr';

When execution reaches the first CONNECT statement in the preceding code fragment, the client application requests

a connection to the accounts database on the mainsrvr database server. The CONNECT statement does not specify a

database server, so the client sends the following network parameters for default database server:

• The default database server is mainsrvr because InfxServer is set in InetLogin.

• The User and Password values are finance and in2money because the application sets them in InetLogin.

• The Host, Service, Protocol, and AskPassAtConnect values are from the mainsrvr subkey of the Registry values,

because the application does not set them in InetLogin.

The second CONNECT statement in preceding code fragment requests a connection to the custhist database on the

bcksrvr database server. For this connection, the client sends the network parameters for the specified database server,

bcksrvr. Because the InetLogin structure currently contains network parameters for mainsrvr, the client must obtain all these

parameters from the in-memory copy of the Registry. Therefore, the application does not use the finance user account for

this second connection (unless the Registry specifies User and Password values of finance and in2money for the bcksrvr

database server).

If you are enabling single-sign on (SSO), the process differs. Details and additional steps for configuration, see Configuring

ESQL/C and ODBC drivers for SSO on page .

A central registry

You can specify the sqlhosts information in one of the following locations:

323

../sec/ids_sso_012.html#ids_sso_012
../sec/ids_sso_012.html#ids_sso_012
../sec/ids_sso_012.html#ids_sso_012
../sec/ids_sso_012.html#ids_sso_012
../sec/ids_sso_012.html#ids_sso_012

HCL Informix 14.10 - ESQL/C Programmer’s Guide

324

• The local registry is the registry that is on the same Windows™ computer as your IBM® Informix® ESQL/C

application.

• The central registry is a registry that two or more Informix® ESQL/C applications can access to obtain sqlhosts

information.

The central registry can be on the Domain Server or on any Windows™ workstation on the Microsoft™ network. It might be

local to one application and remote to all others. A central registry enables you to maintain a single copy of the sqlhosts

information for use by all Informix® ESQL/C applications in Windows™ environments.

To use a central registry, you must set the INFORMIXSQLHOSTS environment variable on your computer. This environment

variable specifies the name of the computer where the central registry is. To set this environment variable, you can use

Setnet32, the ifx_putenv() function (Set and retrieve environment variables in Windows environments on page 35), or the

InetLogin structure (The InetLogin structure on page 36).

In a Windows™ environment, the Informix® ESQL/C application uses the following precedence to locate sqlhosts

information when it requests a connection:

1. The sqlhosts information in the central registry, on computer that the INFORMIXSQLHOSTS environment variable

indicates (if INFORMIXSQLHOSTS is set)

2. The sqlhosts information in the local registry

Connection authentication functionality in a Windows™ environment

After the IBM® Informix® ESQL/C application has obtained the information about the connection (from either the registry or

the InetLogin structure), the ESQL client-interface DLL performs the following steps:

1. It copies connection information from the InetLogin structure (or from the registry for undefined InetLogin fields) into

a HostInfoStruct structure (see Table 62: Fields of the HostInfoStruct structure on page 324).

2. It passes a pointer to the HostInfoStruct to the sqlauth() function in the esqlauth.dll to verify connection

authentication.

If sqlauth() returns TRUE, the connection is verified and the user can access the server computer. However, if sqlauth()

returns FALSE, the connection is refused and access denied. By default, the sqlauth() function returns a value of TRUE.

The parameter passed to sqlauth() is a pointer to a HostInfoStruct structure, which the login.h header file defines. This

structure contains the subset of the InetLogin fields that the following table shows.

Table 62. Fields of the HostInfoStruct structure

HostInfoStruct field Data type Purpose

InfxServer char[19] Specifies the value for the INFORMIXSERVER network parameter

Host char[19] Specifies the value for the HOST network parameter

User char[19] Specifies the value for the USER network parameter passed into the

sqlauth() function

Chapter 1. ESQL/C Guide

Table 62. Fields of the HostInfoStruct structure (continued)

HostInfoStruct field Data type Purpose

Pass char[19] Specifies the value for the PASSWORD network parameter passed into the

sqlauth() function

AskPassAtConnect char[2] Indicates whether sqlauth() requests a password at connection time

passed into the sqlauth() function

Service char[19] Specifies the value for the SERVICE network parameter passed into the

sqlauth() function

Protocol char[19] Specifies the value for the PROTOCOL network parameter passed into the

sqlauth() function

Options char[20] Reserved for future use

Within sqlauth(), you can access the fields of HostInfoStruct with the pHostInfo pointer, as follows:

if (pHostInfo->AskPassAtConnect)

You can edit all the HostInfoStruct field values. ESQL/C, however, checks only the User and Pass fields of HostInfoStruct.

The following code fragment shows the default sqlauth() function, which the esqlauth.c file contains.

BOOL __declspec(dllexport) sqlauth (HostInfoStruct *pHostInfo)
{
 return TRUE;
}

This default action of sqlauth() means that Informix® ESQL/C performs no authentication verification when it establishes

a connection. To provide verification, you can customize the sqlauth() function. You might want to customize sqlauth() to

perform one of the following verification tasks:

• Validation of the user name

The function can compare the current user name against a list of valid or invalid user names.

• Prompt for a password

The function can check the value of the AskPassAtConnect field in the HostInfoStruct structure when this field is set

to Y or y. You can code sqlauth() to display a window that prompts the user to enter a password.

The following steps describe how to create a customized sqlauth() function:

325

HCL Informix 14.10 - ESQL/C Programmer’s Guide

326

1. Open the esqlauth.c source file in your system editor. This file is located in the %INFORMIXDIR%\demo

\esqlauth directory.

2. Add to the body of the sqlauth() function the code that performs the desired connection verification. Of the fields

in Table 62: Fields of the HostInfoStruct structure on page 324, the sqlauth() function can modify only the User

and Pass fields. Make sure that sqlauth() returns TRUE or FALSE to indicate whether to continue with the connection

request. Do not modify other code in this file.

Create a version of the esqlauth.dll by compiling the esqlauth.c file and specifying the -target:dll (or -wd) command-

line option of the esql command processor. For an example of how to define the sqlauth() function, see the esqlauth.c file

in the %INFORMIXDIR%\demo\esqlauth directory.

Connect to a database server

When the IBM® Informix® ESQL/C application begins execution, it has no connections to any database server. For SQL

statements to execute, however, such a connection must exist. To establish a connection to a database server, the Informix®

ESQL/C program must take the following actions:

• Use an SQL statement to establish a connection to the database server

• Specify, in the SQL statement, the name of the database server to which to connect

Establish a connection

The following two groups of SQL statements can establish connections to a database environment:

• The SQL connection statements are CONNECT, SET CONNECTION, and DISCONNECT. These statements conform to

ANSI SQL and X/Open standards for the creation of connections.

• The SQL database statements include DATABASE, CREATE DATABASE, CLOSE DATABASE, and START DATABASE.

These statements are a way to establish connections that are specific to HCL Informix®.

Important: It is recommended that you use the CONNECT, DISCONNECT, and SET CONNECTION connection

statements for new applications of Version 6.0 and later. For versions before 6.0, the SQL database statements

(such as DATABASE, START DATABASE, and CLOSE DATABASE) remain valid for compatibility with earlier versions.

The type of connection that the application establishes depends on which of these types of statements executes first in the

application:

• If the first SQL statement is a connection statement (CONNECT, SET CONNECT) statement, the application

establishes an explicit connection.

• If the first statement is an SQL database statement (DATABASE, CREATE DATABASE, START DATABASE), the

application establishes an implicit connection.

The explicit connection
When you use the CONNECT statement to connect to a database environment, you establish an explicit connection.

Chapter 1. ESQL/C Guide

The application connects directly to the database server that you specify. If you do not specify the name of a database

server in the CONNECT statement, the application establishes an explicit connection to the default database server (that the

INFORMIXSERVER environment variable identifies).

An explicit connection enables an application to support multiple connections to one or more database environments.

Although the application can connect to several database environments during its execution, only one connection can be

current at a time. Dormant connections are connections that the application has established but is not currently using. The

application must have a current connection to execute SQL statements.

The following SQL connection statements establish and manage explicit connections:

• The CONNECT statement establishes an explicit connection between a database environment and the application.

• The SET CONNECTION statement switches between explicit connections. It makes a dormant connection the current

connection.

• The DISCONNECT statement terminates a connection to a database environment.

These connection statements provide the following benefits, which allow you to create more portable applications:

• Compliance with ANSI and X/Open standards for database connections

• A uniform syntax for local and remote data access for use in a distributed client-server environment

• Support for multiple connections within a single application

Because the CONNECT, DISCONNECT, and SET CONNECTION statements include HCL Informix® extensions to ANSI-

standard syntax, these statements generate ANSI-extension warning messages at the following times:

• At run time, if you have set the DBANSIWARN environment variable

• At compile time, if you have compiled the Informix® ESQL/C source file with the -ansi preprocessor option

The Informix® ESQL/C application, not the database server, processes these connection statements. Therefore, the

application cannot use them in a PREPARE or an EXECUTE IMMEDIATE statement.

Important: Use of the DATABASE, CREATE DATABASE, START DATABASE, CLOSE DATABASE, and DROP DATABASE

statements is still valid with an explicit connection. However, in this context, refer only to databases that are local to

the current connection in these statements; do not use the @server or //server syntax.

The implicit Connection

When one of the following SQL statements is the first SQL statement that the application executes, the statement

establishes an implicit connection:

• The DATABASE statement creates an implicit connection to a database environment and opens the specified

database.

• The CREATE DATABASE statement creates an implicit connection and creates a database.

327

HCL Informix 14.10 - ESQL/C Programmer’s Guide

328

• The DROP DATABASE statement creates an implicit connection and drops (removes) the specified database.

• A single-statement PREPARE of one of the preceding statements also establishes an implicit connection.

When you execute one of the preceding statements, the application first connects to the default database server (that the

INFORMIXSERVER environment variable indicates). The default database server parses the database statement. If the

statement specifies the name of a database server, the application then connects to the specified database server. To

establish an implicit connection to a specified database server, an application must therefore connect to two database

servers. An explicit connection only requires a connection to a single database server, and therefore involves less overhead.

If an implicit connection exists, these database statements close it before they establish the new connection. The new

implicit connection remains open after the SQL statement completes. This behavior contrasts with explicit connections,

which allow multiple connections to the same or to a different database environment.

The CLOSE DATABASE statement closes the database and, in applications before version 6.0, also closes the implicit

connection to the database. If you precede these statements with a CONNECT, each can also operate in the context of the

current explicit connection.

Use of an implicit connection provides a smooth migration path for older applications into the connection-oriented

environment that CONNECT, DISCONNECT, and SET CONNECTION statements support. For more information about implicit

connections, see the CONNECT statement in the HCL® Informix® Guide to SQL: Syntax.

Summary of connection types

The following table summarizes the methods that IBM® Informix® ESQL/C supports to connect to a database server.

Table 63. Statements and functions that start the database server

The first column is the SQL statement or ESQL/C function. The second top column has two columns underneath it for the different types of connections: Implicit and Explicit. The third top column shows Effect on a connection to the database server and underneath it two columns: Establishes a connection and Opens a database.

SQL statement or ESQL/C function Implicit Explicit
Establishes a

connection

Opens a

database

If first SQL statement in the program is:

DATABASE Y Y Y

CREATE DATABASE Y Y Y

START DATABASE Y Y Y

DROP DATABASE Y Y

sqlstart() Y Y

CONNECT TO DEFAULT Y Y

CONNECT TO '@servername' Y Y

CONNECT TO 'dbname' Y Y Y

Chapter 1. ESQL/C Guide

Table 63. Statements and functions that start the database server

The first column is the SQL statement or ESQL/C function. The second top column has two columns underneath it for the different types of connections: Implicit and Explicit. The third top column shows Effect on a connection to the database server and underneath it two columns: Establishes a connection and Opens a database.

(continued)

SQL statement or ESQL/C function Implicit Explicit
Establishes a

connection

Opens a

database

CONNECT TO 'dbname@servername' Y Y Y

Establish an explicit connection in a Windows™ environment

With an implicit connection, one connection to the database server can exist for each IBM® Informix® ESQL/C module and

this connection cannot be shared. An explicit connection allows multiple connections within a client application. You might

want to design an application that needs to perform multiple connections for one of the following reasons:

• When you want multiple Informix® ESQL/C modules (either .exe or .dll) to use the same connection to manipulate

database data

Figure 75: Two scenarios in which multiple applications use a single connection to a database server on page 330

shows scenarios in which multiple applications use the same connection to a database server.

• When you want one Informix® ESQL/C module to create two or more connections to one or more databases, which

includes sharing an ESQL DLL between two C applications

Figure 76: One application that uses connections to more than one database server at the same time on page 330

shows a single application that establishes connections to multiple database servers.

Figure 75: Two scenarios in which multiple applications use a single connection to a database server on page 330 shows

the following two scenarios in which multiple applications share a single connection to the database server:

329

HCL Informix 14.10 - ESQL/C Programmer’s Guide

330

• The scenario on the left requires that APP1.EXE establish an explicit connection to the dbserverA database server.

After this connection is established, APP1 can pass the connection information required to set the connection in the

APP2 DLL.

• The scenario on the right requires that APP3.EXE establish an explicit connection to the dbserverB database server.

Both the APP4 and APP5 DLLs can share this connection when APP3 passes the appropriate connection information.

Figure 75. Two scenarios in which multiple applications use a single connection to a database server

You can also use explicit connections if you want one application to establish connections to two separate database servers

at the same time, as the following shows.

Figure 76. One application that uses connections to more than one database server at the same time

Password encryption

When a client application sends a password to the database server for authentication, the password is not encrypted unless

you request password encryption through the simple password communications support module (SPWDCSM). You activate

password encryption by specifying it on the configuration for the database server name, or an alias, in the sqlhosts

information.

To activate password encryption, specify the following value in the Options field of the sqlhosts entry:

csm=(SPWDCSM)

The client or the database server uses the string "SPWDCSM" as a key to look up the entry that describes the CSM in the

CSS/CSM configuration file.

Chapter 1. ESQL/C Guide

When activated, the SPWDCSM requires a password, effectively overriding any trusted host mechanisms. It is contradictory

to specify a password encryption mechanism if a trusted host policy is in place.

For more information about implementing password encryption and for information about communication support services

(CSS), see your HCL® Informix® Administrator's Guide.

Note: Support for Communication Support Module (CSM) is removed starting Informix Server 14.10.xC9 . You should

use Transport Layer Security (TLS)/Secure Sockets Layer (SSL) instead.

Pluggable Authentication Modules (PAM)
To use a Pluggable Authentication Module (PAM) service for client-server authentication you must rewrite your client

application so that it registers a callback function. The callback function must support any challenge-response mechanisms

of the PAM service you intend to use.

The demonstration program pamdemo.ec is provided as an example of the use of a callback function.

LDAP authentication
You can use Lightweight Directory Access Protocol (LDAP) authentication on Windows™ with IBM® Informix® ESQL/C.

Use the LDAP Authentication Support module when you want to use an LDAP server to authenticate your system users. The

module contains source code that you can modify for your specific situation.

Multiplexed connections

A multiplexed connection enables the IBM® Informix® ESQL/C application to establish multiple connections to different

databases on the same database server, by using a minimum amount of communication resources. When you initiate a

multiplexed connection, the database server uses a single connection to the client for multiple SQL connections (CONNECT

statement). Without multiplexing, each SQL connection creates a database-server connection.

Client requirements for execution

To implement a multiplexed connection, set the multiplexing option, in the client sqlhosts file or registry, on the

dbservername parameter of the database server to which you will connect. To specify multiplexing, set the m option to 1. The

following dbservername parameter specifies a multiplexed connection to the personnel database server:

Servername nettype hostname servicename options

personnel onsoctcp corp prsnl_ol m=1

Setting the multiplexing option to zero (m = 0), which is the default, disables multiplexing for the specified database server.

To use multiplexed connections for any application that was compiled before version 9.13 of IBM® Informix® ESQL/C for

UNIX™ or version 9.21 of Informix® ESQL/C for Windows™, you must relink it. Applications that you compiled before these

331

HCL Informix 14.10 - ESQL/C Programmer’s Guide

332

versions of Informix® ESQL/C can connect to a multiplexing database server, however. The database server establishes a

non-multiplexed connection in this case.

On Windows™ platforms, in addition to setting the multiplexing option in the sqlhosts registry you must also define the

ifx_session_mux environment variable. If you do not define the ifx_session_mux environment variable, the database server

ignores the multiplexing option and does not multiplex connections.

Restriction: On Windows™, a multithreaded application must not use the multiplexed-connection feature. If a

multithreaded application enables the multiplexing option in the sqlhosts registry entry and also defines the

IFX_SESSION_MUX environment variable, it can produce disastrous results, including crashing and data corruption.

If a multithreaded application and a single-threaded application are running on the same Windows™ computer, the single-

threaded application can use a multiplexed connection in the following two ways:

• Use different sqlhosts information.

• Use a dbserver alias in the sqlhosts file that does not specify the multiplexing option. For example, you could use

the following configuration:

Servername Nettype Host name Servicename Options

personnel onsoctcp corp prsnl_01 m=1

personnel_nomux onsoctcp corp prsnl_02

Any multithreaded application connecting to the personnel server uses the servername personnel_nomux while single-

threaded applications can continue to use the servername personnel.

Limitations for multiplexed connections

IBM® Informix® ESQL/C imposes the following limitations on multiplexed connections:

• Shared memory connections are not supported.

• Multithreaded applications are not supported.

• The database server ignores the sqlbreak() function on a multiplexed connection. If you call it, the database server

does not interrupt the connection and does not return an error.

Identify the database server

To connect to a database environment (with, for example, a CONNECT statement), the IBM® Informix® ESQL/C application

can identify the database server in one of two ways:

• The application can specify the name of the database server in the SQL statement. Such a database server is a

specific database server.

• The application can omit the name of the database server in the SQL statement. Such a database server is the default

database server. The INFORMIXSERVER environment variable specifies the name of the default database server.

Chapter 1. ESQL/C Guide

A specific database server

The Informix® ESQL/C application can establish a connection to a specific database server when it lists the database server

name, and optionally the database name, in an SQL statement, as follows:

• The CONNECT statement establishes an explicit connection to the database server.

Each of the following CONNECT statements establishes an explicit connection to a database server that is called

valley:

EXEC SQL connect to 'stores7@valley';
EXEC SQL connect to '@valley';

• When one of the SQL database statements (such as DATABASE or START DATABASE) is the first SQL statement of

the application, it can establish an implicit connection.

Each of the following SQL statements establishes an implicit connection to the stores7 database in a specific

database server that is called valley:

EXEC SQL database '//valley/stores7';
EXEC SQL database stores7@valley;

For the UNIX™ operating system, use the following statement:

EXEC SQL database '/usr/dbapps/stores7@valley';

For a Windows™ environment, use the following statement:

EXEC SQL database 'C:\usr\dbapps\stores@valley';

The default database server

The IBM® Informix® ESQL/C application can establish a connection to a default database server when it omits the database

server name from the database environment in an SQL statement, as follows:

• The CONNECT statement can establish an explicit default connection with the keyword DEFAULT or when it omits the

database server name.

Each of the following CONNECT statements establishes an explicit default connection:

EXEC SQL connect to 'stores7';
EXEC SQL connect to default;

In a UNIX™ operating system, use the following statement:

EXEC SQL connect to '/usr/dbapps/stores7';

In a Windows™ environment, use the following statement:

EXEC SQL connect to 'C:\usr\dbapps\stores7';

• When one of the SQL database statements (such as DATABASE or START DATABASE) is the first SQL statement of

the application, it can establish an implicit default connection.

333

HCL Informix 14.10 - ESQL/C Programmer’s Guide

334

Each of the following SQL statements establishes an implicit default connection to a database that is called stores7

on the default database server:

EXEC SQL database stores7;
EXEC SQL start database stores7 with no log;

The INFORMIXSERVER environment variable determines the name of the database server.

Important: You must set the INFORMIXSERVER environment variable even if the application does not establish a

default connection.

You can also use the DBPATH environment variable to specify a list of database server names to use as default

database servers. The application searches for these database servers after it searches for the database server that

INFORMIXSERVER specifies.

Interact with the database server

Within your IBM® Informix® ESQL/C program, you can interact with the database server in the following ways:

• Start a new database server process. This process does not exist when an application begins execution.

• Switch between multiple connections. An application can establish several connections.

• Identify an explicit connection. An application can obtain the name of the database server and connection.

• Identify the databases that the database server of the current connection can access.

• Check on the status of the database server process. For some actions the database server must be busy, for others

the database server must be idle.

• Detaching from the current connection. An application must detach a child process from the current connection.

• Interrupt the database server process. If an SQL request executes for a long time, the application can interrupt it.

• Terminate the database server process. The application can close an unused connection to free resources.

Informix® ESQL/C supports Secure Sockets Layer (SSL) connections. For information about using the SSL protocol, see

Secure sockets layer protocol on page .

Determine features of the database server

You can check on features of the database server after you execute one of the following SQL statements.

• CONNECT

• CREATE DATABASE

• DATABASE

• SET CONNECTION

When the database server establishes a connection with one of these statements, it can obtain the following information

about the database server:

../sec/ids_ssl_001.html#ids_ssl_001
../sec/ids_ssl_001.html#ids_ssl_001
../sec/ids_ssl_001.html#ids_ssl_001
../sec/ids_ssl_001.html#ids_ssl_001

Chapter 1. ESQL/C Guide

• Is a long identifier or long user name truncated?

• Does the open database use a transaction log?

• Is the open database an ANSI-compliant database?

• What is the database server name?

• Does the database store the FLOAT data type in DECIMAL form (done when the host system lacks support for FLOAT

types)?

• Is the database server in secondary mode? (If the database server is in secondary mode, it is a secondary server in a

data-replication pair and is available only for read operations.)

Does the value of the DB_LOCALE environment variable set by the client application match the value of the database locale

of the open database? The following table summarizes the values that the SQLSTATE variable and the sqlca structure take to

indicate these conditions.

Database feature SQLSTATE value sqlca value

Long identifier or long username has truncated "01004" sqlca.sqlwarn.sqlwarn1 is 'W'

Database has transactions "01I01" sqlca.sqlwarn.sqlwarn1 is 'W'

Database is ANSI compliant "01I03" sqlca.sqlwarn.sqlwarn2 is 'W'

The database server is not an obsolete product "01I04" sqlca.sqlwarn.sqlwarn3 is 'W'

FLOAT represented as DECIMAL "01I05" sqlca.sqlwarn.sqlwarn4 is 'W'

Database server in secondary mode "01I06" sqlca.sqlwarn.sqlwarn6 is 'W'

Mismatched database locales undefined sqlca.sqlwarn.sqlwarn7 is 'W'

The SQLSTATE variable might return multiple exceptions after these connection statements. For more information about the

SQLSTATE variable and the sqlca structure, see Exception handling on page 276.

Switch between multiple database connections

The IBM® Informix® ESQL/C application can make a number of simultaneous database connections with a CONNECT

statement. These connections can be to several database environments or can be multiple connections to the same

database environment. To switch between connections, the Informix® ESQL/C application must follow these steps:

1. Establish a connection with the CONNECT STATEMENT

2. Handle any active transactions

If the current connection has an active transaction, you can switch connections only if the CONNECT statement with

the WITH CONCURRENT TRANSACTION clause establishes the current connection.

3. Make a connection current with the SET CONNECTION or CONNECT statement

335

HCL Informix 14.10 - ESQL/C Programmer’s Guide

336

Make a connection current

When multiple connections exist, the application can only communicate with one connection at a time. This connection is

the current connection. All other established connections are dormant. Your application can make another connection current

with either of the following connection statements:

• The CONNECT statement establishes a new connection and makes the connection current.

• The SET CONNECTION statement switches to a dormant connection and makes the connection current.

When you make a connection dormant and then current again, you perform an action similar to when you disconnect and

then reconnect to the database environment. However, if you make a connection dormant you can typically avoid the need

for the database server to perform authentication again, and thus save the cost and use of resources that are associated

with the connection.

Tip: A thread-safe Informix® ESQL/C application can have multiple current connections, one current connection per

thread. However, only one current connection is active at a time.

Handling transactions

If the CONNECT statement with the WITH CONCURRENT TRANSACTION clause has established the connection, the

application can switch to another connection even if the current connection contains an active transaction.

For connections that are not established with the CONNECT...WITH CONCURRENT TRANSACTION statement, the application

must end the active transaction before it switches to another connection. Any attempt to switch while a transaction is active

causes the CONNECT or SET CONNECTION statement to fail (error number -1801). The transaction in the current connection

remains active.

To maintain the integrity of database information, explicitly end the active transaction in one of the following ways:

• Commit the transaction with the COMMIT WORK statement to ensure that the database server saves any changes

that have been made to the database within the transaction.

• Roll back the transaction with the ROLLBACK WORK statement to ensure that the database server backs out any

changes that have been made to the database within the transaction.

The COMMIT WORK or ROLLBACK WORK statement applies only to the transaction that is within the current connection, not

to transactions that are in any dormant connection.

Identify an explicit connection
From within the IBM® Informix® ESQL/C application, you can obtain the name of the database server and the name of the

explicit connection with the GET DIAGNOSTICS statement.

When you use GET DIAGNOSTICS after an SQL connection statement (CONNECT, SET CONNECTION, and DISCONNECT),

GET DIAGNOSTICS puts this database server information in the diagnostics area in the SERVER_NAME and

CONNECTION_NAME fields.

Chapter 1. ESQL/C Guide

The following code fragment saves connection information in the srvrname and cnctname host variables.

EXEC SQL connect to :dbname;
if(!strncmp(SQLSTATE, "00", 2)
 {
 EXEC SQL get diagnostics exception 1
 :srvrname = SERVER_NAME, :cnctname = CONNECTION_NAME;
 printf("The name of the server is '%s'\n", srvrname);
 }

From within the Informix® ESQL/C application, you can obtain the name of the current connection with the

ifx_getcur_conn_name() function. This function returns the name of the current connection into a user-defined character

buffer. The function is useful to determine the current connection among a group of active connections in a Informix® ESQL/

C application that has multiple threads.

For example, the following code consists of a callback function, cb(), that two sqlbreakcallback() calls use in two different

threads:

void
cb(mint status)
{
 mint res;
 char *curr_conn = ifx_getcur_conn_name();

 if (curr_conn && strcmp(curr_conn, "con2") == 0)
 {
 res = sqlbreak();
 printf("Return status of sqlbreak(): %d\n", res);
 }
}

void
thread_1()
{
EXEC SQL BEGIN DECLARE SECTION;
 mint res;
EXEC SQL END DECLARE SECTION;

 EXEC SQL connect to 'db' as 'con1' ;
 sqlbreakcallback(100, cb);
 EXEC SQL SELECT count(*) INTO :res FROM x, y;
 if (sqlca.sqlcode == -213)
 printf("Connection con1 fired an sqlbreak().\n");
 printf("con1: Result of count(*) = %d\n", res);
 EXEC SQL set connection 'con1' dormant ;
}

void
thread_2()
{
EXEC SQL BEGIN DECLARE SECTION;
 mint res;
EXEC SQL END DECLARE SECTION;

 EXEC SQL connect to 'db' as 'con2' ;
 sqlbreakcallback(100, cb);

337

HCL Informix 14.10 - ESQL/C Programmer’s Guide

338

 EXEC SQL SELECT count(*) INTO :res FROM x, y;
 if (sqlca.sqlcode == -213)
 printf("Connection con2 fired an sqlbreak().\n");
 printf("con2: Result of count(*) = %d\n", res);
 EXEC SQL set connection 'con2' dormant ;
}

The cb() callback function uses the ifx_getcur_conn_name() to check which connection is current.

Obtain available databases

From within the IBM® Informix® ESQL/C application, you can obtain the name of the databases that are available from a

specified database server with the sqgetdbs() function. This function returns the names of the databases that are available

in the database server of the current connection. For more information about sqgetdbs(), see The timeout program on

page 348.

Check the status of the database server

Some interactions with the database server cannot execute unless the database server is idle. Other actions assume that the

database server is busy processing a request. You can check whether the database server is currently processing an SQL

request with the sqldone() function. This function returns 0 if the database server is idle and a negative value if it is busy.

Establishing a separate database connection for the child process

About this task

When your application forks a process, the child process inherits the database connections of the parent. If you leave these

connections open, both parent and child processes use the same connection to communicate with the same database

server. Therefore, the child process needs to establish a separate database connection.

To establish a separate database connection for the child process:

1. Call sqldetach() to detach the child process from the database server connection in the parent process.

2. Establish a new connection in the child process (if one is needed).

Interrupt an SQL request
To interrupt the database server, you can use the sqlbreak() library function.

Sometimes you might need to cancel an SQL request. If, for example, you inadvertently provide the wrong search criteria

for a long query, you want to cancel the SELECT statement rather than wait for unneeded data. While the database server

executes an SQL request, the IBM® Informix® ESQL/C application is blocked. To regain control, the application must

interrupt the SQL request.

You might want to interrupt an SQL request for some of the following reasons:

• The application user wants to terminate the current SQL request.

• The current SQL request has exceeded some timeout interval.

Chapter 1. ESQL/C Guide

Important: The application must handle any open transactions, cursors, and databases after it interrupts an SQL

request.

Interruptible SQL statements

You cannot cancel all SQL statements. Some types of database operations are not interruptible and others cannot be

interrupted at certain points. The IBM® Informix® ESQL/C application can interrupt the following SQL statements.

• ALTER INDEX

• ALTER TABLE

• CREATE INDEX

• CREATE TABLE

• EXECUTE FUNCTION

• EXECUTE PROCEDURE

• DELETE

• INSERT

• OPEN

• SELECT

• UPDATE

In addition to the preceding statements, you can also cancel the operation of a loop as it executes within an SPL routine.

The Informix® ESQL/C application and the database server communicate through message requests. A message request is

the full round trip of the message that initiates an SQL task. It can consist of the message that the application sends to the

database server as well as the message that the database server sends back in reply. Alternatively, a message request can

consist of the message that the database server sends to the application as well as the message that the application sends

in acknowledgment.

Most SQL statements require only one message request to execute. The application sends the SQL statement to the

database server and the database server executes it. However, an SQL statement that transfers large amounts of data (such

as a SELECT, an INSERT, or a PUT), can require more than one message request to execute, as follows:

• In the first message request, the application sends the SQL statement to the database server to execute.

• In subsequent message requests, the database server fills a buffer with data and then sends this data to the

application. The size of the buffer determines the amount of data that the database server sends in a single message

request.

In addition, the OPEN statement always requires two message requests.

The database server decides when to check for an interrupt request. Therefore, the database server might not immediately

terminate execution of an SQL statement and your application might not regain control as soon as it sends the interrupt

request.

339

HCL Informix 14.10 - ESQL/C Programmer’s Guide

340

Allow a user to interrupt
When the database server processes a large query, you might want to allow the user to interrupt the query request with the

Interrupt key (usually CTRL-C).

To do this, you must set up a signal-handler function. The signal-handler function is a user-defined function that the

application process calls when it receives a specific signal.

To allow the user to interrupt an SQL request, you define a signal-handler function for the SIGINT signal. This function must

have the following declaration:

void sigfunc_ptr();

The user-defined signal-handler function can contain the IBM® Informix® ESQL/C control functions sqlbreak() and

sqldone(). If you use any other Informix® ESQL/C control function or any SQL statement in the signal handler while the

database server is processing, Informix® ESQL/C generates an error (-439).

The Informix® ESQL/C application must determine how to continue execution after the signal handler completes. One

possible method is to set up a nonlocal go to with the setjmp() and longjmp() system functions. These functions work

together to support low-level interrupts, as follows:

• The setjmp() function saves the current execution environment and establishes a return point for execution after the

longjmp() call.

• The longjmp() call is in the signal-handler function. Use longjmp() in a signal-handling function only if sqldone()

returns 0 (the database server is idle).

See your UNIX™ operating system documentation for more information about the setjmp() and longjmp() system functions.

To associate the user-defined signal handler with a system signal, use the signal() system function, as follows:

signal(SIGINT, sigfunc_ptr);

When the Informix® ESQL/C application receives the SIGINT signal, it calls the function that sigfunc_ptr indicates. For more

information about the signal() system function, see your UNIX™ operating system documentation.

To disassociate the signal-handler function from the SIGINT signal, call signal() with SIG_DFL as the function pointer, as

follows:

signal(SIGINT, SIG_DFL);

SIG_DFL is the default signal-handling action. For the SIGINT signal, the default action is to stop the process and to generate

a core dump. You might instead want to specify the SIG_IGN action to cause the application to ignore the signal.

Important: On most systems, the signal handler remains in effect after the application catches the signal. On these

systems, you need to disassociate the signal handler explicitly if you do not want it to execute the next time the same

signal is caught.

On a few (mostly older) systems, however, when a signal handler catches a signal, the system reinstates the SIG_DFL

action as the handling mechanism. On these systems, it is up to the signal handler to reinstate itself if you want it to

Chapter 1. ESQL/C Guide

handle the same signal the next time the signal is caught. For information about how your system handles signals,

check your system documentation.

Set up a timeout interval
When the database server processes a large query, you might want to prompt the user periodically to determine whether to

continue the request.

To do this, you can use the sqlbreakcallback() function to provide the following information:

• A timeout interval is the period to wait for an SQL request to execute before the application regains control.

• A callback function is the user-defined function to call each time the timeout interval has elapsed.

Restriction: Do not use the sqlbreakcallback() function if your Informix® ESQL/C application uses shared memory

(onipcshm) as the nettype in a connection to an instance of the database server. Shared memory is not a true

network protocol and does not handle the nonblocking I/O that support for a callback function requires. When you

use sqlbreakcallback() with shared memory, the function call appears to register the callback function successfully

(it returns zero), but during SQL requests, the application never calls the callback function.

The timeout interval
With the sqlbreakcallback() function, you specify a timeout interval.

A timeout interval is the amount of time (in milliseconds) for which the database server can process an SQL request

before the application regains control. The application then calls the callback function that you specify and executes it to

completion.

After the callback function completes, the application resumes its wait until one of the following actions take place:

• The database server returns control to the application under one of the following conditions:

◦ It has completed the SQL request. The database server returns the status of the request in the SQLCODE and

SQLSTATE variables.

◦ It has discontinued processing of the SQL request because it has received an interrupt request from the

sqlbreak() function in the callback function. For more information about how the database server responds to

sqlbreak(), see Database server control functions on page 347.

• The next timeout interval elapses. When the application resumes execution, it calls the callback function again.

The application calls the callback function each time the timeout interval elapses until the database server completes

the request or is interrupted.

The callback function
With the sqlbreakcallback() function, you also specify a callback function to be called at several points in the execution of an

SQL request.

341

HCL Informix 14.10 - ESQL/C Programmer’s Guide

342

A callback function is a user-defined IBM® Informix® ESQL/C function that specifies actions to take during execution of an

SQL request. This function must have the following declaration:

void callbackfunc(status)
mint status;

The integer status variable identifies at what point in the execution of the SQL request the callback function was called.

Within the callback function, you can check this status variable to determine at which point the function was called. The

following table summarizes the valid status values.

Table 64. Status values of a callback function

Point at which callback is called Callback argument value

After the database server has completed the SQL request 0

Immediately after the application sends an SQL request to the database server 1

While the database server is processing an SQL request, after the timeout interval has elapsed 2

Within the callback function, you might want to check the value of the status argument to determine what actions the

function takes.

Tip: When you register a callback function with sqlbreakcallback(), the application calls the callback function each

time it sends a message request. Therefore, SQL statements that require more than one message request cause the

application to call the callback function more than once.

For more information about message requests, see Interruptible SQL statements on page 339.

The callback function, and any of its subroutines, can contain only the following Informix® ESQL/C control functions:

• The sqldone() library function determines whether the database server is still busy.

If sqldone() returns error -439, the database server is still busy and you can proceed with the interrupt.

• The sqlbreakcallback() library function disassociates the callback function from the timeout interval.

Call sqlbreakcallback() with the following arguments:

sqlbreakcallback(-1L, (void *)NULL);

This step is not necessary if you want the callback function to remain for the duration of the current connection.

When you close the current connection, you also disassociate the callback function.

• The sqlbreak() library function interrupts the execution of the database server.

If you use any Informix® ESQL/C control function other than those in the preceding list, or if you use any SQL statement

while the database server is processing, Informix® ESQL/C generates an error (-439).

If the application calls a callback function because a timeout interval has elapsed, the function can prompt the user for

whether to continue or cancel the SQL request, as follows:

Chapter 1. ESQL/C Guide

• To continue execution of the SQL request, the callback function skips the call to sqlbreak().

While the callback function executes, the database server continues processing its SQL request. After the callback

function completes, the application waits for another timeout interval before it calls the callback function again.

During this interval, the database server continues execution of the SQL request.

• To cancel the SQL request, the callback function calls the sqlbreak() function, which sends an interrupt request to the

database server.

Execution of the callback function continues immediately after sqlbreak() sends the request. The application does

not wait for the database server to respond until it completes execution of the callback function.

When the database server receives the interrupt request signal, it determines if the current SQL request is interruptible (see

Interruptible SQL statements on page 339). If so, the database server discontinues processing and returns control to the

application. The application is responsible for the graceful termination of the program; it must release resources and roll

back the current transaction. For more information about how the database server responds to an interrupt request, see the

description of sqlbreak() in Database server control functions on page 347.

Use the sqlbreakcallback() function to set the timeout interval (in milliseconds) and to register a callback function, as

follows:

sqlbreakcallback(timeout, callbackfunc_ptr);

This callbackfunc_ptr must point to a callback function that you already defined (see The callback function on page 341).

Within the calling program, you must also declare this function, as follows:

void callbackfunc_ptr();

Important: You must register the callback function after you establish the connection and before you execute the

first embedded SQL statement that you want to cancel. After you close the connection, the callback function is no

longer registered.

The timeout demonstration program, which Database server control functions on page 347 describes, uses the

sqlbreakcallback() function to establish a timeout interval for a database query.

Error checking during data transfer

The IFX_LOB_XFERSIZE environment variable is used to specify the number of kilobytes in a CLOB or BLOB to transfer from

a client application to the database server before checking whether an error has occurred. The error check occurs each time

the specified number of kilobytes is transferred. If an error occurs, the remaining data is not sent and an error is reported. If

no error occurs, the file transfer continues until it finishes.

The valid range for IFX_LOB_XFERSIZE is 1 - 9223372036854775808 KB. The IFX_LOB_XFERSIZE environment variable is set

on the client.

343

HCL Informix 14.10 - ESQL/C Programmer’s Guide

344

Terminate a connection

The IBM® Informix® ESQL/C program can use the following statements and functions to close a connection:

• The CLOSE DATABASE statement closes a database. For applications before version 6.0, it also closes the

connection. For applications of Version 6.0 and later, the connection remains open after the CLOSE DATABASE

statement executes.

• The sqlexit() library function closes all current connections, implicit and explicit. If you call sqlexit() when any

databases are still open, the function causes any open transactions to be rolled back.

• The sqldetach() library function closes the database server connection of the child process. It does not affect the

database server connection of the parent process.

• The DISCONNECT statement closes a specified connection. If a database is open, DISCONNECT closes it before it

closes the connection. If transactions are open, the DISCONNECT statement fails.

Optimized message transfers
IBM® Informix® ESQL/C provides a feature called optimized message transfers, which allow you to minimize message

transfers with the database server for most Informix® ESQL/C statements.

Informix® ESQL/C accomplishes optimized message transfers by chaining messages together and even eliminating some

small message packets. When the optimized message transfer feature is enabled, Informix® ESQL/C expects that SQL

statements will succeed. Consequently, Informix® ESQL/C chains, and in some cases eliminates, confirmation messages

from the database server.

Restrictions on optimized message transfers

IBM® Informix® ESQL/C does not chain the following SQL statements even when you enable optimized message transfers:

• COMMIT WORK

• DESCRIBE

• EXECUTE

• FETCH

• FLUSH

• PREPARE

• PUT

• ROLLBACK WORK

• SELECT INTO (singleton SELECT)

When Informix® ESQL/C reaches one of the preceding statements, it flushes the message out to the database server.

Informix® ESQL/C then continues message chaining for subsequent SQL statements. Only SQL statements that require

network traffic cause Informix® ESQL/C to flush the message queue.

SQL statements that do not require network traffic, such as the DECLARE statement, do not cause Informix® ESQL/C to send

the message queue to the database server.

Chapter 1. ESQL/C Guide

Enabling optimized message transfers

About this task

To enable optimized message transfers, or message chaining, you must set the following variables in the client environment:

1. Set the OPTMSG environment variable at run time to enable optimized message transfers for all qualifying SQL

statements.

2. Set the OptMsg global variable within the IBM® Informix® ESQL/C application to control which SQL statements use

message chaining.

Set the OPTMSG environment variable
The OPTMSG environment variable enables the optimized message transfers for all SQL statements in the application.

You can assign the following values to the OPTMSG environment variable:

1

This value enables optimized message transfers, implementing the feature for any connection that is after.

0

This value disables optimized message transfers. (Default)

The default value of the OPTMSG environment variable is 0. Setting OPTMSG to 0 explicitly disables message chaining.

You might want to disable optimized message transfers for statements that require immediate replies, or for debugging

purposes.

To enable optimized message transfers, you must set OPTMSG before you start the IBM® Informix® ESQL/C application.

On UNIX™ operating systems, you can set OPTMSG within the application with the putenv() system call (as long as your

system supports the putenv() function). The following call to putenv(), for example, enables optimized message transfers:

putenv("OPTMSG=1");

In Windows™ environments, you can set OPTMSG within the application with the ifx_putenv() function. The following call to

ifx_putenv(), for example, enables optimized message transfers:

ifx_putenv("OPTMSG=1");

When you set OPTMSG within an application, you can activate or deactivate optimized message transfers for each

connection or within each thread. To enable optimized message transfers, you must set OPTMSG before you establish a

connection.

Set the OptMsg global variable
The OptMsg global variable is defined in the Informix® ESQL/C sqlhdr.h header file.

After you set the OPTMSG environment variable to 1, you must set the OptMsg global variable to specify whether message

chaining takes effect for each subsequent SQL statement. You can assign the following values to OptMsg:

345

HCL Informix 14.10 - ESQL/C Programmer’s Guide

346

1

This value enables message chaining for every subsequent SQL statement.

0

This value disables message chaining for every subsequent SQL statement.

With the OPTMSG environment variable set to 1, you must still set the OptMsg global variable to 1 to enable the message

chaining. If you omit the following statement from your program, IBM® Informix® ESQL/C does not perform message

chaining:

OptMsg = 1;

When you have set the OPTMSG environment variable to 1, you might want to disable message chaining for the following

reasons:

• Some SQL statements require immediate replies.

See Restrictions on optimized message transfers on page 344 for more information about these SQL statements.

Re-enable the OPTMSG feature once the restricted SQL statement completes.

• For debugging purposes

You can disable the OPTMSG feature when you are trying to determine how each SQL statement responds.

• Before the last SQL statement in the program to ensure that the database server processes all messages before

the application exits. If OPTMSG is enabled, the message is queued up for the database server but it is not sent for

processing.

To avoid unintended chaining, reset the OptMsg global variable immediately after the SQL statement that requires it. The

following code fragment enables message chaining for the DELETE statement:

OptMsg = 1;
EXEC SQL delete from customer;
OptMsg = 0;
EXEC SQL create index ix1 on customer (zipcode);

This example enables message chaining because the execution of the DELETE statement is not likely to fail. Therefore, it

can be safely chained to the next SQL statement. Informix® ESQL/C delays sending the message for the DELETE statement.

The example disables message chaining after the DELETE statement so that Informix® ESQL/C flushes all messages that

have been queued up when the next SQL statement executes. By disabling the message chaining after the DELETE, the code

fragment avoids unintended message chaining. When unintended chaining occurs, it can be difficult to determine which of

the chained statements has failed.

At the CREATE INDEX statement, Informix® ESQL/C sends both the DELETE and the CREATE INDEX statements to the

database server.

Chapter 1. ESQL/C Guide

Error handling with optimized message transfers
When the OPTMSG feature is enabled, your IBM® Informix® ESQL/C application cannot perform error handling on any

chained statement. If you are not sure whether a particular statement might generate an error, include error-handling code

and do not enable message chaining for that statement.

When an error occurs in a chained statement, the database server stops execution. Any SQL statements that follow the error

are not executed. For example, the following code fragment intends to chain five INSERT statements (this fragment assumes

that the OPTMSG environment variable is set to 1:

EXEC SQL create table tab1 (col1 INTEGER);

/* enable message chaining */
OptMsg = 1;

/* these two INSERT statements execute successfully */
EXEC SQL insert into tab1 values (1);
EXEC SQL insert into tab1 values (2);

/* this INSERT statement generates an error because the data
* in the VALUES clause is not compatible with the column type */
EXEC SQL insert into tab1 values ('a');

/* these two INSERT statements never execute */
EXEC SQL insert into tab1 values (3);
EXEC SQL insert into tab1 values (4);

/* disable message chaining */
OptMsg = 0;

/* update one of the tab1 rows */
EXEC SQL update tab1 set col1 = 5 where col1 = 2;
if (SQLCODE < 0)
⋮;

In this code fragment, Informix® ESQL/C flushes the message queue when it reaches the UPDATE statement, sending

the five INSERT statements and the UPDATE statement to the database server for execution. Because the third INSERT

statement generates an error, the database server does not execute the remaining INSERT statements or the UPDATE

statement. The UPDATE statement, which is the last statement in the chained statements, returns the error from the failed

INSERT statement. The tab1 table contains the rows with col1 values of 1 and 2.

Database server control functions

The following section describes the IBM® Informix® ESQL/C library functions that you can use to control the database

server sessions.

Function name Description See

ifx_getcur_conn_name() Returns the name of the current connection. The ifx_getcur_conn_name()

function on page 639

347

HCL Informix 14.10 - ESQL/C Programmer’s Guide

348

Function name Description See

sqgetdbs() Returns the names of databases that a database

server can access.

The sqgetdbs() function on

page 802

sqlbreak() Sends the database server a request to stop

processing.

The sqlbreak() function on

page 805

sqlbreakcallback() Establishes a timeout interval and a callback

function for interrupting an SQL request.

The sqlbreak() function on

page 805

sqldetach() Detaches a child process from a database server

connection.

The sqldetach() function on

page 808

sqldone() Determines whether the database server is

currently processing an SQL request.

The sqldone() function on

page 814

sqlexit() Terminates a database server connection. The sqlexit() function on

page 814

sqlsignal() Performs signal handling and cleanup of child

processes.

The sqlsignal() function on

page 815

sqlstart() Starts a database server connection. The sqlstart() function on

page 816

The timeout program
The timeout program demonstrates how to set up a timeout interval.

This program uses the sqlbreakcallback() function to perform the following actions:

• To specify a timeout interval of 200 milliseconds for execution of an SQL request

• To register the on_timeout() callback function to be called when an SQL request begins and ends as well as when the

timeout interval elapses

If execution of an SQL request exceeds the timeout interval, the callback function uses the sqldone() function to ensure that

the database server is still busy, prompts the user for confirmation of the interrupt, and then uses the sqlbreak() function to

send an interrupt request to the database server.

Compile the program

Use the following command to compile the timeout program:

esql -o timeout timeout.ec

The -o timeout option causes the executable program to be named timeout. Without the -o option, the name of the

executable program defaults to a.out.

Chapter 1. ESQL/C Guide

Guide to the timeout.ec File

===
1. /*
2. * timeout.ec *
3. */
4. #include <stdio.h>
5. #include <string.h>
6. #include <ctype.h>
7. #include <decimal.h>
8. #include <errno.h>
9. EXEC SQL include sqltypes;
10. #define LCASE(c) (isupper(c) ? tolower(c) : (c))
11. /* Defines for callback mechanism */
12. #define DB_TIMEOUT 200 /* number of milliseconds in timeout */
13. #define SQL_INTERRUPT -213 /* SQLCODE value for interrupted stmt
 */
14. /* These constants are used for the canceltst table, created by
15. * this program.
16. */
17. #define MAX_ROWS 10000 /* number of rows added to table */
18. EXEC SQL define CHARFLDSIZE 20; /* size of character columns in
 * table */
19. /* Define for sqldone() return values */
20. #define SERVER_BUSY -439
21. /* These constants used by the exp_chk2() function to determine
22. * whether to display warnings.
23. */
24. #define WARNNOTIFY 1
25. #define NOWARNNOTIFY 0
26. int4 dspquery();
27. extern int4 exp_chk2();
28. void on_timeout();
29. main()
30. {
31. char ques[80], prompt_ans();
32. int4 ret;
33. mint create_tbl(), drop_tbl();
34. printf("TIMEOUT Sample ESQL Program running.\n\n");
35. /*
36. * Establish an explicit connection to the stores7 database
37. * on the default database server.
38. */
39. EXEC SQL connect to 'stores7';
===

Lines 4 - 9

Lines 4 - 8 include the UNIX™ header files from the /usr/include directory. The IBM® Informix® ESQL/C sqltypes.h

header file (line 9) defines names for integer values that identify SQL and C data types.

349

HCL Informix 14.10 - ESQL/C Programmer’s Guide

350

Lines 10 - 20

Line 10 defines LCASE, a macro that converts an uppercase character to a lowercase character. The DB_TIMEOUT (line 12)

constant defines the number of milliseconds in the timeout interval. The SQL_INTERRUPT constant (line 13) defines the

SQLCODE value that the database server returns when it interrupts an SQL statement.

Lines 17 and 18 define constants that the create_tbl() function uses to create the canceltst table. This table holds the test

data needed for the large query (lines 125 - 132). MAX_ROWS is the number of rows that create_tbl() inserts into canceltst.

You can change this number if you find that the query does not run long enough for you to interrupt it. CHARFLDSIZE is the

number of characters in the character fields (char_fld1 and char_fld2) of canceltst.

Line 20 defines the SERVER_BUSY constant to hold the sqldone() return value that indicates that the database server is busy

processing an SQL request. Use of this constant makes code more readable and removes the explicit return value from the

code.

Lines 24 and 25

The exp_chk2() exception-handling function uses the WARNNOTIFY and NOWARNNOTIFY constants (lines 24 and 25).

Calls to exp_chk2() specify one of these as the second argument to indicate whether the function displays SQLSTATE and

SQLCODE information for warnings (WARNNOTIFY) or does not display this information for warnings (NOWARNNOTIFY). For

more information about the exp_chk2() function, see Lines 348 - 355 on page 361.

Lines 29 - 33

The main() program block begins on line 29. Lines 31 - 33 declare variables local to the main() program block.

===
40. if (exp_chk2("CONNECT to stores7", NOWARNNOTIFY) < 0)
41. exit(1);
42. printf("Connected to 'stores7' on default server\n");
43. /*
44. * Create the canceltst table to hold MAX_ROWS (10,000) rows.
45. */
46. if (!create_tbl())
47. {
48. printf("\nTIMEOUT Sample Program over.\n\n");
49. exit(1);
50. }
51. while(1)
52. {
53. /*
54. * Establish on_timeout() as callback function. The callback
55. * function is called with an argument value of 2 when the
56. * database server has executed a single SQL request for number
57. * of milliseconds specified by the DB_TIMEOUT constant
58. * (0.00333333 minutes by default). Call to sqlbreakcallback()
59. * must come after server connection is established and before
60. * the first SQL statement that can be interrupted.
61. */
62. if (sqlbreakcallback(DB_TIMEOUT, on_timeout))
63. {
64. printf("\nUnable to establish callback function.\n");

Chapter 1. ESQL/C Guide

65. printf("TIMEOUT Sample Program over.\n\n");
66. exit(1);
67. }
68. /*
69. * Notify end user of timeout interval.
70. */
71. printf("Timeout interval for SQL requests is: ");
72. printf("%0.8f minutes\n", DB_TIMEOUT/60000.00);
73. stcopy("Are you ready to begin execution of the query?",
74. ques);
75. if (prompt_ans(ques) == 'n')
76. {
77. /*
78. * Unregister callback function so table cleanup will not
79. * be interrupted.
80. */
81. sqlbreakcallback(-1L, (void *)NULL);
82. break;
83. }
===

Lines 43 - 50

The create_tbl() function creates the canceltst table in the stores7 database. It inserts MAX_ROWS number of rows into this

table. If create_tbl() encounters some error while it creates canceltst, execution of the timeout program cannot continue. The

program exits with a status value of 1 (line 49).

Line 51

This while loop (which ends on line 97), controls the execution of the query on the canceltst table. It allows the user to run

this query multiple times to test various interrupt scenarios.

Lines 53 - 67

The first task of the while loop is to use sqlbreakcallback() to specify a timeout interval of DB_TIMEOUT (200) milliseconds

and to register on_timeout() as the callback function. If this call to sqlbreakcallback() fails, the program exits with a

status value of 1. To test different timeout intervals, you can change the DB_TIMEOUT constant value and recompile the

timeout.ec source file.

Lines 68 - 72

These printf() functions notify the user of the timeout interval. Notice that the message displays this interval in minutes, not

milliseconds. It divides the DB_TIMEOUT value by 60,000 (number of milliseconds in a minute).

Lines 73 - 83

The prompt_ans() function asks the user to indicate when to begin execution of the canceltst query. If the user enters n (no),

the program calls the sqlbreakcallback() function to unregister the callback function. This call prevents the SQL statements

in the drop_tbl() function (lines 322 - 329) from initiating the callback function. For a description of the prompt_ans()

function, see Lines 337 - 347 on page 361.

351

HCL Informix 14.10 - ESQL/C Programmer’s Guide

352

===
84. /*
85. * Start display of query output
86. */
87. printf("\nBeginning execution of query...\n\n");
88. if ((ret = dspquery()) == 0)
89. {
90. if (prompt_ans("Try another run?") == 'y')
91. continue;
92. else
93. break;
94. }
95. else /* dspquery() encountered an error */
96. exit(1);
97. } /* end while */
98. /*
99. * Drop the table created for this program
100. */
101. drop_tbl();
102. EXEC SQL disconnect current;
103. if (exp_chk2("DISCONNECT for stores7", WARNNOTIFY) != 0)
104. exit(1);
105. printf("\nDisconnected stores7 connection\n");
106. printf("\nTIMEOUT Sample Program over.\n\n");
107. }
108. /* This function performs the query on the canceltst table. */
109. int4 dspquery()
110. {
111. mint cnt = 0;
112. int4 ret = 0;
113. int4 sqlcode = 0;
114. int4 sqlerr_code, sqlstate_err();
115. void disp_exception(), disp_error(), disp_warning();
116. EXEC SQL BEGIN DECLARE SECTION;
117. char fld1_val[CHARFLDSIZE + 1];
118. char fld2_val[CHARFLDSIZE + 1];
119. int4 int_val;
120. EXEC SQL END DECLARE SECTION;
121. /* This query contains an artificially complex WHERE clause to
122. * keep the database server busy long enough for an interrupt
123. * to occur.
124. */
125. EXEC SQL declare cancel_curs cursor for
126. select sum(int_fld), char_fld1, char_fld2
127. from canceltst
128. where char_fld1 matches "*f*"
129. or char_fld1 matches "*h*"
130. or char_fld2 matches "*w*"
131. or char_fld2 matches "*l*"
132. group by char_fld1, char_fld2;
===

Lines 84 - 97

If the user chooses to continue the query, the program calls the dspquery() function (line 88) to run the canceltst query. The

prompt_ans() function displays a prompt so the user can decide whether to run the program again.

Chapter 1. ESQL/C Guide

Lines 98 - 101

The drop_tbl() function drops the canceltst table from the stores7 database to clean up after the program.

Lines 108 - 120

The dspquery() function runs a query of the canceltst table and displays the results. It returns zero (success) or the negative

value of SQLCODE (failure) to indicate the result of the canceltst query.

Lines 121 - 132

Line 125 declares the cancel_curs cursor for the query. The actual SELECT (lines 126 - 132) obtains the sum of the int_fld

column and the values of the two character columns (char_fld1 and char_fld2). The WHERE clause uses the MATCHES

operator to specify matching rows, as follows:

• All char_fld1 columns that contain an f or an h with the criteria:

char_fld1 matches "*f*"
or char_fld1 matches "*h*"

These criteria match rows with a char_fld1 value of Informix or "4100 Bohannon Dr."

• All char_fld2 columns that contain a w or a l with the criteria:

char_fl2 matches "*w*"
or char_fld2 matches "*l*"

These criteria match rows with a char_fld2 value of Software or "Menlo Park, CA".

This SELECT is artificially complex to ensure that the query takes a long time to execute. Without a reasonably complex

query, the database server finishes execution before the user has a chance to interrupt it. In a production application, only

use the sqlbreakcallback() feature with queries that take a long time to execute.

===
 EXEC SQL open cancel_curs;
 sqlcode = SQLCODE;
 sqlerr_code = sqlstate_err(); /* check SQLSTATE for exception */
 if (sqlerr_code != 0) /* if exception found */
 {
 if (sqlerr_code == -1) /* runtime error encountered */
 {
 if (sqlcode == SQL_INTERRUPT) /* user interrupt */
 {
 /* This is where you would clean up resources */
 printf("\n TIMEOUT INTERRUPT PROCESSED\n\n");
 sqlcode = 0;
 }
 else /* serious runtime error */
 disp_error("OPEN cancel_curs");
 EXEC SQL close cancel_curs;
 EXEC SQL free cancel_curs;
 return(sqlcode);
 }
 else if (sqlerr_code == 1) /* warning encountered */

353

HCL Informix 14.10 - ESQL/C Programmer’s Guide

354

 disp_warning("OPEN cancel_curs");
 }
===

Line 133

This OPEN statement causes the database server to execute the SELECT that is associated with the cancel_curs cursor.

Because the database server executes the canceltst query, this OPEN is the statement that the user would be most likely to

interrupt. When the FETCH executes, the database server just sends matching rows to the application, an operation that is

not usually time intensive.

Lines 134 - 154

This block of code checks the success of the OPEN. Since the OPEN can be interrupted, this exception checking must

include an explicit check for the interrupt value of -213. The database server sets SQLCODE to -213 when it has interrupted

an SQL request. On line 140, the program uses the SQL_INTERRUPT defined constant (which line 13 defines), for this

SQLCODE value.

The sqlstate_err() function (line 135) uses the GET DIAGNOSTICS statement to analyze the value of the SQLSTATE variable.

If this function returns a non-zero value, SQLSTATE indicates a warning, a runtime error, or the NOT FOUND condition. Before

the call to sqlstate_err(), line 134 saves the SQLCODE value so that execution of any other SQL statements (such as GET

DIAGNOSTICS in sqlstate_err()) does not overwrite it. The function returns the value of SQLCODE if the OPEN encounters a

runtime error (line 150).

The first if statement (line 136) checks if the OPEN encounters any type of exception (sqlstate_err() returns a nonzero value).

The second if (line 138) checks if the OPEN has generated a runtime error (return value of -1). However, if the database

server has interrupted the OPEN, sqlstate_err() also returns -1. Since Informix® ESQL/C does not handle an interrupted

SQL statement as a runtime error, the third if checks explicitly for the SQL_INTERRUPT value (line 140). If the OPEN was

interrupted, line 143 notifies the user that the interrupt request was successful and then the function resets the saved

SQLCODE value (in sqlcode) to zero to indicate that the OPEN did not generate a runtime error.

Lines 146 and 147 execute only if the OPEN generates a runtime error other than SQL_INTERRUPT (-213). The disp_error()

function displays the exception information in the diagnostics area and the SQLCODE value. Lines 148 - 150 cleanup after

the OPEN. They close and free the cancel_curs cursor and then return the SQLCODE value. The dspquery() function does not

continue with the FETCH (line 158) if the OPEN was interrupted.

If sqlstate_err() returns one (1), the OPEN has generated a warning. Lines 152 and 153 call the disp_warning() function to

display warning information from the diagnostics area. For more information about the disp_error() and disp_warning()

functions, see Lines 348 - 355 on page 361.

===
155. printf("Displaying data...\n");
156. while(1)
157. {
158. EXEC SQL fetch cancel_curs into :int_val, :fld1_val,
 :fld2_val;
159. if ((ret = exp_chk2("FETCH from cancel_curs", NOWARNNOTIFY))
 == 0)

Chapter 1. ESQL/C Guide

160. {
161. printf(" sum(int_fld) = %d\n", int_val);
162. printf(" char_fld1 = %s\n", fld1_val);
163. printf(" char_fld2 = %s\n\n", fld2_val);
164. }
165. /*
166. * Will display warning messages (WARNNOTIFY) but continue
167. * execution when they occur (exp_chk2() == 1)
168. */
169. else
170. {
171. if (ret==100) /* NOT FOUND condition */
172. {
173. printf("\nNumber of rows found: %d\n\n", cnt);
174. break;
175. }
176. if (ret < 0) /* Runtime error */
177. {
178. EXEC SQL close cancel_curs;
179. EXEC SQL free cancel_curs;
180. return(ret);
181 . }
182. }
183. cnt++;
184. } /* end while */
185. EXEC SQL close cancel_curs;
186. EXEC SQL free cancel_curs;
187. return(0);
188. }
189. /*
190. * The on_timeout() function is the callback function. If the user
191. * confirms the cancellation, this function uses sqlbreak() to
192. * send an interrupt request to the database server.
193. */
194. void on_timeout(when_called)
195. mint when_called;
196. {
197. mint ret;
198. static intr_sent;
===

Lines 155 - 182

This while loop executes for each row that the cancel_curs cursor contains. The FETCH statement (line 158) retrieves one

row from the cancel_curs cursor. If the FETCH generates an error, the function releases the cursor resources and returns the

SQLCODE error value (lines 176 - 181). Otherwise, the function displays the retrieved data to the user. On the last row (ret =

100), the function displays the number of rows that it retrieved (line 173).

Lines 185 - 187

After the FETCH has retrieved the last row from the cursor, the function releases resources allocated to the cancel_curs

cursor and returns a success value of zero.

355

HCL Informix 14.10 - ESQL/C Programmer’s Guide

356

Lines 190 - 198

The on_timeout() function is the callback function for the timeout program. The sqlbreakcallback() call on line 62 registers

this callback function and establishes a timeout interval of 200 milliseconds. This function is called every time the database

server begins and ends an SQL request. For long-running requests, the application also calls on_timeout() each time the

timeout interval elapses.

===
199. /* Determine when callback function has been called. */
200. switch(when_called)
201. {
202. case 0: /* Request to server completed */
203. printf("+------SQL Request ends");
204. printf("-------------------------------+\n\n");
205. /*
206. * Unregister callback function so no further SQL statements
207. * can be interrupted.
208. */
209. if (intr_sent)
210. sqlbreakcallback(-1L, (void *)NULL);
211. break;
212. case 1: /* Request to server begins */
213. printf("+------SQL Request begins");
214. printf("-----------------------------+\n");
215. printf("| ");
216. printf(" |\n");
217. intr_sent = 0;
218. break;
219. case 2: /* Timeout interval has expired */
220. /*
221. * Is the database server still processing the request?
222. */
223. if (sqldone() == SERVER_BUSY)
224. if (!intr_sent) /* has interrupt already been sent? */
225. {
226. printf("| An interrupt has been received ");
227. printf("by the application.|\n");
228. printf("| ");
229. printf(" |\n");
230. /*
231. * Ask user to confirm interrupt
232. */
233. if (cancel_request())
234. {
235. printf("| TIMEOUT INTERRUPT ");
236. printf("REQUESTED |\n");
237. /*
238. * Call sqlbreak() to issue an interrupt request for
239. * current SQL request to be cancelled.
240. */
241. sqlbreak();
242. }
243. intr_sent = 1;
244. }
245. break;
===

Chapter 1. ESQL/C Guide

Lines 199 - 249

This switch statement uses the callback function argument, when_called, to determine the actions of the callback function,

as follows:

• Lines 202 - 211: If when_called is 0, the callback function was called after the database server ends an SQL request.

The function displays the bottom of the message-request box to indicate the end of the SQL request, as follows:

+------SQL Request ends-------------------------------+

• Lines 212 - 218: If when_called is 1, the callback function was called when the database server begins an SQL

request. The display of the top of the message-request box indicates this condition:

+------SQL Request begins-----------------------------+
| |

For more information about these message-request boxes, see Lines 21 - 30 on page 362. The function also

initializes the intr_sent flag to 0 because the user has not yet sent an interrupt for this SQL request.

• Lines 219 - 245: If when_called is 2, the callback function was called because the timeout interval has elapsed.

To handle the elapsed timeout interval, the callback function first calls the Informix® ESQL/C sqldone() function (line 223) to

determine whether the database server is still busy processing the SQL request. If the database server is idle, the application

does not need to send an interrupt. If sqldone() returns SERVER_BUSY (-439), the database server is still busy.

Line 224 checks if the user has already attempted to interrupt the SQL request that is currently executing. If an interrupt was

sent, intr_sent is 1, and the program does not need to send another request. If an interrupt request has not yet been sent, the

callback function notifies the user that the timeout interval has elapsed (lines 226 - 229). It then uses the cancel_request()

function (line 233) to allow the user to confirm the interrupt. For more information about cancel_request(), see Lines 251 -

261 on page 358.

===
246. default:
247. printf("Invalid status value in callback: %d\n", when_called);
248. break;
249. }
250. }
251. /* This function prompts the user to confirm the sending of an
252. * interrupt request for the current SQL request.
253. */
254. mint cancel_request()
255. {
256. char prompt_ans();
257. if (prompt_ans("Do you want to confirm this interrupt?") == 'n')
258. return(0); /* don't interrupt SQL request */
259. else
260. return(1); /* interrupt SQL request */
261. }
262. /* This function creates a new table in the current database. It
263. * populates this table with MAX_ROWS rows of data. */
264. mint create_tbl()
265. {
266. char st_msg[15];

357

HCL Informix 14.10 - ESQL/C Programmer’s Guide

358

267. int ret = 1;
268. EXEC SQL BEGIN DECLARE SECTION;
269. mint cnt;
270. mint pa;
271. mint i;
272. char fld1[CHARFLDSIZE + 1], fld2[CHARFLDSIZE + 1];
273. EXEC SQL END DECLARE SECTION;
274. /*
275. * Create canceltst table in current database
276. */
277. EXEC SQL create table canceltst (char_fld1 char(20),
278. char_fld2 char(20), int_fld integer);
279. if (exp_chk2("CREATE TABLE", WARNNOTIFY) < 0)
280. return(0);
281. printf("Created table 'canceltst'\n");
282. /*
283. * Insert MAX_ROWS of data into canceltst
284. */
285. printf("Inserting rows into 'canceltst'...\n");
286. for (i = 0; i < MAX_ROWS; i++)
187. {
===

Lines 199 - 249 (continued)

If the user confirms the interrupt, the callback function calls the sqlbreak() function to send the interrupt request to the

database server. The callback function does not wait for the database server to respond to the interrupt request. Execution

continues to line 243 and sets the intr_sent flag to 1, to indicate that the interrupt request was sent. If the callback function

was called with an invalid argument value (a value other than 0, 1, or 2), the function displays an error message (line 247).

Lines 251 - 261

The cancel_request() function asks the user to confirm the interrupt request. It displays the prompt:

Do you want to confirm this interrupt?

If the user answers y (yes), cancel_request() returns 0. If the user answers n (no), cancel_request() returns 1.

Lines 262 - 281

The create_tbl() function creates the canceltst table and inserts the test data into this table. The CREATE TABLE statement

(lines 277 and 278) creates the canceltst table with three columns: int_fld, char_fld1, and char_fld2. If the CREATE TABLE

encounters an error, the exp_chk2() function (line 279) displays the diagnostics-area information and create_tbl() returns 0 to

indicate that an error has occurred.

Lines 282 - 287

This for loop controls the insertion of the canceltst rows. The MAX_ROWS constant determines the number of iterations for

the loop, and hence the number of rows that the function inserts into the table. If you cannot interrupt the canceltst query

(lines 126 - 132) because it executes too quickly, increase the value of MAX_ROWS and recompile the timeout.ec file.

===
288. if (i%2 == 1) /* odd-numbered rows */

Chapter 1. ESQL/C Guide

289. {
290. stcopy("4100 Bohannan Dr", fld1);
291 stcopy("Menlo Park, CA", fld2);
292. }
293. else /* even-numbered rows */
294. {
295. stcopy("Informix", fld1);
296. stcopy("Software", fld2);
297. }
298. EXEC SQL insert into canceltst
299. values (:fld1, :fld2, :i);
300. if ((i+1)%1000 == 0) /* every 1000 rows */
301. printf(" Inserted %d rows\n", i+1);
302. sprintf(st_msg, "INSERT #%d", i);
303. if (exp_chk2(st_msg, WARNNOTIFY) < 0)
304. {
305. ret = 0;
306. break;
307. }
308. }
309. printf("Inserted %d rows into 'canceltst'.\n", MAX_ROWS);
310. /*
311. * Verify that MAX_ROWS rows have added to canceltst
312. */
313. printf("Counting number of rows in 'canceltst' table...\n");
314. EXEC SQL select count(*) into :cnt from canceltst;
315. if (exp_chk2("SELECT count(*)", WARNNOTIFY) < 0)
316. return(0);
317. printf("Number of rows = %d\n\n", cnt);
318. return (ret);
319. }
320. /* This function drops the 'canceltst' table */
321. mint drop_tbl()
322. {
323. printf("\nCleaning up...\n");
324. EXEC SQL drop table canceltst;
325. if (exp_chk2("DROP TABLE", WARNNOTIFY) < 0)
326. return(0);
327. printf("Dropped table 'canceltst'\n");
328. return(1);
329. }
===

Lines 288 - 292

This if statement generates the values for the char_fld1 and char_fld2 columns of the canceltst table. Lines 290 and

291 execute for odd-numbered rows. They store the strings "4100 Bohannon Dr" and "Menlo Park, CA" in the fld1 and fld2

variables.

Lines 293 - 297

Lines 295 and 296 execute for even-numbered rows. They store the strings Informix and Software in the fld1 and fld2

variables.

359

HCL Informix 14.10 - ESQL/C Programmer’s Guide

360

Lines 298 - 307

The INSERT statement inserts a row into the canceltst table. It takes the value for the int_fld column from the :i host

variable (the row number), and the values for the char_fld1 and char_fld2 columns from the :fld1 and :fld2 host variables.

The function notifies the user after it inserts every 1000 rows (lines 300 and 301). If the INSERT encounters an error, the

exp_chk2() function (line 303) displays the diagnostics-area information and create_tbl() returns zero to indicate that an error

has occurred.

Lines 300 - 317

These lines verify that the program has added the rows to the canceltst table and that it can access them. The program does

a SELECT on the newly created canceltst table and returns the number of rows found. The program checks whether this

number matches the number that the function has added, which line 309 displays. If the SELECT encounters an error, the

exp_chk2() function (line 315) displays the diagnostics-area information, and create_tbl() returns 0 to indicate that an error

has occurred.

Lines 320 - 329

The drop_tbl() function drops the canceltst table from the current database. If the DROP TABLE statement (line 324)

encounters an error, the exp_chk2() function displays the diagnostics-area information and drop_tbl() returns 0 to indicate

that an error has occurred.

===
330. /*
331. * The inpfuncs.c file contains the following functions used in
 this
332. * program:
333. * getans(ans, len) - accepts user input, up to 'len' number of
334. * characters and puts it in 'ans'
335. */
336. #include "inpfuncs.c"
337. char prompt_ans(question)
338. char * question;
339. {
340. char ans = ‘ ‘;
341. while(ans != 'y' && ans != 'n')
342. {
343. printf("\n*** %s (y/n): ", question);
344. getans(&ans,1);
345. }
346. return ans;
347. }
348. /*
349. * The exp_chk() file contains the exception handling functions to
350. * check the SQLSTATE status variable to see if an error has
 * occurred
351. * following an SQL statement. If a warning or an error has
352. * occurred, exp_chk2() executes the GET DIAGNOSTICS statement and
353. * displays the detail for each exception that is returned.
354. */
355. EXEC SQL include exp_chk.ec;
===

Chapter 1. ESQL/C Guide

Lines 330 - 336

Several of the Informix® ESQL/C demonstration programs also call the getans() function. Therefore, this function is broken

out into a separate C source file and included in the appropriate demonstration program. Because this function does not

contain Informix® ESQL/C, the program can use the C #include preprocessor statement to include the file. For a description

of this function, see Guide to the inpfuncs.c file on page 176.

Lines 337 - 347

The prompt_ans() function displays the string in the question argument and waits for the user to enter y (yes) or n (no) as a

response. It returns the single-character response.

Lines 348 - 355

The timeout program uses the exp_chk2(), sqlstate_err(), disp_error(), and disp_warning() functions to perform its exception

handling. Because several demonstration programs use these functions, the exp_chk2() function and its supporting

functions have been placed in a separate exp_chk.ec source file. The timeout program must include this file with the

Informix® ESQL/C include directive because the exception-handling functions use Informix® ESQL/C statements. For a

description of the exp_chk.ec file, see Guide to the exp_chk.ec file on page 309.

Tip: In a production environment, you would put functions such as getans(), exp_chk2(), sqlstate_err(), disp_error(),

and disp_warning() into a library and include this library on the command line of the Informix® ESQL/C compilation

program.

Example output

This section includes a sample output of the timeout demonstration program.

This program performs two runs of the canceltst query, as follows:

• Lines 20 - 43: The first run confirms the interrupt request as soon as the confirmation prompt appears. (The user

enters y.)

• Lines 44 - 75: The second run does not confirm the interrupt request. (The user enters n.)

The numbers that appear in the following output are for explanation only. They do not appear in the actual program output.

===
1. TIMEOUT Sample ESQL Program running.
2. Connected to 'stores7' on default server
3. Created table 'canceltst'
4. Inserting rows into 'canceltst'...
5. Inserted 1000 rows
6. Inserted 2000 rows
7. Inserted 3000 rows
8. Inserted 4000 rows
9. Inserted 5000 rows
10. Inserted 6000 rows
11. Inserted 7000 rows

361

HCL Informix 14.10 - ESQL/C Programmer’s Guide

362

12. Inserted 8000 rows
13. Inserted 9000 rows
14. Inserted 10000 rows
15. Inserted 10000 rows into 'canceltst'.
16. Counting number of rows in 'canceltst' table...
17. Number of rows = 10000
18. Timeout interval for SQL requests is: 0.00333333 minutes
19. *** Are you ready to begin execution of the query? (y/n): y
20. Beginning execution of query...
21. +------SQL Request begins-----------------------------+
22. | |
23. +------SQL Request ends-------------------------------+
24. +------SQL Request begins-----------------------------+
25. | |
26. | An interrupt has been received by the application.|
27. | |
28. *** Do you want to confirm this interrupt? (y/n): y
29. | TIMEOUT INTERRUPT REQUESTED |
30. +------SQL Request ends-------------------------------+
===

Lines 3 - 17

The create_tbl() function generates these lines. They indicate that the function has successfully created the canceltst table,

inserted the MAX_ROWS number of rows (1,000), and confirmed that a SELECT statement can access these rows. For a

description of the create_tbl() function, see the annotation beginning with Lines 262 - 281 on page 358.

Lines 18 - 19

Line 18 displays the timeout interval to indicate that sqlbreakcallback() has successfully registered the callback function and

established the timeout interval of 200 milliseconds (0.00333333 minutes). Line 19 asks the user to indicate the beginning of

the query execution. This prompt prepares the user for the confirmation prompt (lines 28 and 43), which must be answered

quickly to send an interrupt while the database server is still executing the query.

Line 20

This line indicates the beginning of the dspquery() function, the point at which the database server begins the canceltst

query.

Lines 21 - 30

The program output uses a message-request box to indicate client-server communication:

+------SQL Request begins-----------------------------+
| |
+------SQL Request ends-------------------------------+

Each box represents a single message request sent between the client and the server. The callback function displays

the text for a message-request box. (For a description of which parts of the function display the text, see Lines 199 -

249 on page 357.) To execute the OPEN statement, the client and server exchanged two message requests, which the

two message-request boxes in the output indicate. For more information about message requests, see Interruptible SQL

statements on page 339.

Chapter 1. ESQL/C Guide

The first message-request box (lines 21 - 23) indicates that the first message request completes before the timeout interval

elapses. The second message-request box (lines 29 - 30) indicates that execution of this message request exceeds the

timeout interval and calls the callback function with a status value of 2. The callback function prompts the user to confirm

the interrupt request (line 28).

Line 29 indicates that the sqlbreak() function has requested an interrupt. The message request then completes (line 30).

===
31. TIMEOUT INTERRUPT PROCESSED
32. *** Try another run? (y/n): y
33. Timeout interval for SQL requests is: 0.00333333 minutes
34. *** Are you ready to begin execution of the query? (y/n): y
35. Beginning execution of query...
36. +------SQL Request begins-----------------------------+
37. | |
38. +------SQL Request ends-------------------------------+
39. +------SQL Request begins-----------------------------+
40. | |
41. | An interrupt has been received by the application.|
42. | |
43. *** Do you want to confirm this interrupt? (y/n): n
44. +------SQL Request ends-------------------------------+
45. Displaying data...
46. sum(int_fld) = 25000000
47. char_fld1 = 4100 Bohannan Dr
48. char_fld2 = Menlo Park, CA
49. sum(int_fld) = 24995000
50. char_fld1 = Informix
51. char_fld2 = Software
52. Number of rows found: 2
53. *** Try another run? (y/n): n
54. Cleaning up...
55. Dropped table 'canceltst'
56. Disconnected stores7 connection
57. TIMEOUT Sample Program over.
===

Line 31

When the database server actually processes the interrupt request, it sets SQLCODE to -213. Line 31 indicates that the

application program has responded to this status.

Line 32

This prompt indicates the end of the first run of the canceltst query. The user responds y to the prompt to run the query a

second time.

Lines 36 - 41

The message-request box indicates that the first message request completes before the timeout interval elapses. The

second message-request box (lines 39 - 44) indicates that execution of this message request again exceeds the timeout

interval and calls the callback function (with when_called = 2). The callback function prompts the user to confirm the

interrupt request (line 43). This time the user answers n.

363

HCL Informix 14.10 - ESQL/C Programmer’s Guide

364

Lines 45 - 52

Because the user has not interrupted the canceltst query, the program displays the row information that the query returns.

Lines 54 and 55

The drop_tbl() function generates these lines. They indicate that the function has successfully dropped the canceltst

table from the database. For a description of the drop_tbl() function, see the annotation beginning with Lines 320 - 329 on

page 360.

ESQL/C connection library functions in a Windows™ environment

To establish an explicit connection (sometimes called a direct connection), IBM® Informix® ESQL/C supports the SQL

connection statements. For a complete description of the SQL connection statements, see the HCL® Informix® Guide to

SQL: Syntax. Informix® ESQL/C also supports the connection library functions that The following table lists for establishing

an explicit connection from a Windows™ environment.

Table 65. ESQL/C connection library functions and their sql equivalents

ESQL/C for Windows™

library function
Description SQL equivalent See

GetConnect() Requests an explicit connection

and returns a pointer to the

connection information

CONNECT TO

'@dbservername'

WITH CONCURRENT

TRANSACTION

The GetConnect() function

(Windows) on page 625

SetConnect() Switches the connection to an

established (dormant) explicit

connection

SET CONNECT TO

(without the DEFAULT

option)

The SetConnect() function

(Windows) on page 800

ReleaseConnect() Closes an established explicit

connection

DISCONNECT (without

the DEFAULT, CURRENT,

or ALL options)

The ReleaseConnect() function

(Windows) on page 753

Important: Informix® ESQL/C supports the connection library functions for compatibility with Version 5.01

Informix® ESQL/C for Windows™ applications. When you write new Informix® ESQL/C applications for Windows™

environments, use the SQL connection statements (CONNECT, DISCONNECT, and SET CONNECTION) instead of the

Informix® ESQL/C connection library functions.

Informix® ESQL/C uses an internal structure that contains the handle for the connection and other connection information.

The Informix® ESQL/C connection library functions use the connection handle, together with the information in the internal

structure, to pass connection information to and from the application. The application can use the connection handle to

identify an explicit connection.

If you use these connection functions to establish explicit connections, keep in mind the following restrictions:

Chapter 1. ESQL/C Guide

• If you open a cursor in one module (such as a shared DLL), and then use an explicit connection to use that cursor in

another module, you must use a host variable for the name of the cursor when you declare the cursor.

• Make sure that your application uses the correct connection handle at all times.

Important: If an application uses the wrong connection handle, the application can modify the wrong database

without the knowledge of the user.

When you compile your Informix® ESQL/C program, the esql command processor automatically links the Informix® ESQL/C

connection functions to your program.

Informix® libraries
These topics describe how to link the static, shared, and thread-safe HCL Informix® general libraries with your Informix®

ESQL/C application.

HCL Informix® products use the Informix® general libraries for interactions between the client SQL application programming

interface (API) products (Informix® ESQL/C) and the database server. You can choose between the following types of

Informix® general libraries to link with your Informix® ESQL/C application:

• Static Informix® general libraries

To link a static library, the linker copies the library functions to the executable file of your Informix® ESQL/C program.

The static Informix® general libraries allow the Informix® ESQL/C program on computers that do not support shared

memory to access the Informix® general library functions.

• Shared Informix® general libraries

To link a shared library, the linker copies information about the location of the library to the executable file of your

Informix® ESQL/C program. The shared Informix® libraries allow several applications to share a single copy of these

libraries, which the operating system loads, once, into shared memory.

• Thread-safe versions of static and shared Informix® general libraries

The thread-safe versions of Informix® general libraries allow the Informix® ESQL/C application that has several

threads to call these library functions simultaneously. The thread-safe versions of Informix® libraries are available as

both static libraries and shared libraries.

Beginning with HCL Informix® Client Software Development Kit version 3.0, static versions of Informix® general libraries are

available on Windows™ and UNIX™ operating systems. The following table shows the available options.

Table 66. Different version of the ESQL/C general library available for UNIX™ and Windows™

Linking options Thread-safe Default

Static Static, thread-safe general libraries Static, default general libraries

Shared Shared, thread-safe general libraries Shared, default general libraries.

365

HCL Informix 14.10 - ESQL/C Programmer’s Guide

366

Choose a version of the Informix® general libraries

This section provides information about the following topics:

• What are the HCL Informix® general libraries?

• What command-line options of the esql command determine the version of the Informix® general libraries to link

with your Informix® ESQL/C program?

• How do you link the static Informix® general libraries that are available on UNIX™ and Windows™ operating systems

with your Informix® ESQL/C program?

• How do you link the shared Informix® general libraries with your Informix® ESQL/C program?

• What are some factors that you need to consider to determine which type of Informix® general libraries to use?

The Informix® general libraries

The following is a list of the HCL Informix® general libraries for Informix® ESQL/C on a UNIX™ operating system.

libgen

Contains functions for general tasks.

libos

Contains functions for tasks that are required from the operating system.

libsql

Contains functions that send SQL statements between client application and database server.

libgls

Contains functions that provide Global Language Support (GLS) to HCL Informix® products.

libasf

Contains functions that handle communication protocols between client application and database server.

Informix® general libraries are in the $INFORMIXDIR/lib/esql and $INFORMIXDIR/lib directories on UNIX™ operating

systems.

The Informix® general library for Informix® ESQL/C for Windows™ is just one DLL named isqlt09a.dll. The file is in the

%INFORMIXDIR%\lib directory.

The static library for Informix® ESQL/C for Windows™ is named isqlt09s.lib. The file is in the $INFORMIXDIR/lib

directory.

On many platforms there is a system library named libgen.a. To avoid compilation errors, it is recommended that you

do not use the libgen.a Informix® library. Instead, use libifgen.a Informix® library which contains a symbolic link to

libgen.a.

Chapter 1. ESQL/C Guide

The esql command

To determine which type of HCL Informix® general libraries to link with your Informix® ESQL/C application, the esql

command supports the command-line options in the following table.

Table 67. The esql command-line options for Informix® general libraries

Version of Informix®

libraries to link

The esql command- line

option
See

Shared libraries No option (default) Link shared Informix general libraries on page 368

Static libraries -static Link static Informix general libraries on page 367.

Thread-safe shared libraries -thread Linking thread-safe Informix general libraries to an ESQL/C

module on a UNIX operating system on page 380 and Linking

thread-safe Informix general libraries to an ESQL/C module in a

Windows environment on page 382

Thread-safe static libraries -thread -static Create a dynamic thread library on UNIX operating systems on

page 389

Link static Informix® general libraries

Beginning with HCL Informix® Client Software Development Kit version 3.0, static versions of HCL Informix® general

libraries are available on Windows™ and UNIX™ operating systems.

The static Informix® general libraries retain their pre-version 7.2 names. Static-library names have the following formats:

• A non-thread-safe static Informix® general library has a name of the form libxxx.a.

• A thread-safe static Informix® general library has a name of the form libthxxx.a.

In these static-library names, xxx identifies the particular static Informix® general library. With version 7.2 and later, the static

and thread-safe static Informix® general libraries use names of this format as their actual names. The following sample

output shows the actual names for the libos static (libos.a) and thread-safe static (libthos.a) libraries:

% cd $INFORMIXDIR/lib/esql
% ls -l lib*os.a
-rw-r--r-- 1 informix 145424 Nov 8 01:40 libos.a
-rw-r--r-- 1 informix 168422 Nov 8 01:40 libthos.a

The esql command links the code that is associated with the actual names of the static Informix® general libraries into the

Informix® ESQL/C application. At run time, your Informix® ESQL/C program can access these Informix® general-library

functions directly from its executable file.

Link static Informix® general libraries into an ESQL/C module
To link static HCL Informix® general libraries with the Informix® ESQL/C module, compile your program with the -static

command-line option.

367

HCL Informix 14.10 - ESQL/C Programmer’s Guide

368

The following command links the static non-thread-safe Informix® libraries with the file.exe executable file:

esql -static file.ec -o file.exe

The esql command can also link the code for thread-safe shared Informix® general libraries with the Informix® ESQL/C

application.

Tip: The esql command for pre-version 7.2 products linked static versions of the Informix® general libraries.

Because the esql command links shared versions of these libraries by default, you must specify the -static option to

link the static versions with your Informix® ESQL/C application.

Link shared Informix® general libraries

IBM® Informix® ESQL/C can dynamically link a shared library, which places this library in shared memory. When the

shared library is in shared memory, other Informix® ESQL/C applications can also use it. Shared libraries are most useful in

multiuser environments where only one copy of the library is required for all applications.

Important: To use shared libraries in your Informix® ESQL/C application, your operating system must support shared

libraries. Operating systems that support shared libraries include Sun and HP versions of UNIX™ and Windows™. You

should be familiar with the creation of shared libraries and with the compile options that your C compiler requires to

build them.

Symbolic names of linked shared libraries (UNIX™)

When the esql command links shared or thread-safe shared HCL Informix® libraries with your Informix® ESQL/C application,

it uses the symbolic names of these libraries. The symbolic names of the Informix® shared libraries have the following

formats:

• A non-thread-safe shared Informix® general library has a symbolic name of the form libxxx.yyy.

• A thread-safe shared Informix® general library has a symbolic name of the form libthxxx.yyy.

In these static-library names, xxx identifies the particular library and yyy is a platform-specific file extension that identifies

shared library files.

Tip: To refer to a specific shared-library file, this publication often uses the file extension for the Sun UNIX™ operating

system, the .so file extension. For the shared-library file extension that your UNIX™ operating system uses, see your

UNIX™ operating system documentation.

When you install the Informix® ESQL/C product, the installation script makes a symbolic link of the actual shared product

library name to the file with the symbolic name. The following figure shows the format for the actual names of shared and

thread-safe shared versions of Informix® libraries.

Chapter 1. ESQL/C Guide

Figure 77. Format of the Informix® shared-library name

The following sample output shows the symbolic and actual names for the libos.a static library and the libos.so shared

library (on a Sun platform):

%ls -l $INFORMIXDIR/esql/libos*
-rw-r--r-- 1 informix 145424 Nov 8 01:40 libos.a
lrwxrwxrwx 1 root 11 Nov 8 01:40 libos.so -> iosls07a.so*

The esql command links the symbolic shared-library names with the Informix® ESQL/C application. At runtime, Informix®

ESQL/C dynamically links the code for the shared Informix® general library when the program requires the Informix®

general-library function.

Linking shared Informix® general libraries to an ESQL/C module

About this task

To link shared HCL Informix® general libraries to an ESQL/C module:

1. Set the environment variable that specifies the library search path at run time so that it includes the $INFORMIXDIR/

lib and $INFORMIXDIR/lib/esql paths on a UNIX™ operating system; and %INFORMIXDIR%lib in a Windows™

environment.

On many UNIX™ operating systems, the LD_LIBRARY_PATH environment variable specifies the library search path.

The following command sets LD_LIBRARY_PATH in a C shell:

setenv LD_LIBRARY_PATH $INFORMIXDIR/lib:$INFORMIXDIR/
lib/esql:/usr/lib

In Windows™ environments, use the following command:

set LIB = %INFORMIXDIR%\lib\;%LIB%

2. Compile your program with the esql command.

To link shared Informix® general libraries with the Informix® ESQL/C module, you do not need to specify a

command-line option. Informix® ESQL/C links shared libraries by default. The following command compiles the

file.ec source file with shared Informix® libraries:

esql file.ec -o file.exe

Results

The esql command also uses the symbolic name when it links the thread-safe shared Informix® general libraries with the

Informix® ESQL/C application.

369

HCL Informix 14.10 - ESQL/C Programmer’s Guide

370

Choose between shared and static library versions

Beginning with HCL Informix® Client Software Development Kit version 3.0, static versions of HCL Informix® general

libraries are available on Windows™ and UNIX™ operating systems.

Informix® ESQL/C products before version 7.2 use static versions of the libraries for the Informix® general libraries. While

static libraries are effective in an environment that does not require multitasking, they become inefficient when more than

one application calls the same functions. Version 7.2 and later of Informix® ESQL/C also supports shared versions of the

Informix® general libraries.

Shared libraries are most useful in multiuser environments where only one copy of the library is required for all applications.

Shared libraries bring the following benefits to your Informix® ESQL/C application:

• Shared libraries reduce the sizes of executable files because these library functions are linked dynamically, on an as-

needed basis.

• At run time, a single copy of a shared library can be linked to several programs, which results in less memory use.

• The effects of shared libraries in the Informix® ESQL/C executable are transparent to the user.

Although shared libraries save both disk and memory space, when the Informix® ESQL/C application uses them it must

perform the following overhead tasks:

• Dynamically load the shared library into memory for the first time

• Perform link-editing operations

• Execute library position-independent code

These overhead tasks can incur runtime penalties and are not necessary when you use static libraries. However, these costs

can be offset by the savings in input/output (I/O) access time once the operating system has already loaded and mapped the

Informix® shared library.

Important: You might experience a one-time negative effect on the performance of the client side of the application

when you load the shared libraries the first time the application is executed. For more information, consult your

operating system documentation.

Because the real I/O time that the operating system needs to load a program and its libraries usually does not exceed the

I/O time saved, the apparent performance of a program that uses shared libraries is as good as or better than one that uses

static libraries. However, if applications do not share, or if your processor is saturated when your applications call shared-

library routines, you might not realize these savings.

You can also link thread-safe versions of the static and shared Informix® general libraries with the Informix® ESQL/C

application.

Compatibility of preexisting ESQL/C applications with current library versions

You specify the esql command-line options (in Table 67: The esql command-line options for Informix general libraries

on page 367) to tell the esql command which version of the HCL Informix® libraries to link with the Informix® ESQL/C

Chapter 1. ESQL/C Guide

application. After the esql command successfully compiles and links your application, the version of the Informix® general

libraries is fixed. When you install a new version of Informix® ESQL/C, you receive new copies of the Informix® general

libraries. Whether you need to recompile and relink your existing Informix® ESQL/C applications to run with these new copies

depends on the factors that the following table describes.

Change to the Informix® general library
Version of the Informix®

general library
Need to recompile or relink?

New release of the Informix® general

libraries

Static

Thread-safe static

Only if the application needs to take

advantage of a new feature in the new release

Informix® general libraries in new release

have a new major-version number

Shared

Thread-safe shared

Only if the application needs to take

advantage of a new feature in the new release

Informix® general libraries in new release

have a new API-version number

Shared

Thread-safe shared

Must recompile and relink

On UNIX™, you can use the ifx_getversion utility to determine the version of the Informix® library that is installed on your

system.

In Windows™ environments, use the following find command to find the occurrence of the string that contains the version

number in the isqlt09A.dll. The command needs to be issued from the %INFORMIXDIR%\bin directory.

C: cd %INFORMIXDIR%\bin
C: find "INFORMIX-SQL" isqlt09a.dll

The output of the find command is shown:

- - - - - - - - - ISQLT09A.DLL
INFORMIX-SQL Version 9.20T1N79

The ifx_getversion utility (UNIX™)
To obtain the complete version name of the HCL Informix® library, use the ifx_getversion utility.

Before you run ifx_getversion, set the INFORMIXDIR environment variable to the directory in which your HCL Informix®

product is installed.

The ifx_getversion utility has the following syntax.

ifx_getversion { libgen.xx | libthgen.x | libos.xx | libthos.x | libsql.xx | libthsql.x | libgls.xx | libasf.xx }

371

HCL Informix 14.10 - ESQL/C Programmer’s Guide

372

Element Purpose Key considerations

xx For static libraries, xx specifies the .a file

extension; for shared libraries, xx specifies the

platform-specific file extension.

For shared libraries, the Sun platform uses the .so file

extension and the Hewlett-Packard (HP) platform uses the

.sl file extension.

The following example shows an example of output that the ifx_getversion utility generates for the libgen Informix® library:

IBM/Informix-Client SDK Version 3.00.UN191
IBM/Informix LIBGEN LIBRARY Version 3.00.UN191
Copyright (C) 1991-2007 IBM

Output of ifx_getversion depends on the version of Informix® ESQL/C software that is installed on your system.

Check the API version of a library

When you invoke the IBM® Informix® ESQL/C application that is linked with shared HCL Informix® general libraries, the

release number of these shared libraries must be compatible with that of the shared libraries in the $INFORMIXDIR/lib or

the %INFORMIXDIR%\lib directory.

In a Windows™ environment, a developer can easily verify the name of the shared library DLL, namely isqltnnx.dll, where

nn stand for the version number, and x stand for the API version.

For the Informix® ESQL/C application on UNIX™, however, given that the linked libraries get symbolic names, it is not easy

to find the version number of the linked library. Therefore, Informix® ESQL/C does this check for you. Informix® ESQL/

C performs an internal check between the API version of the library that the application uses and the API version of the

library that is installed as part of your Informix® ESQL/C product. Figure 77: Format of the Informix shared-library name on

page 369 shows where the API version appears in the shared library name.

Informix® ESQL/C uses the HCL Informix® function that is called checkapi() to perform this check. The checkapi() function

is in the checkapi.o object file, which is contained in the $INFORMIXDIR/lib/esql directory. The esql command

automatically links this checkapi.o object file with every executable that it creates.

To determine the API version of the library that the application uses, Informix® ESQL/C checks the values of special macro

definitions in the executable file. When the Informix® ESQL/C preprocessor processes a source file, it copies the macro

definitions from the sqlhdr.h header file into the C source file (.c) that it generates. The following example shows sample

values for these macros:

#define CLIENT_GEN_VER 710
#define CLIENT_OS_VER 710
#define CLIENT_SQLI_VER 710
#define CLIENT_GLS_VER 710

Chapter 1. ESQL/C Guide

Tip: The Informix® ESQL/C preprocessor automatically includes the sqlhdr.h file in all Informix® ESQL/C

executable files that it generates.

If the API version of the libraries in this executable file is not compatible, Informix® ESQL/C returns a runtime error that

indicates which library is not compatible. You must recompile your Informix® ESQL/C application to link the new release

version of the shared library.

If you do not use esql to link one of the shared Informix® general libraries with your Informix® ESQL/C application, you must

explicitly link the checkapi.o file with your application. Otherwise, Informix® ESQL/C might generate an error at link time of

the form:

undefined ifx_checkAPI()

Create thread-safe ESQL/C applications

IBM® Informix® ESQL/C provides shared and static thread-safe and shared and static default versions of the Informix®

general libraries on both UNIX™ and Windows™ operating systems. On Windows™ operating systems, Informix® ESQL/C

provides a dll named isqlt09a.dll and a static thread-safe library named isqlt09s.lib.

A thread-safe Informix® ESQL/C application can have one active connection per thread and many threads per application.

The thread-safe libraries contain thread-safe (or reentrant) functions. A thread-safe function is one that behaves correctly

when several threads call it simultaneously.

For the Informix® ESQL/C on a UNIX™ operating system, the thread-safe Informix® general libraries use functions from the

Distributed Computing Environment (DCE) thread package. The DCE thread library, which the Open Software Foundation

(OSF) developed, creates a standard interface for thread-safe applications.

If the DCE thread library is not available on your operating system, ESQL/C can use POSIX thread libraries or Sun Solaris

thread libraries.

If your operating system supports the DCE, POSIX, or Solaris thread packages, you must install them on the same client

computer as ESQL/C.

In Windows™ environments, the Informix® general libraries use the Windows™ API to ensure that they are thread safe.

With the thread-safe Informix® general libraries, you can develop thread-safe Informix® ESQL/C applications. A thread-

safe application can have many threads of control. It separates a process into multiple execution threads, each of which

runs independently. While a non-threaded Informix® ESQL/C application can establish many connections to one or more

databases, it can have only one active connection at a time. An active connection is one that is ready to process SQL

requests. A thread-safe Informix® ESQL/C application can have one active connection per thread and many threads per

application.

When you specify the -thread command-line option, the esql command passes this option to the Informix® ESQL/C

preprocessor, esqlc. With the -thread option, the Informix® ESQL/C preprocessor generates thread-safe code that different

threads can execute concurrently.

373

HCL Informix 14.10 - ESQL/C Programmer’s Guide

374

Characteristics of thread-safe ESQL/C code

The thread-safe IBM® Informix® ESQL/C code has the following characteristics that are different from non-thread-safe code:

• The thread-safe code does not define any static data structures.

For example, Informix® ESQL/C allocates sqlda structures dynamically and binds host variables to these sqlda

structures at run time. For more information about sqlda structures to perform dynamic SQL, see Working with the

database server on page 318.

• The thread-safe code declares cursor blocks dynamically instead of declaring them statically.

• The thread-safe code uses macro definitions for status variables (SQLCODE, SQLSTATE, and the sqlca structure).

For more information, see Define thread-safe variables (UNIX) on page 381.

Because of the preceding differences, the thread-safe C source file (.c) that the Informix® ESQL/C preprocessor generates

is different from the non-threaded C source file. Therefore, you cannot link Informix® ESQL/C applications that have

been compiled with the -thread option with applications that have not already been compiled with -thread. To link such

applications, you must compile both applications with the -thread option.

Program a thread-safe ESQL/C application
This section provides useful hints for how to create thread-safe IBM® Informix® ESQL/C applications.

It discusses the following programming techniques for a thread-safe environment:

• Establishing concurrent active connections

• Using connections across threads

• Disconnecting all connections

• Using prepared statements across threads

• Using cursors across threads

• Accessing environment variables

• Handling decimal values

• Handling DCE restrictions (UNIX™)

Concurrent active connections

In a thread-safe IBM® Informix® ESQL/C application, a database server connection can be in one of the following states:

• An active database server connection is ready to process SQL requests.

The major advantage of a thread-safe Informix® ESQL/C application is that each thread can have one active

connection to a database server. Use the CONNECT statement to establish a connection and make it active. Use the

SET CONNECTION statement (with no DORMANT clause) to make a dormant connection active.

Chapter 1. ESQL/C Guide

• A dormant database server connection was established but is not currently associated with a thread.

When a thread makes an active connection dormant, that connection becomes available to other threads. Conversely,

when a thread makes a dormant connection active, that connection becomes unavailable to other threads. Use the

SET CONNECTION...DORMANT statement to explicitly put a connection in a dormant state.

The current connection is the active database server connection that is currently sending SQL requests to, and possibly

receiving data from, the database server. A single-threaded application has only one current (or active) connection at a

time. In a multithreaded application, each thread can have a current connection. Thus a multithreaded application can have

multiple active connections simultaneously.

When you switch connections with the SET CONNECTION statement (with no DORMANT clause), SET CONNECTION

implicitly puts the current connection in the dormant state. When in a dormant state, a connection is available to other

threads. Any thread can access any dormant connection. However, a thread can only have one active connection at a time.

The following figure shows a thread-safe Informix® ESQL/C application that establishes three concurrent connections, each

of which is active.

Figure 78. Concurrent connections in a thread-safe ESQL/C application

In previous figure, the Informix® ESQL/C application consists of the following threads:

• The main thread (main function) starts connection con1 to database db1 on Server_1.

• The main thread creates Thread 2. Thread 2 establishes connection con2 to database db1 on Server_1.

• The main thread creates Thread 3. Thread 3 establishes connection con3 to database db2 on Server_2.

All connections in Figure 78: Concurrent connections in a thread-safe ESQL/C application on page 375 are concurrently

active and can execute SQL statements. The following code fragment establishes the connections that Figure 78: Concurrent

connections in a thread-safe ESQL/C application on page 375 illustrates. It does not show DCE-related calls and code for

the start_threads() function.

main()
{
 EXEC SQL connect to 'db1@Server_1' as 'con1';
 start_threads(); /* start 2 threads */
 EXEC SQL select a into :a from t1; /* table t1 resides in db1 */

⋮

375

HCL Informix 14.10 - ESQL/C Programmer’s Guide

376

}
thread_1()
{
 EXEC SQL connect to 'db1@Server_1' as 'con2';
 EXEC SQL insert into table t2 values (10); /* table t2 is in db1 */
 EXEC SQL disconnect 'con2';
}
thread_2()
{
 EXEC SQL connect to 'db2@Server_2' as 'con3';
 EXEC SQL insert into table t1 values(10); /* table t1 resides in db2
 */
 EXEC SQL disconnect 'con3';
}

You can use the ifx_getcur_conn_name() function to obtain the name of the current connection.

Connections across threads

If your application contains threads that need to use the same connection, one thread might be using the connection when

another thread needs to access it. To avoid this type of contention, your Informix® ESQL/C application must manage access

to the connections.

The simplest way to manage a connection that several threads must use is to put the SET CONNECTION statement in a loop.

The following code fragment shows a simple SET CONNECTION loop.

/* wait for connection: error -1802 indicates that the connection
 is in use
 */
do {
 EXEC SQL set connection :con_name;
 } while (SQLCODE == -1802);

The preceding algorithm waits for the connection that the host variable :con_name names to become available. However, the

disadvantage of this method is that it consumes processor cycles.

The following code fragment uses the CONNECT statement to establish connections and SET CONNECTION statements to

make dormant connections active within threads. It also uses SET CONNECTION...DORMANT to make active connections

dormant. This code fragment establishes the connections that Figure 78: Concurrent connections in a thread-safe ESQL/C

application on page 375 illustrates. It does not show DCE-related calls and code for the start_threads() function.

main()
{ EXEC SQL BEGIN DECLARE SECTION;
 int a;
 EXEC SQL END DECLARE SECTION;

 start_threads(); /* start 2 threads */
 wait for the threads to finish work.

 /* Use con1 to update table t1; Con1 is dormant at this point.*/
 EXEC SQL set connection 'con1';
 EXEC SQL update table t1 set a = 40 where a = 10;

Chapter 1. ESQL/C Guide

 /* disconnect all connections */
 EXEC SQL disconnect all;
}
thread_1()
{
 EXEC SQL connect to 'db1' as 'con1’;
 EXEC SQL insert into table t1 values (10); /* table t1 is in db1*/

 /* make con1 available to other threads */
 EXEC SQL set connection 'con1' dormant;

 /* Wait for con2 to become available and then update t2 */
 do {
 EXEC SQL set connection 'con2';
 } while ((SQLCODE == -1802));
 if (SQLCODE != 0)
 return;
 EXEC SQL update t2 set a = 12 where a = 10; /* table t2 is in db1 */
 EXEC SQL set connection 'con2' dormant;
}

thread_2()
{ /* Make con2 an active connection */
 EXEC SQL connect to 'db2' as 'con2';
 EXEC SQL insert into table t2 values(10); /* table t2 is in db2*/
 /* Make con2 available to other threads */
 EXEC SQL set connection'con2' dormant;
}

In this code fragment, thread_1() uses a SET CONNECTION statement loop (see Figure 80: Declaration of thread-scoped

status variables on page 382) to wait for con2 to become available. When thread_2() makes con2 dormant, other threads

can use this connection. At this time, the SET CONNECTION statement in thread_1() is successful and thread_1() can use

the con2 connection to update table t2.

The DISCONNECT ALL Statement
The DISCONNECT ALL statement serially disconnects all connections in an application.

In a thread-safe IBM® Informix® ESQL/C application, only the thread that issues the DISCONNECT ALL statement can

be processing an SQL statement (in this case, the DISCONNECT ALL statement). If any other thread is executing an SQL

statement, the DISCONNECT ALL statement fails when it tries to disconnect that connection. This failure might leave the

application in an inconsistent state.

For example, suppose a DISCONNECT ALL statement successfully disconnects connection A and connection B but is unable

to disconnect connection C because this connection is processing an SQL statement. The DISCONNECT ALL statement fails,

with connections A and B disconnected but connection C open. It is recommended that you issue the DISCONNECT ALL

statement in the main function of your application after all threads complete their work.

While the DISCONNECT ALL statement is serially disconnecting application connections, Informix® ESQL/C blocks other

connection requests. If another thread requests a connect while the DISCONNECT ALL statement executes, this thread must

wait until the DISCONNECT ALL statement completes before Informix® ESQL/C can send this new connection request to the

database server.

377

HCL Informix 14.10 - ESQL/C Programmer’s Guide

378

Prepared statements across threads

The PREPARE statements are scoped at the connection level. That is, they are associated with a connection. When a thread

makes a connection active, it can access any of the prepared statements that are associated with this connection. If your

thread-safe IBM® Informix® ESQL/C application uses prepared statements, you might want to isolate compilation of

PREPARE statements so that they are compiled only once in a program.

One possible way to structure your application is to execute the statements that initialize the connection context as a group.

The connection context includes the name of the current user and the information that the database environment associates

with this name (including prepared statements).

For each connection, the application would perform the following steps:

1. Use the CONNECT statement to establish the connection that the thread requires.

2. Use the PREPARE statement to compile any SQL statements that are associated with the connection.

3. Use the SET CONNECTION...DORMANT statement to put the connection in the dormant state.

When the connection is dormant, any thread can access the dormant connection through the SET CONNECTION statement.

When the thread makes this connection active, it can send the corresponding prepared statement or statements to the

database server for execution.

In the following figure , the code fragment prepares SQL statements during the connection initialization and executes them

later in the program.

Figure 79. Using prepared SQL statements across threads

The code fragment in Figure 79: Using prepared SQL statements across threads on page 378 performs the following

actions:

Chapter 1. ESQL/C Guide

1. The main thread calls start_con_threads(), which calls start_con_thread() to start two threads:

◦ For Thread 1, the start_con_thread() function establishes connection con1, prepares a statement that is called

s1, and makes connection con1 dormant.

◦ For Thread 2, the start_con_thread() function establishes connection con2, prepares a statement that is called

s2, and makes connection con2 dormant.

2. The main thread calls start_execute_threads(), which calls start_execute_thread() to execute the prepared

statements for each of the two threads:

◦ For Thread 1, the start_execute_thread() function makes connection con1 active, executes the s1 prepared

statement associated with con1, and makes connection con1 dormant.

◦ For Thread 2, the start_execute_thread() function makes connection con2 active, executes the s2 prepared

statement associated with con2, and makes connection con2 dormant.

3. The main thread disconnects all connections.

Cursors across threads

Like prepared statements, cursors are scoped at the connection level. That is, they are associated with a connection. When

a thread makes a connection active, it can access any of the database cursors that are declared for this connection. If your

thread-safe Informix® ESQL/C application uses database cursors, you might want to isolate the declaration of cursors in

much the same way that you can isolate prepared statements (see Prepared statements across threads on page 378).

The following code fragment shows a modified version of the start_con_thread() function (in Figure 79: Using prepared

SQL statements across threads on page 378). This version prepares an SQL statement and declares a cursor for that

statement:

EXEC SQL connect to 'db1' as 'con1';
EXEC SQL prepare s1
EXEC SQL declare cursor cursor1 for s1;
EXEC SQL set connection 'con1' dormant;

Environment variables across threads
Environment variables are not thread-scoped in a thread-safe IBM® Informix® ESQL/C application. That is, if a thread

changes the value of a particular environment variable, this change is visible in all other threads as well.

Message file descriptors

By default ESQL/C frees all file descriptors for a message file when it closes the message file. As a performance

optimization, however, you can set the environment variable IFX_FREE_FD to cause IBM® Informix® ESQL/C to not free the

file descriptor if the message file being closed is open for another thread. If you set IFX_FREE_FD to 1, Informix® ESQL/C

frees the message file descriptor only for the thread that closes the file.

Decimal functions
The dececvt() and decfcvt() functions of the IBM® Informix® ESQL/C library return a character string that can be overwritten

if two threads simultaneously call these functions. For this reason, use the thread-safe versions of these two functions,

ifx_dececvt() and ifx_decfcvt().

379

HCL Informix 14.10 - ESQL/C Programmer’s Guide

380

DCE restrictions (UNIX™)

A thread-safe IBM® Informix® ESQL/C code is also subject to all restrictions that the DCE thread package imposes.

DCE requires that all applications that use the DCE thread library are ANSI compliant. This section lists some of the

restrictions to keep in mind when you create a thread-safe Informix® ESQL/C application. For more information, see your

DCE documentation.

Operating-system calls

You must substitute DCE thread-jacket routines for all operating-system calls within the thread-safe IBM® Informix® ESQL/C

application. Thread-jacket routines take the name of a system call, but they call the DCE pthread_lock_global_np() function to

lock the global mutual exclusion lock (mutex) before they call the actual system service. (Mutexes serialize thread execution

by ensuring that only one thread at a time executes a critical section of code.) The DCE include file, pthread.h, defines the

jacketed versions of system calls.

The fork() operating-system call

In the DCE environment, restrict use of the fork() operating-system call. In general, terminate all threads but one before

you call fork(). An exception to this rule is when a call to the fork() system call immediately follows the fork() call. If your

application uses fork(), it is recommended that the child process call sqldetach() before it executes any IBM® Informix®

ESQL/C statements.

Resource allocation

It is recommended that you include the DCE pthread_yield() call in tight loops to remind the scheduler to allocate resources

as necessary. The call to pthread_yield() instructs the DCE scheduler to try to uniformly allocate resources if a thread

is caught in a tight loop, waiting for a connection (thus preventing other threads from proceeding). The following code

fragment shows a call to the pthread_yield() routine:

/* loop until the connection is available*/
do
 {
 EXEC SQL set connection :con_name;
 pthread_yield();
 } while (SQLCODE == -1802);

Link thread-safe libraries
The esql command links the thread-safe versions of the static or shared HCL Informix® general libraries when you specify

the -thread command-line option.

Linking thread-safe Informix® general libraries to an ESQL/C module on a UNIX™
operating system

Perform the following steps to link thread-safe HCL Informix® general libraries to the Informix® ESQL/C module on a UNIX™

operating system:

Chapter 1. ESQL/C Guide

1. Install the DCE thread package on the same client computer as the Informix® ESQL/C product. For more information,

see your DCE installation instructions.

If DCE is not available on your platform, ESQL/C can use POSIX thread libraries or Sun Solaris thread libraries.

2. Set the THREADLIB environment variable to indicate which thread package to use when you compile the application.

The following C-shell command sets THREADLIB to the DCE thread package:

setenv THREADLIB DCE

SOL and POSIX are also valid options for the THREADLIB environment variable.

Important: This version of Informix® ESQL/C supports only the DCE thread package.

3. Compile your program with the esql command, and specify the -thread command-line option.

The -thread command-line option tells esql to generate thread-safe code and to link in thread-safe libraries. The

following command links thread-safe shared libraries with the file.exe executable file:

esql -thread file.ec -o file.exe

The -thread command-line option instructs the esql command to perform the following steps:

1. Pass the -thread option to the Informix® ESQL/C preprocessor to generate thread-safe code.

2. Call the C compiler with the -DIFX_THREAD command-line option.

3. Link the appropriate thread libraries (shared or static) to the executable file.

Tip: You must set the THREADLIB environment variable before you use the esql command with the -thread

command-line option.

If you specify the -thread option but do not set THREADLIB, or if you set THREADLIB to some unsupported thread package,

the esql command issues the following message:

esql: When using -thread, the THREADLIB environment variable
 must be set to a supported thread library. Currently
 supporting: DCE, POSIX(Solaris 2.5 and higher only) and
 SOL (Solaris Kernel Threads)

Define thread-safe variables (UNIX™)

When you specify the -thread command-line option to esql, the IBM® Informix® ESQL/C preprocessor passes the

IFX_THREAD definition to the C compiler. The IFX_THREAD definition tells the C compiler to create thread-scoped variables

for variables that are global in non-thread-safe Informix® ESQL/C code.

For example, when the C compiler includes the sqlca.h file with IFX_THREAD set, it defines thread-scoped variables for

the Informix® ESQL/C status variables: SQLCODE, SQLSTATE, and the sqlca structure. The thread-scoped versions of status

381

HCL Informix 14.10 - ESQL/C Programmer’s Guide

382

variables are macros that map the global status variables to thread-safe function calls that obtain thread-specific status

information.

The following figure shows an excerpt from the sqlca.h file with the thread-scoped definitions for Informix® ESQL/C status

variables.

Figure 80. Declaration of thread-scoped status variables

⋮;

extern struct sqlca_s sqlca;

extern int4 SQLCODE;

extern char SQLSTATE[];
#else /* IFX_THREAD */
extern int4 * ifx_sqlcode();
extern struct sqlca_s * ifx_sqlca();
#define SQLCODE (*(ifx_sqlcode()))
#define SQLSTATE ((char *)(ifx_sqlstate()))
#define sqlca (*(ifx_sqlca()))
#endif /* IFX_THREAD */

Link shared or static versions

To tell the esql command to link the thread-safe versions of the HCL Informix® libraries into your application, use the -thread

command-line option of esql, as follows:

• Thread-safe shared libraries require the -thread command-line option only.

• Thread-safe static libraries require the -thread and -static command-line options.

Linking thread-safe Informix® general libraries to an ESQL/C module in a Windows™
environment

About this task

To create a thread-safe IBM® Informix® ESQL/C application, you must perform the following steps:

1. In your Informix® ESQL/C source file, include the appropriate thread functions and variables of the Windows™ API.

For more information about threads, consult your Microsoft™ or Borland programmer documentation.

2. When you compile the Informix® ESQL/C source file, specify the -thread command-line option of the esql command.

The -thread option tells the Informix® ESQL/C preprocessor to generate thread-safe C code when it translates SQL

and Informix® ESQL/C statements. This thread-safe code includes calls to thread-safe functions in the Informix®

DLLs.

What to do next

If you are not creating the Informix® ESQL/C application with threads, omit the -thread option. Although the Informix® DLLs

are thread safe, your non-thread-safe application does not use the thread-safe feature when you omit -thread.

Chapter 1. ESQL/C Guide

ESQL/C thread-safe decimal functions

The dececvt() and decfcvt() functions of the IBM® Informix® ESQL/C library return a character string that can be overwritten

if two threads simultaneously call these functions. For this reason, use the following thread-safe versions of these two

functions.

Function Name Description See

ifx_dececvt() Thread-safe version of the dececvt() ESQL/C function The ifx_dececvt() and

ifx_decfcvt() function on

page 628

ifx_decfcvt() Thread-safe version of the decfcvt() ESQL/C function The ifx_dececvt() and

ifx_decfcvt() function on

page 628

Both of these functions convert a decimal value to an ASCII string and return it in the user-defined buffer.

When you compile your Informix® ESQL/C program with the -thread command-line option of the esql command, esql

automatically links these functions to your program.

Context threaded optimization

IBM® Informix® ESQL/C allows developers to specify the runtime context that is used for a set of statements. A runtime

context holds all the thread-specific data that Informix® ESQL/C must maintain including connections and their current

states, cursors, and their current states.

This feature allows Informix® ESQL/C programmers to improve the performance of their MESQL/C applications. By using

the SQLCONTEXT definitions and directives, the number of thread-specific data block lookups is reduced.

The following embedded SQL statements support the definition and usage of runtime contexts:

SQLCONTEXT context_var;
PARAMETER SQLCONTEXT param_context_var;
BEGIN SQLCONTEXT OPTIMIZATION;
END SQLCONTEXT OPTIMIZATION;

The SQLCONTEXT definition and statements are only recognized when the esql-thread option is used. If the -thread option is

not specified, the statements are ignored.

The use of the SQLCONTEXT statements causes the ESQL/C preprocessor to generate code in the .c file that differs from

the generated code when no SQLCONTEXT statements are present.

The following SQLCONTEXT definition generates code to define and set the value of the SQLCONTEXT to the handle of the

runtime context:

SQLCONTEXT context_var;

The following SQLCONTEXT is used to generate code to define a parameter that contains the handle of the runtime context:

383

HCL Informix 14.10 - ESQL/C Programmer’s Guide

384

PARAMETER SQLCONTEXT param_context_var;

The following BEGIN SQLCONTEXT directive causes all statements positionally following it in the source file to use the

indicated runtime context until the END CONTEXT directive is seen:

BEGIN SQLCONTEXT OPTIMIZATION;
...
END SQLCONTEXT OPTIMIZATION;

The END SQLCONTEXT directive appears before the end of the scope of the SQLTCONTEXT definition currently used, or

compile-time errors occur for "undefined symbol sql_context_var."

A sample thread-safe program

The following sample program, thread_safe, shows how you can use a cursor across threads. Sample output for this

program follows the source listing.

Source listing

The main thread starts a connection that is named con1 and declares a cursor on table t. It then opens the cursor and makes

connection con1 dormant. The main thread then starts six threads (six instances of the threads_all() function) and waits for

the threads to complete their work with the pthread_join() DCE call.

Each thread uses the connection con1 and the opened cursor to perform a fetch operation. After the fetch operation, the

program makes the connection dormant. Threads use connection con1 in a sequential manner because only one thread can

use the connection at a time. Each thread reads the next record from the t table.

/* **
* Program Name: thread_safe()
*
* purpose : If a server connection is initiated with the WITH
* CONCURRENT TRANSACTION clause, an ongoing transaction
* can be shared across threads that subsequently
* connect to that server.
* In addition, if an open cursor is associated with such
* connection, the cursor will remain open when the
* connection
* is made dormant. Therefore, multiple threads can share a
* cursor.
*
* Methods : - Create database db_con221 and table t1.
* - Insert 6 rows into table t1, i.e. values 1 through 6.
* - Connect to db_con221 as con1 with CONCURRENT
* TRANSACTION.
* The CONCURRENT TRANSACTION option is required since
* all
* threads use the cursor throughout the same
* connection.
* - Declare c1 cursor for "select a from t1 order by a".
* - Open the cursor.
* - Start 6 threads. Use DCE pthread_join() to determine if
* all threads complete & all threads do same thing as
* follows.
* For thread_1, thread_2, ..., thread_6:

Chapter 1. ESQL/C Guide

* o SET CONNECTION con1
* o FETCH a record and display it.
* o SET CONNECTION con1 DORMANT
* - Disconnect all connections.
**
*/

#include <pthread.h>
#include <dce/dce_error.h>

/* global definitions */
#define num_threads 6

/* Function definitions */
static void thread_all();
static long dr_dbs();
static int checksql(char *str, long expected_err, char *con_name);
static void dce_err();

/* Host variables declaration */
EXEC SQL BEGIN DECLARE SECTION;
 char con1[] = "con1";
EXEC SQL END DECLARE SECTION;

/* **
* Main Thread
**/
main()
{
/* create database */

EXEC SQL create database db_con221 with log;
if (! checksql("create database", 0, EMPTYSTR))
 {
 printf("MAIN:: create database returned status {%d}\n", SQLCODE);
 exit(1);
 }

EXEC SQL create table t1(sales int);
if (! checksql("create_table", 0, EMPTYSTR))
 {
 dr_dbs("db_con221");
 printf("MAIN:: create table returned status {%d}\n", SQLCODE);
 exit(1);
 }

if (populate_tab() != FUNCSUCC)
 {
 dr_dbs("db_con221");
 printf("MAIN:: returned status {%d}\n", SQLCODE);
 exit(1);
 }

EXEC SQL close database;
checksql("[main] <close database>", 0, EMPTYSTR);

/* Establish connection 'con1' */

385

HCL Informix 14.10 - ESQL/C Programmer’s Guide

386

EXEC SQL connect to 'db_con221' as 'con1' WITH CONCURRENT TRANSACTION;
if (! checksql("MAIN:: <close database>", 0, EMPTYSTR))
 {
 dr_dbs("db_con221");
 exit(1);
 }

/* Declare cursor c1 associated with the connection con1 */
EXEC SQL prepare tabid from "select sales from t1 order by sales";
checksql("MAIN:: <prepare>", 0, EMPTYSTR);

EXEC SQL declare c1 cursor for tabid;
checksql("MAIN:: <declare c1 cursor for>", 0, EMPTYSTR);

/* Open cursor c1 and make the connection dormant */
EXEC SQL open c1;
checksql("MAIN:: <open c1>", 0, EMPTYSTR);
EXEC SQL set connection :con1 dormant;
checksql("MAIN:: <set connection con1 dormant>", 0, EMPTYSTR);

/* Start threads */
start_threads();

/* Close cursor and drop database */
EXEC SQL set connection :con1;
checksql("MAIN:: set connection", 0, EMPTYSTR);
EXEC SQL close c1;
checksql("MAIN:: <close cursor>", 0, EMPTYSTR);
EXEC SQL free c1;
checksql("MAIN:: <free cursor>", 0, EMPTYSTR);

EXEC SQL disconnect all;
checksql("MAIN:: disconnect all", 0, EMPTYSTR);
dr_dbs("db_con221");
} /* end of Main Thread */

/**
* Function: thread_all()
 * Purpose : Uses connection con1 and fetches a row from table t1 using *
 cursor c1.
 * Returns : Nothing
**/
static void thread_all(thread_num)
int *thread_num;
{
EXEC SQL BEGIN DECLARE SECTION;
 int val;
EXEC SQL END DECLARE SECTION;

/* Wait for the connection to become available */
do {
 EXEC SQL set connection :con1;
 } while (SQLCODE == -1802);

checksql("thread_all: set connection", 0, con1);

/* Fetch a row */

Chapter 1. ESQL/C Guide

EXEC SQL fetch c1 into :val;
checksql("thread_all: fetch c1 into :val", 0, con1);

/* Free connection con1 */
EXEC SQL set connection :con1 dormant;
checksql("thread_all: set connection con1 dormant", 0, EMPTYSTR);
printf("Thread id %d fetched value %d from t1\n", *thread_num, val);
} /* thread_all() */

/**
* Function: start_threads()
 * purpose : Create num_threads and passes a thread id number to each
 * thread
**/

start_threads()
{

 int thread_num[num_threads];
 pthread_t thread_id[num_threads];
 int i, ret, return_value;

for(i=0; i< num_threads; i++)
 {
 thread_num[i] = i;
 if ((pthread_create(&thread_id[i], pthread_attr_default
 (pthread_startroutine_t) thread_all, &thread_num[i])) == -1)
 {
 dce_err(__FILE__, "pthread_create failed", (unsigned long)-1);
 dr_dbs("db_con221");
 exit(1);
 }
 }

 /* Wait for all the threads to complete their work */
for(i=0; i< num_threads; i++)
 {
 ret = pthread_join(thread_id[i], (pthread_addr_t *) &return_value);
 if(ret == -1)
 {
 dce_err(__FILE__, "pthread_join", (unsigned long)-1);
 dr_dbs("db_con221");
 exit(1);
 }
 }
} /* start_threads() */

/**
* Function: populate_tab()
 * Purpose : insert values in table t1.
 * Returns : FUNCSUCC on success and FUNCFAIL when it fails.
**/
static int
populate_tab()
{
EXEC SQL BEGIN DECLARE SECTION;
 int i;
EXEC SQL END DECLARE SECTION;

387

HCL Informix 14.10 - ESQL/C Programmer’s Guide

388

EXEC SQL begin work;
if (!checksql("begin work", 0,EMPTYSTR))
 return FUNCFAIL;
for (i=1; i<=num_threads; i++)
 {
 EXEC SQL insert into t1 values (:i);
 if(!checksql("insert", 0,EMPTYSTR))
 return FUNCFAIL;
 }
EXEC SQL commit work;
if (!checksql("commit work", 0,EMPTYSTR))
 return FUNCFAIL;

return FUNCSUCC;
} /* populate_tab() */

/**
 * Function: dr_dbs()
 * Purpose : drops the database.
**/
long dr_dbs(db_name)
EXEC SQL BEGIN DECLARE SECTION;
 char *db_name;
EXEC SQL END DECLARE SECTION;

{
EXEC SQL connect to DEFAULT;
checksql("dr_dbs: connect", 0, "DEFAULT");

EXEC SQL drop database :db_name;
checksql("dr_dbs: drop database", 0, EMPTYSTR);

EXEC SQL disconnect all;
checksql("dr_dbs: disconnect all", 0, EMPTYSTR);
} /*dr_dbs() */

/**
 * Function: checksql()
 * Purpose : To check the SQLCODE against the expected error
 * (or the expected SQLCODE) and issue a proper message.
 * Returns : FUNCSUCC on success & FUNCFAIL on FAILURE.
**/
int checksql(str, expected_err, con_name)
char *str;
long expected_err;
char *con_name;
{
if (SQLCODE != expected_err)
 {
 printf("%s %s Returned {%d}, Expected {%d}\n", str, con_name,
SQLCODE,
 expected_err);
 return(FUNCFAIL);
 }
return (FUNCSUCC);
} /* checksql() */

Chapter 1. ESQL/C Guide

/**
* Function: dce_err()
 * purpose : prints error from dce lib routines
 * return : nothing
**/

void dce_err(program, routine, status)
char *program, *routine;
unsigned long status;
{
int dce_err_status;
char dce_err_string[dce_c_error_string_len+1];

if(status == (unsigned long)-1)
 {
 dce_err_status = 0;
 sprintf(dce_err_string, "returned FAILURE (errno is %d)", errno);
 }
else
 dce_error_inq_text(status, (unsigned char *)dce_err_string,
&dce_err_status);

if(!dce_err_status)
 {
 fprintf(stderr, "%s: error in %s:\n ==> %s (%lu) <==\n",
 program, routine, dce_err_string, status);
 }
else
 fprintf(stderr, "%s: error in %s: %lu\n", program, routine, status);
} /* dce_err() */

Output

The sample output might appear different each time the sample program executes because it depends on the execution

order of the threads.

Thread id 0 fetched value 1 from t1
Thread id 2 fetched value 2 from t1
Thread id 3 fetched value 3 from t1
Thread id 4 fetched value 4 from t1
Thread id 5 fetched value 5 from t1
Thread id 1 fetched value 6 from t1

In this output, Thread 1 fetches the last record in the table.

Create a dynamic thread library on UNIX™ operating systems

To create a dynamic thread library, you must define routines for every threaded operation that Informix® ESQL/C performs

and you must register those functions with Informix® ESQL/C. The following list shows all of the functions that a

multithreaded Informix® ESQL/C application requires and describes what each function must do.

389

HCL Informix 14.10 - ESQL/C Programmer’s Guide

390

mint ifxOS_th_once(ifxOS_th_once_t *pblock, ifxOS_th_initroutine_t pfn, int *init_data)

This routine executes the initialization routine pfn(). Execute the pfn() functions only once, even if they are

called simultaneously by multiple threads or multiple times in the same thread. The pfn() routine is equivalent

to the DCE pthread_once(), or the POSIX pthread_once() routines.

The init_data variable is used for thread packages that do not have a pthread_once() type routine, such

as Solaris Kernel Threads. The routine can be simulated as follows by using init_data as a global variable

initialized to 0.

if (!*init_data)
{
 mutex_lock(pblock);
 if (!*init_data)
 {
 (*pfn)();
 *init_data = 1;
 }
 mutex_unlock(pblock);
}
return(0);

mint ifxOS_th_mutexattr_create(ifxOS_th_mutexattr_t *mutex_attr

This function creates a mutex attributes object that specifies the attributes of mutexes when they are

created. The mutex attributes object is initialized with the default value for all of the attributes defined by the

implementation of the user. This routine is equivalent to the DCE pthread_mutexattr_create(), or the POSIX

pthread_mutexattr_init() routines. If a thread package does not support mutex attribute objects, the mutex

attribute routines can be no-ops.

mint ifxOS_th_mutexattr_setkind_np(ifxOS_th_mutexattr_t *mutex_attr, int kind)

This routine sets the mutex type attribute that is used when a mutex is created. The mutex attribute mutex_attr

is set to type kind. For DCE, this routine is pthread_mutexattr_setkind_np().

mint ifxOS_th_mutexattr_delete(ifxOS_th_mutexattr_t *mutex_attr)

This routine deletes the mutex attribute object mutex_attr. This routine has the same functionality as the DCE

pthread_mutexattr_delete(), or the POSIX pthread_mutexattr_destroy() routines.

mint ifxOS_th_mutex_init(ifxOS_th_mutex_t *mutexp, ifxOS_th_mutexattr_t mutex_attr)

This routine creates a mutex and initializes it to the unlocked state. This routine has the same functionality as

the DCE pthread_mutex_init(), or the POSIX pthread_mutex_init() routines.

mint ifxOS_th_mutex_destroy(ifxOS_th_mutex_t *mutexp)

This routine deletes a mutex. The mutex must be unlocked before it is deleted. This routine has the same

functionality as the DCE pthread_mutex_destroy(), or the POSIX pthread_mutex_destroy() routines.

mint ifxOS_th_mutex_lock(ifxOS_th_mutex_t *mutexp)

This routine locks an unlocked mutex. If the mutex is already locked, the calling thread waits until the mutex

becomes unlocked. This routine has the same functionality as the DCE pthread_mutex_lock(), or the POSIX

pthread_mutex_lock() routines.

Chapter 1. ESQL/C Guide

mint ifxOS_th_mutex_trylock(ifxOS_th_mutex_t *mutexp)

If the mutex is successfully locked, it returns the value 1, if the mutex is locked by another thread, it returns the

value 0.

This routine has the same functionality as the DCE pthread_mutex_trylock() routine.

mint ifxOS_th_mutex_unlock(ifxOS_th_mutex_t *mutexp)

This routine unlocks the mutex mutexp. If threads are waiting to lock this mutex, the implementation defines

which thread receives the mutex. This routine has the same functionality as the DCE pthread_mutex_unlock(),

or the POSIX pthread_mutex_unlock() routines.

mint ifxOS_th_condattr_create(ifxOS_th_condattr_t *cond_attr)

This routine creates an object that is used to specify the attributes of condition variables when they are

created. Initialize the object with the default value for all of the attributes defined by the implementation

of the user. This routine has the same functionality as the DCE pthread_condattr_create(), or the POSIX

pthread_condattr_init() routines.

mint ifxOS_th_cond_init(ifxOS_th_cond_t *condp, ifxOS_th_condattr_t cond_attr)

This routine creates and initializes a condition variable. This routine has the same functionality as the DCE

pthread_cond_init(), or the POSIX pthread_cond_init() routines.

mint ifxOS_th_condattr_delete(ifxOS_th_condattr_t *cond_attr)

This routine deletes the condition variable attribute object cond_attr. This routine has the same functionality as

the DCE pthread_condattr_delete(), or POSIX pthread_condattr_destroy() routines.

mint ifxOS_th_cond_destroy(ifxOS_th_cond_t *condp)

This routine deletes the condition variable condp. The routine has the same functionality as the DCE

pthread_cond_destroy(), or the POSIX pthread_cond_destroy() routines.

mint ifxOS_th_cond_timedwait(ifxOS_th_cond_t *sleep_cond, ifxOS_th_mutex_t *sleep_mutex, ifxOS_th_timespec_t *t)

This routine causes a thread to wait until either the condition variable sleep_cond is signaled or broadcast, or

the current system clock time becomes greater than or equal to the time specified in t. The routine has the

same functionality as the DCE pthread_cond_timedwait(), or the POSIX pthread_cond_timedwait() routines.

mint ifxOS_th_keycreate(ifxOS_th_key_t *allkey, ifxOS_th_destructor_t AllDestructor)

This routine generates a unique value that identifies a thread-specific data value. This routine has the same

functionality as the DCE pthread_keycreate(), or the POSIX pthread_key_create() routines.

mint ifxOS_th_getspecific(ifxOS_th_key_t key, ifxOS_th_addr_t *tcb)

This routine obtains the thread-specific data associated with the key. This routine has the same functionality as

the DCE pthread_getspecific(), or the POSIX pthread_getspecific() routines.

391

HCL Informix 14.10 - ESQL/C Programmer’s Guide

392

mint ifxOS_th_setspecific(ifxOS_th_key_t key, ifxOS_th_addr_t tcb)

This routine sets the thread-specific data in the tcb associated with the key for the current thread. If a value is

already defined for key in the current thread, the new value is substituted for the existing value. This routine has

the same functionality as the DCE pthread_setspecific(), or the POSIX pthread_setspecific() routines.

Data types

You can create typedefs for the data types in the preceding functions to the equivalent data types in your thread package, or

you can use the appropriate data type from the thread package instead of the ifxOS_ version. The following list includes all

the data types that the preceding functions use:

ifxOS_th_mutex_t

This structure defines a mutex object: pthread_mutex_t in DCE and POSIX.

ifxOS_th_mutexattr_t

This structure defines a mutex attributes object called pthread_mutexattr_t in DCE and POSIX. If mutex

attribute objects are unsupported in your thread package (for instance, Solaris Kernel Threads), you can assign

them a data type of mint.

ifxOS_th_once_t

This structure allows client initialization operations to guarantee mutually exclusive access to the initialization

routine, and to guarantee that each initialization is executed only once. This routine has the same functionality

as the pthread_once_t structure in DCE and POSIX.

ifxOS_th_condattr_t

This structure defines an object that specifies the attributes of a condition variable: pthread_condattr_t in DCE

and POSIX. If this object is unsupported in your thread package (for instance, Solaris Kernel Threads), you can

assign it a data type of mint.

ifxOS_th_cond_t

This structure defines a condition variable called pthread_cond_t in DCE and POSIX.

ifxOS_th_timespec_t

This structure defines an absolute time at which the ifxOS_th_cond_timedwait() function times out if a

condition variable has not been signaled or broadcast. This structure is timespec_t in DCE and POSIX.

ifxOS_th_key_t

This structure defines a thread-specific data key used in the ifxOS_th_keycreate(), ifxOS_th_setspecific() and

ifxOS_getspecific() routines. This structure is pthread_key_t in DCE and POSIX.

ifxOS_th_addr_t

This structure defines an address that contains data to be associated with a thread-specific data key of type

ifxOS_th_key_t. The ifxOS_th_addr_t structure is equivalent to pthread_addr_t in DCE. You can specify void * as

an alternative that can be used for thread packages (such as POSIX) that do not define such a structure.

Chapter 1. ESQL/C Guide

The following example uses the Solaris Kernel Threads package to demonstrate how to set up a dynamic-thread library. The

first task is to define the 17 dynamic-thread functions that the shared and/or static library needs. In this example, the file is

called dynthr.c:

/* Prototypes for the dynamic thread functions */

mint ifx_th_once(mutex_t *pblock, void (*pfn)(void), mint *init_data);
mint ifx_th_mutexattr_create(mint *mutex_attr);
mint ifx_th_mutexattr_setkind_np(mint *mutex_attr, mint kind);
mint ifx_th_mutexattr_delete(mint *mutex_attr);
mint ifx_th_mutex_init(mutex_t *mutexp, mint mutex_attr);
mint ifx_th_mutex_destroy(mutex_t *mutexp);
mint ifx_th_mutex_lock(mutex_t *mutexp);
mint ifx_th_mutex_trylock(mutex_t *mutexp);
mint ifx_th_mutex_unlock(mutex_t *mutexp);
mint ifx_th_condattr_create(mint *cond_attr);
mint ifx_th_cond_init(cond_t *condp, mint cond_attr);
mint ifx_th_condattr_delete(mint *cond_attr);
mint ifx_th_cond_destroy(cond_t *condp);
mint ifx_th_cond_timedwait(cond_t *sleep_cond, mutex_t *sleep_mutex,
 timestruc_t *t);
mint ifx_th_keycreate(thread_key_t *allkey, void (*AllDestructor)
 (void *));
mint ifx_th_getspecific(thread_key_t key, void **tcb);
mint ifx_th_setspecific(thread_key_t key, void *tcb);

/*
 * The functions . . . *
 * */

mint ifx_th_once(mutex_t *pblock, void (*pfn)(void), mint *init_data)
{
 if (!*init_data)
 {
 mutex_lock(pblock);
 if (!*init_data)
 {
 (*pfn)();
 *init_data = 1;
 }
 mutex_unlock(pblock);
 }
 return(0);
}

/* Mutex attributes are not supported in solaris kernel threads *
* The functions must be defined anyway, to avoid accessing *
* a NULL function pointer. */

mint ifx_th_mutexattr_create(mint *mutex_attr)
{
 *mutex_attr = 0;
 return(0);
}

/* Mutex attributes are not supported in solaris kernel threads */
mint ifx_th_mutexattr_setkind_np(mint *mutex_attr, mint kind)

393

HCL Informix 14.10 - ESQL/C Programmer’s Guide

394

{
 *mutex_attr = 0;
 return(0);
}

/* Mutex attributes are not supported in solaris kernel threads */
mint ifx_th_mutexattr_delete(mint *mutex_attr)
{
 return(0);
}

mint ifx_th_mutex_init(mutex_t *mutexp, mint mutex_attr)
{
 return(mutex_init(mutexp, USYNC_THREAD, (void *)NULL));
}

mint ifx_th_mutex_destroy(mutex_t *mutexp)
{
 return(mutex_destroy(mutexp));
}

mint ifx_th_mutex_lock(mutex_t *mutexp)
{
 return(mutex_lock(mutexp));
}
/* Simulate mutex_trylock using mutex_lock */
mint ifx_th_mutex_trylock(mutex_t *mutexp)
{
 mint ret;

 ret = mutex_trylock(mutexp);
 if (ret == 0)
 return(1); /* as per the DCE call */
 if (ret == EBUSY)
 return(0); /* as per the DCE call */
 return(ret);
}

mint ifx_th_mutex_unlock(mutex_t *mutexp)
{
 return(mutex_unlock(mutexp));
}

/* Condition attributes are not supported in solaris kernel threads */
mint ifx_th_condattr_create(mint *cond_attr)
{
 *cond_attr = 0;
 return(0);
}

mint ifx_th_cond_init(cond_t *condp, mint cond_attr)
{
 return(cond_init(condp, USYNC_THREAD, (void *)NULL));
}

mint ifx_th_condattr_delete(int *cond_attr)
{

Chapter 1. ESQL/C Guide

 return(0);
}

mint ifx_th_cond_destroy(cond_t *condp)
{
 return(cond_destroy(condp));
}

mint ifx_th_cond_timedwait(cond_t *sleep_cond, mutex_t
 *sleep_mutex,timestruc_t
 *t)
{
 return(cond_timedwait(sleep_cond, sleep_mutex, t));
}

mint ifx_th_keycreate(thread_key_t *allkey, void (*AllDestructor)
 (void *))
{
 return(thr_keycreate(allkey, AllDestructor));
}

mint ifx_th_getspecific(thread_key_t key, void **tcb)
{
 return(thr_getspecific(key, tcb));
}

mint ifx_th_setspecific(thread_key_t key, void *tcb)
{
 return(thr_setspecific(key, tcb));

Register the dynamic thread functions
Your IBM® Informix® ESQL/C application must use the ifxOS_set_thrfunc() function to register the dynamic thread functions

with Informix® ESQL/C.

The following declaration describes the ifxOS_set_thrfunc() function.

mint ifxOS_set_thrfunc(mint func, mulong (*funcptr)())

The first parameter, func, is a mint that indexes the function being registered. The second parameter is the name of the

function that is being registered.

You must call ifxOS_set_thrfunc() once for each of the 17 ifxOS functions listed in Create a dynamic thread library on UNIX

operating systems on page 389.

The ifxOS_set_thrfunc() function returns 0 if it successfully registers the function and -1 if it fails to register the function. For

example, to register the user-defined function my_mutex_lock() as the ifxOS_th_mutex_lock routine, you use the following

call:

if (ifxOS_set_thrfunc(TH_MUTEX_LOCK, (mulong (*)())my_mutex_lock)
== -1)

TH_MUTEX_LOCK is defined in sqlhdr.h and tells the client to call my_mutex_lock() whenever it needs to lock a mutex.

395

HCL Informix 14.10 - ESQL/C Programmer’s Guide

396

The following list shows the indexes and the functions they register.

Index

Function

TH_ONCE

ifxOS_th_once

TH_MUTEXATTR_CREATE

ifxOS_th_mutexattr_create()

TH_MUTEXATTR_SETKIND

ifxOS_th_mutexattr_setkind_np()

TH_MUTEXATTR_DELETE

ifxOS_th_mutexattr_delete()

TH_MUTEX_INIT

ifxOS_th_mutex_init()

TH_MUTEX_DESTROY

ifxOS_th_mutex_destroy()

TH_MUTEX_LOCK

ifxOS_th_mutex_lock()

TH_MUTEX_UNLOCK

ifxOS_th_mutex_unlock()

TH_MUTEX_TRYLOCK

ifxOS_th_mutex_trylock()

TH_CONDATTR_CREATE

ifxOS_th_condattr_create()

TH_CONDATTR_DELETE

ifxOS_th_condattr_delete()

TH_COND_INIT

ifxOS_th_cond_init()

TH_COND_DESTROY

ifxOS_th_cond_destroy()

TH_COND_TIMEDWAIT

ifxOS_th_cond_timedwait()

Chapter 1. ESQL/C Guide

TH_KEYCREATE

ifxOS_th_keycreate()

TH_GETSPECIFIC

ifxOS_th_getspecific()

TH_SETSPECIFIC

ifxOS_th_setspecific()

The following function, dynthr_init(), which is also defined in dynthr.c, registers the 17 functions defined in Create a dynamic

thread library on UNIX operating systems on page 389. FUNCFAIL is defined to be -1.

dynthr_init()
{
 if (ifxOS_set_thrfunc(TH_ONCE, (mulong (*)())ifx_th_once)
== FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_MUTEXATTR_CREATE,
 (mulong (*)())ifx_th_mutexattr_create) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_MUTEXATTR_SETKIND,
 (mulong (*)())ifx_th_mutexattr_setkind_np) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_MUTEXATTR_DELETE,
 (mulong (*)())ifx_th_mutexattr_delete) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_MUTEX_INIT,
 (mulong (*)())ifx_th_mutex_init) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_MUTEX_DESTROY,
 (mulong (*)()) ifx_th_mutex_destroy) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_MUTEX_LOCK,
 (mulong (*)()) ifx_th_mutex_lock) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_MUTEX_UNLOCK,
 (mulong (*)())ifx_th_mutex_unlock) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_MUTEX_TRYLOCK,
 (mulong (*)())ifx_th_mutex_trylock) == FUNCFAIL)
 return FUNCFAIL;
 if (ifxOS_set_thrfunc(TH_CONDATTR_CREATE,
 (mulong (*)())ifx_th_condattr_create) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_CONDATTR_DELETE,
 (mulong (*)())ifx_th_condattr_delete) == FUNCFAIL)

397

HCL Informix 14.10 - ESQL/C Programmer’s Guide

398

 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_COND_INIT,
 (mulong (*)())ifx_th_cond_init) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_COND_DESTROY,
 (mulong (*)())ifx_th_cond_destroy) == FUNCFAIL)
 return FUNCFAIL;
 if (ifxOS_set_thrfunc(TH_COND_TIMEDWAIT,
 (mulong (*)())ifx_th_cond_timedwait) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_KEYCREATE,
 (mulong (*)())ifx_th_keycreate) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_GETSPECIFIC,
 (mulong (*)())ifx_th_getspecific) == FUNCFAIL)
 return FUNCFAIL;

 if (ifxOS_set_thrfunc(TH_SETSPECIFIC,
 (mulong (*)())ifx_th_setspecific) == FUNCFAIL)
 return FUNCFAIL;
 return 0;

}

Set the $THREADLIB environment variable

The following C-shell command sets the THREADLIB environment variable to specify a user-defined thread package:

setenv THREADLIB DYNAMIC

Create the shared library

You must compile dynthr.c into a shared or static library. The following example illustrates how to compile a shared or

static library on a workstation running the Solaris operating system:

% cc -c -DIFX_THREAD -I$INFORMIXDIR/incl/esql -D_REENTRANT -K pic
dynthr.c
% ld -G -o libdynthr.so dynthr.o
% cp libdynthr.so /usr/lib <== as root

You can also use the $LD_LIBRARY_PATH environment variable:

% cc -c -DIFX_THREAD -I$INFORMIXDIR/incl/esql -D_REENTRANT -K pic
dynthr.c
% cp dynthr.so <some directory>
% setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:<some directory>

To compile dynthr.c into a static library, perform the following tasks (on Solaris):

% cc -c -DIFX_THREAD -I$INFORMIXDIR/incl/esql -D_REENTRANT dynthr.c

% ar -cr dynthr.a dynthr.o

Chapter 1. ESQL/C Guide

You must update your application, test.ec, to call the dynthr_init() routine first, or none of the thread functions are

registered.

void main(argc , argv)
int argc;
char *argv[] ;
{ /* begin main */

 /* First, set up the dynamic thread library */

 dynthr_init();

 /* Rest of program */

 EXEC SQL database stores7;

⋮;

}

Compile with the -thread and -l preprocessor options
You must compile the application by using the -thread and the -l preprocessor options.

The -thread option indicates that you are linking thread-safe libraries instead of the default HCL Informix® shared

libraries. The -l option allows you to specify system libraries that you want to link. Finally, you compile your application, link

libdynthr.so and run it, as shown in the following example:

% setenv THREADLIB "dynamic"
% esql -thread -ldynthr test.ec -o test.exe
% test.exe

Dynamic SQL

Using dynamic SQL

A static SQL statement is one for which all the information is known at compile time. For example, the following SELECT

statement is a static SQL statement because all information needed for its execution is present at compile time.

EXEC SQL select company into :cmp_name from customer where customer_num
= 101;

However, in some applications the programmer does not know the contents, or possibly even the types, of SQL statements

that the program needs to execute. For example, a program might prompt the user to enter a select statement, so that the

programmer has no idea what columns are accessed when the program is run. Such applications require dynamic SQL.

Dynamic SQL allows the IBM® Informix® ESQL/C program to build an SQL statement at run time, so that the contents of the

statement can be determined by user input.

These topics describe the following dynamic SQL information:

399

HCL Informix 14.10 - ESQL/C Programmer’s Guide

400

• How to execute a dynamic SQL statement, the SQL statements to use, and the types of statements that you can

execute dynamically

• How to execute SQL statements when you know most of the information about the statement at compile time

Execute dynamic SQL

To execute an SQL statement, the database server must have the following information about the statement:

• The type of statement, such as SELECT, DELETE, EXECUTE PROCEDURE, or GRANT

• The names of any database objects, such as tables, columns, and indexes

• Any WHERE-clause conditions, such as column names and matching criteria

• Where to put any returned values, such as the column values from the select list of a SELECT statement

• Values that need to be sent to the database server, such as the column values for a new row for an INSERT statement

If information in an SQL statement varies according to some conditions in the application, your IBM® Informix® ESQL/

C program can use dynamic SQL to build the SQL statement at run time. The basic process to dynamically execute SQL

statements consists of the following steps:

1. Assemble the text of an SQL statement in a character-string variable.

2. Use a PREPARE statement to have the database server examine the statement text and prepare it for execution.

3. Execute the prepared statement with the EXECUTE or OPEN statement.

4. Free dynamic resources that are used to execute the prepared statement.

Assemble and prepare the SQL statement

Dynamic SQL allows you to assemble an SQL statement in a character string as the user interacts with your program. A

dynamic SQL statement is like any other SQL statement that is embedded into a program, except that the statement string

cannot contain the names of any host variables. The PREPARE statement sends the contents of an SQL statement string to

the database server, which parses it and creates a statement identifier structure (statement identifier).

Assemble the statement

Assign the text for the SQL statement to a single host variable, which appears in the PREPARE statement. The key to

dynamically execute an SQL statement is to assemble the text of the statement into a character string. You can assemble

this statement string in the following two ways:

• As a fixed string, if you know all the information at compile time

• As a series of string operations, if you do not have all the information at compile time

If you know the whole statement structure, you can list it after the FROM keyword of the PREPARE statement. Quotation

marks or double quotation marks around the statement text are valid, although the ANSI SQL standard specifies quotation

marks. For example:

EXEC SQL prepare slct_id from
 'select company from customer where customer_num = 101';

Chapter 1. ESQL/C Guide

Tip: Although IBM® Informix® ESQL/C does not allow newline characters in quoted strings, you can include newline

characters in the quoted string of a PREPARE statement. The quoted string is passed to the database server with

the PREPARE statement and, if you specify that it should, the database server allows newline characters in quoted

strings. Therefore, you can allow a user to enter the preceding SQL statement from the command line as follows:

select lname from customer
where customer_num = 101

Alternatively, you can copy the statement into a char variable as shown in the following code fragment.

stcopy("select company from customer where customer_num = 101", stmt_txt);
EXEC SQL prepare slct_id from :stmt_txt;

Both of these methods have the same restriction as a static SQL statement. They assume that you know the entire

statement structure at compile time. The disadvantage of these dynamic forms over the static one is that any syntax errors

encountered in the statement are not discovered until run time (by the PREPARE statement). If you statically execute the

statement, the Informix® ESQL/C preprocessor can uncover syntactic errors at compile time (semantic errors might remain

undiagnosed until run time). You can improve performance when you dynamically execute an SQL statement that is to be

executed more than once. The statement is parsed only once.

In preceding code fragment, the stmt_txt variable is a host variable because it is used in an embedded SQL statement (the

PREPARE statement). Also the INTO clause of the SELECT statement was removed because host variables cannot appear in

a statement string. Instead, you specify the host variables in the INTO clause of an EXECUTE or FETCH statement. Other SQL

statements like DESCRIBE, EXECUTE, and FREE can access the prepared statement when they specify the slct_id statement

identifier.

Important: By default, the scope of a statement identifier is global. If you create a multifile application and you want

to restrict the scope of a statement identifier to a single file, preprocess the file with the -local preprocessor option.

If you do not know all the information about the statement at compile time, you can use the following features to assemble

the statement string:

• The char host variables can hold the identifiers in the SQL statement (column names or table names) or parts of the

statement like the WHERE clause. They can also contain keywords of the statement.

• If you know what column values the statement specifies, you can declare host variables to provide column values

that are needed in a WHERE clause or to hold column values that are returned by the database server.

• Input-parameter placeholders, represented by a question mark (?), in a WHERE clause indicate a column value to be

provided, usually in a host variable at time of execution. Host variables used in this way are called input parameters.

• You can use Informix® ESQL/C string library functions like stcopy() and stcat().

The following code fragment shows the SELECT statement of the preceding code fragment changed so that it uses a host

variable to determine the customer number dynamically.

stcopy("select company from customer where customer_num = ", stmt_txt);
stcat(cust_num, stmt_txt);
EXEC SQL prepare slct_id from :stmt_txt;

401

HCL Informix 14.10 - ESQL/C Programmer’s Guide

402

The following code fragment shows how you can use an input parameter to program this same SELECT statement so that

the user can enter the customer number.

EXEC SQL prepare slct_id from
 'select company from customer where customer_num = ?';

You can prepare almost any SQL statement dynamically. The only statements that you cannot prepare dynamically are

those statements directly concerned with dynamic SQL and cursor management (such as FETCH and OPEN), and the SQL

connection statements. For a complete list of statements, see the PREPARE statement in the HCL® Informix® Guide to SQL:

Syntax.

Tip: You can use the Deferred-PREPARE feature to defer execution of a prepared SELECT, INSERT, or EXECUTE

FUNCTION statement until the OPEN statement.

Prepare statements that have collection variables

You use the Collection Derived Table clause with an INSERT or SELECT statement to access the IBM® Informix® ESQL/C

collection variable. (For more information about how to use the Collection Derived Table clause and collection variables, see

Complex data types on page 203.)

When you prepare a statement that manipulates the Informix® ESQL/C collection variable, the following restrictions apply:

• You must specify the statement text as a quoted string in the PREPARE statement.

For collection variables, Informix® ESQL/C does not support statement text that is stored in a program variable.

• The quoted string for the statement text cannot contain any collection host variables.

To manipulate a collection variable, you must use the question mark (?) symbol to indicate an input parameter and

then provide the collection variable when you execute the statement.

• You cannot perform multi-statement prepares if a statement contains a collection variable.

For example, the following Informix® ESQL/C code fragment prepares an INSERT on the a_set client collection variable:

EXEC SQL BEGIN DECLARE SECTION;
 client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;

EXEC SQL prepare coll_stmt from
 'insert into table values (1, 2, 3)';
EXEC SQL execute coll_stmt using :a_set;

Chapter 1. ESQL/C Guide

Important: You must declare the Informix® ESQL/C collection variable as a client collection variable (a collection

variable that is stored on the client computer).

Check the prepared statement

When PREPARE sends the statement string to the database server, the database server parses it to analyze it for errors. The

database server indicates the success of the parse in the sqlca structure, as follows:

• If the syntax is correct, the database server sets the following sqlca fields:

◦ The sqlca.sqlcode field (SQLCODE) contains zero.

◦ The sqlca.sqlerrd[0] field contains an estimate of the number of rows affected if the parsed statement was a

SELECT, UPDATE, INSERT, or DELETE.

◦ The sqlca.sqlerrd[3] field contains an estimated cost of execution if the parsed statement was a SELECT,

UPDATE, INSERT, or DELETE. This execution cost is a weighted sum of disk accesses and total number of

rows processed.

• If the statement string contains a syntax error, or if some other error was encountered during the PREPARE, the

database server sets the following sqlca fields:

◦ The sqlca.sqlcode field (SQLCODE) is set to a negative number (<0). The database server also sets the

SQLSTATE variable to an error code.

◦ The sqlca.sqlerrd[4] field contains the offset into the statement text where the error was detected.

Execute the SQL statement

After an SQL statement is prepared, the database server can execute it. The way to execute a prepared statement depends

on:

• How many rows (groups of values) the SQL statement returns:

◦ Statements that return one row of data include a singleton SELECT and an EXECUTE FUNCTION statement.

◦ Statements that can return more than one row of data require a cursor to execute; they include a non-

singleton SELECT and an EXECUTE FUNCTION statement.

◦ All other SQL statements, including EXECUTE PROCEDURE, return no rows of data.

For more information about how to execute statements that require cursors, see A database cursor on page 406.

• Whether the statement has input parameters

If so, the statement must be executed with the USING clause:

◦ For SELECT and INSERT statements, use the OPEN...USING statement.

◦ For non-SELECT statements, use the EXECUTE...USING statement.

• Whether you know the data types of statement columns at compile time:

◦ When you know the number and data types of the columns at compile time, you can use host variables to

hold the column values.

For more information, see SQL statements that are known at compile time on page 424.

403

HCL Informix 14.10 - ESQL/C Programmer’s Guide

404

◦ When you do not know the number and data types of columns at compile time, you must use the DESCRIBE

statement to define the column and a dynamic-management structure to hold the column values.

For more information, see Determine SQL statements on page 438.

The following tables summarize how to execute the different types of prepared SQL statements.

Table 68. Executing prepared SQL statements that do not return rows (except INSERT, which is associated with a cursor)

Type of SQL statement Input parameters Statement to execute See

With no input parameters No EXECUTE Execute non-SELECT statements on page 424

When number and data types

of input parameters are

known

Yes EXECUTE...USING An EXECUTE USING statement on page 434

When number and data types

of input parameters are not

known

Yes EXECUTE...USING SQL DESCRIPTOR

EXECUTE...USING DESCRIPTOR

Handling a parameterized UPDATE or DELETE

statement on page 506

Handling a parameterized UPDATE or DELETE

statement on page 547

Table 69. Executing an INSERT statement that is associated with a cursor

Type of SQL statement Input parameters Statement to execute See

With no input parameters No OPEN Declare a select cursor on page 427

When number and data types

of input parameters (insert

columns) are known

Yes OPEN...USING An OPEN USING statement on page 435,

Handling an unknown column list on

page 456

When number and data types

of input parameters are not

known

Yes OPEN...USING SQL DESCRIPTOR

OPEN...USING DESCRIPTOR

Handling an unknown column list on

page 496

Handling an unknown column list on

page 538

Table 70. Executing prepared SQL statements that can return more than one row: non-singleton SELECT, SPL function

Type of SQL statement Input parameters Statement to execute See

With no input parameters No OPEN Declare a select cursor on page 427

When number and data types

of select-list columns are not

known

No OPEN Execute a SELECT that returns multiple rows on

page 487,

Execute a SELECT that returns multiple rows on

page 530

Chapter 1. ESQL/C Guide

Table 70. Executing prepared SQL statements that can return more than one row: non-singleton SELECT, SPL function (continued)

Type of SQL statement Input parameters Statement to execute See

When number and data types

of return values are not known

No OPEN Executing a cursor function on page 495,

Executing a cursor function on page 537

When number and data types

of input parameters are

known

Yes OPEN...USING An OPEN USING statement on page 435

When number and data types

of input parameters are not

known

Yes OPEN...USING SQL DESCRIPTOR

OPEN...USING DESCRIPTOR

Execute a parameterized SELECT that returns

multiple rows on page 501

Execute a parameterized SELECT that returns

multiple rows on page 540

Table 71. Executing prepared SQL statements that return only one row: singleton SELECT, any external function, or an SPL function that returns only one

group of values

Type of SQL statement Input parameters Statement to execute See

With no input parameters No EXECUTE...INTO The PREPARE and EXECUTE INTO statements

on page 426

When number and data types

of returned values are not

known

No EXECUTE...INTO DESCRIPTOR

EXECUTE...INTO SQL DESCRIPTOR

Handling an unknown select list on page 486

Execute a noncursor function on page 492

Handling an unknown select list on page 529

Execute a noncursor function on page 536

When number and data types

of input parameters are

known

Yes EXECUTE...INTO ...USING An EXECUTE USING statement on page 434

When number and data types

of input parameters are not

known

Yes EXECUTE...INTO

...USING SQL DESCRIPTOR

EXECUTE...INTO

...USING DESCRIPTOR

Execute a parameterized singleton SELECT

statement on page 505

Execute a parameterized singleton SELECT

statement on page 545

Free resources

Sometimes you can ignore the cost of resources allocated to prepared statements and cursors. However, the number of

prepared objects that the application can create is limited. Free resources that IBM® Informix® ESQL/C uses to execute a

prepared statement, as follows:

405

HCL Informix 14.10 - ESQL/C Programmer’s Guide

406

• If the statement is associated with a cursor, use CLOSE to close the cursor after all the rows are fetched (or inserted).

• Use the FREE statement to release the resources allocated for the prepared statement and any associated cursor.

After you have freed a prepared statement, you can no longer use it in your program until you reprepare or redeclare

it. However, once you declare the cursor, you can free the associated statement identifier but not affect the cursor.

You can use the AUTOFREE feature to have the database server automatically free resources for a cursor and its prepared

statement.

If your program uses a dynamic-management structure to describe an SQL statement at run time, also deallocate the

resources of this structure once the structure is no longer needed.

A database cursor
A database cursor is an identifier associated with a group of rows. It is, in a sense, a pointer to the current row in a buffer.

You must use a cursor in the following cases:

• Statements that return more than one row of data from the database server:

◦ A SELECT statement requires a select cursor.

◦ An EXECUTE FUNCTION statement requires a function cursor.

• An INSERT statement that sends more than one row of data to the database server requires an insert cursor.

For more information about how to use cursors, see the HCL® Informix® Guide to SQL: Tutorial.

Receive more than one row

Statements that return one row of data include a singleton SELECT and an EXECUTE FUNCTION statement whose user-

defined function returns only one row of data. Statements that can return more than one row of data include:

• A non-singleton SELECT.

When a SELECT statement returns more than one row, define a select cursor with the DECLARE statement.

• An EXECUTE FUNCTION statement whose user-defined function returns more than one row.

When an EXECUTE FUNCTION statement executes a user-defined function that returns more than one row, define a

function cursor with the DECLARE statement.

For the select or function cursor, you can use a sequential, scroll, hold, or update cursor. The following table summarizes the

SQL statements that manage a select or function cursor.

Table 72. SQL statements that manage a select or function cursor

Task Select cursor Function cursor

Declare the cursor identifier DECLARE associated with a SELECT

statement

DECLARE associated with an EXECUTE

FUNCTION statement

Chapter 1. ESQL/C Guide

Table 72. SQL statements that manage a select or function cursor (continued)

Task Select cursor Function cursor

Execute the statement OPEN OPEN

Access a single row from the fetch

buffer into the program

FETCH FETCH

Close the cursor CLOSE CLOSE

Free cursor resources FREE FREE

For more information about any of these statements, see their entries in the HCL® Informix® Guide to SQL: Syntax. You can

change the size of the select or fetch buffer with the Fetch-Buffer-Size feature. For more information, see Size the cursor

buffer on page 410.

A select cursor
A select cursor enables you to scan multiple rows of data that a SELECT statement returns. The DECLARE statement

associates the SELECT statement with the select cursor.

In the DECLARE statement, the SELECT statement can be in either of the following formats:

• A literal SELECT statement in the DECLARE statement

The following DECLARE statement associates a literal SELECT statement with the slct1_curs cursor:

EXEC SQL declare slct1_curs cursor for select * from customer;

• A prepared SELECT statement in the DECLARE statement

The following DECLARE statement associates a prepared SELECT statement with the slct2_curs cursor:

EXEC SQL prepare slct_stmt cursor from
 'select * from customer';
EXEC SQL declare slct2_curs for slct_stmt;

If the SELECT returns only one row, it is called a singleton SELECT and it does not require a select cursor to execute.

A function cursor
A function cursor enables you to scan multiple rows of data that the user-defined function returns.

The following user-defined functions can return more than one row:

• An SPL function that contains the WITH RESUME keywords in its RETURN statement

For information about how to write this type of SPL function, see the chapter on SPL in the HCL® Informix® Guide to

SQL: Tutorial.

407

HCL Informix 14.10 - ESQL/C Programmer’s Guide

408

• An external function that is an iterator function

For information about how to write an iterator function, see the HCL® Informix® DataBlade® API Programmer's Guide.

You execute a user-defined function with the EXECUTE FUNCTION statement. The DECLARE statement associates the

EXECUTE FUNCTION with the function cursor. In the DECLARE statement, the EXECUTE FUNCTION statement can be in

either of the following formats:

• A literal EXECUTE FUNCTION statement in the DECLARE statement

The following DECLARE statement associates a literal EXECUTE FUNCTION statement with the func1_curs cursor:

EXEC SQL declare func1_curs cursor for execute function
 func1();

• A prepared EXECUTE FUNCTION statement in the DECLARE statement

The following DECLARE statement associates a prepared EXECUTE FUNCTION statement with the func2_curs

cursor:

EXEC SQL prepare func_stmt from
 'execute function func1()';
EXEC SQL declare func2_curs cursor for func_stmt;

If the external or SPL function returns only one row, it does not require a function cursor to execute.

Send more than one row

When you execute the INSERT statement, the statement sends one row of data to the database server. When an INSERT

statement sends more than one row, define an insert cursor with the DECLARE statement. An insert cursor enables you to

buffer multiple rows of data for insertion at one time. The DECLARE statement associates the INSERT statement with the

insert cursor. In the DECLARE statement, the INSERT statement can be in either of the following formats:

• A literal INSERT statement in the DECLARE statement

The following DECLARE statement associates a literal INSERT statement with the ins1_curs cursor:

EXEC SQL declare ins1_curs cursor for
 insert into customer values;

• A prepared INSERT statement in the DECLARE statement

The following DECLARE statement associates a prepared INSERT statement with the ins2_curs cursor:

EXEC SQL prepare ins_stmt from
 'insert into customer values';
EXEC SQL declare ins2_curs cursor for ins_stmt;

If you use an insert cursor it can be much more efficient than if you insert rows one at a time, because the application

process does not need to send new rows to the database as often. You can use a sequential or hold cursor for the insert

cursor. The following table summarizes the SQL statements that manage an insert cursor.

Chapter 1. ESQL/C Guide

Table 73. SQL statements that manage an insert cursor

Task Insert cursor

Declare the cursor ID DECLARE associated with an INSERT statement

Execute the statement OPEN

Send a single row from the program into the insert buffer PUT

Clear the insert buffer and send the contents to the database

server

FLUSH

Close the cursor CLOSE

Free cursor resources FREE

For more information about any of these statements, see their entries in the HCL® Informix® Guide to SQL: Syntax. You can

change the size of the insert buffer with the Fetch-Buffer-Size feature. For more information, see Size the cursor buffer on

page 410.

Name the cursor

In the IBM® Informix® ESQL/C program, you can specify a cursor name with any of the following items:

• A literal name must follow the rules for identifier names.

• A delimited identifier is an identifier name that contains characters that do not conform to identifier-naming rules.

• A dynamic cursor is a character host variable that contains the name of the cursor. This type of cursor specification

means that the cursor name is specified dynamically by the value of the host variable. You can use a dynamic cursor

in any SQL statement that allows a cursor name except the WHERE CURRENT OF clause of the DELETE or UPDATE

statement.

Dynamic cursors are useful to create generic functions to perform cursor-management tasks. You can pass in

the name of the cursor as an argument to the function. If the cursor name is to be used in the Informix® ESQL/C

statement within the function, make sure that you declare the argument as a host variable with the PARAMETER

keyword. The following code fragment shows a generic cursor deallocation function called remove_curs().

void remove_curs(cursname)
EXEC SQL BEGIN DECLARE SECTION;
 PARAMETER char *cursname;
EXEC SQL END DECLARE SECTION;
{
 EXEC SQL close :cursname;
 EXEC SQL free :cursname;
}

Optimize cursor execution

IBM® Informix® ESQL/C supports the following features that allow you to minimize network traffic when the Informix®

ESQL/C application fetches rows from a database server:

409

HCL Informix 14.10 - ESQL/C Programmer’s Guide

410

• Change the size of the fetch and insert buffers

• Automatically free the cursor

• Defer the PREPARE statement until the OPEN statement

Size the cursor buffer
The cursor buffer is the buffer that the IBM® Informix® ESQL/C application uses to hold the data (except simple large-object

data) in a cursor.

Informix® ESQL/C has the following uses for the cursor buffer:

• The fetch buffer holds data from a select or function cursor.

When the database server returns rows from the active set of a query, Informix® ESQL/C stores these rows in the

fetch buffer.

• The insert buffer holds data for an insert cursor.

Informix® ESQL/C stores the rows to be inserted in the insert buffer then sends this buffer as a whole to the

database server for insertion.

With a fetch buffer, the client application performs the following tasks:

1. Sends the size of the buffer to the database server and requests rows when it executes the first FETCH statement.

The database server sends as many rows that can fit in the fetch buffer to the application.

2. Retrieves the rows from the database server and puts them in the fetch buffer.

3. Takes the first row out of the fetch buffer and puts the data in the host variables that the user has provided.

For subsequent FETCH statements, the application checks whether more rows exist in the fetch buffer. If they do, it takes

the next row out of the fetch buffer. If no more rows are in the fetch buffer, the application requests more rows from the

database server, sending the fetch-buffer size.

The client application uses an insert buffer to perform the following tasks:

1. Put the data from the first PUT statement into the insert buffer.

2. Check whether more room exists in the insert buffer for subsequent PUT statements.

If more rows can fit, the application puts the next row into the insert buffer. If no more rows can fit into the insert

buffer, the application sends the contents of the insert buffer to the database server.

The application continues this procedure until no more rows are put into the insert buffer. It sends the contents of the insert

buffer to the database server when:

• The insert buffer is full

• It executes the FLUSH statement on the insert cursor

• It executes the CLOSE statement on the insert cursor

Chapter 1. ESQL/C Guide

Default buffer size

The client application sends the prepared statement that is associated with the cursor to the database server and requests

DESCRIBE information about the statement. If the cursor has an associated prepared statement, IBM® Informix® ESQL/C

makes this request when the PREPARE statement executes. If the cursor does not have an associated statement, Informix®

ESQL/C makes the request when the DECLARE statement executes.

When it receives this request, the database server sends the DESCRIBE information about each column in the projection list

to the application. With this information, Informix® ESQL/C can determine the size of a row of data. By default, Informix®

ESQL/C sizes this cursor buffer to hold one row of data. It uses the following algorithm to determine the default size of the

cursor buffer:

1. If one row fits in a 4096-byte buffer, the default buffer size is 4096 bytes (4 kilobytes).

2. If the size of one row exceeds 4096 bytes, the default buffer size is the size of that row.

Once it has the buffer size, Informix® ESQL/C allocates the cursor buffer.

Automatically freeing a cursor

When the IBM® Informix® ESQL/C application uses a cursor, it usually sends a FREE statement to the database server to

deallocate memory assigned to a select cursor once it no longer needs that cursor. Execution of this statement involves a

round trip of message requests between the application and the database server. The Automatic-FREE feature (AUTOFREE)

reduces the number of round trips by one.

When the AUTOFREE feature is enabled, Informix® ESQL/C saves a round trip of message requests because it does not need

to execute the FREE statement. When the database server closes a select cursor, it automatically frees the memory that it

has allocated for it. Suppose you enable the AUTOFREE feature for the following select cursor:

/* Select cursor associated with a SELECT statement */
EXEC SQL declare sel_curs cursor for
 select * from customer;

When the database server closes the sel_curs cursor, it automatically performs the equivalent of the following FREE

statement:

FREE sel_curs

If the cursor had an associated prepared statement, the database server also frees memory allocated to the prepared

statement. Suppose you enable the AUTOFREE feature for the following select cursor:

/* Select cursor associated with a prepared statement */
EXEC SQL prepare sel_stmt 'select * from customer';
EXEC SQL declare sel_curs2 cursor for sel_stmt;

When the database server closes the sel_curs2 cursor, it automatically performs the equivalent of the following FREE

statements:

FREE sel_curs2;
FREE sel_stmt

411

HCL Informix 14.10 - ESQL/C Programmer’s Guide

412

You must enable the AUTOFREE feature before you open or reopen the cursor.

Enable the AUTOFREE feature

You can enable the AUTOFREE feature for the IBM® Informix® ESQL/C application in either of the following ways:

• Set the IFX_AUTOFREE environment variable to 1.

When you use the IFX_AUTOFREE environment variable to enable the AUTOFREE feature, you automatically free

cursor memory when cursors in any thread of the program are closed.

• Execute the SQL statement, SET AUTOFREE.

With the SET AUTOFREE statement, you can enable the AUTOFREE feature for a particular cursor. You can also

enable or disable the feature in a particular connection or thread.

Important: Be careful when you enable the AUTOFREE feature in legacy Informix® ESQL/C applications. If a legacy

application uses the same cursor twice, it generates an error when it tries to open the cursor for the second time.

When the AUTOFREE feature is enabled, the database server automatically frees the cursor when it closes it.

Therefore, the cursor does not exist when the legacy application attempts to open it a second time, even though the

application does not explicitly execute the FREE statement.

For more information about the IFX_AUTOFREE environment variable, see the HCL® Informix® Guide to SQL: Reference.

The SET AUTOFREE statement
You can use the SQL statement, SET AUTOFREE, to enable and disable the AUTOFREE feature.

The SET AUTOFREE statement allows you to take the following actions in the IBM® Informix® ESQL/C program:

• Enable the AUTOFREE feature for all cursors:

EXEC SQL set autofree;
EXEC SQL set autofree enabled;

These statements are equivalent because the default action of the SET AUTOFREE statement is to enable all cursors.

• Disable the AUTOFREE feature for all cursors:

EXEC SQL set autofree disabled;

• Enable the AUTOFREE feature for a specified cursor identifier or cursor variable:

EXEC SQL set autofree for cursor_id;
EXEC SQL set autofree for :cursor_var;

The SET AUTOFREE statement overrides any value of the IFX_AUTOFREE environment variable.

The following code fragment uses the FOR clause of the SET AUTOFREE statement to enable the AUTOFREE feature for the

curs1 cursor only. After the database server executes the CLOSE statement for curs1, it automatically frees the cursor and

the prepared statement. The curs2 cursor and its prepared statement are not automatically freed.

Chapter 1. ESQL/C Guide

EXEC SQL BEGIN DECLARE SECTION;
 int a_value;
EXEC SQL END DECLARE SECTION;

EXEC SQL create database tst_autofree;
EXEC SQL connect to 'tst_autofree';
EXEC SQL create table tab1 (a_col int);
EXEC SQL insert into tab1 values (1);

/* Declare the curs1 cursor for the slct1 prepared
 * statement */
EXEC SQL prepare slct1 from 'select a_col from tab1';
EXEC SQL declare curs1 cursor for slct1;

/* Enable AUTOFREE for cursor curs1 */
EXEC SQL set autofree for curs1;

/* Open the curs1 cursor and fetch the contents */
EXEC SQL open curs1;
while (SQLCODE == 0)
 {
 EXEC SQL fetch curs1 into :a_value;
 printf("Value is: %d\n", a_value);
 }

/* Once the CLOSE completes, the curs1 cursor is freed and
 * cannot be used again. */
EXEC SQL close curs1;

/* Declare the curs2 cursor for the slct2 prepared
 * statement */
EXEC SQL prepare slct2 from 'select a_col from tab1';
EXEC SQL declare curs2 cursor for slct2;

/* Open the curs2 cursor and fetch the contents */
EXEC SQL open curs2;
while (SQLCODE == 0)
 {
 EXEC SQL fetch curs2 into :a_value;
 printf("Value is: %d\n", a_value);
 }

/* Once this CLOSE completes, the curs2 cursor is still
 * available for use. It has not been automatically freed. */
EXEC SQL close curs2;

/* You must explicitly free the curs2 cursor and slct2
 * prepared statement. */
EXEC SQL free curs2;
EXEC SQL free slct2;

When you use the AUTOFREE feature, make sure that you do not cause a prepared statement to become detached.

This situation can occur if you declare more than one cursor on the same prepared statement. A prepared statement is

associated or attached to the first cursor that specifies it in a DECLARE statement. If the AUTOFREE feature is enabled for

413

HCL Informix 14.10 - ESQL/C Programmer’s Guide

414

this cursor, then the database server frees the cursor and its associated prepared statement when it executes the CLOSE

statement on the cursor.

A prepared statement becomes detached when either of the following events occur:

• If the prepared statement was not associated with any declared cursor

• If the cursor with the prepared statement was freed but the prepared statement was not.

This second condition can occur if the AUTOFREE feature is not enabled for a cursor and you free only the cursor, not the

prepared statement. The prepared statement becomes detached. To reattach the prepared statement, declare a new cursor

for the prepared statement. Once a prepared statement was freed, it cannot be used to declare any new cursor.

The following code fragment declares the following cursors on the slct1 prepared statement:

• The curs1 cursor, with which the slct1 prepared statement is first associated

• The curs2 cursor, which executes slct1 but with which slct1 is not associated

• The curs3 cursor, with which slct1 is associated

The following code fragment shows how a detached prepared statement can occur:

/**
 * Declare curs1 and curs2. The slct1 prepared statement is *
 * associated curs1 because curs1 is declared first. */
EXEC SQL prepare slct1 'select a_col from tab1';
EXEC SQL declare curs1 cursor for slct1;
EXEC SQL declare curs2 cursor for slct1;

/**
 * Enable the AUTOFREE feature for curs2 */
EXEC SQL set autofree for curs2;

/***
 * Open the curs1 cursor and fetch the contents */
EXEC SQL open curs1;
 {
 EXEC SQL fetch curs1 into :a_value;
 printf("Value is: %d\n", a_value);
 }

EXEC SQL close curs1;

/* Because AUTOFREE is enabled only for the curs2 cursor, this *
 * CLOSE statement frees neither the curs1 cursor nor the slct1 *
 * prepared statement. The curs1 cursor is still defined so the *
 * slct1 prepared statement does not become detached. *
 **/

/***
 * Open the curs2 cursor and fetch the contents */
EXEC SQL open curs2;
while (SQLCODE == 0)
 {
 EXEC SQL fetch curs2 into :a_value;

Chapter 1. ESQL/C Guide

 printf("Value is: %d\n", a_value);
 }

EXEC SQL close curs2;

/* This CLOSE statement frees the curs2 cursor but does not free *
 * slct1 prepared statement because the prepared statement is not*
 * associated with curs2. *
 **/

/***
 * Reopen the curs1 cursor. This open is possible because the *
 * AUTOFREE feature has not been enabled on curs1. Therefore, the*
 * database server did not automatically free curs1 when it closed it.*/
EXEC SQL open curs1;
while (SQLCODE == 0)
 {
 EXEC SQL fetch curs1 into :a_value;
 printf("Value is: %d\n", a_value);
 }

EXEC SQL close curs1;
EXEC SQL free curs1;

/* Explicitly freeing the curs1 cursor, with which the slct1 *
 * statement is associated, causes slct1 to become detached. It *
 * is no longer associated with a cursor. *
**/

/***
 * This DECLARE statement causes the slct1 prepared statement *
 * to become reassociated with a cursor. Therefore, the slct1 *
 * statement is no longer detached. */
EXEC SQL declare curs3 cursor for slct1;
EXEC SQL open curs3;

/* Enable the AUTOFREE feature for curs */
EXEC SQL set autofree for curs3;

/* Open the curs3 cursor and fetch the content */
EXEC SQL open curs3;
while (SQLCODE == 0)
 {
 EXEC SQL fetch curs3 into :a_value;
 printf("Value is: %d\n", a_value);
 }

EXEC SQL close curs3;

/* Because AUTOFREE is enabled for the curs3 cursor, this CLOSE*
 * statement frees the curs3 cursor and the slct1 PREPARE stmt.*
 **/

/***
 * This DECLARE statement would generate a run time error *
 * because the slct1 prepared statement has been freed. */

415

HCL Informix 14.10 - ESQL/C Programmer’s Guide

416

EXEC SQL declare x4 cursor for slct1;
/***/

For more information about the syntax and use of the SET AUTOFREE statement, see the HCL® Informix® Guide to SQL:

Syntax.

Defer execution of the PREPARE statement

When the IBM® Informix® ESQL/C application uses a PREPARE/DECLARE/OPEN statement block to execute a cursor,

each statement involves a round trip of message requests between the application and the database server. The Deferred-

PREPARE feature reduces the number of round trips by one. When the Deferred-PREPARE feature is enabled, Informix®

ESQL/C saves a round trip of message requests because it does not need to send a separate command to execute the

PREPARE statement. Instead, the database server automatically executes the PREPARE statement when it receives the OPEN

statement.

Suppose you enable the Deferred-PREPARE feature for the following select cursor:

/* Select cursor associated with a SELECT statement */
EXEC SQL prepare slct_stmt FOR
 'select * from customer';
EXEC SQL declare sel_curs cursor for slct_stmt;
EXEC SQL open sel_curs;

The Informix® ESQL/C application does not send the PREPARE statement to the database server when it encounters the

PREPARE before the DECLARE statement. Instead, it sends the PREPARE and the OPEN to the database server together

when it executes the OPEN statement.

You can use the Deferred-PREPARE feature in Informix® ESQL/C applications that contain dynamic SQL statements that use

statement blocks of PREPARE, DECLARE, and OPEN to execute the following statements:

• SELECT statements (select cursors)

• EXECUTE FUNCTION statements (function cursors)

• INSERT statement (insert cursors)

For example, the Deferred-PREPARE feature reduces network round trips for the following select cursor:

/* Valid select cursor for Deferred-PREPARE optimization */
EXEC SQL prepare sel_stmt 'select * from customer';
EXEC SQL declare sel_curs cursor for sel_stmt;
EXEC SQL open sel_curs;

Restrictions on deferred-PREPARE

When you enable the deferred-PREPARE feature, the client application does not send PREPARE statements to the database

server when it encounters them. The database server receives a description of the prepared statement when it executes the

OPEN statement.

The database server generates an error if you execute a DESCRIBE statement on a prepared statement before the first OPEN

of the cursor. The error occurs because the database server has not executed the PREPARE statement that the DESCRIBE

Chapter 1. ESQL/C Guide

statement specifies. When the deferred-PREPARE feature is enabled, you must execute the DESCRIBE statement after the

first OPEN of a cursor.

Important: The deferred-PREPARE feature eliminates execution of the PREPARE statement as a separate step.

Therefore, the application does not receive any error conditions that might exist in the prepared statement until after

the initial OPEN.

Enable the deferred-PREPARE Feature

You can enable the Deferred-PREPARE feature for the IBM® Informix® ESQL/C application in either of the following ways:

• Set the IFX_DEFERRED_PREPARE environment variable to 1.

When you use the IFX_DEFERRED_PREPARE environment variable to enable the Deferred-PREPARE feature, you

automatically defer execution of the PREPARE statement until just before the OPEN statement executes for every

PREPARE statement in any thread of the application.

The default value of the IFX_DEFERRED_PREPARE environment variable is 0. If you set this environment variable from

the shell, make sure that you set it before you start the Informix® ESQL/C application.

• Execute the SQL statement, SET DEFERRED_PREPARE.

With the SET DEFERRED_PREPARE statement, you can enable the Deferred-PREPARE feature for a particular

PREPARE statement. You can also enable or disable the feature in a particular connection or thread.

For more information about the IFX_DEFERRED_PREPARE environment variable, see the HCL® Informix® Guide to SQL:

Reference.

The SET DEFERRED_PREPARE statement
In the IBM® Informix® ESQL/C application you can use the SQL statement, SET DEFERRED_PREPARE, to enable and disable

the Deferred-PREPARE feature.

The SET DEFERRED_PREPARE statement allows you to take the following actions in the Informix® ESQL/C program:

• Enable the Deferred-PREPARE feature:

EXEC SQL set deferred_prepare;

EXEC SQL set deferred_prepare enabled;

• Disable the Deferred-PREPARE feature:

EXEC SQL set deferred_prepare disabled;

The SET DEFERRED_PREPARE statement overrides any value of the IFX_DEFERRED_PREPARE environment variable.

The following code fragment shows how to enable the Deferred-PREPARE feature for the ins_curs insert cursor:

417

HCL Informix 14.10 - ESQL/C Programmer’s Guide

418

EXEC SQL BEGIN DECLARE SECTION;
 int a;
EXEC SQL END DECLARE SECTION;

EXEC SQL create database test;
EXEC SQL create table table_x (col1 integer);

/*************************************
 * Enable Deferred-Prepare feature
 *************************************/
EXEC SQL set deferred_prepare enabled;

/*************************************
 * Prepare an INSERT statement
 *************************************/
EXEC SQL prepare ins_stmt from
 'insert into table_x values(?)';

/*************************************
 * Declare the insert cursor for the
 * prepared INSERT.
 *************************************/
EXEC SQL declare ins_curs cursor for ins_stmt;
/***
 * OPEN the insert cursor. Because the Deferred-PREPARE feature
 * is enabled, the PREPARE is executed at this time
 **/
EXEC SQL open ins_curs;
a = 2;
while (a<100)
 {
 EXEC SQL put ins_curs from :a;
 a++;
 }

To execute a DESCRIBE statement on a prepared statement, you must execute the DESCRIBE after the initial OPEN

statement for the cursor. In the following code fragment, the first DESCRIBE statement fails because it executes before the

first OPEN statement on the cursor. The second DESCRIBE statement succeeds because it follows an OPEN statement.

EXEC SQL BEGIN DECLARE SECTION;
 int a, a_type;
EXEC SQL END DECLARE SECTION;
EXEC SQL allocate descriptor 'desc';
EXEC SQL create database test;
EXEC SQL create table table_x (col1 integer);

/**
 * Enable Deferred-Prepare feature
 **/
EXEC SQL set deferred_prepare enabled;

/**
 * Prepare an INSERT statement
 **/
EXEC SQL prepare ins_stmt from 'insert into table_x values (?)';

/**

Chapter 1. ESQL/C Guide

 * The DESCRIBE results in an error, because the description of the
 * statement is not determined until after the OPEN. The OPEN is what
 * actually sends the PREPARE statement to the database server and
 * requests a description for it.
 **/
EXEC SQL describe ins_stmt using sql descriptor 'desc'; /* fails */
if (SQLCODE)
 printf("DESCRIBE : SQLCODE is %d\n", SQLCODE);

/***
 * Now DECLARE a cursor for the PREPARE statement and OPEN it.
 **/
EXEC SQL declare ins_cursor cursor for ins_stmt;
EXEC SQL open ins_cursor;

/***
 * Now the DESCRIBE returns the information about the columns to the
 * system-descriptor area.
 **/
EXEC SQL describe ins_stmt using sql descriptor 'desc'; /* succeeds */
if (SQLCODE)
 printf("DESCRIBE : SQLCODE is %d\n", SQLCODE);
a = 2;
a_type = SQLINT;
while (a<100)
 {
 EXEC SQL set descriptor 'desc' values 1
 type = :a_type, data = :a;
 EXEC SQL put ins_curs using sql descriptor 'desc';
 a++;
 }

The collect.ec program

The collect.ec example program illustrates the use of collection variables to access LIST, SET, and MULTISET columns.

The SELECT statement is considered static because the columns that it accesses are determined when the program is

written.

/*
**
** Sample use of collections in ESQL/C.
**
** Statically determined LIST, SET, and MULTISET collection types.
*/

#include <stdio.h>

static void print_collection(
const char *tag,
EXEC SQL BEGIN DECLARE SECTION;
parameter client collection c
EXEC SQL END DECLARE SECTION;
)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int4 value;
 EXEC SQL END DECLARE SECTION;

419

HCL Informix 14.10 - ESQL/C Programmer’s Guide

420

 mint item = 0;

 EXEC SQL WHENEVER ERROR STOP;
 printf("COLLECTION: %s\n", tag);
 EXEC SQL DECLARE c_collection CURSOR FOR
 SELECT * FROM TABLE(:c);
 EXEC SQL OPEN c_collection;
 while (sqlca.sqlcode == 0)
 {
 EXEC SQL FETCH c_collection INTO :value;
 if (sqlca.sqlcode != 0)
 break;
 printf("\tItem %d, value = %d\n", ++item, value);
 }
 EXEC SQL CLOSE c_collection;
 EXEC SQL FREE c_collection;
}

mint main(int argc, char **argv)
{
 EXEC SQL BEGIN DECLARE SECTION;
 client collection list (integer not null) lc1;
 client collection set (integer not null) sc1;
 client collection multiset (integer not null) mc1;
 char *dbase = "stores7";
 mint seq;
 char *stmt1 =
 "INSERT INTO t_collections VALUES(0, "
 "'LIST{-1,0,-2,3,0,0,32767,249}', 'SET{-1,0,-2,3}', "
 "'MULTISET{-1,0,0,-2,3,0}') ";
 EXEC SQL END DECLARE SECTION;

 if (argc > 1)
 dbase = argv[1];
 EXEC SQL WHENEVER ERROR STOP;
 printf("Connect to %s\n", dbase);
 EXEC SQL connect to :dbase;

 EXEC SQL CREATE TEMP TABLE t_collections
 (
 seq serial not null,
 l1 list (integer not null),
 s1 set (integer not null),
 m1 multiset(integer not null)
);
 EXEC SQL EXECUTE IMMEDIATE :stmt1;

 EXEC SQL ALLOCATE COLLECTION :lc1;
 EXEC SQL ALLOCATE COLLECTION :mc1;
 EXEC SQL ALLOCATE COLLECTION :sc1;

 EXEC SQL DECLARE c_collect CURSOR FOR
 SELECT seq, l1, s1, m1 FROM t_collections;
 EXEC SQL OPEN c_collect;

 EXEC SQL FETCH c_collect INTO :seq, :lc1, :sc1, :mc1;
 EXEC SQL CLOSE c_collect;
 EXEC SQL FREE c_collect;

Chapter 1. ESQL/C Guide

 print_collection("list/integer", lc1);
 print_collection("set/integer", sc1);
 print_collection("multiset/integer", mc1);

 EXEC SQL DEALLOCATE COLLECTION :lc1;
 EXEC SQL DEALLOCATE COLLECTION :mc1;
 EXEC SQL DEALLOCATE COLLECTION :sc1;

 puts("OK");
 return 0;
}

Optimize OPEN, FETCH, and CLOSE

When the IBM® Informix® ESQL/C application uses DECLARE and OPEN statements to execute a cursor, each statement

involves a round trip of message requests between the application and the database server. The optimize-OPEN-FETCH-

CLOSE feature (OPTOFC) reduces the number of round trips by two, as follows:

• Informix® ESQL/C saves one round trip because it does not send the OPEN statement as a separate command.

When Informix® ESQL/C executes the OPEN statement, it does not open the cursor. Instead, it saves any input value

that was supplied in the USING clause of the OPEN statement. When Informix® ESQL/C executes the initial FETCH

statement, it sends this input value along with the FETCH statement. The database server opens the cursor and

returns the first value in this cursor.

• Informix® ESQL/C saves a second round trip because it does not send the CLOSE statement as a separate

command.

When the database server reaches the last value of an open cursor, it automatically closes the cursor after it sends

the last value to the client application. Therefore, Informix® ESQL/C does not need to send the CLOSE statement to

the database server.

Important: Informix® ESQL/C does not send the CLOSE statement to the database server. However, if you include

the CLOSE statement, no error is generated.

Restrictions on OPTOFC

With the OPTOFC feature enabled, the following restrictions exist:

• You can only use the OPTOFC feature on select cursors whose SELECT statement was prepared. For example, the

OPTOFC feature reduces network round trips for the following select cursor:

/* Valid select cursor for OPTOFC optimization */
EXEC SQL prepare sel_stmt 'select * from customer';
EXEC SQL declare sel_curs cursor for sel_stmt;

• The OPTOFC feature eliminates execution of the OPEN statement as a separate step. Therefore, any error conditions

that opening the cursor might generate are not returned until after the initial FETCH.

421

HCL Informix 14.10 - ESQL/C Programmer’s Guide

422

• Static cursors are not freed when they are closed.

With the OPTOFC feature enabled, static or dynamic cursors are not freed when they are closed. Because IBM®

Informix® ESQL/C does not actually send the CLOSE statement to the database server, a cursor is not implicitly

freed. A subsequent OPEN and FETCH on a cursor actually opens the same cursor. Only at this time would the

database server notice if the table was modified (if it was dropped, altered, or renamed), in which case it generates an

error (-710).

With the OPTOFC feature disabled, a static cursor is freed when it is closed. When ESQL/C reaches a CLOSE

statement for a static cursor, it actually sends a message to close the cursor and free memory associated with this

cursor. However, dynamic cursors are not implicitly freed when they are closed.

• The GET DIAGNOSTICS statement does not work for SQL statements that are delayed on the way to the database

server. For example, in the following sequence of SQL statements, GET DIAGNOSTICS returns 0, indicating success,

even though the OPEN is delayed until the first fetch:

EXEC SQL declare curs1
EXEC SQL open curs1
EXEC SQL get diagnostic
EXEC SQL fetch curs1

Enable the OPTOFC Feature
The OPTOFC environment variable enables the OPTOFC feature.

You can assign the following values to the OPTOFC environment variable.

1

This value enables the OPTOFC feature. When you specify this value, you enable the OPTOFC feature for every

cursor in every thread of the application.

0

This value disables the OPTOFC feature for all threads of the application.

The default value of the OPTOFC environment variable is 0. If you set this environment variable from the shell, make sure that

you set it before you start the ESQL/C application.

On UNIX™ operating systems, you can set OPTOFC in the application with the putenv() system call (as long as your system

supports the putenv() function). For example, the following call to putenv() enables the OPTOFC feature:

putenv("OPTOFC=1");

In Windows™ environments, you can use the ifx_putenv() function.

With putenv() or ifx_putenv(), you can activate or deactivate the OPTOFC feature for each connection or within each thread.

You must call the putenv() or ifx_putenv() function before you establish a connection.

Chapter 1. ESQL/C Guide

Important: HCL Informix® utilities do not support the IFX_AUTOFREE, OPTOFC, and IFX_DEFERRED_PREPARE

environment variables. Use these environment variables only with IBM® Informix® ESQL/C client applications.

Using OPTOFC and Deferred-PREPARE together
To achieve the most optimized number of messages between the client application and the database server, use the

Optimize OPEN, FETCH, CLOSE feature, and the Deferred-PREPARE feature together.

However, keep in mind the following requirements when you use these two optimization features together:

• If syntax errors exist in the statement text, the database server does not return the error to the application until it

executes the FETCH.

IBM® Informix® ESQL/C does not send the PREPARE, DECLARE, and OPEN statements to the database server until it

executes the FETCH statement. Therefore, any errors that any of these statements generate are not available until the

database server executes the FETCH statement.

• You must use a special case of the GET DESCRIPTOR statement to obtain DESCRIBE information for a prepared

statement.

Typical use of the DESCRIBE statement is to execute it after the PREPARE to determine information about the

prepared statement. However, with both the OPTOFC and Deferred-PREPARE features enabled, Informix® ESQL/C

does not send the DESCRIBE statement to the database until it reaches the FETCH statement. To allow you to obtain

information about the prepared statement, Informix® ESQL/C executes a statement similar to the SET DESCRIPTOR

statement to obtain data type, length, and other system-descriptor fields for the prepared statement. You can then

use the GET DESCRIPTOR statement after the FETCH to obtain this information.

Also, Informix® ESQL/C can only perform data conversions on the host variables in the GET DESCRIPTOR statement

when the data types are built-in data types. For opaque data types and complex data types (collections and row

types), the database server always returns the data to the client application in its native format. You can then perform

data conversions on this data after the GET DESCRIPTOR statement.

For example, the database server returns data from an opaque-type column in its internal (binary) format. Therefore,

your Informix® ESQL/C program must put column data into a var binary (or fixed binary) host variable when it

executes the GET DESCRIPTOR statement. The var binary and fixed binary data types hold opaque-type data in its

internal format. You cannot use an lvarchar host variable to hold the data, because Informix® ESQL/C cannot convert

the opaque-type data from its internal format (which it receives from the database server) to its external (lvarchar)

format.

• The FetArrSize feature does not work when both the Deferred-PREPARE and OPTOFC features are enabled. When

these two features are enabled, Informix® ESQL/C does not know the size of a row until after the FETCH completes.

By this time, it is too late for the fetch buffer to be adjusted with the FetArrSize value.

423

HCL Informix 14.10 - ESQL/C Programmer’s Guide

424

Tip: To obtain the maximum optimization, use the OPTOFC, Deferred-PREPARE, and AUTOFREE features together.

SQL statements that are known at compile time

The simplest type of dynamic SQL to execute is one for which you know both of the following items:

• The structure of the SQL statement to be executed, including information like the statement type and the syntax of

the statement

• The number and data types of any data that passes between the IBM® Informix® ESQL/C program and the database

server

Execute non-SELECT statements

The term non-SELECT statement refers to any SQL statement that can be prepared, except SELECT and EXECUTE

FUNCTION. This term includes the EXECUTE PROCEDURE statement.

Important: The INSERT statement is an exception to the rules for non-SELECT statements. If the INSERT inserts a

single row, use PREPARE and EXECUTE to execute it. However, if the INSERT is associated with an insert cursor, you

must declare the insert cursor.

For a list of SQL statements that cannot be prepared, see the entry for the PREPARE statement in the HCL® Informix® Guide

to SQL: Syntax.

You can execute a non-SELECT statement in the following ways:

• If the statement is to be executed more than once, use the PREPARE and EXECUTE statements.

• If the statement is to be executed only once, use the EXECUTE IMMEDIATE statement. This statement does have

some restrictions on the statements it can execute.

The PREPARE and EXECUTE statements

The PREPARE and EXECUTE statements allow you to separate the execution of a non-SELECT statement into two steps:

1. PREPARE sends the statement string to the database server, which parses the statement and assigns it a statement

identifier.

2. EXECUTE executes the prepared statement indicated by a statement identifier.

This two-step process is useful for statements that need to be executed more than once. You reduce the traffic between the

client application and the database server when you parse the statement only once.

For example, you can write a general-purpose deletion program that works on any table. This program would take the

following steps:

Chapter 1. ESQL/C Guide

1. Prompt the user for the name of the table and the text of the WHERE clause and put the information into C variables

such as tabname and search_condition. The tabname and search_condition variables do not need to be host

variables because they do not appear in the actual SQL statement.

2. Create a text string by concatenating the following four components: DELETE FROM, tabname, WHERE, and

search_condition. In this example, the string is in a host variable called stmt_buf:

sprintf(stmt_buf, "DELETE FROM %s WHERE %s",
 tabname, search_condition);

3. Prepare the entire statement. The following PREPARE statement operates on the string in stmt_buf and creates a

statement identifier called d_id:

EXEC SQL prepare d_id from :stmt_buf;

4. Execute the statement. The following EXECUTE statement executes the DELETE:

EXEC SQL execute d_id;

5. If you do not need to execute the statement again, free the resources used by the statement identifier structure. This

example would use the following FREE statement:

EXEC SQL free d_id;

If the non-SELECT statement contains input parameters, you must use the USING clause of the EXECUTE statement.

The EXECUTE statement is generally used to execute non-SELECT statements. You can use EXECUTE with the INTO clause

for a SELECT or an EXECUTE FUNCTION statement as long as these statements return only one group of values (one row).

However, do not use the EXECUTE statement for:

• An INSERT...VALUES statement that is associated with an insert cursor.

• An EXECUTE FUNCTION statement for a cursor function (a user-defined function that returns more than one group of

values).

The EXECUTE IMMEDIATE statement
Rather than prepare the statement and then execute it, you can prepare and execute the statement in the same step with

the EXECUTE IMMEDIATE statement. The EXECUTE IMMEDIATE statement also frees statement-identifier resources upon

completion.

For example, for the DELETE statement used in the previous section, you can replace the PREPARE-EXECUTE statement

sequence with the following statement:

EXEC SQL execute immediate :stmt_buf;

You cannot use EXECUTE IMMEDIATE if the statement string contains input parameters. The SQL statements also have

restrictions that you can execute with EXECUTE IMMEDIATE.

Execute SELECT statements

You can execute a SELECT statement in the following two ways:

425

HCL Informix 14.10 - ESQL/C Programmer’s Guide

426

• If the SELECT statement returns only one row, use PREPARE and EXECUTE INTO. This type of SELECT is often called

a singleton SELECT.

• If the SELECT statement returns more than one row, you must use cursor-management statements.

The PREPARE and EXECUTE INTO statements

The only prepared SELECT statement that you can execute with the EXECUTE statement is a singleton SELECT. Your IBM®

Informix® ESQL/C program must take the following actions:

1. Declare host variables to receive the values that the database server returns.

For a prepared SELECT statement, these values are the select-list columns.

2. Assemble and prepare the statement.

A prepared SELECT statement can contain input parameters in the WHERE clause.

3. Execute the prepared selection with the EXECUTE...INTO statement, with the host variables after the INTO keyword.

If the SELECT statement contains input parameters, include the USING clause of EXECUTE.

Tip: To execute a singleton SELECT, the EXECUTE...INTO statement is more efficient than using the DECLARE, OPEN,

and FETCH statements.

With the INTO clause of the EXECUTE statement, you can still use the following features:

• You can associate indicator variables with the host variables that receive the select-list column values.

Use the INDICATOR keyword followed by the name of the indicator host variable, as follows:

EXEC SQL prepare sel1 from
 'select fname, lname from customer where customer_num = 123';
EXEC SQL execute sel1 into :fname INDICATOR :fname_ind,
 :lname INDICATOR :lname_ind;

• You can specify input parameter values.

Include the USING clause of EXECUTE, as follows:

EXEC SQL prepare sel2 from
 'select fname, lname from customer where customer_num = ?';
EXEC SQL execute sel2 into :fname, :lname using :cust_num;

Important: When you use the EXECUTE INTO statement, make sure that the SELECT statement is a singleton

SELECT. If the SELECT returns more than one row, you receive a runtime error. An error is also generated if you

attempt to execute a prepared statement that was declared (with DECLARE).

You are not required to prepare a singleton SELECT. If you do not need the benefits of a prepared statement, you can embed

a singleton SELECT statement directly in your Informix® ESQL/C program, as shown in the following example:

Chapter 1. ESQL/C Guide

EXEC SQL select order_date from orders where order_num = 1004;

The following figure shows how to execute the items_pct() SPL function (which Figure 84: Code for items_pct SPL function

on page 492 shows). Because this function returns a single decimal value, the EXECUTE...INTO statement can execute it.

EXEC SQL prepare exfunc_id from
 'execute function items_pct(\"HSK\")';
EXEC SQL execute exfunc_id into :manuf_dec;

You can use host variables for routine arguments but not the routine name. For example, if the manu_code variable holds the

value "HSK", the following EXECUTE statement replaces the input parameter in the prepared statement to perform the same

task as the EXECUTE in the preceding code fragment.

EXEC SQL prepare exfunc_id from
 'execute function items_pict(?)';
EXEC SQL execute exfunc_id into :manuf_dec using :manu_code;

If you do not know the number or data types of the select-list columns or function return values, you must use a dynamic-

management structure instead of host variables with the EXECUTE...INTO statement. The dynamic-management structure

defines the select-list columns at run time.

Declare a select cursor
To execute a SELECT statement that returns more than one row, you must declare a select cursor. The select cursor enables

the IBM® Informix® ESQL/C application to handle multiple rows that a query returns.

Your Informix® ESQL/C program must take the following actions to use a select cursor:

1. Declare host variables to receive the values that the database server returns.

For a prepared SELECT statement, these values are the select-list columns. For a prepared EXECUTE FUNCTION

statement, these values are the return values of the user-defined function.

2. Assemble and prepare the statement.

A prepared SELECT statement can contain input parameters in the WHERE clause. A prepared EXECUTE FUNCTION

statement can contain input parameters as function arguments.

3. Declare the select cursor.

The DECLARE statement associates the prepared SELECT statement with the select cursor.

4. Execute the query.

The OPEN statement sends any input parameters that its USING clause specifies to the database server and tells the

database server to execute the SELECT statement.

5. Retrieve the rows of values from the select cursor.

The FETCH statement retrieves one row of data that matches the query criteria.

427

HCL Informix 14.10 - ESQL/C Programmer’s Guide

428

Restriction: Do not use the INTO clause in both a SELECT statement that is associated with a cursor and in a FETCH

statement that retrieves data from the cursor. The Informix® ESQL/C preprocessor or the executable program

cannot generate an error for this condition. Using the INTO clause in both statements, however, can generate

unexpected results.

The lvarptr.ec program

The lvarptr.ec example program, which follows, uses lvarchar pointers

/*
**
** Sample use of LVARCHAR to fetch collections in ESQL/C.
**
** Statically determined collection types.
*/

#include <stdio.h>

static void print_lvarchar_ptr(
const char *tag,
EXEC SQL BEGIN DECLARE SECTION;
parameter lvarchar **lv
EXEC SQL END DECLARE SECTION;
)
{
 char *data;

 data = ifx_var_getdata(lv);
 if (data == 0)
 data = "<<NO DATA>>";
 printf("%s: %s\n", tag, data);
}

static void process_stmt(char *stmt)
{
 EXEC SQL BEGIN DECLARE SECTION;
 lvarchar *lv1;
 lvarchar *lv2;
 lvarchar *lv3;
 mint seq;
 char *stmt1 = stmt;
 EXEC SQL END DECLARE SECTION;

 printf("SQL: %s\n", stmt);

 EXEC SQL WHENEVER ERROR STOP;
 EXEC SQL PREPARE p_collect FROM :stmt1;
 EXEC SQL DECLARE c_collect CURSOR FOR p_collect;
 EXEC SQL OPEN c_collect;

 ifx_var_flag(&lv1, 1);
 ifx_var_flag(&lv2, 1);
 ifx_var_flag(&lv3, 1);

Chapter 1. ESQL/C Guide

 while (sqlca.sqlcode == 0)
 {
 EXEC SQL FETCH c_collect INTO :seq, :lv1, :lv2, :lv3;
 if (sqlca.sqlcode == 0)
 {
 printf("Sequence: %d\n", seq);
 print_lvarchar_ptr("LVARCHAR 1", &lv1);
 print_lvarchar_ptr("LVARCHAR 2", &lv2);
 print_lvarchar_ptr("LVARCHAR 3", &lv3);
 ifx_var_dealloc(&lv1);
 ifx_var_dealloc(&lv2);
 ifx_var_dealloc(&lv3);
 }
 }

 EXEC SQL CLOSE c_collect;
 EXEC SQL FREE c_collect;
 EXEC SQL FREE p_collect;
}

mint main(int argc, char **argv)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *dbase = "stores7";
 char *stmt1 =
 "INSERT INTO t_collections VALUES(0, "
 "'LIST{-1,0,-2,3,0,0,32767,249}', 'SET{-1,0,-2,3}', "
 "'MULTISET{-1,0,0,-2,3,0}') ";
 char *data;
 EXEC SQL END DECLARE SECTION;

if (argc > 1)
 dbase = argv[1];
 EXEC SQL WHENEVER ERROR STOP;
 printf("Connect to %s\n", dbase);
 EXEC SQL CONNECT TO :dbase;

 EXEC SQL CREATE TEMP TABLE t_collections
 (
 seq serial not null,
 l1 list (integer not null),
 s1 set (integer not null),
 m1 multiset(integer not null)
);

 EXEC SQL EXECUTE IMMEDIATE :stmt1;
 EXEC SQL EXECUTE IMMEDIATE :stmt1;
 EXEC SQL EXECUTE IMMEDIATE :stmt1;

 process_stmt("SELECT seq, l1, s1, m1 FROM t_collections");

 puts("OK");
 return 0;
}

429

HCL Informix 14.10 - ESQL/C Programmer’s Guide

430

Execute user-defined routines in Informix®

In HCL Informix®, a user-defined routine is a collection of statements that performs a user-defined task. A procedure is a

routine that can accept arguments but does not return any values. A function is a routine that can accept arguments and

returns values.

The following table summarizes the SQL statements for user-defined routines.

Table 74. SQL statement for user-defined routines

Task Procedure Function

Create and register a routine CREATE PROCEDURE CREATE FUNCTION

Execute a routine EXECUTE PROCEDURE EXECUTE FUNCTION

Drop a routine DROP PROCEDURE DROP FUNCTION

For more information about these statements, see the HCL® Informix® Guide to SQL: Syntax.

HCL Informix® supports several languages for user-defined routines:

• External routines are written in external languages such as C.

An external function can return one value while an external procedure does not return a value. For information about

how to write an external routine in C, see HCL® Informix® User-Defined Routines and Data Types Developer's Guide .

• SPL routines are written in Stored Procedure Language (SPL).

An SPL function can return one or more values while an SPL procedure does not return any values. For information

about how to write a stored routine, see the HCL® Informix® Guide to SQL: Tutorial.

Tip: In earlier versions of HCL Informix® products, the term stored procedure was used for both SPL procedures

and SPL functions. That is, a stored procedure can include the RETURN statement to return values. For compatibility

with earlier products, HCL Informix® continues to support the execution of SPL functions with the EXECUTE

PROCEDURE statement. However, for new SPL routines, it is recommended that you use EXECUTE PROCEDURE only

for procedures and EXECUTE FUNCTION only for functions.

A user-defined routine can use input parameters for its arguments. However, it cannot use an input parameter for its routine

name.

A user-defined procedure

If you know the name of the user-defined procedure (external or SPL) at compile time, execute the user-defined procedure

with the EXECUTE PROCEDURE statement. The following EXECUTE PROCEDURE statement executes a user-defined

procedure called revise_stats():

EXEC SQL execute procedure revise_stats("customer");

Chapter 1. ESQL/C Guide

For more information about the syntax of the EXECUTE PROCEDURE statement, see the HCL® Informix® Guide to SQL:

Syntax.

If you do not know the name of the user-defined procedure until run time, you must dynamically execute the procedure. To

dynamically execute a user-defined procedure, you can use:

• the PREPARE and EXECUTE statements

• the EXECUTE IMMEDIATE statement

A user-defined function

If you know the name of the user-defined function at compile time, execute the user-defined function (external or SPL) with

the EXECUTE FUNCTION statement. In the INTO clause of EXECUTE FUNCTION, you list the host variables that hold the

return value or values. The following EXECUTE FUNCTION statement executes a user-defined function called items_pct()

(which Figure 84: Code for items_pct SPL function on page 492 defines):

EXEC SQL execute function items_pct(\"HSK\")
 into :manuf_percent;

If you do not know the name of the user-defined function until run time, you must dynamically execute the function. Dynamic

execution of a user-defined function is a similar dynamic execution of a SELECT statement (Handling an unknown select list

on page 455). Both the SELECT and the user-defined function return values to the IBM® Informix® ESQL/C program.

Execute a user-defined function with the EXECUTE FUNCTION statement. You can execute an EXECUTE FUNCTION

statement in the following two ways:

• If the user-defined function returns only one row, use PREPARE and EXECUTE INTO to execute the EXECUTE

FUNCTION statement. This type of user-defined function is often called a noncursor function.

• If the user-defined function returns more than one row, you must declare a function cursor to execute the EXECUTE

FUNCTION statement.

This type of user-defined function is often called a cursor function. A cursor function that is written in SPL (an SPL

function) has the WITH RESUME clause in its RETURN statement. A cursor function that is written in an external

language such as C is an iterator function.

Tip: If you do not know the data type of the return value, you must use a dynamic-management structure to hold the

value.

A noncursor function
You can use the PREPARE and EXECUTE statement to execute a user-defined noncursor function. A noncursor function

returns only one row of values.

Your IBM® Informix® ESQL/C program must take the following actions:

431

HCL Informix 14.10 - ESQL/C Programmer’s Guide

432

1. Declare host variables to receive the values that the database server returns.

For a prepared EXECUTE FUNCTION statement, these values are the return values of the user-defined function.

2. Assemble and prepare the statement.

A prepared EXECUTE FUNCTION statement can contain input parameters as function arguments.

3. Execute the prepared user-defined function with the EXECUTE...INTO statement, with the host variables after the

INTO keyword.

If the EXECUTE FUNCTION contains input parameters, include the USING clause of EXECUTE.

Important: To execute a noncursor function, EXECUTE...INTO is more efficient than the DECLARE, OPEN, and FETCH

statements. However, you often do not know the number of returned rows. When you do not use a cursor to execute

a cursor function that returns multiple rows, Informix® ESQL/C generates a runtime error. Therefore, it is a good

practice to always associate a user-defined function with a cursor.

Most external functions can return only one row of data and only a single value. For example, the following code fragment

executes an external function called stnd_dev():

strcpy(func_name, "stnd_dev(ship_date)");
sprintf(exfunc_stmt, "%s %s %s",
 "execute function",
 func_name);
EXEC SQL prepare exfunc_id from :exfunc_stmt;
EXEC SQL execute exfunc_id into :ret_val;

To return more than one value, the external function must return a complex data type, such as a collection or a row type.

An SPL function can return one or more values. If the RETURN statement of the SPL function does not contain the WITH

RESUME keywords, then the function returns only one row. To execute the SPL function dynamically, prepare the EXECUTE

FUNCTION and execute it with the EXECUTE...INTO statement.

A function cursor
To execute an EXECUTE FUNCTION statement whose user-defined function returns more than one row, you must declare

a function cursor. The function cursor enables the Informix® ESQL/C application to handle the multiple rows that a user-

defined function returns.

Your Informix® ESQL/C program must take the following actions to use a function cursor:

1. Declare host variables to receive the values that the user-defined function returns.

2. Assemble and prepare the statement.

A prepared EXECUTE FUNCTION statement can contain input parameters as function arguments.

3. Declare the function cursor.

The DECLARE statement associates the prepared EXECUTE FUNCTION statement with the function cursor.

Chapter 1. ESQL/C Guide

4. Execute the user-defined function.

The OPEN statement sends any input parameters that its USING clause specifies to the database server and tells the

database server to execute the EXECUTE FUNCTION statement.

5. Retrieve the rows of values from the function cursor.

The FETCH statement retrieves one row of values that the user-defined function returns.

Only an external function that is an iterator function can return more than one row of data. For information about how to

write an iterator function, see the HCL® Informix® DataBlade® API Programmer's Guide.

If the RETURN statement of the SPL function contains the WITH RESUME keywords, then the function can return more

than one row. You must associate such an SPL function with a function cursor. To execute the SPL function dynamically,

associate the EXECUTE FUNCTION statement with a cursor, use the OPEN statement to execute the function, and use the

FETCH...INTO statement to retrieve the rows from the cursor into host variables.

Execute statements with input parameters

An input parameter is a placeholder in an SQL statement that indicates that the actual value is provided at run time. You

cannot list a host-variable name in the text of a dynamic SQL statement because the database server knows nothing about

variables declared in the application. Instead, you can indicate an input parameter with a question mark (?), which serves as

a placeholder, anywhere within a statement where an expression is valid. You cannot use an input parameter to represent an

identifier such as a database name, a table name, or a column name.

An SQL statement that contains input parameters is called a parameterized statement. For a parameterized SQL statement,

your program must provide the following information to the database server about its input parameters:

• Your program must use a question mark (?) as a placeholder in the text of the statement to indicate where to expect

an input parameter. For example, the following DELETE statement contains two input parameters:

EXEC SQL prepare dlt_stmt from
 'delete from orders where customer_num = ? \
 and order_date > ?';

The first input parameter is defined for the value of the customer_num column and the second for the value of the

order_date column.

• Your program must specify the value for the input parameter when the statement executes with the USING clause. To

execute the DELETE statement in the previous step, you can use the following statement:

EXEC SQL execute dlt_stmt using :cust_num, :ord_date;

The statement that you use to provide an input parameter with a value at run time depends on the type of SQL statement that

you execute, as follows:

433

HCL Informix 14.10 - ESQL/C Programmer’s Guide

434

• For a non-SELECT statement (such as UPDATE, INSERT, DELETE, or EXECUTE PROCEDURE) with input parameters,

the EXECUTE...USING statement executes the statement and provides input parameter values.

• For a SELECT statement associated with a cursor or for a cursor function (EXECUTE FUNCTION), the OPEN...USING

statement executes the statement and provides input parameter values.

• For a singleton SELECT statement or for a noncursor function (EXECUTE FUNCTION), the EXECUTE...INTO...USING

statement executes the statement and provides input parameter values.

When the statement executes, you can list host variables or literal values to substitute for each input parameter in the USING

clause. The values must be compatible in number and data type with the associated input parameters. A host variable must

also be large enough to hold the data.

Important: To use host variables with the USING clause, you must know the number of parameters in the SQL

statement and their data types. If you do not know the number and data types of the input parameters at run time,

you must use a dynamic-management structure with the USING clause.

An EXECUTE USING statement
You can execute a parameterized non-SELECT statement (a non-SELECT that contains input parameters) with the

EXECUTE...USING statement.

The following statements are parameterized non-SELECT statements:

• A DELETE or UPDATE statement with input parameters in the WHERE clause

• An UPDATE statement with input parameters in the SET clause

• An INSERT statement with input parameters in the VALUES clause

• An EXECUTE PROCEDURE statement with input parameters for its function arguments

Tip: You cannot use an input parameter as the procedure name for a user-defined procedure.

For example, the following UPDATE statement requires two parameters in its WHERE clause:

EXEC SQL prepare upd_id from
 'update orders set paid_date = NULL \
 where order_date > ? and customer_num = ?';

The USING clause lists the names of the host variables that hold the parameter data. If the input parameter values are stored

in hvar1 and hvar2, your program can execute this UPDATE with the following statement:

EXEC SQL execute upd_id using :hvar1, :hvar2;

The following steps describe how to handle a parameterized UPDATE or DELETE statement when the type and number of

parameters are known at compile time:

Chapter 1. ESQL/C Guide

1. Declare a host variable for each input parameter that is in the prepared statement.

2. Assemble the character string for the statement, with a question mark (?) placeholder for each input parameter. Once

you have assembled the string, prepare it. For more information about these steps, see Assemble and prepare the

SQL statement on page 400.

3. Assign a value to the host variable that is associated with each input parameter. (The application might obtain these

values interactively.)

4. Execute the UPDATE or DELETE statement with the EXECUTE...USING statement. You must list the host variables that

contain the input parameter values in the USING clause.

5. Optionally, use the FREE statement to release the resources that were allocated with the prepared statement.

Important: If you do not know the number and data types of the input parameters in the prepared statement at

compile time, do not use host variables with the USING clause. Instead, use a dynamic-management structure to

specify input parameter values.

For more information about determining the number and types of input parameters, see Determine unknown input

parameters on page 456.

For more information about the USING clause, see the entry for EXECUTE in the HCL® Informix® Guide to SQL: Syntax.

An OPEN USING statement

You can execute the following statements with the OPEN...USING statement:

• A parameterized SELECT statement (a SELECT statement that contains input parameters in its WHERE clause) that

returns one or more rows

• A parameterized EXECUTE FUNCTION statement (a cursor function that contains input parameters for its arguments)

Tip: You cannot use an input parameter as the function name for a user-defined function.

For example, the following SELECT statement is a parameterized SELECT that requires two parameters in its WHERE clause:

EXEC SQL prepare slct_id from
 'select from orders where customer_num = ? and order_date > ?';
EXEC SQL declare slct_cursor cursor for slct_id;

If the cust_num and ord_date host variables contain the input parameter values, the following OPEN statement executes the

SELECT with these input parameters:

EXEC SQL open slct_id using :cust_num, :ord_date;

Use the USING host_var clause only when you know, at compile time, the type and number of input parameters in the WHERE

clause of the SELECT statement.

435

HCL Informix 14.10 - ESQL/C Programmer’s Guide

436

The demo2.ec sample program
The demo2.ec sample program shows how to handle a dynamic SELECT statement that has input parameters in its WHERE

clause.

The demo2.ec program uses a host variable to hold the value of the input parameter for a SELECT statement. It also uses

host variables to hold the column values that are returned from the database.

1. #include <stdio.h>
2. EXEC SQL define FNAME_LEN 15;
3. EXEC SQL define LNAME_LEN 15;
4. main()
5. {
6. EXEC SQL BEGIN DECLARE SECTION;
7. char demoquery[80];
8. char queryvalue[2];
9. char fname[FNAME_LEN + 1];
10. char lname[LNAME_LEN + 1];
11. EXEC SQL END DECLARE SECTION;
12. printf("DEMO2 Sample ESQL program running.\n\n");
13. EXEC SQL connect to'stores7';
14. /* The next three lines have hard-wired the query. This
15. * information could have been entered from the terminal
16. * and placed into the demoquery string
17. */
18. sprintf(demoquery, "%s %s",
19. "select fname, lname from customer",
20. "where lname > ? ");
21. EXEC SQL prepare demo2id from :demoquery;

Lines 9 and 10

These lines declare a host variable (fname) for the parameter in the WHERE clause of the SELECT statement and declare

host variables (fname and lname) for values that the SELECT statement returns.

Lines 14 - 21

These lines assemble the character string for the statement (in demoquery) and prepare it as the demo2id statement

identifier. The question mark (?) indicates the input parameter in the WHERE clause. For more information about these steps,

see Assemble and prepare the SQL statement on page 400.

22. EXEC SQL declare demo2cursor cursor for demo2id;
23. /* The next line has hard-wired the value for the parameter.
24. * This information could also have been entered from the
 * terminal
25. * and placed into the queryvalue string.
26. */
27. sprintf(queryvalue, "C");
28. EXEC SQL open demo2cursor using :queryvalue;
29. for (;;)
30. {
31. EXEC SQL fetch demo2cursor into :fname, :lname;
32. if (strncmp(SQLSTATE, "00", 2) != 0)
33. break;
34. /* Print out the returned values */

Chapter 1. ESQL/C Guide

35. printf("Column: fname\tValue: %s\n", fname);
36. printf("Column: lname\tValue: %s\n", lname);
37. printf("\n");
38. }

Line 22

This line declares the demo2cursor cursor for the prepared statement identifier, demo2id. All non-singleton SELECT

statements must have a declared cursor.

Lines 23 - 27

The queryvalue host variable is the input parameter for the SELECT statement. It contains the value C. In an interactive

application, this value probably would be obtained from the user.

Line 28

The database server executes the SELECT statement when it opens the demo2cursor cursor. Because the WHERE clause

of the SELECT statement contains input parameters (lines 20 and 21), the OPEN statement includes the USING clause to

specify the input parameter value in queryvalue.

Lines 29 - 38

This for loop executes for each row fetched from the database. The FETCH statement (line 31) includes the INTO clause to

specify the fname and lname host variables for the column values. After this FETCH statement executes, the column values

are stored in these host variables.

39. if (strncmp(SQLSTATE, "02", 2) != 0)
40. printf("SQLSTATE after fetch is %s\n", SQLSTATE);
41. EXEC SQL close demo2cursor;
42. EXEC SQL free demo2cursor;
43. EXEC SQL free demo2id;
44. EXEC SQL disconnect current;
45. printf("\nProgram Over.\n");
46. }

Lines 39 and 40

Outside the for loop, the program tests the SQLSTATE variable again so it can notify the user in the event of successful

execution, a runtime error, or a warning (class code not equal to "02").

Line 41

After all the rows are fetched, the CLOSE statement closes the demo2cursor cursor.

Lines 42 and 43

These FREE statements release the resources allocated for the prepared statement (line 42) and the database cursor (line

43). Once a cursor or prepared statement has been freed, it cannot be used again in the program.

437

HCL Informix 14.10 - ESQL/C Programmer’s Guide

438

SQL statements that are not known at compile time
An SQL statement that is not known at compile time is usually one that the user enters in an interactive application.

When you write an interactive database-query application like DB-Access, you do not know in advance which databases,

tables, or columns the user wants to access, or what conditions the user might apply in a WHERE clause. If the IBM®

Informix® ESQL/C application interprets and runs SQL statements that the user enters, this application does not know what

type of information is to be stored in host variables until after the user enters the statement at run time.

For example, if a program contains the following DELETE statement, you know the number of values and the data types that

you receive, based on the affected columns:

DELETE FROM customer WHERE city = ? AND lname > ?

You can define host variables whose data types are compatible with the data they receive. However, suppose your program

provides a prompt for the user such as:

Enter a DELETE statement for the stores7 database:

In this case, you do not know until run time either the name of the table on which the DELETE takes place or the columns that

are listed in the WHERE clause. Therefore, you cannot declare the necessary host variables.

You can dynamically determine a prepared SQL statement and information about the tables and columns it accesses with

the DESCRIBE statement and the dynamic-management structures.

Determine SQL statements
If you do not know until run time what SQL statement to execute, you can dynamically determine that statement with the

DESCRIBE statement and use a dynamic-management structure to hold any values that the statement sends to or receives

from the database server.

These topics contain the following information about how to dynamically determine an SQL statement:

• What dynamic-management structures exist and which SQL statements access them.

• How to use the DESCRIBE statement with a dynamic-management structure.

Dynamic-management structure
If you do not know the number or data types of values sent to or received from the database server, use a dynamic-

management structure. A dynamic-management structure allows you to pass a variable-length list of data to the database

server, or receive a variable-length list of data from it.

To execute dynamic SQL statements with unknown columns, you can use either of the following dynamic-management

structures in your IBM® Informix® ESQL/C program:

Chapter 1. ESQL/C Guide

• A system-descriptor area is a language-independent data structure that is the X/Open standard. You allocate

and manipulate it with the SQL statements ALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR, and

DEALLOCATE DESCRIPTOR.

• The sqlda structure is a C-language data structure that you manipulate with the same types of C-language

statements that you would use to allocate and manipulate other C structures (areas that have the struct data type).

Because this method uses a C-language structure within SQL statements, it is language-dependent and does not

conform to X/Open standards.

For a given dynamic SQL statement, the dynamic-management structure can hold any of the following information:

• The number of unknown columns in the statement

• For each unknown value, the data type and length, space for the data, and information about any associated indicator

variable (its data type, length, and data)

The IBM® Informix® ESQL/C program can then use this information to determine a host variable of appropriate length and

type to hold the value.

A system-descriptor area
A system-descriptor area is an area of memory declared by IBM® Informix® ESQL/C to hold data either returned from or

sent by a prepared statement. It is the dynamic-management structure that conforms to the X/Open standards.

A system-descriptor area has two parts:

• A fixed-size portion is made up of the COUNT field. This field contains the number of columns described in the

system-descriptor area.

• A variable-length portion contains an item descriptor for each value in the system-descriptor area. Each item

descriptor is a fixed-size structure.

The following figure shows what a system-descriptor area looks like for two values.

439

HCL Informix 14.10 - ESQL/C Programmer’s Guide

440

Figure 81. Schematic that shows system-descriptor area for two values

Fixed-length portion

The fixed-size portion of the system-descriptor area consists of the single field, which following table shows.

Table 75. Field in the fixed-size portion of a system-descriptor area

Field Data type Description

COUNT short The number of column values or occurrences in the

system-descriptor area. This is the number of item descriptors,

one for each column. The DESCRIBE...USING SQL DESCRIPTOR

statement sets COUNT to the number of described columns. You

must use SET DESCRIPTOR to initialize the field before you send

column values to the database server.

An item descriptor
Each item descriptor in the system-descriptor area holds information about a data value that can be sent to or received from

the database server.

Each item descriptor consists of the fields that the following table summarizes.

Chapter 1. ESQL/C Guide

Table 76. Fields in each item descriptor of the system-descriptor area

Field Data type Description

DATA char * A pointer to the column data that is to be sent to or received from

the database server.

TYPE short An integer that identifies the data type of the column that is being

transferred. These values are defined in the sqltypes.h and

sqlxtype.h header files (see Determine the data type of a

column on page 452).

LENGTH short The length, in bytes, of CHAR type data, the encoded qualifiers

of DATETIME or INTERVAL data, or the size of a DECIMAL or

MONEY value.

NAME char * A pointer to the character array that contains the column name or

display label that is being transferred.

INDICATOR short An indicator variable that can contain one of two values:

0

Requires the DATA field to contain non-null data.

-1

Inserts a NULL when no DATA field value is

specified.

SCALE short Contains the scale of the column that is in the DATA field; defined

only for the DECIMAL or MONEY data type.

PRECISION short Contains the precision of the column that is in the DATA field;

defined only for the DECIMAL or MONEY data type.

NULLABLE short Specifies whether the column can contain a null value (after a

DESCRIBE statement):

1

The column allows null values

0

The column does not allow null values.

Before an EXECUTE statement or a dynamic OPEN statement is

executed, it must be set to 1 to indicate that an indicator value

is specified in the INDICATOR field, and to 0 if it is not specified.

(When you execute a dynamic FETCH statement, the NULLABLE

field is ignored.)

441

HCL Informix 14.10 - ESQL/C Programmer’s Guide

442

Table 76. Fields in each item descriptor of the system-descriptor area (continued)

Field Data type Description

IDATA char * User-defined indicator data or the name of a host variable that

contains indicator data for the DATA field. The IDATA field is not

a standard X/Open field.

ITYPE short The data type for a user-defined indicator variable. These values

are defined in the sqltypes.h and sqlxtype.h header files.

(See Determine the data type of a column on page 452.) The

ITYPE field is not a standard X/Open field.

ILENGTH short The length, in bytes, of the user-defined indicator. The ILENGTH

field is not a standard X/Open field.

EXTYPEID int4 The extended identifier for the user-defined (opaque or distinct)

or complex (collection or row) data type. See the HCL® Informix®

Guide to SQL: Reference for a description of the extended_id

column of the sysxtdtypes system catalog table.

EXTYPENAME char * The name of the user-defined (opaque or distinct) or complex

(collection or row) data type. See the HCL® Informix® Guide

to SQL: Reference for a description of the name column of the

sysxtdtypes system catalog table.

EXTYPELENGTH short The length, in bytes, of the string in the EXTYPENAME field.

EXTYPEOWNERNAME char * The name of the owner (for ANSI databases) of the user-defined

(opaque or distinct) or complex (collection or row) data type. See

the HCL® Informix® Guide to SQL: Reference for a description of

the owner column of the sysxtdtypes system catalog.

EXTYPEOWNERLENGTH short The length, in bytes, of the string in the EXTYPEOWNERNAME

field.

SOURCETYPE short The data type constant (from sqltypes.h) of the source data

type for a distinct-type column. See the HCL® Informix® Guide

to SQL: Reference for a description of the type column of the

sysxtdtypes system catalog.

SOURCEID int4 The extended identifier of the source data type for a distinct-type

column. See the HCL® Informix® Guide to SQL: Reference for

a description of the source column of the sysxtdtypes system

catalog.

An sqlda structure
The sqlda structure is a C structure (defined in the sqlda.h header file) that holds data returned from a prepared statement.

Chapter 1. ESQL/C Guide

Each sqlda structure has three parts:

• A fixed-size portion is made up of the sqld field, which contains the number of columns described in the sqlda

structure.

• A variable-length portion contains an sqlvar_struct structure for each column value. Each sqlvar_struct structure is a

fixed-size structure.

• Descriptive information is included about the sqlda structure itself. For more information, see Table 80: Descriptive

fields in the sqlda structure on page 446.

The following figure shows what an sqlda structure looks like for two values.

Figure 82. Schematic that shows sqlda structure for two values

Figure 82: Schematic that shows sqlda structure for two values on page 443 shows the column data in the sqldata fields in

a single data buffer. This data can also be stored in separate buffers.

Fixed-length portion

The following table describes the fixed-size portion of the sqlda structure, which consists of a single field.

Table 77. Field in the fixed-size portion of an sqlda structure

Field Data type Description

sqld short The number of column values or occurrences in the sqlda structure. This is the

number of sqlvar_struct structures, one for each column. The DESCRIBE...INTO

statement sets sqld to the number of described columns. You must set sqld to

initialize the field before you send column values to the database server.

443

HCL Informix 14.10 - ESQL/C Programmer’s Guide

444

An sqlvar_struct structure

When all of its components are fully defined, the sqlda structure points to the initial address of a sequence of sqlvar_struct

structures that contain the necessary information for each variable in the set. Each sqlvar_struct structure holds a data value

that can be sent to or received from the database server. Your program accesses these sqlvar_struct structures through the

sqlvar field of sqlda. Table 78: Field to access the variable-sized portion of an sqlda structure on page 444 and Table 79:

Fields in the sqlvar_struct structure on page 444 summarize the variable-sized structure of sqlda.

Table 78. Field to access the variable-sized portion of an sqlda structure

Field Data type Description

sqlvar struct sqlvar_struct * A pointer to the variable-sized portion of an sqlda structure. There is one

sqlvar_struct for each column value returned from or sent to the database server.

The sqlvar field points to the first of the sqlvar_struct structures.

The following table shows the fields in the sqlvar_struct structure.

Table 79. Fields in the sqlvar_struct structure

Field Data type Description

sqltype short An integer that identifies the data type of the column that the database

server sends or receives. These values are defined in the sqltypes.h and

sqlxtype.h header files. (See Determine the data type of a column on

page 452.)

sqllen short The length, in bytes, of CHAR type data, or the encoded qualifier of a

DATETIME or INTERVAL value. What the length means depends on the type

of information and how the sqlda is used:

• When you retrieve the sqlda structure with a DESCRIBE statement,

the value in the sqllen field is automatically set to the length of the

space that is occupied by the data on disk. The value comes from the

system catalog.

• When you fetch data into buffers or send data through the buffers,

you must set the value in the sqllen field to the size of the memory

buffer that is used for the column.

sqldata char * A pointer to the column data that the database server sends or receives. (See

Allocate memory for column data on page 524.)

sqlind short * A pointer to an indicator variable for the column that can contain one of two

values:

0

The sqldata field contains non-null data.

Chapter 1. ESQL/C Guide

Table 79. Fields in the sqlvar_struct structure (continued)

Field Data type Description

-1

The sqldata field contains null data.

sqlname char * A pointer to a character array that contains the column name or display label

that the database server sends or receives.

sqlformat char * Reserved for future use.

sqlitype short An integer that specifies the data type of a user-defined indicator variable.

These values are defined in the sqltypes.h and sqlxtype.h header files.

(See Determine the data type of a column on page 452.)

sqlilen int4 The length, in bytes, of a user-defined indicator variable.

sqlidata char * A pointer to the data of the user-defined indicator variable.

sqlxid int4 The extended identifier for the user-defined (opaque or distinct) or complex

(collection or row) data type. See the HCL® Informix® Guide to SQL:

Reference for a description of the extended_id column of the sysxtdtypes

system catalog table.

sqltypename char * The name of the user-defined (opaque or distinct) or complex (collection

or row) data type. See the HCL® Informix® Guide to SQL: Reference for a

description of the name column of the sysxtdtypes system catalog table.

sqltypelen short The length, in bytes, of the string in the sqltypename field.

sqlownername char * The name of the owner (for ANSI databases) of the user-defined (opaque or

distinct) or complex (collection or row) data type. See the HCL® Informix®

Guide to SQL: Reference for a description of the owner column of the

sysxtdtypes system catalog.

sqlownerlen short The length, in bytes, of the string in the sqlownername field.

sqlsourcetype short The data type constant (from sqltypes.h) of the source data type for a

distinct-type column. See the HCL® Informix® Guide to SQL: Reference for a

description of the type column of the sysxtdtypes system catalog.

sqlsourceid int4 The extended identifier of the source data type for a distinct-type column.

See the HCL® Informix® Guide to SQL: Reference for a description of the

source column of the sysxtdtypes system catalog.

sqlflags int4 This field is usually for internal use. However, if the sqlda structure has been

initialized by a DESCRIBE statement you can determine if the column accepts

nulls by using the ISCOLUMNULLABLE() macro on this field. If it returns 1

then the column accepts nulls.

445

HCL Informix 14.10 - ESQL/C Programmer’s Guide

446

Table 79. Fields in the sqlvar_struct structure (continued)

Field Data type Description

The ISCOLUMNULLABLE() macro is defined in sqltypes.h.

Descriptive information

The following table summarizes the sqlda fields that describe the sqlda structure itself.

Table 80. Descriptive fields in the sqlda structure

Field Data type Description

desc_name char[19] The name of the descriptor; maximum of 18 characters

desc_occ short The size of the sqlda structure

desc_next struct sqlda * A pointer to the next sqlda structure

The DESCRIBE statement
The DESCRIBE statement obtains information about database columns or expressions in a prepared statement.

The DESCRIBE statement can put this information in one of the following dynamic-management structures:

• DESCRIBE...USING SQL DESCRIPTOR stores information in a system-descriptor area.

Each item descriptor describes a column. The COUNT field is set to the number of item descriptors (the number

of columns in the column list). You can access this information with the GET DESCRIPTOR statement. For more

information about the fields of a system-descriptor area, see Figure 81: Schematic that shows system-descriptor

area for two values on page 440 through Table 76: Fields in each item descriptor of the system-descriptor area on

page 441.

• DESCRIBE...INTO sqlda_ptr stores information in an sqlda structure whose address is stored in sqlda_ptr.

Each sqlvar_struct structure describes a column. The sqld field is set to the number of sqlvar_struct structures

(the number of columns in the column list). You can access this information through the fields in the sqlvar_struct

structures. For more information about the fields of an sqlda structure, see Figure 82: Schematic that shows sqlda

structure for two values on page 443 through Table 80: Descriptive fields in the sqlda structure on page 446.

Important: If the Deferred-PREPARE feature is enabled, you cannot use the DESCRIBE statement before an OPEN

statement executes. For more information, see Defer execution of the PREPARE statement on page 416.

If the DESCRIBE is successful, it obtains the following information about a prepared statement:

Chapter 1. ESQL/C Guide

• The SQLCODE value indicates the type of statement that was prepared. For more information, see Determine the

statement type on page 447.

• A dynamic-management structure contains information about the number and data types of the columns in a column

list of a SELECT, INSERT, or EXECUTE FUNCTION statement.

For information about the column descriptions returned by DESCRIBE, see Handling an unknown select list on

page 455 and Handling an unknown column list on page 456 on Handling an unknown select list on page 455

and Handling an unknown column list on page 456. For information about the data type values returned by

DESCRIBE, see Determine the data type of a column on page 452.

• When the DESCRIBE statement describes a DELETE or UPDATE statement, it can indicate whether the statement

includes a WHERE clause. For more information, see Check for a WHERE clause on page 454.

For more information about the DESCRIBE statement, see its entry in the HCL® Informix® Guide to SQL: Syntax.

Determine the statement type

The sqlstype.h file contains the defined integer constants for the SQL statements that can be prepared. The DESCRIBE

statement returns one of these values in the SQLCODE (sqlca.sqlcode) variable to identify a prepared statement. That is,

SQLCODE indicates whether the statement was an INSERT, SELECT, CREATE TABLE, or any other SQL statement.

Within the IBM® Informix® ESQL/C program that uses dynamic SQL statements, you can use the constants that the

following table shows to determine which SQL statement was prepared.

Table 81. The constants for SQL statement types that the sqlstype.h file defines

SQL statement Defined sqlstype.h constant Value

SELECT (no INTO TEMP clause) None 0

DATABASE SQ_DATABASE 1

Reserved 2

SELECT INTO TEMP SQ_SELINTO 3

UPDATE...WHERE SQ_UPDATE 4

DELETE...WHERE SQ_DELETE 5

INSERT SQ_INSERT 6

UPDATE WHERE CURRENT OF SQ_UPDCURR 7

DELETE WHERE CURRENT OF SQ_DELCURR 8

Reserved 9

LOCK TABLE SQ_LOCK 10

UNLOCK TABLE SQ_UNLOCK 11

447

HCL Informix 14.10 - ESQL/C Programmer’s Guide

448

Table 81. The constants for SQL statement types that the sqlstype.h file defines (continued)

SQL statement Defined sqlstype.h constant Value

CREATE DATABASE SQ_CREADB 12

DROP DATABASE SQ_DROPDB 13

CREATE TABLE SQ_CRETAB 14

DROP TABLE SQ_DRPTAB 15

CREATE INDEX SQ_CREIDX 16

DROP INDEX SQ_DRPIDX 17

GRANT SQ_GRANT 18

REVOKE SQ_REVOKE 19

RENAME TABLE SQ_RENTAB 20

RENAME COLUMN SQ_RENCOL 21

CREATE AUDIT SQ_CREAUD 22

Reserved 23-28

ALTER TABLE SQ_ALTER 29

UPDATE STATISTICS SQ_STATS 30

CLOSE DATABASE SQ_CLSDB 31

DELETE (no WHERE clause) SQ_DELALL 32

UPDATE (no WHERE clause) SQ_UPDALL 33

BEGIN WORK SQ_BEGWORK 34

COMMIT WORK SQ_COMMIT 35

ROLLBACK WORK SQ_ROLLBACK 36

Reserved 37-39

CREATE VIEW SQ_CREVIEW 40

DROP VIEW SQ_DROPVIEW 41

Reserved 42

CREATE SYNONYM SQ_CREASYN 43

DROP SYNONYM SQ_DROPSYN 44

CREATE TEMP TABLE SQ_CTEMP 45

SET LOCK MODE SQ_WAITFOR 46

Chapter 1. ESQL/C Guide

Table 81. The constants for SQL statement types that the sqlstype.h file defines (continued)

SQL statement Defined sqlstype.h constant Value

ALTER INDEX SQ_ALTIDX 47

SET ISOLATION, SET TRANSACTION SQ_ISOLATE 48

SET LOG SQ_SETLOG 49

SET EXPLAIN SQ_EXPLAIN 50

CREATE SCHEMA SQ_SCHEMA 51

SET OPTIMIZATION SQ_OPTIM 52

CREATE PROCEDURE SQ_CREPROC 53

DROP PROCEDURE SQ_DRPPROC 54

SET CONSTRAINTS SQ_CONSTRMODE 55

EXECUTE PROCEDURE, EXECUTE FUNCTION SQ_EXECPROC 56

SET DEBUG FILE TO SQ_DBGFILE 57

CREATE OPTICAL CLUSTER SQ_CREOPCL 58

ALTER OPTICAL CLUSTER SQ_ALTOPCL 59

DROP OPTICAL CLUSTER SQ_DRPOPCL 60

RESERVE (Optical) SQ_OPRESERVE 61

RELEASE (Optical) SQ_OPRELEASE 62

SET MOUNTING TIMEOUT SQ_OPTIMEOUT 63

UPDATE STATS...for procedure SQ_PROCSTATS 64

Reserved 65-69

CREATE TRIGGER SQ_CRETRIG 70

DROP TRIGGER SQ_DRPTRIG 71

SQ_UNKNOWN 72

SET DATASKIP SQ_SETDATASKIP 73

SET PDQPRIORITY SQ_PDQPRIORITY 74

ALTER FRAGMENT SQ_ALTFRAG 75

SET SQ_SETOBJMODE 76

START VIOLATIONS TABLE SQ_START 77

STOP VIOLATIONS TABLE SQ_STOP 78

449

HCL Informix 14.10 - ESQL/C Programmer’s Guide

450

Table 81. The constants for SQL statement types that the sqlstype.h file defines (continued)

SQL statement Defined sqlstype.h constant Value

Reserved 79

SET SESSION AUTHORIZATION SQ_SETDAC 80

Reserved 81-82

CREATE ROLE SQ_CREATEROLE 83

DROP ROLE SQ_DROPROLE 84

SET ROLE SQ_SETROLE 85

Reserved 86-89

CREATE ROW TYPE SQ_CREANRT 90

DROP ROW TYPE SQ_DROPNRT 91

CREATE DISTINCT TYPE SQ_CREADT 92

CREATE CAST SQ_CREACT 93

DROP CAST SQ_DROPCT 94

DROP TYPE SQ_DROPTYPE 96

Reserved 97

CREATE ACCESS_METHOD SQ_CREATEAM 98

DROP ACCESS_METHOD SQ_DROPAM 99

Reserved 100

CREATE OPCLASS SQ_CREATEOPC 101

DROP OPCLASS SQ_DROPOPC 102

SET (MEMORY/NON)_RESIDENT SQ_SETRES 104

CREATE AGGREGATE SQ_CREAGG 105

DROP AGGREGATE SQ_DRPAGG 106

pload log file command SQ_PLOADFILE 107

onutil check index command SQ_CHKIDX 108

set schedule SQ_SCHEDULE 109

"set environment..." SQ_SETENV 110

Reserved 111-114

SET STMT_CACHE SQ_STMT_CACHE 115

Chapter 1. ESQL/C Guide

Table 81. The constants for SQL statement types that the sqlstype.h file defines (continued)

SQL statement Defined sqlstype.h constant Value

RENAME INDEX SQ_RENIDX 116

CREATE SEQUENCE SQ_CRESEQ 124

DROP SEQUENCE SQ_DRPSEQ 125

ALTER SEQUENCE SQ_ALTERSEQ 126

RENAME SEQUENCE SQ_RENSEQ 127

SET COLLATION SQ_COLLATION 129

SET NO COLLATION SQ_NOCOLLATION 130

SET ROLE DEFAULT SQ_SETDEFROLE 131

SET ENCRYPTION SQ_ENCRYPTION 132

save external directives SQ_EXTD 133

CREATE XAdatasource TYPE SQ_CRXASRCTYPE 134

CREATE XAdatasource SQ_CRXADTSRC 135

DROP XAdatasource TYPE SQ_DROPXATYPE 136

DROP XAdatasource SQ_DROPXADTSRC 137

Truncate table SQ_TRUNCATE 138

CREATE SECURITY LABEL COMPONENT SQ_CRESECCMP 139

ALTER SECURITY LABEL COMPONENT SQ_ALTSECCMP 140

DROP SECURITY LABEL COMPONENT SQ_DRPSECCMP 141

RENAME SECURITY LABEL COMPONENT SQ_RENSECCMP 142

CREATE SECURITY POLICY SQ_CRESECPOL 143

DROP SECURITY POLICY SQ_DRPSECPOL 144

RENAME SECURITY POLICY SQ_RENSECPOL 145

CREATE SECURITY LABEL SQ_CRESECLAB 146

DROP SECURITY LABEL SQ_DRPSECLAB 147

RENAME SECURITY LABEL SQ_RENSECLAB 148

GRANT DBSECADM SQ_GRTSECADM 149

REVOKE DBSECADM SQ_RVKSECADM 150

GRANT EXEMPTIONS SQ_GRTSECEXMP 151

451

HCL Informix 14.10 - ESQL/C Programmer’s Guide

452

Table 81. The constants for SQL statement types that the sqlstype.h file defines (continued)

SQL statement Defined sqlstype.h constant Value

REVOKE EXEMPTIONS SQ_RVKSECEXMP 152

GRANT SECURITY LABEL SQ_GRTSECLAB 153

REVOKE SECURITY LABEL SQ_RVKSECLAB 154

GRANT SETSESSIONAUTH SQ_GRTSESAUTH 155

REVOKE SETSESSIONAUTH SQ_RVKSESAUTH 156

Tip: Check the sqlstype.h header file on your system for the most updated list of SQL statement-type values.

To determine the type of SQL statement that was prepared dynamically, your Informix® ESQL/C program must take the

following actions:

• Use the include directive to include the sqlstype.h header file.

• Compare the value in the SQLCODE variable (sqlca.sqlcode) against the constants defined in the sqlstype.h file.

A sample program that executes an SPL function on page 492 uses the SQ_EXECPROC constant to verify that an EXECUTE

FUNCTION statement has been prepared.

Determine the data type of a column
The DESCRIBE statement identifies the data type of a column with an integer value.

After DESCRIBE analyzes a prepared statement, it stores this value in a dynamic-management structure, as follows:

• In a system-descriptor area, in the TYPE field of the item descriptor for each column described

• In an sqlda structure, in the sqltype field of the sqlvar_struct structure for each column described

IBM® Informix® ESQL/C provides defined constants for these data types in the following two header files:

• The sqltypes.h header file contains defined constants for the SQL data types that are specific to Informix®. These

values are the default that the DESCRIBE statement uses.

• The sqlxtype.h header file contains defined constants for the X/Open SQL data types. DESCRIBE uses these

values when you compile your Informix® ESQL/C source file with the -xopen option of the preprocessor.

Use the SQL data type constants from sqltypes.h or sqlxtype.h to analyze the information returned by a DESCRIBE

statement or to set the data type of a column before execution.

Tip: When you set the data type of a column in a system-descriptor area, you assign a data type constant to the TYPE

field (and optionally the ITYPE field) of an item descriptor with the SET DESCRIPTOR statement. When you set the

Chapter 1. ESQL/C Guide

data type of a column in an sqlda structure, you assign a data type constant to the sqltype field (and optionally the

sqlitype field) of an sqlvar structure.

SQL data types specific to Informix®
The SQL data types specific to HCL Informix® are available to a column in the Informix® database.

The HCL® Informix® Guide to SQL: Reference describes these data types. If you do not include the -xopen option when

you compile your Informix® ESQL/C program, the DESCRIBE statement uses these data types to specify the data type of

a column or the return value of a user-defined function. Constants for these Informix® SQL data types are defined in the

Informix® ESQL/C sqltypes.h header file.

The following figure shows some of the SQL data type entries in sqltypes.h.

Figure 83. Some Informix® SQL data type constants

#define SQLCHAR 0
#define SQLSMINT 1
#define SQLINT 2
#define SQLFLOAT 3
#define SQLSMFLOAT 4
#define SQLDECIMAL 5
#define SQLSERIAL 6
#define SQLDATE 7
#define SQLMONEY 8
⋮;

For a complete list of constants for SQL data types, see Table 13: Constants for Informix SQL column data types on

page 83. The integer values in Figure 83: Some Informix SQL data type constants on page 453 are language-

independent constants; they are the same in all HCL Informix® embedded products.

X/Open SQL data types
The X/Open standards support only a subset of the SQL data types that are specific to HCL Informix®. To conform to the

X/Open standards, you must use the X/Open SQL data type constants.

The DESCRIBE statement uses these constants to specify the data type of a column (or a return value) when you compile

your Informix® ESQL/C program with the -xopen option.

The X/Open data type constants are defined in the sqlxtype.h header file.

Constants for ESQL/C data types
The sqltypes.h header file contains defined constants for the IBM® Informix® ESQL/C data types.

The Informix® ESQL/C data types are assigned to host variables in the Informix® ESQL/C program. If your program

initializes a column description, it usually obtains the column value from the Informix® ESQL/C host variable. To set the

column data type for this value, the program must use the Informix® ESQL/C data types.

453

HCL Informix 14.10 - ESQL/C Programmer’s Guide

454

The following code fragment shows only some of the Informix® ESQL/C data type entries in the sqltypes.h header file.

For a complete list of constants for Informix® ESQL/C data types, see Table 13: Constants for Informix SQL column data

types on page 83.

#define CCHARTYPE 100
#define CSHORTTYPE 101
#define CINTTYPE 102
#define CLONGTYPE 103
#define CFLOATTYPE 104
#define CDOUBLETYPE 105
⋮;

Within the Informix® ESQL/C program that uses dynamic SQL statements, you can use the constants that are shown

in preceding code fragment to set the data types of the associated host variables. Use the Informix® ESQL/C data type

constants to set the data types of host variables used as input parameters to a dynamically defined SQL statement or as

storage for column values that are returned by the database server. A sample program that executes a dynamic INSERT

statement on page 496 stores a TEXT value into a database table.

Determine input parameters
You can use the DESCRIBE and DESCRIBE INPUT to return input parameter information for a prepared statement before it is

executed.

The DESCRIBE INPUT statement returns the number, data types, size of the values, and the name of the column or

expression that the query returns. The DESCRIBE INPUT statement can return parameter information for the following

statements:

• INSERT using WHERE clause

• UPDATE using WHERE clause

• SELECT with IN, BETWEEN, HAVING, and ON clauses.

• SELECT subqueries

• SELECT INTO TEMP

• DELECT

• EXECUTE

Check for a WHERE clause

When DESCRIBE analyzes a prepared DELETE or UPDATE statement, it indicates if the statement includes a WHERE clause,

as follows:

• It sets the sqlca.sqlwarn.sqlwarn0 and sqlca.sqlwarn.sqlwarn4 fields to W if the prepared statement was an UPDATE

or DELETE without a WHERE clause.

• It sets the SQLSTATE variable to a warning value of "01I07", which is specific to HCL Informix®.

Chapter 1. ESQL/C Guide

Your program can check for either of these conditions to determine the type of DELETE or UPDATE statement that was

executed. If the DELETE or UPDATE does not contain a WHERE clause, the database server deletes or updates all rows in the

table.

Determine statement information at run time

Consider a dynamic-management structure when you execute an SQL statement under the following conditions:

• Something is not known about the structure of an SQL statement:

◦ The type of statement to execute is unknown.

◦ The table name is unknown and therefore the columns to be accessed are unknown.

◦ The WHERE clause is missing.

• Something is not known about the number or type of values that passes between the IBM® Informix® ESQL/C

program and the database server:

◦ The number and data types of columns in the select list of a SELECT or in a column list of an INSERT

◦ The number and data types of input parameters in the statement are unknown

◦ The number and data types of return values of a user-defined function (executed with the EXECUTE

FUNCTION statement) are unknown

Handling an unknown select list

For a SELECT statement, the columns in the select list identify the column values that are received from the database server.

In the SELECT statement described and illustrated in the demo1.ec example program (see A sample Informix ESQL/C

program on page 43), the values returned from the query are placed into the host variables that are listed in an INTO

host_var clause of the SELECT statement.

However, when your program creates a SELECT statement at run time, you cannot use an INTO clause because you do not

know at compile time what host variables are needed. If the type and number of the values that your IBM® Informix® ESQL/

C program receives are not known at compile time, your program must perform the following tasks:

1. Declare a dynamic-management structure to serve as storage for the select-list column definitions. This structure can

be either a system-descriptor area or an sqlda structure.

Use of the system-descriptor area conforms to X/Open standards.

2. Use the DESCRIBE statement to examine the select list of the prepared SELECT statement and describes the

columns.

3. Specify the dynamic-management structure as the location of the data fetched from the database. From the

dynamic-management structure, the program can move the column values into host variables.

455

HCL Informix 14.10 - ESQL/C Programmer’s Guide

456

Important: Use a dynamic-management structure only if you do not know the number and data types of the select-

list columns at compile time.

For information about how to execute a SELECT if you do know the number and data types of select-list columns, see

Execute SELECT statements on page 425. For information about how to identify columns in the select list of a SELECT

statement with a system-descriptor area, see Handling an unknown select list on page 486. For more information about

how to use an sqlda structure, see Handling an unknown select list on page 529.

Handling an unknown column list

For an INSERT statement, the values in the VALUES clause identify the column values to be inserted into the new row. If the

data types and number of the values that the IBM® Informix® ESQL/C program inserts are not known at compile time, you

cannot simply use host variables to hold the data being inserted. Instead, your program must perform the following tasks:

1. Define a dynamic-management structure to serve as storage for the unknown column definitions. This structure can

be either a system-descriptor area or an sqlda structure.

Use of the system-descriptor area conforms to X/Open standards.

2. Use the DESCRIBE statement to examine the column list of the prepared INSERT statement and describe the

columns.

3. Specify the dynamic-management structure as the location of the data to be inserted when the INSERT statement

executes.

Important: Use a dynamic-management structure only if you do not know the number and data types of the column-

list columns at compile time. For information about how to execute an INSERT if you do know the number and data

types of column-list columns, see Execute non-SELECT statements on page 424.

For information about how to identify columns in the VALUES column list of an INSERT statement with a system-descriptor

area, see Handling an unknown column list on page 496. To use an sqlda structure, see Handling an unknown column list

on page 538.

Determine unknown input parameters

If you know the data types and number of input parameters of an SQL statement, use the USING host_var clause (see

Execute statements with input parameters on page 433). However, if you do not know the data types and number of these

input parameters at compile time, you cannot use host variables to provide the parameter values; you do not have enough

information about the parameters to declare the host variables.

Neither can you use the DESCRIBE statement to define the unknown parameters because DESCRIBE does not examine:

• A WHERE clause (for a SELECT, UPDATE, or DELETE statement

• The arguments of a user-defined routine (for an EXECUTE FUNCTION or EXECUTE PROCEDURE statement)

Chapter 1. ESQL/C Guide

Your IBM® Informix® ESQL/C program must follow these steps to define the input parameters in any of the preceding

statements:

1. Determine the number and data types of the input parameters. Unless you write a general-purpose, interactive

interpreter, you usually have this information. If you do not have it, you must write C code that analyzes the statement

string and obtains the following information:

◦ The number of input parameters [question marks (?)] that appear in the WHERE clause of the statement string

or as arguments of a user-defined routine

◦ The data type of each input parameter based on the column (for WHERE clauses) or parameter (for

arguments) to which it corresponds

2. Store the definitions and values of the input parameters in a dynamic-management structure. This structure can be

either a system-descriptor area or an sqlda structure.

Use of the system-descriptor area conforms to X/Open standards.

3. Specify the dynamic-management structure as the location of the input parameter values when the statement

executes.

Important: Use a dynamic-management structure only if you do not know the number and data types of the input

parameters at compile time. For information about how to execute a parameterized SQL statement if you do know

the number and data types of column-list columns, see Execute statements with input parameters on page 433.

For information about how to handle input parameters in the WHERE clause of a dynamic SELECT statement with a system-

descriptor area, see Handling a parameterized SELECT statement on page 500; to use an sqlda structure, see Handling a

parameterized SELECT statement on page 539. For information about how to handle input parameters as arguments of

a user-defined function with a system-descriptor area, see Handling a parameterized user-defined routine on page 505;

to use an sqlda structure, see Handling a parameterized user-defined routine on page 546. For information about how

to handle input parameters in the WHERE clause of a dynamic UPDATE or DELETE statement with a system-descriptor

area, see Handling a parameterized UPDATE or DELETE statement on page 506; to use an sqlda structure, see Handling a

parameterized UPDATE or DELETE statement on page 547.

Determine return values dynamically

For an EXECUTE FUNCTION statement, the values in the INTO clause identify where to store the return values of a user-

defined function. If the data types and number of the function return values are not known at compile time, you cannot

use host variables in the INTO clause of EXECUTE FUNCTION to hold the values. Instead, your program must perform the

following tasks:

1. Define a dynamic-management structure to serve as storage for the definitions of the value or values that the user-

defined function returns.

You can use either a system-descriptor area or an sqlda structure to hold the return value or values.

Use of the system-descriptor area conforms to X/Open standards.

457

HCL Informix 14.10 - ESQL/C Programmer’s Guide

458

2. Use the DESCRIBE statement to examine the prepared EXECUTE FUNCTION statement and describe the return value

or values.

3. Specify the dynamic-management structure as the location of the data returned by the user-defined function.

From the dynamic-management structure, the program can move the return values into host variables.

Important: Use a dynamic-management structure only if you do not know at compile time the number and data types

of the return values that the user-defined function returns. If you know this information at compile time, see Execute

user-defined routines in Informix on page 430 for more information.

For information about how to use a system-descriptor area to hold function return values, see Handling unknown return

values on page 491. To use an sqlda structure to hold return values, see Handling unknown return values on page 535.

Handling statements that contain user-defined data types

This section provides information about how to perform dynamic SQL on statements that contain columns with the following

user-defined data types:

• Opaque data types: an encapsulated data type that the user can define

• Distinct data types: a data type that has the same internal storage representation as its source type, but has a

different name

SQL statements with opaque-type columns

For dynamic execution of opaque-type columns, keep in mind the following items:

• You must ensure that the type and length fields of the dynamic-management structure (system-descriptor area or

sqlda structure) match the data type of the data you insert into an opaque-type column.

• IBM® Informix® ESQL/C truncates opaque-type data at 32 kilobytes if the host variable is not large enough to hold

the data.

Insert opaque-type data

When the DESCRIBE statement describes a prepared INSERT statement, it sets the type and length fields of a dynamic-

management structure to the data type of the column.

The following table shows the type and length fields for the dynamic-management structures.

Table 82. Type and length fields of dynamic-management structures

Dynamic-management structure Type field Length field

system-descriptor area TYPE field of an item descriptor LENGTH field of an item descriptor

sqlda structure sqltype field of an sqlvar_struct

structure

sqllen field of an sqlvar_struct structure

Chapter 1. ESQL/C Guide

If the INSERT statement contains a column whose data type is an opaque data type, the DESCRIBE statement identifies this

column with one of the following type-field values:

• The SQLUDTFIXED constant for fixed-length opaque types

• The SQLUDTVAR constant for varying-length opaque types

These data type constants represent an opaque type in its internal format.

When you put opaque-type data into a dynamic-management structure, you must ensure that the type field and length field

are compatible with the data type of the data that you provide for the INSERT, as follows:

• If you provide the opaque-type data in internal format, then the type and length fields that DESCRIBE sets are correct.

• If you provide the data in external format (or any format other than the internal format), you must change the type and

length fields that DESCRIBE has set to be compatible with the data type of the data.

The input and output support functions for the opaque type are not on the client computer. Therefore, the client application

cannot call them to convert the opaque-type data in the dynamic-management structure from its external to its internal

format. To provide the opaque-type data in its external representation, set the type-field value to a character data type. When

the database server receives the character data (the external representation of the opaque type), it calls the input support

function to convert the external representation of the opaque type to its internal representation. If the data is some other type

and valid support or casting functions exist, the database server can call these functions instead to convert the value.

For example, suppose you use a system-descriptor area to hold the insert values and you want to send the opaque-type data

to the database server in its external representation. In the following code fragment, the SET DESCRIPTOR statement resets

the TYPE field to SQLCHAR, so that the TYPE field matches the data type of the host variable (char) that it assigns to the

DATA field:

EXEC SQL BEGIN DECLARE SECTION;
 char extrn_value[100];
 int extrn_lngth;
 int extrn_type;
EXEC SQL END DECLARE SECTION;
⋮;

EXEC SQL allocate descriptor 'desc1' with max 100;
EXEC SQL prepare ins_stmt from
 'insert into tab1 (opaque_col) values(?)';
EXEC SQL describe ins_stmt using sql descriptor 'desc1';

/* At this point the TYPE field of the item descriptor is
 * SQLUDTFIXED
 */

stcopy("(1, 2, 3, 4)", extrn_value);
extrn_lngth = stleng(extrn_value);
dtype = SQLCHAR;

/* This SET DESCRIPTOR statement assigns the external
 * representation of the data to the item descriptor and
 * resets the TYPE field to SQLCHAR.

459

HCL Informix 14.10 - ESQL/C Programmer’s Guide

460

 */
EXEC SQL set descriptor 'desc1' value 1
 data = :extrn_value, type = :extrn_type,
 length = :extrn_lngth;
EXEC SQL execute ins_stmt using sql descriptor ‘desc1';

Truncation of opaque-type data

If you specify a host variable that is not large enough to hold the full return value from the server, IBM® Informix® ESQL/C

normally truncates the data to fit the host variable and puts the actual length in an indicator variable.

This indicator variable can be one that you explicitly provide or, for dynamic SQL, one of the following fields of a dynamic-

management structure.

Dynamic-management structure

Indicator field

system-descriptor area

INDICATOR field of an item descriptor

sqlda structure

sqlind field of an sqlvar_struct structure

However, these indicator fields are defined as a short integer and therefore can only store sizes up to 32 kilobytes.

This size limitation of the indicator field affects how Informix® ESQL/C handles truncation of opaque-type data that is larger

than 32 KB. When Informix® ESQL/C receives opaque-type data that is larger than 32 KB and the host variable is not large

enough to hold the opaque-type data, Informix® ESQL/C truncates the data to 32 KB. Informix® ESQL/C performs this

truncation at 32 kilobytes even if you program a host variable that is larger than 32 KB (but still not large enough for the

data).

SQL statements with distinct-type columns

For dynamic execution of distinct-type columns, the dynamic-management structures have been modified to hold the

following information about a distinct type:

• The data type constant (from sqltypes.h) for the source type of the distinct-type column

• The extended identifier for the source type of the distinct-type column

These values are in the following fields of a dynamic-management structure.

Dynamic-management structure Source-type field Extended-identifier field

system-descriptor area SOURCETYPE field of an item descriptor SOURCEID field of an item descriptor

sqlda structure sqlsourcetype field of an sqlvar_struct

structure

sqlsourceid field of an sqlvar_struct

structure

Chapter 1. ESQL/C Guide

When the DESCRIBE statement describes a prepared statement, it stores information about columns of the statement in

a dynamic-management structure. There is no special constant in the sqltypes.h file to indicate a distinct data type.

Therefore, the type field of the dynamic-management structure cannot directly indicate a distinct type. (Table 82: Type

and length fields of dynamic-management structures on page 458 shows the type fields of the dynamic-management

structures.)

Instead, the type field in the dynamic-management structure has a special value to indicate that a distinct bit is set for

a distinct-type column. The type field indicates the source type of the distinct data combined with the distinct bit. The

sqltypes.h header file provides the following data type constants and macros to identify the distinct bit for a distinct

column.

Source type Distinct-bit constant Distinct-bit macro

LVARCHAR SQLDLVARCHAR ISDISTINCTLVARCHAR(type_id)

BOOLEAN SQLDBOOLEAN ISDISTINCTBOOLEAN(type_id)

Any other data type SQLDISTINCT ISDISTINCTTYPE(type_id)

Use the following algorithm to determine if a column is a distinct type:

if (one of the distinct bits is set)
 {
 /* Have a distinct type, now find the source type */
 if (ISDISTINCTLVARCHAR(sqltype))
 {
 /* Is a distinct of LVARCHAR:
 * type field = SQLUDTVAR + SQLDLVARCHAR
 * source-type field = 0
 * source-id field = extended identifier of lvarchar
 */
 }
 else if (ISDISTINCTBOOLEAN(sqltype))
 {
 /* Is a distinct of BOOLEAN
 * type field = SQLUDTFIXED + SQLDBOOLEAN
 * source-type field = 0
 * source-id field = extended id of boolean
 */
 }
 else
 {
 /* SQLDISTINCT is set */
 if (ISUDTTYPE(sqltype))
 {
 /* Source type is either a built-in simple type or an
 * opaque data type
 */
 if (source-id field > 0)
 /* Is a distinct of an opaque type.
 * Pick up the xtended identifier of the source type
 * from the source-id field
 */
 else
 /* Is a distinct of a built-in simple type.

461

HCL Informix 14.10 - ESQL/C Programmer’s Guide

462

 * Pick up the type id of the source type from the
 * source-type field
 */
 }
 else
 {
 /* Source type is a non-simple type, a complex type.
 * Both the source-type and source-id fields should be 0,
 * the source type is embedded in the type field:
 * type = source type + SQLDISTINCT
 */
 }
 }
 }

The following table summarizes the pseudo-code of the preceding algorithm.

Source type Type field Source-type field Extended-identifier field

Built-in data type SQLUDTVAR + SQLDISTINCT Data type constant of

built-in data type

0

LVARCHAR SQLUDTVAR + SQLDLVARCHAR 0 Extended identifier of

LVARCHAR

BOOLEAN SQLUDTFIXED + SQLDBOOLEAN 0 Extended identifier of

BOOLEAN

All other data types source type + SQLDISTINCT 0 0

A fetch array
A fetch array enables you to increase the number of rows that a single FETCH statement returns from the fetch buffer to an

sqlda structure in your program. A fetch array is especially useful when you fetch simple-large-object (TEXT or BYTE) data.

A fetch of simple-large-object data without a fetch array requires the following two exchanges with the database server:

• When IBM® Informix® ESQL/C fetches a TEXT or BYTE column, the database server returns the descriptor for the

column.

• Informix® ESQL/C then requests the database server to obtain the column data.

When you use a fetch array, Informix® ESQL/C sends a series of simple-large-object descriptors to the database server and

the database server returns the corresponding column data all at one time.

Using a fetch array

About this task

To use a fetch array:

Chapter 1. ESQL/C Guide

1. Declare an sqlda structure to hold the columns you want to fetch.

You cannot use host variables or system-descriptor areas in a FETCH statement to hold fetch arrays for columns.

You must use an sqlda structure and the FETCH...USING DESCRIPTOR statement. For information about how to

declare and use sqlda structures, see An sqlda structure on page 442.

2. Use the DESCRIBE...INTO statement to initialize the sqlda structure and obtain information about the prepared query.

The DESCRIBE...INTO statement allocates memory for the sqlda structure and the sqlvar_struct structures.

3. For the sqldata field, allocate a buffer that is large enough to hold the fetch array for each column.

To allocate the memory for an sqldata field, you must set the FetArrSize global variable to the size of the fetch array

for the associated column. For more information, see Allocate memory for the fetch arrays on page 471.

4. Issue the FETCH...USING DESCRIPTOR statement to retrieve the column data into the fetch arrays.

The FETCH statement puts the retrieved rows into the sqldata fields of the sqlvar_struct structures in sqlda. Each

FETCH statement returns into the sqldata fields the number of values specified by FetArrSize.

5. Obtain the column values from the fetch arrays of each sqlvar_struct structure.

You must obtain these values from the fetch arrays before you perform the next FETCH statement. You can check

the sqlca.sqlerrd[2] field to determine the number of valid rows that the FETCH has returned. The value in sqlerrd[2]

is equal to or smaller than the value you set in FetArrSize. For information about the sqlerrd array, see Exception

handling on page 276. For more information about obtaining the column values, see Obtain values from fetch

arrays on page 475.

6. Repeat steps 4 on page 463 and 5 on page 463 until all rows are fetched.

7. Free the memory that the sqlda structure uses.

As with other uses of the sqlda structure, IBM® Informix® ESQL/C does not release resources for this structure. Your

application must free memory allocated to the sqlda structure when it no longer needs it. For more information, see

Free memory for a fetch array on page 477.

Results

Important: The FetArrSize feature does not work when both the Deferred-PREPARE and OPTOFC features are

enabled. When these two features are enabled, Informix® ESQL/C does not know the size of a row until after the

FETCH statement completes. By this time, it is too late for the fetch buffer to be adjusted with the FetArrSize value.

Sample fetch array program

The following sample program shows how to perform the steps in Using a fetch array on page 462. It uses separate

functions to initialize, print, and free the sqlda structure. These functions are described in the following sections.

#include <windows.h>
#include
#include

463

HCL Informix 14.10 - ESQL/C Programmer’s Guide

464

EXEC SQL include sqlda.h;
EXEC SQL include locator.h;
EXEC SQL include sqltypes.h;

#define BLOBSIZE 32275 /* using a predetermined length for blob */

EXEC SQL begin declare section;
 long blobsize; /* finding the maximum blob size at runtime */
EXEC SQL end declare section;

/***
* Function: init_sqlda()
* Purpose: With the sqlda pointer that was returned from the DESCRIBE
* statement, function allocates memory for the fetch arrays
* in the sqldata fields of each column. The function uses
* FetArrSize to determine the size to allocate.
* Returns: < 0 for error
* > 0 error with messagesize
***/
int init_sqlda(struct sqlda *in_da, int print)
{
 int i, j,
 row_size=0,
 msglen=0,
 num_to_alloc;
 struct sqlvar_struct *col_ptr;
 ifx_loc_t *temp_loc;
 char *type;

 if (print)
 printf("columns: %d. \n", in_da->sqld);

 /* Step 1: determine row size */
 for (i = 0, col_ptr = in_da->sqlvar; i < in_da->sqld; i++, col_ptr++)
 {
 /* The msglen variable holds the sum of the column sizes in the
 * database; these are the sizes that DESCRIBE returns. This
 * sum is the amount of memory that ESQL/C needs to store
 * one row from the database. This value is <= row_size. */
 msglen += col_ptr->sqllen; /* get database sizes */

 /* calculate size for C data: string columns get extra byte added
 * to hold null terminator */
 col_ptr->sqllen = rtypmsize(col_ptr->sqltype, col_ptr->sqllen);

 /* The row_size variable holds the sum of the column sizes in
 * the client application; these are the sizes that rtypmsize()
 * returns. This sum is amount of memory that the client
 * application needs to store one row. */
 row_size += col_ptr->sqllen;
 if(print)
 printf("Column %d size: %d\n", i+1, col_ptr->sqllen);
 }

Chapter 1. ESQL/C Guide

 if (print)
 {
 printf("Total message size = %d\n", msglen);
 printf("Total row size = %d\n", row_size);
 }

 EXEC SQL select max(length(cat_descr)) into :blobsize from catalog;

 /* Step 2: set FetArrSize global variable to number of elements
 * in fetch array; this function calculates the FetArrSize
 * value that can fit into the existing fetch buffer.
 * If FetBufSize is not set (equals zero), the code assigns a
 * default size of 4096 bytes (4 kilobytes). Alternatively, you
 * could set FetArrSize to the number elements you wanted to
 * have and let ESQL/C size the fetch buffer. See the text in
 * "Allocating Memory for the Fetch Arrays" for more information.*/
 if (FetArrSize <= 0) /* if FetArrSize not yet initialized */
 {
 if (FetBufSize == 0) /* if FetBufSize not set */
 FetBufSize = 4096; /* default FetBufSize */
 FetArrSize = FetBufSize/msglen;
 }
 num_to_alloc = (FetArrSize == 0)? 1: FetArrSize;
 if (print)
 {
 printf("Fetch Buffer Size %d\n", FetBufSize);
 printf("Fetch Array Size: %d\n", FetArrSize);
 }

 /* set type in sqlvar_struct structure to corresponding C type */
 for (i = 0, col_ptr = in_da->sqlvar; i < in_da->sqld; i++,
 col_ptr++)
 {
 switch(col_ptr->sqltype)
 {
 case SQLCHAR:
 type = "char ";
 col_ptr->sqltype = CCHARTYPE;
 break;
 case SQLINT:
 case SQLSERIAL:
 type = "int ";
 col_ptr->sqltype = CINTTYPE;
 break;
 case SQLBYTES:
 case SQLTEXT:
 if (col_ptr->sqltype == SQLBYTES)
 type = "blob ";
 else
 type = "text ";
 col_ptr->sqltype = CLOCATORTYPE;

 /* Step 3 (TEXT & BLOB only): allocate memory for sqldata
 * that contains ifx_loc_t structures for TEXT or BYTE column */
 temp_loc = (ifx_loc_t *)malloc(col_ptr->sqllen * num_to_alloc);
 if (!temp_loc)
 {

465

HCL Informix 14.10 - ESQL/C Programmer’s Guide

466

 fprintf(stderr, "blob sqldata malloc failed\n");
 return(-1);
 }
 col_ptr->sqldata = (char *)temp_loc;

 /* Step 4 (TEXT & BLOB only): initialize ifx_loc_t structures to
 hold blob values in a user-defined buffer in memory */
 byfill((char *)temp_loc, col_ptr->sqllen*num_to_alloc ,0);
 for (j = 0; j< num_to_alloc; j++, temp_loc++)
 {
 /* blob data to go in memory */
 temp_loc->loc_loctype = LOCMEMORY;

 /* assume none of the blobs are larger than BLOBSIZE */
 temp_loc->loc_bufsize = blobsize;
 temp_loc->loc_buffer = (char *)malloc(blobsize+1);
 if (!temp_loc->loc_buffer)
 {
 fprintf(stderr, "loc_buffer malloc failed\n");
 return(-1);
 }
 temp_loc->loc_oflags = 0; /* clear flag */
 } /* end for */
 break;
 default: /* all other data types */
 fprintf(stderr, "not yet handled(%d)!\n", col_ptr->sqltype);
 return(-1);
 } /* switch */

 /* Step 5: allocate memory for the indicator variable */
 col_ptr->sqlind = (short *)malloc(sizeof(short) * num_to_alloc);
 if (!col_ptr->sqlind)
 {
 printf("indicator malloc failed\n");
 return -1;
 }

 /* Step 6 (other data types): allocate memory for sqldata. This
 * function
 * casts the pointer to this memory as a (char *). Subsequent
 * accesses to the data would need to cast it back to the data
 * type that corresponds to the column type. See the print_sqlda()
 * function for an example of this casting. */
 if (col_ptr->sqltype != CLOCATORTYPE)
 {
 col_ptr->sqldata = (char *) malloc(col_ptr->sqllen *
num_to_alloc);
 if (!col_ptr->sqldata)
 {
 printf("sqldata malloc failed\n");
 return -1;
 }
 if (print)
 printf("column %3d, type = %s(%3d), len=%d\n", i+1, type,
 col_ptr->sqltype, col_ptr->sqllen);
 }
 } /* end for */
 return msglen;

Chapter 1. ESQL/C Guide

}

/**
* Function: print_sqlda
* Purpose: Prints contents of fetch arrays for each column that the
* sqlda structure contains. Current version only implements
* data types found in the blobtab table. Other data types
* would need to me implemented to make this function complete.
**/
void print_sqlda(struct sqlda *sqlda, int count)
{
 void *data;
 int i, j;
 ifx_loc_t *temp_loc;
 struct sqlvar_struct *col_ptr;
 char *type;
 char buffer[512];
 int ind;
 char i1, i2;

 /* print number of columns (sqld) and number of fetch-array elements
 */
 printf("\nsqld: %d, fetch-array elements: %d.\n", sqlda->sqld,
 count);

 /* Outer loop: loop through each element of a fetch array */
 for (j = 0; j < count; j ++)
 {
 if (count > 1)
 {
 printf("record[%4d]:\n", j);
 printf("col | type | id | len | ind | rin | data ");
 printf("| value\n");
 printf("--");
 printf("------------------\n");
 }

 /* Inner loop: loop through each of the sqlvar_struct structures */
 for (i = 0, col_ptr = sqlda->sqlvar; i < sqlda->sqld; i++, col_ptr++)
 {
 data = col_ptr->sqldata + (j*col_ptr->sqllen);
 switch (col_ptr->sqltype)
 {
 case CFIXCHARTYPE:
 case CCHARTYPE:
 type = "char";
 if (col_ptr->sqllen > 40)
 sprintf(buffer, " %39.39s<..", data);
 else
 sprintf(buffer, "%*.*s", col_ptr->sqllen,
 col_ptr->sqllen, data);
 break;
 case CINTTYPE:
 type = "int";
 sprintf(buffer, " %d", *(int *) data);
 break;
 case CLOCATORTYPE:
 type = "byte";

467

HCL Informix 14.10 - ESQL/C Programmer’s Guide

468

 temp_loc = (ifx_loc_t *)(col_ptr->sqldata +
 (j * sizeof(ifx_loc_t)));
 sprintf(buffer, " buf ptr: %p, buf sz: %d, blob sz: %d",
temp_loc->loc_buffer,
 temp_loc->loc_bufsize, temp_loc->loc_size);
 break;
 default:
 type = "??????";
 sprintf(buffer, " type not implemented: ",
 "can't print %d", col_ptr->sqltype);
 break;
 } /* end switch */

 i1 = (col_ptr->sqlind==NULL) ? 'X' :
 (((col_ptr->sqlind)[j] != 0) ? 'T' : 'F');
 i2 = (risnull(col_ptr->sqltype, data)) ? 'T' : 'F';

 printf("%3d | %-6.6s | %3d | %3d | %c | %c | ",
 i, type, col_ptr->sqltype, col_ptr->sqllen, i1, i2);
 printf("%8p |%s\n", data, buffer);
 } /* end for (i=0...) */
 } /* end for (j=0...) */
}

/**
* Function: free_sqlda
* Purpose: Frees memory used by sqlda. This memory includes:
* o loc_buffer memory (used by TEXT & BYTE)
* o sqldata memory
* o sqlda structure
**/
void free_sqlda(struct sqlda *sqlda)
{
 int i,j, num_to_dealloc;
 struct sqlvar_struct *col_ptr;
 ifx_loc_t *temp_loc;

 for (i = 0, col_ptr = sqlda->sqlvar; i < sqlda->sqld; i++,
 col_ptr++)
 {
 if (col_ptr->sqltype == CLOCATORTYPE)
 {
 /* Free memory for blob buffer of each element in fetch array */
 num_to_dealloc = (FetArrSize == 0)? 1: FetArrSize;
 temp_loc = (ifx_loc_t *) col_ptr->sqldata;
 for (j = 0; j< num_to_dealloc; j++, temp_loc++)
 {
 free(temp_loc->loc_buffer);
 }
 }
 /* Free memory for sqldata (contains fetch array) */
 free(col_ptr->sqldata);
 }

 /* Free memory for sqlda structure */
 free(sqlda);

Chapter 1. ESQL/C Guide

}

void main()
{
 int i = 0;
 int row_count, row_size;

 EXEC SQL begin declare section;
 char *db = "stores7";
 char *uid = "odbc";
 char *pwd = "odbc";
 EXEC SQL end declare section;

 /**
 * Step 1: declare an sqlda structure to hold the retrieved column
 * values
 **/
 struct sqlda *da_ptr;

 EXEC SQL connect to :db user :uid using :pwd;
 if (SQLCODE < 0)
 {
 printf("CONNECT failed: %d\n", SQLCODE);
 exit(0);
 }

 /* Prepare the SELECT */
 EXEC SQL prepare selct_id from 'select catalog_num, cat_descr from
 catalog';
 if (SQLCODE < 0)
 {
 printf("prepare failed: %d\n", SQLCODE);
 exit(0);
 }

 /**
 * Step 2: describe the prepared SELECT statement to allocate memory
 * for the sqlda structure and the sqlda.sqlvar structures
 * (DESCRIBE can allocate sqlda.sqlvar structures because
 * prepared statement is a SELECT)
 **/
 EXEC SQL describe selct_id into da_ptr;
 if (SQLCODE < 0)
 {
 printf("describe failed: %d\n", SQLCODE);
 exit(0);
 }

 /**
 * Step 3: initialize the sqlda structure to hold fetch arrays for
 * columns
 **/
 row_size = init_sqlda(da_ptr, 1);

469

HCL Informix 14.10 - ESQL/C Programmer’s Guide

470

 /* declare and open a cursor for the prepared SELECT */
 EXEC SQL declare curs cursor for selct_id;
 if (SQLCODE < 0)
 {
 printf("declare failed: %d\n", SQLCODE);
 exit(0);
 }
 EXEC SQL open curs;
 if (SQLCODE < 0)
 {
 printf("open failed: %d\n", SQLCODE);
 exit(0);
 }
 while (1)
 {
 /**
 * Step 4: perform fetch to get "FetArrSize" array of rows from
 * the database server into the sqlda structure
 **/
 EXEC SQL fetch curs using descriptor da_ptr;

 /* Reached last set of matching rows? */
 if (SQLCODE == SQLNOTFOUND)
 break;

 /**
 * Step 5: obtain the values from the fetch arrays of the sqlda
 * structure; use sqlca.sqlerrd[2] to determine number
 * of array elements actually retrieved.
 **/
 printf("\n===============\n");
 printf("FETCH %d\n", i++);
 printf("===============");
 print_sqlda(da_ptr, ((FetArrSize == 0) ? 1 : sqlca.sqlerrd[2]));

 /**
 * Step 6: repeat the FETCH until all rows have been fetched (SQLCODE
 * is SQLNOTFOUND
 **/
 }

 /**
 * Step 7: Free resources:
 * o statement id, selct_id
 * o select cursor, curs
 * o sqlda structure (with free_sqlda() function)
 * o delete sample table and its rows from database
 **/

 EXEC SQL free selct_id;
 EXEC SQL close curs;
 EXEC SQL free curs;
 free_sqlda(da_ptr);
}

Chapter 1. ESQL/C Guide

Allocate memory for the fetch arrays

The DESCRIBE...INTO statement allocates memory for the sqlda structure and its sqlvar_struct structures. However, it does

not allocate memory for the sqldata field of the sqlvar_struct structures. The sqldata field holds the fetch array for a retrieved

column. Therefore, you must allocate sufficient memory to each sqldata field to hold the elements of the fetch array.

A new global variable, FetArrSize, indicates the number of rows to be returned per FETCH statement. This variable is defined

as a C language short integer data type. It has a default value of zero, which disables the fetch array feature. You can set

FetArrSize to any integer value in the following range:

0 <= FetArrSize <= MAXSMINT

The MAXSMINT value is the maximum amount of the data type that IBM® Informix® ESQL/C can retrieve. Its value is 32767

bytes (32 KB). If the size of the fetch array is greater than MAXSMINT, Informix® ESQL/C automatically reduces its size to 32

KB.

You can use the following calculation to determine the appropriate size of the fetch array:

(fetch-array size) = (fetch-buffer size) / (row size)

The preceding equation uses the following information:

fetch-array size

The size of the fetch array, which the FetArrSize global variable indicates

fetch-buffer size

The size of the fetch buffer, which the FetBufSize and BigFetBufSize global variables indicate. For information

about the size of the fetch buffer, see Optimize cursor execution on page 409.

row size

The size of the row to be fetched. To determine the size of the row to be fetched, call the rtypmsize() function

for each column of the row. This function returns the number of bytes that are needed to store the data type.

For more information about the rtypmsize() function, see Informix ESQL/C data types on page 79.

However, if you set FetArrSize so that the following relationship is true,

(FetArrSize * row size) > FetBufSize

Informix® ESQL/C automatically adjusts the size of the fetch buffer (FetBufSize) as follows to hold the size of the fetch

array:

FetBufSize = FetArrSize * row size

If the result is greater than 32 KB (MAXSMINT), Informix® ESQL/C sets FetBufSize to 32 KB and FetArrSize as follows:

FetArrSize = MAXSMINT / (row size)

471

HCL Informix 14.10 - ESQL/C Programmer’s Guide

472

Important: The FetArrSize global variable can be used in thread-safe Informix® ESQL/C applications.

Allocating memory for a fetch array

About this task

To allocate memory for a fetch array:

1. Determine the size of the row that you are retrieving from the database.

2. Determine the size of the fetch array and set the FetArrSize global variable to this value.

3. For each simple-large-object column (TEXT or BYTE), allocate a fetch array of ifx_loc_t structures.

4. For each simple-large-object column (TEXT or BYTE), initialize the ifx_loc_t data structures as follows.

a. Set the loc_loctype field to LOCMEMORY.

b. Set the loc_buffer field to the address of the buffer you allocated in step 3 on page 472.

c. Set the loc_bufsize field to the size of the buffer you allocated.

Alternatively, you can set loc_bufsize to -1 to have IBM® Informix® ESQL/C automatically allocate memory for the

simple-large-object columns. For more information about how to initialize a ifx_loc_t structure to retrieve simple large

objects in memory, see Select a simple large object into memory on page 144.

5. Allocate memory for the indicator variable.

6. For all other columns, allocate a fetch array that holds the data type of that column.

Example

The following example code illustrates how you would allocate memory for fetch arrays for the following prepared query:

SELECT * from blobtab;

The function is called init_sqlda():

/**
* Function: init_sqlda()
* Purpose: With the sqlda pointer that was returned from the DESCRIBE
* statement, function allocates memory for the fetch arrays
* in the sqldata fields of each column. The function uses
* FetArrSize to determine the size to allocate.
* Returns: < 0 for error
* > 0 error with messagesize
**/
int init_sqlda(struct sqlda *in_da, int print)
{
 int i, j,
 row_size=0,
 msglen=0,
 num_to_alloc;
 struct sqlvar_struct *col_ptr;
 ifx_loc_t *temp_loc;
 char *type;

Chapter 1. ESQL/C Guide

 if (print)
 printf("columns: %d. \n", in_da->sqld);

 /* Step 1: determine row size */
 for (i = 0, col_ptr = in_da->sqlvar; i < in_da->sqld; i++,
 col_ptr++)
 {
 /* The msglen variable holds the sum of the column sizes in the
 * database; these are the sizes that DESCRIBE returns. This
 * sum is the amount of memory that ESQL/C needs to store
 * one row from the database. This value is <= row_size. */
 msglen += col_ptr->sqllen; /* get database sizes */

 /* calculate size for C data: string columns get extra byte added
 * to hold null terminator */
 col_ptr->sqllen = rtypmsize(col_ptr->sqltype, col_ptr->sqllen);

 /* The row_size variable holds the sum of the column sizes in
 * the client application; these are the sizes that rtypmsize()
 * returns. This sum is amount of memory that the client
 * application needs to store one row. */
 row_size += col_ptr->sqllen;
 if(print)
 printf("Column %d size: %d\n", i+1, col_ptr->sqllen);
 }

 if (print)
 {
 printf("Total message size = %d\n", msglen);
 printf("Total row size = %d\n", row_size);
 }

 EXEC SQL select max(length(cat_descr)) into :blobsize from catalog;

 /* Step 2: set FetArrSize global variable to number of elements
 * in fetch array; this function calculates the FetArrSize
 * value that can fit into the existing fetch buffer.
 * If FetBufSize is not set (equals zero), the code assigns a
 * default size of 4096 bytes (4 kilobytes). Alternatively, you
 * could set FetArrSize to the number elements you wanted to
 * have and let ESQL/C size the fetch buffer. See the text in
 * "Allocating Memory for the Fetch Arrays" for more information.*/
 if (FetArrSize <= 0) /* if FetArrSize not yet initialized */
 {
 if (FetBufSize == 0) /* if FetBufSize not set */
 FetBufSize = 4096; /* default FetBufSize */
 FetArrSize = FetBufSize/msglen;
 }
 num_to_alloc = (FetArrSize == 0)? 1: FetArrSize;
 if (print)
 {
 printf("Fetch Buffer Size %d\n", FetBufSize);
 printf("Fetch Array Size: %d\n", FetArrSize);
 }

 /* set type in sqlvar_struct structure to corresponding C type */

473

HCL Informix 14.10 - ESQL/C Programmer’s Guide

474

 for (i = 0, col_ptr = in_da->sqlvar; i < in_da->sqld; i++,
 col_ptr++)
 {
 switch(col_ptr->sqltype)
 {
 case SQLCHAR:
 type = "char ";
 col_ptr->sqltype = CCHARTYPE;
 break;
 case SQLINT:
 case SQLSERIAL:
 type = "int ";
 col_ptr->sqltype = CINTTYPE;
 break;
 case SQLBYTES:
 case SQLTEXT:
 if (col_ptr->sqltype == SQLBYTES)
 type = "blob ";
 else
 type = "text ";
 col_ptr->sqltype = CLOCATORTYPE;

 /* Step 3 (TEXT & BLOB only): allocate memory for sqldata
 * that contains ifx_loc_t structures for TEXT or BYTE column */
 temp_loc = (ifx_loc_t *)malloc(col_ptr->sqllen * num_to_alloc);
 if (!temp_loc)
 {
 fprintf(stderr, "blob sqldata malloc failed\n");
 return(-1);
 }
 col_ptr->sqldata = (char *)temp_loc;

 /* Step 4 (TEXT & BLOB only): initialize ifx_loc_t structures to
 hold blob values in a user-defined buffer in memory */
 byfill((char *)temp_loc, col_ptr->sqllen*num_to_alloc ,0);
 for (j = 0; j< num_to_alloc; j++, temp_loc++)
 {
 /* blob data to go in memory */
 temp_loc->loc_loctype = LOCMEMORY;

 /* assume none of the blobs are larger than BLOBSIZE */
 temp_loc->loc_bufsize = blobsize;
 temp_loc->loc_buffer = (char *)malloc(blobsize+1);
 if (!temp_loc->loc_buffer)
 {
 fprintf(stderr, "loc_buffer malloc failed\n");
 return(-1);
 }
 temp_loc->loc_oflags = 0; /* clear flag */
 } /* end for */
 break;
 default: /* all other data types */
 fprintf(stderr, "not yet handled(%d)!\n", col_ptr->sqltype);
 return(-1);
 } /* switch */

 /* Step 5: allocate memory for the indicator variable */
 col_ptr->sqlind = (short *)malloc(sizeof(short) * num_to_alloc);

Chapter 1. ESQL/C Guide

 if (!col_ptr->sqlind)
 {
 printf("indicator malloc failed\n");
 return -1;
 }

 /* Step 6 (other data types): allocate memory for sqldata. This function
 * casts the pointer to this memory as a (char *). Subsequent
 * accesses to the data would need to cast it back to the data
 * type that corresponds to the column type. See the print_sqlda()
 * function for an example of this casting. */
 if (col_ptr->sqltype != CLOCATORTYPE)
 {
 col_ptr->sqldata = (char *) malloc(col_ptr->sqllen *
num_to_alloc);
 if (!col_ptr->sqldata)
 {
 printf("sqldata malloc failed\n");
 return -1;
 }
 if (print)
 printf("column %3d, type = %s(%3d), len=%d\n", i+1, type,
 col_ptr->sqltype, col_ptr->sqllen);
 }
 } /* end for */
 return msglen;
}

For more information about how to allocate memory for the sqldata field, see Allocate memory for the sqlda structure on

page 521.

Obtain values from fetch arrays

Each FETCH attempts to return FetArrSize number of values into the sqldata fields of the sqlvar_struct structures of the

sqlda structure. You can check the sqlca.sqlerrd[2] value to determine the actual number of rows that the FETCH did return.

Each fetch array holds the values for one column of the query. To obtain a row of values, you must access the element at the

same index of each the fetch arrays. For example, to obtain the first row of values, access the first element of each of the

fetch arrays.

The sample program calls the print_sqlda() function to obtain values from the fetch arrays for the following prepared query:

SELECT * from blobtab

/**
* Function: print_sqlda
* Purpose: Prints contents of fetch arrays for each column that the
* sqlda structure contains. Current version only implements
* data types found in the blobtab table. Other data types
* would need to me implemented to make this function complete.
**/
void print_sqlda(struct sqlda *sqlda, int count)
{
 void *data;
 int i, j;

475

HCL Informix 14.10 - ESQL/C Programmer’s Guide

476

 ifx_loc_t *temp_loc;
 struct sqlvar_struct *col_ptr;
 char *type;
 char buffer[512];
 int ind;
 char i1, i2;

 /* print number of columns (sqld) and number of fetch-array elements
 */
 printf("\nsqld: %d, fetch-array elements: %d.\n", sqlda->sqld,
 count);

 /* Outer loop: loop through each element of a fetch array */
 for (j = 0; j < count; j ++)
 {
 if (count > 1)
 {
 printf("record[%4d]:\n", j);
 printf("col | type | id | len | ind | rin | data ");
 printf("| value\n");
 printf("--");
 printf("------------------\n");
 }

 /* Inner loop: loop through each of the sqlvar_struct structures */
 for (i = 0, col_ptr = sqlda->sqlvar; i < sqlda->sqld; i++, col_ptr++)
 {
 data = col_ptr->sqldata + (j*col_ptr->sqllen);
 switch (col_ptr->sqltype)
 {
 case CFIXCHARTYPE:
 case CCHARTYPE:
 type = "char";
 if (col_ptr->sqllen > 40)
 sprintf(buffer, " %39.39s<..", data);
 else
 sprintf(buffer, "%*.*s", col_ptr->sqllen,
 col_ptr->sqllen, data);
 break;
 case CINTTYPE:
 type = "int";
 sprintf(buffer, " %d", *(int *) data);
 break;
 case CLOCATORTYPE:
 type = "byte";
 temp_loc = (ifx_loc_t *)(col_ptr->sqldata +
 (j * sizeof(ifx_loc_t)));
 sprintf(buffer, " buf ptr: %p, buf sz: %d, blob sz: %d",
temp_loc->loc_buffer,
 temp_loc->loc_bufsize, temp_loc->loc_size);
 break;
 default:
 type = "??????";
 sprintf(buffer, " type not implemented: ",
 "can't print %d", col_ptr->sqltype);
 break;
 } /* end switch */

Chapter 1. ESQL/C Guide

 i1 = (col_ptr->sqlind==NULL) ? 'X' :
 (((col_ptr->sqlind)[j] != 0) ? 'T' : 'F');
 i2 = (risnull(col_ptr->sqltype, data)) ? 'T' : 'F';

 printf("%3d | %-6.6s | %3d | %3d | %c | %c | ",
 i, type, col_ptr->sqltype, col_ptr->sqllen, i1, i2);
 printf("%8p |%s\n", data, buffer);
 } /* end for (i=0...) */
 } /* end for (j=0...) */
}

Free memory for a fetch array

IBM® Informix® ESQL/C does not release resources for the sqlda structure. When your application no longer needs the

sqlda structure, it must free all memory that it uses.

The sample program calls the free_sqlda() function to free the memory that the sqlda structure uses.

/**
* Function: free_sqlda
* Purpose: Frees memory used by sqlda. This memory includes:
* o loc_buffer memory (used by TEXT & BYTE)
* o sqldata memory
* o sqlda structure
**/
void free_sqlda(struct sqlda *sqlda)
{
 int i,j, num_to_dealloc;
 struct sqlvar_struct *col_ptr;
 ifx_loc_t *temp_loc;

 for (i = 0, col_ptr = sqlda->sqlvar; i < sqlda->sqld; i++,
 col_ptr++)
 {
 if (col_ptr->sqltype == CLOCATORTYPE)
 {
 /* Free memory for blob buffer of each element in fetch array */
 num_to_dealloc = (FetArrSize == 0)? 1: FetArrSize;
 temp_loc = (ifx_loc_t *) col_ptr->sqldata;
 for (j = 0; j< num_to_dealloc; j++, temp_loc++)
 {
 free(temp_loc->loc_buffer);
 }
 }
 /* Free memory for sqldata (contains fetch array) */
 free(col_ptr->sqldata);
 }

 /* Free memory for sqlda structure */
 free(sqlda);
}

A system-descriptor area
A system-descriptor area is a dynamic-management structure that can hold data that a prepared statement either returns

from or sends to the database server. A system-descriptor area conforms to X/Open standards.

477

HCL Informix 14.10 - ESQL/C Programmer’s Guide

478

These topics contain the following information about how to use a system-descriptor area:

• Managing a system-descriptor area for dynamic SQL

• Using a system-descriptor area to handle unknown values in dynamic SQL statements

The end of this section presents an annotated example program called dyn_sql that uses a system-descriptor area to

process a SELECT statement entered at run time.

Manage a system-descriptor area

Your IBM® Informix® ESQL/C program can manipulate a system-descriptor area with the SQL statements that the following

tables summarize.

Table 83. SQL statements that can be used to manipulate a system-descriptor area

SQL statement Purpose See

ALLOCATE DESCRIPTOR Allocates memory for a system-descriptor area Allocate

memory for a

system-descrip

tor area on

page 480

DESCRIBE...USING SQL DESCRIPTOR Initializes the system-descriptor area with information about

column-list columns

Initialize the

system-descrip

tor area on

page 480

GET DESCRIPTOR Obtains information from the fields of the system-descriptor

area

Assign

and obtain

values from a

system-descrip

tor area on

page 482

SET DESCRIPTOR Places information into a system- descriptor area for the

database server to access

Assign

and obtain

values from a

system-descrip

tor area on

page 482

Chapter 1. ESQL/C Guide

Table 84. SQL statements that can be used to manipulate a system-descriptor area: SELECT and EXECUTE FUNCTION

statements that use cursors

SQL statement Purpose See

OPEN...USING SQL DESCRIPTOR

FETCH...USING SQL DESCRIPTOR

Takes any input parameters from the specified

system-descriptor area

Puts the contents of the row into the system-descriptor area

Specify input

parameter

values on

page 484

Put column

values into a

system-descrip

tor area on

page 484

Table 85. SQL statements that can be used to manipulate a system-descriptor area: SELECT and EXECUTE FUNCTION

statements that return only one row

SQL statement Purpose See

EXECUTE...INTO SQL DESCRIPTOR Puts the contents of the singleton row into the

system-descriptor area

Put column

values into a

system-descrip

tor area on

page 484

Table 86. SQL statements that can be used to manipulate a system-descriptor area: non-SELECT statements:

SQL statement Purpose See

EXECUTE...USING SQL DESCRIPTOR Takes any input parameters from the specified

system-descriptor area

Specify input

parameter

values on

page 484

Table 87. SQL statements that can be used to manipulate a system-descriptor area: an INSERT statement that uses an

insert cursor:

SQL statement Purpose See

PUT...USING SQL DESCRIPTOR Puts a row into the insert buffer, obtaining the column values

from the specified system-descriptor area

Handling an

unknown

column list on

page 496

479

HCL Informix 14.10 - ESQL/C Programmer’s Guide

480

Table 87. SQL statements that can be used to manipulate a system-descriptor area: an INSERT statement that uses an

insert cursor: (continued)

SQL statement Purpose See

DEALLOCATE DESCRIPTOR Frees memory allocated for the system-descriptor area when

your program is finished with it

Free memory

allocated to a

system-descrip

tor area on

page 485

Allocate memory for a system-descriptor area
To allocate memory for a system-descriptor area, use the ALLOCATE DESCRIPTOR statement.

The ALLOCATE DESCRIPTOR statement performs the following tasks:

• It assigns the specified descriptor name to identify this region of memory. This name is an identifier that must be

provided in all the SQL statements listed in Table 83: SQL statements that can be used to manipulate a system-

descriptor area on page 478 to designate the system descriptor on which to take action.

• It allocates item descriptors. By default, it allocates 100 item descriptors in the system-descriptor area. You can

change this default with the WITH MAX clause.

• It initializes the COUNT field in the system-descriptor area to the number of item descriptors allocated.

Important: ALLOCATE DESCRIPTOR does not allocate memory for column data (DATA field). This memory is

allocated by the DESCRIBE statement on an as-needed basis. For more information, see the next section.

Initialize the system-descriptor area
The DESCRIBE...USING SQL DESCRIPTOR statement initializes the system-descriptor area with information about the

prepared statement.

The DESCRIBE...USING SQL DESCRIPTOR statement takes the following actions:

• It sets the COUNT field, which contains the number of item descriptors initialized with data.

This value is the number of columns and expressions in the column list (SELECT and INSERT) or the number of

returned values (EXECUTE FUNCTION).

• It describes each unknown column in a prepared SELECT statement (without an INTO TEMP), EXECUTE FUNCTION,

or INSERT statement.

The DESCRIBE statement initializes the fields of the item descriptor for each column, as follows:

◦ It allocates memory for the DATA field based on the TYPE and LENGTH information.

◦ It initializes the TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE fields to provide information from

the database about a column.

Chapter 1. ESQL/C Guide

For descriptions of these fields, see Table 76: Fields in each item descriptor of the system-descriptor area on

page 441.

• It returns the type of SQL statement prepared.

For more information, see Determine the data type of a column on page 452.

As noted earlier, the DESCRIBE statement provides information about the columns of a column list. Therefore, you usually

use this statement after a SELECT (without an INTO TEMP clause), INSERT, or EXECUTE FUNCTION statement was prepared.

The DESCRIBE statement and input parameters
When you use the system-descriptor area to hold an input parameter, you cannot use DESCRIBE to initialize the system-

descriptor area. Your code must define the input parameters with the SET DESCRIPTOR statement to explicitly set the

appropriate fields of the system-descriptor area.

The DESCRIBE statement and memory allocation

When you use a system-descriptor area to hold columns of prepared SQL statements, the ALLOCATE DESCRIPTOR

statement allocates memory for the item descriptors of each column and the DESCRIBE...USING SQL DESCRIPTOR

statement allocates memory for the DATA field of each item descriptor.

However, the DESCRIBE...USING SQL DESCRIPTOR statement does not allocate memory for the DATA field of a system-

descriptor area when you describe a prepared SELECT statement that fetches data from a column into a host variable of type

lvarchar.

Before you fetch lvarchar data into the system-descriptor area, you must explicitly assign memory to the DATA field to hold

the column value, as follows:

1. Declare an lvarchar host variable of the appropriate size.

Make sure that this variable is not just a pointer but has memory associated with it.

2. Assign this host variable to the DATA field with the SET DESCRIPTOR statement.

This SET DESCRIPTOR statement occurs after the DESCRIBE...USING SQL DESCRIPTOR statement but before the

FETCH...USING SQL DESCRIPTOR statement.

3. Execute the FETCH...USING SQL DESCRIPTOR statement to retrieve the column data into the DATA field of the

system-descriptor area.

The following code fragment shows the basic steps to allocate memory for an LVARCHAR column called lvarch_col in the

table1 table:

EXEC SQL BEGIN DECLARE SECTION;
 lvarchar lvarch_val[50];
 int i;
EXEC SQL END DECLARE SECTION;

481

HCL Informix 14.10 - ESQL/C Programmer’s Guide

482

EXEC SQL allocate descriptor 'desc';
EXEC SQL prepare stmt1 from 'select opaque_col from table1';
EXEC SQL describe stmt1 using sql descriptor 'desc';
EXEC SQL declare cursor curs1 for stmt1;
EXEC SQL open curs1;
EXEC SQL set descriptor 'desc' value 1
 data = :lvarch_val, length = 50;

while (1)
 {
 EXEC SQL fetch curs1 using sql descriptor 'desc';
 EXEC SQL get descriptor 'desc' value 1 :lvarch_val;
 printf("Column value is %s\n", lvarch_val);

⋮;

 }

The preceding code fragment does not perform exception handling.

Assign and obtain values from a system-descriptor area

The following SQL statements allow your program to access the fields of the system-descriptor area:

• The SET DESCRIPTOR statement assigns values to the fields of the system-descriptor area.

• The GET DESCRIPTOR statement obtains values from the fields of the system-descriptor area.

The SET DESCRIPTOR Statement
To assign values to the system-descriptor-area fields, use the SET DESCRIPTOR statement.

You can use the SET DESCRIPTOR statement to:

• Set the COUNT field to match the number of items for which you provide descriptions in the system-descriptor area.

This value is typically the number of input parameters in a WHERE clause.

EXEC SQL set descriptor sysdesc COUNT=:hostvar;

• Set the item-descriptor fields for each column value for which you provide a description.

EXEC SQL set descriptor sysdesc VALUE :item_num

 DESCRIP_FIELD=:hostvar;

In this example, item_num is the number of the item descriptor that corresponds to the desired column, and

DESCRIP_FIELD is one of the item-descriptor fields that is listed in Table 76: Fields in each item descriptor of the

system-descriptor area on page 441.

Set field values to provide values for input parameters in a WHERE clause (Specify input parameter values on

page 484) or to modify the contents of an item descriptor field after you use the DESCRIBE...USING SQL

DESCRIPTOR statement to fill the system-descriptor area (Put column values into a system-descriptor area on

page 484).

Chapter 1. ESQL/C Guide

The database server provides data type constants in the sqltypes.h header file to identify the data type of a column in

the TYPE field (and optionally the ITYPE field) of a system-descriptor area. However, you cannot assign a data type constant

directly in a SET DESCRIPTOR statement. Instead, assign the constant value to an integer host variable and specify this

variable in the SET DESCRIPTOR statement, as follows:

EXEC SQL BEGIN DECLARE SECTION;
 int i;

⋮

EXEC SQL END DECLARE SECTION;

⋮

i = SQLINT;
EXEC SQL set descriptor 'desc1' VALUE 1
 TYPE = :i;

For more information about the data type constants, see Determine the data type of a column on page 452. For more

information about how to set individual system-descriptor fields, see the entry for the SET DESCRIPTOR statement in the

HCL® Informix® Guide to SQL: Syntax.

An lvarchar pointer host variable with a descriptor

If you use an lvarchar pointer host variable with a FETCH or PUT statement that uses a system descriptor area, you must

explicitly set the type to 124 (CLVCHARPTRTYPE from incl/esql/sqltypes.h) in the SET DESCRIPTOR statement. The

following example illustrates:

EXEC SQL BEGIN DECLARE SECTION;
lvarchar *lv;
EXEC SQL END DECLARE SECTION;
 /* where tab has lvarchar * column */
EXEC SQL prepare stmt from "select col from tab";
EXEC SQL allocate descriptor ‘d';
 /* The following describe will return SQLLVARCHAR for the
 type of the column */
EXEC SQL describe stmt using sql descriptor ‘d';
 /* You must set type for *lv variable */
EXEC SQL set descriptor ‘d' value 1 DATA = :lv, TYPE = 124;
EXEC SQL declare c cursor for stmt;
EXEC SQL open c;
EXEC SQL fetch c using sql descriptor ‘d';

The GET DESCRIPTOR statement
The GET DESCRIPTOR statement obtains values from the system-descriptor-area fields.

You can use the GET DESCRIPTOR statement to:

• Get the COUNT field to determine how many values are described in a system-descriptor area.

EXEC SQL get descriptor sysdesc :hostvar=COUNT;

• Get the item-descriptor fields for each described column.

483

HCL Informix 14.10 - ESQL/C Programmer’s Guide

484

EXEC SQL get descriptor sysdesc VALUE :item_num

 :hostvar=DESCRIP_FIELD;

In this example, item_num is the number of the item descriptor that corresponds to the desired column, and

DESCRIP_FIELD is one of the item-descriptor fields listed in Table 76: Fields in each item descriptor of the system-

descriptor area on page 441.

These item-descriptor values are typically descriptions of columns in a SELECT, INSERT, or EXECUTE FUNCTION

statement. GET DESCRIPTOR is also used after a FETCH...USING SQL DESCRIPTOR to copy a column value that

is returned by the database server from the system-descriptor area into a host variable (Put column values into a

system-descriptor area on page 484).

The data type of the host variable must be compatible with the type of the associated system-descriptor area field. When

you interpret the TYPE field, make sure that you use the data type values that match your environment. For some data

types, X/Open values differ from HCL Informix® values. For more information, see Determine the data type of a column on

page 452.

For more information about how to get individual system-descriptor fields, see the entry for the GET DESCRIPTOR statement

in the HCL® Informix® Guide to SQL: Syntax.

Specify input parameter values

Because the DESCRIBE...USING SQL DESCRIPTOR statement does not analyze a WHERE clause, your program must store

the number, data types, and values of the input parameters in the fields of the system-descriptor area to explicitly describe

these parameters.

When you execute a parameterized statement, you must specify the system-descriptor area as the location of input

parameter values with the USING SQL DESCRIPTOR clause, as follows:

• For input parameters in the WHERE clause of a SELECT, use the OPEN...USING SQL DESCRIPTOR statement. This

statement handles a sequential, scrolling, hold, or update cursor. If you are certain that the SELECT returns only one

row, you can use the EXECUTE...INTO...USING SQL DESCRIPTOR statement instead of a cursor.

• For input parameters in the WHERE clause of a non-SELECT statement such as DELETE or UPDATE, use the

EXECUTE...USING SQL DESCRIPTOR statement.

• For input parameters in the VALUES clause of an INSERT statement, use the EXECUTE...USING SQL DESCRIPTOR

statement. If the INSERT statement is associated with an insert cursor, use the PUT...USING SQL DESCRIPTOR

statement instead.

Put column values into a system-descriptor area

When you create a SELECT statement dynamically, you cannot use the INTO host_var clause of FETCH because you cannot

name the host variables in the prepared statement. To fetch column values into a system-descriptor area, use the USING

SQL DESCRIPTOR clause of FETCH instead of the INTO clause. The FETCH...USING SQL DESCRIPTOR statement puts each

column value into the DATA field of its item descriptor.

Chapter 1. ESQL/C Guide

Use of the FETCH...USING SQL DESCRIPTOR statement assumes the existence of a cursor associated with the prepared

statement. You must always use a cursor for SELECT statements and cursor functions (EXECUTE FUNCTION statements

that return multiple rows). However, if the SELECT (or EXECUTE FUNCTION) returns only one row, you can omit the cursor

and retrieve the column values into a system-descriptor area with the EXECUTE...INTO SQL DESCRIPTOR statement.

Important: If you execute a SELECT statement or user-defined function that returns more than one row and do not

associate the statement with a cursor, your program generates a runtime error. When you associate a singleton

SELECT (or EXECUTE FUNCTION) statement with a cursor, IBM® Informix® ESQL/C does not generate an error.

Therefore, it is a good practice to always associate a dynamic SELECT or EXECUTE FUNCTION statement with a

cursor and to use a FETCH...USING SQL DESCRIPTOR statement to retrieve the column values from this cursor into

the system-descriptor area.

When the column values are in the system-descriptor area, you can use the GET DESCRIPTOR statement to transfer these

values from their DATA fields to the appropriate host variables. You must use the LENGTH and TYPE fields to determine,

at run time, the data types for these host variables. You might need to perform data type or length conversions between

the SQL data types in the TYPE fields and the Informix® ESQL/C data types that are needed for host variables that hold the

return value.

For more information about how to execute SELECT statements dynamically, see Handling an unknown select list on

page 486. For more information about how to execute user-defined functions dynamically, see Handling unknown return

values on page 491.

Free memory allocated to a system-descriptor area

The DEALLOCATE DESCRIPTOR statement deallocates, or frees, memory that the specified system-descriptor area uses. The

freed memory includes memory used by the item descriptors to hold data (in the DATA fields). Make sure that you deallocate

a system-descriptor area only after you no longer have need of it. A deallocated system-descriptor area cannot be reused.

For more information about DEALLOCATE DESCRIPTOR, see the HCL® Informix® Guide to SQL: Syntax.

Using a system-descriptor area
Use a system-descriptor area to execute SQL statements that contain unknown values.

The following table summarizes the types of dynamic statements that the remaining sections of this chapter cover.

Table 88. Using a system-descriptor area to execute dynamic SQL statements

Purpose of a system-descriptor area See

Holds select-list column values retrieved by a SELECT statement Handling an unknown select list on

page 486

Holds returned values from user-defined functions Handling unknown return values on

page 491

485

HCL Informix 14.10 - ESQL/C Programmer’s Guide

486

Table 88. Using a system-descriptor area to execute dynamic SQL statements (continued)

Purpose of a system-descriptor area See

Describes unknown columns in an INSERT statement Handling an unknown column list on

page 496

Describes input parameters in the WHERE clause of a SELECT statement Handling a parameterized SELECT statement

on page 500

Describes input parameters in the WHERE clause of a DELETE or UPDATE

statement

Handling a parameterized UPDATE or

DELETE statement on page 506

Handling an unknown select list

About this task

This section describes how to use a system-descriptor area to handle a SELECT statement.

To use a system-descriptor area to handle unknown select-list columns:

1. Prepare the SELECT statement with the PREPARE statement to give it a statement identifier.

The SELECT statement cannot include an INTO TEMP clause. For more information, see Assemble and prepare the

SQL statement on page 400.

2. Allocate a system-descriptor area with the ALLOCATE DESCRIPTOR statement.

For more information, see Allocate memory for a system-descriptor area on page 480.

3. Determine the number and data types of the select-list columns with the DESCRIBE...USING SQL DESCRIPTOR

statement.

DESCRIBE fills an item descriptor for each column in the select list. For more information about DESCRIBE, see

Initialize the system-descriptor area on page 480.

4. Save the number of select-list columns in a host variable with the GET DESCRIPTOR statement to obtain the value of

the COUNT field.

5. Declare and open a cursor and then use the FETCH...USING SQL DESCRIPTOR statement to fetch column values, one

row at a time, into an allocated system-descriptor area.

See Put column values into a system-descriptor area on page 484.

6. Retrieve the row data from the system-descriptor area into host variables with the GET DESCRIPTOR statement to

access the DATA field.

For more information about GET DESCRIPTOR, see Assign and obtain values from a system-descriptor area on

page 482.

7. Deallocate the system-descriptor area with the DEALLOCATE DESCRIPTOR statement.

For more information, see Free memory allocated to a system-descriptor area on page 485.

Results

Chapter 1. ESQL/C Guide

Important: If the SELECT statement has unknown input parameters in the WHERE clause, your program must also

handle these input parameters with a system-descriptor area.

Execute a SELECT that returns multiple rows

The demo4.ec sample program shows how to execute a dynamic SELECT statement with the following conditions:

• The SELECT returns more than one row.

The SELECT must be associated with a cursor, executed with the OPEN statement, and have its return values

retrieved with the FETCH...USING SQL DESCRIPTOR statement.

• The SELECT has either no input parameters or no WHERE clause.

The OPEN statement does not need to include the USING clause.

• The SELECT has unknown columns in its select list.

The FETCH statement includes the USING SQL DESCRIPTOR clause to store the return values in an sqlda structure.

The demo4.ec sample program

This demo4 program is a version of the demo3 sample program (The demo3.ec sample program on page 531) that uses a

system-descriptor area to hold select-list columns. The demo4 program does not include exception handling.

===
1. #include <stdio.h>
2. EXEC SQL define NAME_LEN 15;
3. main()
4. {
5. EXEC SQL BEGIN DECLARE SECTION;
6. mint i;
7. mint desc_count;
8. char demoquery[80];
9. char colname[19];
10. char result[NAME_LEN + 1];
11. EXEC SQL END DECLARE SECTION;
===

Lines 5 - 11

These lines declare host variables to hold the data that is obtained from the user and the column values that are retrieved

from the system-descriptor area.

===
12. printf("DEMO4 Sample ESQL program running.\n\n");
13. EXEC SQL connect to 'stores7';
14. /* These next three lines have hard-wired both the query and
15. * the value for the parameter. This information could have been
16. * been entered from the terminal and placed into the strings
17. * demoquery and the query value string (queryvalue),
 * respectively.

487

HCL Informix 14.10 - ESQL/C Programmer’s Guide

488

18. */
19. sprintf(demoquery, "%s %s",
20. "select fname, lname from customer",
21. "where lname < 'C' ");
22. EXEC SQL prepare demo4id from :demoquery;
23. EXEC SQL declare demo4cursor cursor for demo4id;
24. EXEC SQL allocate descriptor 'demo4desc' with max 4;
25. EXEC SQL open demo4cursor;
===

Lines 14 - 22

These lines assemble the character string for the statement (in demoquery) and prepare it as the demo4id statement

identifier. For more information about these steps, see Assemble and prepare the SQL statement on page 400.

Line 23

This line declares the demo4cursor cursor for the prepared statement identifier, demo4id. All non-singleton SELECT

statements must have a declared cursor.

Line 24

To be able to use a system-descriptor area for the select-list columns, you must first allocate it. This ALLOCATE DESCRIPTOR

statement allocates the demo4desc system-descriptor area with four item descriptors.

Line 25

The database server executes the SELECT statement when it opens the demo4cursor cursor. If the WHERE clause of your

SELECT statement contains input parameters, you also need to specify the USING SQL DESCRIPTOR clause of the OPEN

statement. (See Handling a parameterized SELECT statement on page 500.)

===
26. EXEC SQL describe demo4id using sql descriptor 'demo4desc';
27. EXEC SQL get descriptor 'demo4desc' :desc_count = COUNT;
28. printf("There are %d returned columns:\n", desc_count);
29. /* Print out what DESCRIBE returns */
30. for (i = 1; i <= desc_count; i++)
31. prsysdesc(i);
32. printf("\n\n");
===

Line 26

The DESCRIBE statement describes the select-list columns for the prepared statement in the demo4id statement identifier.

For this reason, the DESCRIBE must follow the PREPARE. This DESCRIBE includes the USING SQL DESCRIPTOR clause to

specify the demo4desc system-descriptor area as the location for these column descriptions.

Chapter 1. ESQL/C Guide

Lines 27 and 28

Line 27 uses the GET DESCRIPTOR statement to obtain the number of select-list columns found by the DESCRIBE. This

number is read from the COUNT field of the demo4desc system-descriptor area and saved in the desc_count host variable.

Line 28 displays this information to the user.

Lines 29 - 31

This for loop goes through the item descriptors for the columns of the select list. It uses the desc_count host variable to

determine the number of item descriptors initialized by the DESCRIBE statement. For each item descriptor, the for loop

calls the prsysdesc() function (line 31) to save information such as the data type, length, and name of the column in host

variables. See Lines 58 - 76 on page 491 for a description of prsysdesc().

===
33. for (;;)
34. {
35. EXEC SQL fetch demo4cursor using sql descriptor 'demo4desc';
36. if (strncmp(SQLSTATE, "00", 2) != 0)
37. break;
38. /* Print out the returned values */
39. for (i = 1; i <= desc_count; i++)
40. {
41. EXEC SQL get descriptor 'demo4desc' VALUE :i
42. :colname=NAME, :result = DATA;
43. printf("Column: %s\tValue:%s\n ", colname, result);
44. }
45. printf("\n");
46. }
===

Lines 33 - 46

This inner for loop executes for each row fetched from the database. The FETCH statement (line 35) includes the USING

SQL DESCRIPTOR clause to specify the demo4desc system-descriptor area as the location of the column values. After this

FETCH executes, the column values are stored in the specified system-descriptor area.

The if statement (lines 36 and 37) tests the value of the SQLSTATE variable to determine if the FETCH was successful. If

SQLSTATE contains a class code other than "00", then the FETCH generates a warning ("01"), the NOT FOUND condition

("02"), or an error (> "02"). In any of these cases, line 37 ends the for loop.

Lines 39 - 45 access the fields of the item descriptor for each column in the select list. After each FETCH statement, the GET

DESCRIPTOR statement (lines 41 and 42) loads the contents of the DATA field into a host variable of the appropriate type

and length. The second for loop (lines 39 - 44) ensures that GET DESCRIPTOR is called for each column in the select list.

489

HCL Informix 14.10 - ESQL/C Programmer’s Guide

490

Important: In this GET DESCRIPTOR statement, the demo4 program assumes that the returned columns are of the

CHAR data type. If the program did not make this assumption, it would need to check the TYPE and LENGTH fields to

determine the appropriate data type for the host variable to hold the DATA value.

===
47. if(strncmp(SQLSTATE, "02", 2) != 0)
48. printf("SQLSTATE after fetch is %s\n", SQLSTATE);
49. EXEC SQL close demo4cursor;
50. /* free resources for prepared statement and cursor*/
51. EXEC SQL free demo4id;
52. EXEC SQL free demo4cursor;
53. /* free system-descriptor area */
54. EXEC SQL deallocate descriptor 'demo4desc';
55. EXEC SQL disconnect current;
56. printf("\nDEMO4 Sample Program Over.\n\n");
57. }
===

Lines 47 and 48

Outside the for loop, the program tests the SQLSTATE variable again so that it can notify the user in the event of successful

execution, a runtime error, or a warning (class code not equal to "02").

Line 49

After all the rows are fetched, the CLOSE statement closes the demo4cursor cursor.

Lines 50 - 54

These FREE statements release the resources that are allocated for the prepared statement (line 51) and the database

cursor (line 52).

The DEALLOCATE DESCRIPTOR statement (line 54) releases the memory allocated to the demo4desc system-descriptor

area. For more information, see Free memory allocated to a system-descriptor area on page 485.

===
58. prsysdesc(index)
59. EXEC SQL BEGIN DECLARE SECTION;
60. PARAMETER mint index;
61. EXEC SQL END DECLARE SECTION;
62. {
63. EXEC SQL BEGIN DECLARE SECTION;
64. mint type;
65. mint len;
66. mint nullable;
67. char name[40];
68. EXEC SQL END DECLARE SECTION;
69. EXEC SQL get descriptor 'demo4desc' VALUE :index
70. :type = TYPE,
71. :len = LENGTH,
72. :nullable = NULLABLE,
73. :name = NAME;
74. printf(" Column %d: type = %d, len = %d, nullable=%d, name =

Chapter 1. ESQL/C Guide

 %s\n",
75. index, type, len, nullable, name);
76. }
===

Lines 58 - 76

The prsysdesc() function displays information about a select-list column. It uses the GET DESCRIPTOR statement to access

one item descriptor from the demo4desc system-descriptor area.

The GET DESCRIPTOR statement (lines 70 - 74) accesses the TYPE, LENGTH, NULLABLE, and NAME fields from an item

descriptor in demo4desc to provide information about a column. It stores this information in host variables of appropriate

lengths and data types. The VALUE keyword indicates the number of the item descriptor to access.

Execute a singleton SELECT

The demo4 program assumes that the SELECT statement returns more than one row and therefore the program associates

the statement with a cursor. If you know at the time that you write the program that the dynamic SELECT always returns just

one row, you can omit the cursor and use the EXECUTE...INTO SQL DESCRIPTOR statement instead of the FETCH...USING

SQL DESCRIPTOR. You need to use the DESCRIBE statement to define the select-list columns.

Handling unknown return values

This section describes how to use a system-descriptor area to save values that a dynamically executed user-defined function

returns.

To use a system-descriptor area to handle unknown function return values:

1. Assemble and prepare an EXECUTE FUNCTION statement.

The EXECUTE FUNCTION statement cannot include an INTO clause. For more information, see Assemble and prepare

the SQL statement on page 400.

2. Allocate a system-descriptor area with the ALLOCATE DESCRIPTOR statement.

For more information, see Allocate memory for a system-descriptor area on page 480.

3. Determine the number and data type (or data types) of the return value (or values) with the DESCRIBE...USING SQL

DESCRIPTOR statement.

The DESCRIBE...USING SQL DESCRIPTOR statement fills an item descriptor for each value that the user-defined

function returns. For more information about DESCRIBE, see Initialize the system-descriptor area on page 480.

4. After the DESCRIBE statement, you can test the SQLCODE variable (sqlca.sqlcode) for the SQ_EXECPROC defined

constant to check for a prepared EXECUTE FUNCTION statement.

This constant is defined in the sqlstype.h header file. For more information, see Determine the statement type on

page 447.

5. Execute the EXECUTE FUNCTION statement and store the return values in the system-descriptor area.

491

HCL Informix 14.10 - ESQL/C Programmer’s Guide

492

The statement you use to execute a user-defined function depends on whether the function is a noncursor function or

a cursor function. The following sections discuss how to execute each type of function.

6. Deallocate the system-descriptor area with the DEALLOCATE DESCRIPTOR statement.

See Free memory allocated to a system-descriptor area on page 485.

Execute a noncursor function
A noncursor function returns only one row of return values to the application. Use the EXECUTE...INTO SQL DESCRIPTOR

statement to execute the function and save the return value or values in a system-descriptor area.

An external function that is not explicitly defined as an iterator function returns only a single row of data. Therefore, you can

use EXECUTE...INTO SQL DESCRIPTOR to execute most external functions dynamically. This single row of data consists of

only one value because external function can only return a single value. The system-descriptor area contains only one item

descriptor with the single return value.

An SPL function whose RETURN statement does not include the WITH RESUME keywords returns only a single row of data.

Therefore, you can use EXECUTE...INTO SQL DESCRIPTOR to execute most SPL functions dynamically. An SPL function can

return one or more values at one time so the system-descriptor area contains one or more item descriptors.

Important: Because you usually do not know the number of returned rows that a user-defined function returns,

you cannot guarantee that only one row is returned. If you do not use a cursor to execute cursor function, IBM®

Informix® ESQL/C generates a runtime error. Therefore, it is a good practice to always associate a user-defined

function with a function cursor.

The following program fragment dynamically executes an SPL function called items_pct. This SPL function calculates the

percentage that the items of a given manufacturer represent out of the total price of all items in the items table. It accepts

one argument, the manu_code value for the chosen manufacturer, and it returns the percentage as a decimal value. The

following figure shows the items_pct SPL function.

Figure 84. Code for items_pct SPL function

create function items_pct(mac char(3)) returning decimal;
 define tp money;
 define mc_tot money;
 define pct decimal;
 let tp = (select sum(total_price) from items);
 let mc_tot = (select sum(total_price) from items
 where manu_code = mac);
 let pct = mc_tot / tp;
 return pct;
end function;

A sample program that executes an SPL function
The sample program fragment uses a system-descriptor area to dynamically execute an SPL function that returns more than

one set of return values.

Chapter 1. ESQL/C Guide

===
1. #include <stdio.h>
2. #include <ctype.h>
3. EXEC SQL include sqltypes;
4. EXEC SQL include sqlstype;
5. EXEC SQL include decimal;
6. EXEC SQL include datetime;
7. extern char statement[80];
8. main()
9. {
10. EXEC SQL BEGIN DECLARE SECTION;
11. int sp_cnt, desc_count;
12. char dyn_stmnt[80], rout_name[30];
13. EXEC SQL END DECLARE SECTION;
14. int whenexp_chk();
15. printf("Sample ESQL program to execute an SPL function
 running.\n\n");
16. EXEC SQL whenever sqlerror call whenexp_chk;
17. EXEC SQL connect to 'stores7';
18. printf("Connected to stores7 database.\n");
19. /* These next five lines hard-wire the execute function
20. * statement. This information could have been entered
21. * by the user and placed into the string dyn_stmnt.
22. */
23. stcopy("items_pct(\"HSK\")", rout_name);
24. sprintf(dyn_stmnt, "%s %s",
25. "execute function", rout_name);
===

Lines 19 - 25

The call to sprintf() (line 24) assembles the character string for the EXECUTE FUNCTION statement that executes the

items_pct() SPL function.

===
26. EXEC SQL prepare spid from :dyn_stmnt;
27. EXEC SQL allocate descriptor 'spdesc';
28. EXEC SQL describe spid using sql descriptor 'spdesc';
29. if(SQLCODE != SQ_EXECPROC)
30. {
31. printf("\nPrepared statement is not EXECUTE FUNCTION.\n");
32. exit();
33. }
===

Line 26

The PREPARE statement then creates the spid statement identifier for the EXECUTE FUNCTION statement. For more

information about these steps, see Assemble and prepare the SQL statement on page 400.

Line 27

The ALLOCATE DESCRIPTOR statement allocates the spdesc system-descriptor area. For more information, see Allocate

memory for a system-descriptor area on page 480.

493

HCL Informix 14.10 - ESQL/C Programmer’s Guide

494

Lines 28 - 33

The DESCRIBE statement determines the number and data types of values that the items_pct SPL function returns. This

DESCRIBE includes the USING SQL DESCRIPTOR clause to specify the spdesc system-descriptor area as the location for

these descriptions.

On line 28, the program tests the value of the SQLCODE variable (sqlca.sqlcode) against the constant values defined in the

sqlstype.h file to verify that the EXECUTE FUNCTION statement was prepared. For more information, see Determine the

statement type on page 447.

===
34. EXEC SQL get descriptor 'spdesc' :sp_cnt = COUNT;
35. if(sp_cnt == 0)
36. {
37. sprintf(dyn_stmnt, "%s %s", "execute procedure", rout_name);
38. EXEC SQL prepare spid from :dyn_stmnt;
39. EXEC SQL execute spid;
40. }
41. else
42. {
43. EXEC SQL declare sp_curs cursor for spid;
44. EXEC SQL open sp_curs;
45. while(getrow("spdesc"))
46. disp_data(:sp_cnt, "spdesc");
47. EXEC SQL close sp_curs;
48. EXEC SQL free sp_curs;
49. }
===

Lines 34 - 40

To obtain the number of return values in a host variable, the GET DESCRIPTOR statement retrieves the value of the COUNT

field into a host variable. This value is useful when you need to determine how many values the SPL routine returns. If

the SPL routine does not return values, that is, the value of COUNT is zero, the SPL routine is a procedure, not a function.

Therefore, the program prepares an EXECUTE PROCEDURE statement (line 38) and then uses the EXECUTE statement (line

39) to execute the procedure. The EXECUTE statement does not need to use the system-descriptor area because the SPL

procedure does not have any return values.

Lines 41 - 49

If the SPL routine does return values, that is, if the value of COUNT is greater than zero, the program declares and opens the

sp_curs cursor for the prepared SPL function.

A while loop (lines 45 and 46) executes for each set of values that is returned by the SPL function. This loop calls the

getrow() function to fetch one set of values into the spdesc system-descriptor area. It then calls the disp_data() function to

display the returned values. For descriptions of the getrow() and disp_data() functions, see Guide to the dyn_sql.ec file on

page 507.

After all the sets of return values are returned, the CLOSE statement (line 47) closes the sp_curs cursor and the FREE

statement (line 48) releases the resources allocated to the cursor.

Chapter 1. ESQL/C Guide

===
50. EXEC SQL free spid;
51. EXEC SQL deallocate descriptor 'spdesc';
52. EXEC SQL disconnect current;
53. }
===

Lines 50 and 51

This FREE statement releases the resources allocated for the prepared statement. The DEALLOCATE DESCRIPTOR

statement releases the memory allocated to the spdesc system-descriptor area. For more information, see Free memory

allocated to a system-descriptor area on page 485.

Executing a cursor function
A cursor function can return one or more rows of return values to the application. To execute a cursor function, you must

associate the EXECUTE FUNCTION statement with a function cursor and use the FETCH...INTO SQL DESCRIPTOR statement

to save the return value or values in a system-descriptor area.

About this task

To use a system-descriptor area to hold cursor-function return values:

1. Declare a function cursor for the user-defined function.

Use the DECLARE statement to associate the EXECUTE FUNCTION statement with a function cursor.

2. Use the OPEN statement to execute the function and open the cursor.

3. Use the FETCH...USING SQL DESCRIPTOR statement to retrieve the return values from the cursor into the system-

descriptor area.

For more information, see Put column values into a system-descriptor area on page 484.

4. Use the GET DESCRIPTOR statement to retrieve the return values from the system-descriptor area into host variables.

The DATA field of each item descriptor contains the return values. For more information, see Assign and obtain

values from a system-descriptor area on page 482.

5. Deallocate the system-descriptor area with the DEALLOCATE DESCRIPTOR statement.

For more information, see Free memory allocated to a system-descriptor area on page 485.

Results

Only an external function that is defined as an iterator function can return more than one row of data. Therefore, you must

define a function cursor to execute an iterator function dynamically. Each row of data consists of only one value because an

external function can only return a single value. For each row, the system-descriptor area contains only one item descriptor

with the single return value.

An SPL function whose RETURN statement includes the WITH RESUME keywords can return one or more rows of data.

Therefore, you must define a function cursor to execute these SPL functions dynamically. Each row of data can consists of

495

HCL Informix 14.10 - ESQL/C Programmer’s Guide

496

one or more values because an SPL function can return one or more values at one time. For each row, the system-descriptor

area contains an item descriptor for each return value.

Handling an unknown column list

For an introduction on how to handle columns in a VALUES clause of an INSERT, see Handling an unknown column list on

page 456. This section describes how to use a system-descriptor area to handle the INSERT...VALUES statement.

To use a system-descriptor area to handle input parameters in an INSERT:

1. Prepare the INSERT statement (with the PREPARE statement) to give it a statement identifier. For more information,

see Assemble and prepare the SQL statement on page 400.

2. Allocate a system-descriptor area with the ALLOCATE DESCRIPTOR statement. For more information, see Allocate

memory for a system-descriptor area on page 480.

3. Determine the number and data types of the columns with the DESCRIBE...USING SQL DESCRIPTOR statement. The

DESCRIBE statement fills an item descriptor for each column in the select list. For more information about DESCRIBE,

see Initialize the system-descriptor area on page 480.

4. Save the number of unknown columns in a host variable with the GET DESCRIPTOR statement, which obtains the

value of the COUNT field.

5. Set the columns to their values with the SET DESCRIPTOR statement, which sets the appropriate DATA and VALUE

fields. The column values must be compatible with the data type of their associated column. If you want to insert

a NULL value, set the INDICATOR field to -1, and do not specify any DATA field in the SET DESCRIPTOR statement.

For more information about SET DESCRIPTOR, see Assign and obtain values from a system-descriptor area on

page 482.

6. Execute the INSERT statement to insert the values into the database.

The following sections demonstrate how to execute a simple INSERT statement that inserts only one row and one

that uses an insert cursor to insert several rows from an insert buffer.

7. Deallocate the system-descriptor area with the DEALLOCATE DESCRIPTOR statement. See Free memory allocated to

a system-descriptor area on page 485.

Execute a simple insert

The following steps outline how to execute a simple INSERT statement with a system-descriptor area:

1. Prepare the INSERT statement (with the PREPARE statement) and give it a statement identifier.

2. Set the columns to their values with the SET DESCRIPTOR statement.

3. Execute the INSERT statement with the EXECUTE...USING SQL DESCRIPTOR statement.

A sample program that executes a dynamic INSERT statement

This sample program shows how to execute a dynamic INSERT statement. This INSERT statement is not associated with an

insert cursor.

Chapter 1. ESQL/C Guide

The program inserts two TEXT values into the txt_a table. It reads the text values from a named file called desc_ins.txt. The

program then selects columns from this table and stores the TEXT values in two named files, txt_out1 and txt_out2. The

program illustrates the use of a system-descriptor area to handle the columns that are in the column list.

===
1. EXEC SQL include locator;
2. EXEC SQL include sqltypes;
3. main()
4. {
5. EXEC SQL BEGIN DECLARE SECTION;
6. int ;
7. int cnt;
8. ifx_loc_t loc1;
9. ifx_loc_t loc2;
10. EXEC SQL END DECLARE SECTION;
11. EXEC SQL create database txt_test;
12. chkerr("CREATE DATABASE txt_test");
13. EXEC SQL create table txt_a (t1 text not null, t2 text);
14. chkerr("CREATE TABLE t1");
15. /* The INSERT statement could have been created at runtime. */
16. EXEC SQL prepare sid from 'insert into txt_a values (?, ?)';
17. chkerr("PREPARE sid");
===

Lines 5 - 10

These lines declare host variables to hold the column values to insert (obtained from the user).

Lines 15 - 17

These lines assemble the character string for the statement and prepare it as the sid statement identifier. The input

parameter specifies the missing columns of the INSERT statement. The INSERT statement is hard coded here, but it can be

created at run time. For more information about these steps, see Assemble and prepare the SQL statement on page 400.

===
18. EXEC SQL allocate descriptor 'desc';
19. chkerr("ALLOCATE DESCRIPTOR desc");
20. EXEC SQL describe sid using sql descriptor 'desc';
21. chkerr("DESCRIBE sid");
22. EXEC SQL get descriptor 'desc' :cnt = COUNT;
23. chkerr("GET DESCRIPTOR desc");
24. for (i = 1; i <= cnt; i++)
25. prsysdesc(i);
===

Lines 18 and 19

To be able to use a system-descriptor area for the columns, you must first allocate the system-descriptor area. This

ALLOCATE DESCRIPTOR statement allocates a system-descriptor area named desc.

497

HCL Informix 14.10 - ESQL/C Programmer’s Guide

498

Line 20 and 21

The DESCRIBE statement describes the columns for the prepared INSERT that sid identifies. This DESCRIBE statement

includes the USING SQL DESCRIPTOR clause to specify the desc system-descriptor area as the location for these column

descriptions.

Lines 22 and 23

The GET DESCRIPTOR statement obtains the number of columns (COUNT field) found by the DESCRIBE. This number is

stored in the cnt host variable.

Lines 24 and 25

This for loop goes through the item descriptors for the columns of the INSERT statement. It uses the cnt variable to

determine the number of item descriptors that are initialized by the DESCRIBE. For each item descriptor, the prsysdesc()

function saves information such as the data type, length, and name in host variables. For a description of prsysdesc(), see

The ifx_int8add() function on page 640.

===
26. loc1.loc_loctype = loc2.loc_loctype = LOCFNAME;
27. loc1.loc_fname = loc2.loc_fname = "desc_ins.txt";
28. loc1.loc_size = loc2.loc_size = -1;
29. loc1.loc_oflags = LOC_RONLY;
30. i = CLOCATORTYPE;
31. EXEC SQL set descriptor 'desc' VALUE 1
32. TYPE = :i, DATA = :loc1;
33. chkerr("SET DESCRIPTOR 1");
34. EXEC SQL set descriptor 'desc' VALUE 2
35. TYPE = :i, DATA = :loc2;
36. chkerr("SET DESCRIPTOR 2");
37. EXEC SQL execute sid using sql descriptor 'desc';
38. chkerr("EXECUTE sid");
===

Lines 26 - 29

To insert a TEXT value, the program must first locate the value with the IBM® Informix® ESQL/C locator structure. The loc1

locator structure stores a TEXT value for the t1 column of the txt_a table; loc2 is the locator structure for the t2 column

of txt_a. (See line 13.) The program includes the Informix® ESQL/C locator.h header file (line 1) to define the ifx_loc_t

structure.

Both TEXT values are located in a named file (loc_loctype = LOCFNAME) called desc_ins.txt. When you set the loc_size fields

to -1, the locator structure tells Informix® ESQL/C to send the TEXT value to the database server in a single operation. For

more information about how to locate TEXT values in named files, see Insert a simple large object from a named file on

page 156.

Lines 30 - 36

The first SET DESCRIPTOR statement sets the TYPE and DATA fields in the item descriptor of the t1 column (VALUE 1). The

data type is CLOCATORTYPE (defined in the Informix® ESQL/C sqltypes.h header file) to indicate that the column value is

Chapter 1. ESQL/C Guide

stored in the Informix® ESQL/C locator structure; the data is set to the loc1 locator structure. The second SET DESCRIPTOR

statement performs this same task for the t2 column value; it sets its DATA field to the loc2 locator structure.

Lines 37 and 38

The database server executes the INSERT statement with the EXECUTE...USING SQL DESCRIPTOR statement to obtain the

new column values from the desc system-descriptor area.

===
39. loc1.loc_loctype = loc2.loc_loctype = LOCFNAME;
40. loc1.loc_fname = "txt_out1";
41. loc2.loc_fname = "txt_out2";
42. loc1.loc_oflags = loc2.loc_oflags = LOC_WONLY;
43. EXEC SQL select * into :loc1, :loc2 from a;
44. chkerr("SELECT");
45. EXEC SQL free sid;
46. chkerr("FREE sid");
47. EXEC SQL deallocate descriptor 'desc';
48. chkerr("DEALLOCATE DESCRIPTOR desc");
49. EXEC SQL close database;
50. chkerr("CLOSE DATABASE txt_test");
51. EXEC SQL drop database txt_test;
52. chkerr("DROP DATABASE txt_test");
53 EXEC SQL disconnect current;
54. }
55. chkerr(s)
56. char *s;
57. {
58. if (SQLCODE)
59. printf("%s error %d\n", s, SQLCODE);
60. }
===

Lines 39 - 44

The program uses the loc1 and loc2 locator structures to select the values inserted. These TEXT values are read into named

files: the t1 column (in loc1) into txt_out1 and the t2 column (in loc2) into txt_out2. The loc_oflags value of LOC_WONLY

means that this TEXT data overwrites any existing data in these output files.

Lines 45 - 48

The FREE statement (line 45) releases the resources allocated for the sid prepared statement. Once a prepared statement

was freed, it cannot be used again in the program. The DEALLOCATE DESCRIPTOR statement (line 46) releases the memory

allocated to the desc system-descriptor area. For more information, see Free memory allocated to a system-descriptor area

on page 485.

Lines 55 - 60

The chkerr() function is a simple exception-handling routine. It checks the global SQLCODE variable for a nonzero value.

Since zero indicates successful execution of an SQL statement, the printf() (line 58) executes whenever a runtime error

occurs. For more detailed exception-handling routines, see Exception handling on page 276.

499

HCL Informix 14.10 - ESQL/C Programmer’s Guide

500

Execute an INSERT that is associated with a cursor

Your IBM® Informix® ESQL/C program must still use the DESCRIBE and SET DESCRIPTOR statements (Handling an

unknown column list on page 496) to use a system-descriptor area for column-list values of an INSERT statement that

inserts rows from an insert buffer. It must also use the PUT...USING SQL DESCRIPTOR statement with an insert cursor, as

follows:

1. Prepare the INSERT statement and associate it with an insert cursor with the DECLARE statement. All multirow

INSERT statements must have a declared insert cursor.

2. Create the cursor for the INSERT statement with the OPEN statement.

3. Insert the first set of column values into the insert buffer with a PUT statement and its USING SQL DESCRIPTOR

clause. After this PUT statement, the column values stored in the specified system-descriptor area are stored in the

insert buffer. Repeat the PUT statement within a loop until there are no more rows to insert.

4. After all the rows are inserted, exit the loop and flush the insert buffer with the FLUSH statement.

5. Close the insert cursor with the CLOSE statement.

You handle the insert cursor in much the same way as you handle the cursor associated with a SELECT statement (Handling

an unknown select list on page 486). For more information about how to use an insert cursor, see the PUT statement in the

HCL® Informix® Guide to SQL: Syntax.

Handling a parameterized SELECT statement

For an introduction on how to determine input parameters, see Determine unknown input parameters on page 456. This

section describes how to handle a parameterized SELECT statement with a system-descriptor area. If a prepared SELECT

statement has a WHERE clause with input parameters of unknown number and data type, your IBM® Informix® ESQL/C

program must use a system-descriptor area to define the input parameters.

To use a system-descriptor area to define input parameters for a WHERE clause:

1. Determine the number and data types of the input parameters of the SELECT statement. For more information, see

Determine unknown input parameters on page 456.

2. Allocate a system-descriptor area and assign it a name with the ALLOCATE DESCRIPTOR statement. For more

information about ALLOCATE DESCRIPTOR, see Allocate memory for a system-descriptor area on page 480.

3. Indicate the number of input parameters in the WHERE clause with the SET DESCRIPTOR statement, which sets the

COUNT field.

4. Store the definition and value of each input parameter with the SET DESCRIPTOR statement, which sets the DATA,

TYPE, and LENGTH fields in the appropriate item descriptor:

◦ The TYPE field must use the Informix® ESQL/C data type constants defined in the sqltypes.h header file

to represent the data types of the input parameters. For more information, see Determine the data type of a

column on page 452.

◦ For a CHAR or VARCHAR value, LENGTH is the size, in bytes, of the character array; for a DATETIME or

INTERVAL value, the LENGTH field stores the encoded qualifiers.

Chapter 1. ESQL/C Guide

Important: If you use X/Open code (and compile with the -xopen flag), you must use the X/Open data type

values for the TYPE and ITYPE fields. For more information, see Determine the data type of a column on

page 452.

If you use an indicator variable, you also need to set the INDICATOR field and perhaps the IDATA, ILENGTH, and

ITYPE fields (for non-X/Open applications only). Use the VALUE keyword of SET DESCRIPTOR to identify the item

descriptor. For more information about SET DESCRIPTOR, see Assign and obtain values from a system-descriptor

area on page 482.

5. Pass the defined input parameters from the system-descriptor area to the database server with the USING SQL

DESCRIPTOR clause.

The statement that provides the input parameters depends on how many rows that the SELECT statement returns.

The following sections discuss how to execute each type of SELECT statement.

6. Deallocate the system-descriptor area with the DEALLOCATE DESCRIPTOR statement. For more information, see Free

memory allocated to a system-descriptor area on page 485.

Important: If the SELECT statement has unknown columns in the select list, your program must also handle these

columns with a system-descriptor area. For more information, see Handling an unknown select list on page 486.

Execute a parameterized SELECT that returns multiple rows

The following sample program shows how to use a dynamic SELECT statement with the following conditions:

• The SELECT returns more than row.

The SELECT must be associated with a cursor, executed with the OPEN statement, and have its return values

retrieved with the FETCH...USING SQL DESCRIPTOR statement.

• The SELECT has input parameters in its WHERE clause.

The OPEN statement includes the USING SQL DESCRIPTOR clause to provide the parameter values in a system-

descriptor area.

• The SELECT has unknown columns in the select list.

The FETCH statement includes the USING SQL DESCRIPTOR clause to store the return values in a system-descriptor

area.

A sample program that uses a dynamic SELECT statement
The program is a version of the demo4.ec sample program; demo4 uses a system-descriptor area for select-list columns

while this modified version of demo4 uses a system-descriptor area for both select-list columns and input parameters of a

WHERE clause.

501

HCL Informix 14.10 - ESQL/C Programmer’s Guide

502

===
1. #include <stdio.h>
2. EXEC SQL include sqltypes;
3.
4. EXEC SQL define NAME_LEN 15;
5. EXEC SQL define MAX_IDESC 4;
6. main()
7. {
8. EXEC SQL BEGIN DECLARE SECTION;
9. int i;
10. int desc_count;
11. char demoquery[80];
12. char queryvalue[2];
13. char result[NAME_LEN + 1];
14. EXEC SQL END DECLARE SECTION;
15. printf("Modified DEMO4 Sample ESQL program running.\n\n");
16. EXEC SQL connect to 'stores7';
===

Lines 8 - 14

These lines declare host variables to hold the data obtained from the user and the column values retrieved from the system

descriptor.

===
17. /* These next three lines have hard-wired both the query and
18. * the value for the parameter. This information could have
19. * been entered from the terminal and placed into the strings
20. * demoquery and queryvalue, respectively.
21. */
22. sprintf(demoquery, "%s %s",
23. "select fname, lname from customer",
24. "where lname < ? ");
25. EXEC SQL prepare demoid from :demoquery;
26. EXEC SQL declare democursor cursor for demoid;
27. EXEC SQL allocate descriptor 'demodesc' with max MAX_IDESC;
===

Lines 17 - 25

The lines assemble the character string for the statement (in demoquery) and prepare it as the demoid statement identifier.

The question mark (?) indicates the input parameter in the WHERE clause. For more information about these steps, see

Assemble and prepare the SQL statement on page 400.

Line 26

This line declares the democursor cursor for the prepared statement identifier demoid. All non-singleton SELECT statements

must have a declared cursor.

Chapter 1. ESQL/C Guide

Line 27

To be able to use a system-descriptor area for the input parameters, you must first allocate the system-descriptor area. This

ALLOCATE DESCRIPTOR statement allocates the demodesc system-descriptor area. For more information about ALLOCATE

DESCRIPTOR, see Allocate memory for a system-descriptor area on page 480.

===
28. /* This section of the program must evaluate :demoquery
29. * to count how many question marks are in the where
30. * clause and what kind of data type is expected for each
31. * question mark.
32. * For this example, there is one parameter of type
33. * char(15). It would then obtain the value for
34. * :queryvalue. The value of queryvalue is hard-wired in
35. * the next line.
36. */
37. sprintf(queryvalue, "C");
38. desc_count = 1;
39. if(desc_count > MAX_IDESC)
40. {
41. EXEC SQL deallocate descriptor 'demodesc';
42. EXEC SQL allocate descriptor 'demodesc' with max :desc_count;
43. }
44. /* number of parameters to be held in descriptor is 1 */
45. EXEC SQL set descriptor 'demodesc' COUNT = :desc_count;
===

Lines 28 - 38

These lines simulate the dynamic entry of the input parameter value. Although the parameter value is hard-coded here (line

37), the program would more likely obtain the value from user input. Line 38 simulates code that would determine how many

input parameters exist in the statement string. If you did not know this value, you would need to include C code to parse the

statement string for the question mark (?) character.

Lines 39 - 43

This if statement determines if the demodesc system-descriptor area contains enough item descriptors for the

parameterized SELECT statement. It compares the number of input parameters in the statement string (desc_count) with

the number of item descriptors currently allocated (MAX_IDESC). If the program has not allocated enough item descriptors,

the program deallocates the existing system-descriptor area (line 41) and allocates a new one (line 42); it uses the actual

number of input parameters in the WITH MAX clause to specify the number of item descriptors to allocate.

Lines 44 and 45

This SET DESCRIPTOR statement stores the number of input parameters in the COUNT field of the demodesc system-

descriptor area.

===
46. /* Put the value of the parameter into the descriptor */
47. i = SQLCHAR;
48. EXEC SQL set descriptor 'demodesc' VALUE 1
49. TYPE = :i, LENGTH = 15, DATA = :queryvalue;

503

HCL Informix 14.10 - ESQL/C Programmer’s Guide

504

50. /* Associate the cursor with the parameter value */
51. EXEC SQL open democursor using sql descriptor :demodesc;
52. /*Reuse the descriptor to determine the contents of the Select-
 * list*/
53. EXEC SQL describe qid using sql descriptor 'demodesc';
54. EXEC SQL get descriptor 'demodesc' :desc_count = COUNT;
55. printf("There are %d returned columns:\n", desc_count);
56. /* Print out what DESCRIBE returns */
57. for (i = 1; i <= desc_count; i++)
58. prsysdesc(i);
59. printf("\n\n");
===

Lines 47 - 49

This SET DESCRIPTOR statement sets the TYPE, LENGTH (for a CHAR value), and DATA fields for each of the parameters in

the WHERE clause. The program only calls SET DESCRIPTOR once because it assumes that the SELECT statement has only

one input parameter. If you do not know the number of input parameters at compile time, put the SET DESCRIPTOR in a loop

for which the desc_count host variable controls the number of iterations.

Lines 50 and 51

The database server executes the SELECT statement when it opens the democursor cursor. This OPEN statement includes

the USING SQL DESCRIPTOR clause to specify the demodesc system-descriptor area as the location of the input-parameter

values.

Lines 52 - 59

The program also uses the demodesc system-descriptor area to hold the columns that are returned by the SELECT

statement. The DESCRIBE statement (line 53) examines the select list to determine the number and data types of these

columns. The GET DESCRIPTOR statement (line 54) then obtains the number of described columns from the COUNT field of

demodesc. Lines 55 - 58 then display the column information for each returned column. For more information about how to

use a system-descriptor area to receive column values, see Handling an unknown select list on page 486.

===
60. for (;;)
61. {
62. EXEC SQL fetch democursor using sql descriptor 'demodesc';
63. if (sqlca.sqlcode != 0) break;
64. for (i = 1; i <= desc_count; i++)
65. {
66. EXEC SQL get descriptor 'demodesc' VALUE :i :result = DATA;
67. printf("%s ", result);
68. }
69. printf("\n");
70. }
71. if(strncmp(SQLSTATE, "02", 2) != 0)
72. printf("SQLSTATE after fetch is %s\n", SQLSTATE);
73. EXEC SQL close democursor;
74. EXEC SQL free demoid; /* free resources for statement */
75. EXEC SQL free democursor; /* free resources for cursor */
76. /* free system-descriptor area */
77. EXEC SQL deallocate descriptor 'demodesc';

Chapter 1. ESQL/C Guide

78. EXEC SQL disconnect current;
79. printf("\nModified DEMO4 Program Over.\n\n");
80. }
===

Lines 60 - 70

These lines access the fields of the item descriptor for each column in the select list. After each FETCH statement, the GET

DESCRIPTOR statement loads the contents of the DATA field into the result host variable.

Line 73

After all the rows are fetched, the CLOSE statement frees the resources allocated to the active set of the democursor cursor.

Lines 74 - 77

The FREE statement on line 74 frees the resources allocated to the demoid statement identifier while the FREE statement

on line 75 frees the resources to the democursor cursor. The DEALLOCATE DESCRIPTOR statement frees the resources

allocated to the demodesc system-descriptor area. For more information, see Free memory allocated to a system-descriptor

area on page 485.

Execute a parameterized singleton SELECT statement

The instructions in the preceding section assume that the parameterized SELECT statement returns more than one row and,

therefore, is associated with a cursor. If you know that at the time you write the program that the parameterized SELECT

statement will always return just one row, you can omit the cursor and use the EXECUTE...USING SQL DESCRIPTOR...INTO

statement instead of the OPEN...USING SQL DESCRIPTOR statement to specify parameter values from a system-descriptor

area.

Handling a parameterized user-defined routine

For an introduction on how to determine input parameters, see Determine unknown input parameters on page 456.

This section describes how to handle a parameterized user-defined routine with a system-descriptor area. The following

statements execute user-defined routines:

• The EXECUTE FUNCTION statement executes a user-defined function (external and SPL).

• The EXECUTE PROCEDURE statement executes a user-defined procedure (external and SPL).

If a prepared EXECUTE PROCEDURE or EXECUTE FUNCTION statement has arguments specified as input parameters of

unknown number and data type, your Informix® ESQL/C program can use a system-descriptor area to define the input

parameters.

Execute a parameterized function

You handle the input parameters of a user-defined function in the same way you handle input parameters in the WHERE

clause of a SELECT statement, as follows:

505

HCL Informix 14.10 - ESQL/C Programmer’s Guide

506

• Execute a noncursor function in the same way as a singleton SELECT statement.

If you know at the time that you write the program that the dynamic user-defined function always returns just one

row, you can use the EXECUTE...USING SQL DESCRIPTOR...INTO statement to provide the argument values from a

system-descriptor area and to execute the function.

• Execute a cursor function in the same way as a SELECT statement that returns one or more rows.

If you are not sure at the time that you write the program that the dynamic user-defined function always returns just

one row, define a function cursor and use the OPEN...USING SQL DESCRIPTOR statement to provide the argument

values from a system-descriptor area.

The only difference between the execution of these EXECUTE FUNCTION and SELECT statements is that you prepare the

EXECUTE FUNCTION statement for the noncursor function, instead of the SELECT statement.

Execute a parameterized procedure

To execute a parameterized user-defined procedure, you can use the EXECUTE...USING SQL DESCRIPTOR statement to

provide the argument values from a system-descriptor area and to execute the procedure. You handle the input parameters

of a user-defined procedure in the same way you handle input parameters in a noncursor function. The only difference

between the execution of the EXECUTE PROCEDURE statement and the EXECUTE FUNCTION statement (for a noncursor

function) is that you do not need to specify the INTO clause of the EXECUTE...USING SQL DESCRIPTOR statement for the

user-defined procedure.

Handling a parameterized UPDATE or DELETE statement

How you determine the input parameters in the WHERE clause of a DELETE or UPDATE statement is similar to how you

determine them in the WHERE clause of a SELECT statement. For more information, see Handling a parameterized SELECT

statement on page 500. The major differences between these two types of dynamic parameterized statements are as

follows:

• You do not need to use a cursor to handle a DELETE or UPDATE statement. Therefore, you provide the parameter

values from a system-descriptor area with the USING SQL DESCRIPTOR clause of the EXECUTE statement instead of

the OPEN statement.

• You can use the DESCRIBE...USING SQL DESCRIPTOR statement to determine if the DELETE or UPDATE statement

has a WHERE clause. For more information, see Check for a WHERE clause on page 454.

The dyn_sql program

The dyn_sql.ec program is the IBM® Informix® ESQL/C demonstration program that uses dynamic SQL. The program

prompts the user to enter a SELECT statement for the stores7 demonstration database and then uses a system-descriptor

area to execute the SELECT dynamically.

By default, the program opens the stores7 database. If the demonstration database was given a name other than stores7,

however, you can specify the database name on the command line. The following command runs the dyn_sql executable on

the mystores7 database:

Chapter 1. ESQL/C Guide

dyn_sql mystores7

Compile the program

Use the following command to compile the dyn_sql program:

esql -o dyn_sql dyn_sql.ec

The -o dyn_sql option causes the executable program to be named dyn_sql. Without the -o option, the name of the

executable program defaults to a.out.

Guide to the dyn_sql.ec file

===
1. /*
2. This program prompts the user to enter a SELECT statement
3. for the stores7 database. It processes the statement using
 dynamic sql
4. and system descriptor areas and displays the rows returned by the
5. database server.
6. */
7. #include <stdio.h>
8. #include <stdlib.h>
9. #include <ctype.h>
10. EXEC SQL include sqltypes;
11. EXEC SQL include locator;
12. EXEC SQL include datetime;
13. EXEC SQL include decimal;
14. #define WARNNOTIFY 1
15. #define NOWARNNOTIFY 0
16. #define LCASE(c) (isupper(c) ? tolower(c) : (c))
17. #define BUFFSZ 256
18. extern char statement[80];
===

Lines 7 - 13

These lines specify C and Informix® ESQL/C files to include in the program. The stdio.h file enables dyn_sql to use the

standard C I/O library. The stdlib.h file contains string-to-number conversion functions, memory allocation functions, and

other miscellaneous standard library functions. The ctypes.h file contains macros that check the attributes of a character.

For example, one macro determines whether a character is uppercase or lowercase.

The sqltypes.h header file contains symbolic constants that correspond to the data types that are found in Informix®

databases. The program uses these constants to determine the data types of columns that the dynamic SELECT statement

returns.

The locator.h file contains the definition of the locator structure (ifx_loc_t), which is the type of host variable needed for

TEXT and BYTE columns. The datetime.h file contains definitions of the datetime and interval structures, which are the

data types of host variables for DATETIME and INTERVAL columns. The decimal.h file contains the definition of the dec_t

structure, which is the type of host variable needed for DECIMAL columns.

507

HCL Informix 14.10 - ESQL/C Programmer’s Guide

508

Lines 14 - 17

The exp_chk() exception-handling function uses the WARNNOTIFY and NOWARNNOTIFY constants (lines 14 and 15).

The second argument of exp_chk() tells the function to display information in the SQLSTATE and SQLCODE variables for

warnings (WARNNOTIFY) or not to display information for warnings (NOWARNNOTIFY). The exp_chk() function is in the

exp_chk.ec source file. For a description, see Guide to the exp_chk.ec file on page 309.

Line 16 defines LCASE, a macro that converts an uppercase character to a lowercase character. Line 17 defines BUFFSZ to

be the number 256. The program uses BUFFSZ to specify the size of arrays that store input from the user.

Line 18

Line 18 declares statement as an external global variable to hold the name of the last SQL statement that the program asked

the database server to execute. The exception-handling functions use this information. (See lines 399 - 406.)

===
19. EXEC SQL BEGIN DECLARE SECTION;
20. ifx_loc_t lcat_descr;
21. ifx_loc_t lcat_picture;
22. EXEC SQL END DECLARE SECTION;
23. mint whenexp_chk();
24. main(argc, argv)
25. mint argc;
26. char *argv[];
27. {
28. int4 ret, getrow();
29. short data_found = 0;
30. EXEC SQL BEGIN DECLARE SECTION;
31. char ans[BUFFSZ], db_name[30];
32. char name[40];
33. mint sel_cnt, i;
34. short type;
35. EXEC SQL END DECLARE SECTION;
36. printf("DYN_SQL Sample ESQL Program running.\n\n");
37. EXEC SQL whenever sqlerror call whenexp_chk;
38. if (argc > 2) /* correct no. of args? */
39. {
40. printf("\nUsage: %s [database]\nIncorrect no. of
 argument(s)\n",
41. argv[0]);
42. printf("\nDYN_SQL Sample Program over.\n\n");
43. exit(1);
44. }
45. strcpy(db_name, "stores7");
46. if(argc == 2)
47. strcpy(db_name, argv[1]);
48. sprintf(statement,"CONNECT TO %s",db_name);
49. EXEC SQL connect to :db_name;
50. printf("Connected to %s\n", db_name);
51. ++argv;
===

Chapter 1. ESQL/C Guide

Lines 19 - 23

Lines 19 - 23 define the global host variables that are used in SQL statements. Lines 20 and 21 define the locator

structures that are the host variables for the cat_descr and cat_picture columns of the catalog table. Line 23 declares the

whenexp_chk() function, which the program calls when an error occurs on an SQL statement.

Lines 24 - 27

The main() function is the point where the program begins to execute. The argc parameter gives the number of arguments

from the command line when the program was invoked. The argv parameter is an array of pointers to command-line

arguments. This program expects only one argument (the name of the database to be accessed), and it is optional.

Lines 28 - 51

Line 28 defines an int4 data type (ret) to receive a return value from the getrow() function. Line 28 also declares that the

getrow function returns a int4 data type. Lines 30 - 35 define the host variables that are local to the main() program block.

Line 37 executes the WHENEVER statement to transfer control to whenexp_chk() if any errors occur in SQL statements. For

more information about the whenexp_chk() function, see Guide to the exp_chk.ec file on page 309.

Lines 38 - 51 establish a connection to a database. If argc equals 2, the program assumes that the user entered a database

name on the command line (by convention the first argument is the name of the program), and the program opens this

database. If the user did not enter a database name on the command line, the program opens the stores7 database (see

line 45), which is the default. In both cases, the program connects to the default database server that is specified by the

INFORMIXSERVER environment variable because no database server is specified.

===
52. while(1)
53. {
54. /* prompt for SELECT statement */
55. printf("\nEnter a SELECT statement for the %s database",
56. db_name);
57. printf("\n\t(e.g. select * from customer;)\n");
58. printf("\tOR a ';' to terminate program:\n>> ");
59. if(!getans(ans, BUFFSZ))
60. continue;
61. if (*ans == ';')
62. {
63. strcpy(statement, "DISCONNECT");
64. EXEC SQL disconnect current;
65. printf("\nDYN_SQL Sample Program over.\n\n");
66. exit(1);
67. }
68. /* prepare statement id */
69. printf("\nPreparing statement (%s)...\n", ans);
70. strcpy(statement, "PREPARE sel_id");
71. EXEC SQL prepare sel_id from :ans;
72. /* declare cursor */
73. printf("Declaring cursor 'sel_curs' for SELECT...\n");
74. strcpy(statement, "DECLARE sel_curs");
75. EXEC SQL declare sel_curs cursor for sel_id;
76. /* allocate descriptor area */
77. printf("Allocating system-descriptor area...\n");

509

HCL Informix 14.10 - ESQL/C Programmer’s Guide

510

78. strcpy(statement, "ALLOCATE DESCRIPTOR selcat");
79. EXEC SQL allocate descriptor 'selcat';
80. /* Ask the database server to describe the statement */
81. printf("Describing prepared SELECT...\n");
82. strcpy(statement,
83. "DESCRIBE sel_id USING SQL DESCRIPTOR selcat");
84. EXEC SQL describe sel_id using sql descriptor 'selcat';
85. if (SQLCODE != 0)
86. {
87. printf("** Statement is not a SELECT.\n");
88. free_stuff();
89. strcpy(statement, "DISCONNECT");
90. EXEC SQL disconnect current;
91. printf("\nDYN_SQL Sample Program over.\n\n");
92. exit(1);
93. }
===

Lines 52 - 67

The while(1) on line 52 begins a loop that continues to the end of the main() function. Lines 55 - 58 prompt the user to enter

either a SELECT statement or, to terminate the program, a semicolon. The getans() function receives the input from the user.

If the first character is not a semicolon, the program continues to process the input.

Lines 68 - 75

The PREPARE statement prepares the SELECT statement (which the user enters) from the array ans[] and assigns it the

statement identifier sel_id. The PREPARE statement enables the database server to parse, validate, and generate an

execution plan for the statement.

The DECLARE statement (lines 72 - 75) creates the sel_curs cursor for the set of rows that the SELECT statement returns, in

case it returns more than one row.

Lines 76 - 79

The ALLOCATE DESCRIPTOR statement allocates the selcat system-descriptor area in memory. The statement does not

include the WITH MAX clause and, therefore, uses the default memory allocation, which is for 100 columns.

Lines 80 - 93

The DESCRIBE statement obtains information from the database server about the statement that is in the sel_id statement

identifier. The database server returns the information in the selcat system-descriptor area, which the preceding ALLOCATE

DESCRIPTOR statement creates. The information that DESCRIBE puts into the system-descriptor area includes the number,

names, data types, and lengths of the columns in the select list.

The DESCRIBE statement also sets the SQLCODE variable to a number that indicates the type of statement that was

described. To check whether the statement type is SELECT, line 85 compares the value of SQLCODE to 0 (the value defined in

the sqlstypes.h file for a SELECT statement with no INTO TEMP clause). If the statement is not a SELECT, line 87 displays

a message to that effect and the program frees the cursor and the resources that have been allocated. Then it closes the

connection and exits.

Chapter 1. ESQL/C Guide

===
94. /* Determine the number of columns in the select list */
95. printf("Getting number of described values from ");
96. printf("system-descriptor area...\n");
97. strcpy(statement, "GET DESCRIPTOR selcat: COUNT field");
98. EXEC SQL get descriptor 'selcat' :sel_cnt = COUNT;
99. /* open cursor; process select statement */
100. printf("Opening cursor 'sel_curs'...\n");
101. strcpy(statement, "OPEN sel_curs");
102. EXEC SQL open sel_curs;
103. /*
104. * The following loop checks whether the cat_picture or
105. * cat_descr columns are described in the system-descriptor area.
106. * If so, it initializes a locator structure to read the simple
107. * large-object data into memory and sets the address of the
108. * locator structure in the system-descriptor area.
109. */
110. for(i = 1; i <= sel_cnt; i++)
111. {
112. strcpy(statement,
113. "GET DESCRIPTOR selcat: TYPE, NAME fields");
114. EXEC SQL get descriptor 'selcat' VALUE :i
115. :type = TYPE,
116. :name = NAME;
117. if (type == SQLTEXT && !strncmp(name, "cat_descr",
118. strlen("cat_descr")))
119. {
120. lcat_descr.loc_loctype = LOCMEMORY;
121. lcat_descr.loc_bufsize = -1;
122. lcat_descr.loc_oflags = 0;
123. strcpy(statement, "SET DESCRIPTOR selcat: DATA field");
124. EXEC SQL set descriptor 'selcat' VALUE :i
125. DATA = :lcat_descr;
126. }
127. if (type == SQLBYTES && !strncmp(name, "cat_picture",
128. strlen("cat_picture")))
129. {
130. lcat_picture.loc_loctype = LOCMEMORY;
131. lcat_picture.loc_bufsize = -1;
132. lcat_picture.loc_oflags = 0;
133. strcpy(statement, "SET DESCRIPTOR selcat: DATA field");
134. EXEC SQL set descriptor 'selcat' VALUE :i
135. DATA = :lcat_picture;
136. }
137. }
===

Lines 94 - 98

The GET DESCRIPTOR statement retrieves the COUNT value from the selcat system-descriptor area. The COUNT value

indicates how many columns are described in the system-descriptor area.

Lines 99 - 102

The OPEN statement begins execution of the dynamic SELECT statement and activates the sel_curs cursor for the set of

rows that it returns.

511

HCL Informix 14.10 - ESQL/C Programmer’s Guide

512

Lines 114 - 137

This section of the code uses the GET DESCRIPTOR statement to determine whether the simple large-object columns from

the catalog table (cat_descr and cat_picture) are included in the select list. If you dynamically select a simple large-object

column, you must set the address of a locator structure into the DATA field of the item descriptor to tell the database server

where to return the locator structure.

First, however, the program initializes the locator structure, as follows:

• The data is returned in a memory buffer (loc_loctype = LOCMEMORY).

• The database server allocates the memory buffer (loc_bufsize = -1).

Then the program uses the SET DESCRIPTOR statement to load the address of the locator structure into the DATA field of the

descriptor area.

For more information about how to work with the TEXT and BYTE data types, see Simple large objects on page 135.

===
138. while(ret = getrow("selcat")) /* fetch a row */
139. {
140. data_found = 1;
141. if (ret < 0)
142. {
143. strcpy(statement, "DISCONNECT");
144. EXEC SQL disconnect current;
145. printf("\nDYN_SQL Sample Program over.\n\n");
146. exit(1);
147. }
148. disp_data(sel_cnt, "selcat"); /* display the data */
149. }
150. if (!data_found)
151. printf("** No matching rows found.\n");
152. free_stuff();
153. if (!more_to_do()) /* More to do? */
154. break; /* no, terminate loop */
155. }
156. }
157. /* fetch the next row for selected items */
158. int4 getrow(sysdesc)
159. EXEC SQL BEGIN DECLARE SECTION;
160. PARAMETER char *sysdesc;
161. EXEC SQL END DECLARE SECTION;
162. {
163. int4 exp_chk();
164. sprintf(statement, "FETCH %s", sysdesc);
165. EXEC SQL fetch sel_curs using sql descriptor :sysdesc;
166. return((exp_chk(statement)) == 100 ? 0 : 1);
167. }
===

Chapter 1. ESQL/C Guide

Lines 138 - 149

The getrow() function retrieves the selected rows one by one. Each iteration of the while loop retrieves one row, which the

program then processes with the disp_data() function (line 148). When all the rows are retrieved, getrow() returns a 0 (zero)

and the while loop terminates. For more information about the getrow() function, see Lines 157 - 167 on page 513.

Line 152

The free_stuff() function frees resources that were allocated when the dynamic SELECT statement was processed. See Lines

381 - 387 on page 518.

Lines 153 - 156

When all the selected rows are processed, the program calls the more_to_do() function, which asks whether the user would

like to process more SELECT statements. If the answer is no, more_to_do() returns 0 and the break statement terminates the

while loop that began on line 52. If the answer is yes, the program begins the next iteration of the while statement on line 52

to accept and process another SELECT statement.

Lines 157 - 167

The getrow() function moves the cursor to and then fetches the next row in the set of rows that are returned by the dynamic

SELECT statement. It fetches the row values into the system-descriptor area that is specified in the sysdesc variable. If

there are no more rows to fetch (exp_chk() returns 100), getrow() returns 0. If the FETCH encounters a runtime error, getrow()

returns 1.

===
168. {/*
169. * This function loads a column into a host variable of the correct
170. * type and displays the name of the column and the value, unless
 * the
171. * value is NULL.
172. disp_data(col_cnt, sysdesc)
173. */
174. mint col_cnt;
175. EXEC SQL BEGIN DECLARE SECTION;
176. PARAMETER char *sysdesc;
177. EXEC SQL END DECLARE SECTION;
178. EXEC SQL BEGIN DECLARE SECTION;
179. mint int_data, i;
180. char *char_data;
181. int4 date_data;
182. datetime dt_data;
183. interval intvl_data;
184. decimal dec_data;
185. short short_data;
186. char name[40];
187. short char_len, type, ind;
188. EXEC SQL END DECLARE SECTION;
189. int4 size;
190. unsigned amount;
191. mint x;
192. char shdesc[81], str[40], *p;

513

HCL Informix 14.10 - ESQL/C Programmer’s Guide

514

193. printf("\n\n");
194. /* For each column described in the system descriptor area,
195. * determine its data type. Then retrieve the column name and its
196. * value, storing the value in a host variable defined for the
197. * particular data type. If the column is not NULL, display the
198. * name and value.
199. */
200. for(i = 1; i <= col_cnt; i++)
201. {
202. strcpy(statement, "GET DESCRIPTOR: TYPE field");
203. EXEC SQL get descriptor :sysdesc VALUE :i
204. :type = TYPE;
205. switch(type)
206. {
207. case SQLSERIAL:
208. case SQLINT:
209. strcpy(statement,
210. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
211. EXEC SQL get descriptor :sysdesc VALUE :i
212. :name = NAME,
213. ind = INDICATOR,
214. :int_data = DATA;
215. if(ind == -1)
216. printf("\n%.20s: NULL", name);
217. else
218. printf("\n%.20s: %d", name, int_data);
219. break;
220. case SQLSMINT:
221. strcpy(statement,
222. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
223. EXEC SQL get descriptor :sysdesc VALUE :i
224. :name = NAME,
225. :ind = INDICATOR,
226. :short_data = DATA;
227. if(ind == -1)
228. printf("\n%.20s: NULL", name);
229. else
230. printf("\n%.20s: %d", name, short_data);
231. break;
232. case SQLDECIMAL:
233. case SQLMONEY:
234. strcpy(statement,
235. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
236. EXEC SQL get descriptor :sysdesc VALUE :i
237. :name = NAME,
238. :ind = INDICATOR,
239. :dec_data = DATA;
240. if(ind == -1)
241. printf("\n%.20s: NULL", name);
242. else
243. {
244. if(type == SQLDECIMAL)
245. rfmtdec(&dec_data, "###,###,###.##", str);
246. else
247. rfmtdec(&dec_data, "$$$,$$$,$$$.$$", str);
248. printf("\n%.20s: %s", name, str);
249. }
250. break;

Chapter 1. ESQL/C Guide

251. case SQLDATE:
252. strcpy(statement,
253. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
254. EXEC SQL get descriptor :sysdesc VALUE :i
255. :name = NAME,
256. :ind = INDICATOR,
257. :date_data = DATA;
258. if(ind == -1)
259. printf("\n%.20s: NULL", name);
260. else
261. {
262. if((x = rfmtdate(date_data, "mmm. dd, yyyy",
263. str)) < 0)
264. printf("\ndisp_data() - DATE - fmt error");
265. else
266. printf("\n%.20s: %s", name, str);
267. }
268. break;
269. case SQLDTIME:
270. strcpy(statement,
271. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
272. EXEC SQL get descriptor :sysdesc VALUE :i
273. :name = NAME,
274. :ind = INDICATOR,
275. :dt_data = DATA;
276. if(ind == -1)
277. printf("\n%.20s: NULL", name);
278. else
279. {
280. x = dttofmtasc(&dt_data, str, sizeof(str), 0);
281. printf("\n%.20s: %s", name, str);
282. }
283. break;
284. case SQLINTERVAL:
285. strcpy(statement,
286. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
287. EXEC SQL get descriptor :sysdesc VALUE :i
288. :name = NAME,
289. :ind = INDICATOR,
290. :intvl_data = DATA;
291. if(ind == -1)
292. printf("\n%.20s: NULL", name);
293. else
294. {
295. if((x = intofmtasc(&intvl_data, str,
296. sizeof(str),
297. "%3d days, %2H hours, %2M minutes"))
298. < 0)
299. printf("\nINTRVL - fmt error %d", x);
300. else
301. printf("\n%.20s: %s", name, str);
302. }
303. break;
304. case SQLVCHAR:
305. case SQLCHAR:
306. strcpy(statement,
307. "GET DESCRIPTOR: LENGTH, NAME fields");
308. EXEC SQL get descriptor :sysdesc VALUE :i

515

HCL Informix 14.10 - ESQL/C Programmer’s Guide

516

309. :char_len = LENGTH,
310. :name = NAME;
311. amount = char_len;
312. if(char_data = (char *)(malloc(amount + 1)))
313. {
314. strcpy(statement,
315. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
316. EXEC SQL get descriptor :sysdesc VALUE :i
317. :char_data = DATA,
318. :ind = INDICATOR;
319. if(ind == -1)
320. printf("\n%.20s: NULL", name);
321. else
322. printf("\n%.20s: %s", name, char_data);
323. }
324. else
325. {
326. printf("\n%.20s: ", name);
327. printf("Can't display: out of memory");
328. }
329. break;
330. case SQLTEXT:
331. strcpy (statement,
332. "GET DESCRIPTOR: NAME, INDICATOR, DATA fields");
333. EXEC SQL get descriptor :sysdesc VALUE :i
334. :name = NAME,
335. :ind = INDICATOR,
336. :lcat_descr = DATA;
337. size = lcat_descr.loc_size; /* get size of data */
338. printf("\n%.20s: ", name);
339. if(ind == -1)
340. {
341. printf("NULL");
342. break;
343. }
344. p = lcat_descr.loc_buffer; /* set p to buf addr */
345. /* print buffer 80 characters at a time */
346. while(size >= 80)
347. {
348. /* mv from buffer to shdesc */
349. ldchar(p, 80, shdesc);
350. printf("\n%80s", shdesc); /* display it */
351. size -= 80; /* decrement length */
352. p += 80; /* bump p by 80 */
353. }
354. strncpy(shdesc, p, size);
355. shdesc[size] = '\0';
356. printf("%-s\n", shdesc); /* dsply last segment */
357. break;
358. case SQLBYTES:
359. strcpy (statement,
360. "GET DESCRIPTOR: NAME, INDICATOR fields");
361. EXEC SQL get descriptor :sysdesc VALUE :i
362. :name = NAME,
363. :ind = INDICATOR;
364. if(ind == -1)
365. printf("%.20s: NULL", name);
366. else

Chapter 1. ESQL/C Guide

367. {
368. printf("%.20s: ", name);
369. printf("Can't display BYTE type value");
370. }
371. break;
372. default:
373. printf("\nUnexpected data type: %d", type);
374. EXEC SQL disconnect current;
375. printf("\nDYN_SQL Sample Program over.\n\n");
376. exit(1);
377. }
378. }
379. printf("\n");
380.}
===

Lines 168 - 380

The disp_data() function displays the values that are stored in each row that the SELECT statement returns. The function

must be able to receive and process any data type within the scope of the dynamic SELECT statement (in this case, any

column within the stores7 database). This function accepts two arguments: col_cnt contains the number of columns that

are contained in the system-descriptor area, and sysdesc contains the name of the system-descriptor area that contains the

column information. This second argument must be declared with the PARAMETER keyword because the argument is used

in the FETCH statement.

The disp_data() function first defines host variables for each of the data types that are found in the stores7 database

(lines 178 - 188), except for the locator structures that have been globally defined already for the cat_descr and cat_picture

columns of the catalog table (lines 19 - 22).

For each column that is described in the system-descriptor area, disp_data() retrieves its data type with a GET DESCRIPTOR

statement. Next, disp_data()executes a switch on that data type and, for each type (column), it executes another GET

DESCRIPTOR statement to retrieve the name of the column, the indicator flag, and the data. Unless the column is null,

disp_data() moves the column data from the DATA field of the system-descriptor area to a corresponding host variable. Then

it displays the column name and the content of the host variable.

The disp_data() function uses the symbolic constants defined in sqltypes.h to compare data types. It also uses the

Informix® ESQL/C library functions rfmtdec(), rfmtdate(), dttofmtasc(), and intofmtosc() to format the DECIMAL and MONEY,

DATE, DATETIME, and INTERVAL data types for display.

For the TEXT and BYTE data types, you can retrieve the value of the column with the following two-stage process, because

the database server returns a locator structure rather than the data:

• The GET DESCRIPTOR statement (lines 333 and 361) retrieves the locator structure from the system-descriptor area

and moves it to the ifx_loc_t host variable.

• The disp_data() function obtains the address of the data buffer from the locator structure, in loc_buffer, and retrieves

the data from there.

Regarding the BYTE data type, for the sake of brevity disp_data() retrieves the locator structure but does not display the data.

For an example of the type of logic required to display a BYTE column, see Guide to the dispcat_pic.ec File on page 168.

517

HCL Informix 14.10 - ESQL/C Programmer’s Guide

518

===
381. free_stuff()
382. {
383. EXEC SQL free sel_id; /* free resources for statement */
384. EXEC SQL free sel_curs; /* free resources for cursor */
385. /* free system descriptor area */
386. EXEC SQL deallocate descriptor 'selcat';
387. }
388. /*
389. * The inpfuncs.c file contains the following functions used in
 * this
390. * program:
391. * more_to_do() - asks the user to enter 'y' or 'n' to indicate
392. * whether to run the main program loop again.
393. *
394. * getans(ans, len) - accepts user input, up to 'len' number of
395. * characters and puts it in 'ans'
396. */
397. #include "inpfuncs.c"
398. /*
399 * The exp_chk.ec file contains the exception handling functions to
400. * check the SQLSTATE status variable to see if an error has
 * occurred
401. * following an SQL statement. If a warning or an error has
402. * occurred, exp_chk() executes the GET DIAGNOSTICS statement and
403. * displays the detail for each exception that is returned.
404. */
405. EXEC SQL include exp_chk.ec;
===

Lines 381 - 387

The free_stuff() function frees resources that were allocated to process the dynamic statement. Line 383 frees resources

that were allocated by the application when it prepared the dynamic SELECT statement. Line 384 releases resources

allocated by the database server to process the sel_curs cursor. The DEALLOCATE DESCRIPTOR statement releases the

memory allocated for the selcat system-descriptor area and its associated data areas.

Lines 388 - 397

Several of the Informix® ESQL/C demonstration programs also call the more_to_do() and getans() functions. Therefore,

these functions are also broken out into a separate C source file and included in the appropriate demonstration program.

Neither of these functions contain Informix® ESQL/C, so the program can use the C #include preprocessor statement to

include the file. For a description of these functions, see Guide to the inpfuncs.c file on page 176.

Lines 398 - 405

As a result of the WHENEVER statement on line 37, the whenexp_chk() function is called if an error occurs during the

execution of an SQL statement. The whenexp_chk() function examines the SQLSTATE status variable to determine the

outcome of an SQL statement. Because several demonstration programs use this function with the WHENEVER statement

for exception handling, the whenexp_chk() function and its supporting functions have been broken out into a separate

exp_chk.ec source file. The dyn_sql program must include this file with the Informix® ESQL/C include directive because

Chapter 1. ESQL/C Guide

the exception-handling functions use Informix® ESQL/C statements. The exp_chk.ec source file is described in Exception

handling on page 276.

Tip: In a production environment, you would put functions such as more_to_do(), getans(), and whenexp_chk() into a

library and include them on the command line when you compile the Informix® ESQL/C program.

An sqlda structure
An sqlda structure is a dynamic-management structure that can hold data that is either returned from or sent to the database

server by a prepared statement. It is a C structure defined in the sqlda.h header file.

Important: The sqlda structure does not conform to the X/Open standards. It is the HCL Informix® extension to

Informix® ESQL/C.

These topics describe the following information about how to use an sqlda structure:

• Using an sqlda structure to hold unknown values

• Managing an sqlda structure

• Using an sqlda structure to handle unknown values in dynamic SQL statements

Manage an sqlda structure

Your Informix® ESQL/C program can manipulate an sqlda structure with the SQL statements that the following tables

summarize.

Table 89. SQL statements that can be used to manipulate an sqlda structure

SQL Statement Purpose See

DESCRIBE...INTO Allocates an sqlda structure and initializes this structure with

information about column-list columns

Allocate memory

for the sqlda

structure on

page 521

Initialize the sqlda

structure on

page 521

Table 90. SQL statements that can be used to manipulate an sqlda structure: SELECT and EXECUTE FUNCTION statements

that use cursors

SQL Statement Purpose See

OPEN...USING DESCRIPTOR

FETCH...USING DESCRIPTOR

Takes any input parameters from the specified sqlda

structure

Specify input

parameter values

on page 527

519

HCL Informix 14.10 - ESQL/C Programmer’s Guide

520

Table 90. SQL statements that can be used to manipulate an sqlda structure: SELECT and EXECUTE FUNCTION statements

that use cursors (continued)

SQL Statement Purpose See

Puts the contents of the row into the sqlda structure Put column values

into an sqlda

structure on

page 527

Table 91. SQL statements that can be used to manipulate an sqlda structure: SELECT and EXECUTE FUNCTION statements

that return only one row

SQL Statement Purpose See

EXECUTE...INTO DESCRIPTOR Puts the contents of the singleton row into the sqlda structure Put column values

into an sqlda

structure on

page 527

Table 92. SQL statements that can be used to manipulate an sqlda structure: non-SELECT statements

SQL Statement Purpose See

EXECUTE...USING DESCRIPTOR Takes any input parameters from the specified sqlda

structure

Specify input

parameter values

on page 527

Table 93. SQL statements that can be used to manipulate an sqlda structure: an INSERT statement that uses an insert

cursor

SQL Statement Purpose See

PUT...USING DESCRIPTOR Puts a row into the insert buffer after it obtains the column

values from the specified sqlda structure

Handling an

unknown column

list on page 538

In addition, your IBM® Informix® ESQL/C program can manage an sqlda structure in the following ways:

• Declare a variable pointer to an sqlda structure.

• Assign values to the sqlda fields to provide the database server with missing column information.

• Obtain information from the sqlda fields to access column information that is received from the database server.

• Free the memory allocated to the sqlda structure when your program is finished with it.

Define an sqlda structure
The IBM® Informix® ESQL/C sqlda.h header file defines the sqlda structure.

Chapter 1. ESQL/C Guide

To define an sqlda structure, the Informix® ESQL/C program must take the following actions:

• Include the sqlda.h header file to provide the declaration for sqlda in your program

The Informix® ESQL/C preprocessor automatically includes the sqlhdr.h file, which includes the sqlda.h header

file.

• Declare a variable name as a pointer to the sqlda structure

The following line of code declares the da_ptr variable as an sqlda pointer:

struct sqlda *da_ptr;

Important: The pointer to an sqlda structure is not the Informix® ESQL/C host variable. Therefore, you do not need

to precede the statement declaration with either the keywords EXEC SQL or a dollar ($) symbol. Furthermore, in the

program blocks you do not precede any references to the pointer with a colon (:) or a dollar ($) symbol.

Allocate memory for the sqlda structure

After you define a host variable as a pointer to an sqlda structure, you must ensure that memory is allocated for all parts of

this structure, as follows:

• To allocate memory for the sqlda structure itself, use the DESCRIBE...INTO statement.

The following DESCRIBE statement obtains information about the prepared statement st_id, allocates memory for an

sqlda structure, and puts the address of the sqlda structure in the pointer da_ptr:

EXEC SQL describe st_id into da_ptr;

• To allocate memory for the sqlvar_struct structures, take the following actions:

◦ If the prepared statement is a SELECT (with no INTO TEMP clause), INSERT, or EXECUTE FUNCTION

statement, the DESCRIBE...INTO statement can allocate space for sqlvar_struct structures.

◦ If some other SQL statement was prepared and you need to send or receive columns in the database server,

your program must allocate space for the sqlvar_struct structures.

• To allocate memory for the data of the sqldata fields, make sure that you align the data types with proper word

boundaries.

If you use the sqlda structure to define input parameters, you cannot use a DESCRIBE statement. Therefore, your program

must explicitly allocate memory for both the sqlda structure and the sqlvar_struct structures.

Initialize the sqlda structure

To send or receive column values in the database, your Informix® ESQL/C program must initialize the sqlda structure so that

it describes the unknown columns of the prepared statement.

To initialize the sqlda structure, you must perform the following steps:

521

HCL Informix 14.10 - ESQL/C Programmer’s Guide

522

• Set the sqlvar field to the address of the initialized sqlvar_struct structures.

• Set the sqld field to indicate the number of unknown columns (and associated sqlvar_struct structures).

In addition to allocating memory for the sqlda structure (see Allocate memory for the sqlda structure on page 521), the

DESCRIBE...INTO statement also initializes this structure with information about the prepared statement. The information

that DESCRIBE...INTO can provide depends on which SQL statement it has described.

If the prepared statement is a SELECT (with no INTO TEMP clause), INSERT, or EXECUTE FUNCTION statement, the

DESCRIBE...INTO statement can determine information about columns in the column list. Therefore, the DESCRIBE...INTO

statement takes the following actions to initialize an sqlda structure:

• It allocates memory for the sqlda structure. For more information, see Allocate memory for the sqlda structure on

page 521.

• It sets the sqlda.sqld field, which contains the number of sqlvar_struct structures initialized with data. This value is

the number of columns and expressions in the column list (SELECT and INSERT) or the number of returned values

(EXECUTE FUNCTION).

• It allocates memory for component sqlvar_struct structures, one sqlvar_struct structure for each column or

expression in the column list (SELECT and INSERT) or for each of the returned values (EXECUTE FUNCTION).

• It sets the sqlda.sqlvar field to the initial address of the memory that DESCRIBE allocates for the sqlvar_struct

structures.

• It describes each unknown column in the prepared SELECT (without an INTO TEMP), EXECUTE FUNCTION, or INSERT

statement. The DESCRIBE...INTO statement initializes the fields of the sqlvar_struct structure for each column, as

follows:

◦ It initializes the sqltype, sqllen, and sqlname fields (for CHAR type data or for the qualifier of DATETIME or

INTERVAL data) to provide information from the database about the column.

For most data types, the sqllen field holds the length, in bytes, of the column. If the column is a collection type

(SET, MULTISET, or LIST), a row type (named or unnamed), or an opaque type, the sqllen field is zero.

◦ It initializes the sqldata and sqlind fields to null.

For descriptions of these fields, see Table 79: Fields in the sqlvar_struct structure on page 444.

Important: Unlike with a system-descriptor area, DESCRIBE with an sqlda pointer does not allocate memory for the

column data (the sqldata fields). Before your program receives column values from the database server, it must

allocate this data space.

For more information, see Allocate memory for column data on page 524.

The DESCRIBE statement provides information about the columns of a column list. Therefore, you usually use

DESCRIBE...INTO after a SELECT (without an INTO TEMP clause), INSERT, or EXECUTE FUNCTION statement was prepared.

The DESCRIBE...INTO statement not only initializes the sqlda structure, but also returns the type of SQL statement prepared.

For more information, see Determine the statement type on page 447.

Chapter 1. ESQL/C Guide

The following DESCRIBE statement also allocates memory for an sqlda structure and for two sqlvar_struct data structures

(one for the customer_num column and another for the company column) and then initializes the pointer da_ptr->sqlvar with

the initial address of the memory that is allocated to the sqlvar_struct structure:

EXEC SQL prepare st_id
 'select customer_num, company from customer
 where customer_num = ?';
EXEC SQL describe st_id into da_ptr;

The preceding DESCRIBE...INTO statement returns an SQLCODE value of 0 to indicate that the prepared statement was a

SELECT statement.

The following figure shows a sample sqlda structure that this DESCRIBE...INTO statement might initialize.

Figure 85. Sample sqlda Structure for Two Columns

If some other SQL statement was prepared, the DESCRIBE...INTO statement cannot initialize the sqlda structure. To send or

receive column values in the database, your program must perform this initialization explicitly, as follows:

• Allocate memory for component sqlvar_struct structures, one sqlvar_struct structure for each column.

You can use system memory-allocation functions such as malloc() or calloc() and assign the address to sqlvar, as

follows:

da_ptr->sqlvar = (struct sqlvar_struct *)
 calloc(count, sizeof(struct sqlvar_struct));

• Perform the following tasks to describe each unknown column:

523

HCL Informix 14.10 - ESQL/C Programmer’s Guide

524

◦ Set the sqlda.sqld field, which contains the number of sqlvar_struct structures initialized with data. This value

is the number of unknown columns in the prepared statement.

◦ Initialize the fields of each sqlvar_struct structure.

Set the sqltype, sqllen, and sqlname fields (for CHAR type data or for the qualifier for DATETIME or INTERVAL

data) to provide information about a column to the database server.

To provide the column data, your program must also allocate space for this data and set the sqldata field of each

sqlvar_struct structure to the appropriate location within this space. For more information, see Allocate memory

for column data on page 524. If you send column data to the database server, be sure to set the sqlind field

appropriately.

If you use the sqlda structure to define input parameters, you cannot use a DESCRIBE statement to initialize the sqlda

structure. Your code must explicitly set the appropriate fields of the sqlda structure to define the input parameters. (See

Specify input parameter values on page 527.)

Allocate memory for column data

The sqlda structure stores a pointer to the data for each column in the sqldata field of an sqlvar_struct structure. Unlike

the DESCRIBE...USING SQL DESCRIPTOR statement, the DESCRIBE...INTO statement does not allocate memory for this

data. When the DESCRIBE...INTO statement allocates memory for the sqlda pointer, it initializes the sqldata fields of each

sqlvar_struct structure to null.

To send or receive column data in the database, your IBM® Informix® ESQL/C program must perform the following tasks:

• Allocate memory for the column data.

• Set the sqldata field for the sqlvar_struct structure associated with the column to the address of the memory

allocated for the column data.

To allocate memory for the sqldata fields, you can use a system memory-allocation function such as malloc() or

calloc(). As an alternative to the malloc() system memory-allocation function, your program can declare a static

character buffer for the data buffer. The following figure shows a code fragment that allocates column data from a static

character buffer called data_buff.

Chapter 1. ESQL/C Guide

Figure 86. Allocating column data from a static character buffer

static char data_buff[1024];
struct sqlda *sql_descp;
struct sqlvar_struct * col_ptr;
short cnt, pos;
int size;
⋮;

for(col_ptr=sql_descp->sqlvar, cnt=pos=0; cnt < sql_descp->sqld;
 cnt++, col_ptr++)
 {
 pos = (short)rtypalign(pos, col_ptr->sqltype);
 col_ptr->sqldata = &data_buf[pos];
 size = rtypmsize(col_ptr->sqltype, col_ptr->sqllen);
 pos += size;
 }

You can replace the code fragment in Figure 86: Allocating column data from a static character buffer on page 525 with a

series of system memory-allocation calls within the for loop. However, system memory-allocation calls can be expensive so

it is often more efficient to have a single memory allocation and then align pointers into that memory area.

When you allocate the column data, make sure that the allocated memory is formatted for the column data type. This data

type is one of the Informix® ESQL/C or SQL data types defined in the sqltypes.h header file. (See Determine the data type

of a column on page 452.) Make the allocated memory large enough to accommodate the maximum size of the data in the

column.

You must also ensure that the data for each column begins on a proper word boundary in memory. On many hardware

platforms, integer and other numeric data types must begin on a word boundary. The C language memory-allocation routines

allocate memory that is suitably aligned for any data type, including structures, but the routines do not perform alignment for

the constituent components of the structure.

Using the proper word boundaries assures that data types are machine independent. To assist you in this task, Informix®

ESQL/C provides the following memory-management functions:

• The rtypalign() function returns the position of the next proper word boundary for a specified data type.

This function accepts two arguments: the current position in the data buffer and the integer Informix® ESQL/C or

SQL data type for which you want to allocate space.

• The rtypmsize() function returns the number of bytes of memory that you must allocate for the specified Informix®

ESQL/C or SQL data type.

This function accepts two arguments: the integer Informix® ESQL/C or SQL data type (in sqltype) and the length (in

sqllen) for each column value.

When you allocate memory for the DATETIME or INTERVAL data types, you can take any of the following actions to set the

qualifiers in the dtime_t and intrvl_t structures:

525

HCL Informix 14.10 - ESQL/C Programmer’s Guide

526

• Use the value that is in the associated sqllen field of sqlda.

• Compose a different qualifier with the values and macros that the datatime.h header file defines.

• Set the data type qualifier to 0 and have the database server set this qualifier during the fetch. For DATETIME values,

the data type qualifier is the dt_qual field of the dtime_t structure. For INTERVAL values, the data type qualifier is the

in_qual field of the intrvl_t structure.

For examples that allocate memory for the sqldata fields, see the demo3.ec and unload.ec demonstration programs that

are supplied with Informix® ESQL/C.

Assign and obtain values from an sqlda structure
When you use the sqlda structure with dynamic SQL, you must transfer information in and out of it with C-language

statements.

Assign values

To assign values to fields in the sqlda and sqlvar_struct structures, use regular C-language assignment to fields of the

appropriate structure. For example:

da_ptr->sqld = 1;
da_ptr->sqlvar[0].sqldata = compny_data;
da_ptr->sqlvar[0].sqltype = SQLCHAR; /* CHAR data type */
da_ptr->sqlvar[0].sqllen = 21; /* column is CHAR(20) */

Set sqlda fields to provide values for input parameters in a WHERE clause (Specify input parameter values on page 527) or

to modify the contents of a field after you use the DESCRIBE...INTO statement to fill the sqlda structure (Allocate memory for

column data on page 524).

Obtain values

To obtain values from the sqlda fields, you must also use regular C-language assignment from fields of the structure. For

example:

count = da_ptr->sqld;
/* Allow for the trailing null character in C character arrays */
if (da_ptr->sqlvar[0].sqltype == SQLCHAR)
 a_ptr->sqlvar[0].sqllen += 1;
/* Allocate a separate buffer per column */
da_ptr->sqlvar[0].sqldata = malloc(col_ptr->sqllen);

Typically, you obtain sqlda field values to examine descriptions of columns in a SELECT, INSERT, or EXECUTE FUNCTION

statement. You might also need to access these fields to copy a column value that is returned by the database server

from the sqlda structure into a host variable (Put column values into an sqlda structure on page 527). In the latter case,

you might need to change sqllen to account for the correct buffer length. For example, you must increment sqllen for a

CHAR data type. If you do not increment sqllen, the last character of the fetched data will be truncated because the FETCH

statement will assume that the sqllen value is the size of the buffer, and will use the last position in the buffer for the zero

termination of the string.

Chapter 1. ESQL/C Guide

The data type of the host variable must be compatible with the type of the associated field in the sqlda structure. When

you interpret the sqltype field, make sure that you use the data type values that match your environment. For some data

types, X/Open values differ from HCL Informix® values. For more information, see Determine the data type of a column on

page 452.

Specify input parameter values

Since the DESCRIBE...INTO statement does not analyze the WHERE clause, your program must explicitly allocate an sqlda

structure and the sqlvar_struct structures (see Allocate memory for the sqlda structure on page 521). To describe the

input parameters you must determine the number of input parameters and their data types and store this information in

the allocated sqlda structure. For general information about how to define input parameters dynamically, see Determine

unknown input parameters on page 456.

When you execute a parameterized statement, you must include the USING DESCRIPTOR clause to specify the sqlda

structure as the location of input parameter values, as follows:

• For input parameters in the WHERE clause of a SELECT statement, use the OPEN...USING DESCRIPTOR statement.

This statement handles a sequential, scrolling, hold, or update cursor. If you are certain that the SELECT returns

only one row, you can use the EXECUTE...INTO...USING SQL DESCRIPTOR statement instead of a cursor. For more

information, see Handling a parameterized SELECT statement on page 539.

• For input parameters in the WHERE clause of a non-SELECT statement such as DELETE or UPDATE, use the

EXECUTE...USING DESCRIPTOR statement. For more information, see Handling a parameterized UPDATE or DELETE

statement on page 547.

• For input parameters in the VALUES clause of an INSERT statement, use the EXECUTE...USING SQL DESCRIPTOR

statement. If the INSERT is associated with an insert cursor, use the PUT...USING DESCRIPTOR statement. For more

information, see Handling an unknown column list on page 538.

Put column values into an sqlda structure

When you create a SELECT statement dynamically, you cannot use the INTO host_var clause of FETCH because you

cannot name the host variables in the prepared statement. To fetch column values into an sqlda structure, use the USING

DESCRIPTOR clause of FETCH instead of the INTO clause. The FETCH...USING DESCRIPTOR statement puts each column

value into the sqldata field of its sqlvar_struct structure.

Using the FETCH...USING DESCRIPTOR statement assumes that a cursor is associated with the prepared statement. You

must always use a cursor for SELECT statements and cursor functions (EXECUTE FUNCTION statements that return multiple

rows). However, if either of these statements returns only one row, you can omit the cursor and retrieve the column values

into an sqlda structure with the EXECUTE...INTO DESCRIPTOR statement.

Important: If you execute a SELECT statement or user-defined function that returns more than one row and do not

associate the statement with a cursor, your program generates a runtime error. When you associate a singleton

SELECT (or EXECUTE FUNCTION) statement with a cursor, IBM® Informix® ESQL/C does not generate an error.

Therefore, it is a good practice always to associate a dynamic SELECT or EXECUTE FUNCTION statement with a

527

HCL Informix 14.10 - ESQL/C Programmer’s Guide

528

cursor and to use a FETCH...USING DESCRIPTOR statement to retrieve the column values from this cursor into the

sqlda structure.

Once the column values are in the sqlda structure, you can transfer the values from the sqldata fields to the appropriate host

variables. You must use the sqllen and sqltype fields to determine, at run time, the data types for the host variables. You

might need to perform data type or length conversions between the SQL data types in the sqltype fields and the Informix®

ESQL/C data types that are needed for host variables that hold the returned value.

Free memory allocated to an sqlda structure

Once you finish with an sqlda structure, free the associated memory. If you execute multiple DESCRIBE statements and

you neglect to free the memory allocated by these statements, your application might run into memory constraints and the

database server might exit.

If your application runs on a Windows™ operating system and uses the multi-threading library, use the IBM® Informix®

ESQL/C function SqlFreeMem() to release the memory that the sqlda structure occupies as in this example:

SqlFreeMem(sqlda_ptr, SQLDA_FREE);

Otherwise, use the standard C library free() function, as shown in this example:

free(sqlda_ptr);

If your Informix® ESQL/C program executes a DESCRIBE statement multiple times for the same prepared statement and

allocates a separate sqlda structure for each DESCRIBE, it must explicitly deallocate each sqlda structure. The following

figure shows an example.

Figure 87. Deallocating multiple sqlda structures for the same prepared statement

EXEC SQL prepare qid from 'select * from customer';
EXEC SQL describe qid into sqldaptr1;
EXEC SQL describe qid into sqldaptr2;
EXEC SQL describe qid into sqldaptr3;
⋮;

free(sqldaptr1);
free(sqldaptr2);
free(sqldaptr3);

If your program allocated space for column data, you must also deallocate the memory allocated to the sqldata fields.

An sqlda structure to execute SQL statements
Use an SQL descriptor-area (sqlda) structure to execute SQL statements that contain unknown values.

The following table summarizes the types of dynamic statements that covered in this section.

Chapter 1. ESQL/C Guide

Table 94. Using an sqlda structure to execute dynamic SQL statements

Purpose of the sqlda structure See

Holds select-list column values retrieved by a SELECT Handling an

unknown select

list on page 529

Holds returned values from user-defined functions Handling

unknown return

values on

page 535

Describes unknown columns in an INSERT Handling an

unknown column

list on page 538

Describes input parameters in the WHERE clause of a SELECT Handling a

parameterized

SELECT

statement on

page 539

Describes input parameters in the WHERE clause of a DELETE or UPDATE Handling a

parameterized

UPDATE

or DELETE

statement on

page 547

Handling an unknown select list

About this task

For an introduction on how to handle unknown columns in an unknown select list, see Handling an unknown select list on

page 455. This section describes how to use an sqlda structure to handle a SELECT statement.

To use an sqlda structure to handle unknown select-list columns:

1. Declare a variable to hold the address of an sqlda structure.

For more information, see Define an sqlda structure on page 520.

2. Prepare the SELECT statement (with the PREPARE statement) to give it a statement identifier.

The SELECT statement cannot include an INTO TEMP clause. For more information, see Assemble and prepare the

SQL statement on page 400.

3. Use the DESCRIBE...INTO statement to perform two tasks:

529

HCL Informix 14.10 - ESQL/C Programmer’s Guide

530

a. Allocate an sqlda structure.

The address of the allocated structure is stored in the sqlda pointer that you declare. For more information,

see Allocate memory for the sqlda structure on page 521.

b. Determine the number and data types of select-list columns.

The DESCRIBE statement fills an sqlvar_struct structure for each column of the select list. For more

information, see Initialize the sqlda structure on page 521.

4. Examine the sqltype and sqllen fields of sqlda for each select-list column to determine the amount of memory that is

required to allocate for the data.

For more information, see Allocate memory for column data on page 524.

5. Save the number of select-list columns stored in the sqld field in a host variable.

6. Declare and open a cursor and then use the FETCH...USING DESCRIPTOR statement to fetch column values, one row

at a time, into an allocated sqlda structure.

See Put column values into an sqlda structure on page 527.

7. Retrieve the row data from the sqlda structure into host variables with C-language statements that access the

sqldata field for each select-list column.

For more information, see Assign and obtain values from an sqlda structure on page 526.

8. Release memory allocated to the sqldata fields and the sqlda structure.

For more information, see Free memory allocated to an sqlda structure on page 528.

Results

Important: If the SELECT statement has input parameters of an unknown number and type in the WHERE clause, your

program must also handle these input parameters with an sqlda structure.

For more information, see Handling a parameterized SELECT statement on page 539.

Execute a SELECT that returns multiple rows

The demo3.ec sample program executes a dynamic SELECT statement with the following conditions:

• The SELECT returns more than one row.

The SELECT must be associated with a cursor, executed with the OPEN statement, and have its return values

retrieved with the FETCH...USING DESCRIPTOR statement.

• The SELECT has either no input parameters or no WHERE clause.

The OPEN statement does not need to include the USING clause.

• The SELECT has unknown columns in its select list.

The FETCH statement includes the USING DESCRIPTOR clause to store the return values in an sqlda structure.

Chapter 1. ESQL/C Guide

The demo3.ec sample program

The demo4 sample program (The demo4.ec sample program on page 487) assumes these same conditions. While demo4

uses a system-descriptor area to define the select-list columns, demo3 uses an sqlda structure. The demo3 program does

not perform exception handling.

==
1. #include <stdio.h>
2. EXEC SQL include sqlda;
3. EXEC SQL include sqltypes;
4. main()
5. {
6. struct sqlda *demo3_ptr;
7. struct sqlvar_struct *col_ptr;
8. static char data_buff[1024];
9. int pos, cnt, size;
10. EXEC SQL BEGIN DECLARE SECTION;
11. int2 i, desc_count;
12. char demoquery[80];
13. EXEC SQL END DECLARE SECTION;
14. printf("DEMO3 Sample ESQL program running.\n\n");
15. EXEC SQL connect to 'stores7';
===

Line 2

The program must include the IBM® Informix® ESQL/C sqlda.h header file to provide a definition for the sqlda structure.

Lines 6 - 13

Lines 6 and 7 declare sqlda variables that are needed by the program. The demo3_ptr variable points to the sqlda structure

that will hold the data that is fetched from the database. The col_ptr variable points to an sqlvar_struct structure so that the

code can step through each of the sqlvar_struct structures in the variable-length portion of sqlda. Neither of these variables

is declared as the Informix® ESQL/C host variable. Lines 10 - 13 declare host variables to hold the data that is obtained from

the user and the data that is retrieved from the sqlda structure.

===
16. /* These next four lines have hard-wired both the query and
17. * the value for the parameter. This information could have
18. * been entered from the terminal and placed into the strings
19. * demoquery and a query value string (queryvalue), respectively.
20. */
21. sprintf(demoquery, "%s %s",
22. "select fname, lname from customer",
23. "where lname < 'C' ");
24. EXEC SQL prepare demo3id from :demoquery;
25. EXEC SQL declare demo3cursor cursor for demo3id;
26. EXEC SQL describe demo3id into demo3_ptr;
===

531

HCL Informix 14.10 - ESQL/C Programmer’s Guide

532

Lines 16 - 24

These lines assemble the character string for the SELECT statement (in demoquery) and prepare it as the demo3id

statement identifier. For more information about these steps, see Assemble and prepare the SQL statement on page 400.

Line 25

This line declares the demo3cursor for the prepared statement identifier, demo3id.

Line 26

The DESCRIBE statement describes the select-list columns for the prepared statement that is in the demo3id statement

identifier. For this reason, you must prepare the statement before you use DESCRIBE. This DESCRIBE includes the INTO

clause to specify the sqlda structure to which demo3_ptr points as the location for these column descriptions. The

DESCRIBE...INTO statement also allocates memory for an sqlda structure and stores the address of this structure in the

demo3_ptr variable.

The demo3 program assumes that the following SELECT statement is assembled at run time and stored in the demoquery

string:

SELECT fname, lname FROM customer WHERE lname < 'C'

After the DESCRIBE statement in line 26, the components of the sqlda structure contain the following:

• The sqlda component, demo3_ptr->sqld, has the value 2, since two columns were selected from the customer table.

• The component demo3_ptr->sqlvar[0], an sqlvar_struct structure, contains information about the fname column of

the customer table. The demo3_ptr->sqlvar[0].sqlname component, for example, gives the name of the first column

(fname).

• The component demo3_ptr->sqlvar[1], an sqlvar_struct structure, contains information about the lname column of

the customer table.

===
27. desc_count = demo3_ptr->sqld;
28. printf("There are %d returned columns:\n", desc_count);
29. /* Print out what DESCRIBE returns */
30. for (i = 1; i <= desc_count; i++)
31. prsqlda(i, demo3_ptr->sqlvar[i-1]);
32. printf("\n\n");
===

Lines 27 and 28

Line 27 assigns the number of select-list columns that are found by the DESCRIBE statement to the desc_count host

variable. Line 28 displays this information to the user.

Chapter 1. ESQL/C Guide

Lines 29 - 32

This for loop goes through the sqlvar_struct structures for the columns of the select list. It uses the desc_count host variable

to determine the number of these structures that are initialized by the DESCRIBE statement. For each sqlvar_struct structure,

the prsqlda() function (line 31) displays information such as the data type, length, and name. For a description of prsqlda(),

see the description of lines 75 - 81.

===
33. for(col_ptr=demo3_ptr->sqlvar, cnt=pos=0; cnt < desc_count;
34. cnt++, col_ptr++)
35. {
36. /* Allow for the trailing null character in C
37. character arrays */
38. if(col_ptr->sqltype==SQLCHAR)
39. col_ptr->sqllen += 1;
40. /* Get next word boundary for column data and
41. assign buffer position to sqldata */
42. pos = (int)rtypalign(pos, col_ptr->sqltype);
43. col_ptr->sqldata = &data_buff[pos];
44. /* Determine size used by column data and increment
45. buffer position */
46. size = rtypmsize(col_ptr->sqltype, col_ptr->sqllen);
47. pos += size;
48. }
===

Lines 33 - 48

This second for loop allocates memory for the sqldata fields and sets the sqldata fields to point to this memory.

Lines 40 - 47 examine the sqltype and sqllen fields of sqlda for each select-list column to determine the amount of memory

you need to allocate for the data. The program does not use malloc() to allocate space dynamically. Instead, it uses a static

data buffer (the data_buff variable defined on line 8) to hold the column data. The Informix® ESQL/C rtypalign() function (line

42) returns the position of the next word boundary for the column data type (in col_ptr->sqltype). Line 43 then assigns the

address of this position within the data_buff data buffer to the sqldata field (for columns that receive values returned by the

query).

The Informix® ESQL/C rtypmsize() function (line 46) returns the number of bytes required for the SQL data type that is

specified by the sqltype and sqllen fields. Line 47 then increments the data buffer pointer (pos) by the size required for the

data. For more information, see Allocate memory for column data on page 524.

===
49. EXEC SQL open demo3cursor;
50. for (;;)
51. {
52. EXEC SQL fetch demo3cursor using descriptor demo3_ptr;
53. if (strncmp(SQLSTATE, "00", 2) != 0)
54. break;
55. /* Print out the returned values */
56. for (i=0; i<desc_count; i++)
57. printf("Column: %s\tValue:%s\n", demo3_ptr-
 >sqlvar[i].sqlname,
58. demo3_ptr->sqlvar[i].sqldata);

533

HCL Informix 14.10 - ESQL/C Programmer’s Guide

534

59. printf("\n");
60. }
===

Line 49

The database server executes the SELECT statement when it opens the demo3cursor cursor. If the WHERE clause of your

SELECT statement contains input parameters, you also need to specify the USING DESCRIPTOR clause of OPEN (see

Handling an unknown column list on page 538).

Lines 50 - 60

This inner for loop executes for each row that is fetched from the database. The FETCH statement (line 52) includes the

USING DESCRIPTOR clause to specify the sqlda structure to which demo3_ptr points as the location of the column values.

After this FETCH, the column values are stored in the specified sqlda structure.

The if statement (lines 53 and 54) tests the value of the SQLSTATE variable to determine the success of the FETCH. If

SQLSTATE indicates any status other than success, line 54 executes and ends the for loop. Lines 56 - 60 display the contents

of the sqlname and sqldata fields for each column of the select list.

Important: The demo3 program assumes that the returned columns are of character data type. If the program did not

make this assumption, it would need to check the sqltype and sqllen fields to determine the appropriate data type for

the host variable that holds the sqldata value.

===
61. if (strncmp(SQLSTATE, "02", 2) != 0)
62. printf("SQLSTATE after fetch is %s\n", SQLSTATE);
63. EXEC SQL close demo3cursor;
===

Lines 61 and 62

Outside the for loop, the program tests the SQLSTATE variable again so that it can notify the user in the event of a successful

execution, a runtime error, or a warning (class code not equal to "02").

Line 63

After all the rows are fetched, the CLOSE statement closes the demo3cursor cursor.

===
64. EXEC SQL free demo3id;
65. EXEC SQL free demo3cursor;
66. /* No need to explicitly free data buffer in this case because
67. * it wasn't allocated with malloc(). Instead, it is a static char
68. * buffer
69. */
70. /* Free memory assigned to sqlda pointer. */
71. free(demo3_ptr);
72. EXEC SQL disconnect current;
73. printf("\nDEMO3 Sample Program Over.\n\n");
74. }

Chapter 1. ESQL/C Guide

75. prsqlda(index, sp)
76. int2 index;
77. register struct sqlvar_struct *sp;
78. {
79. printf(" Column %d: type = %d, len = %d, data = %s\n",
80. index, sp->sqltype, sp->sqllen, sp->sqldata, sp->sqlname);
81. }
===

Lines 64 and 65

These FREE statements release the resources that are allocated for the demo3id prepared statement and the demo3cursor

database cursor.

Lines 66 - 71

At the end of the program, free the memory allocated to the sqlda structure. Because this program does not use malloc() to

allocate the data buffer, it does not use the free() system call to free the sqldata pointers. Although the allocation of memory

from a static buffer is straightforward, it has the disadvantage that this buffer remains allocated until the program ends. For

more information, see Free memory allocated to an sqlda structure on page 528.

The free() system call (line 71) frees the sqlda structure to which demo3_ptr points.

Lines 75 - 81

The prsqlda() function displays information about a select-list column. It reads this information from the sqlvar_struct

structure whose address is passed into the function (sp).

Tip: The Informix® ESQL/C demonstration programs unload.ec and dyn_sql.ec (described in The dyn_sql

program on page 506) also use sqlda to describe columns of a select list. Also see the PREPARE statement in the

HCL® Informix® Guide to SQL: Syntax.

Execute a singleton SELECT

The demo3 program assumes that the SELECT statement returns more than one row and therefore the program associates

the statement with a cursor. If you know at the time that you write the program that the dynamic SELECT always returns

just one row, you can omit the cursor and use the EXECUTE...INTO DESCRIPTOR statement instead of the FETCH...USING

DESCRIPTOR. You must still use the DESCRIBE statement to define the select-list columns.

Handling unknown return values
You can use an sqlda structure to save values that a dynamically executed user-defined function returns.

About this task

For an introduction on how to handle unknown return values from a user-defined function, see Determine return values

dynamically on page 457.

535

HCL Informix 14.10 - ESQL/C Programmer’s Guide

536

To use an sqlda structure to handle unknown-function return values:

1. Declare a variable to hold the address of an sqlda structure.

For more information, see Define an sqlda structure on page 520.

2. Assemble and prepare an EXECUTE FUNCTION statement.

The EXECUTE FUNCTION statement cannot contain the INTO clause. For more information, see Assemble and

prepare the SQL statement on page 400.

3. Use the DESCRIBE...INTO statement to perform two tasks:

a. Allocate an sqlda structure.

The address of the allocated structure is stored in the sqlda pointer that you declare. For more information,

see Allocate memory for the sqlda structure on page 521.

b. Determine the number and data types of function return values.

The DESCRIBE statement fills an sqlvar_struct structure for each return value. For more information, see

Initialize the sqlda structure on page 521.

4. After the DESCRIBE statement, you can test the SQLCODE variable (sqlca.sqlcode) for the defined constant

SQ_EXECPROC to check for a prepared EXECUTE FUNCTION statement.

The SQ_EXECPROC constant is defined in the sqlstype.h header file. For more information, see Determine the

statement type on page 447.

5. Examine the sqltype and sqllen fields of sqlda for each return value to determine the amount of memory that is

required to allocate for the data.

For more information, see Allocate memory for column data on page 524.

6. Execute the EXECUTE FUNCTION statement and store the return values in the sqlda structure.

The statement you use to execute a user-defined function depends on whether the function is a noncursor function or

a cursor function.

7. Deallocate any memory you allocated to the sqlda structure.

For more information, see Free memory allocated to an sqlda structure on page 528.

Execute a noncursor function

A noncursor function returns only one row of return values to the application. Use the EXECUTE...INTO DESCRIPTOR

statement to execute the function and save the return value or values in an sqlda structure.

An external function that is not explicitly defined as an iterator function returns only a single row of data. Therefore, you can

use EXECUTE...INTO DESCRIPTOR to execute most external functions dynamically and save their return values into an sqlda

structure. This single row of data consists of only one value because an external function can only return a single value. The

sqlda structure contains only one item descriptor with the single return value.

Chapter 1. ESQL/C Guide

An SPL function whose RETURN statement does not include the WITH RESUME keywords returns only a single row of data.

Therefore, you can use EXECUTE...INTO DESCRIPTOR to execute most SPL functions dynamically and save their return

values into an sqlda structure. An SPL function can return one or more values at one time so the sqlda structure contains

one or more item descriptors.

Important: Because you usually do not know the number of returned rows that a user-defined function returns,

you cannot guarantee that only one row is returned. If you do not use a cursor to execute cursor function, IBM®

Informix® ESQL/C generates a runtime error. Therefore, it is a good practice to always associate a user-defined

function with a function cursor.

Executing a cursor function
A cursor function can return one or more rows of return values to the application. To execute a cursor function, you must

associate the EXECUTE FUNCTION statement with a function cursor and use the FETCH...INTO DESCRIPTOR statement to

save the return value or values in an sqlda structure.

About this task

To use an sqlda structure to hold cursor-function return values:

1. Declare a function cursor for the user-defined function.

Use the DECLARE statement to associate the EXECUTE FUNCTION statement with a function cursor.

2. Use the OPEN statement to execute the function and open the cursor.

3. Use the FETCH...USING DESCRIPTOR statement to retrieve the return values from the cursor into the sqlda structure.

For more information, see Put column values into an sqlda structure on page 527.

4. Retrieve the row data from the sqlda structure into host variables with C-language statements that access the

sqldata field for each select-list column.

For more information, see Assign and obtain values from an sqlda structure on page 526.

5. Release memory allocated to the sqldata fields and the sqlda structure.

For more information, see Free memory allocated to an sqlda structure on page 528.

Results

Only an external function that is defined as an iterator function can return more than one row of data. Therefore, you must

define a function cursor to execute an iterator function dynamically. Each row of data consists of only one value because an

external function can only return a single value. For each row, the sqlda structure contains only one sqlvar_struct structure

with the single return value.

An SPL function whose RETURN statement includes the WITH RESUME keywords returns can return one or more rows of

data. Therefore, you must define a function cursor to execute these SPL functions dynamically. Each row of data can consist

537

HCL Informix 14.10 - ESQL/C Programmer’s Guide

538

of one or more values because an SPL function can return one or more values at one time. For each row, the sqlda structure

contains an sqlvar_struct structure for each return value.

Handling an unknown column list
You can use an sqlda structure to handle the INSERT...VALUES statement

About this task

For an introduction on how to handle columns in a VALUES clause of an INSERT, see Handling an unknown column list on

page 456.

To use an sqlda structure to handle input parameters in an INSERT:

1. Declare a variable to hold the address of an sqlda structure.

For more information, see Define an sqlda structure on page 520.

2. Prepare the INSERT statement (with the PREPARE statement) and give it a statement identifier.

For more information, see Assemble and prepare the SQL statement on page 400.

3. Use the DESCRIBE...INTO statement to perform two tasks:

a. Allocate an sqlda structure.

The address of the allocated structure is stored in the sqlda pointer that you declare. For more information,

see Allocate memory for the sqlda structure on page 521.

b. Determine the number and data types of columns in the table with the DESCRIBE...INTO statement.

The DESCRIBE statement fills an sqlvar_struct structure for each item of the column list. For more

information, see Initialize the sqlda structure on page 521.

4. Examine the sqltype and sqllen fields of sqlda for each column to determine the amount of memory that is required

to allocate for the data.

For more information, see Allocate memory for column data on page 524.

5. Save the number of columns stored in the sqld field in a host variable.

6. Set the columns to their values with C-language statements that set the appropriate sqldata fields in the

sqlvar_struct structures of sqlda.

A column value must be compatible with the data type of its associated column. If you insert a null value, make sure

to set the appropriate sqlind field to the address of an indicator variable that contains -1.

7. Execute the INSERT statement to insert the values into the database.

8. Release the memory that is allocated to the sqldata fields and the sqlda structure.

For more information, see Free memory allocated to an sqlda structure on page 528.

Execute a simple insert

The following steps outline how to execute a simple INSERT statement with an sqlda structure:

Chapter 1. ESQL/C Guide

1. Prepare the INSERT statement (with the PREPARE statement) and give it a statement identifier.

2. Set the columns to their values with C-language statements that set the appropriate sqldata fields in the

sqlvar_struct structures of sqlda.

3. Execute the INSERT statement with the EXECUTE...USING DESCRIPTOR statement.

These steps are basically the same as those that handle an unknown select list of a SELECT statement. The major difference

is that because the statement is a not a SELECT statement, the INSERT does not require a cursor.

Execute an INSERT that is associated with a cursor

You can also use an sqlda structure to handle an INSERT that is associated with an insert cursor. In this case, you do not

execute the statement with the EXECUTE...USING DESCRIPTOR statement. Instead, you must declare and open an insert

cursor and execute the insert cursor with the PUT...USING DESCRIPTOR statement, as follows:

1. Prepare the INSERT statement and associate it with an insert cursor with the DECLARE statement. All multirow

INSERT statements must have a declared insert cursor.

2. Create the cursor for the INSERT statement with the OPEN statement.

3. Insert the first set of column values into the insert buffer with a PUT statement and its USING DESCRIPTOR clause.

After this PUT statement, the column values stored in the specified sqlda structure are stored in the insert buffer.

Repeat the PUT statement within a loop until there are no more rows to insert.

4. After all the rows are inserted, exit the loop and flush the insert buffer with the FLUSH statement.

5. Close the insert cursor with the CLOSE statement.

You handle the insert cursor in much the same way as you handle the cursor associated with a SELECT statement. For more

information about how to use an insert cursor, see the PUT statement in the HCL® Informix® Guide to SQL: Syntax.

Handling a parameterized SELECT statement
You can handle a parameterized SELECT statement with an sqlda structure.

About this task

If a prepared SELECT statement has a WHERE clause with input parameters of unknown number and data type, your IBM®

Informix® ESQL/C program must use an sqlda structure to define the input parameters.

For an introduction on how to determine input parameters, see Determine unknown input parameters on page 456.

To use an sqlda structure to define input parameters for a WHERE clause:

1. Declare a variable to hold the address of an sqlda structure.

For more information, see Define an sqlda structure on page 520.

2. Determine the number and data types of the input parameters of the SELECT statement.

For more information, see Determine unknown input parameters on page 456.

3. Allocate an sqlda structure with a system memory-allocation function such as malloc().

539

HCL Informix 14.10 - ESQL/C Programmer’s Guide

540

For more information, see Specify input parameter values on page 527 and Allocate memory for the sqlda structure

on page 521.

4. Indicate the number of input parameters in the WHERE clause with C-language statements that set the sqld field of

the sqlda structure.

5. Store the definitions and values of each input parameter with C-language statements that set the sqltype, sqllen, and

sqldata fields in the appropriate sqlvar_struct of the sqlda structure:

◦ The sqltype field uses the Informix® ESQL/C data type constants, which the sqltypes.h header file defines,

to represent the data type of the input parameter. For more information, see Determine the data type of a

column on page 452.

◦ For a CHAR or VARCHAR value, sqllen is the size, in bytes, of the character array. For a DATETIME or

INTERVAL value, this field stores the encoded qualifiers.

◦ The sqldata field of each sqlvar_struct structure contains the address of the memory allocated for the input

parameter value. You might need to use the sqltype and sqllen fields for each input parameter to determine

the amount of memory that is required to allocate. For more information, see Allocate memory for column

data on page 524.

If you use an indicator variable, also set the sqlind field and perhaps the sqlidata, sqlilen, and sqlitype fields (for non-

X/Open applications only).

Use an index into the sqlda.sqlvar array to identify the sqlvar_struct structure. For more information, see Assign and

obtain values from an sqlda structure on page 526.

6. Pass the defined input parameters from the sqlda structure to the database server with the USING DESCRIPTOR

clause.

The statement that provides the input parameters depends on how many rows the SELECT statement returns.

7. Release the memory that you allocated for the sqlvar_struct fields, the sqldata fields, and the sqlda structure itself

with the free() system call.

For more information, see Free memory allocated to an sqlda structure on page 528.

Results

Important: If the SELECT statement has unknown columns in the select list, your program must also handle these

columns with an sqlda structure. For more information, see Handling an unknown select list on page 529.

Execute a parameterized SELECT that returns multiple rows

The following sample program described is a modified version of the demo4.ec example program. It shows how to use a

dynamic SELECT statement with the following conditions:

• The SELECT returns more than row.

The SELECT must be associated with a cursor, executed with the OPEN statement, and have its return values

retrieved with the FETCH...USING DESCRIPTOR statement.

Chapter 1. ESQL/C Guide

• The SELECT has input parameters in its WHERE clause.

The OPEN statement includes the USING DESCRIPTOR clause to provide the parameter values in an sqlda structure.

• The SELECT has unknown columns in the select list.

The FETCH statement includes the USING DESCRIPTOR clause to store the return values in an sqlda structure.

A sample program that uses an sqlda structure

The program illustrates how to use an sqlda structure to handle both input parameters of a WHERE clause and the columns

in the select list.

===
1. #include <stdio.h>
2. EXEC SQL include sqlda;
3. EXEC SQL include sqltypes;
4. #define FNAME 15
5. #define LNAME 15
6. #define PHONE 18
===

Line 2

The program must include the IBM® Informix® ESQL/C sqlda.h header file to use an sqlda structure.

===
7. main()
8. {
9. char fname[FNAME + 1];
10. char lname[LNAME + 1];
11. char phone[PHONE + 1];
12. int count, customer_num, i;
13. struct sqlvar_struct *pos;
14. struct sqlda *sqlda_ptr;
15. printf("Sample ESQL program running.\n\n");
16. EXEC SQL connect to 'stores7';
17. stcopy("Carole", fname);
18. stcopy("Sadler", lname);
19. EXEC SQL prepare sql_id from
20. 'select * from customer where fname=? and lname=?';
21. EXEC SQL declare slct_cursor cursor for sql_id;
===

Lines 9 - 14

Lines 9 - 11 declare variables to hold the data that is obtained from the user. The sqlda_ptr variable (line 14) is the pointer to

an sqlda structure. The pos variable (line 13) points to an sqlvar_struct structure so that the code can proceed through each

of the sqlvar_struct structures in the variable-length portion of sqlda. Neither of these variables is defined as the Informix®

ESQL/C host variable.

541

HCL Informix 14.10 - ESQL/C Programmer’s Guide

542

Lines 17 - 20

These lines assemble the character string for the SELECT statement and prepare the SELECT string. This program assumes

the number and data types of the input parameters. Therefore, no C code needs to determine this information at run time.

The question mark (?) indicates the input parameters in the WHERE clause. For more information about these steps, see

Assemble and prepare the SQL statement on page 400.

Line 21

This line declares the slct_cursor cursor for the prepared statement identifier, sql_id.

===
22. count=2;
23. whereClauseMem(&sqlda_ptr, count, fname, lname);
24. EXEC SQL open slct_cursor using descriptor sqlda_ptr;
25. free(sqlda_ptr->sqlvar);
26. free(sqlda_ptr);
===

Lines 22 and 23

These lines initialize the sqlda structure with the input parameter information. The program assumes two input parameters

(line 22). If the number of input parameters is unknown, the program needs to parse the SELECT character string (not the

prepared version) and count the number of characters that it contains.

The program then calls the whereClauseMem() function to allocate and initialize the sqlda structure. For more information,

see lines 69 - 77.

Line 24

The database server executes the SELECT statement when it opens the cursor. You must include the USING DESCRIPTOR

clause of OPEN to specify the sqlda structure as the location of the input parameter values.

Lines 25 and 26

Once the OPEN...USING DESCRIPTOR statement has executed, these input parameter values have been used. Deallocate

this sqlda structure because it is no longer needed and so that it does not conflict with the sqlda that contains the retrieved

values. Keep in mind that this second sqlda must have memory allocated before it can be used.

===
27. EXEC SQL describe sql_id into sqlda_ptr;
28. selectListMem(sqlda_ptr);
29. while(1)
30. {
31. EXEC SQL fetch slct_cursor using descriptor sqlda_ptr;
32. if(SQLCODE != 0)
33. {
34. printf("fetch SQLCODE %d\n", SQLCODE);
35. break;
36. }
===

Chapter 1. ESQL/C Guide

Line 27

For demonstration purposes, this program assumes that the number and data types of the select-list columns are also

unknown at compile time. It uses the DESCRIBE...INTO statement (line 27) to allocate an sqlda structure, and puts

information about the select-list columns into the structure to which sqlda_ptr points.

Lines 28

The selectListMem() function handles the allocation of memory for column values. For more information about

selectListMem(), see Lines 85 - 102 on page 545.

Lines 29 - 31

The while loop executes for each row fetched from the database. The FETCH statement (line 31) includes the USING

DESCRIPTOR clause to specify an sqlda structure as the location for the returned column values. For more information about

how to handle unknown select-list columns, see Handling an unknown select list on page 529.

Lines 32 - 36

These lines test the value of the SQLCODE variable to determine if the FETCH was successful. If SQLCODE contains a

nonzero value, then the FETCH generates the NOT FOUND condition (100) or an error (< 0). In any of these cases, line

34 prints out the SQLCODE value. To determine if the FETCH statement generated warnings, you need to examine the

sqlca.sqlwarn structure.

===
37. for(i=0; i<sqlda_ptr->sqld; i++)
38. {
39. printf("\ni=%d\n", i);
40. prsqlda(sqlda_ptr->sqlvar[i]);
41. switch (i)
42. {
43. case 0:
44. customer_num = *(int *)(sqlda_ptr->sqlvar[i].sqldata);
45. break;
46. case 1:
47. stcopy(sqlda_ptr->sqlvar[i].sqldata, fname);
48. break;
49. case 2:
50. stcopy(sqlda_ptr->sqlvar[i].sqldata, lname);
51. break;
52. case 9:
53. stcopy(sqlda_ptr->sqlvar[i].sqldata, phone);
54. break;
55. }
56. }
57. printf("%d ==> |%s|, |%s|, |%s|\n",
58. customer_num, fname, lname, phone);
59. }
60. EXEC SQL close slct_cursor;
61. EXEC SQL free slct_cursor;
62. EXEC SQL free sql_id;
===

543

HCL Informix 14.10 - ESQL/C Programmer’s Guide

544

Lines 37 - 59

These lines access the fields of the sqlvar_struct structure for each column in the select list. The prsqlda() function (see

lines 75 - 81) displays the column name (from sqlvar_struct.sqlname) and its value (from the sqlvar_struct.sqldata field).

The switch (lines 41 - 55) transfers the column values from the sqlda structure into host variables of the appropriate lengths

and data types.

Lines 60 - 62

These lines free resources after all the rows are fetched. Line 60 closes the slct_cursor cursor and line 61 frees it. Line 62

frees the sql_id statement ID.

===
63. free(sqlda_ptr->sqlvar);
64. free(sqlda_ptr);
65. EXEC SQL close database;
66. EXEC SQL disconnect current;
67. printf("\nProgram Over.\n");
68. }
69. whereClauseMem(descp, count, fname, lname)
70. struct sqlda **descp;
71. int count;
72. char *fname, *lname;
73. {
74. (*descp)=(struct sqlda *) malloc(sizeof(struct sqlda));
75. (*descp)->sqld=count;
76. (*descp)->sqlvar=(struct sqlvar_struct *)
77. calloc(count, sizeof(struct sqlvar_struct));
===

Lines 63 and 64

These free() system calls release the memory that is associated with the sqlda structure. Line 63 releases the memory

allocated to the sqlvar_struct structures. Line 64 releases the memory allocated for the sqlda structure. The program does

not need to deallocate memory associated with the sqldata fields because these fields have used space that is in a data

buffer. For more information, see Free memory allocated to an sqlda structure on page 528.

Lines 69 - 77

The whereClauseMem() function initializes the sqlda structure with the input-parameter definitions. Line 74 allocates

memory for an sqlda structure to hold the input parameters in the WHERE clause. Use of a DESCRIBE...INTO statement to

allocate an sqlda results in an sqlda that holds information about the select-list columns of the SELECT. Because you want to

describe the input parameters in the WHERE clause, do not use DESCRIBE here.

Line 75 sets the sqld field of the sqlda structure to the value of count (2) to indicate the number of parameters that are in the

WHERE clause. Lines 76 and 77 use the calloc() system function to allocate the memory so that each input parameter in the

WHERE clause has an sqlvar_struct structure. These lines then set the sqlvar field of the sqlda structure so that it points to

this sqlvar_struct memory.

Chapter 1. ESQL/C Guide

===
78. (*descp)->sqlvar[0].sqltype = CCHARTYPE;
79. (*descp)->sqlvar[0].sqllen = FNAME + 1;
80. (*descp)->sqlvar[0].sqldata = fname;
81. (*descp)->sqlvar[1].sqltype = CCHARTYPE;
82. (*descp)->sqlvar[1].sqllen = LNAME + 1;
83. (*descp)->sqlvar[1].sqldata = lname;
84. }
85. selectListMem(descp)
86. struct sqlda *descp;
87. {
88. struct sqlvar_struct *col_ptr;
89. static char buf[1024];
90. int pos, cnt, size;
91. printf("\nWITHIN selectListMem: \n");
92. printf("number of parms: %d\n", descp->sqld);
93. for(col_ptr=descp->sqlvar, cnt=pos=0; cnt < descp->sqld;
94. cnt++, col_ptr++)
95. {
96. prsqlda(col_ptr);
97. pos = rtypalign(pos, col_ptr->sqltype);
98. col_ptr->sqldata = &buf[pos];
99. size = rtypmsize(col_ptr->sqltype, col_ptr->sqllen);
100. pos += size;
101. }
102. }
===

Lines 78 - 84

Lines 78 - 80 set the sqltype, sqllen, and sqldata fields of the sqlvar_struct structure to describe the first input parameter: a

character (CCHARTYPE) host variable of length 16 (FNAME + 1) whose data is stored in the fname buffer. The fname buffer

is a character buffer declared in the main() program and passed as an argument to whereClauseMem().

Lines 81 - 83 set the sqltype, sqllen, and sqldata fields of the sqlvar_struct structure to describe the second input parameter.

This parameter is for the lname column. It is defined in the same way as the fname column (lines 78 - 80) but it receives its

data from the lname buffer [also passed from main() to whereClauseMem()].

Lines 85 - 102

The selectListMem() function allocates the memory and initializes the sqlda structure for the unknown select-list columns of

the parameterized SELECT statement. For more information about how to use an sqlda structure for select-list columns, see

Handling a parameterized SELECT statement on page 539.

Execute a parameterized singleton SELECT statement

The instructions in the previous topic assume that the parameterized SELECT statement returns more than one row

and, therefore, is associated with a cursor. If you know at the time that you write the program that the parameterized

SELECT statement always returns just one row, you can omit the cursor and use the EXECUTE...USING DESCRIPTOR...INTO

statement instead of the OPEN...USING DESCRIPTOR statement to specify parameters values from an sqlda structure.

545

HCL Informix 14.10 - ESQL/C Programmer’s Guide

546

Handling a parameterized user-defined routine

For an introduction on how to determine input parameters, see Determine unknown input parameters on page 456. This

section describes how to handle a parameterized user-defined routine with an sqlda structure. The following statements

execute user-defined routines:

• The EXECUTE FUNCTION statement executes a user-defined function (external and SPL).

• The EXECUTE PROCEDURE statement executes a user-defined procedure (external and SPL).

If a prepared EXECUTE PROCEDURE or EXECUTE FUNCTION statement has arguments specified as input parameters of

unknown number and data type, your IBM® Informix® ESQL/C program can use an sqlda structure to define the input

parameters.

Execute a parameterized function

You handle the input parameters of a user-defined function in the same way that you handle input parameters in the WHERE

clause of a SELECT statement, as follows:

• Execute a noncursor function in the same way as a singleton SELECT statement.

If you know at the time that you write the program that the dynamic user-defined function always returns just one

row, you can use the EXECUTE...USING DESCRIPTOR...INTO statement to provide the argument values from an

sqlda structure and to execute the function. For more information, see Execute a parameterized singleton SELECT

statement on page 545.

• Execute a cursor function in the same way as a SELECT statement that returns one or more rows.

If you are not sure at the time that you write the program that the dynamic user-defined function always returns just

one row, define a function cursor and use the OPEN...USING DESCRIPTOR statement to provide the argument values

from an sqlda structure. For more information, see Execute a parameterized SELECT that returns multiple rows on

page 540.

The only difference between the execution of these EXECUTE FUNCTION and SELECT statements is that you prepare the

EXECUTE FUNCTION statement for the noncursor function, instead of the SELECT statement.

Execute a parameterized procedure

To execute a parameterized user-defined procedure, you can use the EXECUTE...USING DESCRIPTOR statement to provide

the argument values from an sqlda structure and to execute the procedure. You handle the input parameters of a user-

defined procedure in the same way that you handle input parameters in a noncursor function. The only difference between

the execution of the EXECUTE PROCEDURE statement and the EXECUTE FUNCTION statement (for a noncursor function)

is that you do not need to specify the INTO clause of the EXECUTE...USING DESCRIPTOR statement for the user-defined

procedure.

Chapter 1. ESQL/C Guide

Handling a parameterized UPDATE or DELETE statement

The way to determine the input parameters in the WHERE clause of a DELETE or UPDATE statement is similar to the way to

determine them in the WHERE clause of a SELECT statement. The major differences between these two types of dynamic

parameterized statements are as follows:

• You do not need to use a cursor to handle a DELETE or UPDATE statement. You provide the parameter values from an

sqlda structure with the USING DESCRIPTOR clause of the EXECUTE statement instead of with the OPEN statement.

• You can use the DESCRIBE...INTO statement to determine if the DELETE or UPDATE statement has a WHERE clause.

Appendixes
This section contains additional reference information.

The ESQL/C example programs

Your HCL Informix® software includes demonstration databases. HCL Informix® ESQL/C also includes source files for many

of the demonstration programs and examples in this publication, some of which access the demonstration databases.

In Windows™ environments, you can find the source files for Informix® ESQL/C example programs in the %INFORMIXDIR%

\demo\esqldemo directory.

On UNIX™ operating systems, you can find the source files for Informix® ESQL/C example programs in the $INFORMIXDIR/

demo/esqlc directory. The esqldemo script, which is included with Informix® ESQL/C, copies the source files from the

$INFORMIXDIR/demo/esqlc directory into the current directory.

For information about creating demonstration databases, see the HCL® Informix® DB-Access User's Guide.

The ESQL/C function library
These topics describe the syntax and behavior of all the library functions provided with HCL Informix® ESQL/C.

Informix® ESQL/C library functions

The following table lists the IBM® Informix® ESQL/C library functions in alphabetical order.

Function name Description See

bigintcvasc() Converts a C char type value to a BIGINT type

number.

The bigintcvasc() function on

page 558

bigintcvdbl() Converts a double type number to a BIGINT type

number.

The bigintcvdbl() function on

page 558

bigintcvdec() Converts a decimal type number to a BIGINT type

number.

The bigintcvdec() function on

page 559

547

HCL Informix 14.10 - ESQL/C Programmer’s Guide

548

Function name Description See

bigintcvflt() Converts a float type number to a BIGINT type

number.

The bigintcvflt() function on

page 559

bigintcvifx_int8() Converts and int8 type number to a BIGINT type

number.

The bigintcvifx_int8() function on

page 560

bigintcvint2() Converts an int2 type number to a BIGINT type

number.

The bigintcvint2() function on

page 560

bigintcvint4() Converts an int4 type number to a BIGINT type

number.

The bigintcvint4() function on

page 561

biginttoasc() Converts a BIGINT type value to a C char type value. The biginttoasc() function on

page 561

biginttodbl() Converts a BIGINT type number to a double type

number.

The biginttodbl() function on

page 562

biginttodec() Converts a BIGINT type number to a decimal type

number.

The biginttodec() function on

page 563

biginttoflt() Converts a BIGINT type number to a float type

number.

The biginttoflt() function on

page 563

biginttoifx_int8() Converts a BIGINT type number to an int8 type

number.

The biginttoifx_int8() function on

page 563

biginttoint2() Converts a BIGINT type number to an int2 type

number.

The biginttoint2() function on

page 564

biginttoint4() Converts a BIGINT type number to an int4 type

number.

The biginttoint4() function on

page 564

bycmpr() Compares two groups of contiguous bytes The bycmpr() function on

page 565

bycopy() Copies bytes from one area to another The bycopy() function on

page 567

byfill() Fills the specified area with a character The byfill() function on

page 568

byleng() Counts the number of bytes in a string The byleng() function on

page 570

decadd() Adds two decimal numbers The decadd() function on

page 571

Chapter 1. ESQL/C Guide

Function name Description See

deccmp() Compares two decimal numbers The deccmp() function on

page 573

deccopy() Copies a decimal number The deccopy() function on

page 575

deccvasc() Converts a C char type to a decimal type The deccvasc() function on

page 576

deccvdbl() Converts a C double type to a decimal type The deccvdbl() function on

page 578

deccvint() Converts a C int2 type to a decimal type The deccvint() function on

page 582

deccvlong() Converts a C int4 type to a decimal type The deccvlong() function on

page 583

decdiv() Divides two decimal numbers The decdiv() function on

page 585

dececvt() Converts a decimal value to an ASCII string The dececvt() and decfcvt()

functions on page 587

decfcvt() Converts a decimal value to an ASCII string The dececvt() and decfcvt()

functions on page 587

decmul() Multiplies two decimal numbers The decmul() function on

page 591

decround() Rounds a decimal number The decround() function on

page 593

decsub() Subtracts two decimal numbers The decsub() function on

page 595

dectoasc() Converts a decimal type to an ASCII string The dectoasc() function on

page 597

dectodbl() Converts a decimal type to a C double type The dectodbl() function on

page 599

dectoint() Converts a decimal type to a C int type The dectoint() function on

page 601

dectolong() Converts a decimal type to a C long type The dectolong() function on

page 603

549

HCL Informix 14.10 - ESQL/C Programmer’s Guide

550

Function name Description See

dectrunc() Truncates a decimal number The dectrunc() function on

page 604

dtaddinv() Adds an interval value to a datetime value The dtaddinv() function on

page 606

dtcurrent() Gets current date and time The dtcurrent() function on

page 608

dtcvasc() Converts an ANSI-compliant character string to

datetime

The dtcvasc() function on

page 609

dtcvfmtasc() Converts a character string to a datetime value The dtcvfmtasc() function on

page 612

dtextend() Changes the qualifier of a datetime The dtextend() function on

page 615

dtsub() Subtracts one datetime value from another The dtsub() function on

page 616

dtsubinv() Subtracts an interval value from a datetime value The dtsubinv() function on

page 619

dttoasc() Converts a datetime value to an ANSI-compliant

character string

The dttoasc() function on

page 620

dttofmtasc() Converts a datetime value to a character string The dttofmtasc() function on

page 622

GetConnect() Requests an explicit connection and returns a pointer

to the connection information

The GetConnect() function

(Windows) on page 625

ifx_cl_card() Returns the cardinality of the specified collection

type host variable

The ifx_cl_card() function on

page 627

ifx_dececvt() Converts a decimal value to an ASCII string

(thread-safe version)

The ifx_dececvt() and

ifx_decfcvt() function on

page 628

ifx_decfcvt() Converts a decimal value to an ASCII string

(thread-safe version)

The ifx_dececvt() and

ifx_decfcvt() function on

page 628

ifx_getcur_conn_name() Returns the name of the current connection The ifx_getcur_conn_name()

function on page 639

ifx_getenv() Retrieves the value of an environment variable The ifx_getenv() function on

page 638

Chapter 1. ESQL/C Guide

Function name Description See

ifx_getserial8() Returns an inserted SERIAL8 value The ifx_getserial8() function on

page 639

ifx_int8add() Adds two int8 numbers The ifx_int8add() function on

page 640

ifx_int8cmp() Compares two int8 numbers The ifx_int8cmp() function on

page 642

ifx_int8copy() Copies an int8 number The ifx_int8copy() function on

page 644

ifx_int8cvasc() Converts a C char type value to an int8 type value The ifx_int8cvasc() function on

page 646

ifx_int8cvdbl() Converts a C double type value to an int8 type value The ifx_int8cvdbl() function on

page 648

ifx_int8cvdec() Converts a C decimal type value to an int8 type value The ifx_int8cvdec() function on

page 650

ifx_int8cvflt() Converts a C float type value to an int8 type value The ifx_int8cvflt() function on

page 652

ifx_int8cvint() Converts a C int2 type value to an int8 type value The ifx_int8cvint() function on

page 654

ifx_int8cvlong() Converts a C int4 type value to an int8 type value The ifx_int8cvlong() function on

page 656

ifx_int8div() Divides two int8 numbers The ifx_int8div() function on

page 657

ifx_int8mul() Multiplies two int8 numbers The ifx_int8mul() function on

page 659

ifx_int8sub() Subtracts two int8 numbers The ifx_int8sub() function on

page 661

ifx_int8toasc() Converts an int8 type value to a text string The ifx_int8toasc() function on

page 663

ifx_int8todbl() Converts an int8 type value to a C double type value The ifx_int8todbl() function on

page 666

ifx_int8todec() Converts an int8 type value to a decimal type value The ifx_int8todec() function on

page 668

551

HCL Informix 14.10 - ESQL/C Programmer’s Guide

552

Function name Description See

ifx_int8toflt() Converts an int8 type value to a C float type value The ifx_int8toflt() function on

page 671

ifx_int8toint() Converts an int8 type value to a C int2 type value The ifx_int8toint() function on

page 674

ifx_int8tolong() Converts an int8 type value to a C int4 type value The ifx_int8tolong() function on

page 676

ifx_lo_alter() Alters the storage characteristics of an existing

smart large object

The ifx_lo_alter() function on

page 679

ifx_lo_close() Closes an open smart large object The ifx_lo_close() function on

page 680

ifx_lo_col_info() Obtains column-level storage characteristics into an

LO-specification structure

The ifx_lo_col_info() function on

page 680

ifx_lo_copy_to_file() Copies a smart large object to an operating-system

file

The ifx_lo_copy_to_file() function

on page 681

ifx_lo_copy_to_lo() Copies an operating-system file to an open smart

large object

The ifx_lo_copy_to_lo() function

on page 683

ifx_lo_create() Creates an LO descriptor for a smart large object The ifx_lo_create() function on

page 684

ifx_lo_def_create_spec() Allocates an LO-specification structure and initializes

its fields to null values

The ifx_lo_def_create_spec()

function on page 685

ifx_lo_filename() Returns the generated file name, given an LO

descriptor and a file specification

The ifx_lo_filename() function on

page 686

ifx_lo_from_buffer() Copies bytes from a user-defined buffer to a smart

large object

The ifx_lo_from_buffer() function

on page 687

ifx_lo_open() Opens an existing smart large object The ifx_lo_open() function on

page 689

ifx_lo_read() Reads a specified number of bytes from an open

smart large object

The ifx_lo_read() function on

page 691

ifx_lo_readwithseek() Seeks to a specified position in an open smart large

object and reads a specified number of bytes

The ifx_lo_readwithseek()

function on page 692

ifx_lo_release() Releases resources associated with a temporary

smart large object

The ifx_lo_release() function on

page 693

Chapter 1. ESQL/C Guide

Function name Description See

ifx_lo_seek() Sets the seek position for the next read or write on an

open smart large object

The ifx_lo_seek() function on

page 694

ifx_lo_spec_free() Frees the resources allocated to an LO-specification

structure

The ifx_lo_spec_free() function on

page 695

ifx_lo_specget_estbytes() Gets the estimated number of bytes from the

LO-specification structure

The ifx_lo_specget_estbytes()

function on page 696

ifx_lo_specget_extsz() Gets the allocation extent size from the

LO-specification structure

The ifx_lo_specget_extsz()

function on page 697

ifx_lo_specget_flags() Gets the create-time flags from the LO-specification

structure

The ifx_lo_specget_flags()

function on page 698

ifx_lo_specget_maxbytes() Gets the maximum number of bytes from the

LO-specification structure

The ifx_lo_specget_maxbytes()

function on page 699

ifx_lo_specget_sbspace() Gets the name of the sbspace from the

LO-specification structure

The ifx_lo_specget_sbspace()

function on page 699

ifx_lo_specset_estbytes() Sets the estimated number of bytes from the

LO-specification structure

The ifx_lo_specset_estbytes()

function on page 701

ifx_lo_specset_extsz() Sets the allocation extent size in the LO-specification

structure

The ifx_lo_specset_extsz()

function on page 702

ifx_lo_specset_flags() Sets the create-time flags in the LO-specification

structure

The ifx_lo_specset_flags()

function on page 703

ifx_lo_specset_maxbytes() Sets the maximum number of bytes in the

LO-specification structure

The ifx_lo_specset_maxbytes()

function on page 703

ifx_lo_specset_sbspace() Sets the name of the sbspace in the LO-specification

structure

The ifx_lo_specset_sbspace()

function on page 704

ifx_lo_stat() Returns status information about an open smart

large object

The ifx_lo_stat() function on

page 705

ifx_lo_stat_atime() Returns the last access time for a smart large object The ifx_lo_stat_atime() function

on page 705

ifx_lo_stat_cspec() Returns the storage characteristics into the

LO-specification structure for a specified smart large

object

The ifx_lo_stat_cspec() function

on page 706

ifx_lo_stat_ctime() Returns the last change-in-status time for the smart

large object

The ifx_lo_stat_ctime() function

on page 707

553

HCL Informix 14.10 - ESQL/C Programmer’s Guide

554

Function name Description See

ifx_lo_stat_free() Frees the resources allocated to an LO-status

structure

The ifx_lo_stat_free() function on

page 707

ifx_lo_stat_mtime_sec() Returns the last modification time, in seconds, for the

smart large object

The ifx_lo_stat_mtime_sec()

function on page 708

ifx_lo_stat_refcnt() Returns the reference count for the smart large

object

The ifx_lo_stat_refcnt() function

on page 708

ifx_lo_stat_size() Returns the size of the smart large object The ifx_lo_stat_size() function on

page 709

ifx_lo_tell() Returns the current seek position of an open smart

large object

The ifx_lo_tell() function on

page 710

ifx_lo_to_buffer Copies bytes from a smart large object into a

user-defined buffer

The ifx_lo_to_buffer() function on

page 710

ifx_lo_truncate() Truncates a smart large object to a specific offset The ifx_lo_truncate() function on

page 711

ifx_lo_write() Writes a specified number of bytes to an open smart

large object

The ifx_lo_write() function on

page 713

ifx_lo_writewithseek() Seeks to a specified position in an open smart large

object and writes a specified number of bytes

The ifx_lo_writewithseek()

function on page 714

ifx_lvar_alloc() Specifies whether to allocate memory when fetching

lvarchar data

The ifx_lvar_alloc() function on

page 715

ifx_putenv() Modifies or removes an existing environment

variable or creates a new one

The ifx_putenv() function on

page 716

ifx_var_alloc() Allocates memory for the data buffer The ifx_var_alloc() function on

page 718

ifx_var_dealloc() Deallocates memory for the data buffer The ifx_var_dealloc() function on

page 719

ifx_var_flag() Determines whether Informix® ESQL/C or the

application handles memory allocation for the data

buffer

The ifx_var_flag() function on

page 720

ifx_var_getdata() Returns the contents of the data buffer The ifx_var_getdata() function on

page 722

ifx_var_getlen() Returns the length of the data buffer The ifx_var_getlen() function on

page 723

Chapter 1. ESQL/C Guide

Function name Description See

ifx_var_isnull() Checks whether the data in the data buffer is null The ifx_var_isnull() function on

page 723

ifx_var_setdata() Sets the data for the data buffer The ifx_var_setdata() function on

page 724

ifx_var_setlen() Sets the length of the data buffer The ifx_var_setlen() function on

page 725

ifx_var_setnull() Sets the data in the data buffer to a null value The ifx_var_setnull() function on

page 726

incvasc() Converts an ANSI-compliant character string to an

interval value

The incvasc() function on

page 726

incvfmtasc() Converts a character string to an interval value The incvfmtasc() function on

page 729

intoasc() Converts an interval value to an ANSI-compliant

character string

The intoasc() function on

page 731

intofmtasc() Converts an interval value to a string The intofmtasc() function on

page 733

invdivdbl() Divides an interval value by a numeric value The invdivdbl() function on

page 736

invdivinv() Divides an interval value by an interval value The invdivinv() function on

page 738

invextend() Copies an interval value under a different qualifier The invextend() function on

page 740

invmuldbl() Multiplies an interval value by a numeric value The invmuldbl() function on

page 742

ldchar() Copies a fixed-length string to a null-terminated

string

The ldchar() function on

page 744

rdatestr() Converts an internal format to string The rdatestr() function on

page 745

rdayofweek() Returns the day of the week The rdayofweek() function on

page 747

rdefmtdate() Converts a string to an internal format The rdefmtdate() function on

page 749

555

HCL Informix 14.10 - ESQL/C Programmer’s Guide

556

Function name Description See

rdownshift() Converts all letters to lowercase The rdownshift() function on

page 752

ReleaseConnect() Closes an established explicit connection The ReleaseConnect() function

(Windows) on page 753

rfmtdate() Converts an internal format to a string The rfmtdate() function on

page 754

rfmtdec() Converts a decimal type to a formatted string The rfmtdec() function on

page 758

rfmtdouble() Converts a double type to a string The rfmtdouble() function on

page 761

rfmtlong() Converts an int4 to a formatted string The rfmtlong() function on

page 763

rgetlmsg() Retrieves the error message for a large error number The rgetlmsg() function on

page 766

rgetmsg() Retrieves the error message for an error number The rgetmsg() function on

page 768

risnull() Checks whether a C variable is null The risnull() function on

page 770

rjulmdy() Returns month, day, and year from an internal format The rjulmdy() function on

page 772

rleapyear() Determines whether a specified year is a leap year The rleapyear() function on

page 774

rmdyjul() Returns an internal format from month, day, and year The rmdyjul() function on

page 776

rsetnull() Sets a C variable to null The rsetnull() function on

page 777

rstod() Converts a string to a double type The rstod() function on

page 780

rstoi() Converts a null-terminated string to an int2 The rstoi() function on

page 781

rstol() Converts a string to an int4 The rstol() function on

page 783

Chapter 1. ESQL/C Guide

Function name Description See

rstrdate() Converts a string to an internal format The rstrdate() function on

page 785

rtoday() Returns a system date in internal format The rtoday() function on

page 787

rtypalign() Aligns data on a proper type boundary The rtypalign() function on

page 788

rtypmsize() Gives the byte size of SQL data types The rtypmsize() function on

page 791

rtypname() Returns the name of a specified SQL type The rtypname() function on

page 794

rtypwidth() Gives minimum conversion byte size The rtypwidth() function on

page 797

rupshift() Converts all letters to uppercase The rtypmsize() function on

page 791

SetConnect() Switches the connection to an established (dormant)

explicit connection

The SetConnect() function

(Windows) on page 800

sqgetdbs() Returns the names of the databases that a database

server can access

The sqgetdbs() function on

page 802

sqlbreak() Sends the database server a request to stop

processing

The sqlbreak() function on

page 805

sqlbreakcallback() Provides a method of returning control to the

application while it is waiting for the database server

to process an SQL request

The sqlbreakcallback() function

on page 806

sqldetach() Detaches a child process from a parent process The sqldetach() function on

page 808

sqldone() Determines whether the database server is currently

processing an SQL request

The sqldone() function on

page 814

sqlexit() Terminates a database server process The sqlexit() function on

page 814

sqlsignal() Performs signal handling and child-processes

cleanup

The sqlsignal() function on

page 815

sqlstart() Starts a database server process The sqlstart() function on

page 816

557

HCL Informix 14.10 - ESQL/C Programmer’s Guide

558

Function name Description See

stcat() Concatenates one string to another The stcat() function on

page 817

stchar() Copies a null-terminated string to a fixed-length

string

The stchar() function on

page 819

stcmpr() Compares two strings The stcmpr() function on

page 820

stcopy() Copies one string to another string The stcopy() function on

page 821

stleng() Counts the number of bytes in a string The stleng() function on

page 822

The bigintcvasc() function
The bigintcvasc() function converts a C char type value to a BIGINT type number.

Syntax

mint bigintcvasc(strng_val, len, bigintp)
 const char *strng_val
 mint len
 bigint *bigintp

strng_val

A pointer to a string.

len

The length of the strng_val string.

bigintp

A pointer to a bigint variable to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The bigintcvdbl() function
The bigintcvdbl() function converts a double type number to a BIGINT type number.

Chapter 1. ESQL/C Guide

Syntax
mint bigintcvdbl(dbl, bigintp)
 const double dbl
 bigint *bigintp

dbl

The double value to convert to bigint.

bigintp

A pointer to a bigint variable to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The bigintcvdec() function
The bigintcvdec() function converts a decimal type number to a BIGINT type number.

Syntax

mint bigintcvdec(decp, bigintp)
 const dec_t *decp
 bigint *bigintp

decp

A pointer to the decimal structure that contains the value to convert to a bigint value.

bigintp

A pointer to a bigint variable to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The bigintcvflt() function
The bigintcvflt() function converts a float type number to a BIGINT type number.

559

HCL Informix 14.10 - ESQL/C Programmer’s Guide

560

Syntax
mint bigintcvflt(dbl, bigintp)
 const double dbl
 bigint *bigintp

dbl

The float value to convert to bigint.

bigintp

A pointer to a bigint value to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The bigintcvifx_int8() function
The bigintcvifx_int8() function converts and int8 type number to a BIGINT type number.

Syntax

mint bigintcvifx_int8(int8p, bigintp)
 const ifx_int8_t *int8p
 bigint *bigintp

int8p

The int8 value to convert to a bigint value.

bigintp

A pointer to a bigint variable to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The bigintcvint2() function
The bigintcvint2() function converts an int2 type number to a BIGINT type number.

Chapter 1. ESQL/C Guide

Syntax
mint bigintcvint2(int2v, bigintp)
 const int2 int2v
 bigint *bigintp

int2v

The int2 value to convert to a bigint value.

bigintp

A pointer to a bigint variable to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The bigintcvint4() function
The bigintcvint4() function converts an int4 type number to a BIGINT type number.

Syntax

mint bigintcvint4(int4v, bigintp)
 const int4 int4v
 bigint *bigintp

int4v

The int4 value to convert to a bigint value.

bigintp

A pointer to a bigint variable to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The biginttoasc() function
The biginttoasc() function converts a BIGINT type value to a C char type value.

Syntax

mint biginttoasc(bigintv, strng_val, len, base)
 const bigint bigintv

561

HCL Informix 14.10 - ESQL/C Programmer’s Guide

562

 char *strng_val
 mint len
 mint base

bigintv

A bigint value to convert to a text string.

strng_val

A pointer to the first byte of the character buffer to contain the text string.

len

The size of strng_val, in bytes, minus 1 for the null terminator.

base

The numeric base of the output. Base 10 and 16 are supported. Other values result in base 10.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The biginttodbl() function
The biginttodbl() function converts a BIGINT type number to a double type number.

Syntax

mint biginttodbl(bigintv, dbl)
 const bigint bigintv
 double *dbl

bigintv

A bigint value to convert to double.

dbl

A pointer to a double variable to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Chapter 1. ESQL/C Guide

The biginttodec() function
The biginttodec() function converts a BIGINT type number to a decimal type number.

Syntax
mint biginttodec(bigintv, decp)
 const bigint bigintv
 dec_t *decp

bigintv

A bigint value to convert to decimal.

decp

A pointer to a decimal variable to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The biginttoflt() function
The biginttoflt() function converts a BIGINT type number to a float type number.

Syntax

mint biginttoflt(bigintv, fltp)
 const bigint bigintv
 float *fltp

bigintv

A bigint value to convert to float.

fltp

A pointer to a float variable to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The biginttoifx_int8() function
The biginttoifx_int8() function converts a BIGINT type number to an int8 type number.

563

HCL Informix 14.10 - ESQL/C Programmer’s Guide

564

Syntax
void biginttoifx_int8(bigintv, int8p)
 const bigint bigintv
 ifx_int8_t *int8p

bigintv

A bigint value to convert to int8.

int8p

A pointer to an int8 structure to contain the result of the conversion.

The biginttoint2() function
The biginttoint2() function converts a BIGINT type number to an int2 type number.

Syntax

mint biginttoint2(bigintv, int2p)
 const bigint bigintv
 int2 *int2p

bigintv

A bigint value to convert to an int2 integer value.

int2p

A pointer to an int variable to contain the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The biginttoint4() function
The biginttoint4() function converts a BIGINT type number to an int4 type number.

Syntax

mint biginttoint4(bigintv, int4p)
 const bigint bigintv
 int4 *int4p

bigintv

A bigint value to convert to an int4 integer value.

int4p

A pointer to an int4 variable to contain the result of the conversion.

Chapter 1. ESQL/C Guide

Return codes

0

The conversion was successful.

<0

The conversion failed.

The bycmpr() function
The bycmpr() function compares two groups of contiguous bytes for a given length. It returns the result of the comparison

as its value.

Syntax
mint bycmpr(byte1, byte2, length)
 char *byte1;
 char *byte2;
 mint length;

byte1

A pointer to the location at which the first group of contiguous bytes starts.

byte2

A pointer to the location at which the second group of contiguous bytes starts.

length

The number of bytes that you want bycmpr() to compare.

Usage

The bycmpr() function performs a byte-by-byte comparison of the two groups of contiguous bytes until it finds a difference

or until it compares length number of bytes. The bycmpr() function returns an integer whose value (0, -1, or +1) indicates the

result of the comparison between the two groups of bytes.

The bycmpr() function subtracts the bytes of the byte2 group from those of the byte1 group to accomplish the comparison.

Return codes

0

The two groups are identical.

-1

The byte1 group is less than the byte2 group.

+1

The byte1 group is greater than the byte2 group.

565

HCL Informix 14.10 - ESQL/C Programmer’s Guide

566

Example

This sample program is in the bycmpr.ec file in the demo directory.

/*
 * bycmpr.ec *

 The following program performs three different byte comparisons with
 bycmpr() and displays the results.
*/

#include <stdio.h>

main()
{
 mint x;

 static char string1[] = "abcdef";
 static char string2[] = "abcdeg";

 static mint number1 = 12345;
 static mint number2 = 12367;

 static char string3[] = {0x00, 0x07, 0x45, 0x32, 0x00};
 static char string4[] = {0x00, 0x07, 0x45, 0x31, 0x00};

 printf("BYCMPR Sample ESQL Program running.\n\n");

 /* strings */
 printf("Comparing strings: String 1=%s\tString 2=%s\n", string1, string2);
 printf(" Executing: bycmpr(string1, string2, sizeof(string1))\n");
 x = bycmpr(string1, string2, sizeof(string1));
 printf(" Result = %d\n", x);

 /* ints */
 printf("Comparing numbers: Number 1=%d\tNumber 2=%d\n", number1, number2);
 printf(" Executing: bycmpr((char *) &number1, (char *) &number2, ");
 printf("sizeof(number1))\n");
 x = bycmpr((char *) &number1, (char *) &number2, sizeof(number1));
 printf(" Result = %d\n", x);

 /* non printable */
 printf("Comparing strings with non-printable characters:\n");
 printf(" Octal string 1=%o\tOctal string 2=%o\n", string3, string4);
 printf(" Executing: bycmpr(string3, string4, sizeof(string3))\n");
 x = bycmpr(string3, string4, sizeof(string3));
 printf(" Result = %d\n", x);

 /* bytes */
 printf("Comparing bytes: Byte string 1=%c%c\tByte string 2=%c%c\n");
 printf(" Executing: bycmpr(&string1[2], &string2[2], 2)\n");
 x = bycmpr(&string1[2], &string2[2], 2);
 printf(" Result = %d\n", x);

 printf("\nBYCMPR Sample ESQL Program over.\n\n");
}

Chapter 1. ESQL/C Guide

Output
BYCMPR Sample ESQL Program running.

Comparing strings: String1=abcdef String 2=abcdeg
 Executing: bycmpr(string1, string2, sizeof(string1))
 Result = -1
Comparing numbers: Number 1=12345 Number 2=12367
 Executing: bycmpr((char *) &number1, (char *) &number2, sizeof(number1)
 Result = -1
Comparing strings with non-printable characters:
 Octal string 1=40300 Octal string 2=40310
 Executing: bycmpr(string3, string4, sizeof(string3))
 Result = 1
Comparing bytes: Byte string 1=cd Byte string 2=cd
 Executing: bycmpr(&string1[2], &string2[2], 2)
 Result = 0

BYCMPR Sample ESQL Program over.

The bycopy() function
The bycopy() function copies a given number of bytes from one location to another.

Syntax

void bycopy(from, to, length)
 char *from;
 char *to;
 mint length;

from

A pointer to the first byte of the group of bytes that you want bycopy() to copy.

to

A pointer to the first byte of the destination group of bytes. The memory area to which to points can overlap the

area to which the from argument points. In this case, IBM® Informix® ESQL/C does not preserve the value to

which from points.

length

The number of bytes that you want bycopy() to copy.

Important: Take care not to overwrite areas of memory next to the destination area.

Example

This sample program is in the bycopy.ec file in the demo directory.

/*
 * bycopy.ec *

 The following program shows the results of bycopy() for three copy
 operations.

567

HCL Informix 14.10 - ESQL/C Programmer’s Guide

568

*/

#include <stdio.h>

char dest[20];

main()
{
 mint number1 = 12345;
 mint number2 = 0;
 static char string1[] = "abcdef";
 static char string2[] = "abcdefghijklmn";

 printf("BYCOPY Sample ESQL Program running.\n\n");

 printf("String 1=%s\tString 2=%s\n", string1, string2);
 printf(" Copying String 1 to destination string:\n");
 bycopy(string1, dest, strlen(string1));
 printf(" Result = %s\n\n", dest);

 printf(" Copying String 2 to destination string:\n");
 bycopy(string2, dest, strlen(string2));
 printf(" Result = %s\n\n", dest);

 printf("Number 1=%d\tNumber 2=%d\n", number1, number2);
 printf(" Copying Number 1 to Number 2:\n");
 bycopy((char *) &number1, (char *) &number2, sizeof(int));
 printf(" Result = number1(hex) %08x, number2(hex) %08x\n",
 number1, number2);

 printf("\nBYCOPY Sample Program over.\n\n");
}

Output

BYCOPY Sample ESQL Program running.

String 1=abcdef String2=abcdefghijklmn
 Copying String 1 to destination string:
 Result = abcdef

 Copying String 2 to destination string:
 Result = abcdefghijklmn

Number 1=12345 Number2=0
 Copying Number 1 to Number 2:
 Result = number1(hex) 00003039, number2(hex) 00003039

BYCOPY Sample Program over.

The byfill() function
The byfill() function fills a specified area with one character.

Chapter 1. ESQL/C Guide

Syntax
void byfill(to, length, ch)
 char *to;
 mint length;
 char ch;

to

A pointer to the first byte of the memory area that you want byfill() to fill.

length

The number of times that you want byfill() to repeat the character within the area.

ch

The character that you want byfill() to use to fill the area.

Important: Take care not to overwrite areas of memory next to the area that you want byfill() to fill.

Example

This sample program is in the byfill.ec file in the demo directory.

/*
 * byfill.ec *

 The following program shows the results of three byfill() operations on
 an area that is initialized to x's.
*/

#include <stdio.h>

main()
{
 static char area[20] = "xxxxxxxxxxxxxxxxxxx";

 printf("BYFILL Sample ESQL Program running.\n\n");

 printf("String = %s\n", area);

 printf("\nFilling string with five 's' characters:\n");
 byfill(area, 5, 's');
 printf("Result = %s\n", area);

 printf("\nFilling string with two 's' characters starting at ");
 printf("position 16:\n");
 byfill(&area[16], 2, 's');
 printf("Result = %s\n", area);

 printf("Filling entire string with 'b' characters:\n");
 byfill(area, sizeof(area)-1, 'b');
 printf("Result = %s\n", area);

 printf("\nBYFILL Sample Program over.\n\n");
}

569

HCL Informix 14.10 - ESQL/C Programmer’s Guide

570

Output
BYFILL Sample ESQL Program running.

String = xxxxxxxxxxxxxxxxxxx

Filling string with five 's' characters:
Result = sssssxxxxxxxxxxxxxx

Filling string with two 's' characters starting at position 16:
Result = sssssxxxxxxxxxxxssx

Filling entire string with 'b' characters:
Result = bbbbbbbbbbbbbbbbbbb

BYFILL Sample Program over.

The byleng() function
The byleng() function returns the number of significant characters in a string, not counting trailing blanks.

Syntax

mint byleng(from, count)
 char *from;
 mint count;

from

A pointer to a fixed-length string (not null-terminated).

count

The number of bytes in the fixed-length string. This does not include trailing blanks.

Example

This sample program is in the byleng.ec file in the demo directory.

/*
 * byleng.ec *

 The following program uses byleng() to count the significant characters
 in an area.
*/

#include <stdio.h>

main()
{
 mint x;
 static char area[20] = "xxxxxxxxxx ";

 printf("BYLENG Sample Program running.\n\n");

 /* initial length */

Chapter 1. ESQL/C Guide

 printf("Initial string:\n");
 x = byleng(area, 15);
 printf(" Length = %d, String = '%s'\n", x, area);

 /* after copy */
 printf("\nAfter copying two 's' characters starting ");
 printf("at position 16:\n");
 bycopy("ss", &area[16], 2);
 x = byleng(area, 19);
 printf(" Length = %d, String = '%s'\n", x, area);

 printf("\nBYLENG Sample Program over.\n\n");
}

Output
BYLENG Sample Program running.

Initial string:
 Length = 10, String = 'xxxxxxxxxx '

After copying two 's' characters starting at position 16:
 Length = 18, String = 'xxxxxxxxxx ss '

BYLENG Sample Program over.

The decadd() function
The decadd() function adds two decimal type values.

Syntax

mint decadd(n1, n2, sum)
 dec_t *n1;
 dec_t *n2;
 dec_t *sum;

n1

A pointer to the decimal structure of the first operand.

n2

A pointer to the decimal structure of the second operand.

sum

A pointer to the decimal structure that contains the sum (n1 + n2).

Usage

The sum can be the same as either n1 or n2.

Return codes

0

The operation was successful.

571

HCL Informix 14.10 - ESQL/C Programmer’s Guide

572

-1200

The operation resulted in overflow.

-1201

The operation resulted in underflow.

Example

The file decadd.ec in the demo directory contains the following sample program.

/*
 * decadd.ec *

 The following program obtains the sum of two DECIMAL numbers.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = " 1000.6789"; /* leading spaces will be ignored */
char string2[] = "80";
char result[41];

main()
{
 mint x;
 dec_t num1, num2, sum;

 printf("DECADD Sample ESQL Program running.\n\n");

 if (x = deccvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to DECIMAL\n", x);
 exit(1);
 }
 if (x = deccvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to DECIMAL\n", x);
 exit(1);
 }
 if (x = decadd(&num1, &num2, &sum))
 {
 printf("Error %d in adding DECIMALs\n", x);
 exit(1);
 }
 if (x = dectoasc(&sum, result, sizeof(result), -1))
 {
 printf("Error %d in converting DECIMAL result to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("\t%s + %s = %s\n", string1, string2, result); /* display result */

 printf("\nDECADD Sample Program over.\n\n");

Chapter 1. ESQL/C Guide

 exit(0);
}

Output
DECADD Sample ESQL Program running.

 1000.6789 + 80 = 1080.6789

DECADD Sample Program over.

The deccmp() function
The deccmp() function compares two decimal type numbers.

Syntax
mint deccmp(n1, n2)
 dec_t *n1;
 dec_t *n2;

n1

A pointer to a decimal structure of the first number to compare.

n2

A pointer to a decimal structure of the second number to compare.

Return codes

-1

The first value is less than the second value.

0

The two values are identical.

1

The first value is greater than the second value.

DECUNKNOWN

Either value is null.

Example

The file deccmp.ec in the demo directory contains the following sample program.

/*
 * deccmp.ec *

 The following program compares DECIMAL numbers and displays the results.
*/

#include <stdio.h>

573

HCL Informix 14.10 - ESQL/C Programmer’s Guide

574

EXEC SQL include decimal;

char string1[] = "-12345.6789"; /* leading spaces will be ignored */
char string2[] = "12345.6789";
char string3[] = "-12345.6789";
char string4[] = "-12345.6780";

main()
{
 mint x;
 dec_t num1, num2, num3, num4;

 printf("DECCOPY Sample ESQL Program running.\n\n");

 if (x = deccvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to DECIMAL\n", x);
 exit(1);
 }
 if (x = deccvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to DECIMAL\n", x);
 exit(1);
 }
 if (x = deccvasc(string3, strlen(string3), &num3))
 {
 printf("Error %d in converting string3 to DECIMAL\n", x);
 exit(1);
 }
 if (x = deccvasc(string4, strlen(string4), &num4))
 {
 printf("Error %d in converting string4 to DECIMAL\n", x);
 exit(1);
 }

 printf("Number 1 = %s\tNumber 2 = %s\n", string1, string2);
 printf("Number 3 = %s\tNumber 4 = %s\n",string3, string4);
 printf("\nExecuting: deccmp(&num1, &num2)\n");
 printf(" Result = %d\n", deccmp(&num1, &num2));
 printf("Executing: deccmp(&num2, &num3)\n");
 printf(" Result = %d\n", deccmp(&num2, &num3));
 printf("Executing: deccmp(&num1, &num3)\n");
 printf(" Result = %d\n", deccmp(&num1, &num3));
 printf("Executing: deccmp(&num3, &num4)\n");
 printf(" Result = %d\n", deccmp(&num3, &num4));

 printf("\nDECCMP Sample Program over.\n\n");
 exit(0);
}

Output

DECCMP Sample ESQL Program running.

Number 1 = -12345.6789 Number 2 = 12345.6789
Number 3 = -12345.6789 Number 4 = -12345.6780

Chapter 1. ESQL/C Guide

Executing: deccmp(&num1, &num2)
 Result = -1
Executing: deccmp(&num2, &num3)
 Result = 1
Executing: deccmp(&num1, &num3)
 Result = 0
Executing: deccmp(&num3, &num4)
 Result = -1

DECCMP Sample Program over.

The deccopy() function
The deccopy() function copies one decimal structure to another.

Syntax
void deccopy(source, target)
 dec_t *source;
 dec_t *target;

source

A pointer to the value held in the source decimal structure.

target

A pointer to the target decimal structure.

The deccopy() function does not return a status value. To determine the success of the copy operation, look at the contents

of the decimal structure to which the target argument points.

Example

The file deccopy.ec in the demo directory contains the following sample program.

/*
 * deccopy.ec *

 The following program copies one DECIMAL number to another.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "12345.6789";
char result[41];

main()
{
 int x;
 dec_t num1, num2;

 printf("DECCOPY Sample ESQL Program running.\n\n");

575

HCL Informix 14.10 - ESQL/C Programmer’s Guide

576

 printf("String = %s\n", string1);
 if (x = deccvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to DECIMAL\n", x);
 exit(1);
 }
 printf("Executing: deccopy(&num1, &num2)\n");
 deccopy(&num1, &num2);
 if (x = dectoasc(&num2, result, sizeof(result), -1))
 {
 printf("Error %d in converting num2 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("Destination = %s\n", result);

 printf("\nDECCOPY Sample Program over.\n\n");
 exit(0);
}

Output

DECCOPY Sample ESQL Program running.

String = 12345.6789
Executing: deccopy(&num1, &num2)
Destination = 12345.6789

DECCOPY Sample Program over.

The deccvasc() function

The deccvasc() function converts a value held as printable characters in a C char type into a decimal type number.

Syntax

mint deccvasc(strng_val, len, dec_val)
 char *strng_val;
 mint len;
 dec_t *dec_val;

strng_val

A pointer to a string whose value deccvasc() converts to a decimal value.

len

The length of the strng_val string.

dec_val

A pointer to the decimal structure wheredeccvasc() places the result of the conversion.

Usage

The character string, strng_val, can contain the following symbols:

Chapter 1. ESQL/C Guide

• A leading sign, either a plus (+) or minus (-)

• A decimal point, and digits to the right of the decimal point

• An exponent that is preceded by either e or E. You can precede the exponent by a sign, either a plus (+) or minus (-).

The deccvasc() function ignores leading spaces in the character string.

Return codes

0

The conversion was successful.

-1200

The number is too large to fit into a decimal type structure (overflow).

-1201

The number is too small to fit into a decimal type structure (underflow).

-1213

The string has non-numeric characters.

-1216

The string has a bad exponent.

Example

The deccvasc.ec file in the demo directory contains the following sample program.

/*
 * deccvasc.ec *

 The following program converts two strings to DECIMAL numbers and displays
 the values stored in each field of the decimal structures.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "-12345.6789";
char string2[] = "480";

main()
{
 mint x;
 dec_t num1, num2;

 printf("DECCVASC Sample ESQL Program running.\n\n");

 if (x = deccvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to DECIMAL\n", x);
 exit(1);

577

HCL Informix 14.10 - ESQL/C Programmer’s Guide

578

 }
 if (x = deccvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to DECIMAL\n", x);
 exit(1);
 }
 /*
 * Display the exponent, sign value and number of digits in num1.
 */
 printf("\tstring1 = %s\n", string1);
 disp_dec("num1", &num1);

 /*
 * Display the exponent, sign value and number of digits in num2.
 */
 printf("\tstring2 = %s\n", string2);
 disp_dec("num2", &num2);

 printf("\nDECCVASC Sample Program over.\n\n");
 exit(0);
}

disp_dec(s, num)
char *s;
dec_t *num;
{
 mint n;

 printf("%s dec_t structure:\n", s);
 printf("\tdec_exp = %d, dec_pos = %d, dec_ndgts = %d, dec_dgts: ",
 num->dec_exp, num->dec_pos, num->dec_ndgts);
 n = 0;
 while(n < num->dec_ndgts)
 printf("%02d ", num->dec_dgts[n++]);
 printf("\n\n");
}

Output
DECCVASC Sample ESQL Program running.

string1 = -12345.6789
num1 dec_t structure:
 dec_exp = 3, dec_pos = 0, dec_ndgts = 5, dec_dgts: 01 23 45 67 89

string2 = 480
num2 dec_t structure:
 dec_exp = 2, dec_pos = 1, dec_ndgts = 2, dec_dgts: 04 80

DECCVASC Sample Program over.

The deccvdbl() function
The deccvdbl() function converts a C double type number into a decimal type number.

Chapter 1. ESQL/C Guide

Syntax
mint deccvdbl(dbl_val, np)
 double dbl_val;
 dec_t *dec_val;

dbl_val

The double value that deccvdbl() converts to a decimal type value.

dec_val

A pointer to a decimal structure where deccvdbl() places the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The deccvdbl.ec file in the demo directory contains the following sample program.

/*
 * deccvdbl.ec *

 The following program converts two double type numbers to DECIMAL numbers
 and displays the results.
*/

#include <stdio.h>

EXEC SQL include decimal;

char result[41];

main()
{
 mint x;
 dec_t num;
 double d = 2147483647;

 printf("DECCVDBL Sample ESQL Program running.\n\n");

 printf("Number 1 (double) = 1234.5678901234\n");
 if (x = deccvdbl((double)1234.5678901234, &num))
 {
 printf("Error %d in converting double1 to DECIMAL\n", x);
 exit(1);
 }
 if (x = dectoasc(&num, result, sizeof(result), -1))
 {

579

HCL Informix 14.10 - ESQL/C Programmer’s Guide

580

 printf("Error %d in converting DECIMAL1 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" String Value = %s\n", result);

 printf("Number 2 (double) = $.1f\n", d);
 if (x = deccvdbl(d, &num))
 {
 printf("Error %d in converting double2 to DECIMAL\n", x);
 exit(1);
 }
 if (x = dectoasc(&num, result, sizeof(result), -1))
 {
 printf("Error %d in converting DECIMAL2 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" String Value = %s\n", result);

 printf("\nDECCVDBL Sample Program over.\n\n");
 exit(0);
}

Output

DECCVDBL Sample ESQL Program running.

Number 1 (double) = 1234.5678901234
 String Value = 1234.5678901234
Number 2 (double) = 2147483647.0
 String Value = 2147483647.0

DECCVDBL Sample Program over.

The deccvflt() function
The deccvflt() function converts a C float type number into an ESQL/C decimal type number.

Syntax

int deccvflt(flt_val, dec_val)

float flt_val;

dec_t *dec_val;

flt_val

The float value that deccvflt() converts to a decimal type value.

dec_val

A pointer to a decimal structure where deccvflt() places the result of the conversion.

Chapter 1. ESQL/C Guide

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The following example program converts two float type numbers to DECIMAL numbers and displays the results.

#include <stdio.h>
EXEC SQL include decimal;
char result[41];
main()
{
 int x;
dec_t num;
float f = 2147483674;
printf(“DECCVFLT Sample ESQL Program Running.\n\n);
if (x = deccvflt((float)1234.5678901234, &num))
 {
 printf(“Error %d in converting double1 to DECIMAL\n", x);
 exit(1);
 }
if (x = dectoasc(&num, result, sizeof(result), -1))
 {
 printf(“Error %d in converting DECIMAL1 to string\n", x);
 exit(1);
 }
result[40] = ‘\0’;
printf(“ String Value = %s\n", result);
printf(“ Number 2 (float) = %.1f\n", f);
if (x = deccvflt(f, &num))
 {
 printf(“Error %d in converting float2 to DECIMAL\n", x);
 exit(1);
 }
if (x = dectoasc(&num, result, sizeof(result), -1))
 {
 printf(“Error %d in converting DECIMAL2 to string\n", x);
 exit(1);
 }
result[40] = ‘\0’;
printf(“ String Value = %s\n", result);
printf(\n DECCVFLT Sample Program Over.\n\n);
exit(0);
}

Output

DECCVFLT Sample ESQL Program running.

Number 1 (float) = 1234.5678901234
 String Value = 1234.56787

581

HCL Informix 14.10 - ESQL/C Programmer’s Guide

582

Number 2 (float) = 2147483647.0
 String Value = 2147483647.0

DECCVFLT Sample Program over.

The deccvint() function
The deccvint() function converts a C int type number into a decimal type number.

Syntax
mint deccvint(int_val, dec_val)
 mint int_val;
 dec_t *dec_val;

int_val

The mint value that deccvint() converts to a decimal type value.

dec_val

A pointer to a decimal structure where deccvint() places the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The deccvint.ec file in the demo directory contains the following sample program.

/*
 * deccvint.ec *

 The following program converts two integers to DECIMAL numbers and displays
 the results.
*/

#include <stdio.h>

EXEC SQL include decimal;

char result[41];

main()
{
 mint x;
 dec_t num;

 printf("DECCVINT Sample ESQL Program running.\n\n");

 printf("Integer 1 = 129449233\n");

Chapter 1. ESQL/C Guide

 if (x = deccvint(129449233, &num))
 {
 printf("Error %d in converting int1 to DECIMAL\n", x);
 exit(1);
 }
 if (x = dectoasc(&num, result, sizeof(result), -1))
 {
 printf("Error %d in converting DECIMAL to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" String for Decimal Value = %s\n", result);

 printf("Integer 2 = 33\n");
 if (x = deccvint(33, &num))
 {
 printf("Error %d in converting int2 to DECIMAL\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" String for Decimal Value = %s\n", result);

 printf("\nDECCVINT Sample Program over.\n\n");
 exit(0);
}

Output

DECCVINT Sample ESQL Program running.

Integer 1 = 129449233
 String for Decimal Value = 129449233.0
Integer 2 = 33
 String for Decimal Value = 33.0

DECCVINT Sample Program over.

The deccvlong() function
The deccvlong() function converts a C long type value into a decimal type value.

Syntax

mint deccvlong(lng_val, dec_val)
 int4 lng_val;
 dec_t *dec_val;

lng_val

The int4 value that deccvlong() converts to a decimal type value.

dec_val

A pointer to a decimal structure where deccvlong() places the result of the conversion.

583

HCL Informix 14.10 - ESQL/C Programmer’s Guide

584

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The file deccvlong.ec in the demo directory contains the following sample program.

/*
 * deccvlong.ec *

 The following program converts two longs to DECIMAL numbers and displays
 the results.
*/

#include <stdio.h>

EXEC SQL include decimal;

char result[41];
main()
{
 mint x;
 dec_t num;

 int4 n;

 printf("DECCVLONG Sample ESQL Program running.\n\n");

 printf("Long Integer 1 = 129449233\n");
 if (x = deccvlong(129449233L, &num))
 {
 printf("Error %d in converting long to DECIMAL\n", x);
 exit(1);
 }
 if (x = dectoasc(&num, result, sizeof(result), -1))
 {
 printf("Error %d in converting DECIMAL to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" String for Decimal Value = %s\n", result);

 n = 2147483646; /* set n */
 printf("Long Integer 2 = %d\n", n);
 if (x = deccvlong(n, &num))
 {
 printf("Error %d in converting long to DECIMAL\n", x);
 exit(1);
 }
 if (x = dectoasc(&num, result, sizeof(result), -1))
 {

Chapter 1. ESQL/C Guide

 printf("Error %d in converting DECIMAL to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" String for Decimal Value = %s\n", result);

 printf("\nDECCVLONG Sample Program over.\n\n");
 exit(0);
}

Output
DECCVLONG Sample ESQL Program running.

Long Integer 1 = 129449233
 String for Decimal Value = 129449233.0
Long Integer 2 = 2147483646
 String for Decimal Value = 2147483646.0

DECCVLONG Sample Program over.

The decdiv() function
The decdiv() function divides two decimal type values.

Syntax

mint decdiv(n1, n2, result) /* result = n1 / n2 */
 dec_t *n1;
 dec_t *n2;
 dec_t *result;

n1

A pointer to the decimal structure of the first operand.

n2

A pointer to the decimal structure of the second operand.

quotient

A pointer to the decimal structure that contains the quotient of n1 divided by n2.

Usage

The quotient can be the same as either n1 or n2.

Return codes

0

The operation was successful.

-1200

The operation resulted in overflow.

585

HCL Informix 14.10 - ESQL/C Programmer’s Guide

586

-1201

The operation resulted in underflow.

-1202

The operation attempted to divide by zero.

Example

The file decdiv.ec in the demo directory contains the following sample program.

/*
 * decdiv.ec *

 The following program divides two DECIMAL numbers and displays the result.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "480";
char string2[] = "80";
char result[41];

main()
{
 mint x;
 dec_t num1, num2, dvd;

 printf("DECDIV Sample ESQL Program running.\n\n");

 if (x = deccvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to DECIMAL\n", x);
 exit(1);

} if (x = deccvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to DECIMAL\n", x);
 exit(1);
 }
 if (x = decdiv(&num1, &num2, &dvd))
 {
 printf("Error %d in converting divide num1 by num2\n", x);
 exit(1);
 }
 if (x = dectoasc(&dvd, result, sizeof(result), -1))
 {
 printf("Error %d in converting dividend to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("\t%s / %s = %s\n", string1, string2, result);

 printf("\nDECDIV Sample Program over.\n\n");

Chapter 1. ESQL/C Guide

 exit(0);
}

Output
DECDIV Sample ESQL Program running.

 480 / 80 = 6.0

DECDIV Sample Program over.

The dececvt() and decfcvt() functions
The dececvt() and decfcvt() functions are analogous to the subroutines under ECVT(3) in section three of the UNIX™

Programmer's Manual. The dececvt() function works in the same fashion as the ecvt(3) function, and the decfcvt() function

works in the same fashion as the fcvt(3) function. They both convert a decimal type number to a C char type value.

Syntax

char *dececvt(dec_val, ndigit, decpt, sign)
 dec_t *dec_val;
 mint ndigit;
 mint *decpt;
 mint *sign;

char *decfcvt(dec_val, ndigit, decpt, sign)
 dec_t *dec_val;
 mint ndigit;
 mint *decpt;
 mint *sign;

dec_val

A pointer to a decimal structure that contains the decimal value you want these functions to convert.

ndigit

The length of the ASCII string for dececvt(). It is the number of digits to the right of the decimal point for

decfcvt().

decpt

A pointer to an integer that is the position of the decimal point relative to the start of the string. A negative or

zero value for *decpt means to the left of the returned digits.

sign

A pointer to the sign of the result. If the sign of the result is negative, *sign is nonzero; otherwise, *sign is zero.

Usage

The dececvt() function converts the decimal value to which np points into a null-terminated string of ndigit ASCII digits and

returns a pointer to the string. A subsequent call to this function overwrites the string.

The dececvt() function rounds low-order digits.

587

HCL Informix 14.10 - ESQL/C Programmer’s Guide

588

The decfcvt() function is identical to dececvt(), except that ndigit specifies the number of digits to the right of the decimal

point instead of the total number of digits.

Let dec_val point to a decimal value of 12345.67 and suppress all arguments except ndigit. The following table shows the

values that the dececvt() function returns for four different ndigit values.

ndigit value Return string *decpt value *sign

4 "1235" 5 0

10 "1234567000" 5 0

1 "1" 5 0

3 "123" 5 0

For more examples of dec_val and ndigit values, see the sample output of the dececvt.ec demonstration program on

Example of dececvt() on page 588.

Important: When you write thread-safe IBM® Informix® ESQL/C applications, do not use the dececvt() or decfcvt()

library functions. Instead, use their thread-safe equivalents, The ifx_dececvt() and ifx_decfcvt() function on

page 628 For more information, see Informix libraries on page 365

Example of dececvt()

The file dececvt.ec in the demo directory contains the following sample program.

/*
 * dececvt.ec *

 The following program converts a series of DECIMAL numbers to fixed
 strings of 20 ASCII digits. For each conversion it displays the resulting
 string, the decimal position from the beginning of the string and the
 sign value.
*/

#include <stdio.h>

EXEC SQL include decimal;

char *strings[] =
 {
 "210203.204",
 "4894",
 "443.334899312",
 "-12344455",
 "12345.67",
 ".001234",
 0
 };

char result[40];

Chapter 1. ESQL/C Guide

main()
{
 mint x;
 mint i = 0, f, sign;
 dec_t num;
 char *dp, *dececvt();

 printf("DECECVT Sample ESQL Program running.\n\n");
 while(strings[i])
 {
 if (x = deccvasc(strings[i], strlen(strings[i]), &num))
 {
 printf("Error %d in converting string [%s] to DECIMAL\n",
 x, strings[i]);
 break;
 }
 printf("\Input string[%d]: %s\n", i, strings[i]);

 dp = dececvt(&num, 20, &f, &sign); /* to 20-char ASCII string */
 printf(" Output of dececvt(&num, 20, ...): %c%s decpt: %d sign: %d\n",
 (sign ? '-' : '+'), dp, f, sign);

 dp = dececvt(&num, 10, &f, &sign); /* to 10-char ASCII string */
 /* display result */
 printf(" Output of dececvt(&num, 10, ...): %c%s decpt: %d sign: %d\n",
 (sign ? '-' : '+'), dp, f, sign);

 dp = dececvt(&num, 4, &f, &sign); /* to 4-char ASCII string */
 /* display result */
 printf(" Output of dececvt(&num, 4, ...): %c%s decpt: %d sign: %d\n",
 (sign ? '-' : '+'), dp, f, sign);

 dp = dececvt(&num, 3, &f, &sign); /* to 3-char ASCII string */
 /* display result */
 printf(" Output of dececvt(&num, 3, ...): %c%s decpt: %d sign: %d\n",
 (sign ? '-' : '+'), dp, f, sign);
 dp = dececvt(&num, 1, &f, &sign); /* to 1-char ASCII string */
 /* display result */
 printf(" Output of dececvt(&num, 1, ...): %c%s decpt: %d sign: %d\n",
 (sign ? '-' : '+'), dp, f, sign);

 ++i; /* next string */
 }

 printf("\nDECECVT Sample Program over.\n\n");
}

Output of dececvt()

DECECVT Sample ESQL Program running.

Input string[0]: 210203.204
 Output of dececvt: +2102 decpt: 6 sign: 0
 Output of dececvt: +2102032040 decpt: 6 sign: 0
 Output of dececvt: +2 decpt: 6 sign: 0

589

HCL Informix 14.10 - ESQL/C Programmer’s Guide

590

 Output of dececvt: +210 decpt: 6 sign: 0

Input string[1]: 4894
 Output of dececvt: +4894 decpt: 4 sign: 0
 Output of dececvt: +4894000000 decpt: 4 sign: 0
 Output of dececvt: +5 decpt: 4 sign: 0
 Output of dececvt: +489 decpt: 4 sign: 0

Input string[2]: 443.334899312
 Output of dececvt: +4433 decpt: 3 sign: 0
 Output of dececvt: +4433348993 decpt: 3 sign: 0
 Output of dececvt: +4 decpt: 3 sign: 0
 Output of dececvt: +443 decpt: 3 sign: 0

Input string[3]: -12344455
 Output of dececvt: -1234 decpt: 8 sign: 1
 Output of dececvt: -1234445500 decpt: 8 sign: 1
 Output of dececvt: -1 decpt: 8 sign: 1
 Output of dececvt: -123 decpt: 8 sign: 1

Input string[4]: 12345.67
 Output of dececvt: +1235 decpt: 5 sign: 0
 Output of dececvt: +1234567000 decpt: 5 sign: 0
 Output of dececvt: +1 decpt: 5 sign: 0
 Output of dececvt: +123 decpt: 5 sign: 0

Input string[5]: .001234
 Output of dececvt: +1234 decpt: -2 sign: 0
 Output of dececvt: +1234000000 decpt: -2 sign: 0
 Output of dececvt: +1 decpt: -2 sign: 0
 Output of dececvt: +123 decpt: -2 sign: 0

DECECVT Sample Program over.

Example of decfcvt()

The file decfcvt.ec in the demo directory contains the following sample program.

/*
 * decfcvt.ec *

 The following program converts a series of DECIMAL numbers to strings
 of ASCII digits with 3 digits to the right of the decimal point. For
 each conversion it displays the resulting string, the position of the
 decimal point from the beginning of the string and the sign value.
*/

#include <stdio.h>

EXEC SQL include decimal;

char *strings[] =
 {
 "210203.204",
 "4894",
 "443.334899312",
 "-12344455",

Chapter 1. ESQL/C Guide

 0
 };

main()
{
 mint x;
 dec_t num;
 mint i = 0, f, sign;
 char *dp, *decfcvt();

 printf("DECFCVT Sample ESQL Program running.\n\n");

 while(strings[i])
 {
 if (x = deccvasc(strings[i], strlen(strings[i]), &num))
 {
 printf("Error %d in converting string [%s] to DECIMAL\n",
 x, strings[i]);
 break;
 }

 dp = decfcvt(&num, 3, &f, &sign); /* to ASCII string */

 /* display result */
 printf("Input string[%d]: %s\n", i, strings[i]);
 printf(" Output of decfcvt: %c%*.*s.%s decpt: %d sign: %d\n\n",
 (sign ? '-' : '+'), f, f, dp, dp+f, f, sign);
 ++i; /* next string */
 }

 printf("\nDECFCVT Sample Program over.\n\n");
}

Output of decfcvt()

DECFCVT Sample ESQL Program running.

Input string[0]: 210203.204
 Output of decfcvt: +210203.204 decpt: 6 sign: 0

Input string[1]: 4894
 Output of decfcvt: +4894.000 decpt: 4 sign: 0

Input string[2]: 443.334899312
 Output of decfcvt: +443.335 decpt: 3 sign: 0

Input string[3]: -12344455
 Output of decfcvt: -12344455.000 decpt: 8 sign: 1

DECFCVT Sample Program over.

The decmul() function
The decmul() function multiplies two decimal type values.

591

HCL Informix 14.10 - ESQL/C Programmer’s Guide

592

Syntax
mint decmul(n1, n2, product)
 dec_t *n1;
 dec_t *n2;
 dec_t *product;

n1

A pointer to the decimal structure of the first operand.

n2

A pointer to the decimal structure of the second operand.

product

A pointer to the decimal structure that contains the product of n1 times n2.

Usage

The product can be the same as either n1 or n2.

Return codes

0

The operation was successful.

-1200

The operation resulted in overflow.

-1201

The operation resulted in underflow.

Example

The decmul.ec file in the demo directory contains the following sample program.

/*
 * decmul.ec *

 This program multiplies two DECIMAL numbers and displays the result.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "80.2";
char string2[] = "6.0";
char result[41];

main()
{
 mint x;
 dec_t num1, num2, mpx;

Chapter 1. ESQL/C Guide

 printf("DECMUL Sample ESQL Program running.\n\n");

 if (x = deccvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to DECIMAL\n", x);
 exit(1);
 }
 if (x = deccvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to DECIMAL\n", x);
 exit(1);
 }
 if (x = decmul(&num1, &num2, &mpx))
 {
 printf("Error %d in converting multiply\n", x);
 exit(1);
 }
 if (x = dectoasc(&mpx, result, sizeof(result), -1))
 {
 printf("Error %d in converting mpx to display string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("\t%s * %s = %s\n", string1, string2, result);

 printf("\nDECMUL Sample Program over.\n\n");
 exit(0);
}

Output

DECMUL Sample ESQL Program running.

 80.2 * 6.0 = 481.2

DECMUL Sample Program over.

The decround() function
The decround() function rounds a decimal type number to fractional digits.

Syntax

void decround(d, s)
 dec_t *d;
 mint s;

d

A pointer to a decimal structure whose value the decround() function rounds.

s

The number of fractional digits to which decround() rounds d. Use a positive number for the s argument.

593

HCL Informix 14.10 - ESQL/C Programmer’s Guide

594

Usage

The rounding factor is 5x10-s-1. To round a value, the decround() function adds the rounding factor to a positive number or

subtracts this factor from a negative number. It then truncates to s digits, as the following table shows.

Value before round Value of s Rounded value

1.4 0 1.0

1.5 0 2.0

1.684 2 1.68

1.685 2 1.69

1.685 1 1.7

1.685 0 2.0

Return codes

The file decround.ec in the demo directory contains the following sample program.

/*
 * decround.ec *

 The following program rounds a DECIMAL type number six times and displays
 the result of each operation.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string[] = "-12345.038572";
char result[41];

main()
{
 mint x;
 mint i = 6; /* number of decimal places to start with */
 dec_t num1;

 printf("DECROUND Sample ESQL Program running.\n\n");

 printf("String = %s\n", string);
 while(i)
 {
 if (x = deccvasc(string, strlen(string), &num1))
 {
 printf("Error %d in converting string to DECIMAL\n", x);
 break;
 }
 decround(&num1, i);
 if (x = dectoasc(&num1, result, sizeof(result), -1))
 {

Chapter 1. ESQL/C Guide

 printf("Error %d in converting result to string\n", x);
 break;
 }
 result[40] = '\0';
 printf(" Rounded to %d Fractional Digits: %s\n", i--, result);
 }
 printf("\nDECROUND Sample Program over.\n\n");
}

Output
DECROUND Sample ESQL Program running.

String = -12345.038572
 Rounded to 6 Fractional Digits: -12345.038572
 Rounded to 5 Fractional Digits: -12345.03857
 Rounded to 4 Fractional Digits: -12345.0386
 Rounded to 3 Fractional Digits: -12345.039
 Rounded to 2 Fractional Digits: -12345.04
 Rounded to 1 Fractional Digits: -12345.

DECROUND Sample Program over.

The decsub() function
The decsub() function subtracts two decimal type values.

Syntax

mint decsub(n1, n2, difference)
 dec_t *n1;
 dec_t *n2;
 dec_t *difference;

n1

A pointer to the decimal structure of the first operand.

n2

A pointer to the decimal structure of the second operand.

difference

A pointer to the decimal structure that contains the difference of n1 minus n2.

Usage

The difference can be the same as either n1 or n2.

Return codes

0

The operation was successful.

595

HCL Informix 14.10 - ESQL/C Programmer’s Guide

596

-1200

The operation resulted in overflow.

-1201

The operation resulted in underflow.

Example

The file decsub.ec in the demo directory contains the following sample program.

/*
 * decsub.ec *

 The following program subtracts two DECIMAL numbers and displays the result.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "1000.038782";
char string2[] = "480";
char result[41];

main()
{
 mint x;
 dec_t num1, num2, diff;

 printf("DECSUB Sample ESQL Program running.\n\n");

 if (x = deccvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to DECIMAL\n", x);
 exit(1);
 }
 if (x = deccvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to DECIMAL\n", x);
 exit(1);
 }
 if (x = decsub(&num1, &num2, &diff))
 {
 printf("Error %d in subtracting decimals\n", x);
 exit(1);
 }
 if (x = dectoasc(&diff, result, sizeof(result), -1))
 {
 printf("Error %d in converting result to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("\t%s - %s = %s\n", string1, string2, result);

 printf("\nDECSUB Sample Program over.\n\n");

Chapter 1. ESQL/C Guide

 exit(0);
}

Output
DECSUB Sample ESQL Program running.

 1000.038782 - 480 = 520.038782

DECSUB Sample Program over.

The dectoasc() function
The dectoasc() function converts a decimal type number to a C char type value.

Syntax
mint dectoasc(dec_val, strng_val, len, right)
 dec_t *dec_val;
 char *strng_val;
 mint len;
 mint right;

dec_val

A pointer to the decimal structure whose value dectoasc() converts to a text string.

strng_val

A pointer to the first byte of the character buffer where the dectoasc() function places the text string.

len

The size of strng_val, in bytes, minus 1 for the null terminator.

right

An integer that indicates the number of decimal places to the right of the decimal point.

Usage

If right = -1, the decimal value of dec_val determines the number of decimal places.

If the decimal number does not fit into a character string of length len, dectoasc()() converts the number to an exponential

notation. If the number still does not fit, dectoasc() fills the string with asterisks. If the number is shorter than the string,

dectoasc() left-justifies the number and pads it on the right with blanks.

Because the character string that dectoasc()() returns is not null terminated, your program must add a null character to the

string before you print it.

Return codes

0

The conversion was successful.

597

HCL Informix 14.10 - ESQL/C Programmer’s Guide

598

-1

The conversion failed.

Example

The file dectoasc.ec in the demo directory contains the following sample program.

/*
 * dectoasc.ec *

 The following program converts DECIMAL numbers to strings of varying sizes.
*/

#include <stdio.h>

EXEC SQL include decimal;

#define END sizeof(result)

char string1[] = "-12345.038782";
char string2[] = "480";
char result[40];

main()
{
 mint x;
 dec_t num1, num2;

 printf("DECTOASC Sample ESQL Program running.\n\n");

 printf("String Decimal Value 1 = %s\n", string1);
 if (x = deccvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to DECIMAL\n", x);
 exit(1);
 }
 printf("String Decimal Value 2 = %s\n", string2);
 if (x = deccvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to DECIMAL\n", x);
 exit(1);
 }

 printf("\nConverting Decimal back to ASCII\n");
 printf(" Executing: dectoasc(&num1, result, 5, -1)\n");
 if (x = dectoasc(&num1, result, 5, -1))
 printf("\tError %d in converting DECIMAL1 to string\n", x);
 else
 {
 result[5] = '\0'; /* null terminate */
 printf("\tResult ='%s'\n", result);
 }

 printf("Executing: dectoasc(&num1, result, 10, -1)\n");
 if (x = dectoasc(&num1, result, 10, -1))
 printf("Error %d in converting DECIMAL1 to string\n", x);

Chapter 1. ESQL/C Guide

 else
 {
 result[10] = '\0'; /* null terminate */
 printf("\tResult = '%s'\n", result);
 }

 printf("Executing: dectoasc(&num2, result, END, 3)\n");
 if (x = dectoasc(&num2, result, END, 3))
 printf("\tError %d in converting DECIMAL2 to string\n", x);
 else
 {
 result[END-1] = '\0'; /* null terminate */
 printf("\tResult = '%s'\n", result);
 }

 printf("\nDECTOASC Sample Program over.\n\n")
}

Output

DECTOASC Sample ESQL Program running.

String Decimal Value 1 = -12345.038782
String Decimal Value 2 = 480

Converting Decimal back to ASCII
 Executing: dectoasc(&num1, result, 5, -1)
 Error -1 in converting decimal1 to string
 Executing: dectoasc(&num1, result, 10, -1)
 Result = '-12345.039'
 Executing: dectoasc(&num2, result, END, 3)
 Result = '480.000 '

DECTOASC Sample Program over.

The dectodbl() function
The dectodbl() function converts a decimal type number into a C double type number.

Syntax

mint dectodbl(dec_val, dbl_val)
 dec_t *dec_val;
 double *dbl_val;

dec_val

A pointer to a decimal structure whose value dectodbl() converts to a double type value.

dbl_val

A pointer to a double type where dectodbl() places the result of the conversion.

Usage

The floating-point format of the host computer can result in loss of precision in the conversion of a decimal type number to a

double type number.

599

HCL Informix 14.10 - ESQL/C Programmer’s Guide

600

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The dectodbl.ec file in the demo directory contains the following sample program.

/*
 * dectodbl.ec *

 The following program converts two DECIMAL numbers to doubles and displays
 the results.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "2949.3829398204382";
char string2[] = "3238299493";
char result[40];

main()
{
 mint x;
 double d = 0;
 dec_t num;

 printf("DECTODBL Sample ESQL Program running.\n\n");

 if (x = deccvasc(string1, strlen(string1), &num))
 {
 printf("Error %d in converting string1 to DECIMAL\n", x);
 exit(1);
 }
 if (x = dectodbl(&num, &d))
 {
 printf("Error %d in converting DECIMAL1 to double\n", x);
 exit(1);
 }
 printf("String 1 = %s\n", string1);
 printf("Double value = %.15f\n", d);

 if (x = deccvasc(string2, strlen(string2), &num))
 {
 printf("Error %d in converting string2 to DECIMAL\n", x);
 exit(1);
 }
 if (x = dectodbl(&num, &d))
 {
 printf("Error %d in converting DECIMAL2 to double\n", x);

Chapter 1. ESQL/C Guide

 exit(1);
 }
 printf("String 2 = %s\n", string2);
 printf("Double value = %f\n", d);

 printf("\nDECTODBL Sample Program over.\n\n");
 exit(0);
}

Output
DECTODBL Sample ESQL Program running.

String 1 = 2949.3829398204382
Double value = 2949.382939820438423

String 2 = 3238299493
Double value = 3238299493.000000

DECTODBL Sample Program over.

The dectoint() function
The dectoint() function converts a decimal type number into a C int type number.

Syntax

mint dectoint(dec_val, int_val)
 dec_t *dec_val;
 mint *int_val;

dec_val

A pointer to a decimal structure whose value dectoint() converts to a mint type value.

int_val

A pointer to a mint value where dectoint() places the result of the conversion.

Usage

The dectoint() library function converts a decimal value to a C integer. The size of a C integer depends on the hardware and

operating system of the computer you are using. Therefore, the dectoint()() function equates an integer value with the SQL

SMALLINT data type. The valid range of a SMALLINT is between 32767 and -32767. To convert larger decimal values to larger

integers, use the dectoint() library function.

Return codes

0

The conversion was successful.

<0

The conversion failed.

601

HCL Informix 14.10 - ESQL/C Programmer’s Guide

602

-1200

The magnitude of the decimal type number is greater than 32767.

Example

The file dectoint.ec in the demo directory contains the following sample program.

/*
 * dectoint.ec *

 The following program converts two DECIMAL numbers to integers and
 displays the result of each conversion.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1 [] = "32767";
char string2 [] = "32768";

main()
{
 mint x;
 mint n = 0;
 dec_t num;

 printf("DECTOINT Sample ESQL Program running.\n\n)";

 printf("String 1 = %s\n", string1);
 if (x = deccvasc(string1,strlen(string1), &num))
 {
 printf(" Error %d in converting string1 to decimal\n", x);
 exit(1);
 }
 if (x = dectoint(&num, &n))
 printf(" Error %d in converting decimal to int\n", x);
 else
 printf(" Result = %d\n", n);

 printf("\nString 2 = %s\n", string2);
 if (x = deccvasc(string2, strlen(string2), &num))
 {
 printf(" Error %d in converting string2 to decimal\n", x);
 exit(1);
 }
 if (x = dectoint(&num, &n))
 printf(" Error %d in converting decimal to int\n", x);
 else
 printf(" Result = %d\n", n);

 printf("\nDECTOINT Sample Program over.\n\n");
 exit(0);
}

Chapter 1. ESQL/C Guide

Output
DECTOINT Sample ESQL Program running.

String 1 = 32767
 Result = 32767

String 2 = 32768
 Error -1200 in converting decimal to int

DECTOINT Sample Program over.

The dectolong() function
The dectolong() function converts a decimal type number into an int4 type number.

Syntax
mint dectolong(dec_val, lng_val)
 dec_t *dec_val;
 int4 *lng_val;

dec_val

A pointer to a decimal structure whose value dectolong() converts to an int4 integer.

lng_val

A pointer to an int4 integer where dectolong() places the result of the conversion.

Return codes

0

The conversion was successful.

-1200

The magnitude of the decimal type number is greater than 2,147,483,647.

Example

The file dectolong.ec in the demo directory contains the following sample program.

/*
 * dectolong.ec *

 The following program converts two DECIMAL numbers to longs and displays
 the return value and the result for each conversion.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string1[] = "2147483647";
char string2[] = "2147483648";

603

HCL Informix 14.10 - ESQL/C Programmer’s Guide

604

main()
{
 int x;
 long n = 0;
 dec_t num;

 printf("DECTOLONG Sample ESQL Program running.\n\n");

 printf("String 1 = %s\n", string1);
 if (x = deccvasc(string1, strlen(string1), &num))
 {
 printf(" Error %d in converting string1 to DECIMAL\n", x);
 exit(1);
 }
 if (x = dectolong(&num, &n))
 printf(" Error %d in converting DECIMAL1 to long\n", x);
 else
 printf(" Result = %ld\n", n);

 printf("\nString 2 = %s\n", string2);
 if (x = deccvasc(string2, strlen(string2), &num))
 {
 printf(" Error %d in converting string2 to DECIMAL\n", x);
 exit(1);
 }
 if (x = dectolong(&num, &n))
 printf(" Error %d in converting DECIMAL2 to long\n", x);
 else
 printf(" Result = %ld\n", n);

 printf("\nDECTOLONG Sample Program over.\n\n");
 exit(0);
}

Output

DECTOLONG Sample ESQL Program running.

String 1 = 2147483647
 Result = 2147483647

String 2 = 2147483648
 Error -1200 in converting DECIMAL2 to long

DECTOLONG Sample Program over.

The dectrunc() function
The dectrunc() function truncates a rounded decimal type number to fractional digits.

Syntax

void dectrunc(d, s)
 dec_t *d;
 mint s;

Chapter 1. ESQL/C Guide

d

A pointer to a decimal structure for a rounded number whose value dectrunc() truncates.

s

The number of fractional digits to which dectrunc() truncates the number. Use a positive number or zero for

this argument.

Usage

The following table shows the sample output from dectrunc() with various inputs.

Value before truncation Value of s Truncated value

1.4 0 1.0

1.5 0 1.0

1.684 2 1.68

1.685 2 1.68

1.685 1 1.6

1.685 0 1.0

Example

The file dectrunc.ec in the demo directory contains the following sample program.

/*
 * dectrunc.ec *

 The following program truncates a DECIMAL number six times and displays
 each result.
*/

#include <stdio.h>

EXEC SQL include decimal;

char string[] = "-12345.038572";
char result[41];

main()
{
 mint x;
 mint i = 6; /* number of decimal places to start with */
 dec_t num1;

 printf("DECTRUNC Sample ESQL Program running.\n\n");

 printf("String = %s\n", string);
 while(i)
 {

605

HCL Informix 14.10 - ESQL/C Programmer’s Guide

606

 if (x = deccvasc(string, strlen(string), &num1))
 {
 printf("Error %d in converting string to DECIMAL\n", x);
 break;
 }
 dectrunc(&num1, i);
 if (x = dectoasc(&num1, result, sizeof(result), -1))
 {
 printf("Error %d in converting result to string\n", x);
 break;
 }
 result[40] = '\0';
 printf(" Truncated to %d Fractional Digits: %s\n", i--, result);
 }

 printf("\nDECTRUNC Sample Program over.\n\n");
}

Output

DECTRUNC Sample ESQL Program running.

String = -12345.038572
 Truncated to 6 Fractional Digits: -12345.038572
 Truncated to 5 Fractional Digits: -12345.03857
 Truncated to 4 Fractional Digits: -12345.0385
 Truncated to 3 Fractional Digits: -12345.038
 Truncated to 2 Fractional Digits: -12345.03
 Truncated to 1 Fractional Digits: -12345.0

DECTRUNC Sample Program over.

The dtaddinv() function
The dtaddinv() function adds an interval value to a datetime value. The result is a datetime value.

Syntax

mint dtaddinv(dt, inv, res)
 dtime_t *dt;
 intrvl_t *inv;
 dtime_t *res;

dt

A pointer to the initialized datetime host variable.

inv

A pointer to the initialized interval host variable.

res

A pointer to the datetime host variable that contains the result.

Chapter 1. ESQL/C Guide

Usage

The dtaddinv() function adds the interval value in inv to the datetime value in dt and stores the datetime value in res. This

result inherits the qualifier of dt.

The interval value must be in either the year to month or day to fraction(5) ranges.

The datetime value must include all the fields present in the interval value.

If you do not initialize the variables dt and inv, the function might return an unpredictable result.

Return codes

0

The addition was successful.

<0

Error in addition.

Example

The demo directory contains this sample program in the dtaddinv.ec file.

/*
 * dtaddinv.ec *

 The following program adds an INTERVAL value to a DATETIME value and
 displays the result.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 char out_str[16];

 EXEC SQL BEGIN DECLARE SECTION;
 datetime year to minute dt_var, result;
 interval day to minute intvl;
 EXEC SQL END DECLARE SECTION;

 printf("DTADDINV Sample ESQL Program running.\n\n");

 printf("datetime year to minute value=2006-11-28 11:40\n");
 dtcvasc("2006-11-28 11:40", &dt_var);
 printf("interval day to minute value = 50 10:20\n");
 incvasc("50 10:20", &intvl);

 dtaddinv(&dt_var, &intvl, &result);

 /* Convert to ASCII for displaying */
 dttoasc(&result, out_str);

607

HCL Informix 14.10 - ESQL/C Programmer’s Guide

608

 printf("---\n");
 printf(" Sum=%s\n", out_str);

 printf("\nDTADDINV Sample Program over.\n\n");
}

Output
DTADDINV Sample ESQL Program running.

datetime year to minute value=2006-11-28 11:40
interval day to minute value = 50 10:20

 Sum=2007-01-17 22:00

DTADDINV Sample Program over.

The dtcurrent() function
The dtcurrent() function assigns the current date and time to a datetime variable.

Syntax

void dtcurrent(d)
 dtime_t *d;

d

A pointer to the initialized datetime host variable.

Usage

When the variable qualifier is set to zero (or any invalid qualifier), the dtcurrent() function initializes it with the year to

fraction(3) qualifier.

When the variable contains a valid qualifier, the dtcurrent() function extends the current date and time to agree with the

qualifier.

Example calls

The following statements set the host variable timewarp to the current date:

EXEC SQL BEGIN DECLARE SECTION;
 datetime year to day timewarp;
EXEC SQL END DECLARE SECTION;

dtcurrent(&timewarp);

The following statements set the variable now to the current time, to the nearest millisecond:

now.dt_qual = TU_DTENCODE(TU_HOUR,TU_F3);
dtcurrent(&now);

Chapter 1. ESQL/C Guide

Example

The demo directory contains this sample program in the dtcurrent.ec file.

/*
 * dtcurrent.ec *

 The following program obtains the current date from the system, converts
 it to ASCII and prints it.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 mint x;
 char out_str[20];

 EXEC SQL BEGIN DECLARE SECTION;
 datetime year to hour dt1;
 EXEC SQL END DECLARE SECTION;

 printf("DTCURRENT Sample ESQL Program running.\n\n");

 /* Get today's date */
 dtcurrent(&dt1);

 /* Convert to ASCII for displaying */
 dttoasc(&dt1, out_str);
 printf("\tToday's datetime (year to minute) value is %s\n", out_str);

 printf("\nDTCURRENT Sample Program over.\n\n");
}

Output

DTCURRENT Sample ESQL Program running.

 Today's datetime (year to minute) value is 2007-09-16 14:49

DTCURRENT Sample Program over.

The dtcvasc() function
The dtcvasc() function converts a string that conforms to ANSI SQL standard for a DATETIME value to a datetime value.

For information about the ANSI SQL DATETIME standard, see ANSI SQL standards for DATETIME and INTERVAL values on

page 132.

Syntax
mint dtcvasc(inbuf, dtvalue)
 char *inbuf;
 dtime_t *dtvalue;

609

HCL Informix 14.10 - ESQL/C Programmer’s Guide

610

inbuf

A pointer to the buffer that contains an ANSI-standard DATETIME string.

dtvalue

A pointer to an initialized datetime variable.

Usage

You must initialize the datetime variable in dtvalue with the qualifier that you want this variable to have.

The character string in inbuf must have values that conform to the year to second qualifier in the ANSI SQL format. The

inbuf string can have leading and trailing spaces. However, from the first significant digit to the last, inbuf can only contain

characters that are digits and delimiters that conform to the ANSI SQL standard for DATETIME values.

If you specify a year value as one or two digits, the dtcvasc() function assumes that the year is in the present century. You

can set the DBCENTURY environment variable to determine which century dtcvasc() uses when you omit a century from the

date.

If the character string is an empty string, the dtcvasc() function sets to null the value to which dtvalue points. If the character

string is acceptable, the function sets the value in the datetime variable and returns zero. Otherwise, the function leaves the

variable unchanged and returns a negative error code.

Return codes

0

Conversion was successful.

-1260

It is not possible to convert between the specified types.

-1261

Too many digits in the first field of datetime or interval.

-1262

Non-numeric character in datetime or interval.

-1263

A field in a datetime or interval value is out of range or incorrect.

-1264

Extra characters exist at the end of a datetime or interval.

-1265

Overflow occurred on a datetime or interval operation.

-1266

A datetime or interval value is incompatible with the operation.

Chapter 1. ESQL/C Guide

-1267

The result of a datetime computation is out of range.

-1268

A parameter contains an invalid datetime qualifier.

Example

The demo directory contains this sample program in the dtcvasc.ec file.

/*
 * dtcvasc.ec *

 The following program converts ASCII datetime strings in ANSI SQL format
 into datetime (dtime_t) structure.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 mint x;

 EXEC SQL BEGIN DECLARE SECTION;
 datetime year to second dt1;
 EXEC SQL END DECLARE SECTION;

 printf("DTCVASC Sample ESQL Program running.\n\n");

 printf("Datetime string #1 = 2007-02-11 3:10:35\n");
 if (x = dtcvasc("2007-02-11 3:10:35", &dt1))
 printf("Result = failed with conversion error: %d\n", x);
 else
 printf("Result = successful conversion\n");

 /*
 * Note that the following literal string has a 26 in the hours place
 */
 printf("\nDatetime string #2 = 2007-02-04 26:10:35\n");
 if (x = dtcvasc("2007-02-04 26:10:35", &dt1))
 printf("Result = failed with conversion error: %d\n", x);
 else
 printf("Result = successful conversion\n");

 printf("\nDTCVASC Sample Program over.\n\n");
}

Output

DTCVASC Sample ESQL Program running.

Datetime string #1 = 2007-02-11 3:10:35
Result = successful conversion

611

HCL Informix 14.10 - ESQL/C Programmer’s Guide

612

Datetime string #2 = 2007-02-04 26:10:35
Result = failed with conversion error:-1263

DTCVASC Sample Program over.

The dtcvfmtasc() function
The dtcvfmtasc() function uses a formatting mask to convert a character string to a datetime value.

Syntax
mint dtcvfmtasc(inbuf, fmtstring, dtvalue)
 char *inbuf;
 char *fmtstring;
 dtime_t *dtvalue;

inbuf

A pointer to the buffer that contains the string to convert.

fmtstring

A pointer to the buffer that contains the formatting mask to use for the inbuf string. This time-formatting mask

contains the same formatting directives that the DBTIME environment variable supports. (For a list of these

directives, see the description of DBTIME in the HCL® Informix® Guide to SQL: Reference).

dtvalue

A pointer to the initialized datetime variable.

Usage

You must initialize the datetime variable in dtvalue with the qualifier that you want this variable to have. The datetime variable

does not need to specify the same qualifier that the formatting mask implies. When the datetime qualifier is different from

the implied formatting-mask qualifier, dtcvfmtasc() extends the datetime value (as if it had called the dtextend() function).

All qualifier fields in the character string in inbuf must be contiguous. In other words, if the qualifier is hour to second, you

must specify all values for hour, minute, and second somewhere in the string, or the dtcvfmtasc() function returns an error.

The inbuf character string can have leading and trailing spaces. However, from the first significant digit to the last, inbuf

can contain only digits and delimiters that are appropriate for the qualifier fields that the formatting mask implies. For more

information about acceptable digits and delimiters for a DATETIME value, see the ANSI SQL standards for DATETIME and

INTERVAL values on page 132.

The dtcvfmtasc() function returns an error if the formatting mask, fmtstring, is an empty string. If fmtstring is a null pointer,

the dtcvfmtasc() function must determine the format to use when it reads the character string in inbuf. When you use the

default locale, the function uses the following precedence:

Chapter 1. ESQL/C Guide

1. The format that the DBTIME environment variable specifies (if DBTIME is set). For more information about DBTIME,

see the HCL® Informix® Guide to SQL: Reference.

2. The format that the GL_DATETIME environment variable specifies (if GL_DATETIME is set). For more information

about GL_DATETIME, see the HCL® Informix® GLS User's Guide.

3. The default date format conforms to the standard ANSI SQL format:

%iY-%m-%d %H:%M:%S

The ANSI SQL format specifies a qualifier of year to second for the output. You can express the year as four digits (2007) or

as two digits (07). When you use a two-digit year (%y) in a formatting mask, the dtcvfmtasc() function uses the value of the

DBCENTURY environment variable to determine which century to use. If you do not set DBCENTURY, dtcvfmtasc() assumes

the present century for two-digit years. For information about how to set DBCENTURY, see the HCL® Informix® Guide to SQL:

Reference.

When you use a nondefault locale (one other than US English) and do not set the DBTIME or GL_DATETIME environment

variables, dtcvfmtasc() uses the default DATETIME format that the locale defines. For more information, see the HCL®

Informix® GLS User's Guide.

When the character string and the formatting mask are acceptable, the dtcvfmtasc() function sets the datetime variable in

dtvalue and returns zero. Otherwise, it returns an error code and the datetime variable contains an unpredictable value.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The demo directory contains this sample program in the file dtcvfmtasc.ec. The code initializes the variable birthday to a

fictitious birthday.

/* *dtcvfmtasc.ec*
 The following program illustrates the conversion of several ascii strings
 into datetime values.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 char out_str[17], out_str2[17], out_str3[17]; mint x;

 EXEC SQL BEGIN DECLARE SECTION;
 datetime month to minute birthday;
 datetime year to minute birthday2;

613

HCL Informix 14.10 - ESQL/C Programmer’s Guide

614

 datetime year to minute birthday3;
 EXEC SQL END DECLARE SECTION;

 printf("DTCVFMTASC Sample ESQL Program running.\n\n");

 /* Initialize birthday to "09-06 13:30" */
 printf("Birthday #1 = September 6 at 01:30 pm\n");
 x = dtcvfmtasc("September 6 at 01:30 pm", "%B %d at %I:%M %p",
 &birthday);

 /*Convert the internal format to ascii in ANSI format, for displaying. */
 x = dttoasc(&birthday, out_str);
 printf("Datetime (month to minute) value = %s\n\n", out_str);
 /* Initialize birthday2 to "07-14-88 09:15" */
 printf("Birthday #2 = July 14, 1988. Time: 9:15 am\n");
 x = dtcvfmtasc("July 14, 1988. Time: 9:15am",
 "%B %d, %Y. Time: %I:38p", &birthday2);

 /*Convert the internal format to ascii in ANSI format, for displaying. */
x = dttoasc(&birthday2, out_str2);
 printf("Datetime (year to minute) value = %s\n\n", out_str2);
 /* Initialize birthday3 to "07-14-XX 09:15" where XX is current year.
 * Note that birthday3 is year to minute but this initialization only
 * provides month to minute. dtcvfmtasc provides current information
 * for the missing year.
 */
 printf("Birthday #3 = July 14. Time: 9:15 am\n");
 x = dtcvfmtasc("July 14. Time: 9:15am", "%B %d. Time: %I:%M %p",
 &birthday3);

 /* Convert the internal format to ascii in ANSI format, for displaying. */
 x = dttoasc(&birthday3, out_str3);
 printf("Datetime (year to minute) value with current year = %s\n",
 out_str3);

 printf("\nDTCVFMTASC Sample Program over.\n\n");

}

Output

DTCVFMTASC Sample ESQL Program running.

Birthday #1 = September 6 at 01:30 pm
Datetime (month to minute) value = 09-06 13:30

Birthday #2 = July 14, 1988 Time: 9:15 am
Datetime (year to minute) value = 2007-07-14 09:15

Birthday #3 = July 14. Time: 9:15 am
Datetime (year to minute) value with current year = 2007-07-14 09:15

DTCVFMTASC Sample Program over.

Chapter 1. ESQL/C Guide

The dtextend() function
The dtextend() function extends a datetime value to a different qualifier. Extending is the operation of adding or dropping

fields of a DATETIME value to make it match a given qualifier.

Syntax
mint dtextend(in_dt, out_dt)
 dtime_t *in_dt, *out_dt;

in_dt

A pointer to the datetime variable to extend.

out_dt

A pointer to the datetime variable with a valid qualifier to use for the extension.

Usage

The dtextend() function copies the qualifier-field digits of the in_dt datetime variable to the out_dt datetime variable. The

qualifier of the out_dt variable controls the copy.

The function discards any fields in in_dt that the out_dt variable does not include. The function complets any fields in out_dt

that are not present in in_dt, as follows:

• It completes fields to the left of the most-significant field in in_dt from the current time and date.

• It completes fields to the right of the least-significant field in in_dt with zeros.

In the following example, a variable fiscal_start is set up with the first day of a fiscal year that begins on June 1. The

dtextend() function generates the current year.

EXEC SQL BEGIN DECLARE SECTION;
 datetime work, fiscal_start;
EXEC SQL END DECLARE SECTION;

work.dt_qual = TU_DTENCODE(TU_MONTH,TU_DAY);
dtcvasc("06-01",&work);
fiscal_start.dt_qual = TU_DTENCODE(TU_YEAR,TU_DAY);
dtextend(&work,&fiscal_start);

Return codes

0

The operation was successful.

-1268

A parameter contains an invalid datetime qualifier.

Example

The demo directory contains this sample program in the file dtextend.ec.

615

HCL Informix 14.10 - ESQL/C Programmer’s Guide

616

/*
 * dtextend.ec *

 The following program illustrates the results of datetime extension.
 The fields to the right are filled with zeros,
 and the fields to the left are filled in from current date and time.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 mint x;
 char year_str[20];

 EXEC SQL BEGIN DECLARE SECTION;
 datetime month to day month_dt;
 datetime year to minute year_min;
 EXEC SQL END DECLARE SECTION;

 printf("DTEXTEND Sample ESQL Program running.\n\n");

 /* Assign value to month_dt and extend */
 printf("Datetime (month to day) value = 12-07\n");
 if(x = dtcvasc("12-07", &month_dt))
 printf("Result = Error %d in dtcvasc()\n", x);
else
 {
 if (x = dtextend(&month_dt, &year_min))
 printf("Result = Error %d in dtextend()\n", x);
 else
 {
 dttoasc(&year_min, year_str);
 printf("Datetime (year to minute) extended value =%s\n",
 year_str);
 }
 }

 printf("\nDTEXTEND Sample Program over.\n\n");
}

Output

DTEXTEND Sample ESQL Program running.

Datetime (month to day) value = 12-07
Datetime (year to minute) extended value = 2006-12-07 00:00

DTEXTEND Sample Program over.

The dtsub() function
The dtsub() function subtracts one datetime value from another. The result is an interval value.

Chapter 1. ESQL/C Guide

Syntax
mint dtsub(d1, d2, inv)
 dtime_t *d1, *d2;
 intrvl_t *inv;

d1

A pointer to an initialized datetime host variable.

d2

A pointer to an initialized datetime host variable.

inv

A pointer to the interval host variable that contains the result.

Usage

The dtsub() function subtracts the datetime value d2 from d1 and stores the interval result in inv. The result can be either a

positive or a negative value. If necessary, the function extends d2 to match the qualifier for d1, before the subtraction.

Initialize the qualifier for inv with a value in either the year to month or day to fraction(5) classes. When d1 contains fields in

the day to fraction class, the interval qualifier must also be in the day to fraction class.

Return codes

0

The subtraction was successful.

<0

An error occurred while performing the subtraction.

Example

The demo directory contains this sample program in the file dtsub.ec. The program performs datetime subtraction that

returns equivalent interval results in the range of year to month and month to month and attempts to return an interval result

in the range day to hour.

/*
 * dtsub.ec *

 The following program subtracts one DATETIME value from another and
 displays the resulting INTERVAL value or an error message.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 mint x;
 char out_str[16];

617

HCL Informix 14.10 - ESQL/C Programmer’s Guide

618

 EXEC SQL BEGIN DECLARE SECTION;
 datetime year to month dt_var1, dt_var2;
 interval year to month i_ytm;
 interval month to month i_mtm;
 interval day to hour i_dth;
 EXEC SQL END DECLARE SECTION;

 printf("DTSUB Sample ESQL Program running.\n\n");

 printf("Datetime (year to month) value #1 = 2007-10\n");
 dtcvasc("2007-10", &dt_var1);
 printf("Datetime (year to month) value #2 = 2001-08\n");
 dtcvasc("2001-08", &dt_var2);

 printf("---\n");

 /* Determine year-to-month difference */
 printf("Difference (year to month) = ");
 if(x = dtsub(&dt_var1, &dt_var2, &i_ytm))
 printf("Error from dtsub(): %d\n", x);
 else
 {
 /* Convert to ASCII for displaying */
 intoasc(&i_ytm, out_str);
 printf("%s\n", out_str);
 }

 /* Determine month-to-month difference */
 printf("Difference (month to month) = ");
 if(x = dtsub(&dt_var1, &dt_var2, &i_mtm))
 printf("Error from dtsub(): %d\n", x);
 else
 {
 /* Convert to ASCII for displaying */
 intoasc(&i_mtm, out_str);
 printf("%s\n", out_str);
 }

 /* Determine day-to-hour difference: Error - Can't convert
 * year-to-month to day-to-hour
 */
 printf("Difference (day to hour) = ");
 if(x = dtsub(&dt_var1, &dt_var2, &i_dth))
 printf("Error from dtsub(): %d\n", x);
 else
 {
 /* Convert to ASCII for displaying */
 intoasc(&i_dth, out_str);
 printf("%s\n", out_str);
 }

 printf("\nDTSUB Sample Program over.\n\n");
}

Chapter 1. ESQL/C Guide

Output
DTSUB Sample ESQL Program running.

Datetime (year to month) value #1 = 2007-10
Datetime (year to month) value #2 = 2001-08

Difference (year to month) = 0006-02
Difference (month to month) = 86
Difference (day to hour) = Error from dtsub(): -1266

DTSUB Sample Program over.

The dtsubinv() function
The dtsubinv() function subtracts an interval value from a datetime value. The result is a datetime value.

Syntax

mint dtsubinv(dt, inv, res)
 dtime_t *dt;
 intrvl_t *inv;
 dtime_t *res;

dt

A pointer to an initialized datetime host variable.

inv

A pointer to an initialized interval host variable.

res

A pointer to the datetime host variable that contains the result.

Usage

The dtsubinv() function subtracts the interval value in inv from the datetime value in dt and stores the datetime value in res.

This result inherits the qualifier of dt.

The datetime value must include all the fields present in the interval value. When you do not initialize the variables dt and inv,

the function might return an unpredictable result.

Return codes

0

The subtraction was successful.

<0

An error occurred while performing the subtraction.

Example

The demo directory contains this sample program in the file dtsubinv.ec.

619

HCL Informix 14.10 - ESQL/C Programmer’s Guide

620

/*
 * dtsubinv.ec *

 The following program subtracts an INTERVAL value from a DATETIME value and
 displays the result.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 char out_str[16];

 EXEC SQL BEGIN DECLARE SECTION;
 datetime year to minute dt_var, result;
 interval day to minute intvl;
 EXEC SQL END DECLARE SECTION;

 printf("DTSUBINV Sample ESQL Program running.\n\n");

 printf("Datetime (year to month) value = 2007-11-28\n");
 dtcvasc("2007-11-28 11:40", &dt_var);
 printf("Interval (day to minute) value = 50 10:20\n");
 incvasc("50 10:20", &intvl);

 printf("---\n");
 dtsubinv(&dt_var, &intvl, &result);

 /* Convert to ASCII for displaying */
 dttoasc(&result, out_str);
 printf("Difference (year to hour) = %s\n", out_str);

 printf("\nDTSUBINV Sample Program over.\n\n");
}

Output

DTSUBINV Sample ESQL Program running.

Datetime (year to month) value = 2007-11-28
Interval (day to minute) value = 50 10:20

Difference (year to hour) = 2007-10-09 01:20

DTSUBINV Sample Program over.

The dttoasc() function
The dttoasc() function converts the field values of a datetime variable to an ASCII string that conforms to ANSI SQL

standards.

For information about the ANSI SQL DATETIME standard, see ANSI SQL standards for DATETIME and INTERVAL values on

page 132.

Chapter 1. ESQL/C Guide

Syntax
mint dttoasc(dtvalue, outbuf)
 dtime_t *dtvalue;
 char *outbuf;

dtvalue

A pointer to the initialized datetime variable to convert.

outbuf

A pointer to the buffer that receives the ANSI-standard DATETIME string for the value in dtvalue.

Usage

The dttoasc() function converts the digits of the fields in the datetime variable to their character equivalents and copies

them to the outbuf character string with delimiters (hyphen, space, colon, or period) between them. You must initialize the

datetime variable in dtvalue with the qualifier that you want the character string to have.

The character string does not include the qualifier or the parentheses that SQL statements use to delimit a DATETIME literal.

The outbuf string conforms to ANSI SQL standards. It includes one character for each delimiter, plus the fields, which are of

the following sizes.

Field

Field size

Year

Four digits

Fraction of DATETIME

As specified by precision

All other fields

Two digits

A datetime value with the year to fraction(5) qualifier produces the maximum length of output. The string equivalent

contains 19 digits, 6 delimiters, and the null terminator, for a total of 26 bytes:

YYYY-MM-DD HH:MM:SS.FFFFF

If you do not initialize the qualifier of the datetime variable, the dttoasc() function returns an unpredictable value, but this

value does not exceed 26 bytes.

Return codes

0

The conversion was successful.

<0

The conversion failed.

621

HCL Informix 14.10 - ESQL/C Programmer’s Guide

622

Example

The demo directory contains this sample program in the file dttoasc.ec.

/*
 * dttoasc.ec *

 The following program illustrates the conversion of a datetime value
 into an ASCII string in ANSI SQL format
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 char out_str[16];

 EXEC SQL BEGIN DECLARE SECTION;
 datetime year to hour dt1;
 EXEC SQL END DECLARE SECTION;

 printf("DTTOASC Sample ESQL Program running.\n\n");

 /* Initialize dt1 */
 dtcurrent(&dt1);

 /* Convert the internal format to ascii for displaying */
 dttoasc(&dt1, out_str);

 /* Print it out*/
 printf("\tToday's datetime (year to hour)value is %s\n", out_str);

 printf("\nDTTOASC Sample Program over.\n\n");
}

Output

DTTOASC Sample ESQL Program running.

 Today's datetime (year to hour) value is 2007-09-19 08

DTTOASC Sample Program over.

The dttofmtasc() function
The dttofmtasc() function uses a formatting mask to convert a datetime variable to a character string.

Syntax

mint dttofmtasc(dtvalue, outbuf, buflen, fmtstring)
 dtime_t *dtvalue;
 char *outbuf;
 mint buflen;
 char *fmtstring;

Chapter 1. ESQL/C Guide

dtvalue

A pointer to the initialized datetime variable to convert.

outbuf

A pointer to the buffer that receives the string for the value in dtvalue.

buflen

The length of the outbuf buffer.

fmtstring

A pointer to the buffer that contains the formatting mask to use for the outbuf string. This time-formatting

mask contains the same formatting directives that the DBTIME environment variable supports. (For a list of

these directives, see the description of DBTIME in the HCL® Informix® Guide to SQL: Reference).

Usage

You must initialize the datetime variable in dtvalue with the qualifier that you want the character string to have. If you do not

initialize the datetime variable, the function returns an unpredictable value. The character string in outbuf does not include

the qualifier or the parentheses that SQL statements use to delimit a DATETIME literal.

The formatting mask, fmtstring, does not need to imply the same qualifiers as the datetime variable. When the implied

formatting-mask qualifier is different from the datetime qualifier, dttofmtasc() extends the datetime value (as if it called the

dtextend() function).

If the formatting mask is an empty string, the function sets character string, outbuf, to an empty string. If fmtstring is a null

pointer, the dttofmtasc() function must determine the format to use for the character string in outbuf. When you use the

default locale, the function uses the following precedence:

1. The format that the DBTIME environment variable specifies (if DBTIME is set). For more information about DBTIME,

see the HCL® Informix® Guide to SQL: Reference.

2. The format that the GL_DATETIME environment variable specifies (if GL_DATETIME is set). For more information

about GL_DATETIME, see the HCL® Informix® GLS User's Guide.

3. The default date format that conforms to the standard ANSI SQL format:

%iY-%m-%d %H:%M:%S

When you use a two-digit year (%y) in a formatting mask, the dttofmtasc() function uses the value of the DBCENTURY

environment variable to determine which century to use. If you do not set DBCENTURY, dttofmtasc() assumes the present

century for two-digit years. For information about how to set DBCENTURY, see the HCL® Informix® Guide to SQL: Reference.

When you use a nondefault locale (one other than US English) and do not set the DBTIME or GL_DATETIME environment

variables, dttofmtasc() uses the default DATETIME format that the client locale defines. For more information, see the HCL®

Informix® GLS User's Guide.

623

HCL Informix 14.10 - ESQL/C Programmer’s Guide

624

Return codes

0

The conversion was successful.

<0

The conversion failed. Check the text of the error message.

Example

The demo directory contains this sample program in the file dttofmtasc.ec.

/* *dttofmtasc.ec*
 The following program illustrates the conversion of a datetime
 value into strings of different formats.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 char out_str1[25];
 char out_str2[25];
 char out_str3[30];
 mint x;

 EXEC SQL BEGIN DECLARE SECTION;
 datetime month to minute birthday;
 EXEC SQL END DECLARE SECTION;

 printf("DTTOFMTASC Sample ESQL Program running.\n\n");

 /* Initialize birthday to "09-06 13:30" */
 printf("Birthday datetime (month to minute) value = ");
 printf("September 6 at 01:30 pm\n");
 x = dtcvfmtasc("September 6 at 01:30 pm","%B %d at %I:%M %p",
 &birthday);

 /* Convert the internal format to ascii for 3 given display formats.
 * Note that the second format does not include the minutes field and
 * that the last format includes a year field even though birthday was
 * not initialized as year to minute.
 */

 x = dttofmtasc(&birthday, out_str1, sizeof(out_str1),
 "%d %B at %H:%M");
 x = dttofmtasc(&birthday, out_str2, sizeof(out_str2),
 "%d %B at %H");
 x = dttofmtasc(&birthday, out_str3, sizeof(out_str3),
 "%d %B, %Y at%H:%M"); /* Print out the three forms of the same date */
 printf("\tFormatted value (%%d %%B at %%H:%%M) = %s\n", out_str1);
 printf("\tFormatted value (%%d %%B at %%H) = %s\n", out_str2);
 printf("\tFormatted value (%%d %%B, %%Y at %%H:%%M) = %s\n", out_str3);

Chapter 1. ESQL/C Guide

 printf("\nDTTOFMTASC Sample Program over.\n\n");
}

Output
DTTOFMTASC Sample ESQL Program running.

Birthday datetime (month to minute) value = September 6 at 01:30 pm
 Formatted value (%d %B at %H:%M) = 06 September at 13:30
 Formatted value (%d %B at %H)) = 06 September at 13
 Formatted value (%d %B, %Y at %H:%M)) = 06 September, 2007 at 13:30

DTTOFMTASC Sample Program over.

The GetConnect() function (Windows™)
The GetConnect() function is available only in Windows™ environments and establishes a new explicit connection to a

database server.

Important: IBM® Informix® ESQL/C supports the GetConnect() connection library function for compatibility with

Version 5.01 Informix® ESQL/C for Windows™ applications. When you write new Informix® ESQL/C applications for

Windows™ environments, use the SQL CONNECT statement to establish an explicit connection.

Syntax

void *GetConnect ()

Usage

The GetConnect() function call by itself is equivalent to the following SQL statement:

EXEC SQL connect to '@dbservername' with concurrent transaction;

In this example, dbservername is the name of a defined database server. All database servers that the client application

specifies must be defined in at least one of the following places:

• The INFORMIXSERVER environment variable in the Registry contains the name of the default database server. The

Setnet32 utility sets the Registry values.

• The InfxServer field in the InetLogin structure can contain the name of the default database server or a specified

database server. The client application sets the InetLogin fields.

For more information about the default and specified database server, see Sources of connection information in a Windows

environment on page 321

For example, the following code fragment uses GetConnect() to establish an explicit connection to the stores7 database on

the mainsrvr database server:

void *cnctHndl;
⋮;
strcpy(InetLogin.InfxServer, "mainsrvr");
⋮;

625

HCL Informix 14.10 - ESQL/C Programmer’s Guide

626

cnctHndl = GetConnect();
EXEC SQL database stores7;

In the preceding example, if you had omitted the assignment to the InetLogin.InfxServer field, Informix® ESQL/C would

establish an explicit connection to the stores7 database in the default database server (the database server that the

INFORMIXSERVER environment variable in the Registry indicates).

After any call to GetConnect(), use the SQL DATABASE statement (or some other SQL statement that opens a database) to

open the desired database. In the previous code fragment, the combination of the GetConnect() function and the DATABASE

statement is equivalent to the following CONNECT statement:

EXEC SQL connect to 'stores7@mainsrvr' with concurrent transaction;

Important: Because the GetConnect() function maps to a CONNECT statement, it sets the SQLCODE and SQLSTATE

status codes to indicate the success or failure of the connection request. This behavior differs from GetConnect()

in Version 5.01 Informix® ESQL/C for Windows™, in which this function did not set the SQLCODE and SQLSTATE

values.

The following table shows the differences between the use of the GetConnect() function and the SQL CONNECT statement.

Situation GetConnect() library function SQL CONNECT statement

Connection name Internally generated and stored in the connection

handle structure for the connection

Internally generated unless CONNECT includes

the AS clause; therefore, to switch to other

connections, specify the AS clause when you

create the connection.

Opening a database Only establishes an explicit connection to a

database server; therefore, the application

must use DATABASE (or some other valid SQL

statement) to open the database.

Can establish an explicit connection to a

database server and open a database when

provided with names of both the database server

and the database

Important: Because the GetConnect() function maps to a CONNECT statement with the WITH CONCURRENT

TRANSACTION clause, it allows an explicit connection with open transactions to become dormant. Your Informix®

ESQL/C application does not need to ensure that the current transaction was committed or rolled back before it calls

the SetConnect() function to switch to another explicit connection.

For each connection that you establish with GetConnect(), call ReleaseConnect() to close the connection and deallocate

resources.

Return codes

CnctHndl

The call to GetConnect() was successful, and the function has returned a connection handle for the new

connection.

Chapter 1. ESQL/C Guide

null pointer

The call to GetConnect() was unsuccessful.

The ifx_cl_card() function
The ifx_cl_card() function returns the cardinality of the specified collection type host variable.

Syntax
mint ifx_cl_card(collp, isnull)
 ifx_collection_t *collp;
 mint *isnull;

collp

A pointer to the name of the collection host variable in the application.

isnull

Set to 1 if the collection is null, 0 otherwise

Usage

The ifx_cl_card() function enables you to determine the number of elements in a collection, whether the collection is

empty, and whether the collection is null.

Return codes

0

The collection is empty.

>0

The number of elements in the collection.

<0

An error occurred.

Example

This sample program is in the ifx_cl_card.ec file in the demo directory.

/*
* Check the cardinality of the collection variable when
* the data is returned from the server
*/

main()
{
 exec sql begin declare section;
 client collection myset;
 exec sql end declare section;
 mint numelems = 0;
 mint isnull = 0;

627

HCL Informix 14.10 - ESQL/C Programmer’s Guide

628

 exec sql allocate collection ::myset;
 exec sql create database newdb;
 exec sql create table tab (col set(int not null));
 exec sql insert into tab values ("set{}");
 exec sql select * into :myset from tab;
 if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 0)
 printf("collection is empty\n");
 else if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 1)
 printf("collection is null\n");
 else if ((numelems = ifx_cl_card(myset, &isnull))> 0)
 printf("number of elements is %d\n", numelems);
 else
 printf("error occurred\n");

 exec sql update tab set col = ’set{1,2,3}’;
 exec sql select * into :myset from tab;
 if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 0)
 printf("collection is empty\n");

 else if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 1)
 printf("collection is null\n");
 else if ((numelems = ifx_cl_card(myset, &isnull))> 0)
 printf("number of elements is %d\n", numelems);
 else
 printf("error occurred\n");

 exec sql update tab set col = NULL;
 exec sql select * into :myset from tab;
 if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 0)
 printf("collection is empty\n");
 else if ((ifx_cl_card(myset, &isnull) == 0) && isnull == 1)
 printf("collection is null\n");
 else if ((numelems = ifx_cl_card(myset, &isnull))> 0)
 printf("number of elements is %d\n", numelems);
 else
 printf("error occurred\n");
}

Output

collection is empty
number of elements is 3
collection is null

The ifx_dececvt() and ifx_decfcvt() function
The ifx_dececvt() and ifx_decfcvt() functions are the thread-safe versions of the dececvt() and decfcvt() IBM® Informix®

ESQL/C library functions.

Syntax

mint ifx_dececvt(np, ndigit, decpt, sign, decstr, decstrlen)
 register dec_t *np;
 register mint ndigit;
 mint *decpt;
 mint *sign;
 char *decstr;

Chapter 1. ESQL/C Guide

 mint decstrlen;

mint ifx_decfcvt(np, ndigit, decpt, sign, decstr, decstrlen)
 register dec_t *np;
 register mint ndigit;
 mint *decpt;
 mint *sign;
 char *decstr;
 mint decstrlen;

np

A pointer to a decimal structure that contains the decimal value to be converted.

ndigit

The length of the ASCII string for ifx_dececvt(). It is the number of digits to the right of the decimal point for

ifx_decfcvt().

decpt

A pointer to an integer that is the position of the decimal point relative to the beginning of the string. A negative

or zero value for *decpt means that the position is located to the left of the returned digits.

sign

A pointer to the sign of the result. If the sign of the result is negative, *sign is nonzero; otherwise, it is zero.

decstr

The user-defined buffer where the function returns the converted decimal value.

decstrlen

The length, in bytes, of the decstr buffer that the user defines.

Usage

The ifx_dececvt() function is the thread-safe version of the dececvt() function. The ifx_decfcvt() function is the thread-

safe version of decfcvt() function. Each function returns a character string that cannot be overwritten when two threads

simultaneously call the function. For information about how to use dececvt() and decfcvt(), see The dececvt() and decfcvt()

functions on page 587.

Return codes

0

The conversion was successful.

<0

The conversion was not successful.

-1273

Output buffer is null or too small to hold the result.

629

HCL Informix 14.10 - ESQL/C Programmer’s Guide

630

The ifx_defmtdate() function
The ifx_defmtdate() function uses a formatting mask to convert a character string to an internal DATE format.

Syntax
mint ifx_defmtdate(jdate, fmtstring, instring, dbcentury)
 int4 *jdate;
 char *fmtstring;
 char *instring;
 char dbcentury;

jdate

A pointer to an int4 integer value that receives the internal DATE value for the inbuf string.

fmtstring

A pointer to the buffer that contains the formatting mask to use for the inbuf string.

instring

A pointer to the buffer that contains the date string to convert.

dbcentury

Can be one of the following characters, which determines which century to apply to the year portion of the date:

R

Present. The function uses the two high-order digits of the current year to expand the year value.

P

Past. The function uses the present and past centuries to expand the year value. It compares

these two dates against the current date and uses the century that is before the current century. If

both dates are before the current date, the function uses the century closest to the current date.

F

Future. The function uses the present and next centuries to expand the year value. It compares

these centuries against the current date and uses the century that is later than the current date. If

both dates are later than the current date, the function uses the date closest to the current date.

C

Closest. The function uses the present, past, and next centuries to expand the year value. It

chooses the century that is closest to the current date.

Usage

The fmtstring argument points to the date-formatting mask, which contains formats that describe how to interpret the date

string. For more information about these date formats, see Format date strings on page 125.

The input string and the fmtstring must be in the same sequential order in terms of month, day, and year. They need not,

however, contain the same literals or the same representation for month, day, and year.

Chapter 1. ESQL/C Guide

You can include the weekday format (ww), in fmtstring, but the database server ignores that format. Nothing from the inbuf

corresponds to the weekday format.

The following combinations of fmtstring and input are valid.

Formatting mask

Input

mmddyy

Dec. 25th, 2007

mmddyyyy

Dec. 25th, 2007

mmm. dd. yyyy

dec 25 2007

mmm. dd. yyyy

DEC-25-2007

mmm. dd. yyyy

122507

mmm. dd. yyyy

12/25/07

yy/mm/dd

07/12/25

yy/mm/dd

2007, December 25

yy/mm/dd

In the year 2007, the month of December, it is the 25th day

dd-mm-yy

This 25th day of December 2007

If the value stored in inbuf is a four-digit year, the ifx_defmtdate() function uses that value. If the value stored in inbuf is a

two-digit year, the ifx_defmtdate() function uses the value of the dbcentury argument to determine which century to use.

If you do not set the dbcentury argument, ifx_defmtdate() uses the DBCENTURY environment variable to determine which

century to use. If you do not set DBCENTURY, ifx_strdate() assumes the current century for two-digit years. For information

about how to set DBCENTURY, see the HCL® Informix® Guide to SQL: Reference.

When you use a nondefault locale whose dates contain eras, you can use extended-format strings in the fmtstring argument

of ifx_defmtdate().

631

HCL Informix 14.10 - ESQL/C Programmer’s Guide

632

Return codes

If you use an invalid date-string format, ifx_defmtdate() returns an error code and sets the internal DATE to the current date.

The following are possible return codes.

0

The operation was successful.

-1204

The *input parameter specifies an invalid year.

-1205

The *input parameter specifies an invalid month.

-1206

The *input parameter specifies an invalid day.

-1209

Because *input does not contain delimiters between the year, month, and day, the length of *input must be

exactly 6 or 8 bytes.

-1212

*fmtstring does not specify a year, a month, and a day.

The ifx_dtcvasc() function
The ifx_dtcvasc() function converts a string that conforms to ANSI SQL standard for a DATETIME value to a datetime value.

Syntax

mint dtcvasc(str, d, dbcentury)
 char *str;
 dtime_t *d;
 char dbcentury;

str

A pointer to the buffer that contains an ANSI-standard DATETIME string.

d

A pointer to an initialized datetime variable.

dbcentury

Can be one of the following characters, which determines which century to apply to the year portion of the date:

R

Present. The function uses the two high-order digits of the current year to expand the year value.

Chapter 1. ESQL/C Guide

P

Past. The function uses the past and present centuries to expand the year value. It compares

these two dates against the current date and uses the century that is before the current century. If

both dates are before the current date, the function uses the century closest to the current date.

F

Future. The function uses the present and the next centuries to expand the year value. It

compares these against the current date and uses the century that is later than the current date.

If both dates are later than the current date, the function uses the date closest to the current date.

C

Closest. The function uses the past, present, and next centuries to expand the year value. It

chooses the century that is closest to the current date.

Usage

You must initialize the datetime variable in d with the qualifier that you want this variable to have.

The character string in str must have values that conform to the year to second qualifier in the ANSI SQL format. The str

string can have leading and trailing spaces. However, from the first significant digit to the last, str can only contain characters

that are digits and delimiters that conform to the ANSI SQL standard for DATETIME values.

If you specify a year value as one or two digits, the ifx_dtcvasc() function uses the value of the dbcentury argument to

determine which century to use. If you do not set the dbcentury argument, ifx_dtcvasc() uses the DBCENTURY environment

variable to determine which century to use. If you do not set DBCENTURY, ifx_dtcvasc() assumes the current century for two-

digit years. For information about the DBCENTURY environment variable, see the HCL® Informix® Guide to SQL: Reference.

If the character string is an empty string, the ifx_dtcvasc() function sets to null the value to which d points. If the character

string is acceptable, the function sets the value in the datetime variable and returns zero. Otherwise, the function leaves the

variable unchanged and returns a negative error code.

Return codes

0

Conversion was successful.

-1260

It is not possible to convert between the specified types.

-1261

Too many digits in the first field of datetime or interval.

-1262

Non-numeric character in datetime or interval.

633

HCL Informix 14.10 - ESQL/C Programmer’s Guide

634

-1263

A field in a datetime or interval value is out of range or incorrect.

-1264

Extra characters exist at the end of a datetime or interval.

-1265

Overflow occurred on a datetime or interval operation.

-1266

A datetime or interval value is incompatible with the operation.

-1267

The result of a datetime computation is out of range.

-1268

A parameter contains an invalid datetime qualifier.

The ifx_dtcvfmtasc() function
The ifx_dtcvfmtasc() function uses a formatting mask to convert a character string to a datetime value.

Syntax

mint ifx_dtcvfmtasc(input, fmtstring, d, dbcentury)
 char *input;
 char *fmtstring;
 dtime_t *d;

 char dbcentury;

input

A pointer to the buffer that contains the string to convert.

fmtstring

A pointer to the buffer that contains the formatting mask to use for the input string. This time-formatting mask

contains the same formatting directives that the DBTIME environment variable supports. (For a list of these

directives, see the description of DBTIME in the HCL® Informix® Guide to SQL: Reference).

d

A pointer to the initialized datetime variable.

dbcentury

Can be one of the following characters, which determines which century to apply to the year portion of the date:

R

Present. The function uses the two high-order digits of the current year to expand the year value.

Chapter 1. ESQL/C Guide

P

Past. The function uses the past and present centuries to expand the year value. It compares

these two dates against the current date and uses the century that is before the current century. If

both dates are before the current date, the function uses the century closest to the current date.

F

Future. The function uses the present and the next centuries to expand the year value. It

compares these centuries against the current date and uses the century that is later than the

current date. If both dates are later than the current date, the function uses the date closest to the

current date.

C

Closest. The function uses the past, present, and next centuries to expand the year value. It

chooses the century that is closest to the current date.

Usage

You must initialize the datetime variable in d with the qualifier that you want this variable to have. The datetime variable does

not need to specify the same qualifier that the formatting mask implies. When the datetime qualifier is different from the

implied formatting-mask qualifier, ifx_dtcvfmtasc() extends the datetime value (as if it had called the dtextend() function).

All qualifier fields in the character string in input must be contiguous. In other words, if the qualifier is hour to second, you

must specify all values for hour, minute, and second somewhere in the string, or the ifx_dtcvfmtasc() function returns an

error.

The input character string can have leading and trailing spaces. However, from the first significant digit to the last, input

can contain only digits and delimiters that are appropriate for the qualifier fields that the formatting mask implies. For more

information about acceptable digits and delimiters for a DATETIME value, see the ANSI SQL standards for DATETIME and

INTERVAL values on page 132.

The ifx_dtcvfmtasc() function returns an error if the formatting mask, fmtstring, is an empty string. If fmtstring is a null

pointer, the ifx_dtcvfmtasc() function must determine the format to use when it reads the character string in input. When you

use the default locale, the function uses the following precedence:

1. The format that the DBTIME environment variable specifies (if DBTIME is set). For more information about DBTIME,

see the HCL® Informix® Guide to SQL: Reference.

2. The format that the GL_DATETIME environment variable specifies (if GL_DATETIMEis set). For more information

about GL_DATETIME, see the HCL® Informix® GLS User's Guide.

3. The default date format conforms to the standard ANSI SQL format:

%iY-%m-%d %H:%M:%S

The ANSI SQL format specifies a qualifier of year to second for the output. You can express the year as four digits (2007) or

as two digits (07). When you use a two-digit year (%y) in a formatting mask, the ifx_dtcvfmtasc() function uses the value of

the dbcentury argument to determine which century to use. If you do not set the dbcentury argument, ifx_dtcvfmtasc() uses

635

HCL Informix 14.10 - ESQL/C Programmer’s Guide

636

the DBCENTURY environment variable to determine which century to use. If you do not set DBCENTURY, ifx_dtcvfmtasc()

assumes the current century for two-digit years. For information about the DBCENTURY environment variable, see the HCL®

Informix® Guide to SQL: Reference.

When you use a nondefault locale (one other than US English) and do not set the DBTIME or GL_DATETIME environment

variables, ifx_dtcvfmtasc() uses the default DATETIME format that the locale defines. For more information, see the HCL®

Informix® GLS User's Guide.

When the character string and the formatting mask are acceptable, the ifx_dtcvfmtasc() function sets the datetime variable

in d and returns zero. Otherwise, it returns an error code and the datetime variable contains an unpredictable value.

Return codes

0

The conversion was successful.

<0

The conversion failed.

The ifx_dttofmtasc() function
The ifx_dttofmtasc() function uses a formatting mask to convert a datetime variable to a character string.

Syntax

mint dttofmtasc(dtvalue, output, str_len, fmtstring, dbcentury)
 dtime_t *dtvalue;
 char *outbuf;
 mint buflen;
 char *fmtstring;

d

A pointer to the initialized datetime variable to convert.

output

A pointer to the buffer that receives the string for the value in d.

str_len

The length of the output buffer.

fmtstring

A pointer to the buffer that contains the formatting mask to use for the output string. This time-formatting

mask contains the same formatting directives that the DBTIME environment variable supports. (For a list of

these directives, see the description of DBTIME in the HCL® Informix® Guide to SQL: Reference).

dbcentury

Can be one of the following characters, which determines which century to apply to the year portion of the date:

Chapter 1. ESQL/C Guide

R

Present. The function uses the two high-order digits of the current year to expand the year value.

P

Past. The function uses the past and present centuries to expand the year value. It compares

these two dates against the current date and uses the century that is before the current century. If

both dates are before the current date, the function uses the century closest to the current date.

F

Future. The function uses the present and the next centuries to expand the year value. It

compares these centuries against the current date and uses the century that is later than the

current date. If both dates are later than the current date, the function uses the date closest to the

current date.

C

Closest. The function uses the past, present, and next centuries to expand the year value. It

chooses the century that is closest to the current date.

Usage

You must initialize the datetime variable in dtvalue with the qualifier that you want the character string to have. If you do not

initialize the datetime variable, the function returns an unpredictable value. The character string in outbuf does not include

the qualifier or the parentheses that SQL statements use to delimit a DATETIME literal.

The formatting mask, fmtstring, does not need to imply the same qualifiers as the datetime variable. When the implied

formatting-mask qualifier is different from the datetime qualifier, dttofmtasc() extends the datetime value (as if it called the

dttofmtasc() function).

If the formatting mask is an empty string, the function sets character string, outbuf, to an empty string. If fmtstring is a null

pointer, the dttofmtasc() function must determine the format to use for the character string in outbuf. When you use the

default locale, the function uses the following precedence:

1. The format that the DBTIME environment variable specifies (if DBTIME is set). For more information about DBTIME,

see the HCL® Informix® Guide to SQL: Reference.

2. The format that the GL_DATETIME environment variable specifies (if GL_DATETIME is set). For more information

about GL_DATETIME, see the HCL® Informix® GLS User's Guide.

3. The default date format that conforms to the standard ANSI SQL format:

%iY-%m-%d %H:%M:%S

When you use a two-digit year (%y) in a formatting mask, the dttofmtasc() function uses the value of the DBCENTURY

environment variable to determine which century to use. If you do not set DBCENTURY, dttofmtasc() assumes the present

century for two-digit years. For information about how to set DBCENTURY, see the HCL® Informix® Guide to SQL: Reference.

637

HCL Informix 14.10 - ESQL/C Programmer’s Guide

638

When you use a nondefault locale (one other than US English) and do not set the DBTIME or GL_DATETIME environment

variables, dttofmtasc() uses the default DATETIME format that the client locale defines. For more information, see the HCL®

Informix® GLS User's Guide.

Return codes

0

The conversion was successful.

<0

The conversion failed. Check the text of the error message.

The ifx_getenv() function
The ifx_getenv() function retrieves the value of a current environment variable.

Syntax

char *ifx_getenv(varname);
 const char *varname;

varname

A pointer to a buffer that contains the name of an environment variable.

Usage

The ifx_getenv() function searches for the environment variable in the following order:

1. Table of HCL Informix® environment variables that the application has modified or defined with the ifx_putenv()

function or directly (the InetLogin structure)

2. Table of Informix® environment variables that the user has defined in the Registry with the Setnet32 utility

3. Non-Informix® environment variables retrieved from the C runtime environment variables

4. Table of defined defaults for Informix® environment variables

The ifx_getenv() function is not case sensitive. You can specify the name of the environment variable in any case.

The ifx_getenv() function operates only on the data structures accessible to the C runtime library and not on the environment

segment that the operating system creates for the process. Therefore, programs that use ifx_getenv() might retrieve invalid

information.

The ifx_putenv() and ifx_getenv() functions use the copy of the environment to which the global variable _environ points to

access the environment.

The following program fragment uses ifx_getenv() to retrieve the current value of the INFORMIXDIR environment variable:

char InformixDirVal[100];

/* Get current value of INFORMIXDIR */
InformixDirVal = ifx_getenv("informixdir");
/* Check if INFORMIXDIR is set */

Chapter 1. ESQL/C Guide

If(InformixDirVal != NULL)
 printf("Current INFORMIXDIR value is %\n", InformixDirVal);

Return codes

The ifx_getenv() function returns a pointer to the Informix® environment table entry that contains varname, or returns NULL if

the function does not find varname in the table.

Restriction: Do not use the returned pointer to modify the value of the environment variable. Use the ifx_putenv()

function instead. If ifx_getenv() does not find "varname" in the Informix® environment table, the return value is NULL.

The ifx_getcur_conn_name() function
The ifx_getcur_conn_name() function returns the name of the current connection.

Syntax

char *ifx_getcur_conn_name(void);

Usage

The current connection is the active database server connection that is currently sending SQL requests to the database

server and possibly receiving data from the database server. In a callback function, the current connection is the current

connection at the time when the callback was registered with a call to the sqlbreakcallback() function. The current

connection name is the explicit name of the current connection. If the CONNECT statement that establishes a connection

does not include the AS clause, the connection does not have an explicit name.

Return codes

Name of current connection

Successfully obtained current connection name

Null pointer

Unable to obtain current connection name or current connection does not have an explicit name

The ifx_getserial8() function
The ifx_getserial8() function returns the SERIAL8 value of the last inserted row into an int8 host variable.

Syntax

void ifx_getserial8(serial8_val)
 ifx_int8_t *serial8_val;

serial8_val

A pointer to the int8 structure where ifx_getserial8() places the newly inserted SERIAL8 value.

639

HCL Informix 14.10 - ESQL/C Programmer’s Guide

640

Usage

Use the ifx_getserial8() function after you insert a row that contains a SERIAL8 column. The function returns the new

SERIAL8 value in the int8 variable, serial8_val, which you declare. If the INSERT statement generated a new SERIAL8 value,

the serial8_val points to a value greater than zero. A SERIAL8 value of zero or null indicates an invalid INSERT; the INSERT

might have failed or might not have been performed.

Example
EXEC SQL BEGIN DECLARE SECTION;
 int8 order_num;
 int8 rep_num;
 char str[20];
EXEC SQL END DECLARE SECTION;

EXEC SQL create table order2
(
 order_number SERIAL8(1001),
 order_date DATE,
 customer_num INTEGER,
 backlog CHAR(1),
 po_num CHAR(10),
 paid_date DATE,
 sales_rep INT8
);
EXEC SQL insert into order2 (order_number, sales_rep)
 values (0, :rep_num);
if (SQLCODE == 0)
{
 ifx_getserial8(order_num);
 if (ifx_int8toasc(&order_num, str, 20) == 0)
 printf("New order number is %s\n", str);
}

The ifx_int8add() function
The ifx_int8add() function adds two int8 type values.

Syntax

mint ifx_int8add(n1, n2, sum)
 ifx_int8_t *n1;
 ifx_int8_t *n2;
 ifx_int8_t *sum;

n1

A pointer to the int8 structure that contains the first operand.

n2

A pointer to the int8 structure that contains the second operand.

sum

A pointer to the int8 structure that contains the sum of n1 + n2.

Chapter 1. ESQL/C Guide

Usage

The sum can be the same as either n1 or n2.

Return codes

0

The operation was successful.

-1284

The operation resulted in overflow or underflow.

Example

The file int8add.ec in the demo directory contains the following sample program.

*int8add.ec *

 The following program obtains the sum of two INT8 type values.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "6";
char string2[] = "9,223,372,036,854,775";
char string3[] = "999,999,999,999,999,9995";
char result[41];

main()
{
 mint x;
 ifx_int8_t num1, num2, num3, sum;

 printf("INT8 Sample ESQL Program running.\n\n");

 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8add(&num1, &num2, &sum)) /* adding the first two INT8s */
 {
 printf("Error %d in adding INT8s\n", x);
 exit(1);
 }
 if (x = ifx_int8toasc(&sum, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 result to string\n", x);

641

HCL Informix 14.10 - ESQL/C Programmer’s Guide

642

 exit(1);
 }
 result[40] = '\0';
 printf("\t%s + %s = %s\n", string1, string2, result); /* display result */

/* attempt to convert to INT8 value that is too large*/

 if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
 {
 printf("Error %d in converting string3 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8add(&num2, &num3, &sum))
 {
 printf("Error %d in adding INT8s\n", x);
 exit (1);
 }
 if (x = ifx_int8toasc(&sum, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 result to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("\t%s + %s = %s\n", string2, string3, result); /* display result */

 printf("\nINT8 Sample Program over.\n\n");
 exit(0);
}

Output

INT8 Sample ESQL Program running.

 6 + 9,223,372,036,854,775 = 9223372036854781
Error -1284 in converting string3 to INT8

The ifx_int8cmp() function
The ifx_int8cmp() function compares two int8 type numbers.

Syntax

mint ifx_int8cmp(n1, n2)
 ifx_int8_t *n1;
 ifx_int8_t *n2;

n1

A pointer to the int8 structure that contains the first number to compare.

n2

A pointer to the int8 structure that contains the second number to compare.

Chapter 1. ESQL/C Guide

Return codes

-1

The first value is less than the second value.

0

The two values are identical.

1

The first value is greater than the second value.

INT8UNKNOWN

Either value is null.

Example

The file int8cmp.ec in the demo directory contains the following sample program.

/*
 * ifx_int8cmp.ec *

 The following program compares INT8s types and displays
 the results.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-999,888,777,666";
char string2[] = "-12,345,678,956,546";
char string3[] = "123,456,780,555,224,456";
char string4[] = "123,456,780,555,224,456";
char string5[] = "";

main()
{
 mint x;
 ifx_int8_t num1, num2, num3, num4, num5;

 printf("IFX_INT8CMP Sample ESQL Program running.\n\n");

 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to int8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to int8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
 {
 printf("Error %d in converting string3 to int8\n", x);

643

HCL Informix 14.10 - ESQL/C Programmer’s Guide

644

 exit(1);
 }
 if (x = ifx_int8cvasc(string4, strlen(string4), &num4))
 {
 printf("Error %d in converting string4 to int8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string5, strlen(string5), &num5))
 {
 printf("Error %d in converting string5 to int8\n", x);
 exit(1);
 }
 printf("num1 = %s\nnum2 = %s\n", string1, string2);
 printf("num3 = %s\nnum4 = %s\n", string3, string4);
 printf("num5 = %s\n", "NULL");
 printf("\nExecuting: ifx_int8cmp(&num1, &num2)\n");
 printf(" Result = %d\n", ifx_int8cmp(&num1, &num2));
 printf("Executing: ifx_int8cmp(&num2, &num3)\n");
 printf(" Result = %d\n", ifx_int8cmp(&num2, &num3));
 printf("Executing: ifx_int8cmp(&num1, &num3)\n");
 printf(" Result = %d\n", ifx_int8cmp(&num1, &num3));
 printf("Executing: ifx_int8cmp(&num3, &num4)\n");
 printf(" Result = %d\n", ifx_int8cmp(&num3, &num4));
 printf("Executing: ifx_int8cmp(&num1, &num5)\n");
 x = ifx_int8cmp(&num1, &num5);
 if(x == INT8UNKNOWN)
 printf("RESULT is INT8UNKNOWN. One of the INT8 values in null.\n");
 else
 printf(" Result = %d\n", x);
 printf("\nIFX_INT8CMP Sample Program over.\n\n");
 exit(0);
}

Output

IFX_INT8CMP Sample ESQL Program running.

Number 1 = -999,888,777,666 Number 2 = -12,345,678,956,546
Number 3 = 123,456,780,555,224,456 Number 4 = 123,456,780,555,224,456
Number 5 =

Executing: ifx_int8cmp(&num1, &num2)
 Result = 1
Executing: ifx_int8cmp(&num2, &num3)
 Result = -1
Executing: ifx_int8cmp(&num1, &num3)
 Result = -1
Executing: ifx_int8cmp(&num3, &num4)
 Result = 0
Executing: ifx_int8cmp(&num1, &num5)
RESULT is INT8UNKNOWN. One of the INT8 values in null.

IFX_INT8CMP Sample Program over.

The ifx_int8copy() function
The ifx_int8copy() function copies one int8 structure to another.

Chapter 1. ESQL/C Guide

Syntax
void ifx_int8copy(source, target)
 ifx_int8_t *source;
 ifx_int8_t *target;

source

A pointer to the int8 structure that contains the source int8 value to copy.

target

A pointer to the target int8 structure.

The ifx_int8copy() function does not return a status value. To determine the success of the copy operation, look at the

contents of the int8 structure to which the target argument points.

Example

The file int8copy.ec in the demo directory contains the following sample program.

/*
 * ifx_int8copy.ec *

 The following program copies one INT8 number to another.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-12,888,999,555,333";
char result[41];

main()
{
 mint x;
 ifx_int8_t num1, num2;

 printf("IFX_INT8COPY Sample ESQL Program running.\n\n");

 printf("String = %s\n", string1);
 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 printf("Executing: ifx_int8copy(&num1, &num2)\n");
 ifx_int8copy(&num1, &num2);
 if (x = ifx_int8toasc(&num2, result, sizeof(result)))
 {
 printf("Error %d in converting num2 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("Destination = %s\n", result);

645

HCL Informix 14.10 - ESQL/C Programmer’s Guide

646

 printf("\nIFX_INT8COPY Sample Program over.\n\n");
 exit(0);
}

Output
IFX_INT8COPY Sample ESQL Program running.

String = -12,888,999,555,333
Executing: ifx_int8copy(&num1, &num2)
Destination = -12888999555333

IFX_INT8COPY Sample Program over

The ifx_int8cvasc() function
The ifx_int8cvasc() function converts a value held as printable characters in a C char type into an int8 type number.

Syntax

mint ifx_int8cvasc(strng_val, len, int8_val)
 char *strng_val
 mint len;
 ifx_int8_t *int8_val;

strng_val

A pointer to a string.

len

The length of the strng_val string.

int8_val

A pointer to the int8 structure where ifx_int8cvasc() places the result of the conversion.

Usage

The character string, strng_val, can contain the following symbols:

• A leading sign, either a plus (+) or minus (-).

• An exponent that is preceded by either e or E. You can precede the exponent by a sign, either a plus (+) or minus (-).

The strng_val character string does not contain a decimal separator or digits to the right of the decimal separator.

The ifx_int8cvasc() function truncates the decimal separator and any digits to the right of the decimal separator. The

ifx_int8cvasc() function ignores leading spaces in the character string.

When you use a nondefault locale (one other than US English), ifx_int8cvasc() supports non-ASCII characters in the strng_val

character string. For more information, see the HCL® Informix® GLS User's Guide.

Chapter 1. ESQL/C Guide

Return codes

0

The conversion was successful.

-1213

The string has non-numeric characters.

-1284

The operation resulted in overflow or underflow.

Example

The file int8cvasc.ec in the demo directory contains the following sample program.

/*
 * ifx_in8cvasc.ec *

 The following program converts three strings to INT8
 types and displays the values stored in each field of
 the INT8 structures.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-12,555,444,333,786,456";
char string2[] = "480";
char string3[] = "5.2";
main()
{
 mint x;
 ifx_int8_t num1, num2, num3;
 void nullterm(char *, mint);

 printf("IFX_INT8CVASC Sample ESQL Program running.\n\n");

 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
 {
 printf("Error %d in converting string3 to INT8\n", x);
 exit(1);
 }

 /* Display the exponent, sign value and number of digits in num1. */

647

HCL Informix 14.10 - ESQL/C Programmer’s Guide

648

 ifx_int8toasc(&num1, string1, sizeof(string1));
 nullterm(string1, sizeof(string1));
 printf("The value of the first INT8 is = %s\n", string1);

 /* Display the exponent, sign value and number of digits in num2. */

 ifx_int8toasc(&num2, string2, sizeof(string2));
 nullterm(string2, sizeof(string2));
 printf("The value of the 2nd INT8 is = %s\n", string2);

 /* Display the exponent, sign value and number of digits in num3. */
 /* Note that the decimal is truncated */

 ifx_int8toasc(&num3, string3, sizeof(string3));
 nullterm(string3, sizeof(string3));
 printf("The value of the 3rd INT8 is = %s\n", string3);

 printf("\nIFX_INT8CVASC Sample Program over.\n\n");
 exit(0);
}
void nullterm(char *str, mint size)
{
 char *end;

 end = str + size;
 while(*str && *str > ' ' && str <= end)
 ++str;
 *str = '\0';
}

Output

IFX_INT8CVASC Sample ESQL Program running.

The value of the first INT8 is = -12555444333786456
The value of the 2nd INT8 is = 480
The value of the 3rd INT8 is = 5

IFX_INT8CVASC Sample Program over.

The ifx_int8cvdbl() function
The ifx_int8cvdbl() function converts a C double type number into an int8 type number.

Syntax

mint ifx_int8cvdbl(dbl_val, int8_val)
 double dbl_val;
 ifx_int8_t *int8_val;

dbl_val

The double value that ifx_int8cvdbl() converts to an int8 type value.

Chapter 1. ESQL/C Guide

int8_val

A pointer to the int8 structure where ifx_int8cvdbl() places the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The file int8cvdbl.ec in the demo directory contains the following sample program.

/*
 * int8cvdbl.ec *

 The following program converts two double type numbers to
 INT8 types and displays the results.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char result[41];

main()
{
 mint x;
 ifx_int8_t num;
 double d = 2147483647;

printf("IFX_INT8CVDBL Sample ESQL Program running.\n\n");

 printf("Number 1 (double) = 1234.5678901234\n");
 if (x = ifx_int8cvdbl((double)1234.5678901234, &num))
 {
 printf("Error %d in converting double1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8toasc(&num, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" String Value = %s\n", result);

/* notice that the ifx_int8cvdbl function truncates digits to the
right of a decimal separator. */

 printf("Number 2 (double) = %.1f\n", d);

649

HCL Informix 14.10 - ESQL/C Programmer’s Guide

650

 if (x = ifx_int8cvdbl(d, &num))
 {
 printf("Error %d in converting double2 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8toasc(&num, result, sizeof(result)))
 {
 printf("Error %d in converting second INT8 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" String Value = %s\n", result);

 printf("\nIFX_INT8CVDBL Sample Program over.\n\n");
 exit(0);
}

Output
IFX_INT8CVDBL Sample ESQL Program running.

Number 1 (double) = 1234.5678901234
 String Value = 1234
Number 2 (double) = 2147483647.0
 String Value = 2147483647

IFX_INT8CVDBL Sample Program over.

The ifx_int8cvdec() function
The ifx_int8cvdec() function converts a decimal type value into an int8 type value.

Syntax

mint ifx_int8cvdec(dec_val, int8_val)
 dec_t *dec_val;
 ifx_int8_t *int8_val;

dec_val

A pointer to the decimal structure that ifx_int8cvdec() converts to an int8 type value.

int8_val

A pointer to the int8 structure where ifx_int8cvdec() places the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Chapter 1. ESQL/C Guide

Example

The file int8cdec.ec in the demo directory contains the following sample program.

/*
 * ifx_int8cvdec.ec *

 The following program converts two INT8s types to DECIMALS and displays
 the results.
*/

#include <stdio.h>

EXEC SQL include decimal;
EXEC SQL include "int8.h";

char string1[] = "2949.3829398204382";
char string2[] = "3238299493";
char result[41];

main()
{
 mint x;
 ifx_int8_t n;
 dec_t num;

 printf("IFX_INT8CVDEC Sample ESQL Program running.\n\n");

 if (x = deccvasc(string1, strlen(string1), &num))
 {
 printf("Error %d in converting string1 to DECIMAL\n", x);
 exit(1);
 }
 if (x = ifx_int8cvdec(&num, &n))
 {
 printf("Error %d in converting DECIMAL1 to INT8\n", x);
 exit(1);
 }

/* Convert the INT8 to ascii and display it. Note that the
 digits to the right of the decimal are truncated in the
 conversion.
*/

 if (x = ifx_int8toasc(&n, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("String 1 Value = %s\n", string1);
 printf(" INT8 type value = %s\n", result);

 if (x = deccvasc(string2, strlen(string2), &num))
 {
 printf("Error %d in converting string2 to DECIMAL\n", x);

651

HCL Informix 14.10 - ESQL/C Programmer’s Guide

652

 exit(1);
 }
 if (x = ifx_int8cvdec(&num, &n))
 {
 printf("Error %d in converting DECIMAL2 to INT8\n", x);
 exit(1);
 }
 printf("String 2 = %s\n", string2);

/* Convert the INT8 to ascii to display value. */

 if (x = ifx_int8toasc(&n, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" INT8 type value = %s\n", result);

 printf("\nIFX_INT8CVDEC Sample Program over.\n\n");
 exit(0);
}

Output

IFX_INT8CVDEC Sample ESQL Program running.

 String 1 Value = 2949.3829398204382
INT8 type value = 2949
String 2 = 3238299493
 INT8 type value = 3238299493

IFX_INT8CVDEC Sample Program over.

The ifx_int8cvflt() function
The ifx_int8cvflt() function converts a C float type number into an int8 type number.

Syntax

mint ifx_int8cvflt(flt_val, int8_val)
 double flt_val;
 ifx_int8_t *int8_val;

flt_val

The float value that ifx_int8cvflt() converts to an int8 type value.

int8_val

A pointer to the int8 structure where ifx_int8cvflt() places the result of the conversion.

Return codes

0

The conversion was successful.

Chapter 1. ESQL/C Guide

<0

The conversion failed.

Example

The file int8cvflt.ec in the demo directory contains the following sample program.

/*
 * ifx_int8cvflt.ec *

 The following program converts two floats to INT8 types and displays
 the results.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char result[41];

main()
{
 mint x;
 ifx_int8_t num;

 printf("IFX_INT8CVFLT Sample ESQL Program running.\n\n");

 printf("Float 1 = 12944.321\n");

/* Note that in the following conversion, the digits to the
 right of the decimal are ignored. */

 if (x = ifx_int8cvflt(12944.321, &num))
 {
 printf("Error %d in converting float1 to INT8\n", x);
 exit(1);
 }

/* Convert int8 to ascii to display value. */

 if (x = ifx_int8toasc(&num, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" The INT8 type value is = %s\n", result);
 printf("Float 2 = -33.43\n");

/* Note that in the following conversion, the digits to the
 right of the decimal are ignored. */

 if (x = ifx_int8cvflt(-33.43, &num))
 {
 printf("Error %d in converting float2 to INT8\n", x);
 exit(1);

653

HCL Informix 14.10 - ESQL/C Programmer’s Guide

654

 }
 if (x = ifx_int8toasc(&num, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" The second INT8 type value is = %s\n", result);

 printf("\nIFX_INT8CVFLT Sample Program over.\n\n");
 exit(0);
}

Output
IFX_INT8CVFLT Sample ESQL Program running.

Float 1 = 12944.321
 The INT8 type value is = 12944
Float 2 = -33.43
 The second INT8 type value is = -33

IFX_INT8CVFLT Sample Program over.

The ifx_int8cvint() function
The ifx_int8cvint() function converts a C int type number into an int8 type number.

Syntax

mint ifx_int8cvint(int_val, int8_val)
 mint int_val;
 ifx_int8_t *int8_val;

int_val

The mint value that ifx_int8cvint() converts to an int8 type value.

int8_val

A pointer to the int8 structure where ifx_int8cvint() places the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The file int8cvint.ec in the demo directory contains the following sample program.

/*
 * ifx_int8cvint.ec *

Chapter 1. ESQL/C Guide

 The following program converts two integers to INT8
 types and displays the results.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char result[41];

main()
{
 mint x;
 ifx_int8_t num;

 printf("IFX_INT8CVINT Sample ESQL Program running.\n\n");

 printf("Integer 1 = 129449233\n");
 if (x = ifx_int8cvint(129449233, &num))
 {
 printf("Error %d in converting int1 to INT8\n", x);
 exit(1);
 }

/* Convert int8 to ascii to display value. */

 if (x = ifx_int8toasc(&num, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" The INT8 type value is = %s\n", result);

 printf("Integer 2 = -33\n");
 if (x = ifx_int8cvint(-33, &num))
 {
 printf("Error %d in converting int2 to INT8\n", x);
 exit(1);
 }

/* Convert int8 to ascii to display value. */

 if (x = ifx_int8toasc(&num, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" The second INT8 type value is = %s\n", result);

 printf("\nIFX_INT8CVINT Sample Program over.\n\n");
 exit(0);
}

655

HCL Informix 14.10 - ESQL/C Programmer’s Guide

656

Output
IFX_INT8CVINT Sample ESQL Program running.

Integer 1 = 129449233
 The INT8 type value is = 129449233
Integer 2 = -33
 The second INT8 type value is = -33

IFX_INT8CVINT Sample Program over.

The ifx_int8cvlong() function
The ifx_int8cvlong() function converts a C long type value into an int8 type value.

Syntax
mint ifx_int8cvlong(lng_val, int8_val)
 int4 lng_val;
 ifx_int8_t *int8_val;

lng_val

The int4 integer that ifx_int8cvlong() converts to an int8 type value.

int8_val

A pointer to the int8 structure where ifx_int8cvlong() places the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The file int8cvlong.ec in the demo directory contains the following sample program.

/*
 * ifx_int8cvlong.ec *

 The following program converts two longs to INT8
 types and displays the results.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char result[41];

main()
{

Chapter 1. ESQL/C Guide

 mint x;
 ifx_int8_t num;
 int4 n;

 printf("IFX_INT8CVLONG Sample ESQL Program running.\n\n");

 printf("Long Integer 1 = 129449233\n");
 if (x = ifx_int8cvlong(129449233L, &num))
 {
 printf("Error %d in converting long to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8toasc(&num, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" String for INT8 type value = %s\n", result);

 n = 2147483646; /* set n */
 printf("Long Integer 2 = %d\n", n);
 if (x = ifx_int8cvlong(n, &num))
 {
 printf("Error %d in converting long to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8toasc(&num, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf(" String for INT8 type value = %s\n", result);

 printf("\nIFX_INT8CVLONG Sample Program over.\n\n");
 exit(0);
}

Output

IFX_INT8CVLONG Sample ESQL Program running.

Long Integer 1 = 129449233
 String for INT8 type value = 129449233
Long Integer 2 = 2147483646
 String for INT8 type value = 2147483646

IFX_INT8CVLONG Sample Program over.

The ifx_int8div() function
The ifx_int8div() function divides two int8 type values.

657

HCL Informix 14.10 - ESQL/C Programmer’s Guide

658

Syntax
mint ifx_int8div(n1, n2, quotient)
 ifx_int8_t *n1;
 ifx_int8_t *n2;
 ifx_int8_t *quotient;

n1

A pointer to the int8 structure that contains the dividend.

n2

A pointer to the int8 structure that contains the divisor.

quotient

A pointer to the int8 structure that contains the quotient of n1/n2.

Usage

The quotient can be the same as either n1 or n2.

Return codes

0

The operation was successful.

-1202

The operation attempted to divide by zero.

Example

The file int8div.ec in the demo directory contains the following sample program.

/*
 * ifx_int8div.ec *

 The following program divides two INT8 numbers and displays the result.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "480,999,777,666,345,567";
char string2[] = "80,765,456,765,456,654";
char result[41];

main()
{
 mint x;
 ifx_int8_t num1, num2, dvd;

 printf("IFX_INT8DIV Sample ESQL Program running.\n\n");

Chapter 1. ESQL/C Guide

 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8div(&num1, &num2, &dvd))
 {
 printf("Error %d in dividing num1 by num2\n", x);
 exit(1);
 }
 if (x = ifx_int8toasc(&dvd, result, sizeof(result)))
 {
 printf("Error %d in converting dividend to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("\t%s / %s = %s\n", string1, string2, result);

 printf("\nIFX_INT8DIV Sample Program over.\n\n");
 exit(0);
}

Output

IFX_INT8DIV Sample ESQL Program running.

 480,999,777,666,345,567 / 80,765,456,765,456,654 = 5

IFX_INT8DIV Sample Program over.

The ifx_int8mul() function
The ifx_int8mul() function multiplies two int8 type values.

Syntax

mint ifx_int8mul(n1, n2, product)
 ifx_int8_t *n1;
 ifx_int8_t *n2;
 ifx_int8_t *product;

n1

A pointer to the int8 structure that contains the first operand.

n2

A pointer to the int8 structure that contains the second operand.

product

A pointer to the int8 structure that contains the product of n1 * n2.

659

HCL Informix 14.10 - ESQL/C Programmer’s Guide

660

Usage

The product can be the same as either n1 or n2.

Return codes

0

The operation was successful.

-1284

The operation resulted in overflow or underflow.

Example

The file int8mul.ec in the demo directory contains the following sample program.

/*
 * ifx_int8mul.ec *

 The following program multiplies two INT8 numbers and
 displays the result.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "480,999,777,666,345";
char string2[] = "80";
char result[41];

main()
{
 mint x;
 ifx_int8_t num1, num2, prd;

 printf("IFX_INT8MUL Sample ESQL Program running.\n\n");

 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8mul(&num1, &num2, &prd))
 {
 printf("Error %d in multiplying num1 by num2\n", x);
 exit(1);
 }
 if (x = ifx_int8toasc(&prd, result, sizeof(result)))
 {

Chapter 1. ESQL/C Guide

 printf("Error %d in converting product to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("\t%s * %s = %s\n", string1, string2, result);

 printf("\nIFX_INT8MUL Sample Program over.\n\n");
 exit(0);
}

Output
IFX_INT8MUL Sample ESQL Program running.

 480,999,777,666,345 * 80 = 38479982213307600

IFX_INT8MUL Sample Program over.

The ifx_int8sub() function
The ifx_int8sub() function subtracts two int8 type values.

Syntax

mint ifx_int8sub(n1, n2, difference)
 ifx_int8_t *n1;
 ifx_int8_t *n2;
 ifx_int8_t *difference;

n1

A pointer to the int8 structure that contains the first operand.

n2

A pointer to the int8 structure that contains the second operand.

difference

A pointer to the int8 structure that contains the difference of n1 and n2 (n1 - n2).

Usage

The difference can be the same as either n1 or n2.

Return codes

0

The subtraction was successful.

-1284

The subtraction resulted in overflow or underflow.

Example

The file int8sub.ec in the demo directory contains the following sample program.

661

HCL Informix 14.10 - ESQL/C Programmer’s Guide

662

/*
 *int8sub.ec *

 The following program obtains the difference of two INT8
 type values.
*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "6";
char string2[] = "9,223,372,036,854,775";
char string3[] = "999,999,999,999,999.5";
char result[41];

main()
{
 mint x;
 ifx_int8_t num1, num2, num3, sum;

 printf("IFX_INT8SUB Sample ESQL Program running.\n\n");

 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }

 /* subtract num2 from num1 */

 if (x = ifx_int8sub(&num1, &num2, &sum))
 {
 printf("Error %d in subtracting INT8s\n", x);
 exit(1);
 }
 if (x = ifx_int8toasc(&sum, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 result to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("\t%s - %s = %s\n", string1, string2, result); /* display result */

 if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
 {
 printf("Error %d in converting string3 to INT8\n", x);
 exit(1);
 }

 /* notice that digits right of the decimal are truncated. */

Chapter 1. ESQL/C Guide

 if (x = ifx_int8sub(&num2, &num3, &sum))
 {
 printf("Error %d in subtracting INT8s\n", x);
 exit (1);
 }
 if (x = ifx_int8toasc(&sum, result, sizeof(result)))
 {
 printf("Error %d in converting INT8 result to string\n", x);
 exit(1);
 }
 result[40] = '\0';
 printf("\t%s - %s = %s\n", string2, string3, result); /* display result */

 printf("\nIFX_INT8SUB Sample Program over.\n\n");
 exit(0);
}

Output
IFX_INT8SUB Sample ESQL Program running.

 6 - 9,223,372,036,854,775 = -9223372036854769
 9,223,372,036,854,775 - 999,999,999,999,999.5 = 8223372036854776

IFX_INT8SUB Sample Program over.

The ifx_int8toasc() function
The ifx_int8toasc() function converts an int8 type number to a C char type value.

Syntax

mint ifx_int8toasc(int8_val, strng_val, len)
 ifx_int8_t *int8_val;
 char *strng_val;
 mint len;

int8_val

A pointer to the int8 structure whose value ifx_int8toasc() converts to a text string.

strng_val

A pointer to the first byte of the character buffer where the ifx_int8toasc() function places the text string.

len

The size of strng_val, in bytes, minus 1 for the null terminator.

Usage

If the int8 number does not fit into a character string of length len, ifx_int8toasc() converts the number to an exponential

notation. If the number still does not fit, ifx_int8toasc() fills the string with asterisks. If the number is shorter than the string,

ifx_int8toasc() left-justifies the number and pads it on the right with blanks.

663

HCL Informix 14.10 - ESQL/C Programmer’s Guide

664

Because the character string that ifx_int8toasc() returns is not null terminated, your program must add a null character to the

string before you print it.

When you use a nondefault locale (one other than US English), ifx_int8toasc() supports non-ASCII characters in the strng_val

character string. For more information, see the HCL® Informix® GLS User's Guide.

Return codes

0

The conversion was successful.

-1207

The converted value does not fit into the allocated space.

Example

The file int8toasc.ec in the demo directory contains the following sample program.

/*
 * ifx_int8toasc.ec *

 The following program converts three string
 constants to INT8 types and then uses ifx_int8toasc()
 to convert the INT8 values to C char type values.
*/

#include <stdio.h>
#define END sizeof(result)

EXEC SQL include "int8.h";

char string1[] = "-12,555,444,333,786,456";
char string2[] = "480";
char string3[] = "5.2";
char result[40];

main()
{
 mint x;
 ifx_int8_t num1, num2, num3;

 printf("IFX_INT8TOASC Sample ESQL Program running.\n\n");

 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }
if (x = ifx_int8cvasc(string3, strlen(string3), &num3))

Chapter 1. ESQL/C Guide

 {
 printf("Error %d in converting string3 to INT8\n", x);
 exit(1);
 }
 printf("\nConverting INT8 back to ASCII\n");
 printf(" Executing: ifx_int8toasc(&num1, result, END - 1)");
 if (x = ifx_int8toasc(&num1, result, END - 1))
 printf("\tError %d in converting INT8 to string\n", x);
 else
 {
 result[END - 1] = '\0'; /* null terminate */
 printf("\n The value of the first INT8 is = %s\n", result);
 }
 printf("\nConverting second INT8 back to ASCII\n");
 printf(" Executing: ifx_int8toasc(&num2, result, END - 1)");
 if (x= ifx_int8toasc(&num2, result, END - 1))
 printf("\tError %d in converting INT8 to string\n", x);
 else
 {
 result[END - 1] = '\0'; /* null terminate */
 printf("\n The value of the 2nd INT8 is = %s\n", result);
 }

 printf("\nConverting third INT8 back to ASCII\n");
 printf(" Executing: ifx_int8toasc(&num3, result, END - 1)");
 /* note that the decimal is truncated */

 if (x= ifx_int8toasc(&num3, result, END - 1))
 printf("\tError %d in converting INT8 to string\n", x);
 else
 {
 result[END - 1] = '\0'; /* null terminate */
 printf("\n The value of the 3rd INT8 is = %s\n", result);
 }
 printf("\nIFX_INT8TOASC Sample Program over.\n\n");
 exit(0);
}

Output
IFX_INT8TOASC Sample ESQL Program running.

Converting INT8 back to ASCII
 Executing: ifx_int8toasc(&num1, result, sizeof(result)-1)
 The value of the first INT8 is = -12555444333786456

Converting second INT8 back to ASCII
 Executing: ifx_int8toasc(&num2, result, sizeof(result)-1)
 The value of the 2nd INT8 is = 480

Converting third INT8 back to ASCII
 Executing: ifx_int8toasc(&num3, result, END)
 The value of the 3rd INT8 is = 5

IFX_INT8TOASC Sample Program over.

665

HCL Informix 14.10 - ESQL/C Programmer’s Guide

666

The ifx_int8todbl() function
The ifx_int8todbl() function converts an int8 type number into a C double type number.

Syntax
mint ifx_int8todbl(int8_val, dbl_val)
 ifx_int8_t *int8_val;
 double *dbl_val;

int8_val

A pointer to the int8 structure whose value ifx_int8todbl() converts to a double type value.

dbl_val

A pointer to a double value where ifx_int8todbl() places the result of the conversion.

Usage

The floating-point format of the host computer can result in loss of precision in the conversion of an int8 type number to a

double type number.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The file int8todbl.ec in the demo directory contains the following sample program.

/*
 * ifx_int8todbl.ec *

 The following program converts three strings to INT8
 types and then to C double types and displays the
 results.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-12,555,444,333,786,456";
char string2[] = "480";
char string3[] = "5.2";

main()
{
 mint x;

Chapter 1. ESQL/C Guide

 double d =0;
 ifx_int8_t num1, num2, num3;

 printf("\nIFX_INT8TODBL Sample ESQL Program running.\n\n");

if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
 {
 printf("Error %d in converting string3 to INT8\n", x);
 exit(1);
 }
 printf("\nConverting INT8 to double");
 if (x= ifx_int8todbl(&num1, &d))
 {
 printf("\tError %d in converting INT8 to double\n", x);
 exit(1);
 }
else
 {
 printf("\nString 1= %s\n", string1);
 printf("INT8 value is = %.10f\n", d);
 }
printf("\nConverting second INT8 to double");
 if (x= ifx_int8todbl(&num2, &d))
 {
 printf("\tError %d in converting INT8 to double\n", x);
 exit(1);
 }
 else
 {
 printf("\nString2 = %s\n", string2);/*
 printf("INT8 value is = %.10f\n",d);
 }
 printf("\nConverting third INT8 to double");
 /* Note that the decimal places will be truncated. */

 if (x= ifx_int8todbl(&num3, &d))
 {
 printf("\tError %d in converting INT8 to double\n", x);
 exit(1);
 }
 else
 {
 printf("\nString3 = %s\n", string3);
 printf("INT8 value is = %.10f\n",d);
 }
 printf("\nIFX_INT8TODBL Sample Program over.\n\n");
 exit(0);
}

667

HCL Informix 14.10 - ESQL/C Programmer’s Guide

668

Output
IFX_INT8TODBL Sample ESQL Program running.

Converting INT8 to double

Executing: ifx_int8todbl(&num1,&d)
String 1= -12,555,444,333,786,456

 The value of the first double is = -12555444333786456.0000000000

Converting second INT8 to double

Executing: ifx_int8todbl(&num2, &d)
String2 = 480

 The value of the second double is = 480.0000000000

Converting third INT8 to double

Executing: ifx_int8todbl(&num3, &d)
String3 = 5.2

 The value of the third double is = 5.0000000000

IFX_INT8TODBL Sample Program over.

The ifx_int8todec() function
The ifx_int8todec() function converts an int8 type number into a decimal type number.

Syntax

mint ifx_int8todec(int8_val, dec_val)
 ifx_int8_t *int8_val;
 dec_t *dec_val;

int8_val

A pointer to an int8 structure whose value ifx_int8todec() converts to a decimal type value.

dec_val

A pointer to a decimal structure in which ifx_int8todec() places the result of the conversion.

Return codes

0

The conversion was successful.

<0

The conversion was not successful.

Chapter 1. ESQL/C Guide

Example

The file int8todec.ec in the demo directory contains the following sample program.

/*
 * ifx_int8todec.ec *

 The following program converts three strings to INT8 types and
 converts the INT8 type values to decimal type values.
 Then the values are displayed.

*/

#include <stdio.h>

EXEC SQL include "int8.h";
#define END sizeof(result)

char string1[] = "-12,555,444,333,786,456";
char string2[] = "480";
char string3[] = "5.2";
char result [40];

main()
{
 mint x;
 dec_t d;
 ifx_int8_t num1, num2, num3;

 printf("IFX_INT8TODEC Sample ESQL Program running.\n\n");

 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
 {
 printf("Error %d in converting string3 to INT8\n", x);
 exit(1);
 }

 printf("\n***Converting INT8 to decimal\n");
 printf("\nString 1= %s\n", string1);
 printf(" \nExecuting: ifx_int8todec(&num1,&d)");
 if (x= ifx_int8todec(&num1, &d))
 {
 printf("\tError %d in converting INT8 to decimal\n", x);
 exit(1);
 }
 else
 {

669

HCL Informix 14.10 - ESQL/C Programmer’s Guide

670

 printf("\nConverting Decimal to ASCII for display\n");
 printf("Executing: dectoasc(&d, result, END, -1)\n");
 if (x = dectoasc(&d, result, END, -1))
 printf("\tError %d in converting DECIMAL1 to string\n", x);
 else
 {
 result[END - 1] = '\0'; /* null terminate */
 printf("Result = %s\n", result);
 }
 }
 printf("\n***Converting second INT8 to decimal\n");
 printf("\nString2 = %s\n", string2);
 printf(" \nExecuting: ifx_int8todec(&num2, &d)");
 if (x= ifx_int8todec(&num2, &d))
 {
 printf("\tError %d in converting INT8 to decimal\n", x);
 exit(1);
 }
 else
 {
 printf("\nConverting Decimal to ASCII for display\n");
 printf("Executing: dectoasc(&d, result, END, -1)\n");
 if (x = dectoasc(&d, result, END, -1))
 printf("\tError %d in converting DECIMAL2 to string\n", x);
else
 {
 result[END - 1] = '\0'; /* null terminate */
 printf("Result = %s\n", result);
 }
 }
 printf("\n***Converting third INT8 to decimal\n");
 printf("\nString3 = %s\n", string3);
 printf(" \nExecuting: ifx_int8todec(&num3, &d)");
 if (x= ifx_int8todec(&num3, &d))
 {
 printf("\tError %d in converting INT8 to decimal\n", x);
 exit(1);
 }
 else
 {
 printf("\nConverting Decimal to ASCII for display\n");
 printf("Executing: dectoasc(&d, result, END, -1)\n");

 /* note that the decimal is truncated */

 if (x = dectoasc(&d, result, END, -1))
 printf("\tError %d in converting DECIMAL3 to string\n", x);
 else
 {
 result[END - 1] = '\0'; /* null terminate */
 printf("Result = %s\n", result);
 }
 }
 printf("\nIFX_INT8TODEC Sample Program over.\n\n");
 exit(0);
}

Chapter 1. ESQL/C Guide

Output
IFX_INT8TODEC Sample ESQL Program running.

***Converting INT8 to decimal

String 1= -12,555,444,333,786,456

Executing: ifx_int8todec(&num1,&d)
Converting Decimal to ASCII for display
Executing: dectoasc(&d, result, END, -1)
Result = -12555444333786456.0

***Converting second INT8 to decimal

String2 = 480

Executing: ifx_int8todec(&num2, &d)
Converting Decimal to ASCII for display
Executing: dectoasc(&d, result, END, -1)
Result = 480.0

***Converting third INT8 to decimal

String3 = 5.2

Executing: ifx_int8todec(&num3, &d)
Converting Decimal to ASCII for display
Executing: dectoasc(&d, result, END, -1)
Result = 5.0

IFX_INT8TODEC Sample Program over.

The ifx_int8toflt() function
The ifx_int8toflt() function converts an int8 type number into a C float type number.

Syntax

mint ifx_int8toflt(int8_val, flt_val)
 ifx_int8_t *int8_val;
 float *flt_val;

int8_val

A pointer to an int8 structure whose value ifx_int8toflt()converts to a float type value.

flt_val

A pointer to a float value where ifx_int8toflt() places the result of the conversion.

Usage

The ifx_int8toflt() library function converts an int8 value to a C float. The size of a C float depends upon the hardware and

operating system of the computer you are using.

671

HCL Informix 14.10 - ESQL/C Programmer’s Guide

672

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The file int8toflt.ec in the demo directory contains the following sample program.

/*
 * ifx_int8toflt.ec *

 The following program converts three strings to
 INT8 values and then to float values and
 displays the results.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-12,555.765";
char string2[] = "480.76";
char string3[] = "5.2";

main()
{
 mint x;
 float f =0.0;
 ifx_int8_t num1, num2, num3;

 printf("\nIFX_INT8TOFLT Sample ESQL Program running.\n\n");
 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
 {
 printf("Error %d in converting string3 to INT8\n", x);
 exit(1);
 }

 printf("\nConverting INT8 to float\n");
 if (x= ifx_int8toflt(&num1, &f))
 {
 printf("\tError %d in converting INT8 to float\n", x);

Chapter 1. ESQL/C Guide

 exit(1);
 }
 else
 {
 printf("String 1= %s\n", string1);
 printf("INT8 value is = %f\n", f);
 }
 printf("\nConverting second INT8 to float\n");
 if (x= ifx_int8toflt(&num2, &f))
 {
 printf("\tError %d in converting INT8 to float\n", x);
 exit(1);
 }
 else
 {
 printf("String2 = %s\n", string2);
 printf("INT8 value is = %f\n", f);
 }
 printf("\nConverting third INT8 to integer\n");

/* Note that the decimal places will be truncated */

 if (x= ifx_int8toflt(&num3, &f))
 {
 printf("\tError %d in converting INT8 to float\n", x);
 exit(1);
 }
 else
 {
 printf("String3 = %s\n", string3);
 printf("INT8 value is = %f\n",f);
 }
 printf("\nIFX_INT8TOFLT Sample Program over.\n\n");
 exit(0);
}

Output

IFX_INT8TOFLT Sample ESQL Program running.

Converting INT8 to float

Executing: ifx_int8toflt(&num1,&f)
String 1= -12,555.765
The value of the first float is = -12555.000000

Converting second INT8 to float

Executing: ifx_int8toflt(&num2, &f)
String2 = 480.76
The value of the second float is = 480.000000

Converting third INT8 to integer

673

HCL Informix 14.10 - ESQL/C Programmer’s Guide

674

Executing: ifx_int8toflt(&num3, &f)
String3 = 5.2
The value of the third float is = 5.000000

IFX_INT8TOFLT Sample Program over.

The ifx_int8toint() function
The ifx_int8toint() function converts an int8 type number into a C int type number.

Syntax
mint ifx_int8toint(int8_val, int_val)
 ifx_int8_t *int8_val;
 mint *int_val;

int8_val

A pointer to an int8 structure whose value ifx_int8toint() converts to an mint type value.

int_val

A pointer to an mint value where ifx_int8toint() places the result of the conversion.

Usage

The ifx_int8toint() library function converts an int8 value to a C integer. The size of a C integer depends upon the hardware

and operating system of the computer you are using. Therefore, the ifx_int8toint() function equates an integer value with

the SQL SMALLINT data type. The valid range of a SMALLINT is between 32767 and -32767. To convert larger int8 values to

larger integers, use the ifx_int8tolong() library function.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The file int8toint.ec in the demo directory contains the following sample program.

/*
 * ifx_int8toint.ec *

 The following program converts three strings to INT8 types and
 converts the INT8 type values to C integer type values.
 Then the values are displayed.

*/

#include <stdio.h>

Chapter 1. ESQL/C Guide

EXEC SQL include "int8.h";

char string1[] = "-12,555";
char string2[] = "480";
char string3[] = "5.2";

main()
{
 mint x;
 mint i =0;
 ifx_int8_t num1, num2, num3;

 printf("IFX_INT8TOINT Sample ESQL Program running.\n\n");
 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
 {
 printf("Error %d in converting string3 to INT8\n", x);
 exit(1);
 }
 printf("\nConverting INT8 to integer\n");
 if (x= ifx_int8toint(&num1, &i))
 {
 printf("\tError %d in converting INT8 to integer\n", x);
 exit(1);
 }
 else
 {
 printf("String 1= %s\n", string1);
 printf("INT8 value is = %d\n", i);
 }
printf("\nConverting second INT8 to integer\n");
 if (x= ifx_int8toint(&num2, &i))
 {
 printf("\tError %d in converting INT8 to integer\n", x);
 exit(1);
 }
 else
 {
 printf("String2 = %s\n", string2);
 printf("INT8 value is = %d\n", i);
 }
 printf("\nConverting third INT8 to integer\n");

 /* note that the decimal will be truncated */

 if (x= ifx_int8toint(&num3, &i))
 {
 printf("\tError %d in converting INT8 to integer\n", x);

675

HCL Informix 14.10 - ESQL/C Programmer’s Guide

676

 exit(1);
 }
 else
 {
 printf("String3 = %s\n", string3);
 printf("INT8 value is = %d\n",i);
 }
 printf("\nIFX_INT8TOINT Sample Program over.\n\n");
 exit(0);
}

Output
IFX_INT8TOINT Sample ESQL Program running.

Converting INT8 to integer

Executing: ifx_int8toint(&num1,&i)
String 1= -12,555
The value of the first integer is = -12555

Converting second INT8 to integer

Executing: ifx_int8toint(&num2, &i)
String2 = 480
The value of the second integer is = 480

Converting third INT8 to integer

Executing: ifx_int8toint(&num3, &i)
String3 = 5.2
The value of the third integer is = 5

IFX_INT8TOINT Sample Program over.

The ifx_int8tolong() function
The ifx_int8tolong() function converts an int8 type number into a C long type number.

Syntax

mint ifx_int8tolong(int8_val, lng_val)
 ifx_int8_t *int8_val;
 int4 *lng_val;

int8_val

A pointer to an int8 structure whose value ifx_int8tolong() converts to an int4 integer type value.

lng_val

A pointer to an int4 integer where ifx_int8tolong() places the result of the conversion.

Chapter 1. ESQL/C Guide

Return codes

0

The conversion was successful.

-1200

The magnitude of the int8 type number is greater than 2,147,483,647.

Example

The file int8tolong.ec in the demo directory contains the following sample program.

/*
 * ifx_int8tolong.ec *

 The following program converts three strings to INT8 types and
 converts the INT8 type values to C long type values.
 Then the values are displayed.

*/

#include <stdio.h>

EXEC SQL include "int8.h";

char string1[] = "-1,555,345,698";
char string2[] = "3,235,635";
char string3[] = "553.24";

main()
{
 int x;
 long l =0;
 ifx_int8_t num1, num2, num3;

 printf("IFX_INT8TOLONG Sample ESQL Program running.\n\n");

 if (x = ifx_int8cvasc(string1, strlen(string1), &num1))
 {
 printf("Error %d in converting string1 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string2, strlen(string2), &num2))
 {
 printf("Error %d in converting string2 to INT8\n", x);
 exit(1);
 }
 if (x = ifx_int8cvasc(string3, strlen(string3), &num3))
 {
 printf("Error %d in converting string3 to INT8\n", x);
 exit(1);
 }
 printf("\nConverting INT8 to long\n");
 if (x= ifx_int8tolong(&num1, &l))
 {
 printf("\tError %d in converting INT8 to long\n", x);

677

HCL Informix 14.10 - ESQL/C Programmer’s Guide

678

 exit(1);
 }
 else
 {
 printf("String 1= %s\n", string1);
 printf("INT8 value is = %d\n", l);
 }

 printf("\nConverting second INT8 to long\n");
 if (x= ifx_int8tolong(&num2, &l))
 {
 printf("\tError %d in converting INT8 to long\n", x);
 exit(1);
 }
 else
 {
 printf("String2 = %s\n", string2);
 printf("INT8 value is = %d\n",l);
 }
 printf("\nConverting third INT8 to long\n");

/* Note that the decimal places will be truncated. */

 if (x= ifx_int8tolong(&num3, &l))
 {
 printf("\tError %d in converting INT8 to long\n", x);
 exit(1);
 }
 else
 {
 printf("String3 = %s\n", string3);
 printf("INT8 value is = %d\n",l);
 }
 printf("\nIFX_INT8TOLONG Sample Program over.\n\n");
 exit(0);
}

Output

IFX_INT8TOLONG Sample ESQL Program running.

Converting INT8 to long

Executing: ifx_int8tolong(&num1,&l)
String 1= -1,555,345,698
The value of the first long is = -1555345698

Converting second INT8 to long

Executing: ifx_int8tolong(&num2, &l)
String2 = 3,235,635
The value of the second long is = 3235635

Converting third INT8 to long

Chapter 1. ESQL/C Guide

Executing: ifx_int8tolong(&num3, &l)
String3 = 553.24
The value of the third long is = 553

IFX_INT8TOLONG Sample Program over.

The ifx_lo_alter() function
The ifx_lo_alter() function alters the storage characteristics of an existing smart large object.

Syntax
mint ifx_lo_alter(LO_ptr, LO_spec)
 ifx_lo_t *LO_ptr;
 ifx_lo_create_spec_t *LO_spec;

LO_ptr

A pointer to an LO-pointer structure that identifies the smart large object whose storage characteristics are

altered. For more information about LO-pointer structures, see The LO-pointer structure on page 187.

LO_spec

A pointer to the LO-specification structure that contains the storage characteristics that ifx_lo_alter() saves for

the smart large object that LO_ptr indicates. For more information about the LO-specification structure, see The

LO-specification structure on page 180.

Usage

The ifx_lo_alter() function updates the storage characteristics of an existing smart large object with the characteristics

in the LO-specification structure to which LO_spec points. With ifx_lo_alter(), you can change only the following storage

characteristics:

• Logging characteristics

You can set the LO_LOG or LO_NOLOG flag with the ifx_lo_specget_flags() function.

• Last-access time characteristics

You can set the LO_KEEP_LASTACCESS_TIME or LO_NOKEEP_LASTACCESS_TIME flag with the

ifx_lo_specset_flags() function.

• Extent size

You can store a new integer value for the allocation extent size with the ifx_lo_specset_extsz() function. The new

extent size applies only to extents written after the ifx_lo_alter() function completes.

The function obtains an exclusive lock for the entire smart large object before it proceeds with the update. It holds this lock

until the update completes.

679

HCL Informix 14.10 - ESQL/C Programmer’s Guide

680

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_close() function
The ifx_lo_close() function closes an open smart large object.

Syntax
mint ifx_lo_close(LO_fd)
 mint LO_fd;

LO_fd

The LO file descriptor of the smart large object to close. For more information about an LO file descriptor, see

The LO file descriptor on page 189.

Usage

The ifx_lo_close() function closes the smart large object that is associated with the LO file descriptor, LO_fd. The

ifx_lo_open() and ifx_lo_create() functions return an LO file descriptor when they successfully open a smart large object.

When the ifx_lo_close() function closes a smart large object, the database server attempts to unlock the smart large object.

In some cases, the database server does not permit the release of the lock until the end of the transaction. (If you do not

perform updates to smart large objects inside a BEGIN WORK transaction block, every update is a separate transaction.) This

behavior might occur if the isolation mode is repeatable read or if the lock held is an exclusive lock.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_col_info() function
The ifx_lo_col_info() function sets the fields of an LO-specification structure to the column-level storage characteristics for a

specified database column.

Syntax

mint ifx_lo_col_info(column_name, LO_spec)
 char *column_name;
 ifx_lo_create_spec_t *LO_spec;

Chapter 1. ESQL/C Guide

column_name

A pointer to a buffer that contains the name of the database column whose column-level storage

characteristics you want to use.

LO_spec

A pointer to the LO-specification structure in which to store the column-level storage characteristics for

column_name. For more information about the LO-specification structure, see The LO-specification structure on

page 180.

Usage

The ifx_lo_col_info() function sets the fields of the LO-specification structure to which LO_spec points, to the storage

characteristics for the column_name database column. If this specified column does not have column-level storage

characteristics defined for it, the database server uses the storage characteristics that are inherited. For more information

about the inheritance hierarchy, see Obtain storage characteristics on page 184.

The column_name buffer must specify the column name in the following format:

database@server_name:table.column

If the column is in a database that is ANSI compliant, you can also include the owner_name, as follows:

database@server_name:owner.table.column

Important: You must call the ifx_lo_def_create_spec() function before you call ifx_lo_col_info().

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_copy_to_file() function
The ifx_lo_copy_to_file() function copies the contents of a smart large object into an operating-system file.

Syntax

mint ifx_lo_copy_to_file(LO_ptr, fname, flags, result)
 ifx_lo_t *LO_ptr;
 char *fname;
 mint flags;
 char *result;

LO_ptr

A pointer to the LO-pointer structure that you provide to identify the smart large object to copy. For more

information about LO-pointer structures, see The LO-pointer structure on page 187.

681

HCL Informix 14.10 - ESQL/C Programmer’s Guide

682

fname

The full path name of the target file to hold the data.

flags

An integer that specifies the location of the fname file.

result

A pointer to a buffer that contains the file name that ifx_lo_copy_to_file() generates.

Usage

The ifx_lo_copy_to_file() function can create the target files on either the server or the client computer. The flag values for the

flags argument indicate the location of the file to copy. Valid values include the following constants, which the locator.h

header file defines.

File-location constant

Purpose

LO_CLIENT_FILE

The fname file is on the client computer.

LO_SERVER_FILE

The fname file is on the server computer.

By default, the ifx_lo_copy_to_file() function generates a file name of the form:

fname.hex_id

In this format, fname is the file name you specify as an argument to ifx_lo_copy_to_file() and hex_id is the unique

hexadecimal smart-large-object identifier. The maximum number of digits for a smart-large-object identifier is 17; however

most smart large objects would have an identifier with fewer digits.

For example, suppose you specify a pathname value as '/tmp/resume'.

If the CLOB column has an identifier of 203b2, the ifx_lo_copy_to_file() function creates the file: /tmp/resume.203b2.

To change this default file name, you can specify the following wildcards in the file name portion of fname:

• One or more contiguous question mark (?) characters in the file name can generate a unique file name.

The ifx_lo_copy_to_file() function replaces each question mark with a hexadecimal digit from the identifier of the

BLOB or CLOB column. For example, suppose you specify a pathname value as '/tmp/resume??.txt'.

The ifx_lo_copy_to_file() function puts two digits of the hexadecimal identifier into the name. If the CLOB column has

an identifier of 203b2, the ifx_lo_copy_to_file() function would create the file /tmp/resumeb2.txt.

If you specify more than 17 question marks, the ifx_lo_copy_to_file() function ignores them.

• An exclamation point (!) at the end of the file name indicates that the file name does not need to be unique.

Chapter 1. ESQL/C Guide

For example, suppose you specify a path name value as '/tmp/resume.txt!'.

The ifx_lo_copy_to_file() function does not use the smart-large-object identifier in the file name so it generates the

following file: ifx_lo_copy_to_file()

The exclamation point overrides the question marks in the file name specification.

Tip: These wildcards are also valid in the fname argument of the ifx_lo_filename() function. For more information

about ifx_lo_filename(), see The ifx_lo_filename() function on page 686.

Your application must ensure that there is sufficient space to hold the generated file.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_copy_to_lo() function
The ifx_lo_copy_to_lo() function copies the contents of a file into an open smart large object.

Syntax

mint ifx_lo_copy_to_lo(LO_fd, fname, flags)
 mint LO_fd;
 char *fname;
 mint flags;

LO_fd

The LO file descriptor for the open smart large object in which to write the file contents. For more information

about an LO file descriptor, see The LO file descriptor on page 189.

fname

The full path name of the source file that contains the data to copy.

flags

An integer that specifies the location of the fname file.

Usage

The ifx_lo_copy_to_lo() function can copy the contents of a source file on either the server or the client computer. The flag

values for the flags argument indicate the location of the file to copy. Valid values include the following constants, which the

locator.h header file defines.

File-location constant

683

HCL Informix 14.10 - ESQL/C Programmer’s Guide

684

Purpose

LO_CLIENT_FILE

The fname file is on the client computer.

LO_SERVER_FILE

The fname file is on the server computer.

LO_APPEND

Append the data in fname to the end of the specified smart large object. This flag can be masked with one of

the preceding flags.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_create() function
The ifx_lo_create() function creates a new smart large object and opens it for access within the IBM® Informix® ESQL/C

program.

Syntax

mint ifx_lo_create(LO_spec, flags, LO_ptr, error)
 ifx_lo_create_spec_t *LO_spec;
 mint flags;
 ifx_lo_t *LO_ptr;
 mint *error;

LO_spec

A pointer to the LO-specification structure that contains the storage characteristics for new smart large

objects. For information about the LO-specification structure, see The LO-specification structure on

page 180.

flags

An integer that specifies the mode in which to open the new smart large object. For more information, see

Access modes on page 192.

LO_ptr

A pointer to the LO-pointer structure for the new smart large object. For more information about LO-pointer

structures, see The LO-pointer structure on page 187.

error

A pointer to an integer that contains the error code that ifx_lo_create() sets.

Chapter 1. ESQL/C Guide

Usage

The ifx_lo_create() function performs the following steps to create a new smart large object:

1. It creates a LO-pointer structure and assigns a pointer to this structure to the LO_ptr argument.

2. It assigns the storage characteristics for the smart large object from the LO-specification structure, LO_spec.

If the LO-specification structure does not contain storage characteristics (the associated fields are null),

ifx_lo_create() uses the storage characteristics from the inheritance hierarchy for the new smart large object. The

ifx_lo_create() function also uses the system-specified storage characteristics if the LO_spec pointer is null.

For more information about the inheritance hierarchy, see Obtain storage characteristics on page 184.

3. It opens the new smart large object in the access mode that the flags argument specifies.

The flag values for the flags argument indicate the mode of the smart large object after ifx_lo_create() successfully

completes. Valid values include all access-mode constants, which Table 48: Access-mode flags for smart large

objects on page 192 shows. For more information about access modes, see Open a smart large object on

page 192.

4. It returns an LO file descriptor that identifies the open smart large object.

Important: You must call the ifx_lo_def_create_spec() function to initialize an LO-specification structure before you

call the ifx_lo_create() function.

HCL Informix® uses the default parameters that the call to ifx_lo_create() establishes to determine whether subsequent

operations result in locking and/or logging of the corresponding smart large object. For more information, see Lightweight

I/O on page 194

Each ifx_lo_create() call is implicitly associated with the current connection. When this connection closes, the database

server deallocates any smart large objects that are not referenced by any columns (those with a reference count of zero).

If the ifx_lo_create() function is successful, it returns a valid LO-file descriptor (LO_fd). You can then use the LO_fd to identify

which smart large object to access in subsequent function calls such as ifx_lo_read() and ifx_lo_write(). However, a LO_fd is

only valid within the current database connection.

Return codes

A valid LO file descriptor

The function successfully created and opened the new smart large object.

-1

The function was not successful; examine the error for a detailed error code.

The ifx_lo_def_create_spec() function
The ifx_lo_def_create_spec() function allocates and initializes an LO-specification structure.

685

HCL Informix 14.10 - ESQL/C Programmer’s Guide

686

Syntax
mint ifx_lo_def_create_spec(LO_spec)
 ifx_lo_create_spec_t **LO_spec;

LO_spec

A pointer that points to a pointer to a new LO-specification structure that contains initialized fields. For

information about the LO-specification structure, see The LO-specification structure on page 180.

Usage

The ifx_lo_def_create_spec() function creates and initializes a new LO-specification structure, ifx_lo_create_spec_t. The

ifx_lo_def_create_spec() function initializes the new ifx_lo_create_spec_t structure with the appropriate null values and

places its address in the LO_spec pointer. At the time the database server stores the large object, the database server

interprets the null values to mean that system-specified defaults should be used for the storage characteristics. For more

information, see The system-specified storage characteristics on page 185.

Because the ifx_lo_def_create_spec() function allocates memory for the ifx_lo_create_spec_t structure, you must call the

ifx_lo_spec_free() function to free that memory when you are finished using the structure.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_filename() function
The ifx_lo_filename() function returns the path name that the database server would use if you copied a smart large object to

a file.

Syntax

mint ifx_lo_filename(LO_ptr, fname, result, result_buf_nbytes)
 ifx_lo_t *LO_ptr;
 char *fname;
 char *result;
 mint result_buf_nbytes;

LO_ptr

A pointer to the LO-pointer structure that identifies the smart large object to copy. For more information about

LO-pointer structures, see The LO-pointer structure on page 187

fname

The full path name of the target file to hold the data.

result

A pointer to a buffer that contains the file name that ifx_lo_copy_to_file() would generate.

Chapter 1. ESQL/C Guide

result_len

The size, in bytes, of the result character buffer.

Usage

The ifx_lo_filename() function generates a file name from the fname argument that you provide. Use the ifx_lo_filename()

function to determine the file name that the ifx_lo_filename() function would create for its fname argument.

By default, the ifx_lo_copy_to_file() function generates a file name of the form:

fname.hex_id

However, you can specify wildcards in the fname argument that can change this default file name. You can use these

wildcards in the fname argument of ifx_lo_filename() to see what file name these wildcards generate.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_from_buffer() function
The ifx_lo_from_buffer() function copies a specified number of bytes from a user-defined buffer into a smart large object.

Syntax

mint ifx_lo_from_buffer(LO_ptr, size, buffer, error)
 ifx_lo_t *LO_ptr;
 mint size;
 char *buffer;
 mint *error;

LO_ptr

The LO-pointer structure for the smart large object into which you want to copy the data.

size

A mint that identifies the number of bytes to copy to the smart large object.

buffer

A pointer to a user-defined buffer from which you want to copy the data.

error

Contains the address of the mint that holds the error code that ifx_lo_from_buffer() sets

687

HCL Informix 14.10 - ESQL/C Programmer’s Guide

688

Usage

The ifx_lo_from_buffer() function copies bytes, up to the size specified by size, from the user-defined buffer into the smart

large object that the LO_ptr argument identifies. The write operation to the smart large object starts at a zero-byte offset. To

use the ifx_lo_from_buffer() function, the smart large object must exist in an sbspace before you copy the data.

Return codes

0

The function was successful.

-1

The function was not successful.

The ifx_lo_lock() function
The ifx_lo_lock() function allows you to lock an explicit range of bytes in a smart large object.

Syntax

mint ifx_lo_lock(LO_fd, offset, whence, range, lockmode)

 mint LO_fd;
 int8 *offset;
 mint whence;

 int8 *range;

 mint lockmode;

LO_fd

The LO-file descriptor for the smart large object in which to lock the range of bytes. For more information about

an LO-file descriptor, see The LO file descriptor on page 189

offset

A pointer to the 8-byte integer (INT8) that specifies the offset within the smart large object at which the lock

begins.

whence

A mint constant that specifies from what point the offset is calculated: the beginning of the smart large object,

the current position within the smart large object, or the end of the smart large object.

range

A pointer to the 8-byte integer (INT8) that specifies the number of bytes to lock.

lockmode

The mode in which to lock the specified bytes. Set to LO_EXCLUSIVE_MODE for an exclusive lock or to

LO_SHARED_MODE for a shared lock.

Chapter 1. ESQL/C Guide

Usage

The ifx_lo_lock() function locks the number of bytes specified by range, beginning at the location specified by offset and

whence, for the smart large object that LO_fd specifies. The ifx_lo_lock() function places the type of lock that lockmode

specifies. If you specify ISSLOCK, ifx_lo_lock() places a shared lock on the byte range. If you specify ISXLOCK, ifx_lo_lock()

places an exclusive lock on the byte range.

Before you call ifx_lo_lock(), you must obtain a valid LO-file descriptor by calling either ifx_lo_create() to create a new smart

large object, or by calling ifx_lo_open() to open an existing smart large object.

The ifx_lo_lock() function uses the whence and offset arguments to determine the seek position, as follows:

• The whence value identifies the position from which to start the seek.

Valid values include the following constants, which the locator.h header file defines.

Whence constant

Starting seek position

LO_SEEK_SET

The start of the smart large object

LO_SEEK_CUR

The current seek position in the smart large object

LO_SEEK_END

The end of the smart large object

◦ The offset argument identifies the offset, in bytes, from the starting seek position (that the

whence argument specifies) at which to begin locking bytes.

In addition to locking nbytes, you can also lock bytes from a specified offset to the end of the large object, which you

can specify as either the current end or the maximum end of the large object. You can use two integer constants

(LO_CURRENT_END and LO_MAX_END) to denote these values. To use one of these values, first convert it to an int8 value

and then use it for the nbytes argument.

Return codes

0

The function was successful

< 0

The function was unsuccessful. The value returned is the sqlcode, which is the number of the HCL Informix®

error message.

The ifx_lo_open() function
The ifx_lo_open() function opens an existing smart large object for access.

689

HCL Informix 14.10 - ESQL/C Programmer’s Guide

690

Syntax
mint ifx_lo_open(LO_ptr, flags, error)
 ifx_lo_t *LO_ptr;
 mint flags;
 mint *error;

LO_ptr

A pointer to the LO-pointer structure that identifies the smart large object to open.

flags

A mint that specifies the mode in which to open the smart large object that LO_ptr identifies.

error

A pointer to a mint that contains the error code that ifx_lo_open() sets.

Usage

Your IBM® Informix® ESQL/C program must call the ifx_lo_open() function for each instance of a smart large object that it

needs to access.

The value of the flags argument indicates the mode of the smart large object after ifx_lo_open() successfully completes. For

a description of valid values for the flags argument, see Table 48: Access-mode flags for smart large objects on page 192.

HCL Informix® uses the default parameters that ifx_lo_open() (or ifx_lo_create()) establishes to determine whether

subsequent operations cause locking or logging to occur for the smart large object. For more information about the settings

that affect the opening of a smart large object, see Open a smart large object on page 192.

Each ifx_lo_open() call is implicitly associated with the current connection. When this connection closes, the database server

deallocates any smart large objects that are not referenced by any columns (those with a reference count of zero).

If the ifx_lo_open() function is successful, it returns a valid LO file descriptor (LO_fd). You can then use the file descriptor to

identify which smart large object to access in subsequent function calls such as ifx_lo_read() and ifx_lo_write(). A LO_fd is

valid only within the current database connection.

After ifx_lo_open() has opened the smart large object, it sets the seek position in the returned LO file descriptor to byte 0. If

the default range for locking is set for locking the entire smart large object, the ifx_lo_open() function can also obtain a lock

on the smart large object, based on the following settings for the access mode:

• For dirty-read mode, the database server does not place a lock on the smart large object.

• For read-only mode, the database server obtains a shared lock on the smart large object.

• For write-only, write-append, or read-write mode, the database server obtains an update lock on the smart large

object. When a call to the ifx_lo_write() or ifx_lo_writewithseek() function occurs, the database server promotes the

lock to an exclusive lock.

The lock that ifx_lo_open() obtains is lost when the current transaction terminates. The database server obtains the

lock again, however, when the next function that needs a lock executes. If this behavior is undesirable, use BEGIN WORK

Chapter 1. ESQL/C Guide

transaction blocks and place a COMMIT WORK or ROLLBACK WORK statement after the last statement that needs to use the

lock.

Return codes

-1

The function was not successful; examine the error for a detailed error code.

A valid LO file descriptor

The function has successfully opened the smart large object and returned a valid LO file descriptor.

The ifx_lo_read() function
The ifx_lo_read() function reads a specified number of bytes of data from an open smart large object.

Syntax

mint ifx_lo_read(LO_fd, buf, nbytes, error)
 mint LO_fd;
 char *buf;
 mint nbytes;
 mint *error;

LO_fd

The LO file descriptor for the smart large object from which to read.

buf

A pointer to a character buffer that contains the data that ifx_lo_read() reads from the smart large object.

nbytes

The size, in bytes, of the buf character buffer. This value cannot exceed 2 GB.

error

A pointer to a mint that contains the error code that ifx_lo_read() sets.

Usage

The ifx_lo_read() function reads nbytes of data from the open smart large object that the LO_fd file descriptor identifies. The

read begins at the current seek position for LO_fd. You can use the ifx_lo_tell() function to obtain the current seek position.

The function reads this data into the user-defined buffer to which buf points. The buf buffer must be less than 2 GB in size.

To read smart large objects that are larger than 2 GB, read them in 2-GB chunks.

Return codes

>=0

The number of bytes that the function has read from the smart large object into the buf character buffer.

-1

The function was not successful; examine the error for a detailed error code.

691

HCL Informix 14.10 - ESQL/C Programmer’s Guide

692

The ifx_lo_readwithseek() function
The ifx_lo_readwithseek() function performs a seek operation and then reads a specified number of bytes of data from an

open smart large object.

Syntax
mint ifx_lo_readwithseek(LO_fd, buf, nbytes, offset, whence, error)
 char *buf;
 mint nbytes;
 ifx_int8_t *offset;
 mint whence;
 mint *error;

LO_fd

The LO file descriptor for the smart large object from which to read.

buf

A pointer to a character buffer that contains the data that ifx_lo_readwithseek() reads from the smart large

object.

nbytes

The size, in bytes, of the buf character buffer. This value cannot exceed 2 gigabytes.

offset

A pointer to the 8-byte integer (INT8) offset from the starting seek position.

whence

A mint value that identifies the starting seek position.

error

A pointer to a mint that contains the error code that ifx_lo_readwithseek() sets.

Usage

The ifx_lo_readwithseek() function reads nbytes of data from the open smart large object that the LO_fd file descriptor

identifies.

The read begins at the seek position of LO_fd that the offset and whence arguments indicate, as follows:

• The whence argument identifies the position from which to start the seek.

Valid values include the following constants, which the locator.h header file defines.

Whence constant

Starting seek position

LO_SEEK_SET

The start of the smart large object

Chapter 1. ESQL/C Guide

LO_SEEK_CUR

The current seek position in the smart large object

LO_SEEK_END

The end of the smart large object

◦ The offset argument identifies the offset, in bytes, from the starting seek position (that the

whence argument specifies) to which the seek position is be set.

The function reads this data into the user-defined buffer to which buf points. The size of the buf buffer must be less than 2

GB. To read smart large objects that are larger than 2 GB, read them in 2-GB chunks.

Return codes

>=0

The number of bytes that the function has read from the smart large object into the buf character buffer.

-1

The function was not successful; examine the error for a detailed error code.

The ifx_lo_release() function
The ifx_lo_release() function tells the database server to release the resources associated with a temporary smart large

object.

Syntax

mint ifx_lo_release(LO_ptr)
 ifx_lo_t *LO_ptr;

LO_ptr

The LO-pointer structure for the smart large object for which you want to release resources.

Usage

The ifx_lo_release() function is useful for telling the database server when it is safe to release resources associated with

temporary smart large objects. A temporary smart large object is one that has one or more LO handles, none of which have

been inserted into a table. Temporary smart large objects can occur in the following ways:

• You create a smart large object with ifx_lo_create() but do not insert its LO handle into a column of the database.

• You invoke a user-defined routine that creates a smart large object in a query but never assigns its LO handle to a

column of the database.

For example, the following query creates one smart large object for each row in the table1 table and sends each one to the

client application:

SELECT filetoblob(...) FROM table1;

693

HCL Informix 14.10 - ESQL/C Programmer’s Guide

694

The client application can use the ifx_lo_release() function to indicate to the database server when it finishes processing

each of these smart large objects. After you call this function on a temporary smart large object, the database server can

release the resources at any time. Further use of the LO handle and any associated LO file descriptors is not guaranteed to

work.

Use of this function on smart large objects that are not temporary does not cause any incorrect behavior. However, the call is

expensive and is not needed for permanent smart large objects.

Return codes

0

The function was successful.

< 0

The function was not successful.

The ifx_lo_seek() function
The ifx_lo_seek() function sets the file position for the next read or write operation on the open smart large object.

Syntax

mint ifx_lo_seek(LO_fd, offset, whence, seek_pos)
 mint LO_fd;
 ifx_int8_t *offset;
 mint whence;
 ifx_int8_t *seek_pos;

LO_fd

The LO file descriptor for the smart large object whose seek position you want to change.

offset

A pointer to the 8-byte integer offset from the starting seek position.

whence

A mint value that identifies the starting seek position.

seek_pos

A pointer to the resultant 8-byte integer offset, relative to the start of the file, that corresponds to the position

for the next read/write operation.

Usage

The function uses the whence and offset arguments to determine the seek position, as follows:

• The whence value identifies the position from which to start the seek.

Valid values include the following constants, which the locator.h header file defines.

Whence constant

Chapter 1. ESQL/C Guide

Starting seek position

LO_SEEK_SET

The start of the smart large object

LO_SEEK_CUR

The current seek position in the smart large object

LO_SEEK_END

The end of the smart large object

◦ The offset argument identifies the offset, in bytes, from the starting seek position (that the

whence argument specifies) at which to begin the seek position.

The ifx_lo_tell() function returns the current seek position for an open smart large object.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_spec_free() function
The ifx_lo_spec_free() function frees the resources of an LO-specification structure.

Syntax

mint ifx_lo_spec_free(LO_spec)
 ifx_lo_create_spec_t *LO_spec;

LO_spec

A pointer to the LO-specification structure to free.

Usage

The ifx_lo_spec_free() function frees a LO-specification structure that was allocated by a call to ifx_lo_spec_free(). The

LO_spec pointer points to the ifx_lo_create_spec_t structure which is to be freed.

IBM® Informix® ESQL/C does not perform memory management for a LO-specification structure. You must call

ifx_lo_spec_free() for each LO-specification structure that you allocate with a call to the ifx_lo_def_create_spec() function.

Important: Do not use ifx_lo_spec_free() to free an ifx_lo_create_spec_t structure that you accessed through a

call to the ifx_lo_stat_cspec() function. When you call ifx_lo_stat_free() to free the ifx_lo_stat_t structure, it also

695

HCL Informix 14.10 - ESQL/C Programmer’s Guide

696

automatically frees the ifx_lo_create_spec_t structure. Use ifx_lo_spec_free() only to free an ifx_lo_create_spec_t

structure that you created through a call to ifx_lo_def_create_spec().

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_specget_def_open_flags() function
The ifx_lo_specget_def_open_flags() function obtains the default open flags of a smart large object from an LO-specification

structure.

Syntax

mint ifx_lo_specget_def_open_flags(LO_spec)

 ifx_lo_create_spec_t *LO_spec;

LO_spec

A pointer to the LO-specification structure from which to obtain the default open flags.

Usage

This function can be used to obtain the default open flags from a LO-specification structure. It can be used with

ifx_lo_stat_cspec() to obtain the default open flags that were specified when an existing smart large object was created.

Return codes

>=0

The function was successful. The returned integer stores the values of the default open flags.

-1

The function was unsuccessful

The ifx_lo_specget_estbytes() function
The ifx_lo_specget_estbytes() function obtains from an LO-specification structure the estimated size of a smart large object.

Syntax

mint ifx_lo_specget_estbytes(LO_spec, estbytes)
 ifx_lo_create_spec_t *LO_spec;
 ifx_int8_t *estbytes;

LO_spec

A pointer to the LO-specification structure from which to obtain the estimated size.

Chapter 1. ESQL/C Guide

estbytes

A pointer to an ifx_int8_t structure into which ifx_lo_specget_estbytes() puts the estimated number of bytes for

the smart large object.

Usage

The estbytes value is the estimated final size, in bytes, of the smart large object. This estimate is an optimization hint for the

smart-large-object optimizer. For more information about the estimated size, see Table 46: Disk-storage information in the

LO-specification structure on page 181.

Important: You must call the ifx_lo_def_create_spec() function to initialize an LO-specification structure before you

call ifx_lo_specget_estbytes(). You can use the ifx_lo_col_info() function to store storage characteristics that are

associated with a particular column in an LO-specification structure.

Return codes

0

The function was successful.

-1

The function was not successful.

The ifx_lo_specget_extsz() function
The ifx_lo_specget_extsz() function obtains from an LO-specification structure the allocation extent size of a smart large

object.

Syntax

mint ifx_lo_specget_extsz(LO_spec)
 ifx_lo_create_spec_t *LO_spec;

LO_spec

A pointer to the LO-specification structure from which to obtain the extent size.

Usage

The extsz value specifies the size, in bytes, of the allocation extents to be allocated for the smart large object when the

database server writes beyond the end of the current extent. This value overrides the estimate that HCL Informix® generates

for how large an extent is to be. For more information about the allocation extent, see Table 46: Disk-storage information in

the LO-specification structure on page 181.

697

HCL Informix 14.10 - ESQL/C Programmer’s Guide

698

Important: You must call the ifx_lo_def_create_spec() function to initialize an LO-specification structure before

you call ifx_lo_specget_extsz(). You can use the ifx_lo_col_info() function to store storage characteristics that are

associated with a particular column in an LO-specification structure.

Return codes

>=0

The function was successful and the return value indicates the extent size.

-1

The function was not successful.

The ifx_lo_specget_flags() function
The ifx_lo_specget_flags() function obtains from an LO-specification structure the create-time flags of a smart large object.

Syntax

mint ifx_lo_specget_flags(LO_spec)
 ifx_lo_create_spec_t *LO_spec;

LO_spec

A pointer to the LO-specification structure from which to obtain the flag value.

Usage

The create-time flags provide the following information about a smart large object:

• Whether to use logging on the smart large object

• Whether to store the time of last access for the smart large object

These two indicators are masked together into the single flags value. For more information about the create-time flags, see

Table 47: Create-time flags in the LO-specification structure on page 182.

Important: You must call the ifx_lo_def_create_spec() function to initialize an LO-specification structure before

you call ifx_lo_specget_flags(). You can use the ifx_lo_col_info() function to store storage characteristics that are

associated with a particular column in an LO-specification structure.

Return codes

>=0

The function was successful and the return value is the value of the create-time flags.

-1

The function was not successful.

Chapter 1. ESQL/C Guide

The ifx_lo_specget_maxbytes() function
The ifx_lo_specget_maxbytes() function obtains from an LO-specification structure the maximum size of a smart large

object.

Syntax
mint ifx_lo_specget_maxbytes(LO_spec, maxbytes)
 ifx_lo_create_spec_t *LO_spec;
 ifx_int8_t *maxbytes;

LO_spec

A pointer to the LO-specification structure from which to obtain the maximum size.

maxbytes

A pointer to an int8 value into which ifx_lo_specget_maxbytes() puts the maximum size, in bytes, of the smart

large object. If this value is -1, the smart large object has no size limit.

Usage

HCL Informix® does not allow the size of a smart large object to exceed the maxbytes value. For more information about the

maximum size, see Table 46: Disk-storage information in the LO-specification structure on page 181.

Important: You must call the ifx_lo_def_create_spec() function to initialize an LO-specification structure before you

call ifx_lo_specget_maxbytes(). You can use the ifx_lo_col_info() function to store storage characteristics that are

associated with a particular column in an LO-specification structure.

Return codes

0

The function was successful.

-1

The function was not successful.

The ifx_lo_specget_sbspace() function
The ifx_lo_specget_sbspace() function obtains from an LO-specification structure the name of an sbspace where a smart

large object is stored.

Syntax

mint ifx_lo_specget_sbspace(LO_spec, sbspace_name, length)
 ifx_lo_create_spec_t *LO_spec;
 char *sbspace_name;
 mint length;

LO_spec

A pointer to the LO-specification structure from which to obtain the sbspace name.

699

HCL Informix 14.10 - ESQL/C Programmer’s Guide

700

sbspace_name

A character buffer into which ifx_lo_specget_sbspace() puts the name of the sbspace for the smart large

object.

length

A mint value that specifies the size, in bytes, of the sbspace_name buffer.

Usage

The ifx_lo_specget_sbspace() function returns the current setting for the name of the sbspace in which to store the smart

large object. The function copies up to (length-1) bytes into the sbspace_name buffer and ensures that it is null terminated.

For more information about an sbspace name, see Table 46: Disk-storage information in the LO-specification structure on

page 181.

Important: You must call the ifx_lo_def_create_spec() function to initialize an LO-specification structure before you

call ifx_lo_specget_sbspace(). You can use the ifx_lo_col_info() function to store storage characteristics that are

associated with a particular column in an LO-specification structure.

An sbspace name can be up to 18 characters long. However, you might want to allocate at least 129 bytes for the

sbspace_name buffer to accommodate future increases in the length of an sbspace name.

Return codes

0

The function was successful.

-1

The function was not successful.

The ifx_lo_specset_def_open_flags() function
The ifx_lo_specset_def_open_flags() function sets the default open flags for a smart large object.

Syntax

mint ifx_lo_specset_def_open_flags(LO_spec, flags)

 ifx_lo_create_spec_t *LO_spec;

 mint flags;

LO_spec

A pointer to the LO-specification structure in which the default open flags are to be set.

flags

A mint value for the default open flags of the smart large object.

Chapter 1. ESQL/C Guide

Usage

The most common use of this function is to specify that the smart large object always is to be opened by using unbuffered

I/O. This function can also be used to supply any required default open flags for a smart large object. The supplied flags are

used whenever the smart large object is later opened, unless explicitly overridden at open time.

Return codes

0

The function was successful

-1

The function was unsuccessful

Example
/* use unbuffered I/O on all opens for this LO */

ret = ifx_lo_specset_def_open_flags(lospec, LO_NOBUFFER);

The ifx_lo_specset_estbytes() function
The ifx_lo_specset_estbytes() function sets the estimated size of a smart large object.

Syntax

mint ifx_lo_specset_estbytes(LO_spec, estbytes)
 ifx_lo_create_spec_t *LO_spec;
 ifx_int8_t *estbytes;

LO_spec

A pointer to the LO-specification structure in which to save the estimated size.

estbytes

A pointer to an ifx_int8_t structure that contains the estimated number of bytes for the smart large object.

Usage

The estbytes value is the estimated final size, in bytes, of the smart large object. This estimate is an optimization hint for the

smart-large-object optimizer. For more information about the estimated byte size, see Table 46: Disk-storage information in

the LO-specification structure on page 181.

If you do not specify an estbytes value when you create a new smart large object, HCL Informix® obtains the value from the

inheritance hierarchy of storage characteristics.

Do not change this system value unless you know the estimated size for the smart large object. If you do set the estimated

size for a smart large object, do not specify a value much higher than the final size of the smart large object. Otherwise, the

database server might allocate unused storage.

701

HCL Informix 14.10 - ESQL/C Programmer’s Guide

702

Return codes

0

The function was successful.

-1

The function was not successful.

The ifx_lo_specset_extsz() function
The ifx_lo_specset_extsz() function sets the allocation extent size for a smart large object.

Syntax
mint ifx_lo_specset_extsz(LO_spec, extsz)
 ifx_lo_create_spec_t *LO_spec;
 mint extsz;

LO_spec

A pointer to the LO-specification structure in which to save the extent size.

extsz

An integer value for the size of the allocation extent of a smart large object.

Usage

The extsz value specifies the size of the allocation extents to be allocated for the smart large object when the database

server writes beyond the end of the current extent. This value overrides the estimate that HCL Informix® generates for how

large an extent is to be. For more information about the allocation extent, see Table 46: Disk-storage information in the LO-

specification structure on page 181.

If you do not specify an extsz value when you create a smart large object, HCL Informix® attempts to optimize the extent

size based on past operations on the smart large object and other storage characteristics (such as maximum bytes) that it

obtains from the inheritance hierarchy of storage characteristics.

Do not change this system value unless you know the allocation extent size for the smart large object. Only applications that

encounter severe storage fragmentation should ever set the allocation extent size. For such applications, make sure that you

know exactly the number of bytes by which to extend the smart large object.

Return codes

0

The function was successful.

-1

The function was not successful.

Chapter 1. ESQL/C Guide

The ifx_lo_specset_flags() function
The ifx_lo_specset_flags() function sets the create-time flags of a smart large object.

Syntax
mint ifx_lo_specset_flags(LO_spec, flags)
 ifx_lo_create_spec_t *LO_spec;
 mint flags;

LO_spec

A pointer to the LO-specification structure in which to save the flags value.

flags

An integer value for the create-time flags of the smart large object.

Usage

The create-time flags provide the following information about a smart large object:

• Whether to use logging on the smart large object

• Whether to store the time of last access for the smart large object

These two indicators are masked together into the single flags value. For more information about the create-time flags, see

Table 47: Create-time flags in the LO-specification structure on page 182.

If you do not specify a flags value when you create a new smart large object, HCL Informix® obtains the value from the

inheritance hierarchy of storage characteristics.

Return codes

0

The function was successful.

-1

The function was not successful.

The ifx_lo_specset_maxbytes() function
The ifx_lo_specset_maxbytes() function sets the maximum size for a smart large object.

Syntax

mint ifx_lo_specset_maxbytes(LO_spec, maxbytes)
 ifx_lo_create_spec_t *LO_spec;
 ifx_int8_t *maxbytes;

LO_spec

A pointer to the LO-specification structure in which to save the maximum size.

703

HCL Informix 14.10 - ESQL/C Programmer’s Guide

704

maxbytes

A pointer to an ifx_int8_t structure that contains the maximum number of bytes for the smart large object. If

this value is -1, the smart large object has no size limit.

Usage

HCL Informix® does not allow the size of a smart large object to exceed the maxbytes value. The database server does not

obtain the value from the inheritance hierarchy of storage characteristics. For more information about the maximum size,

see Table 46: Disk-storage information in the LO-specification structure on page 181.

Return codes

0

The function was successful.

-1

The function was not successful.

The ifx_lo_specset_sbspace() function
The ifx_lo_specset_sbspace() function sets the name of the sbspace for a smart large object.

Syntax

mint ifx_lo_specset_sbspace(LO_spec, sbspace_name)
 ifx_lo_create_spec_t *LO_spec;
 char *sbspace_name;

sbspace_name

A pointer to a buffer that contains the name of the sbspace in which to store the smart large object.

LO_spec

A pointer to the LO-specification structure in which to save the sbspace name.

Usage

The name of the sbspace can be at most 18 characters long. It must also be null terminated.

If you do not specify an sbspace_name when you create a new smart large object, HCL Informix® obtains the sbspace name

from either the column information or from the SBSPACENAME parameter of the onconfig file.

Return codes

0

The function was successful.

-1

The function was not successful.

Chapter 1. ESQL/C Guide

The ifx_lo_stat() function
The ifx_lo_stat() function returns information about the status of an open smart large object.

Syntax
mint ifx_lo_stat(LO_fd, LO_stat)
 mint LO_fd;
 ifx_lo_stat_t **LO_stat;

LO_fd

The LO-file descriptor for the open smart large object whose status information you want to obtain.

LO_stat

A pointer that points to a pointer to an LO-status structure that ifx_lo_stat() allocates and completes with status

information.

Usage

The ifx_lo_stat() function allocates an LO-status structure, ifx_lo_stat_t, and initializes it with the status information for the

smart large object that the LO_fd file descriptor identifies. To access the status information, use the IBM® Informix® ESQL/

C accessor functions for the LO-status structure. For more information about the status information and the corresponding

accessor functions, see Table 49: Status information in the LO-status structure on page 198.

Use the ifx_lo_stat_free() function to deallocate an LO-status structure.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_stat_atime() function
The ifx_lo_stat_atime() function returns the time of last access for a smart large object.

Syntax

mint ifx_lo_stat_atime(LO_stat)
 ifx_lo_stat_t *LO_stat;

LO_stat

A pointer to an LO-status structure that ifx_lo_stat() allocates and completes with status information.

705

HCL Informix 14.10 - ESQL/C Programmer’s Guide

706

Usage

The time of last access is only guaranteed to be maintained if the smart large object has the LO_KEEP_LASTACCESS_TIME

flag set. If you do not set this flag, the database server does not write this access-time value to disk. The resolution of the

time that the ifx_lo_stat_atime() function returns is seconds.

The status information for the smart large object is in the LO-status structure to which LO_stat points. The ifx_lo_stat()

function allocates this structure and fills it with the status information for a particular smart large object. Therefore, you

must precede a call to ifx_lo_stat_atime() with a call to ifx_lo_stat().

Return codes

>=0

The last-access time for the smart large object that LO_stat identifies.

-1

The function was not successful.

The ifx_lo_stat_cspec() function
The ifx_lo_stat_cspec() function returns the LO-specification structure for a smart large object.

Syntax

ifx_lo_create_spec_t *ifx_lo_stat_cspec(LO_stat)
 ifx_lo_stat_t *LO_stat;

LO_stat

A pointer to an LO-status structure that ifx_lo_stat() allocates and completes with status information.

Usage

The ifx_lo_stat_cspec() function returns a pointer to an LO-specification structure, ifx_lo_create_spec_t, which contains the

storage characteristics for the specified smart large object. You can use this LO-specification structure to create another

smart large object with the same storage characteristics or to access the storage characteristics through the accessor

(ifx_specget_) functions.

You must precede a call to ifx_lo_stat_cspec() with a call to ifx_lo_stat(). The ifx_lo_stat() function allocates the memory for

the ifx_lo_create_spec_t structure, along with the ifx_lo_stat_t structure, and initializes it with the status information for the

smart large object that you specified. When you call the ifx_lo_stat_free() function to free the ifx_lo_stat_t structure, it frees

the ifx_lo_create_spec_t structure automatically.

Return codes

A valid pointer to an LO-specification (ifx_lo_create_spec_t) structure

The function was successful.

Chapter 1. ESQL/C Guide

NULL

The function was not successful.

The ifx_lo_stat_ctime() function
The ifx_lo_stat_ctime() function returns the time of last change in status for a smart large object.

Syntax
mint ifx_lo_stat_ctime(LO_stat)
 ifx_lo_stat_t *LO_stat;

LO_stat

A pointer to an LO-status structure that ifx_lo_stat() allocates and completes with status information.

Usage

The last change in status includes modification of storage characteristics, including a change in the number of references

and writes to the smart large object. The resolution of the time that the ifx_lo_stat_ctime() function returns is seconds.

The status information for the smart large object is in the LO-status structure to which LO_stat points. The ifx_lo_stat()

function allocates this structure and fills it with the status information for a particular smart large object. Therefore, you

must precede a call to ifx_lo_stat_ctime() with a call to ifx_lo_stat().

Return codes

>=0

The last-change time for the smart large object that LO_stat identifies.

-1

The function was not successful.

The ifx_lo_stat_free() function
The ifx_lo_stat_free() function frees an LO-status structure.

Syntax

mint ifx_lo_stat_free(LO_stat)
 ifx_lo_stat_t *LO_stat;

LO_stat

A pointer to an LO-status structure that the ifx_lo_stat() function has allocated.

Usage

The ifx_lo_stat() function returns status information about an open smart large object in an LO-status structure. When your

application no longer needs this status information, use the ifx_lo_stat_free() function to deallocate the LO-status structure.

707

HCL Informix 14.10 - ESQL/C Programmer’s Guide

708

Return codes

0

The function was successful.

-1

The function was not successful.

The ifx_lo_stat_mtime_sec() function
The ifx_lo_stat_mtime_sec() function returns the time of last modification for a smart large object.

Syntax
mint ifx_lo_stat_mtime_sec(LO_stat)
 ifx_lo_stat_t *LO_stat;

LO_stat

A pointer to an LO-status structure that ifx_lo_stat() allocates and completes with status information.

Usage

The resolution of the time that the ifx_lo_stat_mtime_sec() function returns is seconds.

The status information for the smart large object is in the LO-status structure to which LO_stat points. The ifx_lo_stat()

function allocates this structure and completes it with the status information for a particular smart large object. Therefore,

you must precede a call to ifx_lo_stat_mtime_sec() with a call to ifx_lo_stat().

Return codes

>=0

The last-modification time for the smart large object that LO_stat identifies.

-1

The function was not successful.

The ifx_lo_stat_refcnt() function
The ifx_lo_stat_refcnt() function returns the number of references to a smart large object.

Syntax

mint ifx_lo_stat_refcnt(LO_stat)
 ifx_lo_stat_t *LO_stat;

LO_stat

A pointer to an LO-status structure that ifx_lo_stat() allocates and completes with status information.

Chapter 1. ESQL/C Guide

Usage

The refcnt argument is the reference count for a smart large object. This count indicates the number of persistently stored

LO-pointer (ifx_lo_t) structures that currently exist for the smart large object. The database server assumes that it can safely

remove the smart large object and reuse any resources that are allocated to it when the reference count is zero and any of

the following conditions exist:

• The transaction in which the reference count is decremented commits.

• The connection terminates and the smart large object is created during this connection but its reference count is not

incremented.

The database server increments a reference counter when it stores the LO-pointer structure for a smart large object

in a row.

The status information for the smart large object is in the LO-status structure to which LO_stat points. The ifx_lo_stat()

function allocates this structure and fills it with the status information for a particular smart large object. Therefore, you

must precede a call to ifx_lo_stat_refcnt() with a call to ifx_lo_stat().

Return codes

>=0

The reference count for the smart large object that LO_stat identifies.

-1

The function was not successful.

The ifx_lo_stat_size() function
The ifx_lo_stat_size() function returns the size, in bytes, of a smart large object.

Syntax

mint ifx_lo_stat_size(LO_stat, size)
 ifx_lo_stat_t *LO_stat;
 ifx_int8_t *size;

LO_stat

A pointer to an LO-status structure that ifx_lo_stat() allocates and completes with status information.

size

A pointer to an ifx_int8_t structure that ifx_lo_stat_size() fills in with the size bytes, of the smart large object.

Usage

The status information for the smart large object is in the LO-status structure to which LO_stat points. The ifx_lo_stat()

function allocates this structure and fills it with the status information for a particular smart large object. Therefore, you

must precede a call to ifx_lo_stat_size() with a call to ifx_lo_stat().

709

HCL Informix 14.10 - ESQL/C Programmer’s Guide

710

Return codes

0

The function was successful.

-1

The function was not successful.

The ifx_lo_tell() function
The ifx_lo_tell() function returns the current file or seek position for an open smart large object.

Syntax
mint ifx_lo_tell(LO_fd, seek_pos)
 mint LO_fd;
 ifx_int8_t *seek_pos;

LO_fd

The LO file descriptor for the open smart large object whose seek position you want to determine.

seek_pos

A pointer to the 8-byte integer that identifies the current seek position.

Usage

The seek position is the offset for the next read or write operation on the smart large object that is associated with the LO file

descriptor, LO_fd. The ifx_lo_tell() function returns this seek position in the user-defined int8 variable, seek_pos.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_to_buffer() function
The ifx_lo_to_buffer() function copies a specified number of bytes from a smart large object into a user-defined buffer.

Syntax

mint ifx_lo_to_buffer(LO_ptr, size, buf_ptr)
 ifx_lo_t *LO_ptr;

 mint size;
 char **buf_ptr;

 mint error;

Chapter 1. ESQL/C Guide

LO_ptr

The LO-pointer structure for the smart large object from which you want to copy the data.

size

A mint that identifies the number of bytes to copy from the smart large object

buf_ptr

A doubly indirect pointer to a user-defined buffer to which you want to copy the data.

error

Contains the address of the mint that holds the error code that ifx_lo_to_buffer() sets

Usage

The ifx_lo_to_buffer() function copies bytes, up to the size that the size argument specifies from the smart large object that

the LO_ptr argument identifies. The read operation from the smart large object starts at a zero-byte offset. If the smart large

object is smaller than the size value, ifx_lo_to_buffer()copies only the number of bytes in the smart large object. If the smart

large object contains more than size bytes, the ifx_lo_to_buffer() function only copies up to size bytes into the user-defined

buffer.

When buf_ptr is NULL, ifx_lo_to_buffer() allocates the memory for the user-defined buffer. Otherwise, the function assumes

that you have allocated memory that buf_ptr identifies.

Return codes

0

The number of bytes copied from the smart large object to the user-defined buffer that buf_ptr identifies.

-1

The function was not successful.

The ifx_lo_truncate() function
The ifx_lo_truncate() function truncates a smart large object at a specified byte position.

Syntax

mint ifx_lo_truncate(LO_fd, offset)
 mint LO_fd;
 ifx_int8_t *offset;

LO_fd

The LO file descriptor for the open smart large object whose value you want to truncate.

offset

A pointer to the 8-byte integer that identifies the offset at which the truncation of the smart large object begins.

711

HCL Informix 14.10 - ESQL/C Programmer’s Guide

712

Usage

The ifx_lo_truncate() function sets the last valid byte of a smart large object to the specified offset value. If this offset value

is beyond the current end of the smart large object, you actually extend the smart large object. If this offset value is less than

the current end of the smart large object, the database server reclaims all storage, from the position that offset indicates to

the end of the smart large object.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the failure.

The ifx_lo_unlock() function
The ifx_lo_unlock() function allows you to unlock a range of bytes in a smart large object that was locked by the ifx_lo_lock()

function.

Syntax

mint ifx_lo_unlock(lofd, offset, whence, range)

 mint lofd;
 int8 *offset;
 mint whence;

 int8 *range;

LO_fd

The LO-file descriptor for the smart large object in which to unlock the range of bytes.

offset

A pointer to the 8-byte integer (INT8) that specifies the offset within the smart large object at which unlocking

is to begin.

whence

An integer constant that specifies from what point the offset is calculated: the beginning of the smart large

object, the current position within the smart large object, or the end of the smart large object.

range

A pointer to the 8-byte integer (INT8) that specifies the number of bytes to unlock.

Usage

The ifx_lo_unlock() function unlocks the number of bytes specified by nbytes, beginning at the offset specified by offset and

whence, for the smart large object specified by LO_fd. Before calling ifx_lo_unlock(), you must obtain a valid LO-file descriptor

by calling either ifx_lo_create() to create a new smart large object or by calling ifx_lo_open() to open an existing smart large

object.

Chapter 1. ESQL/C Guide

Return codes

0

The function was successful

< 0

The function was unsuccessful. The value returned is the sqlcode, which is the number of the HCL Informix®

error message.

The ifx_lo_write() function
The ifx_lo_write() function writes a specified number of bytes of data to an open smart large object.

Syntax
mint ifx_lo_write(LO_fd, buf, nbytes, error)
 mint LO_fd;
 char *buf;
 mint nbytes;
 mint *error;

LO_fd

The LO file descriptor for the smart large object to which to write.

buf

A pointer to a buffer that contains the data that the function writes to the smart large object.

nbytes

The number of bytes to write to the smart large object. With a minimum length of 0, this value must be less

than 2 GB.

error

A pointer to a mint that contains the error code that ifx_lo_write() sets.

Usage

The ifx_lo_write() function writes nbytes of data to the smart large object that the LO_fd file descriptor identifies. The write

begins at the current seek position for LO_fd. You can use the ifx_lo_tell() function to obtain the current seek position.

The function obtains the data from the user-defined buffer to which buf points. The buf buffer must be less than 2 gigabytes

in size.

If the database server writes less than nbytes of data to the smart large object, the ifx_lo_write() function returns the number

of bytes that it wrote and sets the error value to point to a value that indicates the reason for the incomplete write operation.

This condition can occur when the sbspace runs out of space.

713

HCL Informix 14.10 - ESQL/C Programmer’s Guide

714

Return codes

>=0

The number of bytes that the function has written from the buf character buffer to the open smart large object.

-1

The function was not successful; examine the error for a detailed error code.

The ifx_lo_writewithseek() function
The ifx_lo_writewithseek() function performs a seek operation and then writes a specified number of bytes of data to an

open smart large object.

Syntax
mint ifx_lo_writewithseek(LO_fd, buf, nbytes, offset, whence, error)
 mint LO_fd;
 char *buf;
 mint nbytes;
 ifx_int8_t *offset;
 mint whence;
 mint *error;

LO_fd

The LO file descriptor for the smart large object to which to write.

buf

A pointer to a buffer that contains the data that the function writes to the smart large object.

nbytes

The number of bytes to write to the smart large object. This value cannot exceed 2 gigabytes.

offset

A pointer to the 8-byte integer (INT8) offset from the starting seek position.

whence

A mint value that identifies the starting seek position.

error

A pointer to a mint that contains the error code that ifx_lo_writewithseek() sets.

Usage

The ifx_lo_writewithseek() function writes nbytes of data to the smart large object that the LO_fd file descriptor identifies.

The function obtains the data to write from the user-defined buffer to which buf points. The buffer must be less than 2

gigabytes in size.

The write begins at the seek position of LO_fd that the offset and whence arguments indicate, as follows:

Chapter 1. ESQL/C Guide

• The whence argument identifies the position from which to start the seek.

Valid values include the following constants, which the locator.h header file defines.

Whence constant

Starting seek position

LO_SEEK_SET

The start of the smart large object

LO_SEEK_CUR

The current seek position in the smart large object

LO_SEEK_END

The end of the smart large object

◦ The offset argument identifies the offset, in bytes, from the starting seek position (that the

whence argument specifies) to which the seek position should be set.

If the database server writes less than nbytes of data to the smart large object, the ifx_lo_writewithseek() function returns the

number of bytes that it wrote and sets the error value to point to a value that indicates the reason for the incomplete write

operation. This condition can occur when the sbspace runs out of space.

Return codes

>=0

The number of bytes that the function has written from the buf character buffer to the smart large object.

-1

The function was not successful; examine the error for a detailed error code.

The ifx_lvar_alloc() function
The ifx_lvar_alloc() function specifies whether to allocate memory when fetching lvarchar data.

Syntax

mint ifx_lvar_alloc(mintalloc)
 mint alloc;

alloc

The value of the allocation flag; either 1 or 0

Usage

When the flag is set to 1, ESQL/C automatically performs this memory allocation. You can use a flag value of 1 before a

SELECT statement when you are unsure of the amount of data that the SELECT statement returns. When the flag is set to 0,

ESQL/C does not automatically perform this memory allocation.

715

HCL Informix 14.10 - ESQL/C Programmer’s Guide

716

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the error.

The ifx_putenv() function
The ifx_putenv() function changes the value of an existing environment variable, creates an environment variable, or removes

a variable from the runtime environment.

Syntax
int ifx_putenv(envstring);
 const char *envstring;

envstring

A pointer to a string of the form varname=string, in which varname is the name of the environment variable to

add or modify and string is the variable value.

Usage

The ifx_putenv() function adds new environment variables or modifies the values of existing environment variables in the

InetLogin structure. These variables define the environment in which a process executes. If varname is already part of the

environment, ifx_putenv() replaces the existing value with string; otherwise, ifx_putenv() adds varname to the environment,

with the value string.

To remove a variable from the runtime environment, specify varname to its default value. If the default value is NULL, setting

the variable to a null string with ifx_putenv() effectively removes it from the runtime environment. If the default value of the

variable is not NULL, then setting the variable to a null string with ifx_putenv() resets the variable to its default value, but does

not remove it from the runtime environment.

The ifx_putenv() function sets HCL Informix® variables first and then other variables. For a list of Informix® environment

variables, see Fields of the InetLogin structure on page 36.

The following call to the ifx_putenv() function changes the value of the INFORMIXDIR environment variable:

ifx_putenv("informixdir=c:\informix");

This function affects only the environment variable of the current process. The environment of the command processor does

not change.

Return codes

0

The call to ifx_putenv() was successful.

Chapter 1. ESQL/C Guide

-1

The call to ifx_putenv() was not successful.

The ifx_strdate() function
The ifx_strdate() function converts a character string to an internal DATE.

Syntax
mint ifx_strdate(str, jdate, dbcentury)
 char *str;
 int4 *jdate;
 char dbcentury;

str

A is a pointer to the string that contains the date to convert.

jdate

A pointer to a int4 integer that receives the internal DATE value for the str string.

dbcentury

Can be one of the following characters, which determines which century to apply to the year portion of the date:

R

Present. The function uses the two high-order digits of the current year to expand the year value.

P

Past. The function uses the past and present centuries to expand the year value. It compares

these two dates against the current date and uses the century that is before the current century. If

both dates are before the current date, the function uses the century closest to the current date.

F

Future. The function uses the present and the next centuries to expand the year value. It

compares these centuries against the current date and uses the century that is later than the

current date. If both dates are later than the current date, the function uses the date closest to the

current date.

C

Closest. The function uses the past, present, and next centuries to expand the year value. It

chooses the century that is closest to the current date.

Usage

For the default locale, US English, the ifx_strdate() function determines how to format the character string with the following

precedence:

717

HCL Informix 14.10 - ESQL/C Programmer’s Guide

718

1. The format that the DBDATE environment variable specifies (if DBDATE is set). For more information about DBDATE,

see the HCL® Informix® Guide to SQL: Reference.

2. The format that the GL_DATE environment variable specifies (if GL_DATE is set). For more information about

GL_DATE, see the HCL® Informix® GLS User's Guide.

3. The default date form: mm/dd/yyyy. You can use any nonnumeric character as a separator between the month, day,

and year. You can express the year as four digits (2007) or as two digits (07).

When you use a nondefault locale and do not set the DBDATE or GL_DATE environment variable, ifx_strdate() uses the date

end-user format that the client locale defines. For more information, see the HCL® Informix® GLS User's Guide.

When you use a two-digit year in the date string, the ifx_strdate() function uses the value of the dbcentury argument to

determine which century to use. If you do not set the dbcentury argument, ifx_strdate() uses the DBCENTURY environment

variable to determine which century to use. If you do not set DBCENTURY, ifx_strdate() assumes the current century for two-

digit years. For information about the DBCENTURY environment variable, see the HCL® Informix® Guide to SQL: Reference.

Return codes

0

The conversion was successful.

< 0

The conversion failed.

-1204

The str parameter specifies an invalid year.

-1205

The str parameter specifies an invalid month.

-1206

The str parameter specifies an invalid day.

-1212

Data conversion format must contain a month, day, or year component. DBDATE specifies the data conversion

format.

-1218

The date specified by the str argument does not properly represent a date.

The ifx_var_alloc() function
The ifx_var_alloc() function allocates memory for the data buffer of an lvarchar or var binary host variable.

Syntax

var binary

Chapter 1. ESQL/C Guide

mint ifx_var_alloc(var_bin, var_size)
 var binary **var_bin
 int4 var_size;

lvarchar

mint ifx_var_alloc(lvar, var_size)
 lvarchar **lvar
 int4 var_size;

var_bin

The address of the var binary pointer host variable whose data buffer is allocated.

lvar

The address of the lvarchar pointer host variable whose data buffer is allocated.

var_size

The size, in bytes, of the data buffer to allocate.

Usage

The allocation flag of the ifx_var_flag() function notifies IBM® Informix® ESQL/C of the allocation method to use for the

data buffer. If you set the allocation flag in ifx_var_flag() to 0, you must explicitly allocate memory for the data buffer of a var

binary host variable with the ifx_var_alloc() function.

Important: Whether you allocate memory or allow Informix® ESQL/C to allocate the memory for you, you must free

the allocated memory by using the ifx_var_dealloc() function.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the error.

The ifx_var_dealloc() function
The ifx_var_dealloc() function deallocates the memory that was allocated for the data buffer of a var binary host variable.

Syntax

var binary

mint ifx_var_dealloc(var_bin)
 var binary **var_bin;

lvarchar

mint ifx_var_dealloc(lvar)
 lvarchar **lvar;

719

HCL Informix 14.10 - ESQL/C Programmer’s Guide

720

var_bin

The address of the var binary pointer host variable whose data buffer is deallocated.

lvar

The address of the lvarchar pointer host variable whose data buffer is allocated.

Usage

The allocation flag of the ifx_var_flag() function tells IBM® Informix® ESQL/C which allocation method to use for the data

buffer. Regardless of whether Informix® ESQL/C (allocation flag set to 1) or your application (allocation flag set to 0)

allocates the memory, you must explicitly deallocate memory that was allocated to an lvarchar or the data buffer of var

binary host variable.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the error.

The ifx_var_flag() function
The ifx_var_flag() function determines how memory is allocated for the data buffer of an lvarchar or var binary host variable.

Syntax

var binary

mint ifx_var_flag(var_bin, flag)
 var binary **var_bin;
 int2 flag;

lvarchar

mint ifx_var_flag(lvar, flag)
 lvarchar **lvar;
 int2 flag;

flag

The int2 value of the allocation flag, either 0 or 1.

var_bin

The address of the var binary host variable.

lvar

The address of the lvarchar pointer host variable.

Chapter 1. ESQL/C Guide

Usage

The value of the flag argument is the allocation flag. It determines who handles memory allocation for the data of the var_bin

host variable, as follows:

• When flag is one, IBM® Informix® ESQL/C automatically performs this memory allocation.

You can use a flag value of 1 before a SELECT statement when you are unsure of the amount of data that the SELECT

returns.

• When flag is zero, Informix® ESQL/C does not automatically perform this memory allocation.

When you set flag to 0, you must allocate memory for the data buffer of the lvar or var_bin variable with the

ifx_var_alloc() functions.

If you do not call the ifx_var_flag() function for an lvarchar or var binary host variable, Informix® ESQL/C allocates memory

for its data buffer. Whether you allocate memory for the lvarchar or var binary variable, or allow Informix® ESQL/C to do it for

you, you must free the memory with the ifx_var_dealloc() function.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the error.

The ifx_var_freevar() function
The ifx_var_freevar() function frees memory that has been allocated for the var binary and lvarchar pointer host variables.

Syntax

int fix_var_freevar(var_bin)
 var binary *var_bin;

var_bin

The address of the var binary or lvarchar pointer host variable.

Usage

Whenever you have a var binary or lvarchar pointer host variable, as shown in the following example, you must explicitly free

memory that is allocated for it by using the ifx_var_freevar() function.

EXEC SQL var binary ‘polygon’ poly;
EXEC SQL lvarchar *c;

The following example illustrates the use of ifx_var_freevar(). You must explicitly free memory that has been allocated for var

binary and lvarchar pointer host variables by using the ifx_var_freevar() function.

721

HCL Informix 14.10 - ESQL/C Programmer’s Guide

722

ifx_var_freevar(&poly);
ifx_var_freevar(&c);

If you do not use ifx_var_dealloc() to deallocate memory that has been allocated for the data buffer of the var binary host

variable, ifx_var_freevar() will do so. It then frees the memory of the var binary and lvarchar pointer host variables. In the

preceding example, after ifx_var_freevar() was called, poly and c would be set to null.

Return codes

0

The function was successful

<0

The function was not successful and the return value indicates the cause of the error

The ifx_var_getdata() function
The ifx_var_getdata() function returns the data from an lvarchar or var binary host variable.

Syntax

var binary

void *ifx_var_getdata(var_bin)
 var binary **var_bin;

lvarchar

void *ifx_var_getdata(lvar)
 lvarchar **lvar;

var_bin

The address of the var binary host variable whose data is retrieved.

lvar

The address of the lvarchar pointer host variable whose data is retrieved.

Usage

The ifx_var_getdata() function returns the data as a void * pointer. Your IBM® Informix® ESQL/C application must cast this

pointer to the correct data type. When you use ifx_var_getdata() on an lvarchar pointer, you must cast the returned (void)

pointer to a C-language character pointer (char *).

Return codes

Null pointer

The function was not successful.

Valid pointer to the data buffer

The function was successful.

Chapter 1. ESQL/C Guide

The ifx_var_getlen() function
The ifx_var_getlen() function returns the length of the data in an lvarchar pointer or var binary host variable.

Syntax

var binary

mint ifx_var_getlen(var_bin)
 var binary **var_bin;

lvarchar

mint ifx_var_getlen(lvar)
 lvarchar **lvar;

var_bin

The address of the var binary host variable whose length is returned.

lvar

The address of the lvarchar pointer host variable whose length is returned.

Usage

The length that the ifx_var_getlen() function returns is the number of bytes that have been allocated for the data buffer of the

lvar or var_bin host variable.

If you get an lvarchar pointer or var binary from a descriptor area by using the DATA clause of a GET DESCRIPTOR

statement, the value is null terminated. If you use ifx_var_getlen() on such a variable, the length returned includes the null

terminator. To get the correct length use the LENGTH clause of the GET DESCRIPTOR statement.

Return codes

>=0

The length of the data buffer for the var_bin host variable.

<0

The function was not successful.

The ifx_var_isnull() function
The ifx_var_isnull() function checks whether an lvarchar or var binary host variable contains a null value.

Syntax

var binary

mint ifx_var_isnull(var_bin)
 var binary **var_bin;

lvarchar

723

HCL Informix 14.10 - ESQL/C Programmer’s Guide

724

mint ifx_var_isnull(lvar)
 lvarchar **lvar;

var_bin

The address of the var binary host variable.

lvar

The address of the lvarchar pointer host variable.

Usage

The ifx_var_isnull() function checks for a null value in an lvarchar or var binary host variable. To determine whether the IBM®

Informix® ESQL/C host variable of any other data type contains null, use the risnull() library function.

Return codes

0

The opaque-type data is not a null value.

1

The opaque-type data is a null value.

The ifx_var_setdata() function
The ifx_var_setdata() function stores data in an lvarchar or var binary host variable.

Syntax

var binary

mint ifx_var_setdata(var_bin, buffer, buf_len)
 var binary **var_bin;
 char *buffer;
 int4 buf_len;

lvarchar

mint ifx_var_setdata(lvar, buffer, buf_len)
 lvarchar **lvar;
 char *buffer;
 int4 buf_len;

buffer

A character buffer that contains the data to store in the lvar or var_bin host variable.

buf_len

The length, in bytes, of the buffer.

var_bin

The address of the var binary host variable.

Chapter 1. ESQL/C Guide

lvar

The address of the lvarchar pointer host variable.

Usage

The ifx_var_setdata() function stores the data in buffer in the data buffer of the lvar or var_bin host variable. For an lvarchar

pointer host variable, IBM® Informix® ESQL/C expects the data inside buffer to be null-terminated ASCII data.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the error.

The ifx_var_setlen() function
The ifx_var_setlen() function stores the length of the data buffer for an lvarchar or var binary host variable.

Syntax

var binary

mint ifx_var_setlen(var_bin, length)
 var binary **var_bin;
 int4 length

lvarchar

mint ifx_var_setlen(lvar, length)
 lvarchar **lvar;
 int4 length

length

The length, in bytes, of the data buffer to allocate for the var binary data.

var_bin

The address of the var binary host variable.

lvar

The address of the lvarchar pointer host variable.

Usage

The length that the ifx_var_setlen() function sets is the number of bytes to allocate for the data buffer of the lvar or var_bin

host variable. Call this function to change the size of the data buffer that the ifx_var_alloc() function allocated for the lvar or

var_bin host variable.

725

HCL Informix 14.10 - ESQL/C Programmer’s Guide

726

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the error.

The ifx_var_setnull() function
The ifx_var_setnull() function sets an lvarchar or var binary host variable to a null value.

Syntax

var binary

mint ifx_var_setnull(var_bin, flag)
 var binary **var_bin;
 mint flag

lvarchar

mint ifx_var_setnull(var_bin, flag)
 var binary **var_bin;
 mint flag;

var_bin

The address of the var binary host variable.

lvar

The address of the lvarchar pointer host variable.

flag

The value 0 to indicate a non-null value or 1 to indicate a null value.

Usage

The ifx_var_setnull() function sets a host variable of type lvarchar or var binary to a null value. To set the IBM® Informix®

ESQL/C host variable of any other data type to null, use the rsetnull() library function.

Return codes

0

The function was successful.

<0

The function was not successful and the return value indicates the cause of the error.

The incvasc() function
The incvasc() function converts a string that conforms to the ANSI SQL standard for an INTERVAL value to an interval value.

Chapter 1. ESQL/C Guide

Syntax
mint incvasc(inbuf, invvalue)
 char *inbuf;
 intrvl_t *invvalue;

inbuf

A pointer to a buffer that contains an ANSI-standard INTERVAL string.

invvalue

A pointer to an initialized interval variable.

Usage

You must initialize the interval variable in invvalue with the qualifier that you want this variable to have.

The character string in inbuf can have leading and trailing spaces. However, from the first significant digit to the last, inbuf

can only contain characters that are digits and delimiters that are appropriate to the qualifier fields of the interval variable.

If the character string is an empty string, the incvasc() function sets the value in invvalue to null. If the character string is

acceptable, the function sets the value in the interval variable and returns zero. Otherwise, the function sets the value in the

interval value to null.

Return codes

0

The conversion was successful.

-1260

It is not possible to convert between the specified types.

-1261

Too many digits in the first field of datetime or interval.

-1262

Non-numeric character in datetime or interval.

-1263

A field in a datetime or interval value is out of range or incorrect.

-1264

Extra characters at the end of a datetime or interval value.

-1265

Overflow occurred on a datetime or interval operation.

-1266

A datetime or interval value is incompatible with the operation.

727

HCL Informix 14.10 - ESQL/C Programmer’s Guide

728

-1267

The result of a datetime computation is out of range.

-1268

A parameter contains an invalid datetime or interval qualifier.

Example

The demo directory contains this sample program in the file incvasc.ec.

/*
 * incvasc.ec *

 The following program converts ASCII strings into interval (intvl_t)
 structure. It also illustrates error conditions involving invalid
 qualifiers for interval values.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 mint x;

 EXEC SQL BEGIN DECLARE SECTION;
 interval day to second in1;
 EXEC SQL END DECLARE SECTION;

 printf("INCVASC Sample ESQL Program running.\n\n");

 printf("Interval string #1 = 20 3:10:35\n");
 if(x = incvasc("20 3:10:35", &in1))
 printf("Result = failed with conversion error:%d\n",x);
 else
 printf("Result = successful conversion\n");

/*
 * Note that the following literal string has a 26 in the hours field
 */
 printf("\nInterval string #2 = 20 26:10:35\n");
 if(x = incvasc("20 26:10:35", &in1))
 printf("Result = failed with conversion error:%d\n",x);
 else
 printf("Result = successful conversion\n");

 /*
 * Try to convert using an invalid qualifier (YEAR to SECOND)
 */
 printf("\nInterval string #3 = 2007-02-11 3:10:35\n");
 in1.in_qual = TU_IENCODE(4, TU_YEAR, TU_SECOND);
 if(x = incvasc("2007-02-11 3:10:35", &in1))
 printf("Result = failed with conversion error:%d\n",x);
 else

Chapter 1. ESQL/C Guide

 printf("Result = successful conversion\n");

 printf("\nINCVASC Sample Program over.\n\n");
}

Output
INCVASC Sample ESQL Program running.

Interval string #1 = 20 3:10:35
Result = successful conversion

Interval string #2 = 20 26:10:35
Result = failed with conversion error:-1263

Interval string #3 = 2007-02-11 3:10:35
Result = failed with conversion error:-1268

INCVASC Sample Program over.

The incvfmtasc() function
The incvfmtasc() function uses a formatting mask to convert a character string to an interval value.

Syntax

mint incvfmtasc(inbuf, fmtstring, invvalue)
 char *inbuf;
 char *fmtstring;
 intrvl_t *invvalue;

inbuf

A pointer to a buffer that contains the string to convert.

fmtstring

A pointer to the buffer that contains the formatting mask to use for the inbuf string. This time-formatting mask

contains the same formatting directives that the DBTIME environment variable supports. (For a list of these

directives, see the description of DBTIME in the HCL® Informix® Guide to SQL: Reference).

invvalue

A pointer to the initialized interval variable.

Usage

You must initialize the interval variable in invvalue with the qualifier you want this variable to have. The interval variable

does not need to specify the same qualifier as the formatting mask. When the interval qualifier is different from the implied

formatting-mask qualifier, incvfmtasc() converts the result to appropriate units as necessary. However, both qualifiers must

belong to the same interval class: either the year to month class or the day to fraction class.

All fields in the character string in inbuf must be contiguous. In other words, if the qualifier is hour to second, you must

specify all values for hour, minute, and second somewhere in the string, or incvfmtasc() returns an error.

729

HCL Informix 14.10 - ESQL/C Programmer’s Guide

730

The inbuf character string can have leading and trailing spaces. However, from the first significant digit to the last, inbuf can

contain only digits and delimiters that are appropriate for the qualifier fields that the formatting mask implies.

If the character string is acceptable, the incvfmtasc() function sets the interval value in invvalue and returns zero. Otherwise,

the function returns an error code and the interval variable contains an unpredictable value.

The formatting directives %B, %b, and %p, which the DBTIME environment variable accepts, are not applicable in fmtstring

because month name and a.m./p.m. information is not relevant for intervals of time. Use the %Y directive if the interval is

more than 99 years (%y can handle only two digits). For hours, use %H (not %I, because %I can represent only 12 hours). If

fmtstring is an empty string, the function returns an error.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The demo directory contains this sample program in the file incvfmtasc.ec.

/* *incvfmtasc.ec*
 The following program illustrates the conversion of two strings
 to three interval values.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 char out_str[30];
 char out_str2[30];
 char out_str3[30];
 mint x;

EXEC SQL BEGIN DECLARE SECTION;
 interval day to minute short_time;
 interval minute(5) to second moment;
 interval hour to second long_moment;
 EXEC SQL END DECLARE SECTION;

 printf("INCVFMTASC Sample ESQL Program running.\n\n");

 /* Initialize short_time */
 printf("Interval value #1 = 20 days, 3 hours, 40 minutes\n");
 x = incvfmtasc("20 days, 3 hours, 40 minutes",
 "%d days, %H hours, %M minutes", &short_time);

Chapter 1. ESQL/C Guide

 /*Convert the internal format to ascii in ANSI format, for displaying. */
 x = intoasc(&short_time, out_str);
 printf("Interval value (day to minute) = %s\n", out_str);

 /* Initialize moment */
 printf("\nInterval value #2 = 428 minutes, 30 seconds\n");
 x = incvfmtasc("428 minutes, 30 seconds",
 "%M minutes, %S seconds", &moment);

 /* Convert the internal format to ascii in ANSI format, for displaying. */
 x = intoasc(&moment, out_str2);
 printf("Interval value (minute to second) = %s\n", out_str2);

 /* Initialize long_moment */
 printf("\nInterval value #3 = 428 minutes, 30 seconds\n");
 x = incvfmtasc("428 minutes, 30 seconds",
 "%M minutes, %S seconds", &long_moment);

 /*Convert the internal format to ascii in ANSI format, for displaying. */
 x = intoasc(&long_moment, out_str3);
 printf("Interval value (hour to second) = %s\n", out_str3);

 printf("\nINCVFMTASC Sample Program over.\n\n");
}

Output

INVCFMTASC Sample ESQL Program running.

Interval value #1 = 20 days, 3 hours, 40 minutes
Interval value (day to minute) = 20 03:40

Interval value #2 = 428 minutes, 30 seconds
Interval value (minute to second) = 428:30

Interval value #3 = 428 minute, 30 seconds
Interval value (hour to second) = 7:08:30

INVCFMTASC Sample Program over.

The intoasc() function
The intoasc() function converts the field values of an interval variable to an ASCII string that conforms to the ANSI SQL

standard.

Syntax

mint intoasc(invvalue, outbuf)
 intrvl_t *invvalue;
 char *outbuf;

invvalue

A pointer to an initialized interval variable to convert.

731

HCL Informix 14.10 - ESQL/C Programmer’s Guide

732

outbuf

A pointer to the buffer that receives the ANSI-standard INTERVAL string for the value in invvalue.

Usage

The intoasc() function converts the digits of the fields in the interval variable to their character equivalents and copies them

to the outbuf character string with delimiters (hyphen, space, colon, or period) between them. You must initialize the interval

variable in invvalue with the qualifier that you want the character string to have.

The character string does not include the qualifier or the parentheses that SQL statements use to delimit an INTERVAL literal.

The outbuf string conforms to ANSI SQL standards. It includes one character for each delimiter (hyphen, space, colon, or

period) plus fields with the following sizes.

Field

Field size

Leading field

As specified by precision

Fraction

As specified by precision

All other fields

Two digits

An interval value with the day(5) to fraction(5) qualifier produces the maximum length of output. The string equivalent

contains 16 digits, 4 delimiters, and the null terminator, for a total of 21 bytes:

DDDDD HH:MM:SS.FFFFF

If you do not initialize the qualifier of the interval variable, the intoasc() function returns an unpredictable value, but this value

does not exceed 21 bytes.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The demo directory contains this sample program in the file intoasc.ec.

/*
 * intoasc.ec *

 The following program illustrates the conversion of an interval (intvl_t)
 into an ASCII string.

Chapter 1. ESQL/C Guide

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 mint x;
 char out_str[10];

 EXEC SQL BEGIN DECLARE SECTION;
 interval day(3) to day in1;
 EXEC SQL END DECLARE SECTION;

 printf("INTOASC Sample ESQL Program running.\n\n");

 printf("Interval (day(3) to day) string is '3'\n");
 if(x = incvasc("3", &in1))
 printf("Initial conversion failed with error: %d\n",x);
 else
 {
 /* Convert the internal format to ascii for displaying */
 intoasc(&in1, out_str);
 printf("\tInterval value after conversion is '%s'\n", out_str);
 }

 printf("\nINTOASC Sample Program over.\n\n");
}

Output

INTOASC Sample ESQL Program running.

Interval (day(3) to day) string is '3'
Interval value afer conversion is ' 3'

INTOASC Sample Program over.

The intofmtasc() function
The intofmtasc() function uses a formatting mask to convert an interval variable to a character string.

Syntax

mint intofmtasc(invvalue, outbuf, buflen, fmtstring)
 intrvl_t *invvalue;
 char *outbuf;
 mint buflen;
 char *fmtstring;

invvalue

A pointer to an initialized interval variable to convert.

733

HCL Informix 14.10 - ESQL/C Programmer’s Guide

734

outbuf

A pointer to the buffer that receives the string for the value in invvalue.

buflen

The length of the outbuf buffer.

fmtstring

A pointer to the buffer that contains the formatting mask to use for the outbuf string. This time-formatting

mask contains the same formatting directives that the DBTIME environment variable supports. (For a list of

these directives, see the description of DBTIME in the HCL® Informix® Guide to SQL: Reference).

Usage

You must initialize the interval variable in invvalue with the qualifier that you want the character string to have. If you do not

initialize the interval variable, the function returns an unpredictable value. The character string in outbuf does not include the

qualifier or the parentheses that SQL statements use to delimit an INTERVAL literal.

The formatting mask, fmtstring, does not need to imply the same qualifiers as the interval variable. When the implied

formatting-mask qualifier is different from the interval qualifier, intofmtasc() converts the result to appropriate units, as

necessary (as if it called the invextend() function). However, both qualifiers must belong to the same class: either the year to

month class or the day to fraction class.

If fmtstring is an empty string, the intofmtasc() function sets outbuf to an empty string.

The formatting directives %B, %b, and %p, which the DBTIME environment variable accepts, are not applicable in fmtstring

because month name and a.m./p.m. information is not relevant for intervals of time. Use the %Y directive if the interval is

more than 99 years (%y can handle only two digits). For hours, use %H (not %I, because %I can represent only 12 hours). If

fmtstring is an empty string, the function returns an error.

If the character string and the formatting mask are acceptable, the intofmtasc() function sets the interval value in invvalue

and returns zero. Otherwise, the function returns an error code and the interval variable contains an unpredictable value.

Return codes

0

The conversion was successful.

<0

The conversion failed.

Example

The demo directory contains this sample program in the file intofmtasc.ec.

/*
 intofmtasc.ec
 The following program illustrates the conversion of interval values
 to ASCII strings with the specified formats.

Chapter 1. ESQL/C Guide

*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 char out_str[60];
 char out_str2[60];
 char out_str3[60];
 mint x;

 EXEC SQL BEGIN DECLARE SECTION;
 interval day to minute short_time;
 interval minute(5) to second moment;
 EXEC SQL END DECLARE SECTION;

 printf("INTOFMTASC Sample ESQL Program running.\n\n");

 /* Initialize short_time (day to minute) interval value */
 printf("Interval string #1 = '20 days, 3 hours, 40 minutes'\n");
 x = incvfmtasc("20 days, 3 hours, 40 minutes",
 "%d days, %H hours, %M minutes", &short_time);
 /* Turn the interval into ascii string of a certain format. */
 x = intofmtasc(&short_time, out_str, sizeof(out_str),
 "%d days, %H hours, %M minutes to go!");
 printf("\tFormatted value: %s\n", out_str);

 /* Initialize moment (minute(5) to second interval value */
 printf("\nInterval string #2: '428 minutes, 30 seconds'\n");
 x = incvfmtasc("428 minutes, 30 seconds",
 "%M minutes, %S seconds", &moment);

 /* Turn each interval into ascii string of a certain format. Note
 * that the second and third calls to intofmtasc both use moment
 * as the input variable, but the output strings have different
 * formats.
 */
 x = intofmtasc(&moment, out_str2, sizeof(out_str2),
 "%M minutes and %S seconds left.");
 x = intofmtasc(&moment, out_str3, sizeof(out_str3),
 "%H hours, %M minutes, and %S seconds still left.");

 /* Print each resulting string */
 printf("\tFormatted value: %s\n", out_str2);
 printf("\tFormatted value: %s\n", out_str3);

 printf("\nINTOFMTASC Sample Program over.\n\n");
}

Output

INTOFMTASC Sample ESQL Program running.

Interval string #1: '20 days, 3 hours, 40 minutes'
 Formatted value: 20 days, 03 hours, 40 minutes to go!

735

HCL Informix 14.10 - ESQL/C Programmer’s Guide

736

Interval string #2: '428 minutes, 30 seconds'
 Formatted value: 428 minutes and 30 seconds left.
 Formatted value: 07 hours, 08 minutes, and 30 seconds still left.

INTOFMTASC Sample Program over.

The invdivdbl() function
The invdivdbl() function divides an interval value by a numeric value.

Syntax
mint invdivdbl(iv, num, ov)
 intrvl_t *iv;
 double num;
 intrvl_t *ov;

iv

A pointer to an interval variable to be divided.

num

A numeric divisor value.

ov

A pointer to an interval variable with a valid qualifier.

Usage

The input and output qualifiers must both belong to the same interval class: either the year to month class or the day to

fraction(5) class. If the qualifier for ov is different from the qualifier for iv (within the same class), the invdivdbl() function

extends the result (as the invextend() function defines).

The invdivdbl() function divides the interval value in iv by num and stores the result in ov.

The value in num can be either a positive or a negative value.

Return codes

0

The division was successful.

<0

The division failed.

-1200

A numeric value is too large (in magnitude).

-1201

A numeric value is too small (in magnitude).

Chapter 1. ESQL/C Guide

-1202

The num parameter is zero (0).

-1265

Overflow occurred on an interval operation.

-1266

An interval value is incompatible with the operation.

-1268

A parameter contains an invalid interval qualifier.

Example

The demo directory contains this sample program in the file invdivdbl.ec.

/*
 * indivdbl.ec *

 The following program divides an INTERVAL type variable by a numeric
 value and stores the result in an INTERVAL variable. The operation is
 done twice, using INTERVALs with different qualifiers to store the result.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 char out_str[16];

 EXEC SQL BEGIN DECLARE SECTION;
 interval day to second daytosec1;
 interval hour to minute hrtomin;
 interval day to second daytosec2;
 EXEC SQL END DECLARE SECTION;

 printf("INVDIVDBL Sample ESQL Program running.\n\n");

 /* Input is 3 days, 5 hours, 27 minutes, and 30 seconds */
 printf("Interval (day to second) string = '3 5:27:30'\n");
 incvasc("3 5:27:30", &daytosec1);

 /* Divide input value by 3.0, store in hour to min interval */
 invdivdbl(&daytosec1, (double) 3.0, &hrtomin);

 /* Convert the internal format to ascii for displaying */
 intoasc(&hrtomin, out_str);
 printf("Divisor (double) = 3.0 \n");
 printf("---\n");
 printf("Quotient #1 (hour to minute) = '%s'\n", out_str);

 /* Divide input value by 3.0, store in day to sec interval variable */

737

HCL Informix 14.10 - ESQL/C Programmer’s Guide

738

 invdivdbl(&hrtomin, (double) 3.0, &daytosec2);

 /* Convert the internal format to ascii for displaying */
 intoasc(&daytosec2, out_str);
 printf("Quotient #2 (day to second) = '%s'\n", out_str);

 printf("\nINVDIVDBL Sample Program over.\n\n");
}

Output
INVDIVDBL Sample ESQL Program running.

Interval (day to second) string = '3 5:27:30'
Divisor (double) = 3.0

Quotient #1 (hour to minute) = ' 25:49'
Quotient #2 (day to second) = ' 1 01:49:10'

INVDIVDBL Sample Program over.

The invdivinv() function
The invdivinv() function divides an interval value by another interval value.

Syntax

mint invdivinv(i1, i2, num)
 intrvl_t *i1, *i2;
 double *num;

i1

A pointer to an interval variable that is the dividend.

i2

A pointer to an interval variable that is the divisor.

num

A pointer to the double value that is the quotient.

Usage

The invdivinv() function divides the interval value in i1 by i2, and stores the result in num. The result can be either positive or

negative.

Both the input and output qualifiers must belong to the same interval class: either the year to month class or the day to

fraction(5) class. If necessary, the invdivinv() function extends the interval value in i2 to match the qualifier for i1 before the

division.

Chapter 1. ESQL/C Guide

Return codes

0

The division was successful.

<0

The division failed.

-1200

A numeric value is too large (in magnitude).

-1201

A numeric value is too small (in magnitude).

-1266

An interval value is incompatible with the operation.

-1268

A parameter contains an invalid interval qualifier.

Example

The demo directory contains this sample program in the file invdivinv.ec.

/*
 * invdivinv.ec *

 The following program divides one interval value by another and
 displays the resulting numeric value.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 mint x;
 char out_str[16];

 EXEC SQL BEGIN DECLARE SECTION;
 interval hour to minute hrtomin1, hrtomin2;
 double res;
 EXEC SQL END DECLARE SECTION;

 printf("INVDIVINV Sample ESQL Program running.\n\n");

 printf("Interval #1 (hour to minute) = 75:27\n");
 incvasc("75:27", &hrtomin1);
 printf("Interval #2 (hour to minute) = 19:10\n");
 incvasc("19:10", &hrtomin2);

printf("---\n");

739

HCL Informix 14.10 - ESQL/C Programmer’s Guide

740

 invdivinv(&hrtomin1, &hrtomin2, &res);
 printf("Quotient (double) = %.1f\n", res);

 printf("\nINVDIVINV Sample Program over.\n\n");
}

Output
INVDIVINV Sample ESQL Program running.

Interval #1 (hour to minute) = 75.27
Interval #2 (hour to minute) = 19:10

Quotient (double) = 3.9

INVDIVINV Sample Program over.

The invextend() function
The invextend() function copies an interval value under a different qualifier.

Extending is the operation of adding or dropping fields of an INTERVAL value to make it match a given qualifier. For

INTERVAL values, both qualifiers must belong to the same interval class: either the year to month class or the day to

fraction(5) class.

Syntax

mint invextend(in_inv, out_inv)
 intrvl_t *in_inv, *out_inv;

in_inv

A pointer to the interval variable to extend.

out_inv

A pointer to the interval variable with a valid qualifier to use for the extension.

Usage

The invextend() function copies the qualifier-field digits of in_inv interval variable to the out_inv interval variable. The qualifier

of the out_inv variable controls the copy.

The function discards any fields in in_inv that are to the right of the least-significant field in out_inv. The function completes

any fields in out_inv that are not present in in_inv as follows:

• It fills the fields to the right of the least-significant field in in_inv with zeros.

• It sets the fields to the left of the most-significant field in in_inv to valid interval values.

Return codes

0

The conversion was successful.

Chapter 1. ESQL/C Guide

<0

The conversion failed.

-1266

An interval value is incompatible with the operation.

-1268

A parameter contains an invalid interval qualifier.

Example

The demo directory contains this sample program in the file invextend.ec. The example illustrates interval extension. In

the second result, the output contains zeros in the seconds field, and the days field has been set to 3.

/*
 * invextend.ec *

 The following program illustrates INTERVAL extension. It extends an INTERVAL
 value to another INTERVAL value with a different qualifier. Note that in the
 second example, the output contains zeros in the seconds field and the
 days field has been set to 3.
*/

#include <stdio.h>
EXEC SQL include datetime;

main()
{
 mint x;
 char out_str[16];
;
 EXEC SQL BEGIN DECLARE SECTION;
 interval hour to minute hrtomin;
 interval hour to hour hrtohr;
 interval day to second daytosec;
 EXEC SQL END DECLARE SECTION;

 printf("INVEXTEND Sample ESQL Program running.\n\n");

 printf("Interval (hour to minute) value = 75.27\n");
 incvasc("75:27", &hrtomin);

 /* Extend to hour-to-hour and convert the internal format to
 * ascii for displaying
 */
 invextend(&hrtomin, &hrtohr);
 intoasc(&hrtohr, out_str);
 printf("Extended (hour to hour) value = %s\n", out_str);

 /* Extend to day-to-second and convert the internal format to
 * ascii for displaying

 */
 invextend(&hrtomin, &daytosec);

741

HCL Informix 14.10 - ESQL/C Programmer’s Guide

742

 intoasc(&daytosec, out_str);
 printf("Extended (day to second) value =: %s\n", out_str);

 printf("\nINVEXTEND Sample Program over.\n\n");
}

Output
INVEXTEND Sample ESQL Program running.

Interval (hour to minute) value = 75:27
Extended (hour to hour) value = 75
Extended (day to second) value = 3 03:27:00

INVEXTEND Sample Program over.

The invmuldbl() function
The invmuldbl() function multiplies an interval value by a numeric value.

Syntax

mint invmuldbl(iv, num, ov)
 intrvl_t *iv;
 double num;
 intrvl_t *ov;

iv

A pointer to the interval variable to multiply.

num

The numeric double value.

ov

A pointer to the interval variable with a valid qualifier.

Usage

The invmuldbl() function multiplies the interval value in iv by num and stores the result in ov. The value in num can be either

positive or negative.

Both the input and output qualifiers must belong to the same interval class: either the year to month class or the day to

fraction(5) class. If the qualifier for ov is different from the qualifier for iv (but of the same class), the invmuldbl() function

extends the result (as the invextend() function defines).

Return codes

0

The multiplication was successful.

<0

The multiplication failed.

Chapter 1. ESQL/C Guide

-1200

A numeric value is too large (in magnitude).

-1201

A numeric value is too small (in magnitude).

-1266

An interval value is incompatible with the operation.

-1268

A parameter contains an invalid interval qualifier.

Example

The demo directory contains this sample program in the file invmuldbl.ec. The example illustrates how to multiply an

interval value by a numeric value. The second multiplication illustrates the result of interval multiplication when the input and

output qualifiers are different.

/*
 * invmuldbl.ec *

 The following program multiplies an INTERVAL type variable by a numeric value
 and stores the result in an INTERVAL variable. The operation is done twice,
 using INTERVALs with different qualifiers to store the result.
*/

#include <stdio.h>

EXEC SQL include datetime;

main()
{
 char out_str[16];

 EXEC SQL BEGIN DECLARE SECTION;
 interval hour to minute hrtomin1;
 interval hour to minute hrtomin2;
 interval day to second daytosec;
 EXEC SQL END DECLARE SECTION;

 printf("INVMULDBL Sample ESQL Program running.\n\n");

 /* input is 25 hours, and 49 minutes */
 printf("Interval (hour to minute) = 25:49\n");
 incvasc("25:49", &hrtomin1);
 printf("Multiplier (double) = 3.0\n");
 printf("---\n");

 /* Convert the internal format to ascii for displaying */
 invmuldbl(&hrtomin1, (double) 3.0, &hrtomin2);
 intoasc(&hrtomin2, out_str);
 printf("Product #1 (hour to minute) = '%s'\n", out_str);

743

HCL Informix 14.10 - ESQL/C Programmer’s Guide

744

 /* Convert the internal format to ascii for displaying */
 invmuldbl(&hrtomin1, (double) 3.0, &daytosec);
 intoasc(&daytosec, out_str);
 printf("Product #2 (day to second) = '%s'\n", out_str);

 printf("\nINVMULDBL Sample Program over.\n\n");
}

Output
INVMULDBL Sample ESQL Program running.

Interval (hour to minute) = 25:49
Multiplier (double) = 3.0

Product #1 (hour to minute) = ' 77:27'
Product #2 (day to second) = ' 3 05:27:00'

INVMULDBL Sample Program over.

The ldchar() function
The ldchar() function copies a fixed-length string into a null-terminated string and removes any trailing blanks.

Syntax

void ldchar(from, count, to)
 char *from;
 mint count;
 char *to;

from

A pointer to the fixed-length source string.

count

The number of bytes in the fixed-length source string.

to

A pointer to the first byte of a null-terminated destination string. The to argument can point to the same

location as the from argument, or to a location that overlaps the from argument. If so, ldchar() does not

preserve the value to which from points.

Example

This sample program is in the ldchar.ec file in the demo directory.

/*
 * ldchar.ec *

 The following program loads characters to specific locations in an array
 that is initialized to z's. It displays the result of each ldchar()
 operation.
*/

Chapter 1. ESQL/C Guide

#include <stdio.h>

main()
{
 static char src1[] = "abcd ";
 static char src2[] = "abcd g ";
 static char dest[40];

 printf("LDCHAR Sample ESQL Program running.\n\n");

 ldchar(src1, stleng(src1), dest);
 printf("\tSource: [%s]\n\tDestination: [%s]\n\n", src1, dest);

 ldchar(src2, stleng(src2), dest);
 printf("\tSource: [%s]\n\tDestfination: [%s]\n", src2, dest);

 printf("\nLDCHAR Sample Program over.\n\n");
}

Output

LDCHAR Sample ESQL Program running.

 Source: [abcd]
 Destination: [abcd]

 Source: [abcd g]
 Destination: [abcd g]

LDCHAR Sample Program over.

The rdatestr() function
The rdatestr() function converts an internal DATE to a character string.

Syntax

mint rdatestr(jdate, outbuf)
 int4 jdate;
 char *outbuf;

jdate

The internal representation of the date to format.

outbuf

A pointer to the buffer that receives the string for the jdate value.

Usage

For the default locale, US English, the rdatestr() function determines how to interpret the format of the character string with

the following precedence:

745

HCL Informix 14.10 - ESQL/C Programmer’s Guide

746

1. The format that the DBDATE environment variable specifies (if DBDATE is set). For more information about DBDATE,

see the HCL® Informix® Guide to SQL: Reference.

2. The format that the GL_DATE environment variable specifies (if GL_DATE is set). For more information about

GL_DATE, see the HCL® Informix® GLS User's Guide.

3. The default date form: mm/dd/yyyy.

When you use a nondefault locale and do not set the DBDATE or GL_DATE environment variable, rdatestr() uses the date end-

user format that the client locale defines. For more information, see the HCL® Informix® GLS User's Guide.

Return codes

0

The conversion was successful.

<0

The conversion failed.

-1210

The internal date could not be converted to the character string format.

-1212

Data conversion format must contain a month, day, or year component. DBDATE specifies the data conversion

format.

Example

The demo directory contains this sample program in the rtoday.ec file.

/*
 * rtoday.ec *

 The following program obtains today's date from the system.
 It then converts it to ASCII for displaying the result.
*/

#include <stdio.h>

main()
{
 mint errnum;
 char today_date[20];
 int4 i_date;

 printf("RTODAY Sample ESQL Program running.\n\n");

 /* Get today's date in the internal format */
 rtoday(&i_date);

 /* Convert date from internal format into a mm/dd/yyyy string */
 if ((errnum = rdatestr(i_date, today_date)) == 0)
 printf("\n\tToday's date is %s.\n", today_date);

Chapter 1. ESQL/C Guide

 else
 printf("\n\tError %d in converting date to mm/dd/yyyy\n", errnum);

 printf("\nRTODAY Sample Program over.\n\n");
}

Output
RTODAY Sample ESQL Program running.

 Today's date is 10/26/2007.

RTODAY Sample Program over.

The rdayofweek() function
The rdayofweek() function returns the day of the week as an integer value for an internal DATE.

Syntax

mint rdayofweek(jdate)
 int4 jdate;

jdate

The internal representation of the date.

Return codes

0

Sunday

1

Monday

2

Tuesday

3

Wednesday

4

Thursday

5

Friday

6

Saturday

747

HCL Informix 14.10 - ESQL/C Programmer’s Guide

748

Example

The demo directory contains this sample program in the rdayofweek.ec file.

/*
 * rdayofweek.ec *

 The following program accepts a date entered from the console.
*/

#include <stdio.h>

main()
{
 mint errnum;
 int4 i_date;
 char *day_name;
 char date[20];
 int x;

 static char fmtstr[9] = "mmddyyyy";

 printf("RDAYOFWEEK Sample ESQL Program running.\n\n");

 /* Allow user to enter a date */
 printf("Enter a date as a single string, month.day.year\n");
 gets(date);

 printf("\nThe date string is %s.\n", date);

 /* Put entered date in internal format */
 if (x = rdefmtdate(&i_date, fmtstr, date))
 printf("Error %d on rdefmtdate conversion\n", x);
 else
 {
 /* Figure out what day of the week i_date is */
 switch (rdayofweek(i_date))
 {
 case 0: day_name = "Sunday";
 break;
 case 1: day_name = "Monday";
 break;
 case 2: day_name = "Tuesday";
 break;
 case 3: day_name = "Wednesday";
 break;
 case 4: day_name = "Thursday";
 break;
 case 5: day_name = "Friday";
 break;
 case 6: day_name = "Saturday";
 break;
 }
 printf("This date is a %s.\n", day_name);
 }

Chapter 1. ESQL/C Guide

 printf("\nRDAYOFWEEK Sample Program over.\n\n");
}

Output
RDAYOFWEEK Sample ESQL Program running.

Enter a date as a single string, month.day.year
10.13.07

The date string is 10.13.07.
This date is a Saturday.

RDAYOFWEEK Sample Program over.

The rdefmtdate() function
The rdefmtdate() function uses a formatting mask to convert a character string to an internal DATE format.

Syntax

mint rdefmtdate(jdate, fmtstring, inbuf)
 int4 *jdate;
 char *fmtstring;
 char *inbuf;

jdate

A pointer to a int4 integer value that receives the internal DATE value for the inbuf string.

fmtstring

A pointer to the buffer that contains the formatting mask to use the inbuf string.

inbuf

A pointer to the buffer that contains the date string to convert.

Usage

The fmtstring argument of the rdefmtdate() function points to the date-formatting mask, which contains formats that

describe how to interpret the date string. For more information about these date formats, see Format date strings on

page 125

The input string and the fmtstring must be in the same sequential order in terms of month, day, and year. They need not,

however, contain the same literals or the same representation for month, day, and year.

You can include the weekday format (ww), in fmtstring, but the database server ignores that format. Nothing from the inbuf

corresponds to the weekday format.

The following combinations of fmtstring and input are valid.

Formatting mask

Input

749

HCL Informix 14.10 - ESQL/C Programmer’s Guide

750

mmddyy

Dec. 25th, 2007

mmddyyyy

Dec. 25th, 2007

mmm. dd. yyyy

dec 25 2007

mmm. dd. yyyy

DEC-25-2007

mmm. dd. yyyy

122507

mmm. dd. yyyy

12/25/07

yy/mm/dd

07/12/25

yy/mm/dd

2007, December 25

yy/mm/dd

In the year 2007, the month of December, it is the 25th day

dd-mm-yy

This 25th day of December 2007

If the value stored in inbuf is a four-digit year, the rdefmtdate() function uses that value. If the value stored in inbuf is a two-

digit year, the rdefmtdate() function uses the value of the DBCENTURY environment variable to determine which century

to use. If you do not set DBCENTURY, IBM® Informix® ESQL/C uses the 20th century. For information about how to set

DBCENTURY, see the HCL® Informix® Guide to SQL: Reference.

When you use a nondefault locale whose dates contain eras, you can use extended-format strings in the fmtstring argument

of rdefmtdate().

Return codes

If you use an invalid date-string format, rdefmtdate() returns an error code and sets the internal DATE to the current date. The

following are possible return codes.

0

The operation was successful.

Chapter 1. ESQL/C Guide

-1204

The *input parameter specifies an invalid year.

-1205

The *input parameter specifies an invalid month.

-1206

The *input parameter specifies an invalid day.

-1209

Because *input does not contain delimiters between the year, month, and day, the length of *input must be

exactly 6 or 8 bytes.

-1212

*fmtstring does not specify a year, a month, and a day.

Example

The demo directory contains this sample program in the rdefmtdate.ec file.

/*
 * rdefmtdate.ec *

 The following program accepts a date entered from the console,
 converts it into the internal date format using rdefmtdate().
 It checks the conversion by finding the day of the week.
*/

#include <stdio.h>

main()
{
 mint x;
 char date[20];
 int4 i_date;
 char *day_name;

 static char fmtstr[9] = "mmddyyyy";

 printf("RDEFMTDATE Sample ESQL Program running.\n\n");

 printf("Enter a date as a single string, month.day.year\n");
 gets(date);

 printf("\nThe date string is %s.\n", date);

 if (x = rdefmtdate(&i_date, fmtstr, date))
 printf("Error %d on rdefmtdate conversion\n", x);
 else
 {
 /* Figure out what day of the week i_date is */
 switch (rdayofweek(i_date))
 {

751

HCL Informix 14.10 - ESQL/C Programmer’s Guide

752

 case 0: day_name = "Sunday";
 break;
 case 1: day_name = "Monday";
 break;
 case 2: day_name = "Tuesday";
 break;
 case 3: day_name = "Wednesday";
 break;
 case 4: day_name = "Thursday";
 break;
 case 5: day_name = "Friday";
 break;
 case 6: day_name = "Saturday";
 break;
 }
 printf("\nThe day of the week is %s.\n", day_name);
 }

 printf("\nRDEFMTDATE Sample Program over.\n\n");
}

Output

RDEFMTDATE Sample ESQL Program running.

Enter a date as a single string, month.day.year
080894

The date string is 080894
The day of the week is Monday.

RDEFMTDATE Sample Program over.

The rdownshift() function
The rdownshift() function changes all the uppercase characters within a null-terminated string to lowercase characters.

Syntax

void rdownshift(s)
 char *s;

s

A pointer to a null-terminated string.

Usage

The rdownshift() function refers to the current locale to determine uppercase and lowercase letters. For the default locale, US

English, rdownshift() uses the ASCII lowercase (a-z) and uppercase (A-Z) letters.

If you use a nondefault locale, rdownshift() uses the lowercase and uppercase letters that the locale defines. For more

information, see the HCL® Informix® GLS User's Guide.

Chapter 1. ESQL/C Guide

Return codes

This sample program is in the rdownshift.ec file in the demo directory.

/*
 * rdownshift.ec *

 The following program uses rdownshift() on a string containing
 alphanumeric and punctuation characters.
*/

#include <stdio.h>

main()
{
 static char string[] = "123ABCDEFGHIJK'.;";

 printf("RDOWNSHIFT Sample ESQL Program running.\n\n");

 printf("\tInput string...: [%s]\n", string);
 rdownshift(string);
 printf("\tAfter downshift: [%s]\n", string);

 printf("\nRDOWNSHIFT Sample Program over.\n\n");
}

Output

RDOWNSHIFT Sample ESQL Program running.

 Input string...: [123ABCDEFGHIJK'.;]
 After downshift: [123abcdefghijk'.;]

RDOWNSHIFT Sample Program over.

The ReleaseConnect() function (Windows™)
The ReleaseConnect() function is available only in Windows™ environments. It releases, or terminates, the explicit connection

and clears all allocated memory.

Important: IBM® Informix® ESQL/C supports the ReleaseConnect() connection library function for compatibility with

Version 5.01 Informix® ESQL/C for Windows™ applications. When you write new Informix® ESQL/C applications for

Windows™ environments, use the SQL DISCONNECT statement to terminate an established explicit connection.

Syntax

void *ReleaseConnect (void *CnctHndl)

CnctHndl

A connection handle returned by a previous GetConnect() call.

753

HCL Informix 14.10 - ESQL/C Programmer’s Guide

754

Usage

The ReleaseConnect() function maps to a simple SQL DISCONNECT statement (one without an ALL, CURRENT, or DEFAULT

option). The ReleaseConnect() call by itself is equivalent to the following SQL statement:

EXEC SQL disconnect db_connection;

In this example, db_connection is the name of an existing connection that the GetConnect() function has established. You

pass this db_connection name to ReleaseConnect() as an argument; it is a connection handle for the desired connection.

For example, the following code fragment uses ReleaseConnect() to close an explicit connection to the stores7 database on

the default database server:

void *cnctHndl;
⋮;

cnctHndl = GetConnect();
EXEC SQL database stores7;
⋮;

EXEC SQL close database;
cnctHndl = ReleaseConnect(cnctHndl);

Call ReleaseConnect() once for each connection that GetConnect() has established. The ReleaseConnect() function closes

any open database before it terminates the current connection. It fails if any transactions are open in the current connection.

It is good programming practice to close the database explicitly with the SQL CLOSE DATABASE statement before the call to

ReleaseConnect()

Important: Because the ReleaseConnect() function maps to a DISCONNECT statement, it sets the SQLCODE and

SQLSTATE status codes to indicate the success or failure of the connection termination request. This behavior

differs from ReleaseConnect() in Version 5.01 Informix® ESQL/C for Windows™, in which this function did not set the

SQLCODE and SQLSTATE values.

The ReleaseConnect() function differs from the DISCONNECT statement in the way that it obtains the connection name.

ReleaseConnect() uses an internally generated name that is stored in the connection handle; you must specify this handle

as an argument to the ReleaseConnect() call. The DISCONNECT statement uses an internally generated connection name

only for a connection that a CONNECT statement without an AS clause has established; if the connection has a user-defined

connection name (which the AS clause of the CONNECT statement specifies), DISCONNECT uses this name.

Return codes

CnctHndl

The call to ReleaseConnect() was successful if the function has returned a connection handle that matches the

one passed to it.

The rfmtdate() function
The rfmtdate() function uses a formatting mask to convert an internal DATE format to a character string.

Chapter 1. ESQL/C Guide

Syntax
mint rfmtdate(jdate, fmtstring, outbuf)
 int4 jdate;
 char *fmtstring;
 char *outbuf;

jdate

The internal representation of a date to convert.

fmtstring

A pointer to the buffer that contains the formatting mask to use the jdate value.

outbuf

A pointer to the buffer that receives the formatted string for the jdate value.

Usage

The fmtstring argument of the rfmtdate() function points to the date-formatting mask, which contains formats that describe

how to format the date string. For more information about these date formats, see Format numeric strings on page 118.

The examples in the following list use the formatting mask in fmtstring to convert the integer jdate, whose value corresponds

to December 25, 2007, to a formatted string outbuf. You must specify one or more fields.

Formatting mask

Formatted result

"mmdd"

1225

"mmddyy"

122507

"ddmmyy"

251207

"yydd"

0725

"yymmdd"

071225

"dd"

25

"yy/mm/dd"

07/12/25

755

HCL Informix 14.10 - ESQL/C Programmer’s Guide

756

"yy mm dd"

07 12 25

"yy-mm-dd"

07-12-25

"mmm. dd, yyyy"

Dec. 25, 2007

"mmm dd yyyy"

Dec 25 2007

"yyyy dd mm"

2007 25 12

"mmm dd yyyy"

Dec 25 2007

"ddd, mmm. dd, yyyy"

Tue, Dec. 25, 2007

"ww mmm. dd, yyyy"

Tue Dec. 25, 2007

"(ddd) mmm. dd, yyyy"

(Tue) Dec. 25, 2007

"mmyyddmm"

25071225

""

unpredictable result

When you use a nondefault locale whose dates contain eras, you can use extended-format strings in the fmtstring argument

of rfmtdate().

Return codes

0

The conversion was successful.

-1210

The internal date cannot be converted to month-day-year format.

-1211

The program ran out of memory (memory-allocation error).

Chapter 1. ESQL/C Guide

-1212

Format string is NULL or invalid.

Example

The demo directory contains this sample program in the rfmtdate.ec file.

/*
 * rfmtdate.ec *

 The following program converts a date from internal format to
 a specified format using rfmtdate().
*/

#include <stdio.h>

main()
{
 char the_date[15];
 int4 i_date;
 mint x;
 int errnum;
 static short mdy_array[3] = { 12, 10, 2007 };

 printf("RFMTDATE Sample ESQL Program running.\n\n");

 if ((errnum = rmdyjul(mdy_array, &i_date)) == 0)
 {

 /*
 * Convert date to "mm-dd-yyyy" format
 */
 if (x = rfmtdate(i_date, "mm-dd-yyyy", the_date))
 printf("First rfmtdate() call failed with error %d\n", x);
 else
 printf("\tConverted date (mm-dd-yyy): %s\n", the_date);

 /*
 * Convert date to "mm.dd.yy" format
 */
 if (x = rfmtdate(i_date, "mm.dd.yy", the_date))
 printf("Second rfmtdate() call failed with error %d\n",x);
 else
 printf("\tConverted date (mm.dd.yy): %s\n", the_date);

 /*
 * Convert date to "mmm ddth, yyyy" format
 */
 if (x = rfmtdate(i_date, "mmm ddth, yyyy", the_date))
 printf("Third rfmtdate() call failed with error %d\n", x);
 else
 printf("\tConverted date (mmm ddth, yyyy): %s\n", the_date);
 }

 printf("\nRFMTDATE Sample Program over.\n\n");
}

757

HCL Informix 14.10 - ESQL/C Programmer’s Guide

758

Output
RFMTDATE Sample ESQL Program running.

 Converted date (mm-dd-yyy): 12-10-2007.
 Converted date (mm.dd.yy): 12.10.07.
 Converted date (mmm ddth, yyyy): Dec 10th, 2007

RFMTDATE Sample Program over.

The rfmtdec() function
The rfmtdec() function uses a formatting mask to convert a decimal value to a character string.

Syntax
mint rfmtdec(dec_val, fmtstring, outbuf)
 dec_t *dec_val;
 char *fmtstring;
 char *outbuf;

dec_val

A pointer to the decimal value to format.

fmtstring

A pointer to a character buffer that contains the formatting mask to use for the dec_val value.

outbuf

A pointer to a character buffer that receives the formatted string for the dec_val value.

Usage

The fmtstring argument of the rfmtdec() function points to the numeric-formatting mask, which contains characters that

describe how to format the decimal value. For more information about these formatting characters, see Format numeric

strings on page 118.

When you use rfmtdec() to format MONEY values, the function uses the currency symbols that the DBMONEY environment

variable specifies. If you do not set this environment variable, rfmtdec() uses the currency symbols that the client locale

defines. The default locale, US English, defines currency symbols as if you set DBMONEY to $,.. (For a discussion of

DBMONEY, see theHCL® Informix® Guide to SQL: Reference.)

When you use a nondefault locale that has a multibyte code set, rfmtdec() supports multibyte characters in the format string.

For more information, see the HCL® Informix® GLS User's Guide.

Return codes

0

The conversion was successful.

-1211

The program ran out of memory (memory-allocation error).

Chapter 1. ESQL/C Guide

-1217

The format string is too large.

Example

The demo directory contains this sample program in the file rfmtdec.ec.

/*
 * rfmtdec.ec *

 The following program applies a series of format specifications to each
 of a series of DECIMAL numbers and displays each result.
*/

#include <stdio.h>

EXEC SQL include decimal;

char *strings[] =
 {
 "210203.204",
 "4894",
 "443.334899312",
 "-12344455",
 0
 };

char *formats[] =
 {
 "**###########",
 "$$$$$$$$$$.##",
 "(&&,&&&,&&&.)",
 "<,<<<,<<<,<<<",
 "$*********.**",
 0
 };

char result[41];

main()
{
 mint x;
 mint s = 0, f;
 dec_t num;

 printf("RFMTDEC Sample ESQL Program running.\n\n");

 while(strings[s])
 {
 /*
 * Convert each string to DECIMAL
 */
 printf("String = %s\n", strings[s]);
 if (x = deccvasc(strings[s], strlen(strings[s]), &num))
 {
 printf("Error %d in converting string [%s] to decimal\n",

759

HCL Informix 14.10 - ESQL/C Programmer’s Guide

760

 x, strings[s]);
 break;
 }
 f = 0;
 while(formats[f])
 {
 /*
 * Format DECIMAL num for each of formats[f]
 */
 rfmtdec(&num, formats[f], result);
 /*
 * Display result and bump to next format (f++)
 */
 result[40] = '\0';
 printf(" Format String = '%s'\t", formats[f++]);
 printf("\tResult = '%s'\n", result);
 }
 ++s; /* bump to next string */
 printf("\n"); /* separate result groups */
 }

 printf("\nRFMTDEC Sample Program over.\n\n");
}

Output

RFMTDEC Sample ESQL Program running.

String = 210203.204
 Format String = '**###########' Result = '** 210203'
 Format String = '$$$$$$$$$$.##' Result = ' $210203.20'
 Format String = '(&&,&&&,&&&.)' Result = ' 000210,203. '
 Format String = '<,<<<,<<<,<<<' Result = '210,203'
 Format String = ' $*********.**' Result = '$***210203.20'

String = 4894
 Format String = '**###########' Result = ' ** 4894'
 Format String = '$$$$$$$$$$.##' Result = ' $4894.00'
 Format String = '(&&,&&&,&&&.)' Result = ' 000004,894. '
 Format String = '<,<<<,<<<,<<<' Result = '4,894'
 Format String = ' $*********.**' Result = '$*****4894.00'

String = 443.334899312
 Format String = '**###########' Result = ' ** 443'
 Format String = '$$$$$$$$$$.##' Result = ' $443.33'
 Format String = '(&&,&&&,&&&.)' Result = ' 0000000443. '
 Format String = '<,<<<,<<<,<<<' Result = ' 443'
 Format String = ' $*********.**' Result = '$******443.33'

String = -12344455
 Format String = '**###########' Result = ' ** 12344455'
 Format String = '$$$$$$$$$$.##' Result = ' $12344455.00'
 Format String = '(&&,&&&,&&&.)' Result = '(12,344,455.)'
 Format String = '<,<<<,<<<,<<<' Result = '12,344,455'
 Format String = ' $*********.**' Result = ' $*12344455.00'

RFMTDEC Sample Program over.

Chapter 1. ESQL/C Guide

The rfmtdouble() function
The rfmtdouble() function uses a formatting mask to convert a double value to a character string.

Syntax
mint rfmtdouble(dbl_val, fmtstring, outbuf)
 double dbl_val;
 char *fmtstring;
 char *outbuf;

dbl_val

The double number to format.

fmtstring

A pointer to a character buffer that contains the formatting mask for the value in dbl_val.

outbuf

A pointer to a character buffer that receives the formatted string for the value in dbl_val.

Usage

The fmtstring argument of the rfmtdouble() function points to the numeric-formatting mask, which contains characters that

describe how to format the double value. For more information about these formatting characters, see Format numeric

strings on page 118.

When you use rfmtdouble() to format MONEY values, the function uses the currency symbols that the DBMONEY

environment variable specifies. If you do not set this environment variable, rfmtdouble() uses the currency symbols that

the client locale defines. The default locale, US English, defines currency symbols as if you set DBMONEY to $,.. (For a

discussion of DBMONEY, see the HCL® Informix® Guide to SQL: Reference.)

When you use a nondefault locale that has a multibyte code set, rfmtdouble() supports multibyte characters in the format

string. For more information, see the HCL® Informix® GLS User's Guide.

Return codes

0

The conversion was successful.

-1211

The program ran out of memory (memory-allocation error).

-1217

The format string is too large.

Example

The demo directory contains this sample program in the file rfmtdouble.ec.

761

HCL Informix 14.10 - ESQL/C Programmer’s Guide

762

/*
 * rfmtdouble.ec *

 The following program applies a series of format specifications to a
 series of doubles and displays the result of each format.
*/

#include <stdio.h>

double dbls[] =
 {
 210203.204,
 4894,
 443.334899312,
 -12344455,
 0
 };

char *formats[] =
 {
 "#############",
 "<,<<<,<<<,<<<",
 "$$$$$$$$$$.##",
 "(&&,&&&,&&&.)",
 "$*********.**",
 0
 };

char result[41];

main()
{
 mint x;
 mint i = 0, f;

 printf("RFMTDOUBLE Sample ESQL Program running.\n\n");

 while(dbls[i]) /* for each number in dbls */
 {
 printf("Double Number = %g\n", dbls[i]);
 f = 0;
 while(formats[f]) /* format with each of formats[] */
 {
 if (x = rfmtdouble(dbls[i], formats[f], result))
 {
 printf("Error %d in formatting %g using %s\n",
 x, dbls[i], formats[f]);
 break;
 }
 /*
 * Display each result and bump to next format (f++)
 */
 result[40] = '\0';
 printf(" Format String = '%s'\t", formats[f++]);
 printf("\tResult = '%s'\n", result);
 }

Chapter 1. ESQL/C Guide

 ++i; /* bump to next double */
 printf("\n"); /* separate result groups */
 }
 printf("\nRFMTDOUBLE Sample Program over.\n\n");
}

Output
RFMTDOUBLE Sample ESQL Program running.

Double Number = 210203
 Format String = '#############' Result = ' 210203'
 Format String = '<,<<<,<<<,<<<' Result = '210,203'
 Format String = '$$$$$$$$$$.##' Result = ' $210203.20'
 Format String = '(&&,&&&,&&&.)' Result = ' 000210,203. '
 Format String = '$*********.**' Result = '$***210203.20'

Double Number = 4894
 Format String = '#############' Result = ' 4894'
 Format String = '<,<<<,<<<,<<<' Result = '4,894'
 Format String = '$$$$$$$$$$.##' Result = ' $4894.00'
 Format String = '(&&,&&&,&&&.)' Result = ' 000004,894. '
 Format String = '$*********.**' Result = '$*****4894.00'

Double Number = 443.335
 Format String = '#############' Result = ' 443'
 Format String = '<,<<<,<<<,<<<' Result = '443'
 Format String = '$$$$$$$$$$.##' Result = ' $443.33'
 Format String = '(&&,&&&,&&&.)' Result = ' 0000000443. '
 Format String = '$*********.**' Result = '$******443.33'

Double Number = -1.23445e+07
 Format String = '#############' Result = ' 12344455'
 Format String = '<,<<<,<<<,<<<' Result = '12,344,455'
 Format String = '$$$$$$$$$$.##' Result = ' $12344455.00'
 Format String = '(&&,&&&,&&&.)' Result = '(12,344,455.)'
 Format String = '$*********.**' Result = '$*12344455.00'

RFMTDOUBLE Sample Program over.

The rfmtlong() function
The rfmtlong() function uses a formatting mask to convert a C long value to a character string.

Syntax

mint rfmtlong(lng_val, fmtstring, outbuf)
 int4 lng_val;
 char *fmtstring;
 char *outbuf;

lng_val

The int4 integer that rfmtlong() converts to character value.

fmtstring

A pointer to a character buffer that contains the formatting mask for the value in lng_val.

763

HCL Informix 14.10 - ESQL/C Programmer’s Guide

764

outbuf

A pointer to a character buffer that receives the formatted string for the value in lng_val.

Usage

The fmtstring argument of the rfmtlong() function points to the numeric-formatting mask, which contains characters that

describe how to format the long integer value. For more information about these formatting characters, see Format numeric

strings on page 118.

When you use rfmtlong() to format MONEY values, the function uses the currency symbols that the DBMONEY environment

variable specifies. If you do not set this environment variable, rfmtlong() uses the currency symbols that the client locale

defines. The default locale, US English, defines currency symbols as if you set DBMONEY to “$,.". (For a discussion of

DBMONEY, see the HCL® Informix® Guide to SQL: Reference.)

When you use a nondefault locale that has a multibyte code set, rfmtlong() supports multibyte characters in the format

string. For more information, see the HCL® Informix® GLS User's Guide.

Return codes

0

The conversion was successful.

-1211

The program ran out of memory (memory-allocation error).

-1217

The format string is too large.

Example

The demo directory contains this sample program in the file rfmtlong.ec.

/*
 * rfmtlong.ec *

 The following program applies a series of format specifications to a series
 of longs and displays the result of each format.
*/

#include <stdio.h>

long lngs[] =
 {
 21020304,
 334899312,
 -334899312,
 -12344455,
 0
 };

char *formats[] =

Chapter 1. ESQL/C Guide

 {
 "################",
 "$$$$$$$$$$$$$.##",
 "(&,&&&,&&&,&&&.)",
 "<<<<,<<<,<<<,<<<",
 "$************.**",
 0
 };

char result[41];

main()
{
 mint x;
 mint s = 0, f;

 printf("RFMTLONG Sample ESQL Program running.\n\n");

 while(lngs[s]) /* for each long in lngs[] */
 {
 printf("Long Number = %d\n", lngs[s]);
 f = 0;
 while(formats[f]) /* format with each of formats[] */
 {
 if (x = rfmtlong(lngs[s], formats[f], result))
 {
 printf("Error %d in formatting %d using %s.\n",
 x, lngs[s], formats[f]);
 break;
 }
 /*
 * Display result and bump to next format (f++)
 */
 result[40] = '\0';
 printf(" Format String = '%s'\t", formats[f++]);
 printf("\tResult = '%s'\n", result);
 }
 ++s; /* bump to next long */
 printf("\n"); /* separate display groups */
 }

 printf("\nRFMTLONG Sample Program over.\n\n");
}

Output

RFMTLONG ESQL Sample Program running.

Long Number = 21020304
 Format String = '################' Result = ' 21020304'
 Format String = '$$$$$$$$$$$$$.##' Result = ' $21020304.00'
 Format String = '(&,&&&,&&&,&&&.)' Result = ' 00021,020,304. '
 Format String = '<<<<,<<<,<<<,<<<' Result = '21,020,304'
 Format String = '$************.**' Result = '$****21020304.00'

Long Number = 334899312
 Format String = '################' Result = ' 334899312'
 Format String = '$$$$$$$$$$$$$.##' Result = ' $334899312.00'

765

HCL Informix 14.10 - ESQL/C Programmer’s Guide

766

 Format String = '(&,&&&,&&&,&&&.)' Result = ' 00334,899,312. '
 Format String = '<<<<,<<<,<<<,<<<' Result = '334,899,312'
 Format String = '$************.**' Result = '$***334899312.00'

Long Number = -334899312
 Format String = '################' Result = ' 334899312'
 Format String = '$$$$$$$$$$$$$.##' Result = ' $334899312.00'
 Format String = '(&,&&&,&&&,&&&.)' Result = '(00334,899,312.)'
 Format String = '<<<<,<<<,<<<,<<<' Result = '334,899,312'
 Format String = '$************.**' Result = '$***334899312.00'

Long Number = -12344455
 Format String = '################' Result = ' 12344455'
 Format String = '$$$$$$$$$$$$$.##' Result = ' $12344455.00'
 Format String = '(&,&&&,&&&,&&&.)' Result = '(00012,344,455.)'
 Format String = '<<<<,<<<,<<<,<<<' Result = '12,344,455'
 Format String = '$************.**' Result = ' $****12344455.00'

RFMTLONG Sample Program over.

The rgetlmsg() function
The rgetlmsg() function retrieves the corresponding error message for a given error number that is specific to HCL

Informix®. The rgetlmsg() function allows for error numbers in the range of a long integer.

Syntax

mint rgetlmsg(msgnum, msgstr, lenmsgstr, msglen)
 int4 msgnum;
 char *msgstr;
 mint lenmsgstr;
 mint *msglen;

msgnum

The error number. The four-byte parameter provides for the full range of error numbers that are specific to

Informix®.

msgstr

A pointer to the buffer that receives the message string (the output buffer).

lenmsgstr

The size of the msgstr output buffer. Make this value the size of the largest message that you expect to

retrieve.

msglen

A pointer to the mint that contains the actual length of the message that rgetlmsg() returns.

Usage

The msgnum error number is typically the value of SQLCODE (or sqlca.sqlcode). You can also retrieve message text for ISAM

errors (in sqlca.sqlerrd[1]). The rgetlmsg() function uses the Informix® error message files (in the $INFORMIXDIR/msg

directory) for error message text.

Chapter 1. ESQL/C Guide

The rgetlmsg() function returns the actual size of the message that you request in the fourth parameter, msglen. You can use

this value to adjust the size of the message area if it is too small. If the returned message is longer than the buffer that you

provide, the function truncates the message. You can also use the msglen value to display only that portion of the msgstr

message buffer that contains error text.

Return codes

0

The conversion was successful.

-1227

Message file not found.

-1228

Message number not found in message file.

-1231

Cannot seek within message file.

-1232

Message buffer too small.

Example

This sample program is in the rgetlmsg.ec file in the demo directory.

/*
 * rgetlmsg.ec *
 *
 * The following program demonstrates the usage of rgetlmsg() function.
 * It displays an error message after trying to create a table that
 * already exists.
 */
EXEC SQL include sqlca; /* this include is optional */

main()
{
 mint msg_len;
 char errmsg[400];

 printf("\nRGETLMSG Sample ESQL Program running.\n\n");
 EXEC SQL connect to 'stores7';

 EXEC SQL create table customer (name char(20));

 if(SQLCODE != 0)
 {
 rgetlmsg(SQLCODE, errmsg, sizeof(errmsg), &msg_len);
 printf("\nError %d: ", SQLCODE);
 printf(errmsg, sqlca.sqlerrm);
 }
 printf("\nRGETLMSG Sample Program over.\n\n");
}

767

HCL Informix 14.10 - ESQL/C Programmer’s Guide

768

This example uses the error message parameter in sqlca.sqlerrm to display the name of the table. This use of sqlca.sqlerrm

is valid because the error message contains a format parameter that printf() recognizes. If the error message did not contain

the format parameter, no error would result.

Output
RGETLMSG Sample ESQL Program running.

Error -310: Table (informix.customer) already exists in database.

RGETLMSG Sample Program over.

The rgetmsg() function
The rgetmsg() function retrieves the error message text for a given error number that is specific to HCL Informix®. The

rgetmsg() function can handle a short error number and, therefore, can only handle error numbers in the range of -32768 -

+32767. For this reason, use the rgetlmsg() function in all new Informix® ESQL/C code.

Syntax

mint rgetmsg(msgnum, msgstr, lenmsgstr)
 mint msgnum;
 char *msgstr;
 mint lenmsgstr;

msgnum

The error number. The two-byte parameter restricts error numbers to -32768 - +32767.

msgstr

A pointer to the buffer that receives the message string (the output buffer).

lenmsgstr

The size of the msgstr output buffer. Make this value the size of the largest message that you expect to

retrieve.

Usage

Typically SQLCODE (sqlca.sqlcode) contains the error number. You can also retrieve message text for ISAM errors (in

sqlca.sqlerrd[1]). The rgetmsg() function uses the Informix® error message files (in the $INFORMIXDIR/msg directory) for

error message text. If the message is longer than the size of the buffer that you provide, the function truncates the message

to fit.

Chapter 1. ESQL/C Guide

Important: Informix® ESQL/C supports the rgetmsg() function for compatibility with earlier versions. Some

Informix® error numbers currently exceed the range that the short integer, msgnum, supports. The rgetlmsg()

function, which supports long integers as error numbers, is recommended over rgetmsg().

If your program passes the value in the SQLCODE variable (or sqlca.sqlcode) directly as msgnum, cast the SQLCODE value as

a short data type. The msgnum argument of rgetmsg() and has a short data type while the SQLCODE value has a long data

type.

Return codes

0

The conversion was successful.

-1227

Message file not found.

-1228

Message number not found in message file.

-1231

Cannot seek within message file.

-1232

Message buffer too small.

Example

This sample program is in the rgetmsg.ec file in the demo directory.

/*
 * rgetmsg.ec *
 *
 * The following program demonstrates the usage of the rgetmsg() function.
 * It displays an error message after trying to create a table that already
 * exists.
 */
EXEC SQL include sqlca; /* this include is optional */

main()
{
 char errmsg[400];

 printf("\nRGETMSG Sample ESQL Program running.\n\n");
 EXEC SQL connect to 'stores7';

 EXEC SQL create table customer (name char(20));
 if(SQLCODE != 0)
 {
 rgetmsg((short)SQLCODE, errmsg, sizeof(errmsg));
 printf("\nError %d: ", SQLCODE);
 printf(errmsg, sqlca.sqlerrm);

769

HCL Informix 14.10 - ESQL/C Programmer’s Guide

770

 }
 printf("\nRGETMSG Sample Program over.\n\n");
}

Output
RGETMSG Sample ESQL Program running.

Error -310: Table (informix.customer) already exists in database.

RGETMSG Sample Program over.

The risnull() function
The risnull() function checks whether the C or the IBM® Informix® ESQL/C variable contains a null value.

Syntax

mint risnull(type; ptrvar)
 mint type;
 char *ptrvar;

type

An integer that corresponds to the data type of a C or Informix® ESQL/C variable. This type can be any data

type except var binary or an lvarchar pointer variable. For more information, see Data type constants on

page 82

ptrvar

A pointer to the C or Informix® ESQL/C variable.

Usage

The risnull() function determines whether Informix® ESQL/C variables of all data types except var binary and lvarchar

pointer variables contain a null value. To determine whether a var binary or lvarchar pointer host variable contains null, use

the ifx_var_isnull() macro. For more information, see The ifx_var_isnull() function on page 723.

Return codes

1

The variable does contain a null value.

0

The variable does not contain a null value.

Example

This sample program is in the risnull.ec file in the demo directory.

/*
 * risnull.ec *

Chapter 1. ESQL/C Guide

 This program checks the paid_date column of the orders table for NULL
 to determine whether an order has been paid.
*/

#include <stdio.h>

EXEC SQL include sqltypes;

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

main()
{
 char ans;
 int4 ret, exp_chk();

 EXEC SQL BEGIN DECLARE SECTION;
 int4 order_num;

 mint order_date, ship_date, paid_date;
 EXEC SQL END DECLARE SECTION;

 printf("RISNULL Sample ESQL Program running.\n\n");
 EXEC SQL connect to 'stores7'; /* open stores7 database*/
 exp_chk("CONNECT TO stores7", NOWARNNOTIFY)

 EXEC SQL declare c cursor for
 select order_num, order_date, ship_date, paid_date from orders;
 EXEC SQL open c;
 if(exp_chk("OPEN c", WARNNOTIFY) == 1) /* Found warnings */
 exit(1);
 printf("\n Order#\tPaid?\n"); /* print column hdgs */
 while(1)
 {
 EXEC SQL fetch c into :order_num, :order_date, :ship_date, :paid_date;
 if ((ret = exp_chk("FETCH c")) == 100) /* if end of rows */
 break; /* terminate loop */
 if(ret < 0)
 exit(1);
 printf("%5d\t", order_num);
 if (risnull(CDATETYPE, (char *)&paid_date)) /* is price NULL ? */
 printf("NO\n");
 else
 printf("Yes\n");
 }
 printf("\nRISNULL Sample Program over.\n\n");
}

/*
 * The exp_chk() file contains the exception handling functions to
 * check the SQLSTATE status variable to see if an error has occurred
 * following an SQL statement. If a warning or an error has
 * occurred, exp_chk() executes the GET DIAGNOSTICS statement and
 * prints the detail for each exception that is returned.
 */

EXEC SQL include exp_chk.ec

771

HCL Informix 14.10 - ESQL/C Programmer’s Guide

772

For a complete listing of the exp_chk() function, see Guide to the exp_chk.ec file on page 309 or see the exp_chk.ec file

for a listing of this exception-handling function.

Output
RISNULL Sample ESQL Program running.

Order# Paid?
 1001 Yes
 1002 Yes
 1003 Yes
 1004 NO
 1005 Yes
 1006 NO
 1007 NO
 1008 Yes
 1009 Yes
 1010 Yes
 1011 Yes
 1012 NO
 1013 Yes
 1014 Yes
 1015 Yes
 1016 NO
 1017 NO
 1018 Yes
 1019 Yes
 1020 Yes
 1021 Yes
 1022 Yes
 1023 Yes

RISNULL Sample Program over.

The rjulmdy() function
The rjulmdy() function creates an array of three short integer values that represent the month, day, and year from an internal

DATE value.

Syntax

mint rjulmdy(jdate, mdy)
 int4 jdate;
 int2 mdy[3];

jdate

The internal representation of the date.

mdy

An array of short integers, where mdy[0] is the month (1 - 12), mdy[1] is the day (1 - 31), and mdy[2] is the year

(1 - 9999).

Chapter 1. ESQL/C Guide

Return codes

0

The operation was successful.

< 0

The operation failed.

-1210

The internal date could not be converted to the character string format.

Example

The demo directory contains this sample program in the rjulmdy.ec file.

/*
 * rjulmdy.ec *

 The following program accepts a date entered from the console and converts
 it to an array of three short integers that contain the month, day, and year.
*/

#include <stdio.h>

main()
{
 int4 i_date;
 short mdy_array[3];
 mint errnum;
 char date[20];
 mint x;

 static char fmtstr[9] = "mmddyyyy";

 printf("RJULMDY Sample ESQL Program running.\n\n");

 /* Allow user to enter a date */
 printf("Enter a date as a single string, month.day.year\n");
 gets(date);

 printf("\nThe date string is %s.\n", date);

 /* Put entered date in internal format */
 if (x = rdefmtdate(&i_date, fmtstr, date))
 printf("Error %d on rdefmtdate conversion\n", x);
 else
 {

 /* Convert from internal format to MDY array */
 if ((errnum = rjulmdy(i_date, mdy_array)) == 0)
 {
 printf("\tThe month component is: %d\n", mdy_array[0]);
 printf("\tThe day component is: %d\n", mdy_array[1]);
 printf("\tThe year component is: %d\n", mdy_array[2]);
 }

773

HCL Informix 14.10 - ESQL/C Programmer’s Guide

774

 else
 printf("rjulmdy() call failed with error %d", errnum);
 }

 printf("\nRJULMDY Sample Program over.\n\n");
}

Output
RJULMDY Sample ESQL Program running.

Enter a date as a single string, month.day.year
10.12.07

The date string is 10.12.07.
The month component is: 10
The day component is: 12
The year component is: 2007

RJULMDY Sample Program over.

The rleapyear() function
The rleapyear() function returns 1 (TRUE) when the argument that is passed to it is a leap year and 0 (FALSE) when it is not.

Syntax

mint rleapyear(year)
 mint year;

year

An integer.

Usage

The argument year must be the year component of a date and not the date itself. You must express the year in full form

(2007) and not abbreviated form (07).

Return codes

1

The year is a leap year.

0

The year is not a leap year.

Example

The demo directory contains this sample program in the rleapyear.ec file.

/*
 * rleapyear.ec *

 The following program accepts a date entered from the console

Chapter 1. ESQL/C Guide

 and stores this date into an int4, which stores the date in
 an internal format. It then converts the internal format into an array of
 three short integers that contain the month, day, and year portions of the
 date. It then tests the year value to see if the year is a leap year.
*/

#include <stdio.h>

main()
{
 int4 i_date;
 mint errnum;
 short mdy_array[3];
 char date[20];
 mint x;

 static char fmtstr[9] = "mmddyyyy";

 printf("RLEAPYEAR Sample Program running.\n\n");

 /* Allow user to enter a date */
 printf("Enter a date as a single string, month.day.year\n");
 gets(date);

 printf("\nThe date string is %s.\n", date);

 /* Put entered date in internal format */
 if (x = rdefmtdate(&i_date, fmtstr, date))
 printf("Error %d on rdefmtdate conversion\n", x);
 else
 {

 /* Convert internal format into a MDY array */
 if ((errnum = rjulmdy(i_date, mdy_array)) == 0)
 {
 /* Check if it is a leap year */
 if (rleapyear(mdy_array[2]))
 printf("%d is a leap year\n", mdy_array[2]);
 else
 printf("%d is not a leap year\n", mdy_array[2]);
 }
 else
 printf("rjulmdy() call failed with error %d", errnum);
 }

 printf("\nRLEAPYEAR Sample Program over.\n\n");
}

Output

RLEAPYEAR Sample ESQL Program running.

Enter a date as a single string, month.day.year
10.12.07

The date string is 10.12.07.
2007 is not a leap year

775

HCL Informix 14.10 - ESQL/C Programmer’s Guide

776

RLEAPYEAR Sample Program over.

The rmdyjul() function
The rmdyjul() function creates an internal DATE from an array of three short integer values that represent month, day, and

year.

Syntax
mint rmdyjul(mdy, jdate)
 int2 mdy[3];
 int4 *jdate;

mdy

An array of short integer values, where mdy[0] is the month (1 - 12), mdy[1] is the day (1 - 31), and mdy[2] is the

year (1 - 9999).

jdate

A pointer to a long integer that receives the internal DATE value for the mdy array.

Usage

You can express the year in full form (2007) or abbreviated form (07).

Return codes

0

The operation was successful.

-1204

The mdy[2] variable contains an invalid year.

-1205

The mdy[0] variable contains an invalid month.

-1206

The mdy[1] variable contains an invalid day.

Example

The demo directory contains this sample program in the rmdyjul.ec file.

/*
 * rmdyjul.ec *

 This program converts an array of short integers containing values
 for month, day and year into an integer that stores the date in
 internal format.
*/

#include <stdio.h>

Chapter 1. ESQL/C Guide

main()
{
 int4 i_date;
 mint errnum;
 static short mdy_array[3] = { 12, 21, 2007 };
 char str_date[15];

 printf("RMDYJUL Sample ESQL Program running.\n\n");

 /* Convert MDY array into internal format */
 if ((errnum = rmdyjul(mdy_array, &i_date)) == 0)
 {
 rfmtdate(i_date, "mmm dd yyyy", str_date);
 printf("Date '%s' converted to internal format\n", str_date);
 }
 else
 printf("rmdyjul() call failed with errnum = %d\n", errnum);

 printf("\nRMDYJUL Sample Program over.\n\n");
}

Output

RMDYJUL Sample ESQL Program running.

Date 'Dec 21 2007' converted to internal format

RMDYJUL Sample Program over.

The rsetnull() function
The rsetnull() function sets a C variable to a value that corresponds to a database null value.

Syntax

mint rsetnull(type, ptrvar)
 mint type;
 char *ptrvar;

type

A mint that corresponds to the data type of a C or IBM® Informix® ESQL/C variable. This type can be any

data type except var binary or an lvarchar pointer variable. For more information, see Data type constants on

page 82.

ptrvar

A pointer to the C or Informix® ESQL/C variable.

Usage

The rsetnull() function sets to null Informix® ESQL/C variables of all data types except var binary and lvarchar pointer host

variables. To set a var binary or lvarchar pointer host variable to null, use the ifx_var_setnull() macro. For more information,

see The ifx_var_setnull() function on page 726

777

HCL Informix 14.10 - ESQL/C Programmer’s Guide

778

Example

This sample program is in the rsetnull.ec file in the demo directory.

/*
 * rsetnull.ec *

 This program fetches rows from the stock table for a chosen manufacturer
 and allows the user to set the unit_price to NULL.
*/

#include <stdio.h>
#include <ctype.h>
EXEC SQL include decimal;
EXEC SQL include sqltypes;

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

#define LCASE(c) (isupper(c) ? tolower(c) : (c))

char format[] = "($$,$$$,$$$.&&)";

main()
{
 char decdsply[20];
 char ans;
 int4 ret, exp_chk();

 EXEC SQL BEGIN DECLARE SECTION;
 short stock_num;
 char description[16];
 dec_t unit_price;
 char manu_code[4];
 EXEC SQL END DECLARE SECTION;

 printf("RSETNULL Sample ESQL Program running.\n\n");
 EXEC SQL connect to 'stores7'; /* connect to stores7 */
 exp_chk("Connect to stores7", NOWARNNOTIFY);

 printf("This program selects all rows for a given manufacturer\n");
 printf("from the stock table and allows you to set the unit_price\n");
 printf("to NULL.\n");
 printf("\nTo begin, enter a manufacturer code - for example: 'HSK'\n");
 printf("\nEnter Manufacturer code: "); /* prompt for mfr. code */
 gets(manu_code); /* get mfr. code */
 EXEC SQL declare upcurs cursor for /* declare cursor */
 select stock_num, description, unit_price from stock
 where manu_code = :manu_code
 for update of unit_price;
 rupshift(manu_code); /* Make mfr code upper case */
 EXEC SQL open upcurs; /* open select cursor */
 if(exp_chk("Open cursor", WARNNOTIFY) == 1)
 exit(1);

 /*
 * Display Column Headings

Chapter 1. ESQL/C Guide

 */
 printf("\nStock # \tDescription \t\tUnit Price");
 while(1)
 {
 /* get a row */
 EXEC SQL fetch upcurs into :stock_num, :description, :unit_price;
 if ((ret = exp_chk("fetch", WARNNOTIFY)) == 100) /* if end of rows */
 break;
 if(ret == 1)
 exit(1);
 if(risnull(CDECIMALTYPE, (char *) &unit_price)) /* unit_price NULL? */
 continue; /* skip to next row */
 rfmtdec(&unit_price, format, decdsply); /* format unit_price */
 /* display item */
 printf("\n\t%d\t%15s\t%s", stock_num, description, decdsply);
 ans = ' ';
 /* Set unit_price to NULL? y(es) or n(o) */
 while((ans = LCASE(ans)) != 'y' && ans != 'n')
 {
 printf("\n. . . Set unit_price to NULL ? (y/n) ");
 scanf("%1s", &ans);
 }
 if (ans == 'y') /* if yes, NULL to unit_price */
 {
 rsetnull(CDECIMALTYPE, (char *) &unit_price);
 EXEC SQL update stock set unit_price = :unit_price
 where current of upcurs; /* and update current row */
 if(exp_chk("UPDATE", WARNNOTIFY) == 1)
 exit(1);
 }
 }
 printf("\nRSETNULL Sample Program over.\n\n");
}

/*
 * The exp_chk() file contains the exception handling functions to
 * check the SQLSTATE status variable to see if an error has occurred
 * following an SQL statement. If a warning or an error has
 * occurred, exp_chk() executes the GET DIAGNOSTICS statement and
 * prints the detail for each exception that is returned.
 */

EXEC SQL include exp_chk.ec

For a complete listing of the exp_chk() function, see Guide to the exp_chk.ec file on page 309 or see the exp_chk.ec file

for a listing of this exception-handling function.

Output

RSETNULL Sample ESQL Program running.

This program selects all rows for a given manufacturer
from the stock table and allows you to set the unit_price
to NULL.

To begin, enter a manufacturer code - for example: 'HSK'

779

HCL Informix 14.10 - ESQL/C Programmer’s Guide

780

Enter Manufacturer code: HSK

Stock # Description Unit Price
 1 baseball gloves $800.00
 . . . Set unit_price to NULL ? (y/n) n

 3 baseball bat $240.00
. . . Set unit_price to NULL ? (y/n) y

 4 football $960.00
. . . Set unit_price to NULL ? (y/n) n

 110 helmet $600.00
. . . Set unit_price to NULL ? (y/n) y

RSETNULL Sample Program over.

The rstod() function
The rstod() function converts a null-terminated string into a double value.

Syntax

mint rstod(string, double_val)
 char *string;
 double *double_val;

string

A pointer to a null-terminated string.

double_val

A pointer to a double value that holds the converted value.

Usage

=0

The conversion was successful.

!=0

The conversion failed.

Example

This sample program is in the rstod.ec file in the demo directory.

/*
 * rstod.ec *

 The following program tries to convert three strings to doubles.
 It displays the result of each attempt.
*/

#include <stdio.h>

Chapter 1. ESQL/C Guide

main()
{
 mint errnum;
 char *string1 = "1234567887654321";
 char *string2 = "12345678.87654321";
 char *string3 = "zzzzzzzzzzzzzzzz";
 double d;

 printf("RSTOD Sample ESQL Program running.\n\n");

 printf("Converting String 1: %s\n", string1);
 if ((errnum = rstod(string1, &d)) == 0)
 printf("\tResult = %f\n\n", d);
 else
 printf("\tError %d in conversion of string 1\n\n", errnum);

 printf("Converting String 2: %s\n", string2);
 if ((errnum = rstod(string2, &d)) == 0)
 printf("\tResult = %.8f\n\n", d);
 else
 printf("\tError %d in conversion of string 2\n\n", errnum);

 printf("Converting String 3: %s\n", string3);
 if ((errnum = rstod(string3, &d)) == 0)
 printf("\tResult = %.8f\n\n", d);
 else
 printf("\tError %d in conversion of string 3\n\n", errnum);

 printf("\nRSTOD Sample Program over.\n\n");
}

Output

RSTOD Sample ESQL Program running.

Converting String 1: 123456788764321
 Result = 1234567887654321.000000

Converting String 2: 12345678.87654321
 Result = 12345678.87654321

Converting String 3: zzzzzzzzzzzzzzzz
 Error -1213 in conversion of string 3

RSTOD Sample Program over.

The rstoi() function
The rstoi() function converts a null-terminated string into a short integer value.

Syntax

mint rstoi(string, ival)
 char *string;
 mint *ival;

781

HCL Informix 14.10 - ESQL/C Programmer’s Guide

782

string

A pointer to a null-terminated string.

ival

A pointer to a mint value that holds the converted value.

Usage

The legal range of values is -32767 - 32767. The value -32768 is not valid because this value is a reserved value that indicates

null.

If string corresponds to a null integer, ival points to the representation for a SMALLINT null. To convert a string that

corresponds to a long integer, use rstol(). Failure to do so can result in corrupted data representation.

Return codes

=0

The conversion was successful.

!=0

The conversion failed.

Example

This sample program is in the rstoi.ec file in the demo directory.

/*
 * rstoi.ec *

 The following program tries to convert three strings to integers.
 It displays the result of each conversion.
*/

#include <stdio.h>

EXEC SQL include sqltypes;

main()
{
 mint err;
 mint i;
 short s;

 printf("RSTOI Sample ESQL Program running.\n\n");

 i = 0;
 printf("Converting String 'abc':\n");
 if((err = rstoi("abc", &i)) == 0)
 printf("\tResult = %d\n\n", i);
 else
 printf("\tError %d in conversion of string #1\n\n", err);

Chapter 1. ESQL/C Guide

 i = 0;
 printf("Converting String '32766':\n");
 if((err = rstoi("32766", &i)) == 0)
 printf("\tResult = %d\n\n", i);
 else
 printf("\tError %d in conversion of string #2\n\n", err);

 i = 0;
 printf("Converting String '':\n");
 if((err = rstoi("", &i)) == 0)
 {
 s = i; /* assign to a SHORT variable */
 if (risnull(CSHORTTYPE, (char *) &s)) /* and then test for NULL */
 printf("\tResult = NULL\n\n");
 else
 printf("\tResult = %d\n\n", i);
 }
 else
 printf("\tError %d in conversion of string #3\n\n", err);

 printf("\nRSTOI Sample Program over.\n\n");
}

Output

RSTOI Sample ESQL Program running.

Converting String 'abc':
 Error -1213 in conversion of string #1

Converting String '32766':
 Result = 32766

Converting String '':
 Result = NULL

RSTOI Sample Program over.

The rstol() function
The rstol() function converts a null-terminated string into a long integer value.

Syntax

mint rstol(string, long_int)
 char *string;
 mlong *long_int;

string

A pointer to a null-terminated string.

long_int

A pointer to an mlong value that holds the converted value.

783

HCL Informix 14.10 - ESQL/C Programmer’s Guide

784

Usage

The legal range of values is -2,147,483,647 - 2,147,483,647. The value -2,147,483,648 is not valid because this value is a

reserved value that indicates null.

Return codes

=0

The conversion was successful.

!=0

The conversion failed.

Example

This sample program is in the rstol.ec file in the demo directory.

/*
 * rstol.ec *

 The following program tries to convert three strings to longs. It
 displays the result of each attempt.
*/

#include <stdio.h>

EXEC SQL include sqltypes;

main()
{
 mint err;
 mlong l;

 printf("RSTOL Sample ESQL Program running.\n\n");

 l = 0;
 printf("Converting String 'abc':\n");
 if((err = rstol("abc", &l)) == 0)
 printf("\tResult = %ld\n\n", l);
 else
 printf("\tError %d in conversion of string #1\n\n", err);

 l = 0;
 printf("Converting String '2147483646':\n");
 if((err = rstol("2147483646", &l)) == 0)
 printf("\tResult = %ld\n\n", l);
 else
 printf("\tError %d in conversion of string #2\n\n", err);

 l = 0;
 printf("Converting String '':\n");
 if((err = rstol("", &l)) == 0)
 {
 if(risnull(CLONGTYPE, (char *) &l))
 printf("\tResult = NULL\n\n", l);

Chapter 1. ESQL/C Guide

 else
 printf("\tResult = %ld\n\n", l);
 }
 else
 printf("\tError %d in conversion of string #3\n\n", err);

 printf("\nRSTOL Sample Program over.\n\n");
}

Output
RSTOL Sample ESQL Program running.

Converting String 'abc':
 Error -1213 in conversion of string #1

Converting String '2147483646':
 Result = 2147483646

Converting String '':
 Result = NULL

RSTOL Sample Program over.

The rstrdate() function
The rstrdate() function converts a character string to an internal DATE.

Syntax

mint rstrdate(inbuf, jdate)
 char *inbuf;
 int4 *jdate;

inbuf

A pointer to the string that contains the date to convert.

jdate

A pointer to an int4 integer that receives the internal DATE value for the inbuf string.

Usage

For the default locale, US English, the rstrdate() function determines how to format the character string with the following

precedence:

1. The format that the DBDATE environment variable specifies (if DBDATE is set). For more information about DBDATE,

see the HCL® Informix® Guide to SQL: Reference.

2. The format that the GL_DATE environment variable specifies (if GL_DATE is set). For more information about

GL_DATE, see the HCL® Informix® GLS User's Guide.

3. The default date form: mm/dd/yyyy. You can use any nonnumeric character as a separator between the month, day,

and year. You can express the year as four digits (2007) or as two digits (07).

785

HCL Informix 14.10 - ESQL/C Programmer’s Guide

786

When you use a nondefault locale and do not set the DBDATE or GL_DATE environment variable, rstrdate() uses the date end-

user format that the client locale defines. For more information, see the HCL® Informix® GLS User's Guide.

When you use a two-digit year in the date string, the rstrdate() function uses the value of the DBCENTURY environment

variable to determine which century to use. If you do not set DBCENTURY, rstrdate() assumes the 20th century for two-digit

years. For information about how to set DBCENTURY, see the HCL® Informix® Guide to SQL: Reference.

Return codes

0

The conversion was successful.

< 0

The conversion failed.

-1204

The inbuf parameter specifies an invalid year.

-1205

The inbuf parameter specifies an invalid month.

-1206

The inbuf parameter specifies an invalid day.

-1212

Data conversion format must contain a month, day, or year component. DBDATE specifies the data conversion

format.

-1218

The date specified by the inbuf argument does not properly represent a date.

Example

The demo directory contains this sample program in the rstrdate.ec file.

/*
 * rstrdate.ec *
 The following program converts a character string
 in "mmddyyyy" format to an internal date format.
*/

#include <stdio.h>

main()
{
 int4 i_date;
 mint errnum;
 char str_date[15];

 printf("RSTRDATE Sample ESQL Program running.\n\n");

Chapter 1. ESQL/C Guide

 /* Convert Sept. 6th, 2007 into i_date */
 if ((errnum = rstrdate("9.6.2007", &i_date)) == 0)
 {

 rfmtdate(i_date, "mmm dd yyyy", str_date);
 printf("Date '%s' converted to internal format\n" str_date);
 }
 else
 printf("rstrdate() call failed with error %d\n", errnum);

 printf("\nRSTRDATE Sample Program over.\n\n");
}

Output
RSTRDATE Sample ESQL Program running.

Date 'Sep 06 2007' converted to internal format

RSTRDATE Sample Program over.

The rtoday() function
The rtoday() function returns the system date as a long integer value.

Syntax

void rtoday(today)
 int4 *today;

today

A pointer to an int4 value that receives the internal DATE.

Usage

The rtoday() function obtains the system date on the client computer, not the server computer.

Example

The demo directory contains this sample program in the rtoday.ec file.

/*
 * rtoday.ec *

 The following program obtains today's date from the system,
 converts it to ASCII using rdatestr(), and displays the result.
*/

#include <stdio.h>

main()
{
 mint errnum;
 char today_date[20];
 int4 i_date;

787

HCL Informix 14.10 - ESQL/C Programmer’s Guide

788

 printf("RTODAY Sample ESQL Program running.\n\n");

 /* Get today's date in the internal format */
 rtoday(&i_date);

 /* Convert date from internal format into a mm/dd/yyyy string */
 if ((errnum = rdatestr(i_date, today_date)) == 0)
 printf("\n\tToday's date is %s.\n", today_date);
 else
 printf("\n\tError %d in converting date to mm/dd/yyyy\n", errnum);

 printf("\nRTODAY Sample Program over.\n\n");
}

Output
RTODAY Sample ESQL Program running.

 Today's date is 09/16/2007.

RTODAY Sample Program over.

The rtypalign() function
The rtypalign() function returns the position of the next proper boundary for a variable of the specified data type.

Syntax

32 bit

mint rtypalign(pos, type)
 mint pos;
 mint type;

64 bit

mlong rtypalign(pos, type)
 mlong pos;
 mint type;

pos

The current position in a buffer.

type

An integer that corresponds to the data type of a C or IBM® Informix® ESQL/C variable. This type can be any

data type except the following:

• var binary

• CFIXBINTYPE

• CVARBINTYPE

• SQLUDTVAR

• SQLUDTFIXED

Chapter 1. ESQL/C Guide

For more information, see Data type constants on page 82.

Usage

The rtypalign() and rtypmsize() functions are useful when you use an sqlda structure to dynamically fetch data into a buffer.

On many hardware platforms, integer and other numeric data types must begin on a work boundary. The C language memory

allocation routines allocate memory that is suitably aligned for any data type, including structures. However, these routines

do not perform alignment for the constituent components of the structure. The programmer is responsible for performing

that alignment with functions such as rtypalign() and rtypmsize(). These functions provide machine independence for storing

column data.

After a DESCRIBE statement determines column information, Informix® ESQL/C stores the value of type in sqlda.sqlvar-

>sqltype.

You can see an application of the rtypalign() function in the unload.ec demonstration program.

Return codes

>0

The return value is the offset of the next proper boundary for a variable of type data type.

Example

This sample program is in the rtypalign.ec file in the demo directory.

/*
 * rtypalign.ec *

 The following program prepares a select on all columns of the orders
 table and then calculates the proper alignment for each column in a buffer.
*/

#include <decimal.h>

EXEC SQL include sqltypes;

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

main()
{
 mint i, pos;
 int4 ret, exp_chk();
 struct sqlda *sql_desc;
 struct sqlvar_struct *col;

 printf("RTYPALIGN Sample ESQL Program running.\n\n");

 EXEC SQL connect to 'stores7'; /* open stores7 database */
 exp_chk("Connect to", NOWARNNOTIFY);

 EXEC SQL prepare query_1 from "select * from orders"; /* prepare select */
 if(exp_chk("Prepare", WARNNOTIFY) == 1)

789

HCL Informix 14.10 - ESQL/C Programmer’s Guide

790

 exit(1);

 EXEC SQL describe query_1 into sql_desc; /* initialize sqlda */
 if(exp_chk("Describe", WARNNOTIFY) == 1)
 exit(1);

 col = sql_desc->sqlvar;
 printf("\n\ttype\t\tlen\tnext\taligned\n"); /* display column hdgs. */
 printf("\t\t\t\tposn\tposn\n\n");
 /*
 * For each column in the orders table
 */
 i = 0;
 pos = 0;
 while(i++ < sql_desc->sqld)
 {
 /* Modify sqllen if SQL type is DECIMAL or MONEY */
 if(col->sqltype == SQLDECIMAL || col->sqltype == SQLMONEY)
 {
 col->sqllen = sizeof(dec_t);
 }
 /*
 * display name of SQL type, length and un-aligned buffer position
 */
 printf("\t%s\t\t%d\t%d", rtypname(col->sqltype), col->sqllen, pos);

 pos = rtypalign(pos, col->sqltype); /* align pos. for type */
 printf("\t%d\n", pos);

 pos += col->sqllen; /* set next position */
 ++col; /* bump to next column */
 }
 printf("\nRTYPALIGN Sample Program over.\n\n");
}

/*
 * The exp_chk() file contains the exception handling functions to
 * check the SQLSTATE status variable to see if an error has occurred
 * following an SQL statement. If a warning or an error has
 * occurred, exp_chk() executes the GET DIAGNOSTICS statement and
 * prints the detail for each exception that is returned.
 */

EXEC SQL include exp_chk.ec

For a complete listing of the exp_chk() function, see Guide to the exp_chk.ec file on page 309 or see the exp_chk.ec file

for a listing of this exception-handling function.

Output

RTYPALIGN Sample ESQL Program running.

type len next posn aligned posn

serial 4 0 0

Chapter 1. ESQL/C Guide

type len next posn aligned posn

date 4 4 4

integer 4 8 8

char 40 12 12

char 1 52 52

char 10 53 53

date 4 63 64

decimal 22 68 68

money 22 90 90

date 4 112 112

RTYPALIGN Sample Program over.

The rtypmsize() function
The rtypmsize() function returns the number of bytes you must allocate in memory for the specified IBM® Informix® ESQL/C

or SQL data type.

Syntax

mint rtypmsize(sqltype, sqllen)
 mint sqltype;
 mint sqllen;

sqltype

The integer code of the Informix® ESQL/C or SQL data type. For more information, see Data type constants on

page 82.

sqllen

The number of bytes in the data file for the specified data type.

Usage

The rtypalign() and rtypmsize() functions are useful when you use an sqlda structure to dynamically fetch data into a buffer.

These functions provide machine independence for the column-data storage.

The rtypmsize() function is provided to use with the sqlda structure that a DESCRIBE statement initializes. After a DESCRIBE

statement determines column information, the value of sqltype and sqllen components are in the components of the same

name in each sqlda.sqlvar structure.

When rtypmsize() determines sizes for character data, keep in mind the following size information:

791

HCL Informix 14.10 - ESQL/C Programmer’s Guide

792

• For CCHARTYPE (char) and CSTRINGTYPE (string), Informix® ESQL/C adds one byte to the number of characters for

the null terminator.

• For CFIXCHARTYPE (fixchar), Informix® ESQL/C does not add a null terminator.

You can see an application of the rtypmsize() function in the unload.ec demonstration program.

Return codes

0

The sqltype is not a valid SQL type.

>0

The return value is the number of bytes that the sqltype data type requires.

Example

This sample program is in the rtypmsize.ec file in the demo directory.

/*
 * rtypmsize.ec *

 This program prepares a select statement on all columns of the
 catalog table. Then it displays the data type of each column and
 the number of bytes needed to store it in memory.
*/

#include <stdio.h>

EXEC SQL include sqltypes;

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

EXEC SQL BEGIN DECLARE SECTION;
 char db_name[20];
EXEC SQL END DECLARE SECTION;

main(argc, argv)
int argc;
char *argv[];
{
 mint i;
 char db_stmnt[50];
 int4 exp_chk();
 struct sqlda *sql_desc;
 struct sqlvar_struct *col;

 printf("RTYPMSIZE Sample ESQL Program running.\n\n");

 if (argc > 2) /* correct no. of args? */
 {
 printf("\nUsage: %s [database]\nIncorrect no. of argument(s)\n",
 argv[0]);
 exit(1);

Chapter 1. ESQL/C Guide

 }
 strcpy(db_name, "stores7");
 if (argc == 2)
 strcpy(db_name, argv[1]);

 EXEC SQL connect to :db_name;
 sprintf(db_stmnt, "CONNECT TO %s", argv[1]);
 exp_chk(db_stmnt, NOWARNNOTIFY);

 printf("Connected to '%s' database.", db_name);

 EXEC SQL prepare query_1 from 'select * from catalog'; /* prepare select */
 if(exp_chk("Prepare", WARNNOTIFY) == 1)
 exit(1);
 EXEC SQL describe query_1 into sql_desc; /* setup sqlda */
 if(exp_chk("Describe", WARNNOTIFY) == 1)
 exit(1);
 printf("\n\tColumn Type Size\n\n"); /* column hdgs. */
 /*
 * For each column in the catalog table display the column name and
 * the number of bytes needed to store the column in memory.
 */
 for(i = 0, col = sql_desc->sqlvar; i < sql_desc->sqld; i++, col++)
 printf("\t%-20s%-8s%3d\n", col->sqlname, rtypname(col->sqltype),
 rtypmsize(col->sqltype, col->sqllen));

 printf("\nRTYPMSIZE Sample Program over.\n\n");
}

/*
 * The exp_chk() file contains the exception handling functions to
 * check the SQLSTATE status variable to see if an error has occurred
 * following an SQL statement. If a warning or an error has
 * occurred, exp_chk() executes the GET DIAGNOSTICS statement and
 * prints the detail for each exception that is returned.
 */
EXEC SQL include exp_chk.ec

For a complete listing of the exp_chk() function, see Guide to the exp_chk.ec file on page 309 or see the exp_chk.ec file

for a listing of this exception-handling function.

Output

RTYPMSIZE Sample ESQL Program running.

Connected to stores7 database.

Column Type Size
catalog_num serial 4
stock_num smallint s
manu_code char 4
cat_descr text 64
cat_picture byte 64
cat_advert varchar 256

RTYPMSIZE Sample Program over.

793

HCL Informix 14.10 - ESQL/C Programmer’s Guide

794

The rtypname() function
The rtypname() function returns a null-terminated string that contains the name of the specified SQL data type.

Syntax
char *rtypname(sqltype)
 mint sqltype;

sqltype

An integer code for one of the SQL data types. For more information, see Data type constants on page 82

The rtypname() function converts a constant for the HCL Informix® SQL data type (which sqltypes.h defines) to a

character string.

Return codes

The rtypname() function returns a pointer to a string that contains the name of the data type specified sqltype. If sqltype is an

invalid value, rtypname() returns a null string (" ").

Example

This sample program is in the rtypname.ec file in the demo directory.

/*
 * rtypname.ec *

 This program displays the name and the data type of each column
 in the 'orders' table.
*/

#include <stdio.h>

EXEC SQL include sqltypes;

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

main(argc, argv)
int argc;
char *argv[];
{
 mint i;
 int4 err_chk();
 char db_stmnt[50];
 char *rtypname();
 struct sqlda *sql_desc;
 struct sqlvar_struct *col;

 EXEC SQL BEGIN DECLARE SECTION;
 char db_name[20];
 EXEC SQL END DECLARE SECTION;

 printf("RTYPNAME Sample ESQL Program running.\n\n");

Chapter 1. ESQL/C Guide

 if (argc > 2) /* correct no. of args? */
 {
 printf("\nUsage: %s [database]\nIncorrect no. of argument(s)\n",
 argv[0]);
 exit(1);
 }
 strcpy(db_name, "stores7");

 if (argc == 2)
 strcpy(db_name, argv[1]);

 EXEC SQL connect to :db_name;
 sprintf(db_stmnt, "CONNECT TO %s", argv[1]);
 exp_chk(db_stmnt, NOWARNNOTIFY);

 printf("Connected to '%s' database.", db_name);
 EXEC SQL prepare query_1 from 'select * from orders'; /* prepare select */
 if(exp_chk("Prepare", WARNNOTIFY) == 1)
 exit(1);
 EXEC SQL describe query_1 into sql_desc; /* initialize sqlda */
 if(exp_chk("Describe", WARNNOTIFY) == 1)
 exit(1);
 printf("\n\tColumn Name \t\tSQL type\n\n");

 /*
 * For each column in the orders table display the column name and
 * the name of the SQL data type
 */
 for (i = 0, col = sql_desc->sqlvar; i < sql_desc->sqld; i++, col++)
 printf("\t%-15s\t\t%s\n", col->sqlname, rtypname(col->sqltype));

 printf("\nRTYPNAME Sample Program over.\n\n");
}

/*
 * The exp_chk() file contains the exception handling functions to
 * check the SQLSTATE status variable to see if an error has occurred
 * following an SQL statement. If a warning or an error has
 * occurred, exp_chk() executes the GET DIAGNOSTICS statement and
 * prints the detail for each exception that is returned.
 */

EXEC SQL include exp_chk.ec

For a complete listing of the exp_chk() function, see Guide to the exp_chk.ec file on page 309 or see the exp_chk.ec file

for a listing of this exception-handling function.

Output

RTYPNAME Sample ESQL Program running.

Connected to stores7 database
 Column Name SQL type

 order_num serial
 order_date date
 customer_num integer

795

HCL Informix 14.10 - ESQL/C Programmer’s Guide

796

 ship_instruct char
 backlog char
 po_num char
 ship_date date
 ship_weight decimal
 ship_charge money
 paid_date date

RTYPNAME Sample Program over.

The rtypsize() function
The rtypsize() function returns the internal storage sizes of data for clients that use the Change Data Capture API.

Syntax
mint rtypsize(sqltype, sqllen)
 mint sqltype;
 mint sqllen;

sqltype

The integer code of the Informix® ESQL/C or SQL data type. For more information, see Data type constants on

page 82.

sqllen

The number of bytes in the data file for the specified data type.

Usage

While similar to the rtypmsize() function, the rtypsize() function returns internal server storage lengths rather than ESQL/C

data lengths.

The rtypsize() function is provided to use with the sqlda structure that a DESCRIBE statement initializes. After a DESCRIBE

statement determines column information, the value of sqltype and sqllen components are in the components of the same

name in each sqlda.sqlvar structure.

You can see an application of the rtypsize() function in the cdcapi.ec sample program in the demo directory.

Return codes

0

The sqltype is not a valid SQL type.

>0

The return value is the number of bytes that the sqltype data type requires.

Example

The following code fragment from the cdcapi.ec file in the demo directory shows the usage of the rtypsize() function.

 sprintf(sql_stm, "select * from %s", tabname);
 $prepare select_id from $sql_stm;

Chapter 1. ESQL/C Guide

 CHK_SQL_CODE(sql_stm);

 $describe select_id into sqlda;
 CHK_SQL_CODE("Describe");

 /*
 * Save the description of the column descriptor for the table.
 * We will use this later to process the insert/update/delete records
 * for this table.
 */
 for (col = 0; col < sqlda->sqld; col++)
 {
 colsize = rtypsize(sqlda->sqlvar[col].sqltype,
 sqlda->sqlvar[col].sqllen);
 printStdoutAndFile("\tColumn %d is %s, type = %d, size = %d\n", col,
 sqlda->sqlvar[col].sqlname, sqlda->sqlvar[col].sqltype, colsize);

 coldesc.colobj[col].coltype = sqlda->sqlvar[col].sqltype;
 coldesc.colobj[col].colsize = colsize;
 coldesc.colobj[col].colxid = sqlda->sqlvar[col].sqlxid;
 coldesc.colobj[col].colname =
 malloc(strlen(sqlda->sqlvar[col].sqlname)+1);
 strcpy(coldesc.colobj[col].colname, sqlda->sqlvar[col].sqlname);
 }
 coldesc.num_of_columns = col;

The rtypwidth() function
The rtypwidth() function returns the minimum number of characters that a character data type needs to avoid truncation

when you convert a value with an SQL data type to a character data type.

Syntax

mint rtypwidth(sqltype, sqllen)
 mint sqltype;
 mint sqllen;

sqltype

The integer code of the SQL data type. For more information, see Data type constants on page 82.

sqllen

The number of bytes in the data file for the specified SQL data type.

Usage

The rtypwidth() function is provided for use with the sqlda structure that a DESCRIBE statement initializes. The sqltype and

sqllen components correspond to the components of the same name in each sqlda.sqlvar structure.

Return codes

0

The sqltype is not a valid SQL data type.

797

HCL Informix 14.10 - ESQL/C Programmer’s Guide

798

>0

The return value is the minimum number of characters that the sqltype data type requires.

Example

This sample program is in the rtypwidth.ec file in the demo directory.

/*
 * rtypwidth.ec *

 This program displays the name of each column in the 'orders' table and
 the number of characters required to store the column when the
 data type is converted to characters.
*/

#include <stdio.h>

#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

main(argc, argv)
int argc;
char *argv[];
{
 mint i, numchars;

 int4 exp_chk();
 char db_stmnt[50];
 struct sqlda *sql_desc;
 struct sqlvar_struct *col;

 EXEC SQL BEGIN DECLARE SECTION;
 char db_name[20];
 EXEC SQL END DECLARE SECTION;

 printf("RTYPWIDTH Sample ESQL Program running.\n\n");

 if (argc > 2) /* correct no. of args? */
 {
 printf("\nUsage: %s [database]\nIncorrect no. of argument(s)\n",
 argv[0]);
 exit(1);
 }
 strcpy(db_name, "stores7");
 if (argc == 2)
 strcpy(db_name, argv[1]);

 EXEC SQL connect to :db_name;
 sprintf(db_stmnt, "CONNECT TO %s", argv[1]);
 exp_chk(db_stmnt, NOWARNNOTIFY);

 printf("Connected to %s\n", db_name);

 EXEC SQL prepare query_1 from 'select * from orders'; /* prepare select */
 if(exp_chk("Prepare", WARNNOTIFY) == 1)
 exit(1);

Chapter 1. ESQL/C Guide

 EXEC SQL describe query_1 into sql_desc; /* setup sqlda */
 if(exp_chk("Describe", WARNNOTIFY) == 1)
 exit(1);
 printf("\n\tColumn Name \t# chars\n");

/*
 * For each column in orders print the column name and the minimum
 * number of characters required to convert the SQL type to a character
 * data type
 */
 for (i = 0, col = sql_desc->sqlvar; i < sql_desc->sqld; i++, col++)
 {
 numchars = rtypwidth(col->sqltype, col->sqllen);
 printf("\t%-15s\t%d\n", col->sqlname, numchars);
 }

 printf("\nRTYPWIDTH Sample Program over.\n\n");
}

/*
 * The exp_chk() file contains the exception handling functions to
 * check the SQLSTATE status variable to see if an error has occurred
 * following an SQL statement. If a warning or an error has
 * occurred, exp_chk() executes the GET DIAGNOSTICS statement and
 * prints the detail for each exception that is returned.
 */
EXEC SQL include exp_chk.ec

Output

RTYPWIDTH Sample ESQL Program running.

Connected to stores7

 Column Name # chars
 order_num 11
 order_date 10
 customer_num 11
 ship_instruct 40
 backlog 1
 po_num 10
 ship_date 10
 ship_weight 10
 ship_charge 9
 paid_date 10

RTYPWIDTH Sample Program over.

The rupshift() function
The rupshift() function changes all the characters within a null-terminated string to uppercase characters.

Syntax

void rupshift(s)
 char *s;

799

HCL Informix 14.10 - ESQL/C Programmer’s Guide

800

s

A pointer to a null-terminated string.

Usage

The rupshift() function refers to the current locale to determine uppercase and lowercase letters. For the default locale, US

English, rupshift() uses the ASCII lowercase (a-z) and uppercase (A-Z) letters.

If you use a nondefault locale, rupshift() uses the lowercase and uppercase letters that the locale defines. For more

information, see the HCL® Informix® GLS User's Guide.

Example

This sample program is in the rupshift.ec file in the demo directory.

/*
 * rupshift.ec *

 The following program displays the result of rupshift() on a string
 of numbers, letters and punctuation.
*/

#include <stdio.h>

main()
{
 static char string[] = "123abcdefghijkl;.";

 printf("RUPSHIFT Sample ESQL Program running.\n\n");

 printf("\tInput string: %s\n", string);
 rupshift(string);
 printf("\tAfter upshift: %s\n", string); /* Result */

 printf("\nRUPSHIFT Sample Program over.\n\n");
}

Output

RUPSHIFT Sample ESQL Program running.

 Input string: 123abcdefghijkl;.
 After upshift: 123ABCDEFGHIJKL;.

RUPSHIFT Sample Program over.

The SetConnect() function (Windows™)
The SetConnect() function is available only in Windows™ environments. It switches the connection to a specified explicit

connection.

Chapter 1. ESQL/C Guide

Important: IBM® Informix® ESQL/C supports the SetConnect() connection library function for compatibility with

Version 5.01 Informix® ESQL/C for Windows™ applications. When you write new Informix® ESQL/C applications for

Windows™ environments, use the SQL SET CONNECTION statement to switch to another active connection.

Syntax
void *SetConnect (void *CnctHndl)

CnctHndl

A connection handle that a previous GetConnect() call has returned.

Usage

The SetConnect() function maps to a simple SQL SET CONNECTION statement (one without a DEFAULT option). The

SetConnect() call is equivalent to the following SQL statement:

EXEC SQL set connection db_connection;

In this example, db_connection is the name of an existing connection that the GetConnect() function has established. You

pass this db_connection name to the SetConnect() function as an argument. It is a connection handle for the connection that

you want to make active.

If you pass a null handle, the SetConnect() function returns the current connection handle and does not change the current

connection. If no current connection exits when you pass a null handle, SetConnect() returns null.

For example, the following code fragment uses SetConnect() to switch from a connection to the accounts database on the

acctsrvr database server (cnctHndl2) to a customers database on the mainsrvr database server (cnctHndl1):

void *cnctHndl1, *cnctHndl2, *prevHndl;
⋮;

lish connection 'cnctHndl1' to customers@mainsrvr */
strcpy(InetLogin.InfxServer, "mainsrvr");
cnctHndl1 = GetConnect();
EXEC SQL database customers;
⋮;

/* Establish connection 'cnctHndl2' to accounts@acctsrvr */
strcpy(InetLogin.InfxServer, "acctsrvr");
cnctHndl2 = GetConnect();
EXEC SQL database accounts;
⋮;

prevHndl = SetConnect(cnctHndl1);

Important: Because the SetConnect() function maps to a SET CONNECTION statement, it sets the SQLCODE and

SQLSTATE status codes to indicate the success or failure of the connection switch request. This behavior differs

801

HCL Informix 14.10 - ESQL/C Programmer’s Guide

802

from SetConnect() in Version 5.01 Informix® ESQL/C for Windows™, in which this function did not set the SQLCODE

and SQLSTATE values.

The SetConnect() function differs from the SET CONNECTION statement in the way that it obtains the connection name.

SetConnect() uses an internally generated name that is stored in the connection handle. You must specify this handle as an

argument to the SetConnect() call. The SET CONNECTION statement uses the user-defined connection name that the AS

clause of the CONNECT statement specifies.

Important: Because the GetConnect() function maps to a CONNECT statement with the WITH CONCURRENT

TRANSACTION clause, it allows an explicit connection with open transactions to become dormant. Your Informix®

ESQL/C application does not need to ensure that the current transaction was committed or rolled back before it calls

the SetConnect() function to switch to another explicit connection.

Return codes

CnctHndl

The call to SetConnect() was successful if the function has returned a connection handle of the connection

that is now dormant.

null pointer

The call to SetConnect() was not successful, indicating that no explicit connection was established.

The sqgetdbs() function
The sqgetdbs() function returns the names of databases that a database server can access.

Syntax

mint sqgetdbs(ret_fcnt, dbnarray, dbnsize, dbnbuffer, dbnbufsz)
 mint *ret_fcnt;
 char **dbnarray;
 mint dbnsize;
 char *dbnbuffer;
 mint dbnbufsz;

ret_fcnt

A pointer to the number of database names that the function returns.

dbnarray

A user-defined array of character pointers.

dbnsize

The size of the dbnarray user-defined array.

dbnbuffer

A pointer to a user-defined buffer that contains the names of the databases that the function returns.

Chapter 1. ESQL/C Guide

dbnbufsz

The size of the dbnbuffer user-defined buffer.

Usage

You must provide the following user-defined data structures to the sqgetdbs() function:

• The dbnbuffer buffer holds the names of the null-terminated database names that sqgetdbs() returns.

• The dbnarray array holds pointers to the database names that the function stores in the dbnbuffer buffer. For

example, dbnarray[0] points to the first character of the first database name (in dbnbuffer), dbnarray[1] points to the

first character of the second database name, and so on.

If the application is connected to a database server, a call to the sqgetdbs() function returns the names of the databases

that are available in the database server of the current connection. This includes the user-defined databases and the

sysmaster database. Otherwise, it returns the database names that are available in the default database server (that the

INFORMIXSERVER environment variable indicates). If you use the DBPATH environment variable to identify additional

database servers that contain databases, sqgetdbs() also lists the databases that are available on these database servers.

It first lists the databases that are available through DBPATH and then the databases that are available through the

INFORMIXSERVER environment variable.

Return codes

0

Successfully obtained database names

<0

Unable to obtain database names

Example

The sqgetdbs.ec file in the demo directory contains this sample program.

/*
 * sqgetdbs.ec *

 This program lists the available databases in the database server
 of the current connection.
*/

#include <stdio.h>

/* Defines used with exception-handling function: exp_chk() */
#define WARNNOTIFY 1
#define NOWARNNOTIFY 0

/* Defines used for user-defined data structures for sqgetdbs() */
#define BUFFSZ 256
#define NUM_DBNAMES 10

main()

803

HCL Informix 14.10 - ESQL/C Programmer’s Guide

804

{
 char db_buffer[BUFFSZ]; /* buffer for database names */
 char *dbnames[NUM_DBNAMES]; /* array of pointers to database
 names in ‘db_buffer' */
 mint num_returned; /* number of database names returned */
 mint ret, i;

 printf("SQGETDBS Sample ESQL Program running.\n\n");

 EXEC SQL connect to default;
 exp_chk("CONNECT TO default server", NOWARNNOTIFY);
 printf("Connected to default server.\n");

 ret = sqgetdbs(&num_returned, dbnames, NUM_DBNAMES,
 db_buffer, BUFFSZ);
 if(ret < 0)
 {
 printf("Unable to obtain names of databases.\n");
 exit(1);
 }

 printf("\nNumber of database names returned = %d\n", num_returned);

 printf("Databases currently available:\n");
 for (i = 0; i < num_returned; i++)
 printf("\t%s\n", dbnames[i]);
 printf("\nSQGETDBS Sample Program over.\n\n");
}

/*
 * The exp_chk() file contains the exception handling functions to
 * check the SQLSTATE status variable to see if an error has occurred
 * following an SQL statement. If a warning or an error has
 * occurred, exp_chk() executes the GET DIAGNOSTICS statement and
 * displays the detail for each exception that is returned.
 */
EXEC SQL include exp_chk.ec;

Output

The output you see from the sqgetdbs sample program depends on how you set your INFORMIXSERVER and DBPATH

environment variables. The following sample output assumes that the INFORMIXSERVER environment variable is set to

mainserver and that this database server contains three databases that are called stores7, sysmaster, and tpc. This output

also assumes that the DBPATH environment is not set.

SQGETDBS Sample ESQL Program running.

Connected to default server.

Number of database names returned = 3
Databases currently available:
 stores7@mainserver
 sysmaster@mainserver
 tpc@mainserver

SQGETDBS Sample Program over.

Chapter 1. ESQL/C Guide

The sqlbreak() function
The sqlbreak() function sends the database server a request to interrupt processing of the current SQL request. You

generally call this function to interrupt long queries.

Syntax
mint sqlbreak();

Usage

The sqlbreak() function sends the interrupt request to the database server of the current connection. When the database

server receives this request, it must determine if the SQL request is interruptible. Some types of database operations are not

interruptible and others cannot be interrupted at certain points. You can interrupt the following SQL statements.

• ALTER INDEX

• ALTER TABLE

• CREATE INDEX

• CREATE TABLE

• DELETE

• EXECUTE PROCEDURE

• INSERT

• OPEN

• SELECT

• UPDATE

If the SQL request can be interrupted, the database server takes the following actions:

1. Discontinues execution of the current SQL request

2. Sets SQLCODE (sqlca.sqlcode) to a negative value (-213)

3. Returns control to the application

When the application regains control after an interrupted SQL request, any resources that are allocated to the SQL statement

remain allocated. Any open databases, cursors, and transactions remain open. Any system-descriptor areas or sqlda

structures remain allocated. The application program is responsible for the graceful termination of the program; it must

release resources and roll back the current transaction.

While the database server executes an SQL request, the application is blocked, waiting for results from the database server.

To call sqlbreak(), you must first set up some mechanism to unblock the application process. Two possible methods follow:

• Provide the application user with the ability to interrupt an SQL request once it has begun execution.

When the user presses the Interrupt key, the application becomes unblocked and calls the SIGINT signal-handler

function. This signal-handler function includes a call to sqlbreak() to interrupt the database server. For more

information, see Allow a user to interrupt on page 340.

805

HCL Informix 14.10 - ESQL/C Programmer’s Guide

806

• Specify a timeout interval with the sqlbreakcallback() function.

After the timeout interval elapses, the application becomes unblocked and calls the callback function. This callback

function includes a call to sqlbreak() to interrupt the database server. For more information, see Set up a timeout

interval on page 341.

Before your program calls sqlbreak(), verify with the sqldone() function that the database server is currently processing an

SQL request.

Return codes

0

The call to sqlbreak() was successful. The database server connection exists and either a request to interrupt

was sent successfully or the database server was idle.

!=0

No database server is running (no database connection exists) when you called sqlbreak().

The sqlbreakcallback() function
The sqlbreakcallback() function allows you to specify a timeout interval and to register a callback function. The callback

function provides a method for the application to regain control when the database server is processing an SQL request.

Restriction: Do not use the sqlbreakcallback() function if your IBM® Informix® ESQL/C application uses shared

memory (onipcshm) as the nettype to connect to the HCL Informix® database server. Shared memory is not a true

network protocol and does not handle the nonblocking I/O that is needed to support a callback function. When you

use sqlbreakcallback() with shared memory, the call appears to register the callback function successfully (it returns

zero); however, during SQL requests, the application never calls the callback function.

Syntax

mint sqlbreakcallback(timeout, callbackfunc_ptr);
 int4 timeout;
 void (* callbackfunc_ptr)(int status);

timeout

The interval of time to wait for an SQL request to execute before the application process regains control.

This value can be as follows:

-1

Clears the timeout value.

0

Immediately calls the function that callbackfunc_ptr indicates.

Chapter 1. ESQL/C Guide

>0

Sets the timeout interval to the number of milliseconds to elapse before the application calls the

function that callbackfunc_ptr indicates.

The timeout parameter is a 4-byte variable. This parameter is operating-system dependent: it can be a variable

with an int, long, or short data type.

callbackfunc_ptr

A pointer to the user-defined callback function.

Usage

After you register a callback function with sqlbreakcallback(), the application calls this function at three different points in

the execution of an SQL request. The value in the status argument of the callback function indicates the point at which the

application calls the function. The following table summarizes the status values.

When callback function is called

Value of status

argument

When the database server begins processing an SQL request status = 1

While the database server executes an SQL request, when the timeout interval has

elapsed

status = 2

When the database server completes the processing of an SQL request status = 0

When you call the callback function with a status value of 2, the callback function can determine whether the database server

can continue processing with one of following actions:

• It can call the sqlbreak() function to cancel the SQL request.

• It can omit the call to sqlbreak() to continue the SQL request.

The callback function, and any of its subroutines, can contain only the following Informix® ESQL/C control functions:

sqldone(), sqlbreak(), and sqlbreakcallback(). For more information about the callback function, see The timeout interval on

page 341.

If you call sqlbreakcallback() with a timeout value of zero, the callback function executes immediately. The callback function

executes over and over again unless it contains a call to sqlbreakcallback() to redefine the callback function with one of the

following actions:

• It disassociates the callback function to discontinue the calling of the callback function, as follows:

sqlbreakcallback(-1L, (void *)NULL);

• It defines some other callback function or resets the timeout value to a nonzero value, as follows:

sqlbreakcallback(timeout, callbackfunc_ptr);

807

HCL Informix 14.10 - ESQL/C Programmer’s Guide

808

Important: Small timeout values might adversely affect the performance of your application.

For more information about the timeout interval, see The timeout interval on page 341.

You must establish a database server connection before you call the sqlbreakcallback() function. The callback function

remains in effect for the duration of the connection or until the sqlbreakcallback() function redefines the callback function.

Return codes

0

The call to sqlbreakcallback() was successful.

<0

The call to sqlbreakcallback() was not successful.

The sqldetach() function
The sqldetach() function detaches a process from the database server. You generally call this function when an application

forks a new process to begin a new stream of execution.

Syntax

mint sqldetach();

Usage

If an application creates one or more processes after it initiates a connection to a database server, all the child processes

inherit that database server connection from the parent process (the application process that spawned the child). However,

the database server still assumes that this connection has only one process. If one database server connection tries to serve

both the parent and child processes at the same time, problems can result. For example, if both processes send messages

to do something, the database server has no way of knowing which messages belong to which process. The database server

might not receive messages in an order that makes sense and might therefore generate an error (such as error -408).

In this situation, call the sqldetach() function from the child process. The sqldetach() function detaches the child process

from the connection that the parent process establishes (which the child inherits). This action drops all database server

connections in the child process. The child process can then establish its own connection to a database server.

Use the sqldetach() function with the fork() system call. When you create a child process from an application process with a

database server connection, sequence the function calls as follows:

1. Call fork() from the parent process to create a copy of the parent process (the child process). Now both parent and

child share the same connection to the database server.

2. Call sqldetach() from the child process to detach the child process from the database server. This call closes the

connection in the child process.

Chapter 1. ESQL/C Guide

Restriction: You cannot use sqldetach() after a vfork() call because vfork() does not execute a true process fork until

the exec() function is called. Do not use sqldetach() after the parent process uses an exec(); when exec() starts the

child process, the child process does not inherit the connection that the parent process established.

A call to the sqldetach() function does not affect the database server sessions of the parent process. Therefore, after

sqldetach() executes in the child process, the parent process retains any open cursors, transactions, or databases, and the

child process does not have database server sessions or database server connections.

When you call the sqlexit() function from the parent process, the function drops the connection in the parent process but

does not affect the connections in the child process. Similarly, when you call sqlexit() from the child process, the function

drops only the child connections; it does not affect the parent connections. The sqlexit() function rolls back any open

transactions before it closes the connection.

If you execute the DISCONNECT statement from a child process, you disconnect the process from database server

connections and terminate the database server sessions that correspond to those connections. The DISCONNECT fails if

any transactions are open.

If the child process application has only one implicit connection before it calls sqldetach(), execution of the next SQL

statement or of the sqlstart() library function reestablishes an implicit connection to the default database server. If the

application has made one or more explicit connections, you must issue a CONNECT statement before you execute any other

SQL statements.

The sqldetach demonstration program illustrates how to use the sqldetach() function.

Return codes

0

The call to sqldetach() was successful.

<0

The call to sqldetach() was not successful.

Example

The sqldetach.ec file in the demo directory contains this sample program.

/*
 * sqldetach.ec *

 This program demonstrates how to detach a child process from a
 parent process using the ESQL/C sqldetach() library function.
*/

main()
{
 EXEC SQL BEGIN DECLARE SECTION;
 mint pa;
 EXEC SQL END DECLARE SECTION;

809

HCL Informix 14.10 - ESQL/C Programmer’s Guide

810

 printf("SQLDETACH Sample ESQL Program running.\n\n");

 printf("Beginning execution of parent process.\n\n");
 printf("Connecting to default server...\n");
 EXEC SQL connect to default;
 chk("CONNECT");
 printf("\n");

 printf("Creating database 'aa'...\n");
 EXEC SQL create database aa;
 chk("CREATE DATABASE");
 printf("\n");

 printf("Creating table 'tab1'...\n");
 EXEC SQL create table tab1 (a integer);
 chk("CREATE TABLE");
 printf("\n");

 printf("Inserting 4 rows into 'tab1'...\n");
 EXEC SQL insert into tab1 values (1);
 chk("INSERT #1");
 EXEC SQL insert into tab1 values (2);
 chk("INSERT #2");
 EXEC SQL insert into tab1 values (3);
 chk("INSERT #3");
 EXEC SQL insert into tab1 values (4);
 chk("INSERT #4");
 printf("\n");

 printf("Selecting rows from 'tab1' table...\n");
 EXEC SQL declare c cursor for select * from tab1;
 chk("DECLARE");

EXEC SQL open c;
 chk("OPEN");

 printf("\nForking child process...\n");
 fork_child();

 printf("\nFetching row from cursor 'c'...\n");
 EXEC SQL fetch c into $pa;
 chk("Parent FETCH");
 if (sqlca.sqlcode == 0)
 printf("Value selected from 'c' = %d.\n", pa);
 printf("\n");

 printf("Cleaning up...\n");
 EXEC SQL close database;
 chk("CLOSE DATABASE");
 EXEC SQL drop database aa;
 chk("DROP DATABASE");
 EXEC SQL disconnect all;
 chk("DISCONNECT");

 printf("\nEnding execution of parent process.\n");
 printf("\nSQLDETACH Sample Program over.\n\n");
}

Chapter 1. ESQL/C Guide

fork_child()
{
 mint rc, status, pid;

 EXEC SQL BEGIN DECLARE SECTION;
 mint cnt, ca;
 EXEC SQL END DECLARE SECTION;

 pid = fork();
 if (pid < 0)
 printf("can't fork child.\n");

 else if (pid == 0)
 {
 printf("\n**\n");
 printf("* Beginning execution of child process.\n");
 rc = sqldetach();
 printf("* sqldetach() call returns %d.\n", rc);

 /* Verify that the child is not longer using the parent's
 * connection and has not inherited the parent's connection
 * environment.
 */
 printf("* Trying to fetch row from cursor 'c'...\n");
 EXEC SQL fetch c into $ca;
 chk("* Child FETCH");
 if (sqlca.sqlcode == 0)
 printf("* Value from 'c' = %d.\n", ca);

 /* startup a connection for the child, since
 * it doesn't have one.
 */
 printf("\n* Establish a connection, since child doesn't have one\n");
 printf("* Connecting to database 'aa'...\n");
 EXEC SQL connect to 'aa';
 chk("* CONNECT");
 printf("* \n");
 printf("* Determining number of rows in 'tab1'...\n");
 EXEC SQL select count(*) into $cnt from tab1;
 chk("* SELECT");
 if (sqlca.sqlcode == 0)
 printf("* Number of entries in 'tab1' = %d.\n", cnt);
 printf("* \n");

 printf("* Disconnecting from 'aa' database...\n");
 EXEC SQL disconnect current;
 chk("* DISCONNECT");
 printf("* \n");
 printf("* Ending execution of child process.\n");
 printf("**\n");

 exit();
 }

 /* wait for child process to finish */
 while ((rc = wait(&status)) != pid && rc != -1);

811

HCL Informix 14.10 - ESQL/C Programmer’s Guide

812

}

chk(s)
char *s;
{
 mint msglen;
 char buf1[200], buf2[200];

 if (SQLCODE == 0)
 {
 printf("%s was successful\n", s);
 return;
 }
 printf("\n%s:\n", s);
 if (SQLCODE)
 {
 printf("\tSQLCODE = %6d: ", SQLCODE);
 rgetlmsg(SQLCODE, buf1, sizeof(buf1), &msglen);
 sprintf(buf2, buf1, sqlca.sqlerrm);
 printf(buf2);
 if (sqlca.sqlerrd[1])
 {
 printf("\tISAM Error = %6hd: ", sqlca.sqlerrd[1]);
 rgetlmsg(sqlca.sqlerrd[1], buf1, sizeof(buf1), &msglen);
 sprintf(buf2, buf1, sqlca.sqlerrm);
 printf(buf2);
 }
 }
}

Output

SQLDETACH Sample ESQL Program running.

Beginning execution of parent process.

Connecting to default server...
CONNECT was successful

Creating database 'aa'...
CREATE DATABASE was successful

Creating table 'tab1'...
CREATE TABLE was successful

Inserting 4 rows into 'tab1'...
INSERT #1 was successful
INSERT #2 was successful
INSERT #3 was successful
INSERT #4 was successful

Selecting rows from 'tab1' table...
DECLARE was successful
OPEN was successful

Forking child process...

Chapter 1. ESQL/C Guide

**
* Beginning execution of child process.
* sqldetach() call returns 0.
* Trying to fetch row from cursor 'c'...

* Child FETCH:
 SQLCODE = -404: The cursor or statement is not available.

* Establish a connection, since child doesn't have one
* Connecting to database 'aa'...
* CONNECT was successful
*
* Determining number of rows in 'tab1'...
* SELECT was successful
* Number of entries in 'tab1' = 4.
*
* Disconnecting from 'aa' database...
* DISCONNECT was successful
*
* Ending execution of child process.
**
SQLDETACH Sample ESQL Program running.

Beginning execution of parent process.

Connecting to default server...
CONNECT was successful

Creating database 'aa'...
CREATE DATABASE was successful

Creating table 'tab1'...

CREATE TABLE was successful

Inserting 4 rows into 'tab1'...
INSERT #1 was successful
INSERT #2 was successful
INSERT #3 was successful
INSERT #4 was successful

Selecting rows from 'tab1' table...
DECLARE was successful
OPEN was successful

Forking child process...

Fetching row from cursor 'c'...
Parent FETCH was successful
Value selected from 'c' = 1.

Cleaning up...
CLOSE DATABASE was successful
DROP DATABASE was successful
DISCONNECT was successful

813

HCL Informix 14.10 - ESQL/C Programmer’s Guide

814

Ending execution of parent process.

SQLDETACH Sample Program over.

The sqldone() function
The sqldone() function determines whether the database server is currently processing an SQL request.

Syntax
mint sqldone();

Usage

Use sqldone() to test the status of the database server in the following situations:

• Before a call to the sqlbreak() function to determine if the database server is processing an SQL request.

• In a signal-handler function, before a call to the longjmp() system function. Only use longjmp() in a signal-handler

function if sqldone() returns zero (the database server is idle).

When the sqldone() function determines that the database server is not currently processing an SQL request, you can

assume that the database server does not begin any other processing until your application issues its next request.

You might want to create a defined constant for the -439 value to make your code more readable. For example, the following

code fragment creates the SERVER_BUSY constant and then uses it to test the sqldone() return status:

#define SERVER_BUSY -439

⋮

if (sqldone() == SERVER_BUSY)

Return codes

0

The database server is not currently processing an SQL request: it is idle.

-439

The database server is currently processing an SQL request.

The sqlexit() function
The sqlexit() function terminates all database server connections and frees resources. You can use sqlexit() to reduce

database overhead in programs that refer to a database only briefly and after long intervals, or that access a database only

during initialization.

Syntax
mint sqlexit();

Chapter 1. ESQL/C Guide

Usage

Only call the sqlexit() function when no databases are open. If an open database uses transactions, sqlexit() rolls back any

open transactions before it closes the database. The behavior of this function is similar to that of the DISCONNECT ALL

statement. However, the DISCONNECT ALL statement fails if any current transactions exist. Use the CLOSE DATABASE

statement to close open databases before you call sqlexit().

If the application has only one implicit connection before it calls sqlexit(), execution of the next SQL statement or of the

sqlstart() library function reestablishes an implicit connection to the default database server. If the application makes one or

more explicit connections, you must issue a CONNECT statement before you execute any other SQL statements.

Return codes

0

The call to sqlexit() was successful.

<0

The call to sqlexit() was not successful.

The sqlsignal() function
The sqlsignal() function enables or disables signal handling of the signals that the IBM® Informix® ESQL/C library handles.

Syntax

void sqlsignal(sigvalue, sigfunc_ptr, mode)
 mint sigvalue;
 void (*sigfunc_ptr) (void);
 int mode;

sigvalue

The mint value of the particular signal that needs to be trapped (as signal.h) defines).

Currently, this parameter is a placeholder for future functionality. Initialize this argument to -1.

sigfunc_ptr

A pointer to the user-defined function, which takes no arguments, to call as a signal handler for the sigvalue

signal.

Currently, this parameter is a placeholder for future functionality. Initialize this argument to a null pointer to a

function that receives no arguments.

mode

Can be one of three possible modes:

0

Initializes signal handling.

815

HCL Informix 14.10 - ESQL/C Programmer’s Guide

816

1

Disables signal handling.

2

Re-enables signal handling.

Usage

The sqlsignal() function currently provides handling only for the SIGCHLD signal. In some instances, defunct child processes

remain after the application ends. If the application does not clean up these processes, they can cause needless use of

process IDs and increase the risk that you run out of processes. This behavior is only apparent when the application uses

pipes for client-server communication (that is, the nettype field of the sqlhosts file is ipcpip). You do not need to call

sqlsignal() for other communication mechanisms (for example, a nettype of tlipcp).

The mode argument of sqlsignal() determines the task that sqlsignal() performs, as follows:

• Set mode to 0 to initialize signal handling.

sqlsignal(-1, (void (*)(void))0, 0);

When you initialize signal handling with sqlsignal(), the Informix® ESQL/C library traps the SIGCHLD signal to handle

the cleanup of defunct child processes. This initial call to sqlsignal() must occur at the beginning of your application,

before the first SQL statement in the program. If you omit this initial call, you cannot turn on the signal-handling

capability later in your program.

• Enable and disable signal handling.

If you want to have the Informix® ESQL/C library perform signal handling for portions of the program and your own

code perform signal handling for other portions, you can take the following actions:

◦ To disable signal handling, call sqlsignal() with mode set to 1, at the point where you want your program to

handle signals:

sqlsignal(-1, (void (*)(void))0, 1);

◦ To re-enable signal handling, call sqlsignal() with mode set to 2, at the point where you want the HCL

Informix® ESQL library to handle signals:

sqlsignal(-1, (void (*)(void))0, 2);

When you initialize SIGCHLD signal handling with sqlsignal(), you allow the Informix® ESQL/C library to process

SIGCHLD cleanup. Otherwise, your application must perform the cleanup for these processes if defunct child

processes are a problem.

The sqlstart() function
The sqlstart() function starts an implicit default connection. An implicit default connection can support one connection to

the default database server (that the INFORMIXSERVER environment variable specifies).

Chapter 1. ESQL/C Guide

Tip: Restrict use of sqlstart() to applications before version 6.0 that only use one connection. IBM® Informix® ESQL/

C continues to support this function for compatibility with earlier versions of these applications. For applications of

Version 6.0 and later, use the CONNECT statement to establish explicit connections to a default database server.

Syntax
mint sqlstart();

Usage

Informix® ESQL/C provides the sqlstart() function for pre-Version 6.0 applications that can only support single connections.

In this context, possible uses of sqlstart() are as follows:

• You only need to verify that the default database server is available but you do not intend to open a database. If the

call to sqlstart() fails, you can check the return status to verify that the default database server is not available.

• You need to speed up the execution of the DATABASE statement when the application runs over a network. When you

put the call to sqlstart() in an initialization routine, the application establishes a connection before the user begins

interaction with the application. The DATABASE statement can then open the specified database.

• You do not know the name of the actual database to access, or your application plans to create a database. The call

to sqlstart() can establish the implicit default connection and the application can later determine the name of the

database to access or create.

If you have an application before version 6.0 that needs an implicit default connection for any other reason, use the

DATABASE statement instead of sqlstart(). For applications of version 6.0 and later, use the CONNECT statement to

establish database server connections.

When you call the sqlstart() function, make sure that the application has not yet established any connections, implicit or

explicit. When the application has established an explicit connection, sqlstart() returns error -1811. If an implicit connection

was established, sqlstart() returns error -1802.

You can call this function several times before you establish an explicit connection, as long as each implicit connection

is disconnected before the next call to sqlstart(). For information about disconnecting, see Terminate a connection on

page 344. For more information about explicit and implicit connections, see Establish a connection on page 326.

Return codes

0

The call to sqlstart() was successful.

<0

The call to sqlstart() was not successful.

The stcat() function
The stcat() function concatenates one null-terminated string to the end of another.

817

HCL Informix 14.10 - ESQL/C Programmer’s Guide

818

Syntax
void stcat(s, dest)
 char *s, *dest;

s

A pointer to the start of the string that stcat() places at the end of the destination string.

dest

A pointer to the start of the null-terminated destination string.

Example

This sample program is in the stcat.ec file in the demo directory.

/*
 * stcat.ec *

 This program uses stcat() to append user input to a SELECT statement.
*/

#include <stdio.h>

/*
 * Declare a variable large enough to hold
 * the select statement + the value for customer_num entered from the terminal.
 */
char selstmt[80] = "select fname, lname from customer where customer_num = ";

main()
{
 char custno[11];

 printf("STCAT Sample ESQL Program running.\n\n");

 printf("Initial SELECT string:\n '%s'\n", selstmt);

 printf("\nEnter Customer #: ");
 gets(custno);

/*
 * Add custno to "select statement"
 */
 printf("\nCalling stcat(custno, selstmt)\n");
 stcat(custno, selstmt);
 printf("SELECT string is:\n '%s'\n", selstmt);

 printf("\nSTCAT Sample Program over.\n\n");
}

Output

STCAT Sample ESQL Program running.

Initial SELECT string:

Chapter 1. ESQL/C Guide

 'select fname, lname from customer where customer_num = '

Enter Customer #: 104

Calling stcat(custno, selstmt)
SELECT string is:
 'select fname, lname from customer where customer_num = 104'

STCAT Sample Program over.

The stchar() function
The stchar() function stores a null-terminated string in a fixed-length string, padding the end with blanks, if necessary.

Syntax
void stchar(from, to, count)
 char *from;
 char *to;
 mint count;

from

A pointer to the first byte of a null-terminated source string.

to

A pointer to the fixed-length destination string. This argument can point to a location that overlaps the location

to which the from argument points. In this case, IBM® Informix® ESQL/C discards the value to which from

points.

count

The number of bytes in the fixed-length destination string.

Example

This sample program is in the stchar.ec file in the demo directory.

/*
 * stchar.ec *

 The following program shows the blank padded result produced by
 stchar() function.
*/

#include <stdio.h>

main()
{
 static char src[] = "start";
 static char dst[25] = "123abcdefghijkl;.";

 printf("STCHAR Sample ESQL Program running.\n\n");

 printf("Source string: [%s]\n", src);
 printf("Destination string before stchar: [%s]\n", dst);

819

HCL Informix 14.10 - ESQL/C Programmer’s Guide

820

 stchar(src, dst, sizeof(dst) - 1);

 printf("Destination string after stchar: [%s]\n", dst);

 printf("\nSTCHAR Sample Program over.\n\n");
}

Output
STCHAR Sample ESQL Program running.

Source string: [start]
Destination string before stchar: [123abcdefghijkl;.]
Destination string after stchar: [start]

STCHAR Sample Program over.

The stcmpr() function
The stcmpr() function compares two null-terminated strings.

Syntax

mint stcmpr(s1, s2)
 char *s1, *s2;

s1

A pointer to the first null-terminated string.

s2

A pointer to the second null-terminated string.

Important: s1 is greater than s2 when s1 appears after s2 in the ASCII collation sequence.

Return codes

=0

The two strings are identical.

<0

The first string is less than the second string.

>0

The first string is greater than the second string.

Example

This sample program is in the stcmpr.ec file in the demo directory.

Chapter 1. ESQL/C Guide

/*
 * stcmpr.ec *

 The following program displays the results of three string
 comparisons using stcmpr().
*/

#include <stdio.h>

main()
{
 printf("STCMPR Sample ESQL Program running.\n\n");

 printf("Executing: stcmpr(\"aaa\", \"aaa\")\n");
 printf(" Result = %d", stcmpr("aaa", "aaa")); /* equal */
 printf("\nExecuting: stcmpr(\"aaa\", \"aaaa\")\n");
 printf(" Result = %d", stcmpr("aaa", "aaaa")); /* less */
 printf("\nExecuting: stcmpr(\"bbb\", \"aaaa\")\n");
 printf(" Result = %d\n", stcmpr("bbb", "aaaa")); /* greater */

 printf("\nSTCMPR Sample Program over.\n\n");
}

Output

STCMPR Sample ESQL Program running.

Executing: stcmpr("aaa", "aaa")
 Result = 0
Executing: stcmpr("aaa", "aaaa")
 Result = -1
Executing: stcmpr("bbb", "aaaa")
 Result = 1

STCMPR Sample Program over.

The stcopy() function
The stcopy() function copies a null-terminated string from one location in memory to another location.

Syntax

void stcopy(from, to)
 char *from, *to;

from

A pointer to the null-terminated string that you want stcopy() to copy.

to

A pointer to a location in memory where stcopy() copies the string.

Example

This sample program is in the stcopy.ec file in the demo directory.

821

HCL Informix 14.10 - ESQL/C Programmer’s Guide

822

/*
 * stcopy.ec *

 This program displays the result of copying a string using stcopy().
*/

#include <stdio.h>

main()
{
 static char string[] = "abcdefghijklmnopqrstuvwxyz";

 printf("STCOPY Sample ESQL Program running.\n\n");

 printf("Initial string:\n [%s]\n", string); /* display dest */
 stcopy("John Doe", &string[15]); /* copy */
 printf("After copy of 'John Doe' to position 15:\n [%s]\n",
 string);

 printf("\nSTCOPY Sample Program over.\n\n");
}

Output

STCOPY Sample ESQL Program running.

Initial string:
 [abcdefghijklmnopqrstuvwxyz]
After copy of 'John Doe' to position 15:
 [abcdefghijklmnoJohn Doe]

STCOPY Sample Program over.

The stleng() function
The stleng() function returns the length, in bytes, of a null-terminated string that you specify.

Syntax

mint stleng(string)
 char *string;

string

A pointer to a null-terminated string.

Usage

The length does not include the null terminator.

Example

This sample program is in the stleng.ec file in the demo directory.

/*
 * stleng.ec *

Chapter 1. ESQL/C Guide

 This program uses stleng to find strings that are greater than 35
 characters in length.
*/

#include <stdio.h>

char *strings[] =
 {
 "Your First Season's Baseball Glove",
 "ProCycle Stem with Pearl Finish",
 "Athletic Watch w/4-Lap Memory, Olympic model",
 "High-Quality Kickboard",
 "Team Logo Silicone Swim Cap - fits all head sizes",
 };

main(argc, argv)
int argc;
char *argv[];
{
 mint length, i;

 printf("STLENG Sample ESQL Program running.\n\n");

printf("Strings with lengths greater than 35:\n");
 i = 0;
 while(strings[i])
 {
 if((length = stleng(strings[i])) > 35)
 {
 printf(" String[%d]: %s\n", i, strings[i]);
 printf(" Length: %d\n\n", length);
 }
 ++i;
 }
 printf("\nSTLENG Sample Program over.\n\n");
}

Output

STLENG Sample ESQL Program running.

Strings with lengths greater than 35:
 String[2]: Athletic Watch w/4-Lap Memory, Olympic model
 Length: 44

 String[4]: Team Logo Silicone Swim Cap - fits all head sizes
 Length: 49

STLENG Sample Program over.

Examples for smart-large-object functions
These examples illustrate how to use the IBM® Informix® ESQL/C library functions to access smart large objects. These

examples apply only if you are using HCL Informix® as your database server.

823

HCL Informix 14.10 - ESQL/C Programmer’s Guide

824

Prerequisites

The examples in this section depend on the existence of the following, alternate catalog table for the stores7 database. The

examples also depend on the presence of an sbspace, s9_sbspc, that stores the contents of the BLOB and CLOB columns,

picture and advert_descr, in the alternate catalog table.

-- create table that uses smart large objects (CLOB & BLOB) to
-- store the catalog advertisement data.

CREATE TABLE catalog
 (
 catalog_num SERIAL8 (10001) primary key,
 stock_num SMALLINT,
 manu_code CHAR(3),
 unit CHAR(4),
 advert ROW (picture BLOB, caption VARCHAR(255, 65)),
 advert_descr CLOB,
 FOREIGN KEY (stock_num, manu_code) REFERENCES stock constraint aa
)
 PUT advert IN (s9_sbspc)
 (EXTENT SIZE 100),
 advert_descr IN (s9_sbspc)
 (EXTENT SIZE 20, KEEP ACCESS TIME)

The following example illustrates typical commands to create an sbspace. The values of specific options can vary. You must

replace PATH with the complete file name of the file that you allocate for the sbspace.

touch s9_sbspc
onspaces -c -S s9_sbspc -g 4 -p PATH -o 0 -s 2000

For more information about how to create an sbspace, and particularly on the onspaces utility, see your HCL® Informix®

Administrator's Guide.

The following code illustrates the format of entries in a load file that you might use to load data into the alternate catalog

table. A load file contains data that the LOAD statement loads into a table. Each line in the following figure loads one row in

the table. The following figure shows only a sample of code that you can use to load the catalog table. For more information

about the LOAD statement, see the HCL® Informix® Guide to SQL: Syntax:

0|1|HRO|case|ROW(/tmp/cn_1001.gif,"Your First Season's Baseball Glove")|0,62,
 /tmp/catalog.des|
0|1|HSK|case|ROW(NULL,"All Leather, Hand Stitched, Deep Pockets, Sturdy
 Webbing That Won't Let Go")||
0|1|SMT|case|ROW(NULL,"A Sturdy Catcher's Mitt With the Perfect Pocket")||
0|2|HRO|each|ROW(NULL,"Highest Quality Ball Available, from the
 Hand-Stitching to the Robinson Signature")||
0|3|HSK|case|ROW(NULL,"High-Technology Design Expands the Sweet Spot")||
0|3|SHM|case|ROW(NULL,"Durable Aluminum for High School and Collegiate
 Athletes")||
0|4|HSK|case|ROW(NULL,"Quality Pigskin with Norm Van Brocklin Signature")||

The following code fragment illustrates the format of information in the catalog.des file, to which the preceding code

refers. The entry for advert_descr (0,62,/tmp/catalog.des) in the preceding code specifies the offset, length, and file

name from which the description is loaded. The offset and length are hexadecimal values.

Chapter 1. ESQL/C Guide

Brown leather. Specify first baseman's or infield/outfield style.
 Specify right- or left-handed.

Double or triple crankset with choice of chainrings. For double crankset,
chainrings from 38-54 teeth. For triple crankset, chainrings from 24-48 teeth.

No buckle so no plastic touches your chin. Meets both ANSI and Snell standards
 for impact protection.7.5 oz. Lycra cover.

Fluorescent yellow.

Super shock-absorbing gel pads disperse vertical energy into a horizontal plane
 for extraordinary cushioned comfort. Great motion control.
 Mens only. Specify size

This section contains the following example programs.

Program Description See

create_clob.ec Inserts a row that contains a CLOB column into the alternate

catalog table.

The create_clob.ec program on

page 825

get_lo_info.ec Appends the price from the stock table of the stores7

database to the advert_descr column of the alternate catalog

table.

The get_lo_info.ec program on

page 828

upd_lo_descr.ec Obtains the price of catalog items for which the advert_descr

column is not null and appends the price to the description.

The upd_lo_descr.ec program on

page 832

The create_clob.ec program

The create_clob program demonstrates how to perform the following tasks on a smart large object:

• Create a smart large object with user-defined storage characteristics.

• Insert the new smart large object into a database column.

Storage characteristics for the example

The create_clob program creates an advert_descr smart large object that has the following user-defined storage

characteristics:

• Logging is on: LO_LOG

• Keep last access time (default from advert_descr column): LO_KEEP_ACCESSTIME

• Integrity is high

• Allocation extent size is 10 KB

EXEC SQL include int8;
EXEC SQL include locator;

EXEC SQL define BUFSZ 10;

825

HCL Informix 14.10 - ESQL/C Programmer’s Guide

826

extern char statement[80];

main()
{
EXEC SQL BEGIN DECLARE SECTION;
 int8 catalog_num, estbytes, offset;
 int error, numbytes, lofd, ic_num, buflen = 256;
 char buf[256], srvr_name[256], col_name[300];
 ifx_lo_create_spec_t *create_spec;
 fixed binary 'clob' ifx_lo_t descr;
EXEC SQL END DECLARE SECTION;

 void nullterm(char *);
 void handle_lo_error(int);

 EXEC SQL whenever sqlerror call whenexp_chk;
 EXEC SQL whenever sqlwarning call whenexp_chk;

 printf("CREATE_CLOB Sample ESQL program running.\n\n");
 strcpy(statement, "CONNECT stmt");
 EXEC SQL connect to 'stores7';
 EXEC SQL get diagnostics exception 1
 :srvr_name = server_name;
 nullterm(srvr_name);

/* Allocate and initialize the LO-specification structure
*/
 error = ifx_lo_def_create_spec(&create_spec);
 if (error < 0)
 {
 strcpy(statement, "ifx_lo_def_create_spec()");
 handle_lo_error(error);
 }

/* Get the column-level storage characteristics for the
* CLOB column, advert_descr.
*/
 sprintf(col_name, "stores7@%s:catalog.advert_descr",
 srvr_name);
 error = ifx_lo_col_info(col_name, create_spec);
 if (error < 0)
 {
 strcpy(statement, "ifx_lo_col_info()");
 handle_lo_error(error);
 }

/* Override column-level storage characteristics for
* advert_desc with the following user-defined storage
* characteristics:
* no logging
* extent size = 10 kilobytes
*/
 ifx_lo_specset_flags(create_spec,LO_LOG);
 ifx_int8cvint(BUFSZ, &estbytes);
 ifx_lo_specset_estbytes(create_spec, &estbytes);

Chapter 1. ESQL/C Guide

 /* Create an LO-specification structure for the smart large object
 */

 if ((lofd = ifx_lo_create(create_spec, LO_RDWR,
 &descr, &error)) == -1)
 {
 strcpy(statement, "ifx_lo_create()");
 handle_lo_error(error);
 }
 /* Copy data into the character buffer 'buf' */

 sprintf(buf, "%s %s",
 "Pro model infielder's glove. Highest quality leather and
 stitching. "
 "Long-fingered, deep pocket, generous web.");

 /* Write contents of character buffer to the open smart
 * large object that lofd points to. */

 ifx_int8cvint(0, &offset);
 numbytes = ifx_lo_writewithseek(lofd, buf, buflen,
 &offset, LO_SEEK_SET, &error);
 if (numbytes < buflen)
 {
 strcpy(statement, "ifx_lo_writewithseek()");
 handle_lo_error(error);
 }

/* Insert the smart large object into the table */
 strcpy(statement, "INSERT INTO catalog");
 EXEC SQL insert into catalog values (0, 1, 'HSK', 'case', ROW(NULL,
 NULL),
 :descr);

/* Need code to find out what the catalog_num value was assigned to new
 * row */
/* Close the LO file descriptor */
 ifx_lo_close(lofd);

/* Select back the newly inserted value. The SELECT
* returns an LO-pointer structure, which you then use to
* open a smart large object to get an LO file descriptor.
*/
 ifx_getserial8(&catalog_num);
 strcpy(statement, "SELECT FROM catalog");
 EXEC SQL select advert_descr into :descr from catalog
 where catalog_num = :catalog_num;

/* Use the returned LO-pointer structure to open a smart
* large object and get an LO file descriptor.
*/
 lofd = ifx_lo_open(&descr, LO_RDONLY, &error);
 if (error < 0)
 {
 strcpy(statement, "ifx_lo_open()");
 handle_lo_error(error);
 }

827

HCL Informix 14.10 - ESQL/C Programmer’s Guide

828

/* Use the LO file descriptor to read the data in the
* smart large object.
*/
 ifx_int8cvint(0, &offset);
 strcpy(buf, "");
 numbytes = ifx_lo_readwithseek(lofd, buf, buflen,
 &offset, LO_SEEK_CUR, &error);
 if (error || numbytes == 0)
 {
 strcpy(statement, "ifx_lo_readwithseek()");
 handle_lo_error(error);
 }
 if(ifx_int8toint(&catalog_num, &ic_num) != 0)
 printf("\nifx_int8toint failed to convert catalog_num to int");
 printf("\nContents of column \'descr\' for catalog_num:
 %d \n\t%s\n",
 ic_num, buf);
 /* Close open smart large object */
 ifx_lo_close(lofd);
 /* Free LO-specification structure */
 ifx_lo_spec_free(create_spec);
}

void handle_lo_error(error_num)
int error_num;
{
 printf("%s generated error %d\n", statement, error_num);
 exit(1);
}

void nullterm(str)
char *str;
{
 char *end;

 end = str + 256;
 while(*str != ' ' && *str != '\0' && str < end)
 {
 ++str;
 }
 if(str >= end)
 printf("Error: end of str reached\n");
 if(*str == ' ')
 *str = '\0';
}

/* Include source code for whenexp_chk() exception-checking
* routine
*/

EXEC SQL include exp_chk.ec;

The get_lo_info.ec program

This program retrieves information about smart large objects stored in a BLOB column.

Chapter 1. ESQL/C Guide

#include <time.h>

EXEC SQL define BUFSZ 10;

extern char statement[80];

main()
{
 int error, ic_num, oflags, cflags, extsz, imsize, isize, iebytes;
 time_t time;
 struct tm *date_time;
 char col_name[300], sbspc[129];

 EXEC SQL BEGIN DECLARE SECTION;
 fixed binary 'blob' ifx_lo_t picture;
 char srvr_name[256];
 ifx_lo_create_spec_t *cspec;
 ifx_lo_stat_t *stats;
 ifx_int8_t size, c_num, estbytes, maxsize;
 int lofd;
 long atime, ctime, mtime, refcnt;
 EXEC SQL END DECLARE SECTION;

 void nullterm(char *);
 void handle_lo_error(int);

 imsize = isize = iebytes = 0;
 EXEC SQL whenever sqlerror call whenexp_chk;
 EXEC SQL whenever sqlwarning call whenexp_chk;

 printf("GET_LO_INFO Sample ESQL program running.\n\n");
 strcpy(statement, "CONNECT stmt");
 EXEC SQL connect to 'stores7';
 EXEC SQL get diagnostics exception 1
 :srvr_name = server_name;
 nullterm(srvr_name);

 EXEC SQL declare ifxcursor cursor for
 select catalog_num, advert.picture
 into :c_num, :picture
 from catalog
 where advert.picture is not null;

EXEC SQL open ifxcursor;
 while(1)
 {
 EXEC SQL fetch ifxcursor;
 if (strncmp(SQLSTATE, "00", 2) != 0)
 {
 if(strncmp(SQLSTATE, "02", 2) != 0)
 printf("SQLSTATE after fetch is %s\n", SQLSTATE);
 break;
 }
 /* Use the returned LO-pointer structure to open a smart
 * large object and get an LO file descriptor.
 */
 lofd = ifx_lo_open(&picture, LO_RDONLY, &error);

829

HCL Informix 14.10 - ESQL/C Programmer’s Guide

830

 if (error < 0)
 {
 strcpy(statement, "ifx_lo_open()");
 handle_lo_error(error);
 }
 if(ifx_lo_stat(lofd, &stats) < 0)
 {
 printf("\nifx_lo_stat() < 0");
 break;
 }
 if(ifx_int8toint(&c_num, &ic_num) != 0)
 ic_num = 99999;
 if((ifx_lo_stat_size(stats, &size)) < 0)
 isize = 0;
 else
 if(ifx_int8toint(&size, &isize) != 0)
 {
 printf("\nFailed to convert size");
 isize = 0;
 }
 if((refcnt = ifx_lo_stat_refcnt(stats)) < 0)
 refcnt = 0;
 printf("\n\nCatalog number %d", ic_num);
 printf("\nSize is %d, reference count is %d", isize, refcnt);

 if((atime = ifx_lo_stat_atime(stats)) < 0)
 printf("\nNo atime available");
 else
 {
 time = (time_t)atime;
 date_time = localtime(&time);
 printf("\nTime of last access: %s", asctime(date_time));
 }
 if((ctime = ifx_lo_stat_ctime(stats)) < 0)
 printf("\nNo ctime available");
 else
 {
 time = (time_t)ctime;
 date_time = localtime(&time);
 printf("Time of last change: %s", asctime(date_time));
 }

if((mtime = ifx_lo_stat_mtime_sec(stats)) < 0)
 printf("\nNo mtime available");
 else
 {
 time = (time_t)mtime;
 date_time = localtime(&time);
 printf("Time to the second of last modification: %s",
 asctime(date_time));
 }
 if((cspec = ifx_lo_stat_cspec(stats)) == NULL)
 {
 printf("\nUnable to access ifx_lo_create_spec_t structure");
 break;
 }
 oflags = ifx_lo_specget_def_open_flags(cspec);
 printf("\nDefault open flags are: %d", oflags);

Chapter 1. ESQL/C Guide

 if(ifx_lo_specget_estbytes(cspec, &estbytes) == -1)
 {
 printf("\nifx_lo_specget_estbytes() failed");
 break;
 }
 if(ifx_int8toint(&estbytes, &iebytes) != 0)
 {
 printf("\nFailed to convert estimated bytes");
 }
 printf("\nEstimated size of smart LO is: %d", iebytes);
 if((extsz = ifx_lo_specget_extsz(cspec)) == -1)
 {
 printf("\nifx_lo_specget_extsz() failed");
 break;
 }
 printf("\nAllocation extent size of smart LO is: %d", extsz);
 if((cflags = ifx_lo_specget_flags(cspec)) == -1)
 {
 printf("\nifx_lo_specget_flags() failed");
 break;
 }
 printf("\nCreate-time flags of smart LO are: %d", cflags);
 if(ifx_lo_specget_maxbytes(cspec, &maxsize) == -1)
 {
 printf("\nifx_lo_specget_maxsize() failed");
 break;
 }
 if(ifx_int8toint(&maxsize, &imsize) != 0)
 {
 printf("\nFailed to convert maximum size");
 break;
 }
 if(imsize == -1)
 printf("\nMaximum size of smart LO is: No limit");
 else
 printf("\nMaximum size of smart LO is: %d\n", imsize);
 if(ifx_lo_specget_sbspace(cspec, sbspc, sizeof(sbspc)) == -1)
 printf("\nFailed to obtain sbspace name");
 else
 printf("\nSbspace name is %s\n", sbspc);

}
 /* Close smart large object */
 ifx_lo_close(lofd);
 ifx_lo_stat_free(stats);
 EXEC SQL close ifxcursor;
 EXEC SQL free ifxcursor;
}

void handle_lo_error(error_num)
int error_num;
{
 printf("%s generated error %d\n", statement, error_num);
 exit(1);
}

void nullterm(str)
char *str;

831

HCL Informix 14.10 - ESQL/C Programmer’s Guide

832

{
 char *end;

 end = str + 256;
 while(*str != ' ' && *str != '\0' && str < end)
 {
 ++str;
 }
 if(str >= end)
 printf("Error: end of str reached\n");
 if(*str == ' ')
 *str = '\0';
}
/* Include source code for whenexp_chk() exception-checking
* routine
*/

EXEC SQL include exp_chk.ec;

The upd_lo_descr.ec program

This program obtains the price of catalog items for which the advert_descr column is not null and appends the price to the

description.

EXEC SQL include sqltypes;

EXEC SQL define BUFSZ 10;

extern char statement[80];

main()
{
 int error, isize;
 char format[] = "<<<,<<<.&&";
 char decdsply[20], buf[50000], *end;

 EXEC SQL BEGIN DECLARE SECTION;
 dec_t price;
 fixed binary 'clob' ifx_lo_t descr;
 smallint stockno;
 char srvr_name[256], mancd[4], unit[5];
 ifx_lo_stat_t *stats;
 ifx_int8_t size, offset, pos;
 int lofd, ic_num;
 EXEC SQL END DECLARE SECTION;

 void nullterm(char *);
 void handle_lo_error(int);

 isize = 0;
 EXEC SQL whenever sqlerror call whenexp_chk;
 EXEC SQL whenever sqlwarning call whenexp_chk;

 printf("UPD_LO_DESCR Sample ESQL program running.\n\n");
 strcpy(statement, "CONNECT stmt");
 EXEC SQL connect to 'stores7';
 EXEC SQL get diagnostics exception 1

Chapter 1. ESQL/C Guide

 :srvr_name = server_name;
 nullterm(srvr_name);

/* Selects each row where the advert.picure column is not null and
* displays
* status information for the smart large object.
*/
 EXEC SQL declare ifxcursor cursor for
 select catalog_num, stock_num, manu_code, unit, advert_descr
 into :ic_num, :stockno, :mancd, :unit, :descr
 from catalog
 where advert_descr is not null;

EXEC SQL open ifxcursor;
 while(1)
 {
 EXEC SQL fetch ifxcursor;
 if (strncmp(SQLSTATE, "00", 2) != 0)
 {
 if(strncmp(SQLSTATE, "02", 2) != 0)
 printf("SQLSTATE after fetch is %s\n", SQLSTATE);
 break;
 }
 EXEC SQL select unit_price into :price
 from stock
 where stock_num = :stockno
 and manu_code = :mancd
 and unit = :unit;
 if (strncmp(SQLSTATE, "00", 2) != 0)
 {
 printf("SQLSTATE after select on stock: %s\n", SQLSTATE);
 break;
 }
 if(risnull(CDECIMALTYPE, (char *) &price)) /* NULL? */
 continue; /* skip to next row */
 rfmtdec(&price, format, decdsply); /* format unit_price */
 /* Use the returned LO-pointer structure to open a smart
 * large object and get an LO file descriptor.
 */
 lofd = ifx_lo_open(&descr, LO_RDWR, &error);
 if (error < 0)
 {
 strcpy(statement, "ifx_lo_open()");
 handle_lo_error(error);
 }
 ifx_int8cvint(0, &offset);
 if(ifx_lo_seek(lofd, &offset, LO_SEEK_SET, &pos) < 0)
 {
 printf("\nifx_lo_seek() < 0\n");
 break;
 }
 if(ifx_lo_stat(lofd, &stats) < 0)
 {
 printf("\nifx_lo_stat() < 0");
 break;
 }
 if((ifx_lo_stat_size(stats, &size)) < 0)
 {

833

HCL Informix 14.10 - ESQL/C Programmer’s Guide

834

 printf("\nCan't get size, isize = 0");
 isize = 0;
 }
 else
 if(ifx_int8toint(&size, &isize) != 0)
 {
 printf("\nFailed to convert size");
 isize = 0;
 }
 if(ifx_lo_read(lofd, buf, isize, &error) < 0)
 {
 printf("Read operation failed\n");
 break;
 }
end = buf + isize;
 strcpy(end++, "(");
 strcat(end, decdsply);
 end += strlen(decdsply);
 strcat(end++, ")");
 if(ifx_lo_writewithseek(lofd, buf, (end - buf), &offset,
 LO_SEEK_SET,
 &error) < 0)
 {
 printf("Write error on LO: %d", error);
 continue;
 }
 printf("\nNew description for catalog_num %d is: \n%s\n", ic_num,
 buf);
 }
 /* Close smart large object */
 ifx_lo_close(lofd);
 ifx_lo_stat_free(stats);
 /* Free LO-specification structure */
 EXEC SQL close ifxcursor;
 EXEC SQL free ifxcursor;
}

void handle_lo_error(error_num)
int error_num;
{
 printf("%s generated error %d\n", statement, error_num);
 exit(1);
}

void nullterm(str)
char *str;
{
 char *end;

 end = str + 256;
 while(*str != ' ' && *str != '\0' && str < end)
 {
 ++str;
 }
 if(str >= end)
 printf("Error: end of str reached\n");
 if(*str == ' ')
 *str = '\0';

Chapter 1. ESQL/C Guide

}

/* Include source code for whenexp_chk() exception-checking
* routine
*/

EXEC SQL include exp_chk.ec;

835

Index
Special Characters

-ansi preprocessor option 49, 326
-c processor option 70, 72, 72
-cc processor option 70
-e preprocessor option 49, 57
-ED preprocessor option 49, 59
-EU preprocessor option 49, 59
-f processor option 49, 71
-g preprocessor option 61
-G preprocessor option 49, 49, 61
-I preprocessor option 49, 60
-icheck preprocessor option 25, 49, 60
-l processor option 76
-libs processor option 49, 75
-local preprocessor option 49, 61, 400
-log preprocessor option 49, 61
-lw preprocessor option 49
-mserr preprocessor option 49, 68
-N processor option 49
-nln preprocessor option 49, 61
-nowarn preprocessor option 49, 62, 68
-o preprocessor option 49, 49, 69, 72
-r processor option 76
-runtime processor option 72
-Sc processor option 72, 72
-ss processor option 72, 72
-static preprocessor option 49, 367, 367, 382
-subsystem processor option 72, 72
-Sw processor option 72, 72, 72, 72
-target processor option 72, 72, 79, 324
-thread preprocessor option 49, 58, 367, 374,
380

for dynamic thread library 399
-ts preprocessor option 49
-V preprocessor option 57
-V processor option 49
-version processor option 49
-wd processor option 72, 72, 79, 324
-we processor option 72, 72
-xopen preprocessor option 49, 62, 452, 453
.c file extension 46, 57, 70, 75, 297, 372
.def file extension 72, 75
.dll file extension 70, 78, 329
.ec file extension 46, 49, 70, 71
.ecp file extension 46, 49
.exe file extension 70, 78, 329
.h file extension 31
.o file extension 75
.obj file extension 70
.rc file extension 75, 76
.res file extension 75, 76
.sl file extension 371
.so file extension 368, 371

A
Access mode flags, locks on smart large
objects 195
Aggregate functions 24, 25, 284, 294
ALLOCATE COLLECTION statement 211
ALLOCATE DESCRIPTOR statement 478, 480,
480
ALLOCATE ROW statement 241
Allocating memory

for fetch arrays 471
Allocation extent size 181, 697, 702
ALLOW_NEWLINE parameter 9
ALTER INDEX statement 339, 447, 805

ALTER TABLE statement 339, 447, 805
Ampersand (&) symbol 118
ANSI C standards 380
ANSI SQL standards

checking for
Informix
extensions
 284, 289, 294, 326
connecting to a database 326
declaring host variables 11
defining ESQL/C function prototypes 27
delimiting identifiers 15
delimiting strings 15
escape character 8
for datetime and interval values 132, 620,
731
getting diagnostic information 278
preparing SQL statements 400
specifying host variables 10
SQLSTATE class values 283
using EXEC SQL keywords 31
using GOTO in the WHENEVER
statement 305
using INDICATOR keyword 26
warning values 289

ANSI-compliant database
determining 284, 289, 294, 334
indicating NOT FOUND condition 288, 299
inserting character data 105
nonstandard syntax in sqlwarn 294

ANSI-style parameters as host variables 21
Arithmetic operations

description of 90
Array

and truncated SQL value 26
dimension limit 18
in a host-variable typedef 20
of host variables 18

ASKPASSATCONNECT network parameter 36,
324, 324
Asterisk (*) symbol

as formatting character 118
as overflow character 88, 131

AUTOFREE feature 411
enabling 412
for a particular cursor 412
with Deferred-PREPARE and OPTOFC
features 423

B
Backslash (\) character 8
BIGINT

corresponding SQL data type 80
bigint data type

character conversion 561
decimal conversion 563
double conversion 562
float conversion 563
int (2–byte) conversion 564
int (4-byte) conversion 564
int (8–byte) conversion 563

BIGINT data type
corresponding ESQL/C data type 80, 85
corresponding SQL data type 80
defined constant 82, 82, 82

bigintcvasc() function 558
bigintcvdbl() function 558
bigintcvdec() function 559

bigintcvflt() function 559
bigintcvifx_int8() function 560
bigintcvint2() function 560
bigintcvint4 function 561
biginttoasc() function 561
biginttodbl() function 562
biginttodec() function 563
biginttoflt() function 563
biginttoifx_int8() function 563
biginttoint2() function 564
biginttoint4() function 564
BIGSERIAL data type

corresponding ESQL/C data type 80, 85
BLOB data type

corresponding ESQL/C datatype 80, 85
declaring host variable for 180
implementation of 276
on optical disc 200
role of locator.h 85

boolean data type
corresponding SQL data type 85
defined constant 84

Boolean data type
declaration 112

BOOLEAN data type
corresponding ESQL/C data type 80, 85
data conversion 89, 112
defined constant 82
distinct-bit constant 460
distinct-bit macro 460

Build file 72
Built-in data types

as element type of collection 207
as field type in row 237

bycmpr() library function 565
bycopy() library function 567
byfill() library function 568
byleng() library function 570
BYTE data type

corresponding ESQL/C datatype 80, 85
declaring host variable for 137
defined constant 82
inserting 146, 151, 156, 159
locator structure shown 137
on optical disc 164
role of locator.h 27, 85
selecting 144, 150, 154, 159
subscripting 137

Byte range lock, description 195
Bytes

comparing 565
copying 567
determining number of 570
filling with a character 568

C
C compiler

-c option 72
#define preprocessor statement 33
#include preprocessor statement 30, 31, 60
ANSI C 30, 30
called by esql 47
generating thread-safe code 381
initializer expressions 12
linking in other files 75
naming restrictions 12
options invoked implicitly 72
passing arguments to 70

836

role in compiling ESQL/C programs 47
specifying 70

C header files
for conditional compilation of ESQL/C
programs 63
for defining host variables 63
including in EXEC SQL declare section 65
shared between ESQL/C and C
programs 65

C preprocessor
role in compiling ESQL/C programs 47
running first 47, 63

C preprocessor directives, using to define
ESQL/C host variables 47
C programs, compiling 75
Callback function

declaring 341, 341
defining 341, 348
definition of 341
determining current connection 336
disassociating 341, 806
registering 341, 806

calloc() system call 521
Cardinality, ifx_cl_card() 627
Case sensitivity 6, 15
CBOOLTYPE data-type constant 84, 112
CC8BITLEVEL environment variable 36
CCHARTYPE data-type constant 84, 791, 796
CCOLTYPE data-type constant 84
CDATETYPE data-type constant 84
CDECIMALTYPE data-type constant 84
CDOUBLETYPE data-type constant 84
CDTIMETYPE data-type constant 84
CFILETYPE data-type constant 84
CFIXBINTYPE data-type constant 84
CFIXCHARTYPE data-type constant 84
CFLOATTYPE data-type constant 84
char (C) data type

bigint conversion 558
char data type

converting from decimal 587, 597, 758
converting from double 761
converting from int8 663
converting from long int 763
converting to decimal 576
converting to int8 646
defined constant 84, 84
definition of 94, 94
fetching into 89, 90, 100, 101, 104, 118, 131
inserting from 101, 103, 104, 105
with ANSI-compliant database 105

CHAR data type
corresponding ESQL/C data type 80, 85, 94
data conversion 100
defined constant 82, 85
fetching 100
inserting 101, 105

Child process
detaching from database server 808
handling defunct 815

CINT8TYPE data-type constant 84
CINTTYPE data-type constant 84
CINVTYPE data-type constant 84
CLIENT_GEN_VER version macro 372
CLIENT_GLS_VER version macro 372
CLIENT_LOCALE environment variable

in InetLogin structure 36
CLIENT_OS_VER version macro 372
CLIENT_SQLI_VER version macro 372
Client-server environment

architecture of 318

connecting to a database 326
local connection 318
locating simple large objects 141
optimized message transfers 344
remote connection 318

Client-side collection variable 210
CLOB data type

corresponding ESQL/C data type 80, 85
declaring host variable for 180
implementation of 276
on optical disc 200
role of locator.h 85

CLOCATORTYPE data-type constant 84
CLONGTYPE data-type constant 84
CLOSE DATABASE statement 326, 327, 344,
447, 753, 814
CLOSE statement 220, 405, 406, 408

optimizing 421
CLVCHARTYPE data-type constant 84
CMONEYTYPE data-type constant 84
COLLCHAR environment variable

in InetLogin structure 36
collct.h header file

definition of 27
Collection data type

cardinality, returning 627
selecting entire row from 222

collection data type (ESQL/C)
allocating memory for 211
client-side 210
Collection Derived Table clause 212
corresponding SQL data type 80, 80, 80, 85,
85, 85
deallocating memory for 211
declaration 206
defined constant 84
fetching from 221
fetching into 214
initializing 214
insert cursor for 218
inserting into 215
literal values 227
operating on 212
preparing statements that contain 402
select cursor for 223
typed collection variable 207
untyped collection variable 209
updating 224

Collection data type (SQL)
accessing 204
as element type of collection 207
as field type in row 237
declaring host variables for 206
deleting 235
extended identifier 440, 444
fetching 214, 221
in dynamic SQL 444
inserting into 215, 233, 234
literal values 227, 234, 252
nested collection 221, 230, 234, 252
owner of 440, 444
selecting from 233
simple collection 212
updating 224, 233, 233, 234

Collection data type (SQL), selecting a row
from 222
Collection derived table

for collection variables 212
for row variables 241
in DELETE 228, 247
in INSERT 215, 217, 245

in SELECT 221, 222, 245
in UPDATE 224

Colon (:)
between main variable and indicator
variable 25
preceding host variables 10
specifying indicator variable 25

Column (database)
determining if truncated 284, 294
using data conversion 87

Comma (,) symbol 118
Comments in ESQL/C program 9
COMMIT WORK statement 336, 447
Compiler

for ESQL/C programs 49
preprocessing 49
redirecting errors 61
syntax 49
version information 57

Compiler version independence 77
Compiling an ESQL/C program

default order, overview of 48
esql command 5
ESQL/C preprocessor 46

Compiling dynamic thread application 399
Compiling ESQL/C programs

default order 63
non-default order 64

Compiling the ESQL/C program
esql command 46
overview 46

Conditional compilation directives
description of 31
processing of 46

Configuration information
in InetLogin structure 36
locations of 41
reading in 41

CONNECT statement 322, 364
and explicit connections 326
determining database server features 334
determining name of a connection 280
determining name of a database
server 280, 336
establishing a connection 328, 374
with an active transaction 336
WITH CONCURRENT TRANSACTION
clause 336

Connection authentication 77
Connection handle 364
Connections

using InetLogin structure 36, 321
Constants

for distinct bit 460
for ESQL/C data types 84
for smart large objects 182, 192, 681, 683,
692
for SQL data types 82, 452, 482
for SQL statements 297, 447
for varchar data 96
for X/Open SQL data types 85
with dynamic-management structures 447,
452

COUNT descriptor field
after a DESCRIBE 446, 480
definition of 440
determining number of return values 492
initializing 480
saving 483, 486, 487, 496
setting 482, 500, 501

CPFIRST environment variable 64

837

CREATE DATABASE statement 326, 327, 328,
334, 447
CREATE FUNCTION statement 430
CREATE INDEX statement 339, 447, 805
CREATE OPAQUE TYPE statement, maxlength
value and lvarchar 256
CREATE PROCEDURE statement 430, 447
CREATE TABLE statement 186, 250, 339, 447,
805
Create-time flags 698, 703
CROWTYPE data-type constant 84
CSHORTTYPE data-type constant 84
CSTRINGTYPE data-type constant 84, 791,
796
Cursor (database)

and sqlca.sqlerrd 294
deferring PREPARE 416
definition of 406
dynamic 374, 409
for receiving rows 406
for sending rows 408
freeing 405, 411
hold 406, 408
identifying variable mismatch 284, 289, 294
in thread-safe application 379
insert 408
interrupting the database server 805
naming 409
optimizing 409
scroll 406
sequential 406, 408
sizing the cursor buffer 410
update 406
using 406

Cursor buffer
default size 411
description 410
fetch buffer 410
insert buffer 410
sizing 410

Cursor function
definition of 431
known at compile time 432
not known at compile time 495, 537
parameterized 435
with sqlda structure 537
with system-descriptor area 495

Cursor names
case sensitivity 6
scope rules 61, 379
specifying 409
using delimited identifiers 15, 409
using host variables 409

CVARBINTYPE data-type constant 84
CVCHARTYPE data-type constant 84

D
Data conversion

arithmetic operations 90
definition of 87
for boolean values 89, 112
for CHAR data type 100
for char values 576, 587, 597, 646, 663
for character data types 88, 89, 90, 90, 100,
118
for DATE values 132, 132
for DATETIME values 90, 130, 132, 615
for decimal values 576, 578, 582, 583, 587,
597, 599, 601, 603, 668
for DECIMAL values 91, 650, 758
for double values 578, 599, 666, 761

for floating-point data types 89, 118
for int values 582, 601
for int4 values 603
for int8 values 674
for INTERVAL values 90, 130, 132
for long int values 583, 656, 676, 763
for MONEY values 758, 761, 763
for numeric data types 88, 90, 91
for NVARCHAR data type 101
for VARCHAR values 90, 101
when fetching DATETIME 131
when fetching INTERVAL 131
when inserting DATETIME 131
when inserting INTERVAL 131

DATA descriptor field
after a DESCRIBE 480, 481
after a FETCH 484, 486, 487, 495, 501
allocating memory for 480
definition of 440
freeing memory for 485
setting column value 496, 496
setting input parameter 500, 501
setting simple-large-object column 507

Data transfer
error checking 343

Data types
array of host variables 18
defined constants for 452, 482
for dynamic thread library 392
int1 108
int2 108
int4 108
locale-specific 94
locator structure 137
MCHAR 108
mint 108
mlong 108
MSHORT 108
pointers 20
relationship between C and SQL types 80
structures 18, 19
typedef expressions 20
X/Open defined constants for 85, 453

Database cursor
in explicit connection 364

Database server connection
active 336, 374, 639
checking status of 338
current 326, 336, 336, 347, 639, 689
detaching from 338
determining features 334
determining name of 280, 336
dormant 326, 336, 374
freeing resources of 814
in thread-safe application 374
interrupting 338
switching between 335
terminating 344, 377
types of 326
using across threads 376

Database servers
connecting to 329
current 322
default 36, 321, 322, 333
determining available databases 338
determining features of 334
determining name of 280, 336
determining type of 284, 289
in InetLogin structure 36
interrupting 805

message request 339, 341, 361, 411, 411,
416, 416, 421
optimized message transfers 344
optimizing OPEN, FETCH, and CLOSE 421
receiving configuration information 321
reducing messages 416
specified 322

DATABASE statement 625
and implicit connections 326, 327, 816
defined statement constant 447
determining name of a connection 280
determining name of a database
server 280, 336
opening a database 334
starting a database server 328

Databases
closing 344
determining available 338
determining if ANSI-compliant 284, 289,
294, 334
determining transaction logging 284, 289,
294, 334
environment 319
fetching CHAR data 100
fetching DATETIME data 130
fetching INTERVAL data 131
fetching VARCHAR data 101
inserting CHAR data 101
inserting NCHAR data 101
inserting NVARCHAR data 103
inserting VARCHAR data 103

date data type
corresponding SQL data type 80, 85
data conversion 132, 132
declaration 125
defined constant 84

DATE data type
corresponding ESQL/C variable type 80, 85
data conversion 132, 132
declaring host variables for 125
defined constant 82
ifx_defmtdate() 630
ifx_strdate() 717
rdatestr() 745
rdayofweek() 747
rdefmtdate() 749
rfmtdate() 754
rjulmdy() 772
rleapyear() 774
rmdyjul() 776
rstrdate() 785
rtoday() 787

Date expressions
formatting 125
valid characters 125

datetime data type
corresponding SQL data type 80
data conversion 132
declaration 127
defined constant 84
definition of 126
fetching into 130
inserting from 130
role of datetime.h 85

DATETIME data type
ANSI-standard qualifiers 132
corresponding ESQL/C data type 80, 85
data conversion 90, 130, 131, 131, 132,
132, 615
datetime.h, role of 27
declaring host variables for 127

838

defined constant 82
dtaddinv() 606
dtcurrent() 608
dtcvasc() 609
dtcvfmtasc() 612
dtextend() 615
dtsub() 616
dtsubinv() 619
dttoasc() 620
dttofmtasc() 622
dynamically allocating structures for 524
extending 130, 615
fetching 90, 130
ifx_dtcvasc() 632
ifx_dtcvfmtasc() 634
ifx_dttofmtasc() 636
inserting 90, 130
macros 129
precision of underlying decimal value 126
qualifiers 127, 132
role of datetime.h 85

datetime.h header file
contents and use 126
data types defined 85
definition of 27
macros defined 129, 524

DB_LOCALE environment variable 36
DBALSBC environment variable 36
DBANSIWARN environment variable 36, 58,
289, 294, 326
DBAPICODE environment variable 36
DBASCIIBC environment variable 36
DBCENTURY environment variable 36, 609,
612, 622, 630, 634, 636, 717, 749, 785
DBCODESET environment variable 36
DBCONNECT environment variable 36
DBCSCONV environment variable 36
DBCSOVERRIDE environment variable 36
DBCSWIDTH environment variable 36
DBDATE environment variable 36, 612, 622,
634, 636, 717, 745, 785
DBFLTMASK environment variable 36
DBLANG environment variable 36
DBMONEY environment variable 36, 118, 118,
118, 758, 761, 763
DBMONEYSCALE environment variable 36
DBPATH environment variable 36, 333, 802
DBSS2 environment variable 36
DBSS3 environment variable 36
DBTEMP environment variable 36
DBTIME environment variable 36, 612, 622,
634, 636, 729, 733
DEALLOCATE COLLECTION statement 211
DEALLOCATE DESCRIPTOR statement 478,
485
DEALLOCATE ROW statement 241
dec_t typedef

defined constant for DECIMAL data type 84
defined constant for MONEY data type 84
definition of 113

decadd() library function 571
deccmp() library function 573
deccopy() library function 575
deccvasc() library function 576
deccvdbl() library function 578
deccvflt() library function 580
deccvint() library function 582
deccvlong() library function 583
decdiv() library function 585, 585
dececvt() library function 379, 383, 587, 628
decfcvt() library function 379, 383, 587, 628

Decimal arithmetic
addition 571
division 585, 585
multiplication 591
subtraction 595

decimal data
bigint conversion 559

decimal data type
addition 571
comparing 573
converting from double 578
converting from int8 668
converting from integer 582
converting from long int 583
converting from text 576
converting to double 599
converting to int 601
converting to int8 650
converting to long int 603
converting to text 587, 597, 758
copying 575
corresponding SQL data type 80
data conversion 91
declaration 113
defined constant for DECIMAL data type 84
defined constant for MONEY data type 84
division 585
floating-point decimals 91, 92
in thread-safe application 379
multiplication 591
role of decimal.h 85
rounding 593
subtraction 595
truncating 604

DECIMAL data type
corresponding ESQL/C variable type 80, 85
data conversion 90, 91, 91, 650, 758
decadd() 571
deccmp() 573
deccopy() 575
deccvasc() 576
deccvbl() 578
deccvint() 580, 582
deccvlong() 583
decdiv() 585, 585
dececvt() 587
decfcvt() 587
decimal structure shown 113
declaring host variables for 113
decmul() 591
decround() 593
decsub() 595
dectoasc() 597
dectodbl() 599
dectoint() 601
dectolong() 603
dectrunc() 604
defined constant 82, 85
fixed-point decimals 91, 92
number of decimal digits 89
role of decimal.h 27, 85
scale and precision 92, 440

decimal structure 113
decimal.h header file

data types defined 85, 113
definition of 27

DECLARE SECTION 11
excluding C header file statements from 67
including C declaration syntax in 67

DECLARE statement
and sqlca structure 294, 301

in thread-safe application 379
insert cursor for collection variable 218
select cursor for collection variable 223
with a SELECT statement 406
with an EXECUTE FUNCTION
statement 406, 495, 537
with an INSERT statement 408
with deferred PREPARE 416
with OPTOFC and Deferred-PREPARE
features 423

decmul() library function 591
decround() library function 593
decsub() library function 595
dectoasc() library function 597
dectodbl() library function 599
dectoint() library function 601
dectolong() library function 603
dectrunc() library function 604
Default order of compilation of ESQL/C
programs, overview of 48
Deferred-PREPARE feature 416

enabling 417
restrictions on 416
SET DEFERRED_PREPARE statement 417
with AUTOFREE and OPTOFC features 423
with OPTOFC feature 423

define directives, ESQL/C
processing of 46

define preprocessor directive 31, 33, 59
DELETE statements 447

and NOT FOUND condition 288, 299
collection columns 235
Collection Derived Table clause 228, 247
defined-statement constant 447
determining estimated cost of 294
determining number of rows deleted 279,
294
determining rowid 294
dynamic 424, 434, 434, 456
failing to access rows 294
in ANSI-compliant database 105
interrupting 339, 805
known at compile time 424, 424, 424, 434
not known at compile time 456
parameterized 434, 456, 506, 547
row variables 247
WHERE CURRENT OF clause 409
with DESCRIBE 446, 454
without WHERE clause 284, 289, 294, 447,
454

DELIMIDENT environment variable 15, 36, 247
Delimited identifiers 15, 247, 409
demo1 sample program 43
demo2 sample program 435, 435
demo3 sample program 487, 501, 530
demo4 sample program 435, 435, 487, 540
Demonstration programs

location 43
source files for 547

DESCRIBE statement
allocating memory for data 480, 481, 524,
788
allocating memory for sqlda 521
and deferred PREPARE 417
and lvarchar host variables 481
and sqlca structure 454
determining column data type 82, 96, 453,
453
determining return-value data type 453
determining SQL statement type 294, 297,
447

839

initializing sqlda structure 521
initializing system-descriptor area 480
INTO clause 446, 519, 521, 521, 547
role in dynamic SQL 403
setting COUNT field 480
SQLCODE value 297, 447
USING SQL DESCRIPTOR clause 446, 478,
480, 486, 496, 506
warnings after 284, 289, 294
with an item descriptor 486, 496
with deferred PREPARE 416
with input parameters 481
with sqlvar_struct 529, 535

Diagnostic information
definition of 277
with GET DIAGNOSTICS statement 279
with the sqlca structure 293

Diagnostics area
CLASS_ORIGIN field 280, 289, 289, 289,
292, 292, 292
CONNECTION_NAME field 280, 336
definition of 279
INFORMIX_SQLCODE field 280, 282
MESSAGE_LENGTH field 280
MESSAGE_TEXT field 280, 292
MORE field 279
NUMBER field 279
RETURNED_SQLSTATE field 280, 282
ROW_COUNT field 279
SERVER_NAME field 280, 336
SUBCLASS_ORIGIN field 280, 289, 289,
289, 292, 292, 292
undefined fields 282

DISCONNECT statement 364, 753
and explicit connections 326
and open transactions 814
in thread-safe application 377
terminating a database server
connection 344

dispcat_pic sample program 166, 309
Distinct bit 460
Distinct data types

algorithm for determining 460
distinct bit 460
dynamically executing 460
extended identifier 440, 444
in dynamic SQL 444
name of 440, 444
owner of 440, 444
source data type 440, 444, 460

Distributed computing environment
(DCE) 373, 380, 380
DLL Registry 77
Dollar ($) sign

as formatting character 118
between main variable and indicator
variable 25
for function parameters 21
relation to SQL keyword protection 68
to declare host variables 10, 11
with embedded SQL statements 6
with preprocessor directives 31

Dot notation 245, 251
Double dash (--) 9
double data type

bigint conversion 558
converting from decimal 599
converting from int8 666
converting to decimal 578
converting to int8 648
converting to text 761

corresponding SQL data type 80, 85, 117
data conversion 91
defined constant 84

Double quotes (" ")
delimiting identifiers 15, 247
escaping 8
in a literal collection 234
in a literal row 252
in a quoted string 8

DROP DATABASE statement 326, 327, 328,
447
DROP FUNCTION statement 430
DROP PROCEDURE statement 430
dtaddinv() library function 606
dtcurrent() library function 608
dtcvasc() library function 132, 609
dtcvfmtasc() library function 132, 612
dtextend() library function 132, 132, 615
dtime structure 127
dtime_t typedef

defined constant 84
definition 127, 130
setting qualifiers for DATETIME 524

dtsub() library function 616
dtsubinv() library function 619
dttoasc() library function 132, 620
dttofmtasc() library function 132, 507, 622
dyn_sql sample program 309
Dynamic link library (DLL)

and import library 78
building 79
definition 78
ESQL client interface 324
esqlauth.dll 77, 324
locating 79
Registry 77
sharing 329
with WHENEVER 305

Dynamic SQL
assembling the statement string 400
definition of 399, 400
describing the statement 403, 446
executing the statement 403
freeing resources 405
memory management 438
non-SELECT statements known at compile
time 424
non-SELECT statements not known at
compile time 456, 456
preparing the statement 400
SELECT statements known at compile
time 425
SELECT statements not known at compile
time 455, 456
statements not known at compile time 458
statements used 403, 406, 408, 478, 519
statements with user-defined data
types 458
user-defined functions known at compile
time 430
user-defined functions not known at
compile time 457

Dynamic thread functions, registering 395
Dynamic thread library

creating 389
data types for 392
registering functions 395

Dynamic-management structure
sqlda structure 442, 519
system-descriptor area 439, 477

dynthr_init() function 395

E
elif preprocessor directive 31, 34
else preprocessor directive 31, 34
endif preprocessor directive 31, 34
Environment variables

CC8BITLEVEL 36
CLIENT_LOCALE 36
COLLCHAR 36
CPFIRST 64
DB_LOCALE 36
DBALSBC 36
DBANSIWARN 36, 58, 289, 294, 326
DBASCIIBC 36
DBCENTURY 36, 609, 612, 622, 630, 634,
636, 717, 749, 785
DBCODESET 36
DBCONNECT 36
DBCSCONV 36
DBCSOVERRIDE 36
DBCSWIDTH 36
DBDATE 36, 612, 622, 634, 636, 717, 745,
785
DBFLTMASK 36
DBLANG 36
DBMONEY 36, 118, 118, 118, 758, 761, 763
DBMONEYSCALE 36
DBPATH 36, 333, 802
DBSS2 36
DBSS3 36
DBTEMP 36
DBTIME 36, 612, 622, 634, 636, 729, 733
DELIMIDENT 15, 36
ESQLMF 36
FET_BUF_SIZE 36
GL_DATE 36, 612, 622, 634, 636, 717, 745,
785
GL_DATETIME 36
IFX_AUTOFREE 412
IFX_DEFERRED 417
IFX_LOB_XFERSIZE 343
IFX_SESSION_MUX 331
in thread-safe application 379
INFORMIXCONRETRY 36
INFORMIXCONTIME 36
INFORMIXDIR 36, 49, 49, 60
INFORMIXSERVER 36, 44, 321, 507, 802,
816
INFORMIXSQLHOSTS 320
LANG 36
LC_COLLATE 36
LC_CTYPE 36
LC_MONETARY 36
LC_NUMERIC 36
LC_TIME 36
LD_LIBRARY_PATH 369, 398
OPTMSG 345
OPTOFC 422
PATH 79
precedence 41
retrieving 35
setting 35
THREADLIB 380, 380, 398

eprotect utility
-u mode 64, 67
protecting SQL keywords 67

Error code
finderr utility 4

Error handling
checking during data transfer 343
retrieving an error message 766

840

role of sqlca.h 27
using in-line code 303
with optimized message transfers 347

Error messages
determining length of 280
Informix
-specific
 302, 307
obtaining parameters 294
redirecting 61
retrieving text of 280, 306, 766, 768

Escape character 8, 234, 252
Escape characters, multibyte filter for 4
ESQL client-interface DLL 324

contents of 78
description 77

ESQL client-interface library 78
esql command

calling C preprocessor and compiler 47
compatibility issues 370
library options 367
linking options 75
options passed implicitly 72
preprocessing options 57
requirements for using 46, 49
steps esql performs 49
syntax 49
version information 49

ESQL preprocessor
stage 1 46

ESQL/C conditional compilation directives
processing of 46

ESQL/C data types
BIGINT 80
BIGSERIAL 80
boolean 85
char 94, 94
character data types 94
collection 80, 85, 204
date 80, 85, 125
datetime 80, 85, 126
decimal 80, 85
defined constants for 82, 84, 453
double 80, 85, 117
fixchar 80, 85, 94, 95
fixed binary 80, 85
float 80, 85, 117
floating-point data types 117
ifx_lo_t 80, 85, 179
int8 80, 109
integer data types 108
interval 80, 85, 126
loc_t 80, 85, 136
long int 85, 108
lvarchar 80, 85, 94, 99
row 80, 85, 235
short int 85, 108
string 80, 85, 94, 95
trailing blanks 95
var binary 80, 85
varchar 80, 85, 94, 96

ESQL/C define directives, processing of 46
ESQL/C Dynamic Link Libraries 77
ESQL/C files for Windows 4
ESQL/C host variables, using C preprocessor
directives to define 47
ESQL/C include directives, preprocessing
of 46
ESQL/C library functions

character and string functions 105
connection functions 364

database server control functions 340,
341, 347
DATE type functions 125
DATETIME type functions 134
DECIMAL type functions 383, 383
environment variable functions 35
error message functions 306
formatting functions 124
function prototypes 30
INT8 type functions 110
INTERVAL type functions 134
numeric formatting functions 124
size and alignment functions 93
smart-large-object functions 200

ESQL/C preprocessor, stage 2 46
ESQLAUTH sample program 324
esqlauth.c authorization file 324
esqlauth.dll ESQL client-interface DLL 77
esqlauth.dll
Informix
DLL
 324
ESQLMF environment variable 36
ESQLMF.EXE multibyte filter 4
Exception handling

definition of 277
determining number of exceptions 279
displaying error text 302, 307
NOT FOUND condition 288, 299, 299, 305
retrieving error message text 280, 306
runtime errors 292, 300, 305
success condition 288, 298
using the WHENEVER statement 305
warning conditions 289, 300, 305
with sqlca structure 298
with SQLSTATE variable 287

Exclamation point (!), wildcard in smart large
object filenames 681
EXEC SQL keywords

to declare host variables 11
with embedded SQL statements 6
with preprocessor directives 31

exec() system call 380, 808
EXECUTE FUNCTION statement

associated with a cursor 406, 406, 432, 432
defined statement constant 447, 491, 492,
535
executing a cursor function 432
executing a noncursor function 431
for user-defined functions 430, 431, 457
INTO host_var clause 431
known at compile time 427, 431
not known at compile time 455, 456
parameterized 433, 435, 456
with DESCRIBE 446, 457, 480, 521, 521
with dynamic-management structures 457
with sqlda structure 535
with system-descriptor area 491

EXECUTE IMMEDIATE statement 301, 425,
430
EXECUTE PROCEDURE statement 339, 424,
430, 430, 434, 447, 456
EXECUTE statement

INTO DESCRIPTOR clause 519, 527, 536
INTO host_var clause 294, 426, 431
INTO SQL DESCRIPTOR clause 478, 484,
491, 492
role in dynamic SQL 403, 403
SQLCODE values 302
USING DESCRIPTOR clause 478, 519, 527,
538, 545, 546, 546, 547

USING host_var clause 434
USING SQL DESCRIPTOR clause 484, 484,
496, 505, 505, 506, 506
with non-SELECT statements known at
compile time 424
with noncursor functions known at compile
time 431
with singleton SELECT statements known
at compile time 426
with user-defined procedures 430

exit() system call 297, 303
Explicit connection

connection handle 364
default 333
definition of 326, 329
establishing 329, 625
identifying 336
limits of 364
starting 328, 328
switching to 800
terminating 344, 753
when to use 329
with sqlexit() 814

Exporting runtime routines 77
Extended identifier 440, 444, 460
External function

definition 430
executing dynamically 431, 432, 492, 495,
536, 537
iterator function 432

External procedure 430, 430
External routines 430
EXTYPEID descriptor field 440
EXTYPELENGTH descriptor field 440
EXTYPENAME descriptor field 440
EXTYPEOWNERLENGTH descriptor field 440
EXTYPEOWNERNAME descriptor field 440

F
fclose() system call 60
FET_BUF_SIZE environment variable 36
FetArrSize global variable 471

and FetBufSize 471
with a fetch array 462

FetBufSize global variable 42
and FetArrSize 471

Fetch array
allocating memory for 471
allocating memory, example 472
and simple large objects 462
description of 462
FetArrSize global variable 462
freeing memory 477
obtaining values from 475
sample program 463
use of ifx_loc_t structure 472
using 462
USING DESCRIPTOR clause 462
using sqlda structure with 462
with Deferred PREPARE and OPTOFC
features 462

Fetch buffer 406, 410
FETCH statement

and NOT FOUND condition 288, 299
checking for truncation 294
fetching into a collection variable 223
getting values from a system-descriptor
area 483
INTO DESCRIPTOR clause 537
INTO host_var clause 19, 294
INTO SQL DESCRIPTOR clause 495

841

optimizing 421
retrieving a row 406
USING DESCRIPTOR clause 519, 527, 530,
537, 540
USING SQL DESCRIPTOR clause 478, 484,
486, 487, 495, 501
warnings 294
with aggregate functions 294
with fetch array 462
with OPTOFC and Deferred PREPARE
features 423

Fetching
CHAR values 100
character data 100
collection data 214
data conversion 88
DATETIME values 90, 130
determining rowid 294
INTERVAL values 90, 131
into char host variable 89, 90, 100, 101,
104, 118, 131
into collection host variable 230, 233
into datetime host variable 130
into fixchar host variable 89, 90, 100, 101,
104, 118, 131
into fixed binary host variable 268
into ifx_lo_t host variable 191
into interval host variable 131
into lvarchar host variable 261
into row host variable 251
into string host variable 89, 90, 100, 101,
104, 118, 131
into var binary host variable 274
into varchar host variable 89, 100, 104, 118
NCHAR values 101
NVARCHAR values 103
row-type data 243
VARCHAR values 90, 101

File extensions
.c 46, 57, 70, 75, 372
.def 72, 75
.dll 70, 78, 329
.ec 46, 49, 70, 71
.ecp 49
.exe 70, 78, 329
.h 31
.o 75
.obj 70
.rc 75, 76
.res 75, 76
.sl 371
.so 368, 371

File name
compiled resource file 75
ESQL/C executable 49, 49, 69
ESQL/C libraries 49, 75
include file 49
log file 49
module-definition file 75
options for 57
project file 49, 71
resource file 75
response file 49, 71

File-open mode flags 149
Files

copying a smart large object to 681
copying to a smart large object 683
getting name for a smart large object 686
named file as a simple-large-object
location 153, 496, 496

open file as a simple-large-object
location 149

finderr utility 4
fixchar data type

corresponding SQL data type 80, 80, 85, 85
defined constant 84
definition of 94, 95
fetching into 89, 90, 100, 101, 104, 118, 131
for boolean values 112
inserting from 101, 103, 104, 105
with ANSI-compliant database 105

fixed binary data type
checking for null 268
corresponding SQL data type 80, 85
declaration 264
defined constant 84
fetching into 268
inserting from 267
setting to null 267
use with smart large objects 180

Fixed-length opaque data type
declaring host variable for 264
inserting 260, 267
selecting 261, 268

Fixed-point decimals 91, 92
float (C) data type

bigint conversion 559
float data type

corresponding SQL data type 80, 85, 117
data conversion 91
defined constant 84
passed as double 117

FLOAT data type
corresponding ESQL/C data type 80, 85,
117
data conversion 90, 91, 91
defined constant 82, 85
determining how stored 284, 289, 294, 334
number of decimal digits 89

Floating-point decimals 89, 91, 92, 118, 599,
666
FLUSH statement 220, 408, 500, 539
fopen() system call 60
fork() system call 380, 808
Formatting function

ifx_defmtdate() 630
rdefmtdate() 749
rfmtdate() 754
rfmtdec() 758
rfmtdouble() 761
rfmtlong() 763

fread() system call 60
FREE statement

freeing cursor resources 405, 406, 408
freeing statement-identifier resources 405
role in dynamic SQL 405, 405

free() system call
freeing a simple-large-object memory
buffer 144
freeing an sqlda structure 531, 531
freeing column data buffer 531, 531

Freeing a cursor automatically 411
Freeing memory, fetch array 477
Function cursor

definition of 407
fetch buffer 410
statements that manage 406
using 432
with sqlda structure 537
with system-descriptor area 495

Function libraries, for ESQL/C 4

Function library
bycmpr() 565
bycopy() 567
byfill() 568
byleng() 570
decadd() 571
deccmp() 573
deccopy() 575
deccvasc() 576
deccvdbl() 578
deccvflt() 580
deccvint() 582
deccvlong() 583
decdiv() 585, 585
dececvt() 379, 383, 587, 628
decfcvt() 379, 383, 587, 628
decmul() 591
decround() 593
decsub() 595
dectoasc() 597
dectodbl() 599
dectoint() 601
dectolong() 603
dectrunc() 604
dtaddinv() 606
dtcurrent() 608
dtcvasc() 609
dtcvfmtasc() 612
dtextend() 615
dtsub() 616
dtsubinv() 619
dttoasc() 620
dttofmtasc() 507, 622
GetConnect() 364, 625
ifx_cl_card() 627
ifx_dececvt() 379, 628
ifx_decfcvt() 379, 628
ifx_defmtdate() 630
ifx_dtcvasc() 632
ifx_dtcvfmtasc() 634
ifx_dttofmtasc() 636
ifx_getcur_conn_name() 639
ifx_getenv() 638
ifx_getserial8() 639
ifx_int8add() 640
ifx_int8cmp() 642
ifx_int8copy() 644
ifx_int8cvasc() 646
ifx_int8cvdbl() 648
ifx_int8cvdec() 650
ifx_int8cvint() 652, 654
ifx_int8cvlong() 656
ifx_int8div() 657
ifx_int8mul() 659
ifx_int8sub() 661
ifx_int8toasc() 663
ifx_int8todbl() 666
ifx_int8todec() 668
ifx_int8toint() 671, 674
ifx_int8tolong() 676
ifx_lo_ 694
ifx_lo_alter() 679
ifx_lo_close() 680
ifx_lo_col_info() 680
ifx_lo_copy_to_file() 627, 681
ifx_lo_copy_to_lo() 683
ifx_lo_create() 684
ifx_lo_def_create_spec() 685
ifx_lo_filename() 686
ifx_lo_from_buffer() 687
ifx_lo_lock() 688

842

ifx_lo_open() 687, 689
ifx_lo_read() 691
ifx_lo_readwith 692
ifx_lo_release() 693
ifx_lo_spec_free() 695
ifx_lo_specget_estbytes() 696
ifx_lo_specget_extsz() 697
ifx_lo_specget_flags() 698
ifx_lo_specget_maxbytes() 699
ifx_lo_specget_sbspace() 699
ifx_lo_specset_estbytes() 701
ifx_lo_specset_extsz() 702
ifx_lo_specset_flags() 703
ifx_lo_specset_maxbytes() 703
ifx_lo_specset_sbspace() 704
ifx_lo_stat_atime() 705
ifx_lo_stat_cspec() 706
ifx_lo_stat_ctime() 707
ifx_lo_stat_free() 707
ifx_lo_stat_mtime_sec() 708
ifx_lo_stat_refcnt() 708
ifx_lo_stat_size() 709
ifx_lo_stat() 705
ifx_lo_tell() 710
ifx_lo_to_buffer() 710
ifx_lo_truncate() 711
ifx_lo_unlock() 712
ifx_lo_write() 713
ifx_lo_writewith 714
ifx_lvar_alloc() 715
ifx_putenv() 716
ifx_strdate() 717
incvasc() 726
incvfmtasc() 729
intoasc() 731
intofmtasc() 507, 733
invdivdbl() 736
invdivinv() 738
invextend() 740
invmuldbl() 742
ldchar() 175, 744
rdatestr() 745
rdayofweek() 747
rdefmtdate() 749
rdownshift() 752
ReleaseConnect() 364, 753
rfmtdate() 507, 754
rfmtdec() 507, 758
rfmtdouble() 761
rfmtlong() 763
rgetlmsg() 766
rgetmsg() 768, 768
risnull() 770
rjulmdy() 772
rleapyear() 774
rmdyjul() 776
rsetnull() 777
rstod() 780
rstoi() 781
rstol() 783
rstrdate() 785
rtoday() 787
rtypalign() 524, 531, 788
rtypmsize() 524, 531, 791
rtypname() 794
rtypsize() 796
rtypwidth() 797
rupshift() 799
SetConnect() 364, 800
sqgetdbs() 802
sqlbreak() 338, 348, 805

sqlbreakcallback() 341, 806
sqldetach() 338, 344, 380, 808
sqldone() 338, 348, 814
sqlexit() 344, 814
sqlsignal() 815
sqlstart() 328, 814, 816
stcat() 400, 817
stchar() 819
stcmpr() 820
stcopy() 400, 821
stleng() 822

Functions
callback 341
cursor 431, 432
dynamic thread library 389
dynamic thread, registering 389
iterator 432
noncursor 431, 431
parameters 409, 507
signal handler 340

G
GB18030-2000 codeset 62
GET DESCRIPTOR statement

getting COUNT field 486, 496
getting fields 478, 483
getting row values 486
setting COUNT field 483
with OPTOFC and Deferred-PREPARE
features 423

GET DIAGNOSTICS
failure and SQLSTATE 292

GET DIAGNOSTICS statement
and OPTOFC feature 421
ANSI SQL compliance 278
description 279
examples of use 279, 280, 292, 307
exception information 280
retrieving multiple exceptions 292
RETURNED_SQLSTATE field 282
SQLCODE variable 282
SQLSTATE variable 282
statement information 279
X/Open compliance 278

getcd_me sample program 144
getcd_nf sample program 154
getcd_of sample program 150
GetConnect() library function 364, 625
GL_DATE environment variable 36, 612, 622,
634, 636, 717, 745, 785
GL_DATETIME environment variable 36
GL_USEGLU environment variable 62
Global ESQL/C variables 42
Global Language Support (GLS) environment

character data types for host variables 94
inserting character data 101, 103
naming host variables 12
naming indicator variables 24
transfering character data 100

Global variable
OptMsg 345

GLS for Unicode (GLU) 62
gls.h header file

definition of 27
GLU. 62

H
HCL
Informix

checking for secondary mode 284, 289,
294, 334
connect statement 289

DATASKIP feature 25, 284, 289, 294
determining type 284, 289
interrupting 341, 806

HCL
Informix
SE
 284
Header file

automatic inclusion 30, 30
collct.h 27
datetime.h 27
decimal.h 27
gls.h 27
ifxgls.h 27
ifxtypes.h 27
infxcexp.c 27
int8.h 27, 109
list of 85
locator.h 27, 180
login.h 27, 36, 324
pthread.h 380
sqlca.h 27
sqlda.h 27, 30
sqlhdr.h 27, 30, 372
sqliapi.h 27
sqlproto.h 27, 30
sqlstype.h 27
sqlstypes.h 507
sqltypes.h 27
sqlxtype.h 27
syntax for including 30, 31
system 44
value.h 27
varchar.h 27

Hold cursor 218, 406, 408
HOST network parameter 36, 324
Host variable

array of 18, 18
as ANSI-style parameter 21
as C structure 19
as cursor name 409
as function parameter 409, 507
as input parameter 433
as pointer 20
as routine argument 426
as SQL identifier 15
assigning a value to 14
based on definitions in C header files 63
Boolean data type 112
case sensitivity 6
char data type 90, 94, 131
choosing data type for 12, 80, 84, 453, 527
collection data type 204
date data type 125
datetime data type 127
decimal data type 113
declaring 11
fetching DATETIME value 90
fetching INTERVAL value 90
fetching VARCHAR value 90
fixchar data type 90, 95, 131
fixed binary data type 264
ifx_lo_t data type 180
in embedded SQL 10
in EXECUTE FUNCTION 431, 432
in GLS environment 12
in nonparameterized SELECT 426, 427
in parameterized DELETE or UPDATE 434
in parameterized EXECUTE FUNCTION 435
in parameterized SELECT 435
in typedef expressions 20

843

initializing 12
inserting DATETIME value 90
inserting INTERVAL value 90
inserting VARCHAR 90
int8 data type 109
interval data type 128, 130, 131
loc_t data type 137
lvarchar data type 99, 256
naming 12
row data type 235
scope of 13
string data type 90, 95, 131
truncation of 26
using data conversion 87
var binary data type 268
varchar data type 96
with float values 118
with null values 18, 723, 726, 770, 777

HostInfoStruct structure
AskPassAtConnect field 324
definition of 324
Host field 324
InfxServer field 324
Options field 324
Pass field 324
Protocol field 324
Service field 324
User field 324

Hyphen
as formatting character 118
double(--) 9

I
ICU. 62
IDATA descriptor field 440, 500
ifdef preprocessor directive 31, 34
ifndef preprocessor directive 31, 34
ifx_allow_newline() user-defined routine 9
IFX_AUTOFREE environment variable 412

client only 422
ifx_cl_card() library function 627
ifx_dececvt() library function 379, 628
ifx_decfcvt() library function 379, 628
IFX_DEFERRED_PREPARE environment
variable 417

client only 422
ifx_defmtdate() library function 630
ifx_dtcvasc() library function 632
ifx_dtcvfmtasc() library function 634
ifx_dttofmtasc() library function 636
ifx_getcur_conn_name() library function 639
ifx_getenv() library function 638
ifx_getserial8() library function 639
ifx_getversion utility 371
ifx_int8add() library function 640
ifx_int8cmp() library function 642
ifx_int8copy() library function 644
ifx_int8cvasc() library function 646
ifx_int8cvdbl() library function 648
ifx_int8cvdec() library function 650
ifx_int8cvint() library function 652, 654
ifx_int8cvlong() library function 656
ifx_int8div() library function 657
ifx_int8mul() library function 659
ifx_int8sub() library function 661
ifx_int8toasc() library function 663
ifx_int8todbl() library function 666
ifx_int8todec() library function 668
ifx_int8toint() library function 671, 674
ifx_int8tolong() library function 676
ifx_lo_ 196, 197, 694

ifx_lo_alter() library function 679
lightweight I/O 194

ifx_lo_close() library function 197, 680
lightweight I/O 194

ifx_lo_col_info() library function 680
ifx_lo_copy_to_file() library function 627, 681,
686
ifx_lo_copy_to_lo() library function 683
ifx_lo_create() library function 185, 187, 192,
684

duration of open 196
lightweight I/O 194
locks on smart large objects 195

ifx_lo_def_create_spec() library function 185,
186, 685
ifx_lo_filename() library function 686
ifx_lo_from_buffer() library function 189, 200,
687
ifx_lo_lock() library function 688
ifx_lo_open() library function 192, 687, 689

duration of open 196
lightweight I/O 194
locks on smart large objects 195

ifx_lo_read() library function 196, 691
ifx_lo_readwith 196, 692
ifx_lo_release 687
ifx_lo_release() library function 189, 200, 693
ifx_lo_spec_free() library function 187, 695
ifx_lo_specget_estbytes() library function 696
ifx_lo_specget_extsz() library function 181,
697
ifx_lo_specget_flags() library function 182, 698
ifx_lo_specget_maxbytes() library
function 181, 699
ifx_lo_specget_sbspace() library function 181,
699
ifx_lo_specset_estbytes() library function 701
ifx_lo_specset_extsz() library function 181,
702
ifx_lo_specset_flags() library function 182, 703
ifx_lo_specset_maxbytes() library
function 181, 703
ifx_lo_specset_sbspace() library function 704
ifx_lo_stat_atime() library function 198, 705
ifx_lo_stat_cspec() library function 198, 706
ifx_lo_stat_ctime() library function 198, 707
ifx_lo_stat_free() library function 199, 707
ifx_lo_stat_mtime_sec() library function 198,
708
ifx_lo_stat_refcnt() library function 198, 708
ifx_lo_stat_size() library function 198, 709
ifx_lo_stat() library function 197, 705
ifx_lo_t data type

corresponding SQL data type 80, 85, 85
declaration 180
definition of 179
fetching into 191, 191
inserting from 187
use of fixed binary data type 180, 276

ifx_lo_tell() library function 196, 197, 710
ifx_lo_to_buffer() function 200
ifx_lo_to_buffer() library function 189, 710
ifx_lo_truncate() library function 711
ifx_lo_unlock() library function 712
ifx_lo_write() library function 197, 713
ifx_lo_writewith 197, 714
IFX_LOB_XFERSIZE

environment variable 343
ifx_loc_t structure, with fetch array 472
ifx_lvar_alloc() library function 715
ifx_putenv() function 345, 422

ifx_putenv() library function 716
ifx_release() library function 200
IFX_SESSION_MUX environment variable, for
Windows 331
ifx_strdate() library function 717
ifx_var_alloc() function 718
ifx_var_dealloc() function 719
ifx_var_flag() function 720
ifx_var_getdata() function 722
ifx_var_getlen() function 723
ifx_var_isnull() function 274, 723
ifx_var_setdata() function 724
ifx_var_setlen() function 725
ifx_var_setnull() function 272, 726
ifx_varlena_t structure 270
ifxgls.h header file

definition of 27
ifxtypes.h file

description of 27
ILENGTH descriptor field 440, 500
ILogin sample program 4
ILOGIN sample program 40
Implicit connection

default 333
definition of 327
starting 328, 328, 328, 328, 328, 816
terminating 344
with sqlexit() 814

Import library 78
Include directives, ESQL/C

preprocessing of 46
Include files

header files as 27
preprocessor directive for 31
search path 60
specifying search path 60
syntax for 30, 31

Include preprocessor directive 30, 31, 31
incvasc() library function 132, 726
incvfmtasc() library function 132, 729
INDICATOR descriptor field 440, 460, 500
INDICATOR keyword 25, 26, 426
Indicator variable

checking for missing indicator 60
declaring 24
definition of 24
determining null data 18, 25, 26
in GLS environment 24
in INTO clause of EXECUTE 426
indicating truncation 26, 100, 101, 103,
104, 131, 460
inserting null values 25
specifying in SQL statement 25
valid data types 24
with opaque data type 460
with sqlda structure 444, 521, 521, 538, 539
with system-descriptor area 440, 500

InetLogin structure
application example 40, 322
AskPassAtConnect field 36, 324, 324
CC8BitLevel field 36
Client_Loc field 36
CollChar field 36
connection information in 321
ConRetry field 36
ConTime field 36
DB_Loc field 36
DbAlsBc field 36
DbAnsiWarn field 36
DbApiCode field 36
DbAsciiBc field 36

844

DbCentury field 36
DbCodeset field 36
DbConnect field 36
DbCsConv field 36
DbCsOverride field 36
DbCsWidth field 36
DbDate field 36
DbFltMsk field 36
DbLang field 36
DbMoney field 36
DbMoneyScale field 36
DbPath field 36
DbSS2 field 36
DbSS3 field 36
DbTemp field 36
DbTime field 36
DelimIdent field 36
description of 36
determining default database server 36
EsqlMF field 36
FetBuffSize field 36
fields of 36
GlDate field 36
GlDateTime field 36
Host field 36, 324
Informix
Dir field
 36
Informix
SqlHosts field
 36
InfxServer field 36, 322, 324, 625
Lang field 36
Lc_Collate field 36
Lc_CType field 36
Lc_Monetary field 36
Lc_Numeric field 36
Lc_Time field 36
Options field 36, 324
Pass field 36, 324
precedence 41
Protocol field 36, 324
Service field 36, 324
setting fields 40
User field 36, 324
with HostInfoStruct 324

Informix
general library

actual name 367, 368
API version 372
choosing version of 366
compatibility issues 370
default version 369
description of 365
libasf 76, 366
libgen 76, 366
libgls 76, 366
libos 76, 366
libsql 76, 366
linking 367, 367, 369, 380
location of 366
naming 367, 368
obtaining version of 371
shared 365, 368, 370
static 365, 367
symbolic name 368
thread-safe 365
thread-safe shared 382
thread-safe static 382

INFORMIX Registry subkey
connection information in 41

Informix
Server Information dialog box (Setnet32 utility)
 625
INFORMIXCONRETRY environment variable 36
INFORMIXCONTIME environment variable 36
INFORMIXDIR

location of demonstration programs 4, 4
INFORMIXDIR environment variable 49, 49, 60,
366

in InetLogin structure 36
location of DLLs 77
location of executable files 4
location of function libraries 4
location of import library 72
location of include files 72

INFORMIXSERVER environment variable 44,
321, 507, 802, 816

and GetConnect() 625
in HostInfoStruct structure 324
in InetLogin structure 36

INFORMIXSQLHOSTS environment
variable 36, 320
infxcexp.c header file

definition of 27
Input parameter

definition of 400, 433, 433
in singleton SELECT 426
not known at compile time 455
specifying value in a system-descriptor
area 484
specifying value in an sqlda structure 527
specifying values for EXECUTE FUNCTION
statements 433, 435, 456
specifying values for non-SELECT
statements 434, 456
specifying values for SELECT
statements 433, 435, 456
specifying values for user-defined
routines 426
with DESCRIBE 481

Insert
from var binary-host variable 272

Insert buffer 408, 410
Insert cursor 527

definition of 408
description of 410
executing with sqlda structure 539
executing with system-descriptor area 500
for collection variable 218
input parameters in VALUES clause 484
insert buffer 410
required for 408
statements that manage 408
with system-descriptor area 484

INSERT statements
and NOT FOUND condition 288, 299
associated with a cursor 408
collection columns 233
Collection Derived Table clause 215, 245
defined statement constant 447
determining estimated cost of 294
determining number of rows inserted 279,
294
determining rowid 294
dynamic 408, 424, 434, 456, 456
executing with sqlda structure 538
executing with system-descriptor area 496
failing to access rows 294
inserting CHAR data 101, 105
inserting collection data 215, 231, 234
inserting NCHAR data 101

inserting NVARCHAR data 103
inserting opaque-type data 260, 267, 272,
458
inserting row-type data 245, 252
inserting smart-large-object data 187
inserting VARCHAR data 103
interrupting 339, 805
known at compile time 424, 434
not known at compile time 455
obtaining generated SERIAL value 294
parameterized 434
VALUES clause 19, 434
with DESCRIBE 446, 480, 521, 521
with null values 25

Inserting
CHAR values 101
character data 100, 105
data conversion 88
DATETIME values 90, 130
from char host variable 101, 103, 104
from datetime host variable 130
from fixchar host variable 101, 103, 104
from fixed binary host variable 267
from fixed-size lvarchar 260
from ifx_lo_t host variable 187
from interval host variable 131
from string host variable 101, 103, 104
from varchar host variable 101, 103, 104
INTERVAL values 90, 131
into collection column 231, 233, 234
into collection variable 215
into row variable 245
into row-type column 252
opaque-type values 458
smart-large-object data 187
VARCHAR values 90, 103

int (2-byte) data type
bigint conversion 560

int (4-byte) data type
bigint conversion 561

int (8–byte) data type
bigint conversion 560

int data type 84
converting from decimal 601
converting from int8 674
converting to decimal 582

int1 data type 108
int2 data type 108
int4 data type 108
int8 data type

addition 640
comparing 642
converting from decimal 650
converting from double 648
converting from integer 652, 654
converting from long int 656
converting from text 646
converting to decimal 668
converting to double 666
converting to int 671, 674
converting to long 674
converting to long int 676
converting to text 663
copying 644
corresponding ESQL/C data type 80, 85,
117
corresponding SQL data type 80
declaration 109
declaring host variable for 109
defined constant 84
division 657

845

getting SERIAL8 values 639
ifx_getserial8() 639
ifx_int8add() 640
ifx_int8cmp() 642
ifx_int8copy() 644
ifx_int8cvasc() 646
ifx_int8cvdbl() 648
ifx_int8cvdec() 650
ifx_int8cvint() 652, 654
ifx_int8cvlong() 656
ifx_int8div() 657
ifx_int8mul() 659
ifx_int8sub() 661
ifx_int8toasc() 663
ifx_int8todbl() 666
ifx_int8todec() 668
ifx_int8toflt() 671
ifx_int8toint() 674
ifx_int8tolong() 676
int8 structure shown 109
multiplication 659
subtraction 661

INT8 data type
corresponding ESQL/C data type 108
defined constant 82

int8.h header file 85, 85, 109
definition of 27

INTEGER data type
corresponding ESQL/C data type 80, 85,
108
data conversion 90, 91, 91
defined constant 82, 85

International Components for Unicode
(ICU) 62
interval data type

corresponding SQL data type 80
data conversion 132
declaration 128
defined constant 84
definition of 126
fetching into 131
inserting from 131
role of datetime.h 85

INTERVAL data type
ANSI-standard qualifiers 132
classes of 131, 132
corresponding ESQL/C data type 80, 85
data conversion 90, 130, 131, 131, 132
datetime.h, role of 27
declaring host variables for 128
defined constant 82
dynamically allocating structures for 524
fetching 90, 131
incvasc() 726
incvfmtasc() 729
inserting 90, 131
intoasc() 731
intofmtasc() 733
invdivdbl() 736
invdivinv() 738
invextend() 740
invmuldbl() 742
macros 129
precision of underlying decimal value 126
qualifiers 128, 132
role of datetime.h 85

intoasc() library function 132, 731
intofmtasc() library function 132, 507, 733
intrvl structure 128
intrvl_t typedef

defined constant 84

definition of 128, 131
setting qualifier for INTERVAL 524

invdivdbl() library function 736
invdivinv() library function 738
invextend() library function 131, 740
invmuldbl() library function 742
ISAM error code

and sqlerrd 294, 300
retrieving message text 280, 766, 768

ISDISTINCTBOOLEAN distinct-bit macro 460
ISDISTINCTLVARCHAR distinct-bit macro 460
ISDISTINCTTYPE distinct-bit macro 460
Item descriptor

definition of 439
EXTYPEID field 440
EXTYPELENGTH field 440
EXTYPENAME field 440
EXTYPEOWNERLENGTH field 440
EXTYPEOWNERNAME field 440
getting field values 483
IDATA field 440, 500
ILENGTH field 440, 500
INDICATOR field 440, 460, 500
ITYPE field 440, 500
NAME field 440, 480, 487
NULLABLE field 440, 480, 487
PRECISION field 440, 480
SCALE field 440, 480
setting fields 482
setting maximum number 480
SOURCEID field 440, 460
SOURCETYPE field 440, 460

Iterator functions 432, 495, 537
ITYPE descriptor field 440, 482, 500

L
LANG environment variable 36
LC_COLLATE environment variable 36
LC_CTYPE environment variable 36
LC_MONETARY environment variable 36
LC_NUMERIC environment variable 36
LC_TIME environment variable 36
LD_LIBRARY_PATH environment variable 369
ldchar() library function 175, 744
LENGTH descriptor field

after a DESCRIBE 480, 487
definition of 440
for varchar data 96
inserting opaque-type data 458
setting input parameter length 500, 501

Less than (118
libasf
Informix
library
 76, 366
libgen
Informix
library
 76, 366
libgls
Informix
library
 76, 366
libos
Informix
library
 76, 366
Libraries

thread-safe
shared 382

Library

creating dynamic thread 389
ESQL client-interface 78
import 78
of ESQL/C functions 4
runtime search path 369
shared 365, 368, 370
static 365, 367
static-link 78, 78
thread-safe 365

shared 382
static 382

libsql
Informix
library
 76, 366
Lightweight I/O

for smart large objects 194
specifying for all smart large objects 194
switching to buffered I/O 194

Line wrapping 68
Linker

linking the ESQL client-interface DLL 78
options invoked implicitly 72
passing arguments to 76

LIST data type
accessing 206
after a DESCRIBE 521
corresponding ESQL/C data type 80, 85
declaring host variable for 207
defined constant 82
definition of 204
inserting many elements into 217

LO file descriptor
deallocating 197
description of 189
ESQL/C functions for 190

LO handle, deallocating 693
LO_APPEND access-mode constant 192, 193
LO_APPEND file-location constant 683
LO_BUFFER access-mode flag 194
LO_CLIENT_FILE file-location constant 681,
683
LO_DIRTY_READ access-mode constant 192
LO_KEEP_LASTACCESS_TIME create-time
constant 182, 198
LO_LOCKALL flag 195
LO_LOCKRANGE flag 195
LO_LOG create-time constant 182
LO_NOBUFFER access-mode flag 194
LO_NOKEEP_LASTACCESS_TIME create-time
constant 182
LO_NOLOG create-time constant 182
LO_RDONLY access-mode constant 192, 193
LO_RDWR access-mode constant 192, 193
LO_SERVER_FILE file-location constant 681,
683
LO_WRONLY access-mode constant 192, 193
LO-pointer structure

creating 187
description of 188
ESQL/C functions for 189
in INSERT 187
in UPDATE 187
obtaining a valid 197

LO-specification structure
allocating 180, 685
allocation extent size 697, 702
create-time flags 182, 698, 703
deallocating 187, 695
description of 180
disk-storage information 181

846

ESQL/C functions for 183
estimated size 696, 701
initializing 685
maximum size 699, 703
sbspace name 699, 704
setting 680, 706
storage characteristics 184

LO-status structure
allocating 197
deallocating 199, 707
description of 198

LOC_ALLOC locator constant 143
LOC_APPEND locator mask 149, 150
LOC_DESCRIPTOR locator mask 164
LOC_RONLY locator mask 149, 151, 159
loc_t data type

corresponding SQL data type 80
declaration 137
defined constant 84
definition of 136
role of locator.h 85, 85

loc_t.loc_loctype field
assigning values to 141
definition of 140, 141
LOCFILE value 141, 149
LOCFNAME value 141, 153
LOCMEMORY value 141, 142, 507
LOCUSER value 141, 158

loc_t.loc_oflags field
file-open mode flags 149
setting for memory 143
setting for named file 153
setting for open file 149
setting for optical disc 164
using LOC_APPEND mask 149
using LOC_RONLY mask 149, 159
using LOC_USEALL mask 156
using LOC_WONLY mask 149, 159

loc_t.loc_size field
definition of 140
determining transfer size 156
indicating simple-large-object size 143, 144
inserting a simple large object 151, 159

LOC_USEALL locator mask 156
LOC_WONLY locator mask 149, 159
Locating a simple large object

in a client-server environment 141
in a named file 153, 153, 496, 496
in an open file 149
in memory 142, 507
locations for 141
on optical disc 164
with user-defined functions 158

Locator structure
definition of 136, 137
fields of 140
lc_union structure 140, 142, 148, 158
loc_buffer field 142, 143
loc_bufsize field 142, 143, 143, 507
loc_close field 158, 159, 159, 163
loc_currdata_p field 142
loc_fd field 148, 149, 151, 151, 151
loc_fname field 148, 153
loc_indicator field 140, 144
loc_mflags field 142, 143
loc_mode field 148
loc_open field 149, 158, 159, 159, 160
loc_position field 148, 149
loc_read field 158, 159, 161
loc_status field 140, 143, 149, 153
loc_type field 140

loc_user_env field 158
loc_write field 158, 159, 162
loc_xfercount field 158
memory buffer 143

locator.h header file
access-mode constants 192
create-time constants 182
data types defined 85, 85, 85, 85, 137
definition of 27
description of 180
field-name shortcuts 142, 148
file-location constants 681, 683
file-open mode flags 149
LO-pointer structure 188
LO-specification structure 180
LO-status structure 198
LOC_ALLOC constant 143
location constants 141
whence constants 688, 692, 694, 714

LOCFILE location constant 141, 141, 149
LOCFNAME location constant 141, 141, 153
Locks, on smart large objects

byte range 195
description of 195
LO_LOCKALL flag 195
LO_LOCKRANGE flag 195

LOCMEMORY location constant 141, 141, 142,
507
LOCUSER location constant 141, 141, 158
login.h header file 27, 36, 324
long data type

converting from int8 674
long identifier

determining if truncated 334
long int data type

converting from decimal 603
converting from int8 676
converting to decimal 583
converting to int8 656
converting to text 763
corresponding SQL data type 85, 85, 108
data conversion 91
defined constant 84

longjmp() system call 340, 814
lvarchar data type

checking for null 261
corresponding SQL data type 80, 80, 85
CREATE OPAQUE TYPE statement 256
declaration 257
declaring 99
defined constant 84
definition of 94, 99
description of 99
fetching from column 104
fetching into 261
inserting from 105
inserting from, fixed size 260, 260
inserting to column 104
of a fixed size 100
of fixed size 258
opaque type name 259
pointer host variable 100, 258

allocating memory 258
and ifx_var() functions 259
functions for 275
ifx_var_alloc() function 718
ifx_var_dealloc() function 719
ifx_var_flag() function 720
ifx_var_getdata() function 722
ifx_var_getlen() function 723
ifx_var_isnull() function 723

ifx_var_setdata() function 724
ifx_var_setlen() function 725
ifx_var_setnull() function 726
inserting from 262
selecting into 263
using 261

selecting into, fixed size 261
setting to null 260
truncation, fixed size 100
using 259
with ANSI-compliant database 105
with DESCRIBE statement 481

LVARCHAR data type
corresponding ESQL/C data type 80, 85
defined constant 82
distinct-bit constant 460
distinct-bit macro 460

M
Macro

for datetime and interval data types 129,
129
for distinct bit 460
for library versions 372
for thread-safe status variables 381
for var binary data type 275
for varchar data type 96

malloc() system call 144, 144, 521, 524, 531,
531
MAXVCLEN varchar constant 96
MCHAR data type 108
Memory allocation, LO handle 693
Memory management

ESQL/C functions 524
for sqlda structure 521
for system-descriptor area 480, 481
freeing resources 405, 485, 528

Message chaining 345
Message request

definition of 339
interrupting 339
optimizing for cursor 411, 411, 416, 416,
421
representing 361
with callback function 341

Message transfers, optimized 344
mi_lo_release() function 693
mint data type 108
mlong data type 108
MONEY data type

corresponding ESQL/C data type 80, 85
data conversion 91, 758, 761, 763
defined constant 82
role of decimal.h 27, 85
scale and precision 440

MSHORT data type 108
Mulitplexed connection

Windows requirement 331
Multibyte filter 4
Multiplexed connection

and multithreaded applications on
Windows 331
description of 331
IFX_SESSION_MUX environment
variable 331
limitations on 332

MULTISET data type
accessing 206
after a DESCRIBE 521
corresponding ESQL/C data type 80, 85
declaring host variable for 207

847

defined constant 82
definition of 204
inserting many elements into 217

Multithreaded applications
warning for Windows 331

N
NAME descriptor field 440, 480, 487
Named row type

after a DESCRIBE 521
declaring host variable for 238
in a collection-derived table 239
in a typed table 250
literal values 252

Named row variable 238
NCHAR data type

corresponding ESQL/C data type 80, 85, 94
defined constant 82
fetching 101
transferring with host variables 100

Network parameter
ASKPASSATCONNECT 36, 324, 324
HOST 36, 324
INFORMIXSERVER 36, 324
OPTIONS 36
PASSWORD 36, 324
precedence 41
PROTOCOL 36, 324
SERVICE 36, 324
setting with InetLogin 40
USER 36, 324

Newline, including in quoted strings 9
Non-default compilation of ESQL/C programs

options for 63
Non-default order of compilation

for all ESQL/C files 64
Non-parameterized non-SELECT
statements 424
Non-parameterized SELECT statements 425,
455, 486, 529
Non-SELECT statements

definition of 424
known at compile time 424, 424
nonparameterized 424
not known at compile time 456
parameterized 434, 456, 506, 547
preparing 424
with sqlda structure 547
with system-descriptor area 506

Noncursor function
definition of 431
known at compile time 431
not known at compile time 492, 536
parameterized 433
with sqlda structure 536
with system-descriptor area 492

NOT FOUND condition
definition of 277
using SQLCODE 299
using SQLSTATE 288
using the WHENEVER statement 305

Null values
determining in dynamic SQL 440, 538
for simple-large-object values 140, 146,
151, 156
ifx_var_isnull() 723
ifx_var_setnull() 272, 726
in aggregate function 284, 294
in host variables 18
inserting code to check for 60
inserting into table 25

returned in indicator 25
risnull() 18, 770
rsetnull() 18, 777
setting to 18, 260, 267, 272, 726, 777
testing for 18, 24, 261, 268, 268, 274, 723,
770

NULLABLE descriptor field 440, 480, 487
Numeric expressions

example formats 118
formatting 118
rfmtdec() function 758
rfmtdouble() function 761
rfmtlong() function 763
valid characters 118

NVARCHAR data type
corresponding ESQL/C data type 80, 85,
94, 94, 95
data conversion 101
defined constant 82
fetching 103
transferring with host variables 100

O
ONCONFIG file

ALLOW_NEWLINE parameter 9
onspaces database utility 185
Opaque data types

after a DESCRIBE 521
as element type of collection 207
as field type of row 237
corresponding ESQL/C data type 80, 85
defined constant 82, 82
definition of 254
dynamically executing 458
extended identifier 440, 444
in dynamic SQL 444
inserting 458
name of 440, 444
owner of 440, 444
predefined 276
truncation of data 460

OPEN statement
and deferred PREPARE 417
executing a cursor 406, 406, 408
executing with PREPARE 416
interrupting 339
optimizing 421
role in dynamic SQL 403
USING DESCRIPTOR clause 519, 527, 540,
546
USING host_var clause 435
USING SQL DESCRIPTOR clause 478, 484,
501, 505
with a SELECT statement 406
with an EXECUTE FUNCTION
statement 406, 495, 537
with an INSERT statement 408
with deferred PREPARE 416
with OPTOFC and Deferred-PREPARE
features 423

OPEN, FETCH, and CLOSE (OPTOFC) feature
restrictions 421

open() system call 148
Optimized message transfers

description of 344
enabling 345
error handling 347
reasons to disable 345
restrictions on 344

Optimizing
OPEN, FETCH, and CLOSE statements 421

OPTIONS network parameter 36
OPTMSG environment variable 345

setting 345
OptMsg global variable 345

setting 345
OPTOFC environment variable 422

client only 422
OPTOFC feature

and static cursors 421
enabling 422
with AUTOFREE and Deferred-PREPARE
features 423
with Deferred-PREPARE feature 423

P
PARAMETER keyword 21, 409, 507
Parameterized non-SELECT statements 434,
456, 506, 547
Parameterized SELECT statements 435, 456,
500, 505, 539, 546
Parenthesis symbol 118
PASSWORD network parameter 36, 324
PATH environment variable 79

required 46
Period (.) symbol 118, 251
Plus (+) sign 118
Pointer, as host variable 20
Pound (#) sign 118
PRECISION descriptor field 440, 480
PREPARE statement

and sqlca.sqlerrd[0] 294, 294, 294, 301,
403, 403, 403
deferring execution of 416, 416
exceptions returned 403
for collection variables 402, 402
in thread-safe application 378
role in dynamic SQL 400
SQLCODE value 301, 403
with DATABASE statement 327
with EXECUTE 424
with EXECUTE FUNCTION 491, 492, 535
with EXECUTE PROCEDURE 430
with EXECUTE...INTO 426, 431
with INSERT 496
with OPTOFC and Deferred- PREPARE
features 423
with SELECT 486

Preprocessor
case sensitivity 6
conditional compilation 34
definitions 33, 59
generating thread-safe code 374
header files 30, 30
include files 31
line numbers 61
redirecting errors 61
search path for included files 60
stage 1 31, 59
stage 2 34, 63
syntax 49
version information 49

Preprocessor directive
define 33, 59
definition of 31
elif 34
else 34
endif 34
ifdef 34
ifndef 34
include 30, 31
undef 33, 59

848

Preprocessor option
-ansi 49, 326
-e 49, 57
-ED 49, 59
-EU 49, 59
-g 61
-G 49, 61
-I 49, 60
-icheck 49, 60
-l for dynamic thread library 399
-libs 49
-local 49, 61, 400
-log 49, 61
-lw 49
-mserr 49, 68
-nln 49, 61
-nowarn 49, 62, 68
-o 49, 49, 69
-static 49, 367, 367, 382
-thread 49, 58, 367, 374, 380
-ts 49
-V 57
-xopen 49, 62, 452, 453
those affecting linking 75
those affecting preprocessing 57
those for
Informix
libraries
 367

Preprocessor, ESQL
stage 1 46

Preprocessor, ESQL/C
stage 2 46

Process
child 338, 808
parent 297, 338, 808

Processor
associating options with files 57
creating a response file 71
naming executable file 69
using a project file 71

Processor option
-c 70
-cc 70
-f 49, 71
-l 76
-libs 75
-N 49
-o 72
-r 76
-runtime 72
-Sc 72
-ss 72
-subsystem 72
-Sw 72
-target 72, 79
-V 49
-version 49
-wd 72, 79
-we 72
placement of 57

Program
checking library version 372
commenting 9
compiling 47, 70, 370
including files 30, 30, 31
linking 47, 75, 367, 367, 369, 370, 380
message request 339, 341, 361, 411, 411,
416, 416, 421
naming the executable file 49, 49, 69
preprocessing 31, 57, 57

running 48
suppressing compilation 57
suppressing linking 70

Project file 49, 71
PROTOCOL network parameter 36, 324
pthread_lock_global_np() DCE function 380
pthread_yield() DCE function 380
pthread.h DCE header file 380
PUT statement

inserting a row 408
inserting into a collection variable 219
USING DESCRIPTOR clause 519, 527, 539
USING SQL DESCRIPTOR clause 478, 484,
500

putenv() system call 345, 422

Q
Question mark (?) 433

wildcard in smart-large-object
filenames 681

Quotation marks
escaping 8, 234, 252

R
rdatestr() library function 745
rdayofweek() library function 747
rdefmtdate() library function 132, 749
rdownshift() library function 752
Reference count 198, 708
Registering dynamic thread functions 395
Registry

in-memory copy 41
Informix
Server
 625
precedence 41

ReleaseConnect() library function 364, 753
Resource compiler

default options 72
passing arguments to 76

Resource file 75
Response file 49, 71
Restrictions

on optimized message transfers 344
on OPTOFC feature 421

Retrieving an error message 766
rfmtdate() library function 132, 507, 754
rfmtdec() library function 507, 758
rfmtdouble() library function 761
rfmtlong() library function 763
rgetlmsg() library function 766
rgetmsg() library function 768
risnull() library function 770
rjulmdy() library function 772
rleapyear() library function 774
rmdyjul() library function 776
ROLLBACK WORK statement 336, 447
Row constructor 249
row data type (ESQL/C)

accessing a typed table 250
allocating memory for 241
client-side 240
Collection Derived Table clause 242
corresponding SQL data type 80, 85
deallocating memory for 241
declaration 236
defined constant 84
deleting from 247
fetching from 245
fetching into 243
field names 247
field values 248

initializing 243
inserting into 245
literal values 248
named row variable 238
nested rows 245
operating on 241
typed row variable 237
untyped row variable 238
updating 247

Row data type(ESQL/C)
with a collection 222

ROW data types
accessing 235
as element type of collection 207
as field type of row 237
constructed rows 249
corresponding ESQL/C data type 80, 85
declaring host variables for 236
defined constant 82
definition of 235
deleting 247, 253
dot notation 245, 251
extended identifier 440, 444
fetching 243, 245
in dynamic SQL 444
inserting into 245, 252
literal values 248, 252, 252, 252
nested 249
owner of 440, 444
selecting from 251
typed table 250
updating 247, 252

rsetnull() library function 777
rstod() library function 780
rstoi() library function 781
rstol() library function 783
rstrdate() library function 785
rtoday() library function 787
rtypalign() library function 524, 531, 788
rtypmsize() library function 524, 531, 791
rtypname() library function 794
rtypsize() library function 796
rtypwidth() library function 797
Running C preprocessor first

options for 63
Runtime environment 35
Runtime errors

definition of 277
in user-defined routines 284, 292
Informix
-specific messages
 292
using rgetlmsg() 766
using rgetmsg() 768
using sqlca structure 300
using SQLSTATE variable 292
using the WHENEVER statement 305

Runtime routines, exporting 77
rupshift() library function 799

S
Sample program

bycmpr 565
bycopy 567
byfill 568
byleng 570
decadd 571
deccmp 573
deccopy 575
deccvasc 113, 576
deccvdbl 578, 580

849

deccvint 582
deccvlong 583
decdiv 585
dececvt 587
decfcvt 587
decmul 591
decround 593
decsub 595
dectoasc 597
dectodbl 599
dectoint 601
dectolong 603
dectrunc 604
demo1 43
demo2 435, 435
demo3 487, 501, 530
demo4 435, 435, 487, 540
dispcat_pic 309
dtaddinv 606
dtcurrent 608
dtcvasc 609
dtcvfmtasc 612
dtextend 615
dtsub 616
dtsubinv 619
dttoasc 620
dttofmtasc 622
dyn_sql 309
ESQLAUTH 324
getcd_me 144
getcd_nf 154
getcd_of 150
ILOGIN 40
incvasc 726
incvfmtasc 729
intoasc 731
intofmtasc 733
invdivdbl 736
invdivinv 738
invextend 740
invmuldbl 742
ldchar 744
rdatestr 745
rdayofweek 747
rdefmtdate 749
rdownshift 752
rfmtdate 754
rfmtdec 758
rfmtdouble 761
rfmtlong 763
rgetlmsg 766
rgetmsg 768
risnull 770
rjulmdy 772
rleapyear 774
rmdyjul 776
rsetnull 777
rstod 780
rstoi 781
rstol 783
rstrdate 785
rtoday 787
rtypalign 788
rtypmsize 791
rtypname 794
rtypsize 796
rtypwidth 797
rupshift 799
sqgetdbs 802
sqldetach 808
stcat 817

stchar 819
stcmpr 820
stcopy 821
stleng 822
timeout 348
updcd_me 146
updcd_nf 156
updcd_of 151
varchar 96
WDEMO 79

SBSPACENAME configuration parameter 185
sbspaces

definition of 181
getting name of 699
on optical disc 200
running out of space 713, 714
setting 704
storage characteristics for 185

SCALE descriptor field 440, 480
Scope of

cursor names 61, 379
host variables 13
preprocessor definitions 33
statement identifiers 61, 378

Scroll cursors 406
Select cursor

definition of 407
fetch buffer 410
for collection variable 223
statements that manage 406
using 427

SELECT statements
and NOT FOUND condition 288, 299
associated with a cursor 406, 406, 478, 519
checking for truncation 294
Collection Derived Table clause 221, 245
defined statement constant 447
determining estimated cost of 294
determining rowid 294, 298
executing a singleton SELECT 426
failing to access rows 294
fetching CHAR data 100, 105
fetching collection data 214, 221, 230, 233
fetching DATETIME data 130
fetching INTERVAL data 131
fetching opaque-type data 261, 268, 274
fetching row-type data 243, 245, 251
fetching smart-large-object data 191
fetching VARCHAR data 101
identifying variable mismatch 284, 289, 294
in ANSI-compliant database 105
interrupting 339, 805
INTO host_var clause 294, 400
INTO TEMP clause 288, 299
known at compile time 425
nonparameterized 425, 455, 486, 529
not known at compile time 455, 456
parameterized 433, 435, 456, 500, 505,
539, 546
singleton 403, 407, 426, 478, 484, 519
with aggregate functions 294
with DESCRIBE 446, 480, 521, 521
with sqlda structure 529, 539
with system-descriptor area 486, 500, 505,
546

SENDRECV data type
defined constant 82

Sequential cursor 218, 223, 406, 408
SERIAL data type

corresponding ESQL/C data type 80, 85,
108

data conversion 90
defined constant 82
obtaining value after INSERT 294
using typedefs 20

SERIAL8 data type
corresponding ESQL/C data type 80, 85,
108
declaring host variable for 109
ifx_getserial8() 639

SERVICE network parameter 36, 324
SET AUTOFREE (SQL) statement 412

setting 412
SET AUTOFREE statement 412, 412
SET CONNECTION statement 364, 800

and explicit connections 326
determining database server features 334
making connection dormant 374, 376, 378
managing connections across threads 376
switching to a dormant connection 336,
374
with an active transaction 336

SET data type
accessing 206
after a DESCRIBE 521
corresponding ESQL/C data type 80, 85
declaring host variable for 207
defined constant 82
definition of 204
inserting many elements into 217

SET DEFERRED PREPARE statement 417
SET DESCRIPTOR statement

setting COUNT field 482, 500
setting fields 478, 482, 500
VALUE keyword 500

SetConnect() library function 364, 800
setjmp() system call 340
Setnet32 utility 322

description 4
determining default database server 625
use of ixreg.dll 77

Shared libraries
creating for dynamic thread functions 398

short int data type
corresponding SQL data type 85, 108
data conversion 91
defined constant 84

Signal handling
of ESQL/C library 815
of SIGINT 340

Signal-handler function 340, 340
signal() system call 340
Signals

SIGCHLD 815
SIGINT 340

Simple large objects, and a fetch array 462
Simple-large-object data type

compared with smart large objects 136
declaring host variable for 137
definition of 135
inserting 146, 151, 156, 159, 496
null values 140
on optical disc 164
programming with 136
selecting 144, 150, 154, 159, 507
subscripting 137

Simple-large-object descriptor 164
Single quotes (' ')

delimiting strings 15
escaping 8
in a literal collection 234
in a literal row 252

850

in a quoted string 8
SMALLFLOAT data type

corresponding ESQL/C data type 80, 85,
117
data conversion 90, 91, 91
defined constant 82
number of decimal digits 89

SMALLINT data type
corresponding ESQL/C data type 80, 85,
108
creating a typedef for 20
data conversion 90, 91, 91
defined constant 82, 85

Smart large objects, permanent 693
Smart-large-object data type

access modes 192
accessing 191
advantages 136
allocation extent size 697, 702
altering 679
closing 197, 680
compared with simple large objects 136
copying from user-defined buffer 687
copying to a file 681
copying to a user-defined buffer 710
create-time flags 698, 703
creating 191, 684
declaring host variable for 180
definition of 178, 203
determining storage characteristics of 684
duration of open 196
ESQL/C functions for 200
estimated size 181, 696, 701
file position 694, 710
format on disk 200
getting size of 198, 709
hexadecimal identifier for 187, 681
ifx_lo_ 694
ifx_lo_alter() 679
ifx_lo_close() 680
ifx_lo_col_info() 680
ifx_lo_copy_to_file() 627, 681
ifx_lo_copy_to_lo() 683
ifx_lo_create() 684
ifx_lo_def_create_spec() 685
ifx_lo_filename() 686
ifx_lo_from_buffer() 687
ifx_lo_open() 687, 689
ifx_lo_read() 691
ifx_lo_readwith 692
ifx_lo_release() 693
ifx_lo_spec_free() 695
ifx_lo_specget_estbytes() 696
ifx_lo_specget_extsz() 697
ifx_lo_specget_flags() 698
ifx_lo_specget_maxbytes() 699
ifx_lo_specget_sbspace() 699
ifx_lo_specset_estbytes() 701
ifx_lo_specset_extsz() 702
ifx_lo_specset_maxbytes() 703
ifx_lo_specset_sbspace() 704
ifx_lo_stat_atime() 705
ifx_lo_stat_cspec() 706
ifx_lo_stat_ctime() 707
ifx_lo_stat_free() 707
ifx_lo_stat_mtime_sec() 708
ifx_lo_stat_refcnt() 708
ifx_lo_stat_size() 709
ifx_lo_stat() 705
ifx_lo_tell() 710
ifx_lo_to_buffer() 710

ifx_lo_truncate() 711
ifx_lo_write() 713
ifx_lo_writewith 714
inserting 187
lightweight I/O 194
LO file descriptor 189
LO-pointer structure 188
LO-specification structure 180
LO-status structure 198
locking 195, 680, 684, 689
locks 195
maximum size 181, 699, 703
modifying 196
obtaining status of 197, 705
on optical disc 200
opening 192, 684, 689
programming with 179
reading from 196, 691, 692
reference count 198, 708
sample program 825
sbspaces 699, 704
selecting 191
storage characteristics 180, 184
storing 187
temporary smart large objects 693
temporary, releasing resources 693
time of last access 198, 705
time of last change in status 198, 707
time of last modification 198, 708
truncating 711
updating 187
writing to 197, 713, 714

SOURCEID descriptor field 440, 460
SOURCETYPE descriptor field 440, 460
SPL function

cursor function 424
definition 430
executing dynamically 431, 492, 495, 536,
537

SPL procedure 430, 430
SPL routines 339, 430
sqgetdbs() library function 802
SQL data types

BIGINT 80, 85, 108
BIGSERIAL 85, 108
BLOB 80, 85, 178
BOOLEAN 80, 85, 112
BYTE 80, 85, 135
CHAR 80, 85, 94
CLOB 80, 85
collections 204
DATE 80, 85, 125
DATETIME 80, 85, 126
DECIMAL 80, 85
defined constants for 82, 453
distinct 458
FLOAT 80, 85, 117
int8 80, 85, 108, 117
INT8 109
INTEGER 80, 85, 108
INTERVAL 80, 85, 126
LIST 80, 85, 204
LVARCHAR 80, 85
MONEY 80, 85
MULTISET 80, 85, 204
named row type 235
NCHAR 80, 85, 94
NVARCHAR 80, 85, 94, 94, 95
opaque 80, 85, 254
row types 80, 235
SERIAL 80, 85, 108

SERIAL8 80, 85, 108, 109
SET 80, 85, 204
SMALLFLOAT 80, 85, 117
SMALLINT 80, 85, 108
TEXT 80, 85, 135
unnamed row type 85, 235
VARCHAR 80, 85, 94
X/Open defined constants 85

SQL identifier 15, 433
SQL keyword protection

against interpretation by C preprocessor 67
relation to the dollar ($) sign 68

SQL statements
case sensitivity 6
CLOSE DATABASE 753
CONNECT 322, 364
cursor-management statements 406, 408
DATABASE 625
defined constants for 297, 447
DISCONNECT 364, 753
for dynamic SQL 403, 406, 408, 478, 519
interruptable 339
obtaining diagnostic information 277
parameterized 433
SET CONNECTION 364, 800
static 294, 399

sqlauth() authentication function 36, 77, 324
SQLBIGSERIAL data-type constant 82, 82
SQLBOOL data-type constant 82
sqlbreak() library function 338, 348, 805
sqlbreakcallback() library function 336, 341,
806
SQLBYTES data-type constant 82
sqlca structure 42

and DESCRIBE 454
and PREPARE 403
checking for exceptions 293
definition of 294
determining database server features 294,
300, 334
in thread-safe code 374, 381
indicating truncation 26, 88
relation to SQLCODE status variable 296
retrieving error message text 306
sqlerrm 300, 766
using the WHENEVER statement 305
warning values 300

sqlca.h header file
constant definitions 299
definition of 27
structure definition 381
variable definitions 282, 296, 381

sqlca.sqlerrd array
sqlerrd[1] 294, 298, 298, 298, 298, 298, 300,
300, 300, 301, 403, 403, 403, 766, 768

sqlca.sqlwarn structure
definition of 300
sqlwarn0 294, 294, 294, 294, 294, 294
sqlwarn1 100, 104, 131, 294, 294, 334, 334
sqlwarn2 294, 294, 334
sqlwarn3 294, 334
sqlwarn4 294, 334, 454
sqlwarn5 294
sqlwarn6 294, 334
sqlwarn7 294, 294, 334

SQLCHAR data-type constant 82
SQLCODE value 42, 625, 753, 800
SQLCODE variable

after a DESCRIBE statement 297, 447
after a GET DIAGNOSTICS statement 282
after a PREPARE statement 301

851

after a simple-large-object access 140
after an ALLOCATE COLLECTION 211
after an ALLOCATE ROW 241
after an EXECUTE statement 302
and sqlerrd 294
definition of 296
in diagnostics area 280, 282
in thread-safe code 374, 381
indicating an interrupt 805
indicating runtime errors 300
relation to sqlca structure 296
result codes 298
retrieving error message text 766, 768

sqlda
and a fetch array 462

sqlda structure
allocating memory for 374, 521, 524
assigning values to 526
data type lengths 96
declaring 520
definition of 442
desc_name field 446
desc_next field 446
desc_occ field 446
examples 530, 540
fetching rows into 527
fields of 442, 443, 444
for columns of a SELECT 529
for columns of an INSERT 538
for distinct-type columns 460
for input parameters 539, 547
for opaque-type columns 458, 460
for return values of a user-defined
function 535
freeing memory for 528
getting field values 526
initializing 521
interrupting database server 805
managing 519
obtaining values from 526
setting fields 526
specifying input parameter values for 527
uses of 528
using an indicator variable 444

sqlda.h header file 27, 30, 520
sqlda.sqld field

after a DESCRIBE 446, 521, 521, 531
definition of 442, 443
saving 529, 538
setting 539, 541

sqlda.sqlvar structure
after a DESCRIBE 521
definition of 444
getting field values 526
setting fields 526
sqlflags field 444
sqlformat field 444
sqlidata field 444, 539
sqlilen field 444, 539
sqlind field 444, 460, 521, 521, 538, 539
sqlitype field 444, 539
sqlname field 444, 521, 521, 531, 531, 531
sqlownerlen field 444
sqlownername field 444
sqlsourceid field 444, 460
sqlsourcetype field 444, 460
sqltypelen field 444
sqltypename field 444
sqlxid field 444

sqlda.sqlvar.sqldata field
after a DESCRIBE 521, 521

after a FETCH 527, 529, 531, 531, 537, 541
allocating memory for 442, 524, 531
definition of 444
freeing memory for 528, 531, 531
setting column value 538, 538
setting input parameter data 539, 541

sqlda.sqlvar.sqllen field
after a DESCRIBE 521, 521, 521
definition of 444
determining host variable type 527, 531,
531
for varchar data 96
inserting opaque-type data 458
setting input parameter length 539, 541
used to allocate memory 524, 524, 529,
531, 535

sqlda.sqlvar.sqltype field
after a DESCRIBE 521, 521
column type values 452, 460, 526
definition of 444
determining host variable type 527, 531,
531
indicating distinct-type data 460
inserting opaque-type data 458
setting input parameter type 539, 541
used to allocate memory 524, 529, 531, 535

SQLDATE data-type constant 82
SQLDBOOLEAN distinct-bit constant 460, 460
SQLDECIMAL data-type constant 82
sqldetach() library function 338, 344, 380, 808
SQLDISTINCT distinct-bit constant 460, 460
SQLDLVARCHAR distinct-bit constant 460, 460
sqldone() library function 338, 348, 814
SQLDTIME data-type constant 82
sqlexit() library function 344, 814
SQLFLOAT data-type constant 82
sqlhdr.h header file 27, 30

determining product version 372
var binary macros 275

sqlhdr.h, and OptMsg global variable 345
sqlhosts file 320

accessing 320
on UNIX 320

sqlhosts file or registry
multiplexed connections 331

sqlhosts registry
a central 323
and InetLogin 321
and Setnet32 322
information in 322
on Windows 321

sqliapi.h header file
definition of 27

SQLINFXBIGINT data-type constant 82
SQLINT data-type constant 82
SQLINT8 data-type constant 82
SQLINTERVAL data-type constant 82
SQLKEYWORD_ prefix 67
SQLLIST data-type constant 82
SQLLVARCHAR data-type constant 82
SQLMONEY data-type constant 82
SQLMULTISET data-type constant 82
SQLNCHAR data-type constant 82
SQLNOTFOUND constant

definition of 299
detecting NOT FOUND condition 305

SQLNVCHAR data-type constant 82
sqlproto.h header file 27, 30
SQLROW data-type constant 82
SQLSENDRECV data type constant 82
SQLSERIAL data-type constant 82

SQLSET data-type constant 82
sqlsignal() library function 815
SQLSMFLOAT data-type constant 82
SQLSMINT data-type constant 82
sqlstart() library function 328, 814, 816
SQLSTATE values 42, 625, 753, 800
SQLSTATE variable

after a GET DIAGNOSTICS statement 282
class and subclass codes 280, 283, 284
determining database server features 289,
334
determining number of exceptions 279
determining origin of class portion 280,
289, 289, 289, 292, 292, 292
determining origin of subclass portion 280,
289, 289, 289, 292, 292, 292
in diagnostics area 280
in thread-safe code 374, 381
indicating truncation 100, 104
result codes 287
using 282
using the WHENEVER statement 305
warning values 289

sqlstype.h header file
definition of 27
statement-type constants 297, 447

sqlstypes.h header file 507
SQLTEXT data-type constant 82
sqltypes.h header file

data-type constants 82, 452, 482
definition of 27
distinct-bit constants 460
distinct-bit macros 460
simple-large-object data types 137, 140
source type for distinct columns 440, 444

SQLUDTFIXED data-type constant 82, 460
SQLUDTVAR data-type constant 82, 460
sqlvar_struct structure

with fetch array 471
SQLVCHAR data-type constant 82
sqlxtype.h header file

definition of 27
X/Open data types 62, 85, 453

START DATABASE statement 326, 328
Statement identifier

case sensitivity 6
creating 400
freeing 405
scope rules 61, 378
structure 400
using delimited identifiers 15

Static cursor
with OPTOFC feature 421

Static-link library 78, 78
stcat() library function 400, 817
stchar() library function 819
stcmpr() library function 820
stcopy() library function 400, 821
stleng() library function 822
Storage characteristics

altering 679
column level 186, 680
create-time flags 182
disk-storage information 181
inheritance hierarchy 184
obtaining 184, 198, 706
sbspace level 185
system default 185
system level 685
system specified 185
user defined 186

852

Stored procedures 430
string data type

corresponding SQL data type 80, 85
defined constant 84
definition of 94, 95
fetching into 89, 90, 100, 101, 104, 118, 131
inserting from 101, 103, 104, 105
with ANSI-compliant database 105

strncmp() system call 288, 289
Structure

as host variable 19
decimal 113
dtime 127
for dynamic management 438
ifx_int8_t 109
ifx_lo_create_spec_t 180
ifx_lo_stat_t 198
ifx_lo_t 188
intrvl 128
nesting 19
sqlca 293
sqlda 442
sqlvar_struct 444

System call
calloc() 521
DCE restrictions 380
exec() 380, 808
exit() 297, 303
fclose() 60
fopen() 60
fork() 380, 808
fread() 60
free() 144, 531, 531, 531, 531
longjmp() 340, 814
malloc() 144, 144, 521, 524, 531, 531
open() 148
setjmp() 340
signal() 340
strncmp() 288, 289
vfork() 808

System-descriptor area
allocating memory for 480
assigning values to 482
data type lengths 96
definition of 439, 477
examples 487, 492, 496, 501
fetching rows into 484
fields of 439, 440, 440
for columns of a SELECT 486, 496
for columns of an INSERT 496
for distinct-type columns 460
for input parameters 500, 505, 506, 546
for opaque-type columns 458, 460
for return values of a user-defined
function 491
freeing memory for 485
getting field values 483
initializing 480
interrupting database server 805
item descriptor fields 440
managing 478
obtaining values from 482
setting fields 482
specifying input parameter values for 484
uses for 485
using an indicator variable 440, 500

T
Tabs 68
TEXT data type

corresponding ESQL/C data type 80, 85

declaring host variable for 137
defined constant 82
inserting 146, 151, 156, 159, 496
locator structure shown 137
on optical disc 164
role of locator.h 27, 85
selecting 144, 150, 154, 159, 496
subscripting 137

Thread-safe application
concurrent connections 374
connections across threads 376
creating 373
cursors across threads 379
DCE restrictions 380
decimal values 379, 383
DISCONNECT ALL statement 377
environment variables 379
linking 380
preparing statements 378
programming hints 374
resource allocation 380
sample 384
SET CONNECTION statement 374, 374, 376
thread-safe code 374

thread-safe DLLs for Windows 58
THREADLIB environment variable 380, 380
Timeout interval 341, 348, 806, 806
timeout sample program 348
Trailing blanks

in VARCHAR conversion 101, 103
inserting into database 103
removing 744
with ESQL/C data types 95

Transactions
committing 336
determining if used 284, 289, 294, 334
exiting all connections 814
interrupting the database server 805
rolling back 336
switching server connections 336

Truncated value
in CHAR conversion 100, 104
in decimal conversion 604
in VARCHAR conversion 101, 103
indicated by sqlca 294
indicated by SQLSTATE 284
of opaque data type 460
using indicator variable 24, 26
with pointers 20

TU_DAY qualifier macro 129
TU_DTENCODE qualifier macro 129, 608
TU_ENCODE qualifier macro 129
TU_END qualifier macro 129
TU_FLEN qualifier macro 129
TU_Fn qualifier macro 129
TU_FRAC qualifier macro 129
TU_HOUR qualifier macro 129
TU_IENCODE qualifier macro 129, 129
TU_LEN qualifier macro 129
TU_MINUTE qualifier macro 129
TU_MONTH qualifier macro 129
TU_SECOND qualifier macro 129
TU_START qualifier macro 129
TU_YEAR qualifier macro 129
TYPE descriptor field

after a DESCRIBE 480, 487
column-type values 452, 482
definition of 440
indicating distinct-type data 460
inserting opaque-type data 458
setting column type 460, 496

setting input parameter type 501
setting input-parameter type 500

Typed collection variable
allocating memory for 211
deallocating memory for 211
declaring 207
operating on 212

Typed row variable
allocating memory for 241
deallocating memory for 241
declaring 237
operating on 241

typedef
as host variable 20
dec_t 113
dtime_t 127, 130
intrvl_t 128, 131

U
undef preprocessor directive 31, 33, 59
Unicode 62
Union of structures 20, 140
Unnamed row type

after a DESCRIBE 521
literal values 252

Untyped collection variable
allocating memory for 211
deallocating memory for 211
declaring 209
operating on 212

Untyped row variable
allocating memory for 241
deallocating memory for 241
declaring 238
operating on 241

Update cursor 223, 223, 406
UPDATE statements

and NOT FOUND condition 288, 299
collection columns 233, 233, 234
collection data 224
Collection Derived Table clause 224
defined statement constant 447
determining estimated cost of 294
determining number of rows updated 279,
294
determining rowid 294
dynamic 424, 434, 434, 456
failing to access rows 294
in ANSI-compliant database 105
interrupting 339, 805
known at compile time 424, 434
not known at compile time 456
parameterized 434, 456, 506, 547
row-type columns 252
row-type data 247
SET clause 19, 434
updating smart-large-object data 187
WHERE CURRENT OF clause 409
with DESCRIBE 446, 454
without WHERE clause 284, 289, 294, 447,
454

updcd_me sample program 146
updcd_nf sample program 156
updcd_of sample program 151
USER network parameter 36, 324
User-defined function

arguments 426
compared with procedure 430
creating 430
cursor 431, 432, 478, 519
definition 430

853

determining return values dynamically 457
dropping 430
executing 430, 431
executing dynamically 430, 431
known at compile time 430
noncursor 427, 431, 431, 478, 484, 519
not known at compile time 457
parameterized 426, 433, 435, 505, 546, 546
with sqlda structure 535
with system-descriptor area 491

User-defined procedure
arguments 426
compared with function 430
creating 430
definition 430
dropping 430
executing 430, 430
executing dynamically 430
parameterized 426, 434, 506, 546

user-defined routines
ifx_allow_newline() 9

User-defined routines
definition 430
error messages 284, 292
languages supported 430
warning messages 284, 289

USING DESCRIPTOR clause
of EXECUTE statement 519, 527, 538, 545,
547
of FETCH statement 519, 527
of OPEN statement 519, 527
of PUT statement 519, 527, 539
with a fetch array 462

USING host_var clause
of EXECUTE statement 434
of OPEN statement 435

USING SQL DESCRIPTOR clause
of DESCRIBE statement 478, 480, 486, 496
of EXECUTE statement 478, 484, 484, 496
of FETCH statement 478, 484, 486
of OPEN statement 478, 484
of PUT statement 478, 484, 500

Utilities
finderr 4
ILogin 4
Setnet32 4

V
VALUE descriptor field 487
value.h header file 27
var binary data type

checking for null 274, 718, 723
corresponding SQL data type 80, 85
deallocating data buffer 719
declaration 269
defined constant 84
fetching into 274
getting data buffer from 722
getting size of data buffer 723
setting data buffer 724
setting size of data buffer 725
setting to null 272, 726
specifying memory allocation 720

varchar data type
corresponding SQL data type 80, 85
defined constant 84
definition of 94, 96
fetching into 89, 100, 104, 118
inserting from 101, 103, 104, 105
role of varchar.h 27
with ANSI-compliant database 105

VARCHAR data type
corresponding ESQL/C data type 80, 85, 94
data conversion 90, 101
defined constant 82
fetching 90, 101
inserting 90, 103
macros 96
role of varchar.h 27
truncating values 101, 103
with null-terminated strings 94, 95

varchar.h header file 27, 96
Varying-length opaque data type

declaring host variable for 269
inserting 272
selecting 274

VCLENGTH varchar macro 96
VCMAX varchar macro 96
VCMIN varchar macro 96
VCSIZ varchar macro 96
Version independence 77
Version information 49, 49
vfork() system call 808

W
Warnings

definition of 277
displaying in Microsoft format 68
extensions to X/Open standards 62
in user-defined routines 284, 289
Informix
-specific messages
 289, 300
redirecting 61
suppressing 62, 68
using sqlca structure 300
using SQLSTATE variable 289
using the WHENEVER statement 305
X/Open messages 289

WDEMO sample program 79
WHENEVER statement 305
Wildcard character

exclamation point (!) 681
question mark (?) 681
with smart-large-object filenames 681

WORM optical disc 164, 200

X
X/Open standards

checking for
Informix
extensions to
 62
connecting to a database 326
data type defined constants 62, 85, 453
getting diagnostic information 278
nonstandard system descriptor fields 440
runtime error values 292
SQLSTATE class values 283
TYPE field values 500
using dynamic SQL statements 438, 455,
456, 456, 457
warning values 289
warnings on extensions 62

XSQLCHAR data-type constant 85
XSQLDECIMAL data-type constant 85
XSQLFLOAT data-type constant 85
XSQLINT data-type constant 85
XSQLSMINT data-type constant 85

854

	HCL Informix 14.10 - ESQL/C Programmer’s Guide
	Contents
	Chapter 1. ESQL/C Guide
	What is Informix® ESQL/C?
	Informix® ESQL/C programming
	What is Informix® ESQL/C?
	ESQL/C components
	ESQL/C files for Windows™
	ESQL/C library functions

	Creating an ESQL/C program

	Embed SQL statements
	Case sensitivity in embedded SQL statements
	Quotation marks and escape characters
	Newline characters in quoted strings

	Add comments to ESQL/C programs
	Host variables

	Declaring and using host variables
	Declare a host variable
	Host variable names
	Host-variable data types
	Initial host-variable values
	Scope of host variables
	Sample host-variable declarations

	Host variable information
	SQL identifiers
	Long identifiers
	Delimited identifiers
	Example of a delimited identifier

	Null values in host variables

	Host variables in data structures
	Arrays of host variables
	C structures as host variables
	C typedef statements as host variables
	Pointers as host variables
	Function parameters as host variables

	Host variables in Windows™ environments
	Declare variables with non-ANSI storage-class modifiers

	Declaration
	Indicator variables
	Declare indicator variables
	Associate an indicator variable with a host variable
	Indicate null values
	Indicate truncated values
	An example of using indicator variables

	ESQL/C header files
	Declare function prototypes
	Header files included in your program

	ESQL/C preprocessor directives
	The include directive
	The define and undef directives
	The ifdef, ifndef, elif, else, and endif directives

	Set and retrieve environment variables in Windows™ environments
	Environment variable guidelines
	The InetLogin structure
	Fields of the InetLogin structure
	InetLogin field values
	Precedence of configuration values

	Global ESQL/C variables in a Windows™ environment
	A sample Informix® ESQL/C program
	Compile the demo1 program
	Guide to demo1.ec file
	Line 1
	Lines 2 - 3
	Lines 4 - 9
	Lines 10 - 12
	Lines 13 - 17
	Line 18
	Lines 19 - 25
	Lines 26 - 27
	Lines 28 - 29
	Lines 30 - 32

	Compile programs
	Compile the Informix® ESQL/C program
	The ESQL/C preprocessor
	The C preprocessor and compiler
	Default compilation order
	Run the C preprocessor first

	The esql command
	Requirements for using the esql command
	Syntax of the esql command

	UNIX-only arguments
	Windows-only arguments
	Options that affect preprocessing
	Check the version number
	Associate options with files
	Preprocess without compiling or linking
	Generate thread-safe code
	Check for ANSI-standard SQL syntax
	Define and undefine definitions while preprocessing
	Check for missing indicator variables
	Name the location of include files
	Line numbers
	Cursor names and statement IDs
	Redirect errors and warnings
	Suppress warnings
	Enabling the GLS for Unicode (GLU) feature
	The X/Open standards

	Run the C preprocessor before the ESQL/C preprocessor
	Options for running the C preprocessor first
	The CPFIRST environment variable (UNIX™)
	Using the eprotect.exe utility (Windows™)
	The order of compilation when the C preprocessor runs first
	Define host variables based on C #defines and typedefs
	Allow all valid C declaration syntax inside the EXEC SQL declare section
	Exclude statements inside C header files
	SQL keyword protection
	SQL keyword protection and the dollar sign ($) symbol

	Preprocessor options specific to Windows™ environments
	Line wrapping
	Change error and warning displays
	Set tab stops

	Compiling and linking options of the esql command
	Name the executable file
	Set the type of executable files created (Windows™)
	Pass options to the C compiler
	Specify a particular C compiler (Windows™)
	Compile without linking
	Special compile options for Windows™ environments
	Specify the name of a project file
	Create a response file
	Implicit options invoked by the esql preprocessor in Windows™ environments

	Linking options
	General linking options
	Linking other C source and object files
	Specify versions of Informix® ESQL/C general libraries

	Special linking options for Windows™
	Pass arguments to the linker
	Pass arguments to the resource compiler
	ESQL/C dynamic link libraries
	Same runtime routines for version independence

	Access the ESQL Client-interface DLL in Windows™ environments
	Access the import library
	Locate a DLL
	Build an application DLL

	Informix® ESQL/C data types
	Choose data types for host variables
	Data type constants
	SQL data type constants
	ESQL/C data type constants
	X/Open data type constants

	Header files for data types

	Data conversion
	Fetch and insert with host variables
	Convert numbers and strings
	Convert floating-point numbers to strings
	Convert BOOLEAN values to characters
	Convert DATETIME and INTERVAL values
	Convert between VARCHAR and character data types

	Perform arithmetic operations
	Convert numbers to numbers
	Operations that involve a decimal value
	Convert the non-decimal numeric operand
	Obtain the DECIMAL data type of the arithmetic result

	Data-type alignment library functions

	Character and string data types
	Character data types
	The char data type
	The fixchar data type
	The string data type
	The varchar data type
	VARCHAR size macros
	The varchar.ec demonstration program

	The lvarchar data type
	The lvarchar keyword syntax
	A lvarchar host variable of a fixed size
	The lvarchar pointer host variable

	Fetch and insert character data types
	Fetch and insert CHAR data
	Fetch CHAR data
	Insert CHAR data

	Fetch and insert VARCHAR data
	Fetch VARCHAR data
	Insert VARCHAR data

	Fetch and insert lvarchar data
	Fetch lvarchar data
	Insert lvarchar data

	Fetch and insert with an ANSI-compliant database

	Character and string library functions

	Numeric data types
	The integer data types
	The integer host variable types
	The INT8 and SERIAL8 SQL data types
	The int8 data type
	The int8 library functions

	The BOOLEAN data type
	The decimal data type
	The decimal structure
	The decimal library functions

	The floating-point data types
	Declare float host variables
	Implicit data conversion

	Format numeric strings
	Sample format strings for numeric expressions
	Numeric-formatting functions

	Time data types
	The SQL DATE data type
	Format date strings

	DATE library functions
	The SQL DATETIME and INTERVAL data types
	The datetime data type
	The interval data type
	Macros for datetime and interval data types
	Fetch and insert DATETIME and INTERVAL values
	Fetch and insert into datetime host variables
	Fetch and insert into interval host variables
	Implicit data conversion

	ANSI SQL standards for DATETIME and INTERVAL values
	Converting data for datetime values
	Converting data for interval values

	Support of non-ANSI DATETIME formats
	The USE_DTENV environment variable

	DATETIME and INTERVAL library functions

	Simple large objects
	Choose a large-object data type
	Programming with simple large objects
	Declare a host variable for a simple large object
	Access the locator structure
	The fields of the locator structure
	Locations for simple-large-object data

	Locate simple large objects in memory
	Allocate the memory buffer
	A memory buffer that the ESQL/C libraries allocate
	A memory buffer that the program allocates

	Select a simple large object into memory
	Insert a simple large object from memory

	Locate simple large objects in files
	File-open mode flags
	Error returns in loc_status
	Locate simple large objects in open files
	Select a simple large object into an open file
	Insert a simple large object from an open file

	Locate simple large objects in named files
	Select a simple large object into a named file
	Insert a simple large object from a named file

	User-defined simple-large-object locations
	Select a simple large object into a user-defined location
	Insert a simple large object into a user-defined location
	User-defined simple-large-object functions
	The user-defined open function
	The user-defined read function
	The user-defined write function
	The user-defined close function

	Read and write simple large objects to an optical disc (UNIX™)
	The dispcat_pic program
	Preparing to run the dispcat_pic program
	Load the simple-large-object images
	Choose the image files
	Loading the simple-large-object images with the blobload utility

	Guide to the dispcat_pic.ec File
	Lines 8 - 11
	Lines 12 - 16
	Lines 17 - 21
	Line 22
	Lines 23 - 26
	Lines 27 - 29
	Lines 30 - 33
	Lines 34 - 51
	Lines 52 - 60
	Lines 61 - 74
	Lines 75 - 81
	Lines 82 - 88
	Lines 89 - 95
	Lines 96 - 104
	Lines 105 - 110
	Lines 111 - 113
	Lines 114 - 122
	Lines 123 - 130
	Line 131 - 133
	Lines 134 and 135
	Lines 136 and 145
	Line 146 - 153

	Guide to the prdesc.c file
	Lines 1 - 20

	Guide to the inpfuncs.c file
	Lines 1 - 7
	Lines 8 - 32
	Lines 33 - 45

	Smart large objects
	Data structures for smart large objects
	Declare a host variable
	The LO-specification structure
	The ifx_lo_create_spec_t structure
	Disk-storage information
	Create-time flags

	ESQL/C functions that use the LO-specification structure
	Obtain storage characteristics
	The system-specified storage characteristics
	The column-level storage characteristics
	The user-defined storage characteristics

	Deallocate the LO-specification structure

	The LO-pointer structure
	Store a smart large object
	The ifx_lo_t structure
	ESQL/C functions that use the LO-pointer structure

	The LO file descriptor
	ESQL/C library functions that use an LO file descriptor

	Creating a smart large object
	Accessing a smart large object
	Select a smart large object
	Open a smart large object
	Access modes
	Set dirty read access mode
	The LO_APPEND flag
	Lightweight I/O

	Smart-large-object locks
	Range of a lock

	Duration of an open on a smart large object

	Delete a smart large object
	Modifying a smart large object
	Read data from a smart large object
	Write data to a smart large object

	Close a smart large object

	Obtaining the status of a smart large object
	Obtaining a valid LO-pointer structure
	Allocate and access an LO-status structure
	Allocate an LO-status structure
	Access the LO-status structure

	Deallocate the LO-status structure

	Alter a smart-large-object column
	Migrate simple large objects
	Read and write smart large objects on an optical disc (UNIX™)
	The ESQL/C API for smart large objects

	Complex data types
	Access a collection
	Access a collection derived table
	Advantage of a collection derived table
	Restrictions on a collection derived table

	Declaring collection variables
	Syntax of the collection data type
	Typed and untyped collection variables
	The typed collection variable
	The untyped collection variable

	Client collections

	Manage memory for collections
	Operate on a collection variable
	The collection-derived table clause on collections
	Access a collection variable
	Distinguish between columns and collection variables

	Initialize a collection variable
	Insert elements into a collection variable
	Insert one element
	Insert elements into SET and MULTISET collections
	Insert elements into LIST collections
	Inserting more than one element
	Declare an insert cursor for a collection variable
	Put elements into the insert cursor
	Free cursor resources

	Select from a collection variable
	Select one element
	Select one row element
	Selecting more than one element
	Declare a select cursor for a collection variable
	Fetch elements from the select cursor

	Update a collection variable
	Update all elements
	Updating one element

	Specify element values
	Literal values as elements
	ESQL/C host variables as elements

	Delete elements from a collection variable
	Delete all elements
	Delete one element

	Access a nested collection
	Select values from a nested collection
	Insert values into a nested collection

	Operate on a collection column
	Select from a collection column
	Insert into and update a collection column
	Delete an entire collection

	Access row types
	Declare row variables
	Typed and untyped row variables
	The typed row variable
	The untyped row variable

	Named row types
	In a collection-derived table

	Client-side rows

	Manage memory for rows
	Operate on a row variable
	The collection-derived table clause on row types
	Access a row variable
	Distinguish between columns and row variables

	Initialize a row variable
	Insert into a row variable
	Select from a row variable
	Update a row variable
	Delete from a row variable
	Specify field names
	Host variable field names

	Specify field values
	Literal values as field values
	Constructed rows
	ESQL/C host variables as field values

	Access a typed table
	Operate on a row-type column
	Select from a row-type column
	Select the entire row-type column
	Select fields of a row column

	Insert into and update row-type columns
	Delete an entire row type

	Opaque data types
	The SQL opaque data type
	Access the external format of an opaque type
	Declare lvarchar host variables
	An lvarchar host variable of a fixed size
	The lvarchar pointer host variable
	To allocate memory yourself

	The opaque type name

	The lvarchar host variables
	Fixed-size lvarchar host variables
	Inserting from a fixed-size lvarchar host variable
	Select into a fixed-size lvarchar host variable

	The lvarchar pointer variables
	Insert from an lvarchar pointer host variable
	Select into an lvarchar pointer host variable

	Access the internal format of an opaque type
	Access a fixed-length opaque type
	Declare fixed binary host variables
	The opaque type

	Fixed binary host variables
	Insert from a fixed binary host variable
	Select into a fixed binary host variable

	Access a varying-length opaque type
	Declare var binary host variables
	The var binary host variables
	Insert from a var binary host variable
	Select into a var binary host variable

	The lvarchar pointer and var binary library functions
	Access predefined opaque data types

	Database server communication
	Exception handling
	Obtain diagnostic information after an SQL statement
	Types of diagnostic information
	Types of database exceptions
	Descriptive information

	Types of status variables

	Exception handling with SQLSTATE
	The GET DIAGNOSTICS statement
	Statement information
	Exception information

	The SQLSTATE variable
	Class and subclass codes
	List of SQLSTATE class codes

	Check for exceptions with SQLSTATE
	Determining the cause of an exception in SQLSTATE
	Success in SQLSTATE
	NOT FOUND in SQLSTATE
	Warnings in SQLSTATE
	Runtime errors in SQLSTATE
	GET DIAGNOSTICS failure

	Multiple exceptions

	Exception handling with the sqlca structure
	Fields of the sqlca structure
	The SQLCODE variable
	SQLCODE in pure C modules
	SQLCODE and the exit() call
	SQLCODE after a DESCRIBE statement

	Check for exceptions with sqlca
	Success in sqlca
	NOT FOUND in SQLCODE
	Warnings in sqlca.sqlwarn
	Runtime errors in SQLCODE
	Errors after a PREPARE statement
	SQLCODE after an EXECUTE statement

	Display error text (Windows™)

	Choose an exception-handling strategy
	Check after each SQL statement
	The WHENEVER statement

	Library functions for retrieving error messages
	Display error text in a Windows™ environment

	A program that uses exception handling
	Compile the program
	Guide to the getdiag.ec file
	Line 4
	Lines 12 and 13
	Line 15
	Lines 17, 23, 25, and 33
	Lines 35 and 37
	Line 41

	Guide to the exp_chk.ec file
	Lines 1 - 4
	Line 5
	Lines 6 - 31
	Lines 32 - 80
	Lines 81 - 87
	Lines 88 - 94
	Lines 95 - 117
	Lines 118 - 144
	Lines 145 - 168
	Lines 169 - 213

	Working with the database server
	The client-server architecture of ESQL/C applications
	The client-server connection
	Sources of connection information about a UNIX™ operating system
	Access the sqlhosts file
	Specify the default database server

	Sources of connection information in a Windows™ environment
	Set environment variables for connections in a Windows™ environment
	The sqlhosts information in a Windows™ environment
	A central registry
	Connection authentication functionality in a Windows™ environment

	Connect to a database server
	Establish a connection
	The explicit connection
	The implicit Connection
	Summary of connection types

	Establish an explicit connection in a Windows™ environment
	Password encryption
	Pluggable Authentication Modules (PAM)
	LDAP authentication
	Multiplexed connections
	Client requirements for execution
	Limitations for multiplexed connections

	Identify the database server
	A specific database server
	The default database server

	Interact with the database server
	Determine features of the database server
	Switch between multiple database connections
	Make a connection current
	Handling transactions

	Identify an explicit connection
	Obtain available databases
	Check the status of the database server
	Establishing a separate database connection for the child process
	Interrupt an SQL request
	Interruptible SQL statements
	Allow a user to interrupt
	Set up a timeout interval
	The timeout interval
	The callback function

	Error checking during data transfer
	Terminate a connection

	Optimized message transfers
	Restrictions on optimized message transfers
	Enabling optimized message transfers
	Set the OPTMSG environment variable
	Set the OptMsg global variable

	Error handling with optimized message transfers

	Database server control functions
	The timeout program
	Compile the program
	Guide to the timeout.ec File
	Lines 4 - 9
	Lines 10 - 20
	Lines 24 and 25
	Lines 29 - 33
	Lines 43 - 50
	Line 51
	Lines 53 - 67
	Lines 68 - 72
	Lines 73 - 83
	Lines 84 - 97
	Lines 98 - 101
	Lines 108 - 120
	Lines 121 - 132
	Line 133
	Lines 134 - 154
	Lines 155 - 182
	Lines 185 - 187
	Lines 190 - 198
	Lines 199 - 249
	Lines 199 - 249 (continued)
	Lines 251 - 261
	Lines 262 - 281
	Lines 282 - 287
	Lines 288 - 292
	Lines 293 - 297
	Lines 298 - 307
	Lines 300 - 317
	Lines 320 - 329
	Lines 330 - 336
	Lines 337 - 347
	Lines 348 - 355

	Example output
	Lines 3 - 17
	Lines 18 - 19
	Line 20
	Lines 21 - 30
	Line 31
	Line 32
	Lines 36 - 41
	Lines 45 - 52
	Lines 54 and 55

	ESQL/C connection library functions in a Windows™ environment

	Informix® libraries
	Choose a version of the Informix® general libraries
	The Informix® general libraries
	The esql command
	Link static Informix® general libraries
	Link static Informix® general libraries into an ESQL/C module

	Link shared Informix® general libraries
	Symbolic names of linked shared libraries (UNIX™)
	Linking shared Informix® general libraries to an ESQL/C module

	Choose between shared and static library versions

	Compatibility of preexisting ESQL/C applications with current library versions
	The ifx_getversion utility (UNIX™)
	Check the API version of a library

	Create thread-safe ESQL/C applications
	Characteristics of thread-safe ESQL/C code
	Program a thread-safe ESQL/C application
	Concurrent active connections
	Connections across threads
	The DISCONNECT ALL Statement
	Prepared statements across threads
	Cursors across threads
	Environment variables across threads
	Message file descriptors
	Decimal functions
	DCE restrictions (UNIX™)
	Operating-system calls
	The fork() operating-system call
	Resource allocation

	Link thread-safe libraries
	Linking thread-safe Informix® general libraries to an ESQL/C module on a UNIX™ operating system
	Define thread-safe variables (UNIX™)
	Link shared or static versions
	Linking thread-safe Informix® general libraries to an ESQL/C module in a Windows™ environment

	ESQL/C thread-safe decimal functions
	Context threaded optimization
	A sample thread-safe program
	Source listing
	Output

	Create a dynamic thread library on UNIX™ operating systems
	Data types
	Register the dynamic thread functions
	Set the $THREADLIB environment variable
	Create the shared library
	Compile with the -thread and -l preprocessor options

	Dynamic SQL
	Using dynamic SQL
	Execute dynamic SQL
	Assemble and prepare the SQL statement
	Assemble the statement
	Prepare statements that have collection variables
	Check the prepared statement

	Execute the SQL statement
	Free resources

	A database cursor
	Receive more than one row
	A select cursor
	A function cursor

	Send more than one row
	Name the cursor
	Optimize cursor execution
	Size the cursor buffer
	Default buffer size

	Automatically freeing a cursor
	Enable the AUTOFREE feature
	The SET AUTOFREE statement

	Defer execution of the PREPARE statement
	Restrictions on deferred-PREPARE
	Enable the deferred-PREPARE Feature
	The SET DEFERRED_PREPARE statement

	The collect.ec program
	Optimize OPEN, FETCH, and CLOSE
	Restrictions on OPTOFC
	Enable the OPTOFC Feature

	Using OPTOFC and Deferred-PREPARE together
	SQL statements that are known at compile time
	Execute non-SELECT statements
	The PREPARE and EXECUTE statements
	The EXECUTE IMMEDIATE statement

	Execute SELECT statements
	The PREPARE and EXECUTE INTO statements
	Declare a select cursor

	The lvarptr.ec program
	Execute user-defined routines in Informix®
	A user-defined procedure
	A user-defined function
	A noncursor function
	A function cursor

	Execute statements with input parameters
	An EXECUTE USING statement
	An OPEN USING statement
	The demo2.ec sample program
	Lines 9 and 10
	Lines 14 - 21
	Line 22
	Lines 23 - 27
	Line 28
	Lines 29 - 38
	Lines 39 and 40
	Line 41
	Lines 42 and 43

	SQL statements that are not known at compile time

	Determine SQL statements
	Dynamic-management structure
	A system-descriptor area
	Fixed-length portion
	An item descriptor

	An sqlda structure
	Fixed-length portion
	An sqlvar_struct structure
	Descriptive information

	The DESCRIBE statement
	Determine the statement type
	Determine the data type of a column
	SQL data types specific to Informix®
	X/Open SQL data types
	Constants for ESQL/C data types

	Determine input parameters
	Check for a WHERE clause

	Determine statement information at run time
	Handling an unknown select list
	Handling an unknown column list
	Determine unknown input parameters
	Determine return values dynamically
	Handling statements that contain user-defined data types
	SQL statements with opaque-type columns
	Insert opaque-type data
	Truncation of opaque-type data

	SQL statements with distinct-type columns

	A fetch array
	Using a fetch array
	Sample fetch array program
	Allocate memory for the fetch arrays
	Allocating memory for a fetch array

	Obtain values from fetch arrays
	Free memory for a fetch array

	A system-descriptor area
	Manage a system-descriptor area
	Allocate memory for a system-descriptor area
	Initialize the system-descriptor area
	The DESCRIBE statement and input parameters
	The DESCRIBE statement and memory allocation

	Assign and obtain values from a system-descriptor area
	The SET DESCRIPTOR Statement
	An lvarchar pointer host variable with a descriptor

	The GET DESCRIPTOR statement

	Specify input parameter values
	Put column values into a system-descriptor area
	Free memory allocated to a system-descriptor area

	Using a system-descriptor area
	Handling an unknown select list
	Execute a SELECT that returns multiple rows
	The demo4.ec sample program
	Lines 5 - 11
	Lines 14 - 22
	Line 23
	Line 24
	Line 25
	Line 26
	Lines 27 and 28
	Lines 29 - 31
	Lines 33 - 46
	Lines 47 and 48
	Line 49
	Lines 50 - 54
	Lines 58 - 76

	Execute a singleton SELECT

	Handling unknown return values
	Execute a noncursor function
	A sample program that executes an SPL function
	Lines 19 - 25
	Line 26
	Line 27
	Lines 28 - 33
	Lines 34 - 40
	Lines 41 - 49
	Lines 50 and 51

	Executing a cursor function

	Handling an unknown column list
	Execute a simple insert
	A sample program that executes a dynamic INSERT statement
	Lines 5 - 10
	Lines 15 - 17
	Lines 18 and 19
	Line 20 and 21
	Lines 22 and 23
	Lines 24 and 25
	Lines 26 - 29
	Lines 30 - 36
	Lines 37 and 38
	Lines 39 - 44
	Lines 45 - 48
	Lines 55 - 60

	Execute an INSERT that is associated with a cursor

	Handling a parameterized SELECT statement
	Execute a parameterized SELECT that returns multiple rows
	A sample program that uses a dynamic SELECT statement
	Lines 8 - 14
	Lines 17 - 25
	Line 26
	Line 27
	Lines 28 - 38
	Lines 39 - 43
	Lines 44 and 45
	Lines 47 - 49
	Lines 50 and 51
	Lines 52 - 59
	Lines 60 - 70
	Line 73
	Lines 74 - 77

	Execute a parameterized singleton SELECT statement

	Handling a parameterized user-defined routine
	Execute a parameterized function
	Execute a parameterized procedure

	Handling a parameterized UPDATE or DELETE statement
	The dyn_sql program
	Compile the program
	Guide to the dyn_sql.ec file
	Lines 7 - 13
	Lines 14 - 17
	Line 18
	Lines 19 - 23
	Lines 24 - 27
	Lines 28 - 51
	Lines 52 - 67
	Lines 68 - 75
	Lines 76 - 79
	Lines 80 - 93
	Lines 94 - 98
	Lines 99 - 102
	Lines 114 - 137
	Lines 138 - 149
	Line 152
	Lines 153 - 156
	Lines 157 - 167
	Lines 168 - 380
	Lines 381 - 387
	Lines 388 - 397
	Lines 398 - 405

	An sqlda structure
	Manage an sqlda structure
	Define an sqlda structure
	Allocate memory for the sqlda structure
	Initialize the sqlda structure
	Allocate memory for column data
	Assign and obtain values from an sqlda structure
	Assign values
	Obtain values

	Specify input parameter values
	Put column values into an sqlda structure
	Free memory allocated to an sqlda structure

	An sqlda structure to execute SQL statements
	Handling an unknown select list
	Execute a SELECT that returns multiple rows
	The demo3.ec sample program
	Line 2
	Lines 6 - 13
	Lines 16 - 24
	Line 25
	Line 26
	Lines 27 and 28
	Lines 29 - 32
	Lines 33 - 48
	Line 49
	Lines 50 - 60
	Lines 61 and 62
	Line 63
	Lines 64 and 65
	Lines 66 - 71
	Lines 75 - 81

	Execute a singleton SELECT

	Handling unknown return values
	Execute a noncursor function
	Executing a cursor function

	Handling an unknown column list
	Execute a simple insert
	Execute an INSERT that is associated with a cursor

	Handling a parameterized SELECT statement
	Execute a parameterized SELECT that returns multiple rows
	A sample program that uses an sqlda structure
	Line 2
	Lines 9 - 14
	Lines 17 - 20
	Line 21
	Lines 22 and 23
	Line 24
	Lines 25 and 26
	Line 27
	Lines 28
	Lines 29 - 31
	Lines 32 - 36
	Lines 37 - 59
	Lines 60 - 62
	Lines 63 and 64
	Lines 69 - 77
	Lines 78 - 84
	Lines 85 - 102

	Execute a parameterized singleton SELECT statement

	Handling a parameterized user-defined routine
	Execute a parameterized function
	Execute a parameterized procedure

	Handling a parameterized UPDATE or DELETE statement

	Appendixes
	The ESQL/C example programs
	The ESQL/C function library
	Informix® ESQL/C library functions
	The bigintcvasc() function
	Syntax
	Return codes

	The bigintcvdbl() function
	Syntax
	Return codes

	The bigintcvdec() function
	Syntax
	Return codes

	The bigintcvflt() function
	Syntax
	Return codes

	The bigintcvifx_int8() function
	Syntax
	Return codes

	The bigintcvint2() function
	Syntax
	Return codes

	The bigintcvint4() function
	Syntax
	Return codes

	The biginttoasc() function
	Syntax
	Return codes

	The biginttodbl() function
	Syntax
	Return codes

	The biginttodec() function
	Syntax
	Return codes

	The biginttoflt() function
	Syntax
	Return codes

	The biginttoifx_int8() function
	Syntax

	The biginttoint2() function
	Syntax
	Return codes

	The biginttoint4() function
	Syntax
	Return codes

	The bycmpr() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The bycopy() function
	Syntax
	Example
	Output

	The byfill() function
	Syntax
	Example
	Output

	The byleng() function
	Syntax
	Example
	Output

	The decadd() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The deccmp() function
	Syntax
	Return codes
	Example
	Output

	The deccopy() function
	Syntax
	Example
	Output

	The deccvasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The deccvdbl() function
	Syntax
	Return codes
	Example
	Output

	The deccvflt() function
	Syntax
	Return codes
	Example
	Output

	The deccvint() function
	Syntax
	Return codes
	Example
	Output

	The deccvlong() function
	Syntax
	Return codes
	Example
	Output

	The decdiv() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dececvt() and decfcvt() functions
	Syntax
	Usage
	Example of dececvt()
	Output of dececvt()
	Example of decfcvt()
	Output of decfcvt()

	The decmul() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The decround() function
	Syntax
	Usage
	Return codes
	Output

	The decsub() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dectoasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dectodbl() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dectoint() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dectolong() function
	Syntax
	Return codes
	Example
	Output

	The dectrunc() function
	Syntax
	Usage
	Example
	Output

	The dtaddinv() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dtcurrent() function
	Syntax
	Usage
	Example calls
	Example
	Output

	The dtcvasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dtcvfmtasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dtextend() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dtsub() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dtsubinv() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dttoasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The dttofmtasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The GetConnect() function (Windows™)
	Syntax
	Usage
	Return codes

	The ifx_cl_card() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ifx_dececvt() and ifx_decfcvt() function
	Syntax
	Usage
	Return codes

	The ifx_defmtdate() function
	Syntax
	Usage
	Return codes

	The ifx_dtcvasc() function
	Syntax
	Usage
	Return codes

	The ifx_dtcvfmtasc() function
	Syntax
	Usage
	Return codes

	The ifx_dttofmtasc() function
	Syntax
	Usage
	Return codes

	The ifx_getenv() function
	Syntax
	Usage
	Return codes

	The ifx_getcur_conn_name() function
	Syntax
	Usage
	Return codes

	The ifx_getserial8() function
	Syntax
	Usage
	Example

	The ifx_int8add() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ifx_int8cmp() function
	Syntax
	Return codes
	Example
	Output

	The ifx_int8copy() function
	Syntax
	Example
	Output

	The ifx_int8cvasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ifx_int8cvdbl() function
	Syntax
	Return codes
	Example
	Output

	The ifx_int8cvdec() function
	Syntax
	Return codes
	Example
	Output

	The ifx_int8cvflt() function
	Syntax
	Return codes
	Example
	Output

	The ifx_int8cvint() function
	Syntax
	Return codes
	Example
	Output

	The ifx_int8cvlong() function
	Syntax
	Return codes
	Example
	Output

	The ifx_int8div() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ifx_int8mul() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ifx_int8sub() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ifx_int8toasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ifx_int8todbl() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ifx_int8todec() function
	Syntax
	Return codes
	Example
	Output

	The ifx_int8toflt() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ifx_int8toint() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ifx_int8tolong() function
	Syntax
	Return codes
	Example
	Output

	The ifx_lo_alter() function
	Syntax
	Usage
	Return codes

	The ifx_lo_close() function
	Syntax
	Usage
	Return codes

	The ifx_lo_col_info() function
	Syntax
	Usage
	Return codes

	The ifx_lo_copy_to_file() function
	Syntax
	Usage
	Return codes

	The ifx_lo_copy_to_lo() function
	Syntax
	Usage
	Return codes

	The ifx_lo_create() function
	Syntax
	Usage
	Return codes

	The ifx_lo_def_create_spec() function
	Syntax
	Usage
	Return codes

	The ifx_lo_filename() function
	Syntax
	Usage
	Return codes

	The ifx_lo_from_buffer() function
	Syntax
	Usage
	Return codes

	The ifx_lo_lock() function
	Syntax
	Usage
	Return codes

	The ifx_lo_open() function
	Syntax
	Usage
	Return codes

	The ifx_lo_read() function
	Syntax
	Usage
	Return codes

	The ifx_lo_readwithseek() function
	Syntax
	Usage
	Return codes

	The ifx_lo_release() function
	Syntax
	Usage
	Return codes

	The ifx_lo_seek() function
	Syntax
	Usage
	Return codes

	The ifx_lo_spec_free() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specget_def_open_flags() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specget_estbytes() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specget_extsz() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specget_flags() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specget_maxbytes() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specget_sbspace() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specset_def_open_flags() function
	Syntax
	Usage
	Return codes
	Example

	The ifx_lo_specset_estbytes() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specset_extsz() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specset_flags() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specset_maxbytes() function
	Syntax
	Usage
	Return codes

	The ifx_lo_specset_sbspace() function
	Syntax
	Usage
	Return codes

	The ifx_lo_stat() function
	Syntax
	Usage
	Return codes

	The ifx_lo_stat_atime() function
	Syntax
	Usage
	Return codes

	The ifx_lo_stat_cspec() function
	Syntax
	Usage
	Return codes

	The ifx_lo_stat_ctime() function
	Syntax
	Usage
	Return codes

	The ifx_lo_stat_free() function
	Syntax
	Usage
	Return codes

	The ifx_lo_stat_mtime_sec() function
	Syntax
	Usage
	Return codes

	The ifx_lo_stat_refcnt() function
	Syntax
	Usage
	Return codes

	The ifx_lo_stat_size() function
	Syntax
	Usage
	Return codes

	The ifx_lo_tell() function
	Syntax
	Usage
	Return codes

	The ifx_lo_to_buffer() function
	Syntax
	Usage
	Return codes

	The ifx_lo_truncate() function
	Syntax
	Usage
	Return codes

	The ifx_lo_unlock() function
	Syntax
	Usage
	Return codes

	The ifx_lo_write() function
	Syntax
	Usage
	Return codes

	The ifx_lo_writewithseek() function
	Syntax
	Usage
	Return codes

	The ifx_lvar_alloc() function
	Syntax
	Usage
	Return codes

	The ifx_putenv() function
	Syntax
	Usage
	Return codes

	The ifx_strdate() function
	Syntax
	Usage
	Return codes

	The ifx_var_alloc() function
	Syntax
	Usage
	Return codes

	The ifx_var_dealloc() function
	Syntax
	Usage
	Return codes

	The ifx_var_flag() function
	Syntax
	Usage
	Return codes

	The ifx_var_freevar() function
	Syntax
	Usage
	Return codes

	The ifx_var_getdata() function
	Syntax
	Usage
	Return codes

	The ifx_var_getlen() function
	Syntax
	Usage
	Return codes

	The ifx_var_isnull() function
	Syntax
	Usage
	Return codes

	The ifx_var_setdata() function
	Syntax
	Usage
	Return codes

	The ifx_var_setlen() function
	Syntax
	Usage
	Return codes

	The ifx_var_setnull() function
	Syntax
	Usage
	Return codes

	The incvasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The incvfmtasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The intoasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The intofmtasc() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The invdivdbl() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The invdivinv() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The invextend() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The invmuldbl() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The ldchar() function
	Syntax
	Example
	Output

	The rdatestr() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rdayofweek() function
	Syntax
	Return codes
	Example
	Output

	The rdefmtdate() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rdownshift() function
	Syntax
	Usage
	Return codes
	Output

	The ReleaseConnect() function (Windows™)
	Syntax
	Usage
	Return codes

	The rfmtdate() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rfmtdec() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rfmtdouble() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rfmtlong() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rgetlmsg() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rgetmsg() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The risnull() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rjulmdy() function
	Syntax
	Return codes
	Example
	Output

	The rleapyear() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rmdyjul() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rsetnull() function
	Syntax
	Usage
	Example
	Output

	The rstod() function
	Syntax
	Usage
	Example
	Output

	The rstoi() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rstol() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rstrdate() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rtoday() function
	Syntax
	Usage
	Example
	Output

	The rtypalign() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rtypmsize() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rtypname() function
	Syntax
	Return codes
	Example
	Output

	The rtypsize() function
	Syntax
	Usage
	Return codes
	Example

	The rtypwidth() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The rupshift() function
	Syntax
	Usage
	Example
	Output

	The SetConnect() function (Windows™)
	Syntax
	Usage
	Return codes

	The sqgetdbs() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The sqlbreak() function
	Syntax
	Usage
	Return codes

	The sqlbreakcallback() function
	Syntax
	Usage
	Return codes

	The sqldetach() function
	Syntax
	Usage
	Return codes
	Example
	Output

	The sqldone() function
	Syntax
	Usage
	Return codes

	The sqlexit() function
	Syntax
	Usage
	Return codes

	The sqlsignal() function
	Syntax
	Usage

	The sqlstart() function
	Syntax
	Usage
	Return codes

	The stcat() function
	Syntax
	Example
	Output

	The stchar() function
	Syntax
	Example
	Output

	The stcmpr() function
	Syntax
	Return codes
	Example
	Output

	The stcopy() function
	Syntax
	Example
	Output

	The stleng() function
	Syntax
	Usage
	Example
	Output

	Examples for smart-large-object functions
	Prerequisites
	The create_clob.ec program
	Storage characteristics for the example

	The get_lo_info.ec program
	The upd_lo_descr.ec program

	Index

